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Summary 
 

Background  

Elevated serum cholesterol blood levels is one of the central risk factors for cardiovascular 

diseases. Lowering blood cholesterol have significant impact on lowering cardiovascular 

disease events. Inhibiting cholesterol absorption in small intestine can significantly lower 

serum cholesterol levels and thereby - lower cardiovascular events. Β-cyclodextrin (βCD)-

dextran polymer is expected to form complexes with cholesterol and avoid absorption together 

with complexed cholesterol. In this thesis, we investigated βCD-dextran polymers ability to 

complexate cholesterol in simulation of gastric fluids. 

 

 

AIMS OF THE THESIS 
 

1. To investigate ability of βCD-dextran polymer complexing cholesterol in simulated gastric 

fluids (Fasted stomach and fed small intestine) and compare it with methyl-β-cyclodextrin 

(MβCD). 

2. Investigate ability of βCD-dextran polymer to be formulated as a tablet. 

3. Investigate ability of βCD-dextran polymer to complex dietary cholesterol in a simulation 

of gastric fluids – fasted stomach and fed small intestine. 

 

Methods 
 

Ability in complexing cholesterol was analyzed by performing a simulation of gastric fluids 

with added excess cholesterol during digestion process with presence and absence of βCD-

dextran polymer and MβCD. 

Ability to complex dietary cholesterol was analyzed by performing a simulation of gastric 

fluids with egg yolk during digestion process with presence and absence of βCD-dextran 

polymer. 

Cholesterol content in samples was analyzed by fluorescence spectroscopy. 
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Results and discussion  

βCD-dextran polymer tablets at βCD conc. of 2.5mM complexed 0.0513 mg/ml crystalline 

cholesterol after 240 minutes in simulation of gastric fluids, while MβCD at conc. of 10mM 

complexed 0.45 mg/ml crystalline cholesterol. Extrapolated results to 10mM of βCD cons. 

shows that βCD-dextran polymer is capable of complexing significant amount of cholesterol. 

βCD-dextran polymer was successfully compressed into tablets with no visible defects of 

friability during handling. 

βCD-dextran polymer tablets sequestrate comparable amounts of food cholesterol, compared 

to experiments with crystalline cholesterol. 
 

Extrapolated results to physiological volumes of gastric fluids shows that βCD-dextran tablets 

corresponding to a concentration of βCD units of 10 mM were able to solubilize approx. 215 

mg of crystalline cholesterol, and approx.  135 mg of food cholesterol after 240 minutes. 
 

Conclusion 
 

In simulation of gastric fluids, βCD-dextran polymer tablet can complex approximately 48% 

of cholesterol in comparison to cholesterol solubilized by MβCD powder. βCD-dextran 

polymer tablets show ability to complex similar and significant amounts of both crystalline and 

food cholesterol in simulation of gastric fluids. 

 

βCD-dextran polymer shows good compaction properties and were successfully compressed 

into tablets with no visible defects and no visible friability during handling. 
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1  Introduction 
 

 

1.1. Cardiovascular diseases 
 

 

1.1.1 Definition and socio-economic impact of cardiovascular disease  

 

Cardiovascular diseases (CVD) is a generic term for diseases that involve heart and blood 

vessels, which includes conditions like atherosclerosis, coronary heart disease (CHD), coronary 

artery disease (CAD), stroke, thrombosis and many other serious conditions. 

 

It is estimated to be the leading cause of death worldwide and accounted for 31% of all global 

deaths worldwide [1]. In 2004, the World Health Organizations (WHOs) Burden of Disease 

project have calculated CVD to be the largest disease burden in Europe, using disability-

adjusted life years (DALY), a time-based measure that combines years of life lost due to 

premature death and years of productive life lost due to disability [2]. 

 

In addition to human costs, economic impact of CVD is also a considerable part of the burden. 

European Heart Network (EHN) and European society of cardiology (ESC) presented data in 

2012, stating that direct healthcare cost of CVD for EU is €106 billions of which 49% is due to 

inpatient care, 29% due to medications and 21% due to primary care, outpatient care and 

“Accident and Emergency”. This health care expenditure accounts for 9% of total health care 

expenditure in European Union [3]. 

 

In in addition to healthcare costs, CVD also involves production losses for people in working 

age as well as cost of informal care of people with the disease. Productivity loss due to CVD is 

calculated to be €46 billion and informal care cots is calculated to be €44 billion a year 

according to EHN and ESC [3]. Thus, total cost of CVD for the EU economy is almost €196 

billion yearly which is a significant economic burden. 

 

As shown above, CVD is a serious health problem for EU and similar situation is seen in other 

parts of the world. A substantial part of CVD and its burden can be reduced by implementing 

and optimizing both prevention and treatments of the disease. This process has been started, 

positive results are seen and it is still under optimization. Central role in prevention and 

treatment of CVD involves reduction of risk factors such as tobacco, diet, physical activity, 

blood pressure, blood cholesterol etc., both with and without medications [4]. 
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1.1.2 Elevated blood cholesterol and CVD relationship  

Hypercholesterolemia is a condition defined by elevated levels of blood cholesterol. There are 

many different reasons for hypercholesterolemia; it may be a result of primary factors, such as 

genetic factors (e.g. Familiar hypercholesterolemia, polygenic hypercholesterolemia) or because 

of secondary factors such as other diseases (e.g. Diabetes mellitus, hypothyroidism), diet or 

even be a side effects of some drugs (e.g. Antipsychotic medications) [5].  

Over the past decades, elevated serum cholesterol has been found to be one of the central risk 

factors for CVD, many studies have been conducted and proved relationship between increasing 

in CVD events and elevated levels of plasma cholesterol [6-11]. Successful management of 

low-density lipoprotein cholesterol (LDL-C), which is the main risk contributor to 

atherosclerosis, have shown to be effective through many studies [12-14]. Previous clinical 

studies have indicated that “for every 1% reduction of LDL-C, relative risk for major CHD 

events is reduced by approximately 1%”  [15].  Main mechanism by which elevated cholesterol 

increases risk of CVD is believed to be promoting development and progression of 

atherosclerosis. Atherosclerosis is a complicated, pathologic multi-stage process with multiple 

factors involved, including: endothelial dysfunction, inflammatory and immunologic factors and 

hyperlipidemia [16].  Process begins with development of fatty deposits on artery walls which 

may progress further to more advanced types of plaques that may narrow and even block the 

arteries leading to complications like angina pectoris, or they may also rapture and cause a 

blood clot [16-18]. By those mechanisms atherosclerosis leads to CHD and CAD, and it is the 

main mechanism by which hypercholesterolemia is believed to increase the risk of CVD [5].  
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1.2 Cholesterol and blood cholesterol 
 

1.2.1 Cholesterol properties and functions  

 

Cholesterol is a lipophilic substance found in every cell of the human body, performing many 

functions. It is vital for human beings and involves in such functions as biosynthesis of 

hormones, production of bile acids for digestion and formation of cell membranes. In human 

body, cholesterol originates from two sources, major part (1g = ~70%) of the cholesterol is 

being synthesized within the cells and a minor part (~30%) comes from animal food sources 

like eggs, meat, fish etc. [19, 20]. Every human cell produces cholesterol, but much of its 

production takes place in liver [21]. Synthesis of cholesterol involves many steps, but 

simplified version is presented in Fig. 1. The process starts with condensation of tree acetate 

molecules to form HMG-CoA which is further reduced by enzyme HMG-CoA reductase to 

produce mevalonate. Mevalonate units are then converted to form activated isoprene units, 

which are then polymerized to form the 30-carbon linear molecule - squalene. The final step 

involves cyclization of squalene to form four ring steroid structure and further modifications 

of the molecule (oxidation, removal of migration of methyl groups) to produce cholesterol 

[21].                                                                
 

                                                                      
 

Figure 1: Simplified presentation of cholesterol biosynthesis pathway. 

Cholesterol itself is not water soluble and travels in blood incorporated into lipoproteins. 

Lipoproteins are complexes with lipophilic inner core consisting of cholesterol esters and 

triglycerides and a hydrophilic outer layer made of phospholipids and unesterified cholesterol. 

This outer layer also contains at least one protein (alipoprotein) which provides the ligand for 

interactions with various cells, receptors, enzymes and adds structural integrity. There are
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three main types of lipoproteins – Very low-density lipoprotein (VLDL), Low density 

lipoprotein (LDL) and high density lipoprotein (HDL) [5]. 

 

VLDL are particles formed in the liver, it is large particles that transport mostly triglycerides, 

but also cholesterol and other fats. Its main function is to transport triglycerides from the liver 

to muscle and adipose tissue. VLDL appear to play a far less significant role in pathogenesis 

of atherosclerosis compared to LDL and HDL [5]. 

 

LDL particles carry most of the total blood cholesterol (60%-70%). It is often referred to as 

“bad cholesterol” since it plays a major role in pathogenesis of atherosclerosis and its 

exceeded level dramatically increases the risk of CVD. Low-density lipoprotein cholesterol 

(LDL-C) due to its strong association with atherosclerosis is there for the main target of 

cholesterol lowering drugs [5]. 

 

HDL particles are small, dense and protein-rich particles that originate from liver and small 

intestine. HDL-C (cholesterol carried by HDL particles) is often referred to as “good 

cholesterol” since it has been shown to protect against the development of atherosclerosis, 

most likely due to three of its functions – stimulation of cholesterol efflux from peripheral 

cells [22], reverse cholesterol transport and inhibition of LDL-C oxidation [23]. In contrast to 

LDL-C, higher values of HDL-C concentrations are desirable till a certain extent, because 

cholesterol is being removed from vascular tissue and is not available to contribute to 

development of atherosclerotic plaques  [5, 24].
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Figure 2: Cholesterol secretion and absorption in the gastrointestinal (GI) tract.  

Notes: Cholesterol available for absorption in small intestine originates from diet and biliary secretion. Cholesterol 

incorporated in biliary micelles is further absorbed by NPC1L1protein.  Free cholesterol that is not incorporated in to the 

micelles in addition to cholesterol secreted by enterocytes from blood by TICE route is eliminated by fecal excretion.       

 

1.2.2 Cholesterol secretion and absorption  

 

Absorption of dietary and biliary cholesterol in small intestine and the revers cholesterol 

transport plays an important role in cholesterol homeostasis (Fig. 2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

In addition to synthesis of cholesterol and production of different lipoproteins which is 

introduced to blood stream, hepatocytes also involve in elimination of cholesterol from the 

body in form of biliary acids and free cholesterol. Process starts as bile salts in hepatocytes 

are being pumped out across the canalicular plasma membrane by ABCB11, and ATP-driven 

membrane transporter. This process is accompanied by interaction of bile salts with exterior 
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surface of the canalicular plasma membrane, witch in turns activate two other ATP-dependent 

canalicular plasma membrane transporters, ABCB4 and a heterodimer of ABCG5 and 

ABCG8, which secretes phospholipids and cholesterol, respectively. This process is then 

followed by formation of micelles between bile salts, phospholipids and cholesterol [25]. Bile 

is being secreted in amounts of 24g/day, with an average of 1g/hour, accompanied by 

secretion of approximately 11g of phospholipids and up to 2 g of cholesterol [22, 25]. 

Between digestion, micellar particles are stored in the gallbladder, but when food is ingested, 

it is freed. In addition to secretion of cholesterol from liver into the small intestine, bile plays 

a central role in digestion and absorption of dietary fat, mainly originating from dietary 

sources. After dietary lipids (e.g. triglicerides, fats, oils) has gone through processing by 

lipases and being broken down into fatty acids and monoglycerides, they are then as well as 

cholesterol being incorporated into micelles. These micelles then promote absorption of 

solubilized lipids to the plasma membrane of intestinal absorption cells, enterocytes. 

Incorporation of cholesterol into micelles by assist of bile salts is a crucial step in the 

absorption of cholesterol, studies have shown that almost no cholesterol is absorbed in mice 

with strongly diminished amount or absence of bile acids [26]. Absorption of cholesterol in 

enterocytes happens by a separate mechanism from other lipids, it is an active and selective 

protein-mediated process, facilitated by the protein Nieman-Pick C1like 1(NPC1L1) [27]. A 

part of the absorbed cholesterol is then secreted back into the lumen by ATB-binding cassette 

transporters, ABCG5 and ABCG8, a process that increase elimination of cholesterol from 

body [28]. A portion of the absorbed cholesterol is converted to cholesteryl esters and the 

remaining cholesterol is absorbed as free cholesterol. Cholesterol esters and cholesterol that 

have not been secreted into the lumen is then, together with triglycerides and apolipoprotein 

B48 incorporated in the chylomicrons which are secreted into the lymph to later reach the 

blood stream. 

 

In addition to secretion of cholesterol by hepatocytes, intestine is also found out to have its 

own, independent mechanisms for secretion of plasma cholesterol into the small intestine 

lumen. This mechanism is called trans-intestinal cholesterol excretion (TICE). Some of the 

cholesterol found in small intestine comes from intestines own secretion of cholesterol, no 

studies still have shown amount of the cholesterol secreted by the intestine in humans, but 

studies in mice shows that up to 30% of fecal natural sterols comes from the TICE route [19, 

29, 30]. As well as the amount of secreted cholesterol by TICE, understanding of this 
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mechanism is still missing, but this mechanism can potentially be targeted by cholesterol 

lowering drugs. 

 

Some of cholesterol is lost due to loss of bile salts that evades absorption and eliminates as 

fecal loss. As mention above, bile acids are produced with consumption of cholesterol in liver 

and therefore, fecal loss of bile salts will result in production of it by liver and consumption of 

cholesterol. Bile salts reabsorption process in small intestine is very efficient, usually close to 

98%, and the lost 2% corresponds to approximately 400 mg cholesterol per day [25]. This 

process is also targeted by cholesterol lowering medication found on the market in class of 

bile acid sequestrans (e.g. Welchol, Questran, Colestid). 

 

Amount of cholesterol lost as cholesterol molecules depends on how much cholesterol is 

going through the small intestinal lumen and how much will evade absorption. Amount of 

cholesterol in lumen of the small intestine as mentioned above depends on amount of 

cholesterol molecules secreted with bile salts, by TICE and plus dietary cholesterol. 

Cholesterol esters are a part of dietary cholesterol, they are enzymatically converted into free 

cholesterol by cholesterol esterase during digestion and presented for absorption. The average 

western diet contains 300-450 mg/day of cholesterol [31]. In sum with cholesterol secreted 

into bile acids, it results to approximately 2400 mg/day of cholesterol, where dietary 

cholesterol being minor, but significant part accounting for approximately one quarter of total 

cholesterol in lumen of the small intestine. Absorption rates of cholesterol in humans vary a 

lot starting as low as 25% and going up to around 75% and average approximately 50% [32, 

33]. Ezetimibe is a medication working by inhibiting cholesterol absorption in the intestine by 

blocking a transport protein NPC1L1, and have shown to significantly reduce blood 

cholesterol [34, 35].
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1.3 Medications for treatment of hyperlipidemias 
 

As mentioned above, lowering of blood cholesterol in form of LDL-C is one of the main 

targets in both primary and secondary prevention of CVD. Several groups of drugs are 

successfully used for therapeutic reduction of blood cholesterol. Main groups of cholesterol-

lowering drugs include inhibitors of biosynthesis of cholesterol - statins, cholesterol 

absorption inhibitors - ezetimibe and bile acid-binding resins. Today statins are the most 

potent cholesterol lowering group of drugs and mechanism of action is due to inhibition of the 

HMG-CoA reductase, and thereby reduction of endogenous cholesterol synthesis – which in 

turns results in lower levels of blood cholesterol [36]. Statins are the first choice in treatment 

of hyperlipidemias, but at the same time, significant proportion of patients doesn’t respond 

adequately to statin therapy, being intolerable of statins due to side effects or not achieving 

targeted level of blood cholesterol. Generally, statins are well tolerated, but serious adverse 

effects including myalgias, myositis, rhabdomyolysis and diabetes 2 are possible, making 

statins not suited as a therapy for some patients [37, 38]. An article from 2008 shed light on 

reality in clinical achievement of cholesterol lowering goal in high and vary high risk patients, 

and in range from 45% to 82% of patients in different disease groups do not achieve their 

therapeutic goals in lowering blood cholesterol [39]. Similar results are seen in a more recent 

study, carried out by Vonbank et al. [40]. Those results point out that treatment of those 

patients need optimization. It also shows that statins alone often are not enough to bring 

cholesterol to the therapeutic goal, and additional medications are needed to achieve desirable 

level of blood cholesterol. 

 

There is therefore a need for new additional medications that may help to reduce cholesterol 

to its optimal therapeutic goal. This work investigates potential of beta-cyclodextrin-dextran 

derivatives (βCD-dextran) to be formulated and used as cholesterol absorption inhibitor. We 

investigated its ability to form complexes with cholesterol in simulated gastric fluids and its 

potential to be formulated as tablets – therefore as an accurate, convenient and easy to use 

formulation. 
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1.4 βCD-dextran polymer as potential cholesterol absorption inhibitor 
 

1.4.1 Introduction to cyclodextrins  

 

Cyclodextrins (CDs) are a group of cyclic oligosaccharides, where the most common 

derivatives consist of six to eight (α-1,4)-linked -D-glucopyranose units forming a cone 

structure that is characterized by a hydrophobic central cavity and hydrophilic outer surface 

[41]. CDs are named based on the amount and chemical modifications of monomers forming 

the cone structure - where,  corresponds to six,  – corresponds to seven and  corresponds 

to eight monomers. Many chemical modifications have been applied to CDs, altering their 

properties (e.g., increasing its water solubility, optimizing its interaction with guest 

molecules) some of the most common chemical modified CDs includes methyl-β-

cyclodextrin (MβCD) and hydroxypropyl-β-cyclodextrin (HPβCD). Over the last few 

decades, studying and use of CDs actively increased and especially after more CDs got 

approved for food and drug application, interest in them increased. Their unique and useful 

properties have found its place on the markets, currently more than 30 different 

pharmaceutical products contain CDs and even more products containing CDs are found in 

the food industry [41, 42]. 

 

As mentioned above, CDs are characterized by their cone-like structures, and this structure 

provides CDs with the ability to spontaneously form inclusion complexes in aqueous media, 

molecular complexes in which CD molecule entrap a lipophilic molecule or moiety into its 

hydrophobic inner cavity [41, 43]. During complexation, no covalent bonds are formed, but 

many noncovalent interactions have been proposed to be responsible for complex formations: 

hydrophobic interactions, Van der Waals forces, hydrogen bonding and dipole-dipole 

interactions, the release of “High energy water” from the CD cavity on substrate inclusion, 

release of confrontational strain in a CD-water adduct [44]. Smaller molecules (size of up to 

~8Å) often get fully entrapped during complexation with CD, while larger molecules on the 

other hand get entrapped partly. Cholesterol molecule (~18 Å) is larger than the cavity of β-

cyclodextrins (βCDs) and only half of the molecule may get entrapped by βCD [45]. The 

most common complex between substrates and βCDs is 1:1 complex where the ratio of 

complexation CD:Substrate is one to one.   
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Figure 3: Schematic representation of 1:1 and 2:1 CD:substrate complex formation. 

                          

Equilibrium of a complex can be defined by equation (Eq.) (1):  

 𝑚 ∙ 𝑆 + 𝑛 ∙ 𝐶𝐷
𝐾𝑚:𝑛
↔  𝑆𝑚𝐶𝐷𝑛 (1) 

 

Where 𝑆𝑚𝐶𝐷𝑛represents the comolerx, of S the substrate and CD the cyclodextrins. The 

stability constant (K) (also known as binding constant) can be described by Eq. (2):   

 

 𝐾 =
[𝑆𝑚𝐶𝐷𝑛]

[𝑆]𝑚 ∙ [𝐶𝐷]𝑛
 (2) 

 

Stability constant represents the affinity or strength of interaction between a compound and a 

CD.  This constant is related to CDs ability to solubilize an insoluble compound in aqueous 

media and have typically values vary from 0.1 𝑀−1 representing weak interactions and up to 

1,000,000 𝑀−1 for very stable interactions. There are several approaches to investigate 

stability of complex formation between a CD and a substrate, but one of the most widely used 

for poorly soluble entities is phase-solubility study [44, 46]. 

When one molecule of a compound forms a complex with one CD molecule, solubility of a 

compound in presence of a given CD can be described as Eq. (3):   

 

 [𝑆]𝑇 = 𝑆0 + 𝑆𝐶𝐷 (3) 
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Where [𝑆]𝑇 represents the total apparent solubility of the drug, 𝑆0 the thermodynamic 

solubility (i.e. measured in absence of CD) and  𝑆𝐶𝐷 the enhancement in solubility due to the 

complexation. Under the condition that 1:1 S/CD complex is formed; stability constant may 

be calculated out of plot [S] versus [CD], where stability constant is defined by Eq. (4): 

 
𝐾1:1 = 

𝑠𝑙𝑜𝑝𝑒

𝑆0 ∙ (1 − 𝑠𝑙𝑜𝑝𝑒)
 

(4) 

 

The ability to form inclusion complexes provides CDs with its unique properties and it has 

been used for many benefits in food and drug formulations: to enhance solubility, 

bioavailability, stability and taste masking of a compound [47]. More uses than listed above 

are taking place or under studying at the time and one of the promising areas is to use CDs as 

active pharmaceutical ingredient in cholesterol lowering treatments [46]. 

 

Unmodified βCD has shown ability to form complexes with cholesterol and solubilize it in 

aqueous media, but this type of cyclodextrin is poorly soluble in water to be effectively used 

[48]. Chemical modified CDs like HPβCD, MβCD and highly hydrophilic polymeric derivate 

of βCD (βCD-dextran polymer) overcome this problem, being water soluble CDs, able to 

form complexes with cholesterol and solubilize it in aqueous media to a much higher degree 

[46].  

 

1.4.2 βCD derivates used in this work 

Methyl- β-cyclodextrins are cyclodextrins produced by methylation of secondary hydroxyl 

groups on regular βCD molecules. The amount of methylated secondary hydroxyl groups on 

CD molecule is called degree of substitution and it may vary. In this work MβCD with 10.5-

14.7 degree of substitution is used [49]. Water solubility of MβCD is 50 mg/ml, which is 25-

fold higher than regular βCD[49]. In addition to high water solubility – it also has strong 

cholesterol complexing power and is a widely used as a cholesterol depletion agent [50-52]. 

In this work, MβCD suits great as a comparison to cholesterol complexation ability of βCD-

dextran polymer. 

 

Hydroxypropyl-B-cyclodextrins (HPβCD) have an added 2-hydroxypropyl group on 

secondary hydroxyl group on regular βCD molecules.  Water solubility is greatly increased 

compered to regular βCD and its interactions with substrate is altered. Moreover, it is safer 

than MβCD and some possible pharmaceutical applications have been attempted [48, 53]. 

Currently, HPβCD undergoes multinational Phase 2b/3 clinical efficacy trial and may become 

first available treatment for the disease [54].  

 

B-cyclodextrin-dextran polymers are dextran polymers with attached CD molecules to it. 

Dextran itself is a macromolecule consisting of a linear glucose polymer linked by a-1,6-
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glycosidic bonds, in conjugation with CDs, it provides CDs with unique properties, including 

high water solubility and likely lack of gastrointestinal tract (GI) absorption. Previously the 

polymer has shown great ability to complex hydrocortisone – a steroid with similar molecular 

structure to cholesterol[55].  Both size of the macromolecule and degree of substitution may 

be adjusted during synthesis and in this work, βCD-dextran-polymer with average Mw of 25 

kDa, molar rate of dextran/βCD 1:10 and 55.8% βCD content is used [56]. 
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1.5 Gastric fluids 
 

1.5.1 Gastrointestinal tract and fluids  

 

Gastrointestinal tract is complex organ system and consists of many different sections which 

are involved in digestion of food, absorption of nutrients and excretion of waste as feces. The 

human GI can be divided in four parts: esophagus, stomach, small intestine and column. 

Esophagus is the part which connects mouth and stomach, food ingested through mouth 

passes quickly in to stomach. In stomach, solid foods are reduced to a uniform bolus by 

enzymatic and acidic digestion and passes further into small intestine. In small intestine food 

is absorbed and further enzymatically digested. Food that passed small intestine reaches the 

final part – colon, a part of GI where further absorption and exchange of some nutrients 

happen as well as feces compaction further excretion happen [57]. 

 

Stomach in fasted state usually contains no more than 50 mL of fluids, but as food is ingested, 

its volume increases up to 1.5 L. At fasted state, pH in stomach is between 1 and 3.5, but after 

food ingestion it rises to values in range of 3-7 depending on the meal. Food is retained in 

stomach for 5 minutes in fasted and up to 2 hours in fed state [57]. 

 

After the stomach, food pass through the small intestine. Small intestine has tubular structure 

and typically is 6-7-meter long [35]. Liquid volume in small intestine in fasted state is 120-

350 mL [58]and up to around 1L in fed state [59]. In fasted state, pH in small intestine ranges 

from 4.9 and up to 7.4 gradually rising along the length of the small intestine, in fed state pH 

rises and ranges from 5.2 and up to 7.5 having similar pH rising trend as in fasted state. Food 

passage time is relatively constant, unlike stomach and is around 3 hours [57]. 

 

1.5.2 Simulation of gastric fluids with “biorelevant media” 

 

Biorelevant media is the term used to indicate biologically relevant fluids used in drug 

dissolution/permeation assays [60]. Biorelevant media are capable of accurately simulating 

fluids found in different regions of gastrointestinal tract. Simulation of gastric fluids have 

been showed to be accurate in predicting solubility and absorption of drugs in gastric fluids 

[61]. It also have been shown that this media are capable of simulating gastric fluids much 

closer than plane buffer solutions (SGF, SIF) [62]. In our work, we used fasted state 

simulation of gastric fluid (FaSSGF) and fed state simulated intestinal fluid (FeSSIF) fluids to 

investigate complexation and solubility of cholesterol in presence of CDs. Composition of the 

biorelevant media are reported in material and method section.  
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2 Aims of this thesis 
 

 

1. Implement method for the quantitation of solubilized cholesterol by high-preformance 

liquid chromatography (HPLC).  

2. Evaluate the solubilization properties of βCD-dextran polymers by the mean of phase-

solubility studies. 

3. Investigate the ability of βCD-dextran polymer in complexing cholesterol in simulated 

gastric fluids (fasted stomach and fed small intestine) and compare it with MβCD. 

4. Investigate ability of βCD-dextran polymer to be formulated as a tablet. 

5. Investigate ability of βCD-dextran polymer to complex dietary cholesterol in a simulation 

of gastric fluids – fasted stomach and fed small intestine. 
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3 Methods and materials 
 

3.1 Materials 
 

3.1.1 Chemicals 

Table 1: List of chemicals used in this work. 
 

Chemical  Chemical   Mw Product  Manufacturer 
  Formula   

(g/mol) 
number Sigma  

       aldrich   
          

           

Methanol  CH3OH   32.04 34860N  Sigma Aldrich 
           

Acetonitrile  C2H3N   41.05 34851N  Sigma Aldrich 
           

2-propanol  C3H8O   60.10 34965  Sigma Aldrich 
           

Cholesterol  C27H46O   386.65 26732  Sigma Aldrich 
           

(2-       ~ 1460 -  - 
Hydroxypropyl)- β-           

cyclodextrin           

(HPβCD)           
           

Methyl-β-       ~ 1310 C4555  Sigma Aldrich 
cyclodextrin           

(MβCD)           
           

Cholesterol        MAK043  Sigma Aldrich 
quantitation kit           

           

βCD-dextran 55.8%  βCD 25 000 Da -  - 
polymer  content.       

          

Sodium  NaH2PO4 * H2O   137.99 71504-MM  

dihydrogen           

phosphate           

monohydrate           
           

Sodium hydroxide  NaOH   39.99 30620-M  Sigma Aldrich 
          

Sodium phosphate  HNa2O4P * 2 H2O 358.14 30435-M   

dibasic dihydrate           
           

Biorelevant          Biorelevant 
dissolution           

media           

Powder (FFF01)           
           

Glacial acetic acid   CH3COOH    60.05 33209-M  Sigma Aldrich 
          

         
Sodium chloride  NaCl   58.44 71380-M  Sigma Aldrich 
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Figure 4: Chemical structure of Taurocholate (to the left) and cholesterol (to the right). 

 
3.1.2 Composition of FaSSGF and FeSSIF solutions  

Table 2: FaSSGF composition [63] 
 

Component: Concentration: 

  
Sodium taurocholate 0.08mM 

  
Lecithin 0.02mM 

  
Sodium Chloride 34.2 mM 

  
Hydrochloric acid ≈25.1mM 

  

 

Table 3: FeSSIF composition [63] 
 

Component: Concentration: 

  
Sodium taurocholate 15mM 

  
Lecithin 3.75mM 

  
Sodium Chloride 203.2 mM 

  
Sodium hydroxide 101mM 

  
Acetic acid 144.1 mM 
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3.2 Methods 
 

To quantify complexed cholesterol by CDs, a method to quantify amount of solubilized 

cholesterol were required. Stelzl et al. (2015) [64] developed an HPLC method to quantify 

cholesterol content in aqueous solutions and this method was chosen for analysis of 

complexed cholesterol in our work. 

 

3.2.1 Cholesterol quantification with HPLC 

 

Quantitative analyses were performed on a Waters 2690 separating module with XBridge C18 

column (2.1x150 mm, 5 µm particles) and Waters 996 photodiode array detector. All analysis 

were performed using Methanol:2-propanol:Acetonitrile (50:25:25) as a mobile phase, 

isocratic flow with 0.8ml/min flowrate and 25C column temperature. All samples were 

filtered through a 0.2 um filter prior to analysis. 

 

Standard curve for further analyses were prepared by making standard solutions of cholesterol 

dissolved in mobile phase. Stock solution with nominal concentration 5 mM has been 

prepared and further diluted to nominal concentrations of 0.65 mM, 0.5 mM, 0.35 mM, 0.2 

mM, 0.01 mM and 0.05 mM. Every sample was analyzed 5 times. Exact concentrations of 

each standard solution have been plotted against average of integrated peak area of 5 parallels 

to make calibration curve of cholesterol and used for further quantitation analyses in phase-

solubility studies.  

 

3.2.2 Phase solubility studies 

 

Phosphate-buffer saline (PBS) was used as aqueous solution for phase solubility studies.  

200 ml of sodium di-hydrogen phosphate monohydrate [𝑁𝑎𝐻2𝑃𝑂4 ∗ 𝐻2𝑂] solution (2.25% 

weight/volume (w/v)) were mixed with 800 ml of di-sodium hydrogen phosphate 

dodecahydrate [𝑁𝑎2𝐻𝑃𝑂4 ∗ 12𝐻2𝑂] solution (1.85% w/v). PH was approx. 7.  

 

Solutions consisting of different nominal concentrations (1mM, 2.5mM, 5mM, 7.5mM, and 

10mM) of HPβCD and MβCD in PBS buffer were prepared. The solutions were transferred 

into 5 ml plastic test tubes and excess amounts of cholesterol were added (approx. 3 mg/ml), 

2 parallels were made for each solution. The solutions were further placed into a thermostatic 

shaking water bath for 48 hours (2 days) at 25°C. After 2 days, each sample were filtered 

through a 0.2 um pore-size filter and further analyzed with HPLC (n=2). 
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3.2.3 Preparation of biorelevant media solutions (FaSSGF/FeSSIF) 

 

Solution A 

One gram of sodium chloride (NaCl) was dissolved in 450 ml of distilled water and pH was 

adjusted to 1.6 with 1 M hydrochloric acid (HCl).  Volumetric flask was filled to exactly 

500ml. 

 

FaSSGF/FeSSIF solution preparation 

 

90 ml of solution A were filled into 100 mL volumetric flask. 0.01 g of FFF01 powder was 

dissolved in the solution and volumetric flask. FaSSGF solution was then transferred into 

250ml beaker glass; 2 ml was taken out to test the pH that should be close to 2 (see section 

3.1.2 for composition). Test materials were then added into the beaker glass, small magnet 

was placed (150 rotations per minute), beaker glass covered by parafilm and left for 60 

minutes simulating fasted state gastric fluids. 

 

After 60 minutes, conditions were changed to FeSSIF by adding following chemicals: 0, 99 g 

Sodium Chloride (NaCl), 0,6 g Sodium hydroxide pellets (NaOH), 829 ul Glacial acetic acid 

and 1,11 g FFF01 powder. 2 mL were taken out after 10 minutes to check pH, which should 

be close to 5 (see section 3.1.2 for composition). FeSSIF stage lasts over 3 hours, simulating 

fed state intestinal fluids. 

 

3.2.4 Cholesterol quantitation kit – quantitation of cholesterol in 

FaSSGF/FeSSIF solutions 

 

Analysis of FaSSGF/FeSSIF cycle samples with HPLC method was unsuccessful due to 

appearance of a new peak in FeSSIF samples that overlapped cholesterol – making it 

impossible to quantitate cholesterol precisely. Cholesterol Quantitation kit from Sigma 

Aldrich was chosen for further analysis, a kit used to quantitate free cholesterol, cholesteryl 

esters or both (total) present in a sample. In the kit, total cholesterol concentration is 

determined by a coupled enzyme assay, which results in a colometric(570 nm)/flourmetric 

(λex = 535/λem = 587 nm) product, proportional to the cholesterol present [65]. Samples 

being analyzed by this kit, prior to analysis were filtered by 0.2 um pore-size filter to get rid 

of any non-dissolved particles. We analyzed our samples by fluorescence analysis and 

measured total cholesterol content in samples by following instruction from the “technical 

bulletin” followed with the kit, available in the appendix (attachment 1), all samples were run 

in singlet. 
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All obtained fluorescence results were calculated like calculation in this example 

 

Fluorescence values were used to set up a standard curve following instruction from 

“technical bulletin”. All samples were corrected for background value values obtained by the 

blank (cons. 0 ug/well cholesterol). Using the equation obtained from the calibration curve, 

cholesterol content in each well were calculated. Original concentration in each sample were 

then calculated with respect to dilution prior to analysis. 

 

This test has also shown to be affected by compounds, most likely by taurocholate, after 

changing the condition from FaSSGF to FeSSIF, pure FeSSIF sample produces fluorescence 

equivalent to (approx.0.0034 mg/ml). Therefore, this error contribution was subtracted from 

further results. 

 

3.2.5 Compression of βCD-dextran polymer into tablets  

 

Compression of βCD-dextran polymer in to tablets was performed on a single punch 

tableting machine. Four portions of approximately 250mg βCD-dextran polymer powder 

weighted prior to compression. Tableting machine lower punch were adjusted to make tablets 

with 12 mm diameter, and 3 mm height. Because of powder consistency being voluminous, 

tableting process was performed in multiple, repeated steps: die was filled, followed by a 

partial compression and repeated till all the powder was in the die, then followed by a full 

final compression. 

 

3.2.6 Cholesterol complexation during FaSSGF/IF cycle in presence of CDs  

 

Analysis was carried out by starting the FaSSGF/IF cycle in presence of excess cholesterol 

(approximately 2mg/ml) and different CDs: MβCD, βCD-dextran polymer powder, βCD-

dextran polymer tablet, with nominal βCD concentrations of 10 mM, 8.5 mM and 2.4 mM (1 

tablet of approx. 250mg) βCD respectively. Tablets were placed into a basket used for 

dissolution test, and then the basket was fixed to be in the middle of the media, so the 

dissolution process would be closer to digestion process. As a control, FaSSFG/FeSSIF cycle 

in presence of excess cholesterol without any CDs was used. Value of solubilized cholesterol 

from control experiment were subtracted from results of all samples with CDs, to quantify 

correct amount of cholesterol that is solubilized by CDs. Samples of 2ml were taken during 

the cycle at different time points for further cholesterol quantitation, every sample was 

filtered with 0.20 um pore-size filter to get rid of any non-dissolved particles. Because of 
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practical considerations – limited time and amount of analyses in cholesterol quantitation kit, 

it was decided to analyze 2 samples from each experiment, from 60 and 240 minutes of the 

cycle. Each sample was analyzed giving 2 parallels for more reliable result. Due to mistakes 

during analysis only one parallel is made for 2 samples: Chol + FaSSGF/FeSSIF cycle 60 

min. and MβCD + Chol. + FaSSGF/FeSSIF cyle 60 minutes. 

  
3.2.7 Ability to complex food cholesterol in simulation of fasted stomach fluids 

and fed small intestine fluids  

 

Experiments were performed by adding approximately 2g of boiled egg yolk into 50 ml of 

FaSSGF/FeSSIF cycle in presence and absence of βCD-cyclodextrin polymer tablet, 2 

parallels were performed for each experiment. Tablets were placed in to the media by the 

same method as described above. Samples were collected after 60 and 240 minutes, filtered 

with 0.2 um pore-size filter and analyzed with cholesterol assay kit. 
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4 Results 
4.1 Standard curve for Cholesterol quantified by HPLC 
 

Retention time (RT) of cholesterol was 3 minutes 18 seconds. 

The calibration curve of cholesterol made by HPLC is reported in Fig. 5. 

The calibration curve resulted in linear (0.99) in the range from 0.05 mM up to 0.65 mM. This 

standard curve was used for further quantification of cholesterol by HPLC.  

 

Figure 5: Calibration curve for quantitation of cholesterol by HPLC.  

All points on the curve are average values of 5 parallels of HPLC analysis for each sample including standard deviation. 

 

 

4.2 Cholesterol quantification in presence of FaSSGF/FeSSIF 
 

Analysis of FeSSIF stage samples from FaSSGF/FeSSIF cycle with HPLC was unsuccessful 

due to overlap of cholesterol peak by another substance, presented as drawing in Fig. 6. 

Original pictures of those results can be viewed in appendix (attachment 2).  
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Figure 6: HPLC analysis result: On top – result of HPLC analysis of a sample with 0.35 mM cholesterol concentration in 

mobile phase, peak with RT of 3.6 is observed, representing total cholesterol (Cholesterol and oxidized cholesterol). Second 

chromatogram represents a sample containing cholesterol and MβCD in a FaSSGF/FeSSIF cycle, showing big 

overlapping peak, which most likely represent taurocholate is observed RT of 2.2 minutes and a small overlapped 

peak at 3.2-3.5 minutes, which most likely represent total cholesterol. 

 

 

This big overlapping peak is most likely taurocholate, which have similar molecular structure 

with cholesterol. Overlapping makes it impossible to precisely quantitate cholesterol, due to 

this difficulty, another method for quantitation of cholesterol was chosen: the “Cholesterol 

quantitation kit”. 
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4.3 Phase-solubility study of cholesterol in presence of MβCD and HPβCD 
 

Result of phase solubility study of cholesterol in presence of MβCD and HPβCD at 25C is 

reported below (Fig. 7). Control of this study was a sample with excess cholesterol in PBS 

buffer, and no solubility of cholesterol was detectable. Results show that tested CDs form 

complexes with cholesterol and solubilize it. Cholesterol solubility increases with increased 

concentration of respective solubilizer. MβCD shows higher cholesterol solubilizing ability 

(10mM concentration of MβCD results in 1 mM of cholesterol solubility) in contrast to 

HPβCD (10mM concentration of HPβCD results in 0.0 mM of cholesterol solubility). 

 

 

Figure 7: Solubility diagrams of cholesterol in presence of HPβCD and MβCD. 

Phase solubility studies of cholesterol were performed in PBS buffer pH 6.9 in presence of HPβCD and MβCD. Samples 

were incubated at 25C for 48 hours.  Results are reported as average and standard deviation of two parallels sample analyses. 
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Figure 8: Tablets of βCD-dextran. 

Tablets prepared of approximately 250mg βCD-dextran. Diameter of the tablets 

is 12mm and thickness is 3mm. 

 

4.4 Compression of βCD-dextran polymer into a tablet 
 

Dextran polymer was successfully compressed into tablets by single-punch press. 

Approximately 250 mg of dextran polymer was compressed into a tablet with diameter of 

12mm and thickness of 3mm (Fig. 8). Dextran polymer shows its compression ability suitable 

for tableting. 

When used in experiments through FeSSGF/IF cycle, tablets showed full disintegration and 

dissolution within 30-40 minutes. 
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4.5 Cholesterol complexation in the presence of FaSSGF/FeSSIF 
 

 

Figure 9: Cholesterol solubilized by different cyclodextrin formulations at different time in mimicked digestive conditions. 

Figure represents amounts of cholesterol complexed by different CD formulations – MβCD, βCD-dextran polymer powder 

and βCD-dextran polymer tablets at 60 minutes of FaSSGF/FeSSIF cycle and at 240 minutes of FaSSGF/FeSSIF cycle. The 

experiments were performed at room temperature (approx. 20C). Results are reported as average and standard deviation of 

two parallel sample analyses. 

 

Even though different concentrations of CDs have been used, due to limited resources, results 

clearly indicate ability of investigated CDs to solubilize and form complexes with cholesterol 

during FeSSGF/IF cycle. After 60 minutes in FaSSGF conditions, highest amount of 

cholesterol have been solubilized by MβCD powder at 10mM βCD concentration (0.05 mM 

chol.), followed by βCD-dextran polymer tablet at 2.4 mM βCD concentration (0.001 mM 

chol.) and no cholesterol solubilization in control experiment (i.e. no CDs). After 240 minutes 

in FeSSIF, highest amount of cholesterol has been solubilized by MβCD powder at 10mM 

βCD concentration (1.15 mM, 0.45 mg/ml chol.), followed by βCD-dextran polymer tablet at 

2.4 mM βCD concentration (0.13 mM, 0.05 mg/ml chol.). Results obtained from quantitation 

of cholesterol solubilized by βCD-dextran polymer powder were invalid, due to sample being 

diluted too much and fluorescence too low for calibration curve.
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4.5 Sequestrating of cholesterol form egg yolk in mimicked digestive conditions 
 

The cholesterol sequestrating ability of βCD-dextran polymer tablets were investigated in 

biorelevant media in presence of standard cholesterol-rich food such as egg yolk. Results are 

showed in Fig. 10. As it can be seen, food cholesterol is being complexed by βCD-dextran 

polymer in simulation of digestion process. βCD-dextran polymer tablet (2.5 mM βCD 

concentration) solubilized 0.08 mM (0.032 mg/ml) of cholesterol from 2g of boiled egg yolk 

in 50ml of biorelevant media after 240 minutes of exposure to FeSSGF/IF in contrast to 

control experiment where no cholesterol was solubilized. 

 

 

Figure 10: Egg yolk cholesterol solubilized by βCD-dextran tablet at 240 minutes of FaSSGF/FeSSIF cycle. The 

experiments were performed at room temperature (approx. 20C). Results are reported as average and standard deviation of 

two parallel sample analyses. 
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5 Discussion 
 

5.1 Phase solubility study 
 

Phase-solubility studies indicate that MβCD, is a stronger cholesterol complexation agent and 

solubilized approximately 23 times higher amount of cholesterol compared to hydrophilic 

cyclodextrins (HPβCD). Results are in agreement with available literature and can be 

explained with the fact that MβCD has more hydrophobic cavity than HPβCD  and this 

improves the interaction between cholesterol and CDs [66].  Results correlate with the results 

obtained by Stelzl et al. [64]. indicating that implemented HPLC method worked correctly 

and ready for further analyses. 

In this part of the study HPLC methods resulted suitable for concentration analysis of 

cholesterol in the presence of cyclodextrins. From those results we can conclude that βCD-

dextran solubilizing properties should be compared to MβCD as it a much stronger binder to 

cholesterol in comparison to HPβCD. 

 

5.2 Cholesterol quantitation in presence of FaSSGF/FeSSIF  
 

Established and confirmed HPLC cholesterol quantitation method was implemented to 

quantitate cholesterol in FaSSGF/FeSSIF cycle samples. Analysis of cholesterol in the 

presence of biorelevant media (i.e. FaSSGF/FeSSIF) samples was unsuccessful due to 

appearance of a large peak on chromatogram, which overlapped cholesterol peak and made 

precise quantitation impossible. Taurocholate is a component of FeSSIF - a bile acid 

originated from cholesterol and having a similar chemical structure (see section 3.1.1, Fig. 4). 

Because of it similarity to cholesterol - it most likely produces this overlapping peak as these 

two chemicals should have comparable retention time. Possible and appropriate way to 

overcome this problem would be - optimizing mobile phase to increase the separation, for 

example so the taurocholates sulfonic acid group become deprotonated, thus providing earlier 

elution compared to cholesterol. In this work we decided to use cholesterol quantitation kit 

for further analyses to guarantee a quickly available and reliable quantitation method.  

5.3 Compression of βCD-dextran in to a tablet 
 

βCD-dextran polymer showed good compaction ability. Due to lack of time, no tablet testing 

studies have been performed to assess the quality of the tablets, but tablets have no visible 

defects, no visible friability is observed during handling. Further tablet is preferable to assess 

more detailed characteristics of βCD-dextran tablets. 
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Tablets show rapid disintegration in our experiments, after 30-40 minutes, no visible 

fragments of the tablet are seen. This is favorable, since the interaction between βCD-dextran 

and cholesterol will occur sooner. 

 

5.4 Cholesterol complexation during FaSSGF/FeSSIF cycle in presence of MβCD 

and βCD-Dextran polymer tablet 
 

This experiment shows that both MβCD and βCD-dextran polymer sequester cholesterol in 

simulation of gastric fluids. MβCD was administrated under the form of powder whereas, 

βCD-dextran was formulated and administrated under tablet form.  

Interestingly, there is a big difference in cholesterol solubilization between FaSSGF 

condition and FeSSIF in all experiments. Specifically, it appears that in biorelevant gastric 

fluids there is very poor cholesterol sequestration, whereas, in the intestinal-mimicking fluids 

the sequestration of cholesterol become very significant for all cyclodextrins species. The 

reason of this interesting phenomena is probably related to the differences in compositions of 

those two media. In fact, FESSIF is reach in micellizing agents (e.g. bile salts) that could first 

solubilize the cholesterol and then transfer the cholesterol to the cyclodextrin 

(thermodynamic favorable process). To make a better comparison of ability to solubilize 

cholesterol of MβCD and βCD-dextran, results of βCD-dextran tablet are extrapolated to 

concentration of 10mM (Fig. 11). This extrapolation is made under the assumption that, 

increasing the concentration oc CD units in the polymer, this will linearly increase the 

amount of cholesterol solubilized [55]. Extrapolation were done by proportionally 

multiplying amount of solubilized cholesterol at a given concentration of CDs to a 

concentration of 10mM. 
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Figure 11: Extrapolated graph - Cholesterol solubilized by different cyclodextrin formulations at different time during 

FaSSGF/FeSSIF cycle. 

 

Extrapolated results show that at βCD concentration of 10mM, βCD-dextran polymer tablet 

should complex approximately 48% of the cholesterol solubilized by MβCD. Results also 

show that both MβCD and βCD-dextran polymer solubilize significantly higher amounts of 

cholesterol than the bile salts presented in simulation of gastric fluids.  

Some factors that possibly could be a part of explanation to the difference in the amount of 

solubilized cholesterol between MβCD and βCD-dextran polymer tablet: 

1. MβCD has  a more lipophilic cavity, resulting in more favorable interactions between 

the CD and cholesterol [66].  

2. Since βCD molecules are bond to a dextran polymer backbone - some CD units might 

not be able to complex due to steric impediment given by the polymer backbone [55]. 

3. Disintegration of the βCD-dextran tablet takes approximately 30 minutes, resulting in 

reduced contact time between the CD and cholesterol. 

To get physiological perspective, results are further extrapolated to physiological volume of 

fluids, where fed state gastric fluids has a volume of approx. 500 mL, and small intestine 
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fluids volume of approx. 1 L [59]. Results are reported in Fig. 12. Extrapolation was made by 

calculated by normalizing experimental volumes to real physiological volumes (see above). 

 

Figure 12: Extrapolated graph: Cholesterol solubilized by different CDs, extrapolated to 10mM βCD cons. and 

physiological volume of gastric fluids. 

 

Extrapolated results to physiological volumes of fluids, shows that 10mM MβCD should be 

able to extract approx. 445 mg of cholesterol in intestinal fluids and βCD dextran polymer 

should be capable of sequestrating up to 214 mg cholesterol. For what concern the MβCD 

this should be capable of sequestering almost all the cholesterol administered on a normal 

dietary regime per day (from 300 to -450 mg) [31], whereas approx. 20 g of βCD-dextran 

should be capable of extracting 57% of dietary cholesterol, which is a significant amount.  It 

should be underline that, unlikely MβCD that can be absorbed by GI tract, βCD-dextran is 

too big and hydrophilic therefore all the eventual cholesterol sequestered is expected to be 

excreted by feces.   These results highlight the feasibility of an eventual therapy with βCD-

dextran polymer needed to achieve concentration of 10mM in 1L is approx. 20g. This weight 

is within the range of normal daily dose of Questran – a bile sequestrant, established 

treatment for several conditions including hypercholesterolemia.   
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5.4 Complexation of cholesterol from egg yolk in biorelevant media 
 

In experiment with egg yolk and βCD-dextran polymer tablet, βCD-dextran has shown ability 

to sequester significant amount of cholesterol, while no cholesterol was solubilized by 

FeSSGF/IF. Amount of cholesterol, sequestered form egg yolk is significant compared to 

experiments with crystalline cholesterol. 

Extrapolating the results to βCD-concentration of 10mM and physiological volume of fluids, 

results in 133 mg cholesterol complexed out of approximately 40g boiled egg yolk containing 

approx. 43 mg of cholesterol [67]. The results from this experiment shows that βCD-dextran 

polymer tablets can complexate significant amounts of cholesterol from food during 

digestion. 

 

5.6 Limitations 
 

5.6.1 Cholesterol oxidation 

Prolonged storage eventually results in cholesterol oxidation. Cholesterol used in this 

experiment was close to expiration date and in addition to that, collected samples were stored 

up to 14 days at room temperature and protected from light, prior to analysis. Both of those 

factors could contribute to formation of cholesterol oxidized products. 

 

Cholesterol quantitation kit works by the mechanism of cholesterol being oxidized by 

cholesterol oxidase to yield 𝐻2𝑂2 which reacts with a sensitive cholesterol probe to produce 

color and fluorescence. Therefore, oxidized cholesterol, as also stated by Sigma Aldrich 

customer support, will not be detected by cholesterol quantitation kit and lead to 

underestimation of cholesterol quantity in a sample. Therefore, some underestimation in 

amounts of cholesterol complexation by CDs could have happened. 
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6 Conclusion 
 

βCD-dextran polymer shows good compaction ability and were successfully compressed into 

tablets with no visible defects and no visible friability during handling. In simulation of 

gastric fluids, βCD-dextran polymer, formulated as a tablet can complex approximately 28% 

of cholesterol in comparison to cholesterol complexed to strong cholesterol binders, such as 

MβCD.  

The polymer also showed it effectiveness in sequestering significant amounts of food 

cholesterol. 

This study shows positive results and adds further evidence for potential of βCD-dextran 

polymers in treatment of hypercholesterolemia.   
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