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Abstract

We have attempted to reproduce the results in Development and validation of a deep learn-

ing algorithm for detection of diabetic retinopathy in retinal fundus photographs, published in

JAMA 2016; 316(22), using publicly available data sets. We re-implemented the main

method in the original study since the source code is not available. The original study used

non-public fundus images from EyePACS and three hospitals in India for training. We used

a different EyePACS data set from Kaggle. The original study used the benchmark data set

Messidor-2 to evaluate the algorithm’s performance. We used another distribution of the

Messidor-2 data set, since the original data set is no longer available. In the original study,

ophthalmologists re-graded all images for diabetic retinopathy, macular edema, and image

gradability. We have one diabetic retinopathy grade per image for our data sets, and we

assessed image gradability ourselves. We were not able to reproduce the original study’s

results with publicly available data. Our algorithm’s area under the receiver operating char-

acteristic curve (AUC) of 0.951 (95% CI, 0.947-0.956) on the Kaggle EyePACS test set and

0.853 (95% CI, 0.835-0.871) on Messidor-2 did not come close to the reported AUC of 0.99

on both test sets in the original study. This may be caused by the use of a single grade per

image, or different data. This study shows the challenges of reproducing deep learning

method results, and the need for more replication and reproduction studies to validate deep

learning methods, especially for medical image analysis. Our source code and instructions

are available at: https://github.com/mikevoets/jama16-retina-replication.

Introduction

Being able to replicate a scientific paper by strictly following the described methods is a corner-

stone of science. Replicability is essential for the development of medical technologies based

on published results. However, there is an emerging concern that many studies are not replica-

ble [1], including for bio-medical research [2], computational sciences [3, 4], and recently for

machine learning [5].
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Deep learning has become a hot topic within machine learning due to its promising perfor-

mance of finding patterns in large data sets. There are dozens of libraries that make deep learn-

ing methods easily available for any developer. This has consequently led to an increase of

published articles that demonstrate the feasibility of applying deep learning in practice, partic-

ularly for image classification [6, 7]. However, there is an emerging need to show that studies

are replicable, and hence be used to develop new medical analysis solutions. Ideally, the data

set and the source code are published, so that other researchers can verify the results by using

the same or other data. However, this is not always practical, for example for sensitive data, or

for methods with commercial value [4, 5].

If a replication study can not be conducted due to restricted access to the data, a reproduc-

tion study can be performed on a similar data set. Deviations in the results can be due to either

differences in the data, or insufficient description of the method, and more details in the

method description can reveal the source of deviation.

In this study, we make an attempt to reproduce the results of a well known deep learning

algorithm: Development and validation of a deep learning algorithm for detection of diabetic ret-
inopathy in retinal fundus photographs, published in JAMA 2016; 316(22) [8]. As of March

2019, this article had been cited 906 times [9]. We chose to reproduce the results of this study

because it is a well-known and high-impact study within the medical field, the source code has

not been published, and to our knowledge the algorithm has not been reproduced.

The main findings of the original study have been verified in other publications for detec-

tion of diabetic retinopathy [10–12] with high performance. One such method, IDx-DR, was

FDA approved in 2018 [13]. We cannot directly compare our results with these algorithms,

since they use different data sets for evaluation of performance. A list of the result of our algo-

rithm and many other studies is available in [14]. These studies confirm the main findings of

[8]; that deep learning can be used to automatically detect diabetic retinopathy. We assess [8]

to be most promising regarding reproducibility, due to its detailed method descriptions.

The original study describes an algorithm (hereby referred to as the original algorithm) for

detection of referable diabetic retinopathy (rDR) in retinal fundus photographs. The algorithm

is trained and validated using 118 419 fundus images retrieved from EyePACS and from three

eye hospitals in India. The original algorithm’s performance was evaluated on 2 test sets, and

achieved an area under the receiver operating characteristic curve (AUC) for detecting rDR of

0.99 for both the EyePACS-1 and the Messidor-2 test sets. Two operating points were selected

for high sensitivity and specificity. The operating point for high specificity had 90.3% and

87.0% sensitivity and 98.1% and 98.5% specificity for the EyePACS-1 and Messidor-2 test sets,

whereas the operating point for high sensitivity had 97.5% and 96.1% sensitivity and 93.4%

and 93.9% specificity, respectively.

To re-implement the original algorithm for detection of rDR, we used similar images from

a publicly available EyePACS data set on Kaggle for training and validation, and we used a sub-

set from the EyePACS data set and images from the public Messidor-2 data set for perfor-

mance evaluation. Our final hyper-parameter settings were different than in the original study,

because the best choice may be different due to differences in our data and labels. Our objec-

tive is to compare the performance of the original rDR detection algorithm to the results of

our reproduced algorithm, taking into account potential deviations in the data sets, having

fewer grades, and differences in normalization methods and other hyper-parameter settings.

We were not able to reproduce the original study’s results with publicly available data. Our

algorithm’s AUC for detecting rDR for our EyePACS and Messidor-2 test sets were 0.951

(95% CI, 0.947-0.956) and 0.853 (95% CI, 0.835-0.871), respectively. The operating point for

high specificity had 83.6% and 68.7% sensitivity and 92.0% and 88.5% specificity for our Eye-

PACS and Messidor-2 test sets, and the operating point for high sensitivity had 90.6% and
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81.8% sensitivity and 84.7% and 71.2% specificity. The results can differ for four reasons. First,

we used public retinal images from Kaggle with only one grade per image, whereas in the origi-

nal study the non-public retinal images from multiple sources, and these were re-graded multi-

ple times. Second, the hyper-parameters used in the original study may have been tuned better

according to their data. Third, there might be errors in the original study or methodology. The

last possible reason is that we may have done something wrong with reproducing the method

by having misinterpreted the methodology. We cannot know for sure which of the four rea-

sons has led to our considerably worse performance.

We do not believe our results invalidate the main findings of the original study. However,

our result gives a general insight into the challenges of reproducing studies that do not use

publicly available data and publish source code, and it motivates the need for additional repli-

cation and reproduction studies in deep learning. We have published our source code with

instructions for how to use it with public data. This gives others the opportunity to improve

the reproduced algorithm.

Materials and methods

Data sets

The data sets consist of images of the retinal fundus acquired for diabetic retinopathy screen-

ing. Any other information regarding the patient is not part of the data sets. Each image is

graded according to severity of symptoms (see Section Grading).

The original study obtained 128 175 retinal fundus images from EyePACS in the US and

from three eye hospitals in India. 118 419 macula-centered images from this data set were used

for algorithm training and validation (referred to as development set, divided into training and

tuning set in the original study). To evaluate the performance of the algorithm, the original

study used two data sets (referred to as validation sets in the original study). For evaluating an

algorithm’s performance, the term test set is commonly used. The first test set was a randomly

sampled set of 9963 images retrieved at EyePACS screening sites between May 2015 and Octo-

ber 2015. The second test set was the publicly available Messidor-2 data set [15, 16], consisting

of 1748 images. We provide an overview of the differences in image distribution used in our

reproduction study compared with the original study in S1 Fig.

We obtained images for training, validation and testing from two sources: EyePACS from a

Kaggle competition [17], and the Messidor-2 set that was used in the original study. The Mes-

sidor-2 set is a benchmark for algorithms that detect diabetic retinopathy. We randomly sam-

pled the Kaggle EyePACS data set consisting of 88 702 images into a training and validation

set of 57 146 images and a test set of 8790 images. The leftover images were mostly images

graded as having no diabetic retinopathy and were not used for training the algorithm. The

reason for the number of images in our training and validation set is to keep the same balance

for the binary rDR class as in the original study’s training and validation set. Our EyePACS

test set has an identical amount of images and balance for the binary rDR class as in the origi-

nal study’s EyePACS test set. We used all 1748 images from the Messidor-2 test set.

Grading

The images used for the algorithm training and testing in the original study were all graded by

ophthalmologists for image quality (gradability), the presence of diabetic retinopathy, and

macular edema. We did not have grades for macular edema for all our images, so we did not

train our algorithm to detect macular edema.

Kaggle [18] describes that some of the images in their EyePACS distribution may consist of

noise, contain artifacts, be out of focus, or be over- or underexposed (Fig 1). [19] states further
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that 75% of the EyePACS images via Kaggle are estimated gradable. For this study one of the

authors (MV) graded all Kaggle and Messidor-Original images on their image quality with a

simple grading tool (Fig 2). MV is not a licensed ophthalmologist, but we assume fundus

image quality can be reliably graded by non-experts. We used the “Grading Instructions” in

the Supplement of the original study to assess image quality. We publish the image quality

grades with the source code. Images of at least adequate quality were considered gradable.

In the original study, diabetic retinopathy was graded according to the International Clini-

cal Diabetic Retinopathy scale [20], with no, mild, moderate, severe or proliferative severity.

The Kaggle EyePACS set was graded for the presence of diabetic retinopathy using the

same international scaling standard as used in the original study. We have only one diagnosis

grade for each image. Kaggle does not give more information about where the data is from.

The Messidor-2 test set and its diabetic retinopathy grades were made available by Ambramoff

[21]. The grades are per-patient, which is the maximum grade of two eyes Ambramoff [21].

The original study uses per-image grades. There is also an additional criteria for referable dia-

betic macular edema, presence of 1 or more Microaneurysms within 1 Disc diameter, which is

not used in the original study.

Algorithm training

The objective of this study is to reproduce the results of the original study using publicly avail-

able data. We try to reproduce the method by following the original study’s methodology as

accurately as possible. As in the original study, our algorithm is created through deep learning,

which involves a procedure of training a neural network to perform the task of classifying

images. We trained the algorithm with the same neural network architecture as in the original

study: the InceptionV3 model proposed by Szegedy et al [22]. This neural network consists of

a range of convolutional layers that transforms pixel intensities to local features before convert-

ing them into global features.

The fundus images from both training and test sets were preprocessed as described by the

original study’s protocol for preprocessing. In all images the center and radius of the each fun-

dus were located and resized such that each image gets a height and width of 299 pixels, with

the fundus center in the middle of the image. A later article reports a list of data augmentation

and training hyper-parameters for the trained algorithm in the original study [23]. We applied

the same data augmentation settings in our image preprocessing procedure.

The original study used distributed stochastic gradient descent proposed by Dean et al [24]

as the optimization function for training the parameters (i.e. weights) of the neural network.

Fig 1. Ungradable images. Examples of ungradable images because they are either out of focus, under-, or overexposed.

https://doi.org/10.1371/journal.pone.0217541.g001
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We believe their neural network was trained in parallel. We did not conduct any distributed

training for our reproduced neural network, but it should not influence the accuracy of our

algorithm. According to the hyper-parameters published in [23], the optimization method that

was used in the original study was RMSProp. Therefore, we used RMSProp as our optimiza-

tion procedure. The hyper-parameter list specifies a learning rate of 0.001, so we used this

same learning rate for our algorithm training. We furthermore applied the same weight decay

of 4 � 10−5.

As in the original study, we used batch normalization layers [25] after each convolutional

layer. Our weights were also pre-initialized using weights from the neural network trained to

predict objects in the ImageNet data set [26].

The neural network in the original study was trained to output multiple binary predictions:

1) whether the image was graded moderate or worse diabetic retinopathy (i.e. moderate,

Fig 2. Grading tool. Screenshot of grading tool used to assess gradability for all images.

https://doi.org/10.1371/journal.pone.0217541.g002

Reproduction study using public data of deep learning algorithm for detection of diabetic retinopathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0217541 June 6, 2019 5 / 11

https://doi.org/10.1371/journal.pone.0217541.g002
https://doi.org/10.1371/journal.pone.0217541


severe, or proliferative grades); 2) severe or worse diabetic retinopathy; 3) referable diabetic

macular edema; or 4) fully gradable. The term referable diabetic retinopathy was defined in the

original study as an image associated with either or both category 1) and 3). For the training

data obtained in this reproduction study, only grades for diabetic retinopathy were present.

That means that our neural network outputs only one binary prediction: moderate or worse

diabetic retinopathy (referable diabetic retinopathy).

In this study, we split the training and validation sets like in the original study: 80% was

used for training and 20% was used for validating the neural network. It is estimated that 25%

of the Kaggle EyePACS set consists of ungradable images [19]. Therefore, we also assessed

image gradability for all Kaggle EyePACS images, and we trained an algorithm with only grad-

able images. In the original study, the performance of an algorithm trained with only gradable

images was also summarized. We do not use the image quality grades as an input for algorithm

training.

Optimal hyper-parameter settings depend on the training data, so we conducted experi-

ments to find the hyper-parameter settings that worked well for training and validating the

algorithm with our publicly available data. We normalized the images to a [–1, 1] range before

training.

Algorithm validation

We validate the algorithm by measuring the performance of the resulting neural network by

the area under the receiver operating characteristic curve (AUC) on a validation set, as in the

original study. We find the area by thresholding the network’s output predictions, which are

continuous numbers ranging from 0 to 1. By moving the operating threshold on the predic-

tions, we obtain different results for sensitivity and specificity. We then plot sensitivity against

1–specificity for 200 thresholds. Finally, the AUC of the validation set is calculated, and

becomes an indicator for how well the neural network detects referable diabetic retinopathy.

We used the de facto standard of 200 thresholds for plotting the AUC.

The original paper describes that the AUC value of the validation set was used for the early-

stopping criterion [27]; training is terminated when a peak AUC on the validation set is

reached. This prevents overfitting the neural network on the training set. In our validation

procedure, we also use the AUC calculated from the validation set as an early stopping crite-

rion. To determine if a peak AUC is reached, we compared the AUC values between different

validation checkpoints. To avoid stopping at a local maximum of the validation AUC function,

our network may continue to perform training up to n epochs (i.e. patience of n epochs). The

original study’s authors described that they most regularly adjusted the learning rate during

validation (private communication). Other hyper-parameter settings like momentum, opti-

mizer choice, batch size, settings for data augmentation, were fixed fairly early in the algo-

rithm’s development. The values for these hyper-parameters were also borrowed from

ImageNet pre-training, or earlier experiments.

We used ensemble learning [28] by training 10 networks on the same data set, and using

the final prediction computed by taking the mean of the predictions of the ensemble. This was

also done in the original study.

In the original study, additional experiments were conducted to evaluate the performance

of the resulting algorithm based on the training set, compared with performance based on sub-

sets of images and grades from the training set. We did not reproduce these experiments for

two reasons. First, we chose to focus on reproducing the main results of the original paper.

That is, the results of an algorithm detecting referable diabetic retinopathy. Second, we cannot

perform subsampling of grades, as we only have one grade per image.
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Results

As for the early-stopping criterion at a peak AUC, we found that a patience of 10 epochs

worked well. Our chosen requirement for a new peak AUC was a value of AUC that is larger

than the previous peak value, with a minimum difference of 0.01.

The reproduced algorithm’s performance was evaluated on two independent test sets. We

provide an overview of the differences in image distribution used in our reproduction study

compared with the original study in S1 Fig. Our reproduced algorithm yielded an algorithm

with an AUC of 0.951 (95% CI, 0.947-0.956) and 0.853 (95% CI, 0.835-0.871) on our Kaggle

EyePACS test data set and Messidor-2, respectively (Fig 3 and Table 1). We observe that there

is a large discrepancy between our AUC and the original study AUC. Lastly, we attempted

training by excluding non-gradable images, but this did not increase algorithm performance.

Discussion

Our results show substantial performance differences between the original study’s algorithm

and our reproduced algorithm. Even though we followed the methodology of the original

Fig 3. Reproduced results (AUC). Area under receiver operating characteristic curve for the reproduced algorithm.

https://doi.org/10.1371/journal.pone.0217541.g003

Table 1. Reproduced results. Performance on test sets of reproduction, compared to results from the original study.

The results of the original study are depicted in parenthesizes.

Reproduced results

Test set High sensitivity High specificity AUC score
Kaggle EyePACS test

(orig. EyePACS-1)

90.6 (97.5)% sens. 83.6 (90.3)% sens. 0.951 (0.991)

84.7 (93.4)% spec. 92.0 (98.1)% spec.

Messidor-2 81.8 (96.1)% sens. 68.7 (87.0)% sens. 0.853 (0.990)

71.2 (93.9)% spec. 88.5 (98.5)% spec.

https://doi.org/10.1371/journal.pone.0217541.t001
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study as closely as possible, our algorithm did not come close to the results in the original

study. This is probably because our algorithms were trained with different public data, and

because in the original study ophthalmologic experts re-graded all their images. According to

the original study, the multiple grades per image should be used for ground truth, because the

consensus will provide a more reliable measure of a model’s final predictive ability. This is not

important for the training, but very important for the test set as shown in the original study

results for experiments with only one grade per image, where their algorithm’s performance

declines with 36%. This may explain the difference in performance (private communication

with Dale Webster, Lily Peng, and Varun Gulshan). Another source for deviation between the

original and the reproduced results is the quality of data and grading.

The original study’s authors suggested three additional possible sources for the difference

between our EyePACS and Messidor-2 performance (private communication). First, and most

significantly, training on our single Kaggle EyePACS data set may result in overfitting to the

cameras and patient characteristics in that data set. Experiments performed by the original

study’s team in the past have showed that this particular difference can have a large (10%

AUC) impact on performance. Second, our per-patient grades for the Messidor-2 data set may

result in overcalling of diabetic retinopathy. Finally, the original study model predicts addi-

tional outcomes that may slightly improve performance.

Hyper-parameters

The main challenge in this reproduction study was to find optimal hyper-parameters for our

data. The hyper-parameters were not published when we started this reproduction study.

Later, hyper-parameters for training and data augmentation were published in [23], and then

we retrained all algorithms with these hyper-parameters and data augmentation settings. To

understand how we should further tune the hyper-parameters, we measured the Brier score on

the training set and the AUC value on the validation set after each epoch of training. One pos-

sible reason for the algorithm having problems to converge may be the dimensions of the fun-

dus images. As the original study suggests, the original fundus images were preprocessed and

scaled down to a width and height of 299 pixels to be able to initialize the InceptionV3 network

with ImageNet pre-trained weights, which have been trained with images of 299 by 299 pixels.

We believe it is difficult for ophthalmologists to find lesions in fundus images of this size, so

we assume the algorithm has difficulties with detecting lesions as well. [19] also points out this

fact, and suggests re-training an entire network with larger fundus images and randomly ini-

tialized weights instead.

Kaggle images

A potential drawback with the images from Kaggle is that it contains grades for diabetic reti-

nopathy for all images. We found that 19.9% of these images is ungradable, and it is thus possi-

ble that the algorithm will “learn” features for ungradable images, and make predictions based

on anomalies. This is likely to negatively contribute to the algorithm’s predictive performance,

but we were not able to show a significant difference of performance between an algorithm

trained on all images and an algorithm trained on only gradable images.

Comparison to other studies

The review [14] compares our early results [29] with other deep learning models for diagnosis

of diabetic retinopathy. The review shows that it is difficult to compare different methods

because of three main reasons: 1) many methods are not tested on publicly available data; 2)

there is no consensus on test metrics, e.g. specification of “high” sensitivity; 3) there is no
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consensus on how the classes should be defined, e.g. mild/moderate/severe. However, there is

no doubt that the results from our first attempt of reproduction is lower than for studies that

report original algorithms.

In the second attempt, after several of the hyper-parameters were released, our results

improved considerably, and it shows that the description of a method is not complete without

the details on hyper-parameters. These results are comparable to those in the review, but a

final ranking is difficult because of the aforementioned reasons.

Conclusion

We re-implemented the main method from JAMA 2016; 316(22), but we were not able to get

the same performance as reported in that study using publicly available data. The original

study had access to data of higher quality than those that are publicly available, and this is likely

to account for part of the deviation in results. Gulshan et al showed that the performance levels

off around 40 000 (Figure 4A in [8]), and we therefore assume that the reduced size of repro-

duction data set is not a large source for deviation in the results. The number of grades per

image is a possible explanation of Gulshan et al’s superior results, but we cannot quantify the

impact. Figure 4B in [8] depicts performance as a function of grades, but there is an overfitting

component: 100% vs. 65% specificity for the training and test set, respectively, and it is not

possible to distinguish the contribution from the overfitting from that of the low number of

grades.

We believe our results show the challenges of reproducing deep learning method results.

We therefore recommend the following improvements to the reporting of deep learning meth-

ods: (i) use public data or provide detailed data description, (ii) publish source code or all

details regarding the pre-processing of the data, and (iii) all hyper-parameters.

The source code of this reproduction study and instructions for running the reproduced

experiments are available at https://github.com/mikevoets/jama16-retina-replication.

Supporting information

S1 Fig. Data set distribution. Data set distribution in original study vs. this reproduction

study.
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