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ABSTRACT  

 

Very little is known about introgression in bacteria. Introgression is the process where the 

genes of one species infiltrate the gene pool of another organism by subsequent backcross 

transformations of a hybrid with one of its parents. After the initial acquisition of foreign 

DNA, DNA from the newly made transformants is used as donor DNA in backcross 

transformations with the recipient. DNA is released to the environment after decomposing of 

dead cells, disrupting of cells or through excretion from living organisms. The extracellular 

DNA can be degraded after release, thus fragmented DNA can be taken up by bacteria. 

  

One previous unpublished study investigated the effect of introgression of foreign unselected 

DNA. The donor DNA in this study was of high molecular weight (20 to 30 kilo bases (Kb)) 

and it was suggested that introgression in backcross transformation could be a mechanism by 

which unselected DNA was eliminated from the genome.  

 

I wanted to study the effect of introgression when the foreign donor DNA was of low 

molecular weight (1000 to 4000 base pairs (bp)). We wanted to determine how fragmentation 

affects the speed at which unselected DNA from Acinetobacter sp. strain 16.4 was eliminated 

from the genome of Acinetobacter baylyi strain BD413 during the introgression process.  

 

I have developed a method for optimal fragmentation of DNA to the desired size for this 

study. The DNA was fragmented by sonication, which gave an effective, gradual reduction in 

the fragment size of DNA. The size of the sonicated DNA was checked on an agarose gel and 

I found out that a gel fraction between 1000 to 4000 bp was the desired size for fragmented 

DNA. The DNA was extracted from the gel piece and used as low molecular weight donor 

DNA.  

 

This method can be used to determine the effect of introgression when the foreign donor DNA 

is of low molecular weight (1000 to 4000 base pairs bp) and to get a better understanding for 

natural fragmentation of extracellular DNA in the environment.  
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ABBREVIATIONS 

 
bp Base pairs 
CFU Colony forming unit 
DNA Deoxyribonucleic acid 
EtBr Ethidium Bromide 
HGT Horizontal gene transfer 
Kb Kilo bases 
l Liter 
LB Luria Broth 
LBA Luria Broth Agar 
LBR LB or LBA with rifampicin 
LBRK LB or LBA with rifampicin and kanamycin 
LBSS LB or LBA with streptomycin and spectinomycin 

LBSSK 
LB or LBA with streptomycin, spectinomycin and 
kanamycin 

min Minutes 
ml Milliliter 
NaCl Sodium chloride 
ng Nanogram 
s Seconds 
TAE Tris-acetate-EDTA 
TBE Tris-borate-EDTA 
TF Transformation frequency 
TNTC Too numerous to count 
μl  Micro liter 
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1. INTRODUCTION 

 

1.1 Horizontal gene (HGT) transfer in bacteria 

 

Horizontal gene transfer (HGT) is the genetic exchange between bacterial cells. The genetic 

material is transferred from one cell to another cell that is not its offspring, unlike in vertical 

gene transfer where the genetic material is transferred from mother to daughter cells. HGT 

can occur via three known mechanisms; conjugation, transduction and transformation. 

Conjugation is the transfer of mobile genetic elements, plasmids or transposons, from one 

bacterium to another by direct contact between donor and recipient cells.     

Transduction is the transfer of genetic material from one bacterium to another by 

bacteriophages (viruses that infect bacteria). After the infection, the bacteriophage takes over 

the hosts DNA replication machinery and produce numerous new phages. Following lysis of 

the host cell, the phages can infect new host cells. Sometimes phages occasionally pack host 

DNA instead of phage DNA into viral packages and then inject this DNA into new host cells. 

The bacterial DNA can then integrate into the recipient DNA, causing horizontal gene transfer 

between bacteria (Thomas and Nielsen, 2005). 

Natural transformation is the simplest of the three mechanisms of HGT. It requires free, 

extracellular DNA (plasmid or chromosomal) and a competent recipient bacterium (Lorenz 

and Wackernagel, 1994). Transformation was first demonstrated by Griffith (1928), and later 

it was demonstrated by Avery, MacLeod and McCarty (1944) that the transforming factor was 

DNA. Natural transformation involves uptake, incorporation and expression of the acquired 

DNA. More than 40 bacterial species are known to be naturally transformable (Lorenz and 

Wackernagel, 1994). 

  

1.1.1 Molecular biology of natural transformation 

 

In natural transformation the recipient is the bacterium which takes up the free DNA and the 

donor is the bacterium which the DNA comes from. The recipient has to be in a physiological 

state of competence (see next section) to be able take up free DNA. DNA becomes available 

for uptake in the environment by release from decomposing cells, disrupted cell or viral 

particles, or through excretion from living cells (Thomas and Nielsen, 2005). Natural 

transformation of a recipient cell with chromosomal donor DNA can be divided into four 

steps; development of competence, DNA uptake and binding, DNA translocation across the 
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inner and outer membrane and recombination/integration of the transforming DNA into the 

recipient chromosome (see the next sections).  

 

Development of competence 

 

Natural genetic competence is a genetically-encoded physiological state where the bacteria 

becomes capable of taking up naked/free/extracellular DNA (Chen and Dubnau, 2004; 

Dubnau, 1999; Lorenz and Wackernagel, 1994). Natural competence is a transient state in 

most naturally transformable bacteria (Lorenz and Wackernagel, 1994) and results from the 

growth of a bacterial culture under defined growth conditions, or it is, as in Neisseria 

gonorrhoea (Lorenz and Wackernagel, 1994; Thomas and Nielsen, 2005), constitutively 

expressed under all growth conditions (Dubnau, 1991) The evolution of the DNA uptake 

systems in bacteria can be accounted for by the use of incoming DNA as nutrition (Redfield, 

2001), as templates for repair of DNA, or for genetic diversity by acquisition of potential 

useful genetic information such as antibiotic resistance (Chen and Dubnau, 2004). 

Competence has been found to involve approximately 20 to 50 proteins and approximately 

1% of the validly described bacteria species have been found to be naturally transformable 

(Thomas and Nielsen, 2005).    

 

DNA uptake and binding and translocation across the outer and inner membrane 

 

Transport of extracellular DNA into the cytosolic compartment is a complex process (Chen 

and Dubnau, 2004). In gram-negative bacteria the DNA must cross the outer membrane, the 

cell wall and the cytoplasmic membrane in order to reach the cytoplasm. After exposition to 

competent bacteria the extracellular DNA binds non-covalently to sites present on the cell 

surface (Thomas and Nielsen, 2005). The number of binding sites ranges from 30 to 80 in 

Acinetobacter baylyi (Thomas and Nielsen, 2005). During translocation across the inner 

membrane, the DNA is converted from double stranded DNA (dsDNA) to single stranded 

DNA (ssDNA) (Averhoff and Graf, 2008; Thomas and Nielsen, 2005), the other strand is 

degraded during uptake. Sixteen competence genes has been identified in Acinetobacter 

baylyi; comA, comEA, dprA, comP, comE, comF, comB, comC, pilD, pilC, pilB, comQ, comL, 

comM, comN, and comO (see figure 1) (Averhoff and Graf, 2008). comEA is suggested to 

represent a soluble periplasmic protein and it may deliver bound DNA to comA. comA is most 

likely involved in transport of DNA through the cytoplasmic (inner) membrane. dprA is 
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thought to transport DNA through the cytoplasmic membrane and/or have a function in 

recombination. These three competence proteins are thought to be DNA translocator specific 

proteins. The rest of the competence proteins are thought to be type IV pili-related proteins. 

All of these mediate the contact with target surfaces. comC is involved in binding and 

transport of DNA and is co-located at the cells outer membrane with comQ, which 

translocates DNA through the outer membrane.      

 

 
Figure 1. Model for uptake of DNA in Acinetobacter baylyi strain BD413. DNA is bound to ComC or directly to 

the ComQ proteins. Then the DNA bind to ComEA and is transported through the periplasmic space and 

peptidoglycan mediated by ComP, ComE, comB and ComF. Subsequent translocation across the cytoplasmic 

membrane is performed through a ComA channel (figure from Beate Averhoff and Iris Graf, 2008).   

 

Recombination/integration of the transforming DNA into the recipient chromosome 

 

After the single stranded chromosomal donor molecules have entered the cytoplasm they may 

invade the double stranded chromosome and become integrated in homologous regions of the 

recipient chromosome (Lorenz and Wackernagel, 1994). A recipient-donor heteroduplex is 

thought to be formed by homologous base-pairing between the donor strand and the 

corresponding recipient strand. For homologous recombination to occur the incoming DNA 

must contain regions of minimum 25 to 200 base pairs (bp) in length of similarity to the 

recipient genome (Thomas and Nielsen, 2005). These regions will initiate DNA pairing and 
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strand exchange. Some competent bacterial species, for example Haemophilus influenza, are 

selective in the DNA they bind and take up (they only bind and take up DNA from the same 

or closely related species), while most other species bind and take up DNA independently of 

its sequence (Lorenz and Wackernagel, 1994). The stability of the recipient-donor 

heteroduplex is dependent on the degree of sequence similarity between the donor and 

recipient DNA strain (Zawadzki et al., 1995). When the donor DNA is identical to the 

recipient chromosome, the integration of the donor will not result in a detectable genetic or 

phenotypic change (homogamic substitutive recombination, see figure 2A). When the donor 

DNA has some sequence dissimilarity compared to the recipient, part of the donor sequence 

can replace the recipient DNA (heterogamic substitutive recombination, see figure 2B). 

Another type of integration is called additive integration. It can occur when DNA sequences 

present only in the donor is flanked on both sides by sequences present in both donor and 

recipient (additive integration, see figure 2C). Additive integration can also occur when there 

is homology one side of the invading DNA strand and random microhomology (3-8 bp) at the 

other (de Vires and Wackernagel, 2002). This type of integration is called homology-

facilitated illegitimate recombination (HFIR) (see figure 2D). 
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Figure 2. Various recombination types in bacteria. (A) Homogamic substitutive recombination in which donor 

(orange line) and recipient (blue line) DNA are sequence-identical, leading to no change in the recipient. (B) 

Heterogamic substitutive recombination occur when some mismatches exist between donor and recipient. (C) 

Additive integration occurs when a unique DNA sequence (green line) in the donor is integrated into the 

recipient through homogamic/heterogamic recombination on each side of the unique DNA sequence. (D) HFIR, 

integration of donor DNA occurs by a stretch of homology on one side and random microhomology on the other 

side (figure by Jessica Louise Ray, 2007).  
 

1.2 The genus Acinetobacter and the model organism Acinetobacter baylyi strain BD413 

 

The genus Acinetobacter is a group of highly versatile, gram-negative bacteria which are 

ubiquitous in nature (Barbe et al., 2004). They are highly capable for adaptation and are found 

in different habitats, including water, soil, sewage, living organisms and as a part of the 

normal microflora on human skin. Several strains of the genus are capable of utilizing a 

variety of compounds (including hydrocarbons, aliphatic alcohols, glycols, carbohydrates and 

amino acids) as sole carbon and energy source. Bacteria of this group are strictly aerobic, 

oxidase-negative, immobile and do not form spores. In the microscope they look like cocci (in 

stationary phase) or like short bacilli, and they often appear in pairs or as longer chains (see 

figure 3) (Barbe et al., 2004).  
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Figure 3. Acinetobacter baylyi strain BD413. Clockwise from top left: 2-day-old colonies on a LB plate, 

transmission electron micrograph, and scanning electron micrograph. Photograph and micrographs by Kåre M. 

Nielsen.  

 

Acinetobacter baylyi is a naturally transformable gram-negative gamma-proteobacterium. It is 

found in aquatic and soil environments. A. baylyi is able to grow overnight in both rich and 

minimal salts media. It can grow slowly at room temperature, but has an optimal growth 

between 30 and 37ºC (Metzgar et al., 2004). A. baylyi is non-pathogenic to humans, but A. 

baumannii, another species within the genus Acinetobacter, is an opportunistic human 

pathogen and can cause serious infections in humans, especially in immuno-compromised 

patients (Tomaras et al., 2008). A. baylyi has a small genome composed of a single circular 

chromosome composed of 3 598 621 base pairs (bp) (Barbe et al., 2004).  

In 1911, a Dutch microbiologist, Beijerinck, described an organism that was isolated from soil 

(Dijkshoorn and Nemec, 2008). The organism was isolated by enrichment cultivation on a 

calcium acetate-mineral medium. He named the organism Microcococcus calco-aceticus. In 

1954 Brisou and Prèvot created the genus Acinetobacter (Barbe et al., 2004). 

A. baylyi strain BD4 was originally isolated from soil by Taylor and Juni in 1960 (Barbe et 

al., 2004). The isolated strain was of an encapsulated gram-negative cocci which used 2,3-

butanediol as the sole carbon source (Taylor and Juni, 1961). They called the strain BD4 for 

ButaneDiol. Mutagenesis of strain BD4 yielded an unencapsulated, nonclumping mutant 

called BD413 (Juni and Janik, 1969). A. baylyi strain BD413 is the European name, while A. 

baylyi strain ADP1 is the American name for the same bacterium (renamed in 1985 in the 

laboratory of Nicholas Ornston at Yale university (Barbe et al., 2004)).  
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1.3 Introgression 

 

Introgression is the process where the genes of one species infiltrate the gene pool of another 

organism by subsequent backcross transformations of a hybrid with one of its parents. 

After the initial acquisition of foreign DNA, the DNA of the newly made transformants is 

used as donor DNA in repeated backcross transformations with one of its parents as recipient.  

In the initial transformation between a donor, containing a nptII gene (resistance gene), and a 

recipient, the nptII gene will be integrated into the recipient’s chromosome as well as an 

unknown length of heterologous donor DNA. It is expected that there will be a gradual 

elimination of heterologous flanking DNA sequence in the transformants during the 

introgression process (see figure 4).  

 
Figure 4. Figure of the hypothetical gradual elimination of heterologous flanking DNA sequence in 

transformants during the introgression process. Stippled, blue line, donor DNA; solid black line, recipient 

chromosome; solid red line, nptII gene; X symbols, recombination sites. (A) Initial heterogamic transformation 

between nptII-tagged donor DNA and kanamycin sensitive recipient chromosome. This results in integration of 

the nptII gene and also some heterologous donor DNA in the recipient chromosome. (B) DNA from resulting 

transformants in the initial transformation is used as donor DNA in transformation with the original recipient. 

This results in elimination of a certain amount of donor chromosomal DNA in the transformants. (C-D) When 

the process is repeated, further elimination of donor chromosomal DNA occur in the transformants, until (E) 

donor chromosomal DNA is completely eliminated and only nptII is left (figure by Jessica Louise Ray, 2007).   
 

There are, to my knowledge, no published studies on introgression in bacteria. An 

unpublished introgression study (Ray et al., unpublished) examined the molecular events that 

occur during introgression of the nptII gene with different parental origins at unique loci in 
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naturally transformable bacteria. 18 isolates (generated from 3 Acinetobacter spp. strains) 

were used as donor DNA in the first backcross transformation. Chromosomal DNA from 

Acinetobacter spp./ A. baylyi strain BD413 hybrid transformants, containing the nptII gene, 

were used as donor DNA in subsequent backcross transformations with A. baylyi strain 

BD413. The same experiments were performed using the mutator strain A. baylyi ADP7021 

as recipient. Hybrid DNA from the 18 isolates transformed recipient BD413 or ADP7021 

cells at homologous frequencies (~10-3 transformants recipient-1) already during the first 

backcross transformation. Subsequent rounds of backcross transformations were performed 

with transformant DNA as donor. This demonstrated stability of restored homogamic 

frequencies for up to 10 observed backcross generations. For one of the donor isolates, a 

closer inspection of 10 generations of hybrid transformants in the BD413 line, revealed some 

loss of heterologous transfer signal linked to the transferred nptII gene. There was no 

significant difference in transformation frequency between the mutator strain and the wild 

type strain in the introgression study.  

 

1.4 Experimental design of this study 

 

In this introgression study we wanted to use fragmented chromosomal bacterial donor DNA 

and compare the results with the results from the previously performed unpublished 

introgression study (Ray et al., unpublished). After the initial acquisition of foreign DNA, the 

DNA of the newly made transformants were used as donor DNA in repeated backcross 

transformations with the wild type or the mutator strain as recipient (see figure 5).  
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Figure 5. Figure illustrating the experimental design for the introgression study. From left: a heterologous donor 

(A. sp. strain 16.4) was used as donor to transform A. baylyi strain BD413 or A. baylyi strain ADP7021 (both are 

resistant to rifampicin) in heterogamic transformation. Then the resulting transformants, which were resistant to 

rifampicin and kanamycin (kanR), due to transfer of the nptII gene, were selected. DNA was isolated from the 

transformants and the isolated genomic DNA was used in subsequent back transformations. For identification of 

recombination joints, the nptII gene insertion and the flanking regions, DNA was isolated from single 

transformants and sequenced (figure by Jessica Louise Ray, 2007).  
 

The A. baylyi strain used as recipient in this study is isogenic to BD413, but resistant to 

rifampicin. It is a spontaneous rifampicin-resistant mutant (Nielsen et al., 1997). It is 

transformable with both plasmid and chromosomal DNA and it does not discriminate between 

heterologous and homologous DNA when it comes to uptake (Nielsen et al., 1997). 

 

The mutator strain A. baylyi strain ADP7021 (Young and Ornston, 2001) was also used as 

recipient. A. baylyi strain ADP7021 (∆mutS6::Ω) is a derivative of A. baylyi strain BD413, 

but has a mutS deletion. It is expected that it will have a higher transformation frequency then 

the wild type due to the defect (inactivation of mutS) in the mismatch repair system. A. baylyi 

strain ADP7021 is resistant to spectinomycin and streptomycin. 

 

In this study, A. species 16.4 (Ray, 2007) was used a donor DNA. It has a nptII gene 

(neomycin phosphotransferase II), encoding kanamycin resistance, inserted in a filA like gene 

in the genome. A. sp. 62A1.4 has a 24.4% sequence divergence from A. baylyi strain BD413 

(approximately every fourth base is different). The initial transformation between a nptII-

tagged donor (A. sp. 62A1.4) and a recipient that is resistant to rifampicin (A. baylyi strain 

BD413) will result in transformants who have the nptII gene integrated, as well as an 

unknown length of heterologous donor DNA. It is expected that there will be a gradual 

elimination of heterologous flanking DNA sequence in the transformants during the 
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introgression process (see figure 4). The resulting transformants were resistant to both 

rifampicin and kanamycin.   

 

In this study, six backcross transformations were performed with one isolate generated from 

the Acinetobacter sp. 62A1.4 as donor DNA and Acinetobacter baylyi strain BD413 as 

recipient. There was also performed one backcross transformation with Acinetobacter baylyi 

strain ADP7021 as recipient. Contrary to an earlier performed study, the donor DNA was 

fragmented in my study before it was used in the transformation assays. The results were 

compared to the earlier performed study (Ray et al., unpublished) with unfragmented donor 

DNA. 

 

Before the study with fragmented DNA could be accomplished, we had to develop a method 

to fragment total DNA. We wanted to test the effect of decreasing size of donor DNA on 

transformation frequency in BD413. The total DNA should be fragmented for so long that the 

fragment size was around 3000 bp, which included both the nptII gene (1000 bp) and some 

flanking regions, and that the filter transformation resulted in a small number of 

transformants.      
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1.5 Aims and objectives 

 

The aim of this study is to determine how fragmented DNA affects the introgression process 

of chromosomal DNA in A. baylyi compared to the use of unfragmented DNA. 

   

Objectives: 

• To determine if DNA fragmentation affects the speed at which heterologous flanking 

DNA is eliminated during successive rounds of back transformation using the wild 

type strain BD413 or the mutator strain ADP7021 as recipients, and highly fragmented 

DNA of one nptII tagged isolates of 16.4 (A. sp. strain 62A1.4) as donor DNA. 

• To develop a method for optimal fragmentation of chromosomal bacterial DNA.  

• To estimate the transformation frequency of fragmented DNA of ADP1200-2 and 16.4 

in filter transformations with A. baylyi strain BD413. 

• To collect transformant colonies, isolate DNA from these colonies and use it as donor 

DNA in subsequent backcross transformations. 

• To perform DNA sequencing of the flanking DNA in resulting transformants to 

identify possible cross-over junctions. 

• To create a transformant strain archive for further use in the introgression studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

2. MATERIALS AND METHODS 

 

2.1 Bacterial strains  

 

Acinetobacter baylyi strain BD413 is used as recipient cells and total DNA extracted from  

A. baylyi ADP1200-2 and Acinetobacter species 62A1 are used as donor DNA. A. baylyi 

strain ADP1200-2 (Johnsen, unpublished) and ADP1200 (Kok et al., 1999) are isogenic 

except from a 227 bp deletion rendering the kanamycin resistance gene (nptII) inactive in 

ADP1200. DNA from ADP1200-2 is homologous to BD413 and is used as a positive control 

in the filter transformations. A. sp. 62A1 (Ray, 2007) is called 16.4 in our strain collection, 

were 16 indicates the strain 62A1 and 4 indicates the location of the nptII gene on the 

chromosome. The nptII gene in 16.4 is inserted in a filA like gene in the donor A. sp. 62A1 

strain (Ray, 2007). A. sp. 62A1 has a 24.4% sequence divergence from BD413 

(approximately every fourth base is different). A. baylyi BD413 is resistant against the 

antibiotic rifampicin, the strains ADP1200-2 and 62A1 are resistant against the antibiotic 

kanamycin. 

The mutator strain Acinetobacter baylyi strain ADP7021 (Young and Ornston, 2001) is a 

derivative of Acinetobacter baylyi strain BD413. It has a mutS deletion (∆mutS6::Ω) and is 

resistant to spectinomycin and streptomycin. It is also used as recipient cells with 62A1 as 

donor DNA.  

 

2.2 Bacterial growth media 

 

Luria Broth (LB) was made by dissolving 25 g Luria Broth (Invitrogen, Germany/Fluka 

Sigma-Aldrich, Germany) in 1 L distilled, boiled water and autoclaving it for 20 min at 

121ºC. LB agar (LBA) was made by dissolving 25 g LB (Fluka Sigma-Aldrich, Germany) 

and 12 g Agar-Agar (Merck, Germany) in 1 L distilled, boiled water and autoclaving it for 20 

min at 121ºC. LBK50 was made by adding kanamycin (50 mg/L) (Fluka Sigma-Aldrich, 

Germany) to1 L LB, LBR50 was made by adding rifampicin (50 mg/L) (Fluka Sigma-Aldrich, 

Germany) to 1 L LB and LBRK50/50 was made by adding rifampicin (50 mg of each/L) to 1 L 

LBK50. LBSS50/50 was made by adding streptomycin and spectinomycin (10 mg/L and 50 

mg/L) to 1 L LB and LBSSK50/50/50 was made by kanamycin (50 mg/L) to 1 L LBSS50/50.  
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2.3 Glycerol stock of competent cells 

 

A glycerol stock of competent cells of BD413 was made by adding one colony of BD413 

competent cells to 3 ml LBR50 and incubating it overnight with shaking (200 rpm). The next 

day the ON-culture was added to 100 ml LBR50 in a 1000 ml Erlenmeyer flask and incubated 

with shaking (120 rpm) for 3 hours and 50 minutes. The absorbance was measured using the 

Ultraspec 2000, UV/Visible Spectrophotometer, and should be around 0.600 A. The 

suspension was centrifuged for 10 minutes, at 4000 rpm at 4 ºC.  The supernatant was 

discarded and the pellet was dissolved in 15% glycerol/LB to a CFU (colony forming unit) of 

1*109 cells/ml. The solution of competent cells of BD413 was transferred to Eppendorf tubes 

(1 ml in each tube) and stored at -75ºC.       

 

2.4 Isolation of Genomic DNA from bacteria 

 

Genomic DNA was isolated using the Genomoc-tip 100/G (QIAGEN, Germany) protocol in 

the QIAGEN Genomic DNA Handbook (Qiagen, 2001).  

  

Day 1. An overnight culture (ON culture) was made by inoculating 3 ml of LB media (with 

the suitable antibiotic) with one colony of bacteria, and incubating it overnight with shaking.  

 

Day 2. The ON culture was diluted 1:10 in the same media as the ON culture and incubated 

with shaking (120 rpm) in a 50 ml Falcon tube or a 100 ml Erlenmeyer flask for 5-7 hours. 

The lids on the Falcon tubes were left loose to avoid development of anaerobic conditions. 

The tubes were centrifuged in an Eppendorf 5810R bench top cooling centrifuge for 10 

minutes at 4000 rpm and 4ºC. The supernatants were discarded. The pellets, about 2-4 mm 

thick, were stored overnight at - 20 ºC.     

 

Day 3. Lysozyme (100 mg/ml) (Sigma, Germany), RNaseA (100 mg/ml) (Sigma, Germany), 

proteinase K (10 mg/ml) (Sigma, Germany) and the tubes with the pellets were taken out from 

the freezer and put on the bench until they thawed. Buffer QC and QF were preheated to 

60ºC. 7 μl RNAseA was added to 3.5 ml Buffer B1 for each prep and mixed in a Falcon tube 

by turning the tube up-side-down two times. The bacteria pellet was resuspended in 3.5 ml of 

Buffer B1/RNAaseA by vortexing at top speed for 10-15 seconds. 80 μl lysozyme and 100 μl 
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proteinase K were added, followed by vortexing for 5 seconds and incubating at 37ºC (water 

bath) for 60-90 minutes. 

If the lysates were transparent 1.2 ml Buffer B2 was added, followed by vortexing for 2-3 

seconds and incubating at 50ºC (water bath) for 30 minutes. The QIAGEN Genomic-tip 

100/G column was equilibrated with 4 ml Buffer QBT. Each sample solution was vortexed for 

10 seconds and immediately applied to the QIAGEN Genomic-tip 100/G. The QIAGEN 

Genomic-tip 100/G was washed with 2 x 7.5 ml Buffer QC. The Genomic-tip was placed over 

a new 50 ml Falcon tube and the DNA was eluted with 5 ml Buffer QC. The DNA was 

precipitated by adding 3.5 ml isopropanol and inverting the tube 20 times. The DNA 

precipitate was collected by using a plastic inoculation loop (10 μl), transferred into a new 

Eppendorf-Tube and washed with 500 μl 100 % etanol. The DNA was transferred to a new 

Eppendorf-Tube and set to air-dry before it was resuspended in 100 μl dH2O and incubated 

overnight at 4ºC to dissolve completely. 

 

Day 4. The Eppendorf tubes were vortexed for 5 seconds and then centrifuged for 10 minutes 

at 13000 rpm and 4ºC in the Biofresco cooling centrifuge. The DNA containing supernatant 

was transferred to a new tube and the concentration was measured with the NanoDrop® ND-

1000 spectrophotometer (NanoDrop Tecnologies Inc, USA). The DNA samples were stored at  

-20ºC. Typically DNA yield was 1000-2000 ng/μl. The ratio of sample absorbance at 260 and 

280 nm (260/280) was determined to assess the purity of DNA.    

 

2.5 Fragmentation of DNA 

 

DNA was fragmented and used as donor DNA filter transformations.  

 

2.5.1 Fragmentation of DNA by nebulization 

 

Nebulization (to reduce the liquid into small particles / to atomize the liquid into a fine spray) 

of DNA was done to fragment DNA, following the manufactures recommendation. The 

nebulizer (Invitrogen, USA) (Figure 6) was assembled by unscrewing the blue top and 

slipping the vinyl tubing over the atomizer. The top was screwed back on and the nebulizer 

was connected to a nitrogen tank. A regulator was used to regulate the pressure. 25-50 μg 

DNA was added to 750 μl Shearing Buffer (5 ml 1M Tris HCl, 50 ml 0,001 EDTA, 50 ml 

glycerol and 395 ml dH2O, pH adjusted to 8 with 2M NaOH) and pipeted into the bottom of 
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the nebulizer. The capped nebulizer was placed in an ice bucket to keep the DNA cold. The 

DNA was sheared for 10 seconds to 10 minutes at 10 psi. The size of the fragmented DNA 

was determined on a 1% agarose gel. 

700 ul of the sheared DNA or what was left in the nebulizer was transferred to an Eppendorf 

tube and 80 μl 3 M sodium acetate (pH 5.2), 4 μl 20 mg/ml glycogen and 700 μl 100% 

isopropanol was added. The solution was mixed well and put in the freezer (-20ºC) for 30 

minutes or overnight. Then the tube was centrifuged at 12000 rpm for 15 minutes at 4ºC. The 

supernatant was removed by using water suction and the pellet was washed with 800 μl of 

icecold 80% ethanol. Then the tube was centrifuged for 5 minutes and the ethanol was 

removed. The tube was centrifuged again for 1 minute and all traces of ethanol were removed 

by using water suction. The pellet was further dried by using a heating block at 37ºC. The 

DNA was resuspended in 70 μl dH2O and the concentration was measured using NanoDrop® 

spectrophotometer. 

 
Figure 6. The nebulizer used for fragmentation of DNA (Nebulizer Introduction) (figure taken from 

www.tools.invitrogen.com/content/sfs/manuals/nebulizer_man.pdf).  

 

2.5.2 Fragmentation of DNA by sonication 

 

The DNA was fragmented by sonication (ultrasound), following the manufactures 

recommendation. The Bioruptor UCD-200 (Diagenode, Belgium) was set on “High”. The 

tank was filled 1 cm of chrushed ice and filled up to the indicated level with cold water (4ºC). 

The samples were placed in the tank and sonicated for 5 seconds to 60 minutes. The size of 

the fragmented DNA was determined on a 1% or a 1.5% agarose gel. Since the Bioruptor 

UCD-200 have a 30 sec “ON” and 30 sec “OFF” cycle, the total time for 60 minutes 

sonication was 2 hours. The water and the ice were changed every 15 minutes to keep the 

conditions for sonication as constant as possible.  
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2.6 Agarose gel preparation and gel electrophoresis  

 

Gel electrophoresis is used to separate DNA fragments by size. DNA, which is negatively 

charged, migrates from negative to positive potential and the smallest molecules migrate 

longest. The agarose gel was made by heating the agarose solution in a microwave until the 

agarose melted. It was cooled down to 40 ºC by holding it under cold water and then either 

ethidiumbromide (EtBr) (Sigma-Aldrich, Germany) (10 mg/ml) was added or the gel was 

stained in  SYBR (SYBR®Safe DNA gel stain in 1 x TAE, Invitrogen, Germany) for 40 

minutes with agitation after the gel was run. The gel solution was poured into a gel rack and a 

comb was inserted to cast the wells. After the gel had become solid (about 30 minutes), the 

comb was removed and the gel with the rack were put into a gelchamber with TBE or TAE 

buffer. The gel was completely covered with buffer and the ladder 1 Kb Plus DNA ladder 

(Invitrogen, Germany) or 1 Kb DNA ladder (AB gene, UK) and the samples were applied to 

the wells. 6 x T or 40 % sucrose are used as loading buffer in the samples. The gel was “run” 

at 90 V for 1 hour.  

The 1 to 1.5 % agarose gel contained 0.5 to 0.75 g LE agarose (SeaKem®, USA) or low 

melting agarose (prod., land), 50 ml 1 x TBE or TAE buffer and 5 μl EtBr.  

10 x TAE buffer was made by 108 g tris base, 55 g boric acid, 40 ml 0.5 M EDTA (pH 8.0) 

and adding dH2O to a total of 1 l. The buffer was diluted 10 x in dH2O before use.   

50 x TAE buffer was made by 242 g tris base, 57.1 ml glacial acetic acid, 100 ml 0.5 M 

EDTA (pH 8.0) and adding dH2O, to a total of 1 l. The buffer was diluted 50 x in dH2O before 

use.  

 

2.6.1 Extraction of DNA fragments from agarose gels 

 

DNA was extracted from the agarose gel using the QIAquick gel extraction kit protocol in the 

QIAquick® Spin Handbook (Qiagen, 2006). A gel piece with DNA fragments between 1000 

bp and 4000 bp was excised from the agarose gel with a scalpel. EtBr was removed from the 

gel slices by laying them in dH2O for 40 minutes before they were weighed in a 15 ml Falcon 

tube. Then 3 volumes of solubilizing and binding buffer QG were added to 1 volume of gel. 

The tube was incubated at 50ºC until the gel slices had dissolved. The tube was turned up-

side-down a few times to help dissolving the gel. Then a QIAquick spin column was placed in 

a provided 2 ml collection tube. 750 μl of the samples were applied to the column and 

centrifuged for 1 min at 13000 rpm. The flow-through was discarded and the process repeated 
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until the entire sample had been centrifuged. Then 0.5 ml of buffer QG was added to remove 

all traces of agarose and the sample was centrifuged for 1 min. 0.75 ml of buffer PE was 

added two times to wash out impurities and the column was centrifuged for 1 min. The flow-

through was discarded and the column centrifuged for additional 1 min. The DNA was eluted 

in a clean Eppendorf tube by adding 30 μl dH2O to the center of the membrane. The column 

was left for 1 min before it was centrifuged for 1 min. The DNA concentrations of the 

samples were measured using the NanoDrop® spectrophotometer.     

 

2.7 Filter transformation 

 

25 μl or 65 μl DNA (approximately 500 ng/μl) was transferred to each Eppendorftube. A 

sterile filter was placed asymmetrical on a LB plate. The filters used were 0.22 μm thick, 

white GSWP, 47 mm in diameter (Millipore, UK) and they were autoclaved in distilled water 

for 20 minutes by 121ºC at 200 kPa. A glass rod was brushed over the filter to remove air 

bubbles. 65 μl 0.9% NaCl was spread out on one filter as filter sterility control. 100 μl 0.9 % 

NaCl was spread out on a LB plate as NaCl sterility control. The competent cells (1 ml) were 

taken out of the freezer (-70ºC), put into the Biopico centrifuge and spun at room temperature 

for 10 minutes at 4000 rpm. The supernatant was removed and the cells were dissolved in 810 

μl 0.9 % NaCL. 100 μl or 250 μl of the competent cells was transferred to each Eppendorftube 

with DNA and mixed by pippetting up and down two times. 100 μl from each Eppendorftube 

was spread out on three filters each (three parallels). When only 100 μl competent cells were 

used, everything from the tube was spread out on one filter. All the plates were wrapped in 

plastic and incubated at 33ºC for 20-24 hours. The first three filters were always 25 or 100 μl 

NaCl mixed with competent cells (negative control).      

25 μl DNA (~ 500ng/μl) and 100 μl competent cells (A. baylyi strain BD413 or strain 

ADP7021) was used per filter in filter transformation with strain 16.4-16.4.6 as donor DNA, 

when the DNA was extracted from an agarose gel. 

65 μl DNA (~ 500ng/μl) and 250 μl competent cells (A. baylyi strain BD413) was used per 3 

filter in filter transformation with A. baylyi strain ADP1200-2 and 16.4 as donor DNA to 

determine the transformation frequency.  

The next day the filters were transferred to a new Falcon tube, containing 2 ml or 4 ml 0.9 % 

NaCl. The filters were washed by using a pipette or by vortexing for 10 seconds. Either 

undiluted or different dilutions from each test were plated out on different LB plates with or 

without selection (selection: LBRK50/50 or LBSSK50/50/50, no selction: LBR50 or LBSS50/50).  



29 
 

When 25 μl donor DNA was used, 100 μl of the undiluted test was plated out on one plate 

with selection to check the growth of the competent cells and on one plate without selection to 

check the growth and to determine the number of the transformants, also 500 μl and 1300 μl 

(the rest) were plated out on plates with selection. When 65 μl donor DNA was used 1 ml 

from each tube was diluted to 10-7 with 0.9 % NaCl and 100 μl of the different dilutions from 

each test were plated out on plates with and without selection, 3 parallels of each. All the 

plates were wrapped in plastic and incubated at 33ºC for 2 days, before counting. To calculate 

the transformation frequency of ADP1200-2 and 16.4 the total number of transformants and 

the total number of recipients was calculated and used in the following formula: 

Transformation frequency = (# Transformants)/ (# Recipients) 

# Transformants = number of colonies (colony forming unit (CFU)) on plates with selection x 

dilution factor  

# Recipients = CFU on plates without selection x dilution factor  

 

2.8 Direct DNA sequencing of genomic DNA from bacteria 

 

DNA sequencing was used to determine the insertion site of the nptII gene and the flanking 

DNA regions.  

 

The amount of template in each reaction was between 3 and 5 ng. Two different reaction 

mixes were used: 

Reaction mix 1: 4 μl BigDye version 3.1 (ABI, USA), 2 μl DNA (400-600 ng/μl), 2 μl DNA 

sequencing buffer (5x) (ABI, USA) and 4 μl primer (see table 1).  

Reaction mix 2: 8 μl BigDye version 3.1, 8 μl DNA (400-600 ng/μl) and 4 μl primer (see 

table 1). 
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Table 1. Primers used in the sequencing of 16.4 and five single colonies of  
16.4.0, 16.4.5 and 16.4.10. 
Primer Recognition sequences 5’- to -3’ direction Supplier 
Apr 25 TGTTGGATTTTGGGGAGAAG Operon 
Apr 27 CGTAATGCTCCACTTGCAGA Operon 
LP853 TTCTCCTTCATTACAGAAACGG Operon 
LP1046 TTGAAGGATCAGATCACGCATCTTCCCGA Sigma Genosys 
RP152 TTGAATATGGCTCATAACACCCC Sigma Genosys 
RP255 TTGTCGCACCTGATTGCCC Operon 
16.4 FW24 TGGTGATTTACAGCCAACTCAA Operon 
16.4 RV20 TAAATGCTGGTCCACAGGTCTT Operon 

Operon (Germany), Sigma Genosys (Germany) 
 
The cycle sequencing reaction was run on a PTC-200 Peltier Thermal Cycler (MJ Reasearch) 

programmed as follows: initial denaturation at 95º for 5 minutes, followed by 99 cycles of: 

denaturation at 95º for 30 seconds, annealing at 55º for 10 seconds and elongation at 60º for 4 

minutes, then storage at 4º C. 

 

The products from the cycle sequencing were precipitated and sequenced at the DNA-

sequencing laboratory at the University of Tromsø, using the 3130x1 Genetic Analyzer 

(Applied Biosystems, USA). The resulting sequences were edited using SequencherTM 4.2.2 

(Gene Codes, USA).  
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3. RESULTS 

 

3.1 DNA isolation 

 

Total genomic DNA was isolated, fragmented and used as donor DNA in filter 

transformations. DNA was isolated from A. baylyi strain ADP1200-2 and A. sp. strain 16.4 

and from the transformants of the different generations of A. sp. 16.4 in A. baylyi strain 

BD413 and A. baylyi strain ADP7021. The DNA pellet was resuspended in 100 μl dH2O and 

the concentration was measured. Then the DNA was diluted in dH2O to an approximate 

concentration of 0.5 μg/μl before further use. Tables 2 to 4 give an overview of the average 

yield of isolated DNA, it was generally between 150 to 200 μg. 

Table 2. Yield from DNA-isolation of A. baylyi strain ADP1200-2 and A. sp. 16.4.
Sample μg/μl Total yield in μg 260/280*  

Strain ADP1200-2 2.0 199.9 1.89  
Strain 16.4 2.1 211.4 1.89  

* The ratio of sample absorbance at 260 and 280 nm (260/280) assess the purity of DNA 

 

Table 3. Yield from DNA-isolation from various Acinetobacter strains. 
Straina μg/μl Total yield in μg 260/280 
16.4 2.0 202.8 1.88 

16.4.0 tot. pop. 1.9 185.1 1.88 
S16.4.0.1 2.5 248.6 1.88 
S16.4.0.2 2.2 224.1 1.80 
S16.4.0.3 2.0 191.8 1.86 
S16.4.0.4 2.8 279.2 1.85 
S16.4.0.5 2.4 239.6 1.86 

16.4.1 tot. pop. 2.1 209.0 1.90 
16.4.2 tot. pop. 2.1 206.5 1.89 
16.4.3 tot. pop. 1.8 178.9 1.89 
16.4.4 tot. pop. 2.1 213.1 1.89 
16.4.5 tot. pop. 2.0 196.9 1.87 

S16.4.5.1 2.3 228.1 1.88 
S16.4.5.2 1.7 171.7 1.89 
S16.4.5.3 1.6 159.4 1.90 
S16.4.5.4 1.8 183.7 1.88 
S16.4.5.5 1.9 187.7 1.89 

a tot. pop. = total population, all the colonies from one plate were picked and used, S= single colony, one colony 
from one plate was picked and used. 
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Table 4. Yield from DNA-isolation from various mutator strains of Acinetobacter. 
Straina μg/μl Total yield in μg 260/280 
16.4 2.3 235.0 1.88 

MS16.4.0.1 0.9 93.7 1.89 
MS16.4.0.2 2.0 201.1 1.89 
MS16.4.0.3 2.0 199.8 1.89 
MS16.4.0.4 1.8 181.3 1.89 
MS16.4.0.5 1.8 178.0 1.89 
MS16.4.1.1 1.7 168.6 1.89 
MS16.4.1.2 1.6 155.2 1.90 
MS16.4.1.3 1.2 119.7 1.88 
MS16.4.1.4 1.8 183.0 1.88 
MS16.4.1.5 1.6 160.1 1.89 

a MS= mutator single colony, one colony from one plate was picked and used. 

 

3.2 Method for optimal fragmentation of DNA 

 

As already described in the experimental settings, we wanted to fragment chromosomal 

bacterial DNA to around 1000 to 3000 base pairs (bp) and test the effect on transformation 

frequency (TF) in A. baylyi strain BD413. The donor DNA was fragmented and used to find 

out if fragmentation affects the TF and the speed at which heterologous flanking DNA is 

eliminated during successive rounds of back transformations. Two methods were used to 

fragmentate the DNA, nebulization and sonication.  

 

3.2.1 Fragmentation of DNA by nebulization  

 

In order to develop a method for fragmenting total genomic DNA, we nebulized the DNA 

from A. baylyi ADP1200-2 with 10 psi for up to 10 minutes. Around 50 μg DNA and 750 ml 

Shearing Buffer was nebulized for 0 to 600 seconds (10 minutes). There was a gradual 

reduction in fragment size with increasing nebulization and after 10 minutes most of the 

fragments were around 1500 bp (fig.7). Figure 7 shows nebulized DNA after it has been 

precipitated (five nebulizations). The precipitated, nebulized DNA was used as donor DNA in 

filter transformation with A. baylyi strain BD413 (see table 1 in Appendix). The yield of 

precipitated, nebulized DNA is shown in table 5.  
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Figure 7.  Isolated DNA of A. baylyi strain ADP1200-2 nebulized for 0 to 600 seconds (10 minutes), then 

precipitated. Lanes: 1: 1 Kb Plus DNA ladder (Invitrogen, Germany), 2: 0 s, 3: 40 s, 4: 120 s, 5: 240 s, 6: 360 s, 

7: 600 s. 

 
Table 5. Yield from precipitated, nebulized DNA of A. baylyi strain ADP1200-2 for 0 to 
600 seconds. 
Nebulized ADP1200-2 μg/μl Total yield in μg 260/280 

40 s 0.4 33.6 1.88 
120s 0.6 44.2 1.85 
240s 0.5 43.8 1.87 
360s 0.4 33.6 1.84 
600s 0.4 28.2 1.83 

 

Table 6 and figure 8 shows the transformation frequencies (TF) of nebulized DNA of A. 

baylyi strain ADP1200-2. The TF decreased from 3.9*10-3 for unnebulized DNA to 2.2*10-5 

for DNA nebulized for 600 seconds (10 minutes). 

 

Table 6. Average transformation frequency of A. baylyi strain ADP1200-2 nebulized for 0 to 
600 seconds in filter transformation with A. baylyi strain BD413.  

ADP1200-2 Average transformation frequency Standard deviation 
Unnebulized 3,0E-03 6,6E-04 

Nebulized for 40s 1,8E-05 9,1E-07 
Nebulized for 120s 7,0E-07 1,5E-07 
Nebulized for 240s 2,3E-05 6,2E-06 
Nebulized for 360s 8,9E-07 9,7E-08 
Nebulized for 600s 2,2E-05 3,8E-06 
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Figure 8. Transformation frequency of isolated DNA of A. baylyi strain ADP1200-2, nebulized for 0 to 600 

seconds (0 to 10 minutes), in A. baylyi strain BD413. 

 

After 600 seconds (10 minutes) of nebulization there was a great loss of liquid (DNA and 

Shearing buffer), there was only 400 μl liquid left in the nebulizer. Even though the size of the 

DNA fragments was around 1500 bp it still gave transformants (see table 1 in Appendix). We 

wanted to se how long we could nebulize the DNA before it did not give any transformants. 

But when nebulized for longer than 600 seconds (10 minutes) there was not enough liquid left 

to use further in the filter transformation.  

 

3.2.2 Fragmentation of DNA by sonication 

 

Because we lost too much DNA during nebulization due to technical limitations with the 

nebulizer, we fragmented the DNA with ultrasound (sonication). We sonicated the DNA from 

A. baylyi strain ADP1200-2 up to 3600 seconds (60 minutes). The fragment size of the 

sonicated DNA decreased with increasing sonication (fig. 9 and 10). After 600 seconds of 

sonication the fragment size was around 650 bp (fig. 9). 
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Figure 9. Isolated DNA of A. baylyi strain ADP1200-2 sonicated for 0 to 600 seconds (0 to 10 minutes). Lanes: 

1: 1 Kb Plus DNA ladder (Invitrogen, Germany), 2: 0 s, 3: 10 s, 4: 30 s, 5: 60 s, 6: 120 s, 7: 180 s,  

8: 240 s, 9: 300 s, 10: 360 s, 11: 600 s (image is inverted).  
 

Because the average size of DNA was 650 bp after 600 seconds of sonication and the nptII 

gene is ~1220 bp, it was a surprise to detect a similar TF as for DNA sonicated for 10 

seconds. We wanted to find out how long we could sonicate the DNA before the TF was 

reduced to zero. We sonicated DNA from A. baylyi strain ADP1200-2 for 1200 seconds and 

up to 3600 seconds (20 to 60 minutes) (fig. 10) to see how this affected the TF. 
 

 
Figure 10.  Isolated DNA of A. baylyi strain ADP1200-2 sonicated for 1200 to 3600 seconds (20 to 60 minutes). 

Lanes: 1: 1 Kb Plus DNA ladder (Invitrogen, Germany), 2: 1200 s, 3: 1800 s, 4: 3600 s (image is inverted). 

 

Table 7 and figure 11 shows the TF of sonicated DNA of A. baylyi strain ADP1200-2. The TF 

decreased from 3.9*10-3 for unfragmentated DNA to 3.7*10-6 for DNA sonicated for 3600 

seconds (60 minutes). Sonication of DNA turned out to be a good method to fragmentate 

DNA. 
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Table 7. Average transformationfrequency of A. baylyi strain ADP1200-2 sonicated for 0 to 
3600 seconds (0 to 60 minutes). 

Strain ADP1200-2 Average transformation frequency Standard deviation 
Unsonicated 3,9E-03 5,9E-04 

Sonicated for 10s 7,3E-06 2,4E-06 
Sonicated for 60s 3,5E-06 1,9E-06 
Sonicated for 120s 2,4E-06 2,5E-07 
Sonicated for 180s 3,6E-06 8,7E-07 
Sonicated for 600s 2,5E-06 5,3E-07 
Sonicated for 1200s 1,2E-07 3,4E-08 
Sonicated for 1800s 1,3E-07 2,7E-08 
Sonicated for 3600s 3,7E-06 7,8E-07 

0.9% NaCl was used as negative control, there was no growth on the LBRK50/50 plates (LB plates with rifampicin 
and kanamycin) with 0.9% NaCl and competent cells because A. baylyi strain BD413 is not resistant against 
kanamycin, unsonicated A. baylyi strain ADP1200-2 was used as positive control. 
  
 

 
Figure 11. Transformation frequency of isolated DNA of A. baylyi strain ADP 1200-2, sonicated for 0 to 3600 

seconds (0 to 60 minutes), in A. baylyi strain BD413. (A) shows the whole graph, (B) shows the lower part of the 

graph from 10 seconds to 3600 seconds of sonication.  
 

Because homologous donor DNA (A. baylyi strain ADP1200-2) sonicated for up to 3600 

seconds (1 hour), still gave transformants, we wanted to find out how sonication of 

heterologous donor DNA (A. sp. strain 16.4) affected the transformation. We sonicated the 

DNA from A. sp. strain 16.4 up to 600 seconds (10 minutes). The fragment size of the 

sonicated DNA decreased with increasing sonication (fig.12 to 13). After 600 seconds (10 

minutes) of sonication the fragment size was around 500 bp. We tried to use sonicated DNA 
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for up to 600 seconds (10 minutes) as donor DNA, but only DNA sonicated for 5 and 10 

seconds gave transformants (see table 3 in Appendix).  

 
Figure 12.  Isolated DNA of A. sp. strain 16.4 sonicated for 0 to 60 seconds. Lanes: 1: 1 Kb Plus DNA ladder 

(Invitrogen, Germany), 2: 0 s, 3: 5 s, 4: 10 s, 5: 20 s, 6: 30 s, 7: 60 s (image is inverted). 

 

 

Figure 13. Isolated DNA of A. sp. strain 16.4 sonicated for 0 to 600 seconds (0 to 10 minutes). Lanes: 1: 1 Kb 

Plus DNA ladder (Invitrogen, Germany), 2: 0 s, 3: 10 s, 4: 20 s, 5: 30 s, 6: 60 s, 7: 120 s, 8: 180 s, 9: 600 s 

(image is inverted). 

 

As shown in table 8 and figure 14, the TF only decreases slightly from 2.0 *10-9 for 

unfragmentated DNA to 1.2*10-9 for DNA sonicated for 10 seconds. DNA of  

A. sp. strain 16.4 sonicated for up to 600 seconds (10 minutes) was used as donor DNA in 

filter tansformation with A. baylyi strain BD413, but only DNA sonicated for up to 10 seconds 

gave transformants. 

 

 

 

    



38 
 

Table 8. Average transformation frequency of isolated DNA from A. sp. strain 16.4 sonicated 
for 0 to 20 seconds. 

Strain 16.4 Average transformation frequency Standard deviation 
Positive control 4,2E-03 3,9E-03 

Unsonicated 2,0E-09 5,2E-10 
Sonicated for 5s 5,2E-10 7,3E-10 
Sonicated for 10s 1,2E-09 7,3E-10 
Sonicated for 20s 0 - 

0.9% NaCl was used as negative control, there was no growth on the LBRK50/50 plates with 0.9% NaCl and 
competent cells because A. baylyi strain BD413 is not resistant against kanamycin, unsonicated A. sp. strain 
ADP1200-2 was used as positive control. A. sp. strain 16.4 was sonicated for 0 to 600 seconds, but the TF was 0 
when the DNA was sonicated for more than 10 seconds. 
 

 
Figure 14. Transformation frequency of isolated DNA of A. sp. strain 16.4, sonicated for 0-60 seconds, in A. 

baylyi strain BD413. (The DNA was sonicated for 0 to 600 seconds, but this graph only shows 0 to 60 seconds of 

sonication. The TF was 0 when the DNA was sonicated for more than 10 seconds.) 

 

3.2.3 Extraction of DNA-fractions from agarose gel 

 

To avoid that unfragmented DNA contributed to the transformation when the DNA was 

fragmented by sonication, it was decided to make sure that only fragmented DNA was used as 

donor DNA. This was done by cutting out a piece form the agarose gel that only contained 

fragmented DNA and extract DNA from it. The extracted DNA could then be used as donor 

DNA in filter transformation. To test this method it was necessary to find out from which size 

range of fragmented DNA that contributed to the transformation. A 1% agarose gel was made 

and 10 μl sonicated A.baylyi strain ADP1200-2 DNA was applied in each well. Then after the 

gel was run, three gel pieces were cut out. The first gel fraction was up to 1500 bp, the second 

was from 1500 to 3000 bp and the third was from 3000 to 10000 bp. DNA was extracted from 

the three gel pieces and used as donor DNA in filter transformation with A. baylyi  strain 
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BD413. There were no resulting transformants. The reason for this was probably the small 

volume of DNA applied to the wells and the low yield of extracted DNA as shown in table 9.  

Table 9. Yield from DNA extraction of A. baylyi strain ADP1200-2 sonicated for 5 minutes. 
Gel fragment ng/μl Total yield in μg 260/280 
up to 1500 bp 43,4 1,30 1,90 

1500 to 3000 bp 10,3 0,31 1,81 
3000 to 10000 bp 7,9 0,24 1,56 

 

It was then tried to use a larger volume (20 μl) of DNA. A.baylyi strain ADP1200-2 was 

sonicated for 3 minutes, the fragment size is shown in figure 15.  

 

 
Figure 15. Isolated DNA of A. baylyi strain ADP1200-2 sonicated for 180 seconds (3 minutes). Lanes: 1: 1 Kb 

DNA ladder (AB gene, UK), 2 to 4: isolated DNA of ADP1200-2 sonicated for 180 seconds (image is inverted). 

 

Three gel pieces were cut out in the size range 250 to 1000 bp, 1000 to 3000 bp and 3000 to 

10000 bp. The extracted DNA from the gel pieces was used as donor DNA in filter 

transformation. Even though a larger volume of DNA was applied to the wells, the yield of 

extracted DNA was just a little bit higher and there were no resulting transformants. The yield 

of DNA is shown in table 10.  

Table 10. Yield from DNA extraction of A. baylyi strain ADP1200-2 sonicated for 180 
seconds. 

Gel fragment ng/μl Total yield in μg 260/280 
250 to 1000 bp 222,4 6,67 1,90 
1000 to 3000 bp 14,1 0,42 1,99 
3000 to 10000 bp 12,9 0,39 1,94 
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The low yield of extracted DNA and the use of EtBr in the gel were thought to be the reason 

for this since EtBr is toxic and would probably reduce the TF. An agarose gel was therefore 

made without EtBr. 5 μl EtBr was mixed with the ladder before it was applied to the first well 

and 40 μl DNA was applied to five wells. This time the whole gel fraction was centrifuged 

through one column from the gel purifying kit to increase the yield of extracted DNA (earlier 

the gel fraction was divided into smaller pieces and these pieces were centrifuged through one 

column each). Three gel fractions were cut out in the size range up to 1000 bp, 1000 to 4000 

bp and 4000 to 10000 bp. Two gel fractions were of the whole lane, one fraction was up to 

10000 bp while the other also included the well and might include residues of unfragmented 

DNA. The yield of extracted DNA was a bit higher now and the filter transformation gave 

several transformants. The yield of the extracted DNA and the number of resulting 

transformants are shown in table 11. 

 
Table 11. Yield from DNA extraction of A. baylyi strain ADP1200-2 sonicated for 180 seconds and the 
transformants from filter transformation in A. baylyi strain BD413. 100, 500 and 1300 μl of the undiluted 
bacterial DNA was plated on LBRK50/50 plates and 100 μl on a LBR50 plate. The number of transformants 
on each plate is listed under the respective volumes of amount of bacterial DNA plated. 

       
Amount bacterial DNA 

plated 
Gel fragment ng/μl Total yield (μg) 260/280 100 μl 500 μl 1300 μl 
up to 1000 bp 494.7 14.84 1.87 0 0 1 

1000 to 4000 bp 12.2 0.37 1.69 9 22 ~300 
4000 to 10000 bp 29.7 0.89 1.55 0 4 1 
the whole lanea 134.8 4.04 1.85 3 19 51 
the whole laneb 127.8 3.83 1.88 15 90 TNTC 

a the whole lane up to 10000 bp, b the whole lane including the well, TNTC= too numerous to count, 0.9% NaCl 
was used as negative control, there was no growth on the LBRK50/50 plates with 0.9% NaCl and competent cells 
because A. baylyi strain BD413 is not resistant against kanamycin, unsonicated A. baylyi strain ADP1200-2 was 
used as positive control and there was lawn growth on these LBRK50/50 plates. Because the filters from the filter 
transformation were washed with 0.9% NaCl and undiluted bacterial DNA was plated, the total number of 
transformants is the number listed in the table multiplied by 20.  
 

3.2.4 Agarose gel staining with EtBr and SYBR  

 

When DNA was extracted from gel fractions with EtBr there were no resulting transformants, 

but when DNA was extracted from a gel fraction without EtBr there was resulting 

transformants (table 11). It was much easier to cut out gel fractions from a stained gel. To 

avoid any toxic effect from EtBr, the gel could be stained in SYBR or the EtBR gel could be 

destained after the electrophoresis. To test this, one 1% agarose gel was stained with EtBr and 

one gel was stained with SYBR (which is not toxic) (see material and methods for staining of 
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gel with EtBr and SYBR). 40 μl of DNA from 16.4.0 total population sonicated for 10 

seconds was divided into two wells in the gel with EtBr and 40 μl was divided into two of the 

wells in the gel that would be stained in SYBR. Gel fractions between 1000 and 4000 bp were 

cut out from the gels (one fraction contained two lanes in the gel). DNA was extracted from 

the gel fractions and used in filter transformation. Table 12 shows the yield of the extracted 

DNA and the number of the resulting transformants and figure 16 shows the fragment size of 

DNA from 16.4.0 extracted from one agarose stained with EtBr and one agarose gel stained 

with SYBR. 

 
Table 12. Yield from extracted DNA of 16.4.0 total population sonicated for 10 seconds and the 
resulting transformants when the DNA was used as donor in filter transformation in A. baylyi strain 
BD413. 100, 500 and 1300 μl of the undiluted bacterial DNA was plated on LBRK50/50 plates and 100 
μl on a LBR50 plate. The number of transformants on each plate is listed under the respective volumes 
of amount of bacterial DNA plated. 

        
Amount bacterial DNA 

plated 
Gel fragmenta ng/μl Total yield in μg 260/280 100 μl 500 μl 1300 μl 
gel with EtBr 199.6 5.9 1.84 TNTC TNTC TNTC 

gel stained in SYBR 231.7 6.95 1.85 266 TNTC TNTC 
a the size of the gel fragments were 1000 to 4000 bp, TNTC= too numerous to count, 0.9% NaCl was used as 
negative control, there was no growth on the LBRK plates with 0.9% NaCl and competent cells because A.. 
baylyi strain BD413 is not resistant against kanamycin, unsonicated A. baylyi strain ADP1200-2 was used as 
positive control, there was lawn growth on the LBRK plates used. Because the filters from the filter 
transformation were washed with 0.9% NaCl and undiluted bacterial DNA was plated, the total number of 
transformants is the number listed in the table multiplied by 20.  
  
 

 
Figure 16. Isolated DNA of 16.4.0 total population sonicated for 10 seconds extracted from agarose gel. Lanes: 

1 and 4: 1 Kb DNA ladder (AB gene, UK), 2: DNA from 16.4.0 total population sonicated for 10 seconds from 

agarose gel with EtBr, 3: DNA from 16.4.0 total population sonicated for 10 seconds from agarose gel stained 

with SYBR (image is inverted). 
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There was good growth of transformants both on the plates with DNA extracted from the gel 

with EtBr and from the gel stained in SYBR (table 12). To test if EtBr affects the 

transformation frequency, 1 μl EtBr was added to 65 μl of A. baylyi ADP1200-2 sonicated for 

3 minutes before it was mixed with competent cells of A. baylyi strain BD413. The 

transformation frequency was compared to the transformation frequency of A. baylyi 

ADP1200-2 sonicated for 180 seconds (3 minutes) without EtBr. There was no difference in 

the transformation frequencies as shown in table 13. 

Table 13. Transformationfrequency of unsonicated A. baylyi strain ADP1200-2 and sonicated   
A. baylyi strain ADP1200-2 for 180 seconds with and without EtBr. 

Strain ADP1200-2 Average transformation frequency Standard deviation
Unsonicated 1,9E-03 2,8E-04 

180 s sonicated 4,8E-06 1,0E-06 
180 s sonicated with 1 μl EtBr 4,8E-06 1,1E-06 

 

 

3.3 Introgression 

 

Because EtBr did not seem to affect the TF (table 13), the agarose gels in the introgression 

study from generation 1 and to generation 6 were made with EtBr. EtBr was removed by 

washing the gel pieces with dH2O before DNA was extracted from them. Gel fractions 

between 1000 and 4000 bp were cut out from the gel (except for in the initial filter 

transformation) and extracted DNA from these were used as donor DNA in the filter 

transformations.  

 

3.3.1 Backcross generations   

 

Six backcross transformations were performed with A. baylyi strain BD413 as recipient after 

the initial transformation with DNA from A. sp. strain 16.4 as donor. Transformants resulting 

from the initial transformation were called 16.4.0 and this was generation 0. Transformants 

resulting from the next transformation with isolated, sonicated DNA from 16.4.0 as donor, 

were called 16.4.1 and this was generation 1 and so on. 

 

One backcross transformation was performed with A. baylyi ADP7021 as recipient after the 

initial transformation with DNA from A. sp. 16.4 as donor. Transformants resulting from the 

initial transformation were called MS16.4.0 (MS= mutator single colony) and this was 
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generation 0. Transformants resulting from the next transformation with DNA from MS16.4.0 

as donor were called MS16.4.1 and this was generation 1. 

 

Introgression in the wild type 

 

After the initial transformation with isolated DNA from A. sp. 16.4 as donor DNA, DNA from 

the resulting transformants was used in subsequent backcross transformations with  

A. baylyi strain BD413 as recipient. Table 4 in the Appendix shows the number of the 

resulting transformants from each generation. 

 

DNA from A. sp. strain 16.4 sonicated for 5 and 10 seconds was used as donor DNA in the 

initial filter transformation with A. baylyi strain BD413 as recipient. Genomic DNA was 

isolated from a total population of all the 19 resulting transformants (both from 5 and 10 

seconds) as shown in table 4 in the Appendix. This DNA was called 16.4.0 total population 

and sonicated for 10 seconds. Sonicated DNA from 16.4.0 total population was applied to an 

agarose gel with EtBr and one agarose gel that was stained in SYBR. Figure 17 shows the 

fragment size of DNA from 16.4.0 total population sonicated for 10 seconds on an agarose 

gel.  
 

 
Figure 17. Isolated DNA of 16.4.0 total population sonicated for 10 seconds. Lanes: 1: 1 Kb DNA ladder (AB 

gene, UK), 2 and 3: DNA from 16.4.0 sonicated for 10s (image is inverted). 
 

A fraction between 1000 to 4000 bp was cut out (one piece with both lanes) from the gel 

stained in SYBR with DNA from 16.4.0 sonicated for 10 seconds (picture not available). The 

yield from the DNA extraction was 6.95 μg (table 12).  
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The extracted DNA was used as donor in filter transformation with A. baylyi strain BD413. 

This resulted in 266 transformants called 16.4.1 total population. Genomic DNA was isolated 

from 16.4.1 total population and fragmented by sonication for 10 seconds to 3 minutes. The 

size of the fragmented DNA is shown in figure 18.  

 

 
Figure 18. Isolated DNA of 16.4.1 total population sonicated for 10 seconds to 3 minutes. Lanes: 1: 1 Kb DNA 

ladder (AB gene, UK), 2 and 3: DNA from 16.4.1 tot.pop. sonicated for 10s, 4 and 5: DNA from 16.4.1 total 

population sonicated for 60s, 6 and 7: DNA from 16.4.1 total population sonicated for 3min (image is inverted).  
 

A fraction between 1000 to 4000 bp was extracted from the lanes in the gel with 16.4.1 

sonicated for 60 seconds. The yield from the DNA extraction was 1.3 μg (table 12). The size 

of the extracted DNA was from around 1250 to 4000 bp. Figure 19 shows the fragment size of 

sonicated DNA from 16.4.1 extracted from an agarose gel. 
 

 
Figure 19. Isolated DNA of 16.4.1 total population sonicated for 10s to 3 min extracted from agarose gel. Lanes: 

1: 1 Kb DNA ladder (AB gene, UK), 2: DNA from 16.4.1 total population sonicated for 10s, 3: DNA from 

16.4.1 total population sonicated for 60s, 4: DNA from 16.4.1 total population sonicated for 180s (image is 

inverted). 
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The extracted DNA was used as donor in filter transformation with A. baylyi strain BD413. 

This resulted in 62 transformants, when the donor DNA was sonicated for 1 minute (see table 

4 in the Appendix). Genomic DNA was isolated from the resulting transformants, called 

16.4.2 total population, and sonicated for 1 minute. Figure 20 shows the fragment size of 

sonicated DNA from 16.4.2 total population. 

 

  
Figure 20. Isolated DNA of 16.4.2 total population sonicated for 1 minute. Lanes: 1: 1 Kb DNA ladder (AB 

gene, UK), 2 and 3: DNA from 16.4.2 total population sonicated for 60s (image is inverted).  
 

A fraction between 1000 to 4000 bp was extracted from the two lanes in the gel. The yield 

from the DNA extraction was 1.0 μg (table 12). The size of the extracted DNA used as donor 

DNA was from 1000 to 4000 bp. Figure 21 shows the fragment size of sonicated DNA from 

16.4.2 total population extracted from an agarose gel. 

 

 
Figure 21. Isolated DNA of 16.4.2 total population sonicated for 1 minute extracted from agarosgel. .Lanes: 1: 1 

Kb DNA ladder (AB gene, UK), 2: DNA from 16.4.2 total population sonicated for 60s (image is inverted). 
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The size of the extracted DNA used as donor DNA in generation 3 was from 1000 to 4000 bp. 

The extracted DNA was used as donor in filter transformation with A. baylyi strain BD413. 

Genomic DNA isolated from 11 of the resulting transformants (see table 4 in Appendix), was 

called 16.4.3 total population and fragmented by sonication for 1 minute (image of sonicated 

DNA from 16.4.3 total population and image of fragment size of extracted DNA from 16.4.3 

is not available.).  

After another round of filter transformation in A. baylyi strain BD413, genomic DNA was 

isolated from the 134 resulting transformants (see table 4 in Appendix). This DNA was called 

16.4.4 total population and fragmented by sonication for 1 minute. The size of the sonicated 

DNA from 16.4.4 total population is shown in figure 22.  

 

 
Figure 22. Isolated DNA of 16.4.4 total population sonicated for 1 minute. Lanes: 1: 1 Kb DNA ladder (AB 

gene, UK), 2 and 3: DNA from 16.4.4 total population sonicated for 60s (image is inverted).  
 

DNA from 16.6.4 total population was extracted from the agarose gel (image not available) 

and used as donor DNA in filter transformation with A. baylyi strain BD413. There were no 

transformants after the filter transformation so DNA from 16.4.4 total population was 

sonicated for 10 and 30 seconds. Figure 23 shows the size of DNA from 16.4.4 total 

population sonicated for 10 and 30 seconds. 
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Figure 23. Isolated DNA of 16.4.4 total population sonicated for 10-30 seconds. Lanes: 1: 1 Kb DNA ladder 

(AB gene, UK), 2 and 3: DNA from 16.4.4 total population sonicated for 10s, 4 and 5: DNA from 16.4.4 total 

population sonicated for 30s (image is inverted). 
 

A fraction between 1000 to 4000 bp was extracted from the lanes in the gel. The yield from 

the DNA extraction when the DNA was sonicated for 10 seconds was 1.4 μg (table 12). 

Figure 24 shows the fragment size of DNA from 16.4.4 total population sonicated for 10 and 

30 seconds and extracted from an agarose gel. 

 

 
Figure 24. Isolated DNA of 16.4.4 total population sonicated for 10 to 30 seconds extracted from agarosegel. 

Lanes: 1: 1 Kb DNA ladder (AB gene, UK), 2: DNA from 16.4.4 total population sonicated for 10s, 3: DNA 

from 16.4.4 total population sonicated for 30s (image is inverted). 
 

The size of the extracted DNA was from 1000 to 4000 bp (after 10 seconds of sonication) and 

it was used in filter transformation with A. baylyi strain BD413. Genomic DNA was isolated 

from the 172 resulting transformants (see table 4 in Appendix). This DNA was called 16.4.5 

total population and fragmented by sonication for 10 seconds. The size of sonicated DNA 

from 16.4.5 total population is shown in figure 25.  
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Figure 25. Isolated DNA of 16.4.5 total population sonicated for 10 seconds. Lanes: 1: 1 Kb DNA ladder (AB 

gene, UK), 2 and 3: DNA from 16.4.5 total population sonicated for 10s (image is inverted).  
 

A fraction between 1000 to 4000 bp was extracted from the lanes in the gel. The yield from 

the DNA extraction was 5.8 μg (table 12). Figure 26 shows the fragment size of sonicated 

DNA from 16.4.5 total population extracted from an agarose gel. 

 

 
Figure 26. Isolated DNA of 16.4.5 total population sonicated for 10 seconds extracted from agarosegel. Lanes: 

1: 1 Kb DNA ladder (AB gene, UK), 2: DNA from  16.4.5 total population sonicated for 10s (image is inverted). 
 

The size of the extracted DNA was from 1000 to almost 5000 bp. Genomic DNA was isolated 

from the 347 resulting transformants (see table 4 in Appendix), called 16.4.6 total population. 

This was the last step in the introgression study of the wild type. 
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Introgression in the mutator strain. 

 

After the initial transformation with A. sp. strain 16.4 as donor DNA and A. baylyi strain 

ADP7021 as recipient, DNA from the resulting transformants was used in subsequent 

backcross transformations with A. baylyi strain ADP7021 as recipient. Table 5 in Appendix 

shows the number of the resulting transformants from each generation. 

 

Isolated DNA from A. sp. strain 16.4 was sonicated for 5 and 10 seconds and used as donor 

DNA in the initial filter transformation with A. baylyi strain ADP7021 as recipient. Only 

donor DNA sonicated for 5 seconds gave resulting transformants (see table 5 in Appendix). 

Genomic DNA was isolated from 5 single colonies, called MS16.4.0.1-5 (Mutator Single 

colonies, 16.4.0 is the transformants from the initial transformation and 1-5 means single 

colony 1 to single colony 5), and fragmented by sonication for 10 seconds. Figure 27 shows 

the fragment size of MS16.4.0.1-5 sonicated for 10 seconds.  

 

 
Figure 27. Isolated DNA of MS16.4.0.1-5 sonicated for 10 seconds. Lanes: 1 and 12: 1 Kb DNA ladder (AB 

gene, UK), 2 and 3: DNA from MS16.4.0.1, 4 and 5: DNA from MS16.4.0.2, 6 and 7: DNA from MS16.4.0.3, 8 

and 9: DNA from MS16.4.0.4, 10 and 11: DNA from MS16.4.0.5 (image is inverted)  
 

DNA from MS16.4.0.1-5 was extracted from the agarose gel and used as donor DNA in filter 

transformations with A. baylyi strain ADP7021. There were no resulting transformants after 

the filter transformations (see table 5 in Appendix), so DNA from MS16.4.0.1-5 was 

sonicated for 5 seconds, extracted from the gel pieces and used as donor DNA in filter 

transformation with A. baylyi strain ADP7021 as recipient. The size of fragmented DNA from 

MS16.4.0.1-5 sonicates for 5 seconds is shown in figure 28.  
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Figure 28. Isolated DNA of MS16.4.0.1-5 sonicated for 5 seconds. Lanes: 1: 1 Kb DNA ladder (AB gene, UK), 

2 and 3: DNA from MS16.4.0.1, 4 and 5: DNA from MS16.4.0.2, 6 and 7: DNA from MS16.4.0.3, 8 and 9: 

DNA from MS16.4.0.4, 10 and 11: DNA from MS16.4.0.5 (image is inverted). 
 

Genomic DNA was isolated from the resulting transformants (see table 5 in Appendix), called 

MS16.4.1.1-5. This was the last step in the introgression study of the mutator strain. 

 

DNA extracted from the agarose gels in the introgression studies 

 

As mentioned earlier in 3.3.1, DNA was extracted from the agarose gels with sonicated DNA 

from the transformants in generation 0 to generation 6 in the introgression study with the wild 

type and in generation 0 to generation 1 in the introgresson study with the mutator strain. The 

DNA was eluted from the column membrane by adding 30 μl dH2O and the concentration was 

measured before the DNA was used in filter transformation. Table 12 shows the yield of DNA 

extracted from sonicated DNA of generation 0 and table 14 shows the yield of DNA extracted 

from sonicated DNA of generation 1 to generation 6 in the wild type. Table 15 shows the 

yield of DNA extracted from single colonies of sonicated DNA of generation 0 and 

generation 1 in the mutator strain. 

 

Table 14.Yield from DNA extraction from agarose gel. 
Sample ng/μl Total yield in μg 260/280 

16.4.1, sonicated for 1 min 43.5 1.30 1.90 
16.4.2, sonicated for 1 min 32.6 0.98 1.62 
16.4.3, sonicated for 1 min N/A N/A N/A 
16.4.4, sonicated for 10 sec 45.0 1.35 1.82 
16.4.5, sonicated for 10 sec 194.6 5.84 1.84 

N/A= not available 
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Table 15. Yield from DNA-extraction from agarose gel. 
Sample ng/μl Total yield in μg 260/280 

MS16.4.0.1, sonicated for 5 sec 84.77 2.54 1.85 
MS16.4.0.2, sonicated for 5 sec 24.94 0.75 1.72 
MS16.4.0.3, sonicated for 5 sec 8.04 0.24 1.65 
MS16.4.0.4, sonicated for 5 sec 72.41 2.17 1.85 
MS16.4.0.5, sonicated for 5 sec 27.36 0.82 1.91 

 

To check if the extracted DNA had the desirable fragment size, 2-5 μl were applied to an 

agarose gel (figures are shown in section 3.3.1).  

 

3.3.2 Sequencing of flanking DNA 

 

Genomic DNA was isolated from five single colonies in generation 0 and from five single 

colonies in generation 5 in the wild type line and sequenced with different primers (see primer 

map, figure 1 in the Appendix). Table 16 shows the left flanking regions from the nptII gene 

and table 17 shows the right flanking regions from the nptII gene. 

 

Table 16. Sequenced left nptII flanking regions of transformants in A. baylyi strain BD413 (single 
colonies). 

 Primer 
 RP152 RP255  Apr27 RV20 

Isolate BD413 hit Overlap with nptII BD413 hit BD413 hit BD413 hit 
S16.4.0.1 No hit 130 bp  -  - Hit 
S16.4.0.2 No sequence  no No hit No sequence Hit 
S16.4.0.3 No sequence  no No hit Hit No sequence
S16.4.0.4 No hit 125 bp  -  - Hit 
S16.4.0.5 No hit  no No hit No sequence Hit 
S16.4.5.1 No sequence  no No hit Hit  - 
S16.4.5.2 No sequence  no No hit Hit  - 
S16.4.5.3 No sequence  no No hit Hit  - 
S16.4.5.4 No sequence  no No hit Hit  - 
S16.4.5.5 No sequence  no No hit Hit  - 

Hit indicates 100% query sequence aligned with A. baylyi strain BD413 in the same region, discrepancies was 

due to unresolved nucleotides in the query, blasted in average 700 nucleotides, there was only overlap with nptII 

when primer RP152 was used; -indicates that this primer was not used for this sequence.  
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Table 17. Sequenced right nptII flanking regions of transformants in A. baylyi strain BD413. 
  Primer 
 LP1046 LP853 Apr25 FW24 

Isolate BD413 hit Overlap with nptII BD413 hit BD413 hit BD413 hit 
S16.4.0.1 No hit 145 bp  -  - No sequence
S16.4.0.2 Hit  no No sequence No sequence No sequence
S16.4.0.3 Hit  no No sequence No sequence No sequence
S16.4.0.4 No hit 145 bp  -  - No sequence
S16.4.0.5 Hit  no No sequence No sequence No sequence
S16.4.5.1 Hit  no No sequence No sequence  - 
S16.4.5.2 Hit  no No sequence No sequence  - 
S16.4.5.3 Hit  no No sequence No sequence  - 
S16.4.5.4 Hit  no No sequence No sequence  - 
S16.4.5.5 Hit  no No sequence No sequence  - 

Hit indicates 100% query sequence aligned with A. baylyi strain BD413 in the same region, discrepancies was 

due to unresolved nucleotides in the query, blasted in average 700 nucleotides, there was only overlap with nptII 

when primer LP1046 was used; - indicates that this primer was not used for this sequence    
 

Genomic DNA was isolated from five single colonies in generation 0 and from five single 

colonies in generation 1 in the mutator line and sequenced with one forward and one reverse 

primer. Table 18 shows the flanking regions from the nptII gene. 
 

Table 18. Sequenced flanking regions of transformants in A. baylyi strain ADP7021                               
 Left nptII flanking region  Right nptII flanking region 
 Primer RP152  Primer LP1046 
 BD413 hit Overlap with nptII Isolate Overlap with nptII BD413 hit 
 No hit 100 bp MS16.4.0.1 145 bp No hit 
 No hit 125 bp MS16.4.0.2 145 bp No hit 
 Hit* no MS16.4.0.3 145 bp No hit 
 No hit 120 bp MS16.4.0.4 150 bp No hit 
 No hit 130 bp MS16.4.0.5 145 bp No hit 
 Hit no MS16.4.1.1  no No sequence
 Hit no MS16.4.1.2  no No sequence
 Hit no MS16.4.1.3  no No sequence
 Hit no MS16.4.1.4  no No sequence
  Hit no MS16.4.1.5  no No sequence

Hit indicates 100% query sequence aligned with A. baylyi strain BD413 in the same region, discrepancies was 

due to unresolved nucleotides in the query, blasted in average 700 nucleotides 
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4. DISCUSSION 

 

 

4.1 DNA yield and purity  

 

Isolation of DNA gave an average yield with a concentration of 2.0 μg/μl. We only needed 

DNA with a concentration of 0.5 μg/μl for use in the filter transformations, so the yield was 

high. The concentration of the isolated DNA was measured with the NanoDrop® ND-1000 

spectrophotometer. One of the parameters was the ratio 260/280, which is the ratio of sample 

absorbance at 260 and 280 nm. It is used to assess the purity of DNA. A ratio of ~1.8 is 

thought of as pure for DNA. If the ratio is lower it may indicate the presence of protein, 

phenol or other contaminants that absorb strongly at or near 280 nm. When the DNA 

concentration of isolated from A. baylyi ADP1200-2, A. sp. strain 16.4 and resulting 

transformants in A. baylyi strain BD413 or strain ADP7021 was measured, the ratio 260/280 

was ~1.8. When the DNA concentration of the extracted DNA was measured, the ratio 

260/280 was mostly ~1.8, but for strain 16.4.2 (total population) (table 14) and strain 

MS16.4.0.3 (table 15) it was lower (1.62 and 1.65 respectively). These were not as pure as the 

other extracted DNA, but they still gave resulting transformants in filter transformations with 

the wild type and the mutator strain. As we did not want to measure the transformation 

frequency (TF) in the introgression study, we could use these transformants in the next round 

of backcross transformations. 

 

4.2 Method for optimal fragmentation of DNA 

 

We tried two different methods for fragmentation of DNA, nebulization and sonication.  

 

4.2.1 DNA fragmentation by nebulization  

 

A. baylyi strain ADP1200-2 was fragmented by nebulization. Fragmentation of DNA by 

nebulization gave as expected a gradual reduction in DNA fragment size during increasing 

time of nebulization. Because the Shearing buffer was added to the DNA before the 

nebulization, it was necessary to precipitate the DNA to get pure DNA that could be used in 

filter transformation. Figure 7 shows a gradual reduction in fragments size for the nebulized 

DNA. The yield of precipitated DNA varied for nebulized DNA of A. baylyi strain ADP1200-
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2 (table 5). The TF did not decrease gradually (table 6), as we expected from the size of the 

DNA fragments (fig. 7). It could be that the DNA pellet was not completely dissolved after 

the precipitation thus the DNA concentration could be inaccurate. Even though the top of the 

nebulizer was tightened, there was a great loss of liquid during nebulization. The loss of liquid 

during the nebulization made it necessary to use another method to fragmentate DNA.  

 

4.2.2 DNA fragmentation by sonication 

 

A. baylyi strain ADP1200-2 and A. sp. strain 16.4 were fragmented by sonication. As 

mentioned in the introduction, A. sp. strain 16.4 is the same as A. sp. 62A1. Fragmentation of 

DNA by sonication gave an effective, gradual reduction in DNA fragment size during 

increasing time of sonication (fig. 9). Because only DNA dissolved in dH2O (with a 

concentration of 0.5 μg/μl) was sonicated (no added buffer), it was not necessary to 

precipitate the DNA before further use. Combined with the fact that there was no loss of 

liquid during sonication made it an effective and easy method to fragment DNA. For longer 

sonications (over 7 minutes) the water temperature increased and the water had to be replaced 

with new ice and cold (4ºC) water to avoid increasing temperature and to keep the conditions 

the same for all samples during sonication. Too much ice in the tank could block the sound 

waves or keep the tubes from reaching the water, which would reduce the effect of 

fragmentation. Also the number of samples sonicated could effect the fragmentation. Five 

tubes with samples might absorb more sound waves than one tube. The size of the sonicated 

DNA was checked on agarose gels (fig. 9 and 10), to control the degree of fragmentation. 

There was a gradual reduction in TF with increasing length of sonication for DNA , except for 

DNA of A. baylyi strain ADP1200-2 sonicated for 3600 seconds (60 minutes) (table 7), were 

the TF was similar to the TF after sonication for 180 seconds. Figure 10 shows that the 

fragmentation for 60 minutes for DNA from A. baylyi strain ADP1200-2 was incomplete. The 

ice was changed several times during this sonication and could explain the poor sonication. 

Many studies using A. baylyi strain BD413 have shown that sequence homology of regions 

flanking the DNA to be transferred affect the TF (Simpson et al., 2007). When fragmented 

donor DNA from A. baylyi strain ADP1200-2 was used in filter transformation with A. baylyi 

strain BD413, the TF decreased whit increasing fragmentation. The decrease in TF is 

explained by the decreasing size of sequence homology. 
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The TF of A. sp. strain 16.4 was almost the same when the DNA was unsonicated or sonicated 

for 5 or 10 seconds (table 8). Figure 12 and 13 show that there is a significant amount of 

unfragmentd DNA left. This is probably the DNA that contributes most to the TF because 

after 10 seconds, when unfragmented DNA is eliminated, the TF decreases below detection. 

The detection limit of the assay was approximately 1*10-10 transformants per recipient. A. sp. 

strain 16.4 is 24.4% sequence divergent from BD413 and this could explain the difficulty of 

the initial transformation of A. sp. strain 16.4 DNA in A. baylyi strain BD413. A. sp. strain 

16.4 DNA sonicated for longer than 10 seconds gave no transformants. A longer donor 

fragment may lend more stability to the heteroduplex intermediate (Zawadzki et al., 1995), 

while a shorter donor fragment (e.g. by sonication) may not form such a stable heteroduplex 

intermediate. Also the stability of the recipient-donor heteroduplex is dependent on the degree 

of sequence similarity between donor and recipient DNA (Zawadzki et al., 1995). Longer 

fragmentation of divergent DNA has a lower probability of finding homologous regions for 

integration. 

 

Because nebulization had some technical limitations, the DNA used as donor DNA in the 

introgression study was fragmented only by sonication. 

 

4.2.3 Extraction of DNA from agarose gel 

 

When we extracted sonicated DNA from a specific part of the agarose gel, we were sure that 

only fragmented DNA was used as donor DNA in the filter transformation. It took quite some 

time to find the right method to do this and the challenges were to find the right volume of 

DNA applied to the well and the right fragment size and to get maximum yield of DNA 

extracted from the gel so that it could be used as donor DNA in filter transformations. When 

10 μl DNA was applied to each well and DNA was extracted from different fractions of the 

gel, there were no resulting transformants, so we tried to apply 20 μl DNA in each well. Even 

though we doubled the amount of DNA, there were no resulting transformants. A small 

amount of DNA and the size of the gel fragments extracted (see table 9 and 10) could explain 

this. The fragment size could be too low in fractions from, e.g. 250 to 1000 bp (this fraction 

did not include the nptII gene) to give transformants when used as donor DNA in filter 

transformations. When high fractions, e.g. 3000 to 10000 bp, were cut out from the gel, there 

were probably too few fragments in this fraction to give transformants when used as donor 

DNA in filter transformations. Figure 15 shows that most of the fragments have a size around 
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500 bp, thus there would only be few fragments in the high fraction (3000 to 10 000 bp). Also 

EtBr or exposure to ultraviolet (UV) radiation could affect the DNA. When 40 μl DNA was 

applied to each well on an unstained gel (5 μl EtBr was added to the ladder), there were 

several transformats (table 11). The fractions that gave the highest number of transformants 

were the fraction from 1000 to 4000 bp and the fraction of the whole lane including the well. 

The lower limit (1000 bp) was chosen because the size of the nptII is around 1220 bp and we 

wanted to be sure that the fraction included the gene. The upper limit (4000 bp) was chosen 

because we wanted some flanking regions in addition to the nptII gene, but we also wanted to 

limit the length of flanking regions. Simpson et al. (2007) showed that a minimum of 500 bp 

was required on each flank for transformation to be affected by flanking homology. The 

fraction of the whole lane including the well probably contained some unfragmented DNA, 

which would make the integration easier and explain the high number of transformants from 

this fraction.   

 

4.2.4 Agarose gel staining with EtBr and SYBR  

 

It was easier to cut out gel fractions from a stained gel than an unstained gel because we could 

visually inspect both the gel run and fragmentation. We tried to stain the gel in SYBR, 

because it was hypothesized that EtBr could affect the TF because it interchelates with DNA 

and thereby having a toxic effect on the cells. Staining of the gel with SYBR or staining with 

EtBr and then distaining the gel before DNA was extracted from the gel fractions, were both 

good methods for gel staining and both gave resulting transformants (table 12).  

 

To test the effect of EtBr we compared to the TF of DNA from ADP1200-2 sonicated for 3 

minutes with and without 1 μl EtBr added to the DNA. Table 13 shows that the 

transformation frequencies were the same (4.8*10-6) and that EtBr did not seem to affect the 

TF. The gels in the introgression study were stained with EtBr. 

 

4.3 Introgression 

 

We were able to perform six backcross transformations in A. baylyi BD413 and one backcross 

transformation in A. baylyi ADP7021.   
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4.3.1 Backcross generations 

 

We wanted to compare the TF when fragmented DNA of A. sp. strain 16.4 was used as donor 

DNA to the TF when unfragmentated DNA of A. sp. strain 16.4. In this study the TF for 

unsonicated and sonicated DNA of A. sp. strain 16.4 were equal (table 8), but the TF for 

unsonicated DNA of A. sp. strain 16.4 (2.0*10-9) was lower than the same TF (1.2*10-7) from 

a previous, unpublished introgression study (Ray et al.). The reason was probably 

contamination of A. sp. strain 16.4 (see below).   

 

4.3.2 Sequencing of flanking DNA 

 

A previous performed, unpublished introgression study (Ray et al.) presented evidence that 

unselected heterologous DNA might be eliminated from hybrid recombinant strains over 

many generations during introgression in a competent bacterial population. We wanted to 

determine how fragmentation of the donor DNA would affect the speed at which, and if 

unselected heterologous DNA was eliminated during introgression and compare these results 

to the results from the unpublished study (Ray et al.). To sequence identify cross-over 

junctions the resulting transformants from generation 0 and 5 in the wild type strain and 

generation 0 and 1 in the wild type strain, we used forward and reverse primers (see figure 1 

in Appendix) that would bind to the nptII gene and to different sites at the genome (up to 

6000 bp from the nptII gene). The nptII gene was only identified in S16.4.0.1 and S16.4.0.4 in 

generation 0, but in none of transformants in generation 5 in the wild type line. The nptII gene 

was identified in all the transformants in generation 0 in the mutator strain, but in none of the 

transformants in generation 1. This was unexpected, because we expected at least to identify 

the nptII gene in all the sequenced generations. When the sequences were used in a blastn 

analysis they either aligned 100% to A. baylyi BD413 or did not align at all (table 16 to 18). 

The sequencing results were not as expected, because the sequences from generation 0 in the 

wild type line in this study were not similar to the same sequences in the previous performed 

introgression study (Ray et al.). We isolated the donor DNA we used, A. sp. strain 16.4, again 

from the freeze stock and sequenced it, but it turned out that it was not the same DNA that 

was used in the previous performed introgression study (Ray et al.). It contained the nptII 

gene, but the sequences flanking right and left from the nptII were not as expected compared 

to the DNA used in the unpublished study (Ray et al.). We used blastn analysis to sequence 

the flanking regions of the nptII gene in the A. sp. strain 16.4 we had used. We found out that 
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the flanking regions were similar to an outer membrane protein in A. baumannii, thus our 

donor DNA isolated from the freeze stock and used in the introgression study was 

contaminated. This explained why the TF for unsonicated DNA of A. sp. strain 16.4 and the 

sequencing results were not as expected. 
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5. CONCLUSION 

 

Introgression is the successive transformation of foreign DNA into the wild type population 

and is largely unknown in bacteria. One previous unpublished study investigated the effect of 

introgression of foreign unselected DNA, but the donor DNA used was of high molecular 

weight (around 20 to 30 kilo bases (kb)). I have developed a method for fragmentation of 

DNA to desired sizes and used this method to study introgression of unselected foreign DNA 

of 1000 to 4000 base pairs (bp). We wanted to determine how fragmentation of donor DNA 

will affect the speed at which, and if heterologous flanking DNA is eliminated during 

successive rounds of back transformation. The best fragmentation method was by sonication, 

which gives an effective, gradual reduction in DNA fragment size during increasing time of 

sonication. The size of the sonicated DNA is checked on an agarose gel and the appropriate 

gel fraction (1000 to 4000 bp in our setup) is cut out from the gel and used in filter 

transformation.  
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Table 1. DNA isolated from ADP 1200-2, fragmentated by nebulization for 0 to 600 seconds. Number of colonies (CFU) on each plate.
3 parallels of each test on LBR plates and 3 parallels on LBRK plates. Calculated transformation frequency.

Nebulizing Test 1 2 3 1 2 3
Average 

CFU Dilution
Average CFU
transformants Dilution

Total number
 recipients

Total number
 transformants

Transformation-
frequency

1 82 90 85 0 0 0 85,7 10^-7 0,0 10^0
2 55 67 66 0 0 0 62,7 10^-7 0,0 10^0
3 62 57 71 0 0 0 63,3 10^-7 0,0 10^0
4 49 88 87 172 189 194 74,7 10^-7 185,0 10^-4 3,0E+10 7,4E+07 2,5E-03
5 99 88 103 267 271 269 96,7 10^-7 269,0 10^-4 3,9E+10 1,1E+08 2,8E-03
6 44 42 29 124 144 162 38,3 10^-7 143,3 10^-4 1,5E+10 5,7E+07 3,7E-03
7 64 63 63 123 103 106 63,3 10^-7 110,7 10^-2 2,5E+10 4,4E+05 1,7E-05
8 100 99 87 182 148 164 95,3 10^-7 164,7 10^-2 3,8E+10 6,6E+05 1,7E-05
9 73 90 83 146 149 171 82,0 10^-7 155,3 10^-2 3,3E+10 6,2E+05 1,9E-05

10 84 93 124 49 45 66 100,3 10^-7 53,3 10^-1 4,0E+10 2,1E+04 5,3E-07
11 75 83 77 60 76 57 78,3 10^-7 64,3 10^-1 3,1E+10 2,6E+04 8,2E-07
12 66 87 53 47 49 61 68,7 10^-7 52,3 10^-1 2,7E+10 2,1E+04 7,6E-07
13 15 15 9 33 28 29 13,0 10^-7 30,0 10^-2 5,2E+09 1,2E+05 2,3E-05
14 16 7 16 49 35 29 13,0 10^-7 37,7 10^-2 5,2E+09 1,5E+05 2,9E-05
15 17 31 24 34 41 45 24,0 10^-7 40,0 10^-2 9,6E+09 1,6E+05 1,7E-05
16 89 120 97 76 84 92 102,0 10^-7 84,0 10^-1 4,1E+10 3,4E+04 8,2E-07
17 61 77 57 67 44 53 65,0 10^-7 54,7 10^-1 2,6E+10 2,2E+04 8,4E-07
18 38 60 42 48 39 53 46,7 10^-7 46,7 10^-1 1,9E+10 1,9E+04 1,0E-06
19 10 29 38 63 70 71 25,7 10^-7 68,0 10^-2 1,0E+10 2,7E+05 2,6E-05
20 26 26 34 51 65 50 28,7 10^-7 55,3 10^-2 1,1E+10 2,2E+05 1,9E-05
21 45 21 26 62 54 75 30,7 10^-7 63,7 10^-2 1,2E+10 2,5E+05 2,1E-05

LBR LBRK

NaCl

360 s

600 s

0 s

40 s

120 s

240 s
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Table 2. DNA isolated from ADP 1200-2, fragmentated by sonication in 0 to 3600 seconds. Number of colonies (CFU) on each plate.
3 parallels of each test on LBR plates and 3 parallels on LBRK plates. Calculated transformation frequency.

Sonication Test 1 2 3 1 2 3
Average CFU

recipients Dilution
Average CFU
transformants Dilution

Total number
 recipients

Total number
 transformants

Transformation-
frequency

1 75 78 75 0 0 0 76,0 10^-7 0,0 10^0
2 90 109 95 0 0 0 98,0 10^-7 0,0 10^0
3 77 84 72 0 0 0 77,7 10^-7 0,0 10^0
4 97 97 97 27 37 34 97,0 10^-7 32,7 10^-5 3,9E+10 130666667 3,4E-03
5 89 81 89 39 30 30 86,3 10^-7 33,0 10^-5 3,5E+10 132000000 3,8E-03
6 72 110 89 48 34 41 90,3 10^-7 41,0 10^-5 3,6E+10 164000000 4,5E-03
7 89 90 74 68 62 70 84,3 10^-7 66,7 10^-2 3,4E+10 266667 7,9E-06
8 109 112 110 116 82 112 110,3 10^-7 103,3 10^-2 4,4E+10 413333 9,4E-06
9 86 111 121 61 48 40 106,0 10^-7 49,7 10^-2 4,2E+10 198667 4,7E-06
10 93 101 93 48 61 54 95,7 10^-7 54,3 10^-2 3,8E+10 217333 5,7E-06
11 102 98 97 243 268 247 99,0 10^-7 252,7 10^-1 4,0E+10 101067 2,6E-06
12 98 75 86 152 212 202 86,3 10^-7 188,7 10^-1 3,5E+10 75467 2,2E-06
13 112 113 116 238 301 259 113,7 10^-7 266,0 10^-1 4,5E+10 106400 2,3E-06
14 98 118 120 183 264 273 112,0 10^-7 240,0 10^-1 4,5E+10 96000 2,1E-06
15 69 74 57 150 194 182 66,7 10^-7 175,3 10^-1 2,7E+10 70133 2,6E-06
16 102 112 - 282 281 166 107,0 10^-7 281,5 10^-1 4,3E+10 112600 2,6E-06
17 62 90 75 33 38 28 75,7 10^-7 33,0 10^-2 3,0E+10 132000 4,4E-06
18 85 79 76 299 299 294 80,0 10^-7 297,3 10^-1 3,2E+10 118933 3,7E-06
19 88 85 99 177 202 188 90,7 10^-7 189,0 10^-1 3,6E+10 75600 2,1E-06
20 112 85 69 235 186 170 88,7 10^-7 197,0 10^-1 3,5E+10 78800 2,2E-06
21 51 63 54 150 192 172 56,0 10^-7 171,3 10^-1 2,2E+10 68533 3,1E-06
22 242 107 136 6 20 19 161,7 10^-7 15,0 10^-1 6,5E+10 6000 9,3E-08
23 161 130 127 16 16 11 139,3 10^-7 14,3 10^-1 5,6E+10 5733 1,0E-07
24 153 148 152 19 23 29 151,0 10^-7 23,7 10^-1 6,0E+10 9467 1,6E-07
25 109 117 91 11 13 8 105,7 10^-7 10,7 10^-1 4,2E+10 4267 1,0E-07
26 78 78 77 8 18 8 77,7 10^-7 11,3 10^-1 3,1E+10 4533 1,5E-07
27 107 83 118 13 19 14 102,7 10^-7 15,3 10^-1 4,1E+10 6133 1,5E-07
28 68 72 77 28 22 23 72,3 10^-7 24,3 10^-2 2,9E+10 97333 3,4E-06
29 93 82 80 25 27 29 85,0 10^-7 27,0 10^-2 3,4E+10 108000 3,2E-06
30 86 79 89 44 29 44 84,7 10^-7 39,0 10^-2 3,4E+10 156000 4,6E-06

120 s

180 s

LBR LBRK

NaCl

0 s

3600 s

1200 s

1800 s

600 s

10 s

60 s
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After more than 10 seconds there were no transformants. 

 

 

   

Table 3. DNA isolated from 16.4, fragmentated by sonication in 0 to 10 seconds. Number of colonies (CFU) on each plate. 
3 parallels of each test on LBR plates and 3 parallels on LBRK plates. Calculated transformation frequency.

Sonication Test 1 2 3 1 2 3
Average CFU

recipients Dilution
Average CFU
transformants Dilution

Total number
 recipients

Total number
 transformants

Transformation-
frequency

1 81 71 56 0 0 0 69,3 10^-7 0,0 10^0
2 63 81 83 0 0 0 75,7 10^-7 0,0 10^0
3 114 127 95 0 0 0 112,0 10^-7 0,0 10^0
4 133 82 128 78 72 66 130,5 10^-7 72,0 10^-5 5,2E+10 288000000 5,5E-03
5 126 120 119 68 66 59 121,7 10^-7 64,3 10^-5 4,9E+10 257333333 5,3E-03
6 185 224 229 32 37 41 212,7 10^-7 36,7 10^-5 8,5E+10 146666667 1,7E-03
7 129 140 156 4 3 4 141,7 10^-7 3,7 10^0 5,7E+10 147 2,6E-09
8 116 117 125 2 3 1 119,3 10^-7 2,0 10^0 4,8E+10 80 1,7E-09
9 87 114 95 3 2 0 98,7 10^-7 1,7 10^0 3,9E+10 67 1,7E-09
10 124 181 135 3 2 1 146,7 10^-7 2,0 10^0 5,9E+10 80 1,4E-09
11 148 162 173 1 0 0 161,0 10^-7 0,3 10^0 6,4E+10 13 2,1E-10
12 121 123 129 0 0 0 124,3 10^-7 0,0 10^0 5,0E+10 0 0,0E+00
13 115 122 114 1 2 1 117,0 10^-7 1,3 10^0 4,7E+10 53 1,1E-09
14 111 127 128 0 0 1 122,0 10^-7 0,3 10^0 4,9E+10 13 2,7E-10
15 100 109 105 4 3 0 104,7 10^-7 2,3 10^0 4,2E+10 93 2,2E-09

LBRK

NaCl

0 s

ADP 
1200-2

5 s

10 s

LBR
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100 μl 500 μl 1300 μl
16.4.0 (5s) 7 - -
16.4.1 (10s) 226 TNTC TNTC
16.4.2 (10s) >300 >600 TNTC
16.4.2 (60s) 10 62 57+

16.4.2 (180s) 3 13 20
16.4.3 (60s) 1 5 6
16.4.4 (60s) 34 134 286
16.4.5 (10s) 30 172 TNTC
16.4.5 (30s) 1 0 1
16.4.5 (60s) 0 0 0
16.4.6 (10s) 347 TNTC TNTC

LBRK
Generation (donor DNA sonicated for x seconds)

Table 4. Number of transformants from the introgression study in BD413, generation 0 to 6. 100, 500 and 1300 μl of the undiluted bacterial 
DNA was plated on LBRK50/50 plates and 100 μl on a LBR50 plate. The number of transformants on each plate is listed under the 
respective volumes of amount of bacterial DNA plated.

TNTC= too numerous to count, 0.9% NaCl was used as negative control, there was no growth on the LBRK50/50 plates with 0.9% NaCl and 
competent cells because A. baylyi strain BD413 is not resistant against kanamycin, unsonicated A. baylyi strain ADP1200-2 was used as positive 
control and there was lawn growth on these LBRK50/50 plates. Because the filters from the filter transformation were washed with 0.9% NaCl and 
undiluted bacterial DNA was plated, the total number of transformants is the number listed in the table multiplied by 20. 
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100 μl 500 μl 1300 μl
M16.4.0 (5s) 3 6 6

M16.4.0 (10s) 0 0 0
MS16.4.1.1 (5s) 0 1 0
MS16.4.1.1 (10s) 0 0 0
MS16.4.1.2 (5s) 0 2 0

MS16.4.1.2 (10s) 0 0 0
MS16.4.1.3 (5s) 0 0 0

MS16.4.1.3 (10s) 0 0 0
MS16.4.1.4 (5s) 0 0 0

MS16.4.1.4 (10s) 0 0 0
MS16.4.1.5 (5s) 0 0 2

MS16.4.1.5 (10s) 0 0 0

LBSSK
Generation (donor DNA sonicated for x seconds)

Table 5. Number of transformants from the introgression study in ADP7021, generation 0 to 1. 100, 500 and 1300 μl of the undiluted bacterial 
DNA was plated on LBRK50/50 plates and 100 μl on a LBR50 plate. The number of transformants on each plate is listed under the respective 
volumes of amount of bacterial DNA plated.

0.9% NaCl was used as negative control, there was no growth on the LBSSK50/50 plates with 0.9% NaCl and competent cells because A. baylyi strain ADP7021 is not 
resistant against kanamycin. Because the filters from the filter transformation were washed with 0.9% NaCl and undiluted bacterial DNA was plated, the total number 
of transformants is the number listed in the table multiplied by 20. 
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Figure 1. Map of sequencing primers. Three primers used for sequencing transformants of A. sp. strain 16.4 are not shown in the map. Primer Apr25 is designed to bind 
previous sequenced A. sp. strain 16.4 sequence immediately upstream of the nptII insertion. Primer RW20 and FW24 bind around 6000 nucleotides downstream and 
upstream.

 

Primers binding to the nptII gene and primer binding downstream for the nptII gene.  

 

Primers binding to the nptII gene. 
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