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1 Abstract

This master thesis will concentrate on the subject of Large Eddy Simulation
of homogeneous, isotropic turbulence in a three dimensional domain with
periodic boundary conditions, using an initial energy spectrum equivalent
to the Comte-Bellot and Corrsin turbulence spectrum from 1971 [4]. The
purpose of the simulation is to investigate the behaviour of the solution
with focus on energy decay. A reference solution will be compared to the
simulation data, but we shall find that the data sets are quite un-similar.
The mechanisms potentially causing this discrepancy will be discussed. The
many approaches to turbulence simulation will be discussed in the theory
section, and recommendations for further investigations of the FFI spectral
element software will be suggested.
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3 Introduction

The simulation of fluid mechanical problems is far from trivial. The gov-
erning laws of fluid motion, the Navier-Stokes equations (see section 5.1),
are non-linear, and no general solutions valid for all boundary problems and
initial conditions have been found to date. The theme for this thesis will be
numerical solutions of the Navier-Stokes equations using a Spectral Element
method and Large Eddy simulation with a Variational Multiscale turbulence
model. The effects of the model will be evaluated and compared with a refer-
ence solution obtained using a high-resolution Fourier spectral method with
de-aliasing. What do I mean by ”a solution” in this context? In the data
analysis, I look only at scalar valued quantities. Mostly the kinetic energy,
which is an integrated squared norm of the velocity vector field on the whole
domain. The ability of the program to make those scalar quantities behave
in a matter that is similar and numerically close to the reference solution,
will be the test of the quality of the tested solution procedure.

3.1 Testing the modeled behaviour of turbulent energy

Our task when working with fluid mechanics may be to determine the mo-
tion of the fluid at each point in a limited space for a limited time. If
the velocity and / or pressure fields are turbulent, the fluid motion is no
longer completely deterministic. Therefore, we change our job description
to determining averaged and integrated quantities like the total turbulent
kinetic energy, the total enstrophy (se equation 119 for a definition of the
enstrophy), the averaged velocity or quantities more related to the turbu-
lent eddies, like length scale, velocity scale and specific Reynolds number.
By using averaging procedures and high / low-pass filters, we might actu-
ally succeed, and obtain solutions satisfying some demands on error and
accuracy. In order for the calculations to have commercial use, we need to
have strong evidence that what we are doing makes sense, hence the need for
field-tested and ”flight-proven” [17] theories. The Kolmogorov theory of tur-
bulence from 1941 [15], often called the K-41 theory, contains the majority
of the tools needed to investigate turbulence. For instance, the Kolmogorov
-5/3 spectral energy density decay rule for the cascade of turbulent energy is
widely used as a benchmark test for turbulence simulation. The ideas of an
energy cascade from large to smaller eddies originated by Richardson (1922)
[20] and later Kolmogorov 1941. In the resulting theory there is a statement
that the amount of turbulent kinetic energy at any time corresponding to
the normed frequency vector k, should be proportional to the wave number
k raised to the power of -5/3 times the current energy dissipation raised to
the power of 2/3. Stated formally, we have the following proportionality
relation:
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E(k, t) ∝ ǫ2/3k−5/3 (1)

By using an algorithm for solving the Navier-Stokes equations that incorpo-
rates a spectral element method and a variational multiscale method for the
Large-Eddy simulation, we wish to investigate the energy decay and com-
pare to a reference solution. The importance of showing that the solution
behaves satisfactory, even for somewhat coarse grids, is the fact that the
tested turbulence model is verified as appropriate for similar cases, and may
be utilized in future works. Being able to use a turbulence model that pro-
duces good results is crucial for the solving of complex problems on limited
computer resources and time.

3.2 The market for CFD

When dealing with non-linear equations like the Navier-Stokes equations
in general geometries, we need to prove that our solution has converged,
and that the error is controlled by some numerical error bounds, since the
general, analytic solution does not exist. On the other hand, since the
problems to solve are highly complex, they call for the help of experts, which
creates a need for applied mathematicians. This is how we can make money.
One of the large actors in the field of CFD (computational fluid dynamics),
ANSYS who has the ownership of the software program FLUENT, had
a total revenue of $ 385.3M in 2007. The market for CFD is large and
interesting to try and enter for new actors and CFD entrepreneurs who
desire a piece of the cake, whether the desired piece is large or small. The
probability of being acquired by a large actor is quite high.

3.3 The continuum hypothesis

Obtaining high-quality results in the field of fluid dynamics requires the need
for good models. The standard physical approximation is the continuum hy-
pothesis: We regard the fluid as a mathematical continuum. The opposite of
this assumption, is to regard the fluid as an ensemble of molecules connected
through inter-molecular bindings that may be either polar, as in water and
many other fluids, or of the Van der Waals type as in many gases. The
quantum mechanics regime, where these forces dominate, calls for exact cal-
culations of energies and the solving coupled Schrödinger equations for the
system of interactions. In the fluid dynamics regime, which is macroscopic,
we may apply the continuum hypothesis without much fear of great error
introduced by it. The number of molecules that makes up most of the com-
putational domains we are dealing with, is often several orders of magnitude
larger than the Avogadro number, which is Na ≃ 6.022× 1023. To solve the
Schrödinger equation for a system of that many particles would require huge
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amounts of computer memory, which we do not have at hand. The contin-
uum approximation has been proven very successful indeed, therefore we
stick to it. The need for modeling using quantum particle behaviour may be
needed for some problems [21], but they will not be considered in this thesis.
The continuum hypothesis is necessary, and the only sane choice for most
industrial problems. A just question is when the continuum approximation
breaks down. The answer is that it rarely breaks down in most applica-
tions. If the number of molecules involved in the computational domain
is very small, the continuum may be broken or that reason. However, the
continuum may be subject to very high velocities and pressure fluctuations,
calling for other models to describe supersonic of even relativistic effects. In
extremely turbulent liquids, the dimension of the smallest revolving eddies
will be very small, and might force our models to incorporate quantum ef-
fects. But even then, good approximation models for energy dissipation will
probably be preferred rather than going to the extreme effort of modeling
the whole system down to the smallest part, which is not feasible in the next
few decades at least.
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4 Problem

The job description is to validate and further develop the spectral element
Navier-Stokes solver with the variational multiscale approach to large eddy
simulation. The software is developed at FFI. Hereafter, the preferred way
of addressing the Large-Eddy Simulation technique is by calling it the LES.
The variational multi-scale method will be named VMS, and the Spectral
Element Method will be called SEM.

4.1 VMS-LES

The Variational Multiscale Large - Eddy Simulation (VMS-LES) method
was introduced by Hughes et al. [11]. The approach of variational scale pro-
jection down to an orthogonal basis represented something new to large eddy
simulation. Traditionally, the large eddies (and by large, I mean those ed-
dies having typical length of circulation larger than some cutoff wavelength),
were resolved using spatial filtering. Typical filter would be a Gaussian or a
sharp cutoff filter. Because of the finite and constant filter width, the spa-
tial filtering method had some consistency issues when dealing with closed
domains. What happens to the filtering / integration at the boundary? The
best results were achieved when using periodic boundary conditions. The
variational multiscale approach is not like spatial filtering. It is a mathe-
matical tool for advanced analysis that assumes an inner product space with
a hierarchical basis. From the hierarchical basis, the desired small and large
scales are collected in distinct sets named small and large subsets. Then we
project the test-solution down to either of these sub-spaces, using the inner
product. This is called variational projection. The subspaces to project
the solution onto, are assumed finite dimensional. The full space may be
infinite dimensional. We keep the large eddy philosophy in mind, the idea
of resolving the large scales and modeling the small. We choose to resolve
the large scales, and model the small scales. This is a natural choice, since
the dimension of the small scale space may be infinite, hence impossible
to fully resolve numerically. In filter-based LES, the modeling was of the
subgrid-scale stresses. In VMS-LES, the modeling is of the large-scale pro-
jection of the small-scale stresses. Those two have different consequences.
This method of scale separation may be seen as a more physically appealing
technique, and a closer connection with the multiscale behaviour of turbu-
lence than the spatial filter.

4.2 SEM

The Spectral Element Method (SEM) with the special non-uniform dis-
cretization of the domain provides an optimum distribution of integration
points for Gauss-Lobatto Legendre numerical integration. The discretiza-
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tion, together with the choice of basis functions, the Legendre polynomials,
provides a high-order method on each element. The order of the method is
nearly two times the polynomial degree N one each element. The SEM is
a very useful tool for calculating higher-order statistics of the fluid motion.
However, it seems that the industry is still using finite element methods
(FEM) to a larger scale. At one hand, the industry and scientific commu-
nity is rapidly adapting to (and inventing) new technology. Still, a great
number of software solutions used by the groups mentioned, are still re-
liant on Fortran 77, C and C++ as the main development programming
languages, even though they should be considered ”old” in a sense. How-
ever, if it is not broke, do not fix it. Fortran has survived many decades
because it is doing the job. For FFI, the goal is not to develop a SEM solver
and commercialise it. They basically need a higher order method with the
all the positive characteristics of the FEM in general geometric situations,
multi-grid environments, to have a means of testing other (not-so high or-
der) software against the higher order. As in other industries, the military
industry relies on technology to do the job. FFI wants to double check in
some situations.

4.3 Decay of Homogeneous Isotropic Turbulence

A turbulent flow with no volume forces and applied external pressure in an
infinite domain or finite with periodic boundary conditions, will eventually
loose part of the kinetic energy because of energy dissipation of the small-
est eddies. The kinetic energy lost by the dissipation is gained as internal
energy. If there were boundaries or physical walls like in a channel, the
dissipation could result in deformation of the wall-structures or surface. In
a channel with an average velocity above some lower limit, there will al-
ways be wall-turbulence, and perhaps turbulence in the central part of the
channel. If there is a constant or non-constant average velocity of pressure
field not equal to zero, the flow non-isotropic. On the other hand, if the
flow is isotropic or have no mean velocity, all fluctuations will eventually
die out completely, and all kinetic energy will dissipate. Since there are no
boundaries by assumption, the large wavelength movements will eventually
also loose all their energy, or at least in theory, if the fluid has zero average
velocity. In practice, there may be some persistent structures in the fluid.
That is part of the reason why we have statistical formulations of the laws
regarding fluid dynamics. A law would state that the ensemble average of
any quantity should behave in accordance with the law. For any isolated
case, the behaviour would be according to a stochastic process, and the
measured statistics would be considered estimates.

The theoretic evolution of kinetic energy is derived using the Fourier
transform of the velocity field, and statistical tools like two-point correlation
functions and similarity. The Similarity hypothesis is the assumption that
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velocity fluctuations on scale l within the inertial range of velocity scales (the
range of fluctuations frequencies in between the smallest and the largest) are
self-similar. The description of the energy decay is found in the Kolmogorov
-5/3 power law for the energy spectrum [18], given a spherical shell in the
wave-vector space (axes k1, k2, k3) of Fourier modes having wave number of
frequency vector norm equal to k. The wedges are denoting the statistical
average of the quantity, not the momentary value of the quantity itself:

E(k) = 2πk < |û(k)|2 >= Cǫ2/3k−5/3 (2)

Also, from the website [18], the direct enstrophy cascade asserts that the
energy should behave like this, when the enstrophy flux is denoted ǫω and
the C ′ is a constant:

E(k) = C ′ǫ2/3
ω k−3 (3)

4.4 Modeling

Working with the Navier-Stokes equations (section 5.1), there are two main
paths one could take.

• Solve the exact equations using a fine grid and probably a Fourier
spectral method if the domain is regular enough. The number of grid
points will be high.

• Solve some other set of derived equations, for example the RANS (sec-
tion 5.4) or LES (section 5.5) equations. Those equations are exact
also, but approximations must be made for some quantities, in order
to achieve a simpler set of equations than the Navier-Stokes.

Strategy number two gives rise to the closure problem. If we list the Navier-
Stokes equations and the RANS, we see two major differences. For the
following I use tensor notation for the subscripts. Repeated or equal indices
between terms imply summation, and subscripted indices after a comma in-
dicates partial differentiation with respect to that variable or variable num-
ber:

ui,t + (ujui),j + p,i − νui,ii = f, uj,j = 0 (4)

ūi,t + (ūiūj),j + p̄,i − νūi,ii + u′iu
′
j = f̄ , ūj,j = 0 (5)

The second (RANS) equation incorporates two things:

• Splitting of the velocity and pressure field into mean and fluctuating
part (Reynolds Aaveraging), such that u = ū+ u′, p = p̄+ p′
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• Ensemble averaging of the Navier-Stokes equations

The main difference between the two equations is that the second is the
expression for the ensemble average of the velocity and pressure field, and
it involves a term u′iu

′
j, which we do not want to solve explicitly, so we

approximate its behaviour by a model. We have four fields to solve, and
four equations. The term we are modeling does not include any of the fields
we are solving explicitly (u1, u2, u3, p).

Approximating the subgrid-scale stresses (which will take more compli-
cated forms in the LES and VMS-LES in sections 5.5, vms) by a model is the
ever-lasting issue that is still subject to research. The models of today are
often based on the Smagorinsky model, originally developed by Smagorin-
sky in 1963 [22] to improve the calculations in a meteorology setting. The
model has later seen improvements like dynamic estimation / calculation
of a parameter known as the Smagorinsky parameter, or further addition
of terms to the model. We will discuss more of that in section 5.8, this
discussion was mainly to introduce the subject of modeling, since it is an
important part of the thesis.
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5 Theory

The theory needed to get a certain basic knowledge about the mathematical
field of numerics, and of the physics behind the turbulence that we are trying
to approximate or solve mathematically will be provided for the reader. The
strategy is to present the Navier-Stokes equations that we are working to
solve, followed by numerical techniques for approximation and simplification
of these equations, followed by some turbulence theory. It is important to
discuss many of these fields, to better be able to discuss the results and the
simulations, and to see a bigger picture. In the end, the big picture will
look very small indeed. The theory provided will only dig slightly beneath
the surface of the majority of the many subjects, but will hopefully help
the reader acquire some understanding and feel about the general ideas and
assumptions we make.

5.1 Navier-Stokes Equations

In any discussion about fluid dynamics, the governing equations of motion
need to be listed. The Navier-Stokes equations are the governing equations
of fluid dynamics. They were, along with the theory of elasticity, derived
during the 19th century. The Navier-Stokes equations were published i 1822
[19]. Quite late, given the fact that Newton’s Laws of motion had been well
known for many years, since their publication in Newton’s book Philosophiæ
Naturalis Principia Mathematica in 1687. The Euler equations or an ideal
fluid were derived by Euler in 1755 [6], those are the equations of a non-
viscid fluid. In the beginning, Navier did not fully understand the concept
of viscosity, which Stokes later clarified in 1845 [23], and gave their final
form, which is used today. Before we present the equations, let us do some
initial work to establish an understanding of fluids or liquids and physical
laws in those materials.

The continuity equation of a fluid is the following, in integral (weak)
form, stating that the flux of mass through a closed surface equals the instant
decay of material in the enclosed volume. This equation expresses a law
governing the fluid transportation, for a liquid:

∫

∂Ω

ρu · ndS = − ∂

∂t

∫

Ω

ρdV ⇒ (6)

∫

Ω

(∇ · (ρu) + ∂tρ)dV = 0 ⇒ (7)

∂tρ+ ∇ · (ρv) = ∂tρ+ (u · ∇)ρ+ ρ∇ · v = 0 (8)

We introduce a new operator called the material derivative or convective
derivative:
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D

Dt
= ∂t + v · ∇

The expression now takes the following form:

∂tρ+ v · ∇ρ+ ρ∇ · v = 0 ⇒
Dρ

Dt
= −ρ(∇ · v) (9)

Where ρ is the scalar density of the fluid and v is the three dimensional
velocity vector. All these variables depend on all the coordinates and the
time.

The equations regarding conservation of momentum /Newton’s second
law for materials, is the following in fluid mechanics:

∂tu + (u · ∇)u = 1
ρ∇ · σ + f (10)

∂tρ+ ∇ · (ρu) = 0 (11)

u = velocity, p = pressure, ρ = fluid density, σ = Stress tensor

The operator ∇ is the del operator, which is the sum of partial derivatives
along the coordinate axes.

∇ :=
∑

j

ej
∂

∂xj

The Navier-Stokes equations of a Newtonian fluid are the following [16],
on a domain Ω ⊂ Rd, where the d denotes the dimension of the problem are
the main governing equations for a fluid mechanical problem. Flow variable
dependence on space coordinates and time is suppressed for simplicity of
notation

(∂t + v · ∇)v = −∇p
ρ

+
(κ+ µ/3)

ρ
∇(∇ · v) +

µ∇2v

ρ
+ f (12)

v, f ∈ Rd

p, ρ ∈ R

x ∈ Rd, t ∈ R

µ, κ ∈ R

Boundary and initial conditions for this non-linear, partial differential equa-
tion may also be defined, to achieve closedness, which may cause a unique
solution. As we shall see, the uniqueness of solutions to some problems may
be challenged by turbulence, a phenomenon scientists all over the world try
to understand completely, but there is not one, but many ways to model
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turbulence. It is tempting to mention the equations governing an incom-
pressible Newtonian fluid, where incompressible means that ρ is constant or
invariant in each point in the domain, or that the convective derivative of ρ
is zero. Using the continuity equation 9, we get the result (if ρ 6= 0)

Dρ

Dt
= 0 ⇒ ∇ · v = 0 (13)

The equation for this incompressible fluid is now simpler:

(∂t + v · ∇)v = −1

ρ
∇p+

µ

ρ
∇2v + f (14)

The term µ/ρ := ν is usually named the kinematic viscosity.
We obtain other forms of the equation by taking vector operations. The

vorticity equation is derived taking the curl of the Navier-Stokes equations,
which yields the following:

∂tω + u · ∇ω − ω · ∇u = ν∇2ω, ω ≡ ∇× u (15)

For further readings on the Navier Stokes equations and development of
Fluid Mechanics, see the excellent (but somewhat high-level) book of Lan-
dau and Lifshitz [16], and to learn how to solve them, see a book about
advanced numerical methods. To earn money on discoveries that will give a
breakthrough in the questions about uniqueness and smooth- ness of solu-
tions to these equations, you should consider solving one of the Millennium
Problems. Find the problem description in [7]. Win 1M dollars.

5.2 Spectral Element Method

The spectral element method, hereafter denoted the SEM, is a discretization
process together with a proper choice of basis, test and trial functions for
solving differential equations. Valuable features are the spectral accuracy,
the versatility in being able to adapt to complicated geometries and meshes.
The generalization to higher dimensions using tensor-product discretization
of the space. The order of accuracy is spectral, meaning that the error de-
creases exponentially with the increased number of basis functions used to
represent the trial solution, a feature found in spectral methods and eigen-
function expansions. The discretization in SEM results in a partition of the
axes in K elements, K does not have to be the same in all directions. Inside
each element, there are N non-uniformly spaced grid points, not including
the two elemental boundary points. We have a description of the discretiza-
tion using the grid-parameter h = (K,N). The grid inside each element
is not uniform, but still structured. The non-uniformness arises from the
fact that the points are optimum with respect to Gauss-Lobatto quadrature
(integration) with respect to an orthogonal basis. In most spectral element
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methods, the choice of basis functions on each element, is the Jacobi orthog-
onal polynomials. They are members of the family of Jacobi polynomials,
which are the only polynomial eigenfunctions to a singular Sturm-Liouville
(SSL) problem. The reason why Legendre is the chosen one, is because they
are orthogonal in the unweighted function space L2(−1, 1).

The combination of optimization of points with respect to integration,
and the optimization of polynomial basis with respect to convergence of
solution, leads to the SEM algorithm. Now that the basis functions are
chosen, and the domain is discretized, now is the time to solve problems.
To solve a general problem, pick a differential equation. Let us choose a
second order, two dimensional stationary problem, the Helmholtz equation.
The objective is to solve the scalar potential function u, given the values at
the boundary of finding a scalar quantity

P(u) ≡ −∂xxu(x, y) − ∂yyu(x, y) + λ2u(x, y) = f(x, y) (16)

u(∂Ω) = 0 (17)

Ω = [−1, 1] × [−1, 1]

To begin with, we seek a weak solution to the variational formulation. Pick
a solution space, which we shall soon derive. Given a test function vh ∈ V
and a trial function uh ∈ U , solve the variational problem in such a way
that the residual function ures = u − uh is orthogonal to the test function
space V . Namely, solve the variational problem

< P(u− uh), vh >= 0, ∀vh ∈ V (18)

We provide the variational form of this equation:
∫ 1

−1

∫ 1

−1

−uh,xxvh − uh,yyvh + λ2uhvhdxdy =

∫ 1

−1

∫ 1

−1

f(x, y)vh(x, y)dxdy

(19)

Then we use integration by parts to end up with a first order integral-
differential equation.

∫ 1

−1

∫ 1

−1

uh,xvh,x + uh,yvh,y + λ2uhvhdxdy =

∫ 1

−1

∫ 1

−1

f(x, y)vh(x, y)dxdy

(20)

This is a first order system. In the strong formulation and before the inte-
grations by parts, it looked like we should seek solutions from C2(Ω). Now,
we look for solutions in the larger space H1(Ω), which is the Sobolev space
of functions whose derivatives as well as the functions themselves belong to
L2(Ω). Restricting a little, we recognise that we should look for solutions
in the space H1

0 (Ω), chich contain equivalence classes of functions in H1(Ω)
that satisfy the homogeneous boundary conditions 17.
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5.2.1 Integration of the variational equation

The numerical integration has not been fully discussed yet. I mentioned
that the discretization was due to the Gauss-Lobatto-Legendre quadrature,
which chooses the optimum conbination of integration points {ξj}N

j=0 and

integration weights {ρj}N
j=0, given an orthogonal basis. The points are cho-

sen as the extremal points of the highest degree polynomial in the basis, in
addition to the end points of the domain. The extremal points must in gen-
eral be found numerically. When theses points are found, there is a theorem
saying that the integral of any polynomial of degree less than or equal to
2N-1 on the interval (-1,1) will be represented exactly by the weighted sum

∫ 1

−1

pm(x)dx ≡
N∑

j=0

pm(ξj)ρj (21)

The exactness only holds for polynomials of degree less than or equal to
2N-1. Error estimates and theorems about Gauss quadratures are found in
books about numerical techniques, I used a book by Kincaid and Cheney
[14].

Moving on, we see that the variational form of the equation now will
be represented as a weighted sum (still using the tensor product form for
dimensions higher than one). If we can manage to have many cancellations
in the sum because of either othogonality or other features, we will be happy.
Unfortunately, the Legendre basis does not give too many advantages and
cancellations of coefficients in the weighted sum. The orthogonality holds
only for the inner products between basis functions. And given the weights
and sum instead of integral, the orthogonality is lost. This is where we
change our test and trial function representations. From working with a
modal basis like the Legendre polynomials, which provides orhogonality but
does not provide much cancellations in the weighted sum of integrals, we
change to a nodal basis like the Lagrange interpolating polynomials. Given
a set of points {xij}j = 0N , the Lagrange interpolating polynomial number k
is the one being zero on all nods except node number k. I.e. if the Lagrange
interpolant number k is denoted by hk,

hk(x) =
N∏

j=0,j 6=k

(x− xj)/(xk − xj) (22)

In the weighted sum, the terms involving uh ad vh products will naturally
cancel out everywhere except a few points, since we now represent the func-
tions as tensor products of series of Lagrange interpolants, i.e.,

uh =
N∑

i=0

N∑

j=0

cijhi(x)hj(y) (23)
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The product of any two Lagrange interpolants at unequal points will
necessarily be zero:

hi(x)hj(x)|x=ξj
= δij (24)

So now we sum up the terms, we have this representation, the k denotes
the element number in the 2D domain, we assume summation over all in-
dices. We assume symmetrical domain with respect to length and polyno-
mial degree, such that integration points and weights are equal in x- and
y- dimensions, to simplify notation and maximize readability, notising that
having unequal characteristic points and weights in each direction still pre-
serves the cancellation effect because of the tensor product form of the test
and trial functions. The h subscript is dropped from now on, to further
increase readability. The function uh, now only called u, should still not be
interpreted as the real solution, but as the chosen approximation based on
the order of polynomials and the nature of the ”real” solution.

uk
x(ξi, ξj)v

k
x(ξi, ξj)ρiρj + uk

y(ξi, ξj)v
k
y (ξi, ξj)ρiρj+

λ2uk(ξi, ξj)v
k(ξi, ξj)ρiρj = f(ξi, ξj)v

k(ξi, ξj)ρiρj (25)

The subscripted x and y variables indicate partially differentiated functions.
Represented as series of Lagrange interpolants, the equation becomes the
following, we use the following u and v, summation signs dropped but still
implicitly there (this helps increase the readability)

uk = cijh
k
i (ξi)h

k
j (ξj), vk = hk

i (ξi)h
k
j (ξj) (26)

The full equation becomes, implied direct stiffness summation where the
repeated element boundary points are not accounted for twice. The sum-
mation is carried out over all the elements, and boundary conditions are
imposed.

ckijh
k
i,x(ξi)h

k
j (ξj)h

k
m,x(ξm)hk

n(ξn)ρiρj + ckijh
k
i (ξi)h

k
j,y(ξj)h

k
m(ξm)hk

n,y(ξn)ρiρj+

λ2ckijh
k
i (ξi)h

k
j (ξj)h

k
m(ξm)hk

n(ξn)ρiρj = fk(ξi, ξj)h
k
i (ξi)h

k
j (ξj)ρiρj (27)

5.3 Spectral Methods - DNS

A spectral method is a way of solving a system of multi-dimensional partial
differential equations using Fourier transformation. Any function in the
Hilbert space L2(Ω), may be closely approximated by its discrete fourier
transform. If the function is not continuous, the approximation will not be
very good at the discontinuities. Gibbs phenomenon may occur. However,
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if the function is C or even C1, the approximation is usually very good, and
the error decreases exponentially with the number of modes in the finite
approximation to the infinite series.

5.3.1 Differential Equations

The derivative of a one-parameter (x) dependent function f with respect to
the parameter x is the following, denoted f ′(x):

f ′(x) =
d

dx
f(x), x ∈ Ω = (−∞,∞) (28)

If we take the fourier transform of the function f(x), we get a different
function called f̂(k), dependent on a different parameter k:

f̂(k) =

∫

Ω

f(x)e−ikxdx (29)

If we transform not the function itself, but its derivative, we get the following
algebraic relation between the transform of f ′(x), denoted f̂ ′(k) and the
transformed function f̂(k)

f̂ ′(k) =

∫

Ω

f ′(x)e−ikxdx = f(x)e−ikx|∞−∞ − ikf̂(k) = −ikf̂(k) (30)

To achieve the formula, we must assume that the function decays properly in
±∞, or simply that the function is zero at the boundaries of the domain. he
point is, we have now a beautiful, algebraic relation between the derivative of
the function and the transform of the function itself. Applying this technique
to the Navier-Stokes equations, and treating the time as a free parameter (we
transform the spatial velocity and pressure fields at a frozen time-instant),
we get the following equations, called the Fourier-Galerkin approximation
to the Navier-Stokes equations:

F(ui)(x, t) = ûi(k, t), F(p)(x, t) = p̂(k, t) ⇒ (31)

ûi,t + ̂(uiuj),j − ιkip̂+ νk2
i ûi = f̂ (32)

− ιkj ûj = 0 (33)

Given initial conditions, this system may be solved fast by a numerical soft-
ware for Fast Fourier Transforms. The accuracy of the method is spectral.
Hence, the method is often used to obtain a Direct Numerical Simulation
(DNS) reference solutions for relatively simple test-problems like homoge-
neous, isotropic turbulence. FFT is an optimized algorithmic implementa-
tion of the discrete fourier transform as defined here:
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Definition 5.1 The Discrete Fourier Transform of an N-dimensional vec-
tor v is a bijection from the space of complex N-dimensional vectors to itself.
This is the rule:

DFT : C
N → C

N

F(v) = v̂

v = (v0, v1, · · · , vN−1), v̂ = (v̂0, v̂1, · · · , v̂N−1)

v̂m =
1

N

N−1∑

n=0

vne
−2πinm/N (34)

Because the DFT is a bijection, the inverse function exists and takes on a
quite simple form. Let us take a look:

DFT−1 : C
N → C

N

F−1(v̂) = v

vm =

N−1∑

n=0

v̂ne
2πinm/N (35)

5.4 RANS - Reynolds Averaged Navier Stokes

There are ways of averaging the flow, that may help the user extract some
data and information regarding different average measurements of the flow.
For instance, a time average of a flow may smooth out a flow, to help the
user see essential characteristics, for instance if the flow is quasi-stationary.
A time average is the following:

U(x) ≡ lim
T→∞

1

T

∫ T

0

U(x, t) dt (36)

A space, or volume average may be used on a stationary flow to smooth
out and see less fluctuations. In the extreme smoothing, the user would only
ask the question if there is a net transport of fluid in one direction, and a
space average may answer that question. A space average is the following,
it does not have to be three dimensional but may be either one or two
dimensional:

U(t) ≡ lim
V →∞

1

V

∫

Ω

U(x, t) dΩ, V ≡
∫

Ω

dΩ (37)

An ensemble average is the average of many trials, the limiting sum of all
trials divided by number of trials, as the following formula suggests:

U(x, t) ≡ lim
N→∞

N∑

n=1

Un(x, t) (38)
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Given such an average, we have the decomposition of the velocity vector u
in a mean and a fluctuating part:

u = ū+ u′

We do the same decomposing in to mean and fluctuating part for the scalar
valued pressure p,

p = p̄+ p′

Then, we insert the decomposed form of the velocity and pressure in to
the Navier-Stokes equation, and take the average of the system. We get the
following system, known as the Reynolds Averaged Navier-Stokes equations:

ūi,t + (ūiūj),j + p̄,i + νūi,jj − (R̄ij(u
′)),j = 0 (39)

ūj,j = 0 (40)

The sum R̄ij(u
′), called the mean fluctuating Reynolds stress [3], is defined

by the following expression:

R̄ij(u
′) = −u′iu′j

Without the bar over the R, the sum is called the fluctuating Reynolds stress.
Remembering the Navier-Stokes equations on the tensor notation form, and
observing that the following form of the non-linear term is equivalent to the
previously used form under the incompressibility assumption

(uiuj),j = ui,juj + uiuj,j = ujui,j ⇐⇒ uj,j = 0

The equations are represented in different ways in different papers, however
when we talk about RANS and LES and soon VMS-LES, the tensor product
form is more useful. The RANS equation has its form because we make a
number of assumptions, known as the Reynolds conditions [24], listed here.

Definition 5.2 For any flow variables ψ and φ, the following hold by as-
sumption:

ψ + φ = ψ̄ + φ̄ (41)

aψ = aψ̄ for anu constant a. (42)

ā = a for any constant a (43)

∂ψ

∂x
=
∂ψ̄

∂x
∀x ∈ {x, t} (44)

ψ̄φ = ψ̄φ̄ (45)

We note that the average of any fluctuation from the mean must be identi-
cally zero, otherwise the mean itself is not the mean. The following simple
remark will support that logic:

u′ = u− ū = ū− ū ≡ 0
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So, for the busy reader, the ”problematic” term becomes, when averaging:

(ūiūj + ūiu
′
j + uiūj + u′iu

′
j),j = (ūiūj + u′iu

′
j),j

It may be useful to follow S. Scott Collis [3] when he is reluctant to cancel
out the cross-stress terms, denoted by

Cij(ū, u
′) = −(ūiu

′
j + u′iūj)

The term cancels out when averaged, but it could still be kept if we are
using a different approach, and different regime. In numerics, anything can
happen, so we might as well keep it. The reason Collis [3] keeps it in his
theory, is that he discusses a lot of methods and decompositions, and to
compare it is necessary to keep this term. The RANS equations may be
solved by modeling the Reynolds

5.5 LES (Large Eddy Simulation)

Form Ferzigers page 60 [8], I find the following definition of LES:

LES is a method in which the larger scales of motion of the
turbulence are simulated while the smaller ones are approxi-
mated or modeled.

The definition given by Ferziger is short, general and consise, which all
definitions should be, by definition (see Wikipedia for the definition of a
definition [26]). In other words, LES is a way of doing numerical analysis
of certain special mathematical equations like Navier-Stokes or other non-
linear PDFs (Partial Differential Equations). We are brought to the subject
of identifying what is meant by an eddy (for the non-English reader). From
an electronic dictionary we find the following explanation. An eddy is:

”A current of air or water running back, or in a direction
contrary to the main current.” (Red Hat KDE Dictionary [5])

Let us stick to that definition. Contrary to the main current, meaning
that an eddy is a separate structure in the field, with movements seemingly
independent of the averaged flow. As scientists, we may also define an eddy
the following way, involving only frequency terms:

Definition 5.3 Given a Fourier-transformation of the velocity field in any
substance, each Fourier component corresponds to a circulation pattern, su-
perimposed on the field itself. Specifically, the Fourier series of the field
component vj is the following:

vj =
∑∑ ∞∑

n=−∞

cne
ιknx (46)
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5.5.1 LES Hypotheses

LES incorporates some important hypotheses about turbulence that may
originate from the Kolmogorov theory. Firstly, the approximation that the
large-scale dynamics of turbulent flow are determined by the large-scale
eddies. This leads to the idea of resolving the large scales and modeling the
small scales, since the main dynamics will be intact even if the small scales
are not resolved. The second hypothesis is that the small-scale eddies in
any turbulent field (perhaps with the exception of channel flow) are almost
isotropic. An isotropic tensor is very simple, and easier to approximate
than an anisotropic one. This assumption makes good sense by intuition.
We have seen turbulent fields like a waterfall, and the smaller whirls and
bubbles seem to whirl in no preferred direction. If we model only the very
smallest scales (determined by a parameter specifying the ration of resolved
to unresolved scales) in turbulent flow, and resolve say 99% of the large
scales, we have almost DNS. If we only resolve a small fraction of the large
scales, we have almost RANS.

To derive the LES equations, we proceed in a way similar to the RANS
method. We apply something similar to a Reynolds decomposition of the
field, but now an eddy size-decomposition, leaving the velocity and pressure
in two assumingly distinct departments, the large-eddy group and the small-
eddy group:

u = ūLarge + ûSmall (47)

p = p̄Large + p̂Small (48)

The separation of the fields in to the two groups is non-trivial. We shall
see two methods, one almost similar to the space-averaged RANS (the spa-
tial filtering), and the other more similar to the Fourier-Galerkin method
(variational projection), but with any choice of basis functions.

5.5.2 Spatial Filtering

The large and small eddies may be separated using a spatial filter. The LES
equations with the spatial are derived using the integration of the velocity
or pressure field with the filter kernel over a field which may be space (up to
three dimensions) or time. The most common is to filter on the grid. The
filtering is the following procedure, for a filter kernel G and the function u

ū(x) =

∫

Ω

G(x, x′)u(x′)dx (49)

For a homogeneous filter kernel, the filter argument depends on the dis-
tance between points, and is widely used. Many filters are homogeneous
(depending on the relative distance between), like the Gaussian smoothing
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filter. One advantage of a homogeneous filter is the commutativity between
filtering and differentiation [3],[11]. In the following equation, Ḡ is the filter
kernel:

ū =

∫

Ω′

Ḡ(x− x′)u(x′)dΩ′ (50)

Many different filters have been used in LES of (homogeneous turbu-
lence) throughout the years. Ferziger [8] lists three filters, the Gaussian, the
Box and the cutoff filters. Filtering of a function may be used to isolate
characteristics, like long-time behaviour or averages in space. A smoothing
procedure is an example of a filtering process. A filter operation is often a
convolution or the inner product with a distribution. Filtering is linear, i.e.
for any filter kernel g, the following holds (bar above symbol denotes filtered
quantity)

φ+ ψ = φ̄+ ψ̄ (51)

aφ = aφ̄ (52)

(53)

We can not make as many valid assumptions as we did for the averaging
filter, since when dealing with general filters, many non-linear effects may
occur. For instance, two rules that can not be generally true for filtering,
are the following:

φ̄ψ̄ = φ̄ψ̄ NOT TRUE!! (54)

φ̄ψ = φ̄ψ̄ NOT TRUE!! (55)

A turbulent field contains a lot of random fluctuations, and by random I
mean that nature itself is close to deterministic, but as the observer we can
only deal with a finite amount of information. We can not differentiate
between individual particles by a quantum-mechanical hypothesis, neither
can we assign artificial mindsets to lifeless particles of matter, hence they
obey the physical laws that science is uncovering with footsteps of random
size. I use the term random frequently hereafter.

The space-filtered-NSE are the following, obtained by filtering the equa-
tions themselves and representing the fields in their eddy-size decomposition
form (we only apply the large-eddy filter):

ūi,t + (ūiūj),j + p̄,i + νūi,jj − (R̄ij(û) + C̄ij(ū, û),j = 0 (56)

ūj,j = 0 (57)
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Where the C and R again have the same meaning as before, namely

Rij(û) = −ûiûj (58)

Cij(ū, û) = −(ūiûj + ûiūj) (59)

The bar over the Reynolds and Cross stress term denotes filtering of the
whole expression. As with RANS, the procedure denotes with the bar on
top was averaging, and a lot of terms cancelled. Here, with filtering, we
can not make the same assumptions as we did before with the Reynolds
conditions, but the following is assumed to hold for any filtering operation,

5.5.3 Variational Projection

Filtering in space led to the fact that more relevance was given to nearby
points (close to the filter center (pivot point)) than to distant ones. A
different type of filtering is obtained when the kernel is member of an or-
thogonal basis in a Hilbert space. An inner product in a Hilbert space is
associated with a projection of a function down to the subspace defined as
the linear span of a basis element. By taking the inner products with basis
elements, we extract components and may represent the function as a linear
combination of basis elements in the space. This is true, since the function
is assumed to be in that space. To prove it, theorems from mathematical
analysis are needed. I suggest reading the book by Hunter and Nachtergaele
[12].

In order to decompose a turbulent field completely as an expansion in
an orthogonal basis, we need to find a representative basis for turbulent
fields. The Fourier basis is versatile, and it should be no surpise that even
turbulence may be adequately represented as a Fourier series. This is usu-
ally dedicated to a small chapter of its own in papers on he subject, called
Prope Orthogonal Decomposition (POD), resulting in he conclusion that
the Fourier basis is the POD of the turbulent field. The analysis is not
straightforward, but I choose to redirect the reader to other sources for this
analysis, since I choose to concentrate on other subjects. I found the mas-
ter thesis by Christian Wollblad [27] to explain this adequately. Assuming
periodic turbulent fields on the domain Ω = (0, L)3, Ω being the smallest
domain encompassing all the eddies of the flow. Then the field (u,p) is a
linear combination of fourier modes, i.e.

uj(x, t0) =

∞∑

n1,n2,n3=−∞

αj
n1,n2,n3

eιk·x, kr =
2πnr

L
, j, r ∈ {1, 2, 3} (60)

The Fourier basis is dense in The Hilbert space L2. L2 is separable. A
separable vector space is one that has a countable basis. I refer again to
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[12]. A basis being countable means that the basis is possible to systemize
and list in an enumerable sequence. For instance, the Fourier basis is the sum
of all modes, which are systemized using the positive and negative integers,
which is a countable set. In one dimension, mode number n is given by

en(x) = exp(inx) (61)

A countable set may be separated in distinct sets, given a separation rule.
The basis may also be hierarchical, meaning that the numbering of an ele-
ment in the set of basis elements corresponds to the ”scale” of the element.
For example, the L2([−1, 1])-orthogonal polynomial set called the Legendre
polynomials, discussed in the Spectral Element section 5.2, given by the fol-
lowing formula, represent a hierarchical set, or basis if they are used as a
basis.

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (62)

The following recursive relation may be useful for numeric work and com-
puter software implementation, so I include it

L0(x) = 1, L1(x) = x, Lk+1(x) =
2k + 1

k + 1
xLx(x)− k

k + 1
Lk−1(x), k ≥ 2

(63)
The Legendre polynomial of order n has n roots, and behaves quite nicely.
An illustration of the first six Legendre polynomials on the interval [-1,1],
including number 20 can be seen in figure 5.5.3.

Let us partition the solution space V in two distinct linear spaces, one
”Large scale” subspace V̄ and the ”Small scale” subspace V̂. If the full
space is the orthogonal sum of the large scale and the small scale space,
then we write

V = V̄ ⊕ V̂ (64)

Let us choose an orthonormal, hierarchical basis of the full space, denoted
by the greek letter Φ. The basis is hierarchical, so we may split the basis
in two distinct sets, for each of the Large scale and the Small scale space,
denoted by bar and hat to illustrate the different belongings of the basis
elements.

Φ =
∑

j

Φ̄j +
∑

j

Φ̂j (65)

Let us write down the un-weighted inner product of two elements φ and ψ
on the space V and its subspaces, which is the L2(Ω) inner product
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Figure 1: The first six Legendre polynomials on [-1,1] and L20

(φ,ψ) :=

∫

Ω

φ(x)ψ∗(x)dx, ∗ denotes complex conjugation and transpose

(66)
The variational projection of a state variable u down to a subspace V̄ ⊂ V,
is an inner product of u with the set of basis functions for the particular
subspace. The inner product becomes a little simpler if we enforce the space
to have an orthonormal set of basis elements, since the L2 norm of the inner
product between two elements basis elements is unity if the functions are
equal, zero otherwise. I.e., for two basis elements Φj and Φk, the following
holds

(Φj ,Φk) = δjk (67)

A projection is a mathematical operation known from vector algebra, using
the scalar product. The dot product between a and b is commutative, and
returns how much of vector b is ”seen” from vector a, multiplied by the length
of a. The complex inner product uses complex conjugation to make sure the
square inner product of a vector by itself is real-valued. The projection of
a vector onto another vector is an operation returning a new vector, the
operation may be schematically illustrated the following way,
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proj : v ∈ V → V (68)

projwv = v · w∗ = ||v|| ||w||cosθ (69)

For functions, the projection is defined by the integral inner product. We
use the Fourier basis on the interval [0, 1] now, and describe the projection
of a function f down to the complex basis element en, being the function
exp(2πınx)

(projen
f)(x) =

[∫ 1

0

f(x) exp(2πınx)dx

]
e2πınx (70)

As with vectors, where the projection yield another vector, the function-
projection yields a function. Then the projection of u onto the large scale
space V̄ is the following, called ū

ū = (u,
∑

j

Φ̄j) =
∑

j

∫

Ω

u(x)φ∗(x)dx (71)

5.6 VMS (Variational Multi Scale)

The VMS method was introduced by Hughes et al. 2000 [11]. They used
a two-level splitting called large and small scale splitting, together with a
cutoff in the small scales. Their work and methods were later clarified by
Collis [3] with regards to the effect of the unresolved scales on the resolved
scales. One big advantage with the method is illustrated by Collis in his
three-level partitioning of the scales, which he denotes the large, the small
and the unresolved scales.

I will only consider the three-level splitting introduced by Collis 2002 [3],
and implemented by my supervisors and colleagues in the spectral element
software at FFI. The VMS equations come from splitting / decomposing the
solution space in Large, Small and Unresolved scale spaces, denoted by bar,
tilde and hat.

Large-scale space = V (72)

Small-scale space = Ṽ (73)

Unresolved-scale space = V̂ (74)

The full space is the sum of these spaces, they are assumed disjoint and also
orthogonal for most practical uses.

V = V ⊕ Ṽ ⊕ V̂ (75)
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The trial solution is denoted u, and is a linear combination of the large,
small and unresolved scale space basis functions.

u = ū+ ũ+ û =

∫

Ω

uΦ̄(x)dx +

∫

Ω

uΦ̃(x)dx+

∫

Ω

uΦ̂(x)dx (76)

They are inserted in to the weak / variational form of the Navier-Stokes
equations, and the test functions are chosen from the distinct spaces one by
one, giving us three equation systems. Before we list the equations, let us
develop a notation that may be helpful for compactness. Denote by N the
Navier-Stokes operator, namely

N (U) = N
(

u

p

)
=

(
∂tu + ∇ · (u⊗ u) + 1/ρ∇p− ν△u

∇ · u

)
=

(
f

0

)
= F (77)

Mind the implicit definition of the state vector U, containing the pressure
and velocity stacked on top of each other in a vector for compactness of
notation. In Fortran we use the implicit none declaration, I would like to
have the opportunity to implicitly define certain things for compactness of
notation. When doing a variational projection with a test function W =
(w, q) ∈ V, we write

B(W,U) ≡< W,N (U) >≡ L(W,U) −R(w,u) =< W,F > (78)

Fully written out, and integration by pars applied, following the following
rules for transformation of vector operations involving the ∇ symbol, div,
grad and Laplacian, when homogeneous boundary conditions are applied

< w,∇ · (u⊗ u) >=

∫

Ω

w∇ · (u⊗ u)dx = −
∫

Ω

∇w · (u ⊗ u)dx (79)

< w,∇p >=

∫

Ω

w∇pdx = −
∫

Ω

p∇ ·wx (80)

< w,△u >=

∫

Ω

w△udx =

∫

Ω

∇sw∇sudx (81)

The symmetric gradient operator is the following one,

(∇su)ij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(82)

We get the following expressions, using the inner product notation.

B(W,U) = < w, ∂tu > − < ∇w,u⊗ u > − < ∇ ·w, p >
+ < ∇sw, 2ν∇su > + < q,∇ · u > (83)
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The inner product is the following standard unweighted one, star denotes
complex conjugation

< fi, gj >=

∫

Ω

fig
∗
j dx (84)

When we do the same procedure as with the RANS and the LES, projecting
the state vector U onto the various sub-spaces, representing U as the sum of
subspace-projected components as in equation 76, we get three equations,
using the shortest and least confusing notation for the inner products /
variational projections of the full solutions onto the various subspaces,

B(W, U + Ũ + Û) =< W, F > (85)

B(W̃, U + Ũ + Û) =< W̃, F > (86)

B(Ŵ, U + Ũ + Û) =< Ŵ, F > (87)

We shall see that there is a need for modeling the unresolved Reynolds
and cross stress terms, following the procedure of Collis and also Wasberg
et al. [25]. If we make the necessary calculations, we see the full system
and many terms of variational projection of some functions in one subspace
to a different subspace. If the subspaces are orthogonal, the variational
projection of functions from different subspaces vanish. We can not assume
total orthogonality in a turbulent field. Instead we write the equations out
as a whole

L(W,U) + L(W, Ũ ) −R(w,u)− < W,F > −R(w, ũ) − C(w,u, ũ)

= −L(W, Û) + R(w, û) + C(w,u, û) + C(w, ũ, û) (88)

L(W̃ , Ũ ) + L(W̃ , U) −R(ũ, ũ)− < W̃,F > −R(ũ,u) − C(ũ,u, ũ) =

− L(W̃ , Û ) + R(w̃, ũ) + C(ũ,u, û) + C(w̃, ũ, û) (89)

L(Ŵ , Û ) + L(Ŵ , U) + L(Ŵ , Ũ) −R(ŵ, û) − C(ŵ,u, û) − C(ŵ, ũ, û)

= R(ŵ,u) + R(ŵ, ũ) + C(ŵ,u, ũ)+ < Ŵ ,F > (90)

The assumptions being made by Collis, Hughes et al. (implicitly, clarified
by Collis) and Wasberg et al. are the following:

• The separation between large and unresolved scales is sufficiently large
so that there is negligible direct dynamic influence from the unresolved
scales on the large scales.
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• The dynamic impact on the unresolved scales on the small scales are
on the average dissipative in nature.

The consequences of modeling assumptions on the equations are essen-
tially that all correlations between large and small scale are set to zero
(all Reynolds and cross stresses involving large and unresolved components
in the first equation are nulled out), and the terms involving unresolved-
small scale correlations are replaced with a dissipative model term like the
Smagorinsky model term. That means, no modeling other than assuming
zero influence in the projected space is assumed, and the large-scale equation
is solved by a solution method, described in the next paragraph.

5.6.1 Discrete scale partitioning

The basis of choice is the Legendre orthogonal polynomials. However, solv-
ing a matrix problem with the Legendre coefficients is not very efficient,
and may be more optimized. One optimization is to transform from Legen-
dre polynomial test-function to a Lagrange interpolating polynomial, having
more appreciable features when doing the linear algebra. We say, we switch
from o modal basis, being he Legendre polynomials, to a nodal basis, the
Lagrange interpolating polynomials. A remarkable difference in character is
also that the Legendre is a hierarchical basis, polynomial number N having
order N. The Lagrange interpolating functions are all of the same polyno-
mial degree, so any scale partitioning would be quite non-intuitive in that
regime. However, there is an invertible, linear transformation between them,
so we can easily switch between them, at a small additional cost of comput-
ing the transformations. For the VMS-LES, the hierarchical structure of the
Legendre basis is heavily desired for the multiscale modeling approach. We
also introduce scale partitioning operators that basically isolate large and
small scales from the fully resolved system.

5.7 Smagorinsky Closure

The equations stemming from averaging, filtering or other procedures trans-
forming the problem from finding the instant velocity and pressure field at all
points to all times, to finding statistical quantities like the average or mean
velocity during a short time interval at each point, or finding the smoothed
out, spatial average velocity or pressure field at a region, all include some
nonlinear part that is the reason we just can not solve the Navier-Stokes
equations analytically for all boundary value problems, all geometries and
all initial conditions. For the averaged equations, we have the Reynolds ve-
locity cross tensor, with terms vanishing because the operation of filtering or
orthogonal projection of a smallscale-component down to a large-scale com-
ponent is zero. The distributive law for variational projection of a product
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is assumed to be he following, as in equation 55.

(u⊗ u) = (ū⊗ ū) + 2(ū⊗ û) + (û⊗ û) (91)

= (ū⊗ ū) + 0 + (û⊗ û) (92)

The Smagorinsky model for the term called T, namely

T = (ū⊗ ū) − (u⊗ u) (93)

The T is called the subgrid-scale stress in Hughes et al 1999 ??.

5.8 Subgrid-scale modeling

Approximating the subgrid-scale stress by a model is the ever-lasting issue
that is still subject to research. The models of today are often based on the
Smagorinsky model, originally developed by Smagorinsky in 1963 [22] to
improve the calculations in a meteorology setting. The model has later seen
improvements like dynamic estimation / claculation of a parameter known
as the Smagorinsky parameter, or further addition of terms to the model.
Other models for closure are the The majority of closure models have been
based on the Smagorinsky model. The subgrid-scale stress is the difference
between the tensor-product LES-filtering of the non-linear convection term
and the tensor product of filtered quantities, i.e.

T = ū⊗ ū− u⊗ u (94)

The Smagorinsky eddy viscosity model that provides a closure to the un-
determined subgrid-scale stress is only modeling the deviatoric part of T,
namely

dev T = T − (
1

3
tr T)I (95)

The Smagorinsky closure is the following:

TS = 2νT∇sū (96)

The eddy viscosiy νT is given by the expression using the smagorinsky con-
stant CS , the filter width △ and the symmetric gradient operator ∇s oper-
ating on the filtered velocity field ū.

νT = (CS△)2|∇sū| (97)

The ”symmetric gradient” operator ∇s is the following construction,

∇sū =
1

2
(∇ū+ (∇ū)T ) (98)

|∇sū| = (2∇ū · ∇ū)1/2 (99)
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The values of the Smagorinsky constant has traditionally been chosen around
0.23 for homogeneous turbulence simulations, and around 0.1 for channel
flows.

Hughes et al [11] make a list of shortcomings of the Smagorinsky model.
Among the effects that should be adressed in new models, is that the
Smagorinsky eddy viscosity tensor TS does not replicate the asymptotic
behaviour of the subgrid-scale stress T near walls. Further, the tensor pre-
cludes backscatter of energy from small to large scales.It will also produce
excessive damping of the resolved structures in transistion. The dynamic
Smagorinsky viscosity model is model taking those thoughts in to account,
taking the Smagorinsky constant CS not to be constant, but as a function
of space and time. As Ferziger [8] remarks, the integral scale of turbulence
L, is used in the derivation of the model equation, and it should therefore
not be a surprise if the model parameter is not constant. The original work
on this method was done by Germano et al. 1991 [9]. The calculation of C
at any point is performed using a least squares minimization of error.

For general inhomogeneous flows, it is natural for the ”constant” to be
non-constant in time and space, being closer to 0.23 for almost homogeneous
space-time slabs, and closer to 0.1 for slabs with more mean shear.

Kang et al. 2003 [13] say that the standard and dynamic Smagorinsky
model lead to a small pile-up of energy spectra near the cutoff wavenumber
in LES (Moin et al. 1991 and Meneveau et al. 1996).

5.9 Initial Velocity Field

The setup of the initial turbulent velocity field will now be discussed. The
initial velocity field should be turbulent, isotropic, homogeneous and diver-
gence free in order to be physically feasible for the simulation. In general,
a turbulent field consists of many eddies of different scales, from the largest
about the size of the domain, to the smallest whose size is closely related
to the characteristics of the turbulent field. The more turbulent and higher
Reynolds number, the smaller eddies will occur. In general, the field is a sum
of sine and cosine functions, with a maximum frequency given by the tur-
bulence scales calculation. I choose to look at the Comte-Bellot and Corrsin
(CBC) ??,?? wind tunnel experiment from 1966 and 1971. These wind tun-
nel simulations are of the most used for initiating numerical methods in the
simulation of homogeneous, isotropic turbulence. Numerous articles written
by people using the CBC data as a benchmark for their numerical methods.
Taylor microscale Reynolds number Reλ for the CBC experiment was ap-
proximately 130, which is quite low compared to the newer tests that utilize
active grids to generate more turbulence. A well documented article is Kang
et al. 2003 [13]. I choose the CBC experiment for my initialization process.
One reason is that Collis [3] and also my supervisors, who run the collis
spectral method on a laptop computer, are using the CBC initial spectrum.

32



From the Collis code, I find a good approximation formula for the spec-
trum, which is only represented by 20 data points in the original CBC article
from 1971. I have chosen to use the Collis analytical formula as the approx-
imation to the CBC data, instead of implementing my own interpolation
routine. It is a necessity to not deviate too much from the reference solu-
tion, since we shall compare results.

To implement the initial velocity field, we move to a Fourier representa-
tion of the velocity. In a homogeneous, isotropic turbulent field, there is no
mean velocity, and the velocities show no preference of direction in space. In
fact, the claims for the turbulence to be homogeneous and isotropic, are that
the statistical moments of velocity correlation functions should be invariant
of coordinate system translations and rotations. Moving back to the initial
velocity, the only thing that is specified for a turbulent field is the kinetic
energy corresponding to a given frequency vector norm. In three dimensions,
the fourier modes are given by three integral multiples of the characteris-
tic length in each direction, which is 2π / domain length in that direction.
The energy spectrum specifies the total kinetic energy in all modes having
frequency k. I represent each coefficient as a complex number:

ck = rke
ιφk (100)

This complex number is initialized using a random function. This random
number makes the initial phase be random, and will basically do the same
job as the Alan Wray method used in ??. After initialising all the coefficients
for all velocity components (I do not initialize the pressure field), I use the
Fourier interpolating polynomial to give a value to each point in my domain.
The algorithm for this process is the following, written a s a pseudocde.

Algorithm #1 - Faster when M greater than KN

--------------------------------------------

# Find the X-velocity V at each point in the domain,

# using the DFT fourier interpolation on an irregular

# grid. The coefficients are called r_ijk, and the angle

# matrices are called phi_1, phi_2, phi_3

INT I # number of fourier modes in direction 1

INT J # number of fourier modes in direction 2

INT K # number of fourier modes in direction 2

INT X # number of evaluation points in direction 1

INT Y # number of evaluation points in direction 2

INT Z # number of evaluation points in direction 3

ARRAY b[I][J]

REAL tmp1, tmp2

ARRAY phi_1[I]
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ARRAY phi_2[J]

ARRAY phi_3[K]

ARRAY coeff[I][J][K]

ARRAY f[X][Y][Z]

im # imaginary number, square root of -1

for all z in Z #Complexity/size = NK

for all i in -N0:N0 #Complexity/size = M

for all j in -N1:N1 #Complexity/size = M

for all k in -N2:N2 #Complexity/size = M

b[i][j] += exp(im*phi_3[k]*z)*coeff[i][j][k]

end for (k)

end for (j)

end for (i)

for all x in X #Complexity/size = NK

for all y in Y #Complexity/size = NK

for all i in -N0:N0 #Complexity/size = M

for all j in -N1:N1 #Complexity/size = M

tmp2 += exp(im*phi_2[j]*y)*b[i][j]

end for (j)

tmp1 +=exp(im*phi_1[i]*x)*tmp2

end for (i)

f[x][y][z] = tmp1

end for(y)

end for (x)

end for (z)

#------------------------------------

This algorithm has complexity (NK)M3 + (NK)3M2. Dominating term is
(NK)3M2, which depends more heavy on the number of evaluation points
per direction. This is better when NK < M , which may often happen when
parallellized. When parallel computation is utilized, the number of grid
points per process goes down since the domain is decomposed in smaller
subdomains, each process consisting of a number of elements K and a num-
ber of grid points N. The number of modes is fixed, does not benefit from
parallelization.

E(k) =
∑

|k|=k

2πk2

∫ ∫ ∫
‖|hatu||2dk (101)

Figure 2 shows the absolute value of the velocity field at time t=3.3, using
the Voluviz software developed at FFI by Anders Helgeland and colleagues.
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Figure 2: |u(x, t)|, t = 3.3. Colour table: Red marks the higher value.

5.10 Homogeneity

Following Dubois et al. [24], we shall now define homogeneity of a random
field.

Definition 5.4 A random field u(x; θ) is said to be spatially homogeneous
when all its moments and joint moments are invariant under any space
translation of the set of points {xi}i=1,··· ,m in Rn, that is,

ml1···lm
j1···jm

(x1 + r, · · · , xm + r) = ml1···lm
j1···jm

(x1, · · · , xm) (102)

for any separation vector r ∈ Rn, 1 ≤ li ≤ n, i = 1, · · · ,m

Meaning, any statistical moment, defined the following way:

Definition 5.5 For a probability density or random function y : Rn → R,
a p’th order moment is:
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mr1···rm

j1···jm
= E

(
n∏

i=1

Xri

ji

)
=

∫

Ωn

n∏

i=1

Xri

ji
y(x)dnx (103)

Where the indices ri sum up to p, and the ji-indices denote the moment
contribution from variable number i.

m∑

i=1

ri = p,
m∑

i=1

ji = p

The zero’th first moment is equal to 1, the first (order) moment is the
expected value, the second (order) moment is the variance, the third is
known as skewness, the fourth is called kurtosis. A statistical moment of
order m is a constructionHomogeneity of the turbulence means that the
stochastic quantity called the two-point correlation tensor yields the same
value whenever the arguments x and x′ are separated by the same distance r.
In other words, the field may not have regions of special behaviour, since any
two regions separated by a distance vector r, must have the same statistical
behaviour.

5.11 Isotropy

The homogeneity may allow a certain type of eddies like the long elliptic
ones, and a stream with a distinct direction of the net flow may exhibit
homogeneous behaviour. But if we change the coordinate system, we will
see that the two-point correlation tensor changes. Isotropy is a condition on
a system that the statistical quantities shall be invariant under any rotation
and translation of the coordinate system. Other implications are that the
average velocity can not differ from zero, see Dubois et al. [24].

5.12 The Scales of Turbulence, Reynolds numbers and useful
quantities

Definition 5.6 In a fluid enclosed in a geometric structure with character-
istic length L, kinematic viscosity ν, and velocity v, the Reynolds number is
the ratio

R = vL/ν

For high Reynolds numbers (R>X) [], the motion of the fluid will have
turbulent character. Talking about scales, it is worth mentioning the concept
of similarity also. According to Landau and Lifshitz [16], the movement of
bodies of geometrically similar shape, or the flow in an enclosure with similar
geometric shape, should have some similar characteristics, ans should in fact
be similar if they scale the same way. It should be possible to project the
flow of one geometric situation with a viscous fluid one-to-one to an up- or
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downscaled verions of the same situation. The concept is explained better
in Landau and Lifshitz, but it is very important. The law of similarity
by O. Reynolds 1883 states that flows of the same type with the same
Reynolds number are similar. This goes for turbulence as well as laminar
fluid flow. See for instance Landau and Lifshitz [16] for a brief discussion
about similarity.

Definition 5.7 Turbulence is the notion of randomness in the fluid. A
turbulent flow is a flow regime characterized by chaotic, stochastic property
changes. This includes low momentum diffusion (∇· (ρv)), high momentum
convection and rapid variation of pressure and velocity in space and time.
Non-turbulent flows are called laminar.

Definition 5.8 The Reynolds number for a turbulent eddy of size λ is de-
fined as [16]

Rλ = vλλ/ν

Where vλ is the velocity fluctuation of the eddy, and ν is the kinematic
viscosity of the fluid and eddy. Since an eddy is a two-dimensional ellipse,
the velocity fluctuation increases more than linearly with diameter,

The Integral scale is the scale of the energy-containing eddies, the Taylor
microscale is the scale for the inertial subrange eddies, the kolmogorov mi-
croscale is the scale for the dissipation range eddies. See
http://amsglossary.allenpress.com [1]. The Kolmogorov length, η, and Kol-
mogorov velocity scale v, are ([10])

λkolm = (usually η) =

(
ν3

ǫ

)1/4

, vkolm = (usually v) = (νǫ)1/4 (104)

If we know the dissipation and the kinematic viscosity, we can easily
calculate these numbers. The Taylor Microscale length λtayl is the following,
defined in Dubois et al, [24] (among many)

λtayl =

(
− RLL(0)

∂2RLL/∂r2(0)

)1/2

(105)

Also, the following formula may be used, relating the Taylor microscale to
the kinetic energy and enstrophy (see Dubois page 38 [24])

λ2
tayl = 5

〈u(x)〉
〈ω(x)〉 (106)

Following other ways of calculation, among them formulas used by Chris-
tian Wollblad in his master thesis ”DNS of Homogeneous Isotropic Turbu-
lence and the Importance of Boundaries” [27], which originally were devel-
oped by (amogn others) Batchelor [2] and Hinze [10], turn out to be useful.
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However, I choose to follow Dubois because I like the structure, and the
easiness of following the sequence of arguments. We start by defining a
characteristic velocity for the inertial range eddies, which may be fairly ac-
curate approximated as the mean velocity of the whole domain, arguing that
when squared, only the largest velocity contributions contribute in a large
degree to this number, urms

utayl = 1/3〈|u(x)|2〉 =
2

3
E

Using this characteristic velocity, we are about to define the characteris-
tic length, which may be interpreted as the average length scale of the eddies
in the inertial range.

λtayl =

(
− RLL(0)

R11(0, 0, 0)

)
(107)

λ =

(
15νu2

1,rms

ǫ

)1/2

The Taylor microscale Reynolds number is given by th ratio of characteristic
length and velocity to kinematic viscosity,

Rλ =
vλλ

ν
=

√
2/3E

√
10νE/ǫ

ν
=

√
20/3

νǫ
E (108)

5.12.1 Scales of Turbulence

Scale means rapidity of fluctuation, and the more violent fluctuations, the
smaller is the length scale of a fluctuation. The scale is inversely propor-
tional to n, the number of zeros in the polynomial. The scale concept is
eminent in turbulence. What is turbulence? According to the discussion in
Landau and Lifschitz, the turbulence is mainly small-scale eddies, dynamic
systems of fluid circulating with radius of circulation being orders of mag-
nitude smaller than the system dimensions. This movement may be seen
as probabilistic or stochastic, given that a particle may stay in a cycle for
long time, spin around some critical point and then leave, move on with
the fluid or even get trapped. The Strange attractor and other structures
may be seen. The scales of turbulence will be discussed further in this chap-
ter, for now it is enough to note that there are large scales, eddies having
rotation radius equal to almost half the domain length, called the integral
scale eddies, intermediate size eddies around one third or one tenth of the
large-scale radius, called the Taylor microscale eddies, and the tiniest eddies
in the regime where fluctuating fluid calms down and transforms the kinetic
energy to heat, dissipated in the system. This smallest scale is called the
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Kolmogorov microscale, and the size of those eddies must be proportional
to the following quantity, by dimensional analysis arguments

LKolm ≡ η ∝ (ν3/ǫ)1/4

The integral scale is the length scale of the eddies containing most of the
kinetic energy, i.e. the largest eddies, they often have the highest absolute
velocity too. By intuition, we should expect the variation of the largest
eddies to be almost the same size as the domain of calculation (which again
may be chosen a priori to contain an integral number of eigen-periods of the
largest eddies). We start by defining the characteristic velocity for the largest
eddies, which may be fairly accurate approximated as the mean velocity of
the whole domain, arguing that when squared, only the largest velocity
contributions contribute in a large degree to this number, urms

ularge = urms = 1/
√

3〈|u(x)|2〉1/2 (109)

The integral the following, defined in (among others) Dubois et al. ([24])

L =

∫∞
0
R11(r, 0, 0)dr

R11(0, 0, 0)
(110)

How to compute all of these? The following ”risky” fast formulas may
be utilised ??:

dE

dt
= −ǫ (111)

λ2
g ≃ −15νu′2

dE/dt
(112)

ǫ/2ν = 〈∂ui

∂xj

∂ui

∂xj
〉 (113)

u′3

−∂E/∂t ≃ L (114)

The integral scale is found using the following formula,

L =
π

2u2

∫ ∞

0

E(k, t)

k
dk (115)

Or the more approximate, thumb-rule explicit formula,

L ≃ u′3/ǫ (116)

We can use eihter of these. There is a little issue with Fourier transforms
of functions defined on non-uniform grids. It is not straightforward, and still
there is a lot of trouble getting the energy for velocity components on the
sphere
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Sk = k : |k| = k

The energy dissipation is clearly defined as the rate of change in kinetic
energy, namely

ǫ =
dEkin

dt
=

d

dt

∫

Ω

0.5u2dΩ (117)

We may also utilize the fourier representation of the velocity, where the
fourier transform of the velocity field is

F(u) = û, ǫ =
dEkin

dt
=

d

dt

∫

k3

0.5û2dk3 (118)

All of these are naturally stochastic, time-averaged quantities, considered
valid as ensemble averages.

The enstrophy is given by the integrated squared norm of the vorticity
vector, which is equivalent to the integral of the Frobenius norm of the
gradient of the velocity, i.e. (see Dubois et al. [24])

E(u) =

∫

Ω

|∇u|2dx =
3∑

i,j=1

|∂ui

∂xj
|2 (119)

The energy is denoted e(u), and is given by the following relation,

e(u) =
1

2

∫

Ω⊆R3

|u(x)|2dx =
1

2

∫

Ω

uiuidx (120)

The enstrophy determines the rate of dissipation, which may be seen
from the following argument, taking the dot product of u and the incom-
pressible Navier-Stokes equations (uj,j = 0), integrating over the whole do-
main Ω, assuming periodic boundary conditions for the pressure and velocity
or if Ω is the whole of R3, vanishing velocity, velocity gradients and pressure
at infinity, we get the following relation, still following Dubois et al. [24]

∫

Ω

(uiui,t + uiujui,j − νuiui,jj + uip,i)dx =

∫

Ω

uifidx (121)

∫

Ω

uiui,tdx =
1

2

d

dt

∫

Ω

u2(x)dx =
d

dt
e(u), (122)

∫

Ω

ujuiui,jdx =
1

2

∫

Ω

uj(u
2
i ),jdx = −1

2

∫

Ω

u2
i uj,jdx = 0 (123)

−
∫

Ω

νuiui,jj = ν

∫

Ω

u2
i,jdx = νE(u) (124)

∫

Ω

uip,i = −
∫

Ω

ui,ipdx = 0 (125)
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Leaving us the following expression for the change of kinetic energy using
the enstrophy and integrated force f times fluid velocity u,

d

dt
e(u) = −νE(u) +

∫

Ω

fiuidx (126)

Assuming zero external body force, we have the following simple expres-
sion for the rate of change of total kinetic energy, which equals the total
turbulent energy dissipation rate ǫ, since no external energy enters or leaves
the system

d

dt
e(u) = −νE(u) = −ǫ (127)

This is very applicable in calculations, since we may want to extract the
ǫ to be able to calculate the integral scale, the Taylor microscale, the Kol-
mogorov microscale and other derived quantities like the Reynolds numbers
corresponding to these scales.
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6 Analysis

The simulations were initiated using the energy spectrum described in sec-
tion 5.9. They were excecuted using a time stepsize-increase method which
was basically to output the solution at chosen times, and then increase
the time stepsize, running the problem from the last output with the new
timestep. I adjusted between four and six times for a single test. The re-
sults are compared to the reference solution using a normalization process
to reduce the initial energy-damping problems experienced. More about the
initial energy-damping will be found in chapter 6.2.*********TOO SOON
ENDING*****

6.1 Presentation of results

The main subject was to investigate the kinetic energy decay of homoge-
neous, isotropic turbulent velocity fields simulated using the software devel-
oped at FFI, a 3d spectral element discretization based solver for partial
differential equations, specially aimed at Navier-Stokes equations, utilizing
variational multiscale turbulence modeling. The following setup was used
for the main simulations.

Exp. # M N model large alpha
0.0 8 8 smag-les N/A 0.50
0.1 8 8 vms-les 0.000 0.00
0.2 8 8 vms-les 0.500 0.00
0.3 8 8 vms-les 0.750 0.00
0.4 8 8 vms-les 0.875 0.00
1.0 4 16 smag-les N/A 0.50
1.1 4 16 vms-les 0.000 0.00
1.2 4 16 vms-les 0.500 0.00
1.3 4 16 vms-les 0.625 0.00
1.4 4 16 vms-les 0.750 0.00
1.5 4 16 vms-les 0.875 0.00

I will now present some figures. The energy plots are scaled such that
maximum value i one for all the graphs. The time axis is not scaled. I
present the data using reduced numberof graphs in each plot, therefore not
all graphs of solutions will be presented. I have removed some of the graphs
for parameter ”large” between 0.5 and 0.875, to make it easier to see the
separation between the graphs, which is quite small already. There ewill be
three figures. The first will show the time evolusion of kinetic energy using
a K1 = K2 = K3 = 8, N1 = N2 = N3 = 8 grid, displaying three graphs in
addition to the DNS reference. The simulation using no vms model, vms
with large scale fraction equal to zero, and large-scale fraction equal to 0.875,
figure 3.
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Figure 3: (8 ∗ 8)3 grid

The second figure will be of the K1 = K2 = K3 = 4, N1 = N2 = N=16
grid, showing three graphs. One without the vms model, and then two using
vms with large-scale fractions 0.5 and 0.875, figure 4.

There is a significantly lower dissipation of energy in both the figures.
The enrgy does not decay nearly as fast as it should. When the discrepancy
is as large as this, we may need to go back to the drawing board. However,
the relative behaviour of the simulation energy evolutions show that the
higher large-scale fraction, the faster decay. That may indicate that the
model is better than having no model at all. Since the discrepancies are
so large, I choose not to make statements about the vms-les method, but
conclude that there are significant discrepancy, and the software must be
checked.

6.2 Initial Damping

I found problems with the software when initializing the velocity field. Giv-
ing a highly turbulent field, initiated with the energy spectrum in wavenumber-
space, with a highest wavenumber-vector norm |kmax|, and a grid described
by h = (K,N), that is: K elements in each of the three spatial dimensions,
and each element having polynomial degree and number of GLL integration
points N, the problem is approximately this: The total kinetic energy suf-
fers a great loss that increases monotonically when N is increased. The total
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Figure 4: (4 ∗ 16)3 grid

kinetic energy sees to be kept from falling too much if the number of ele-
ments, K, is relatively high, and the energy will increase monotonically if K
is increased. What is the possible explanation? There are many suggestions
in the air. Some say that the initial iteration procedure, the implicit first
order method, may be the cause of the great damping. If the damping in
the method is anti proportional to the number of elements, then we might
have a solution. The main stability and accuracy issue when dealing with
implicit methods is that most of them are stable, regardless of the grid and
the complexity of the underlying differential equation. The critical issue is
accuracy. The accuracy of the method that is used, is the

6.2.1 Filtering and over-integration

The importance of filtering and over-integration is easily seen by the user
when running tests. The lower level of filtering, the more iterations needed
in the various sub-step procedures in the software algorithm. A short exam-
ple, I was supposed to run a simulation using the standard initial spectrum
for the Fourier-transformed velocity field. I was going to test the depen-
dence of filtering. Without the filter, the program kept running and there
was a slight increase in the number of iterations as time went by, even if the
characteristic behaviour of the velocity field in the liquid was to decrease its
energy, such that compute time should technically decrease, and problems
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would be increasingly less complex, and would need fewer iterations. My
supervisors had experienced no poitive effects of using both ove-integration
and filtering in their previous channel simulations, as such they were scep-
tical about the combined use. It turned out, without the vms model, the
over-integration alone was not enough. I had to put on filtering, at the level
of 0.5. After that adjustment, simulations behaved better. When using the
vms model, no filtering was applied.
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7 Conclusion

To conclude this thesis, I sum up the results.

• The simulations were executed according to plan, not all tests that we
wanted to do were completed, but we have the main simulations. There
is a problem in comparison with the reference solution, which needs
to be sorted out before any real knowledge about the performance of
the methods is obtained.

• The homogeneous, isotropic velocity was in fact shown to yield appre-
ciable behaviour at time equal to zero. I thought there was a stong
connection between the variation of the grid parameters and the initial
velocity, but due to a delay of first output, this was a misunderstand-
ing, and led the author to address the wrong problems. The real
problem seems to be that the initial turbulent field is damped out
very fast. For girds with a high polynomial degree, the damping was
most intensive. This problem has no obvious solution, I recommend
the developers to look in to that and try to solve the problem.

• A good deal of knowledge about the software has been obtained. It
takes some months to fully understand a large program. I recommend
that there is produced more documentation about he code, to get
workers faster in to development stage.

• The homogeneous, isotropic turbulence simulation has yet to produce
adequate results. A final validation of the code must be able to address
the problems encountered with the initial damping of kinetic energy.

Having said that, I believe the method is very powerful. We have seen
results from channel simulations showing very good agreement with reference
benchmark solutions. I believe the problem that was incountered in my work
has to do with the sudden insantiation of a violently turbulent field also. If
the field was gradually increased or artificially forced into being turbulent
fy external forcing function, the initial value problem should be overcome
without much difficulty.
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