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1. Introduction
The intermittent power generation from wind energy industry influence both power grid stability,
energy system operators and the power marked economics. Accurate wind power predictions
may reduce the cost impact of wind energy, and several forecasting techniques and methods have
been proposed during the last decades [1, 2]. The performance of different forecasting methods
is normally evaluated using root mean square error (RMSE) or mean absolute error (MAE), and
the performance in general decreases for wind sites in complex terrain [3, 4].

In this paper we investigate the use of analog ensembles (AnEn) for wind power prediction
[5] with focus on five wind power parks in northern Norway. This cold climate region can in
general be characterized with good wind resources, but is challenging with the complex terrain
consisting of large mountains, valleys and fjords [6, 7]. As input to the AnEn forecast method, we
have used wind data from the open and operational weather forecast provided by the Norwegian
Meteorological Institute !. The AnEn wind power prediction is compared to downscaling by
the high-resolution WindPRO park modelling, using the same weather forecast as input. In
addition, the naive persistence output model is included as a reference.

The paper is organized as follows: Section 2 describe the wind parks, the wind power
forecasting methods and the verification statistics used. Results are shown and discussed in
Section 3, followed by recommendations and conclusions in Section 4

2. Method

2.1. Wind parks

The location of the five wind parks in this study are shown in Fig. 1. The overview shows the
terrain elevation in northern Norway in gray tones from black to white, corresponding to Om and
2000m height above sea level, respectively, and the ocean is also shown in white. Nygardfjellet
wind park is found south west in this figure, quite close to the border to Sweeden. This wind park
is located at an elevation of about 400m, in a valley going west-east and with high mountains
close by to the north, and where high wind from east is common during the winter season [7].
Fakken wind park is located on a small island on the coast, on a small hill at 40-200m elevation,
with open sea to north, close by mountains to the west and a mountain range to the south
dividing with two large fjords. Havgygavlen is located on a flat low island, at about 200m
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Figure 1. Northern Norway. Ocean shown in white. Gray tones from black to white shows
terrain height from Om to 2000m, respectively.

Table 1. Description of wind park sites.

Name MW  Location °N/°E  RIX  Terrain features

Fakken 54.0 70.098 / 20.081 5-10  Small hill, high steep mountains and fjords
Havgygavlen 40.5 71.012 / 24.589 10-20 Flat low island, steep cliffs and fjords
Kjollefjord 39.1 70.922 / 27.268 0-5 Low flat mountains and fjords
Nygardfjellet 32.2 68.504 / 17.879 5-10  Inland valley, high steep mountains
Raggovidda  45.0 70.769 / 29.094 0-5 Flat inland mountain, close to coast

elevation. No nearby high mountains, but the island has steep cliffs down to the ocean and
there are several fjords and narrow straits close by. Kjollefjord is located at a low flat mountain
area, at about 260m elevation, and with a large fjord to the west going north-south and some
smaller fjords north and south going in the east-west direction. Raggovidda is the newest wind
park in this region, is located at about 430m elevation on a large flat mountain area, with good
wind resources and a capacity factor above 45% the last three years.

These wind parks are compared and summarized in terms of location, turbine types, site
ruggedness (RIX)[8] and nearby terrain features in Table 1. The close by and steep cliffs down
to the ocean make a large impact on the site ruggedness for Havgygavlen. The large mountains
and fjords around Fakken and Nygardsfjellet could also be challenging for wind prediction using
numerical weather modelling.
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2.2. Wind power forecasting

The weather forecast used in this paper is the Meteorological Cooperation on Operational
numerical weather prediction (MetCoOp) run by Norwegian Meteorological Institute and
Swedish Meteorological and Hydrological Institute. The forecast covers both countries with a
horizontal resolution of 2.5km, using a horizontal grid of 739x949 points centered at 63.5°N and
15°E, and is issued at 00, 06, 12 and 18UTC with a 66 hour lead time. The MetCoOp is a branch
of HARMONIE model developed within the High Resolution Limited Area Model consortium
with several European meteorological institute, and was the main operational forecast in Norway
from 2014 to 2016. This high resolution model has been shown to improve the wind, temperature
and precipitation forecast in complex terrain [9]. The MetCoOp data set had some missing data
in 2016, and in those cases, the succeeding MEPS or the similar Arctic AROME forecast data
is used as a replacement.

Based on the current MetCoOp weather forecast F}, at lead time ¢, the AnEn method search
through historical weather forecasts to find similarities based on a set of physical variables. The
ranking of similarities between current forecast and a historical forecast A; is found following
the distance metric [10]

Ny T
w;
1 Al =) &,J > (Firs — Aigag)” (1)

i=1 9%\ j=—7

where N, is the number of physical variables to consider, w; is the weighting chosen for the i-th
parameter, 7; is the estimated standard deviation of the variable, F; ; is the forecast for the i-th
variable at lead time ¢, and 7 describe the window of smoothing along the lead times of the
forecasts. The N4 highest ranked historical forecast at that particular lead time ¢ are the set
of analog ensembles A;, , and the mean of the observed analog ensembles power output is the

AnEn power forecast PWt{anm} for lead time
1 &
PWt{anen} _ N_A Z PW{anen} [Atn] ) (2>
n=1

The PW1enen}[A, ] are the power forecast ensemble which can be used to investigate the
statistical properties of the forecast, e.g. standard deviation or interquartile range, and it is
also possible to weight the analog outputs differently and/or use Kalman filtering to improve
the forecast [10, 5].

The physical variables in the AnEn power forecast using Eq. (1) are 10m W; and direction
Dy interpolated to the wind park position shown in Table 1. The AnEn power forecast can use
wind speed from 10m directly, even if the wind turbine nacelle typically are placed around 80m
above the terrain, as the observed historical output from the nearest historical forecast is used
as predicted forecast. The AnEn power estimate have 66 hourly forecast lead times, as this is
the underlying wind forecast form the MetCoOp model.

Our AnEn wind power forecast is the mean value using N4 = 20 analogs, with equal weights
on wind speed W; and direction D, with window smoothing 7 = 1 and without bias correction
[11].

We will compare the results from AnEn power forecast method with the naive persistence
model (PRE), where the current power output as the forecast for all lead times, PW/™. PRE
is often used as a starting point both in operational use and for comparing different forecast
techniques. We have this method as a base line, as the persistence methods performs well for
short time periods [1].

The second type of forecasting we have included in this study uses power curves from the
park wind turbines and numerical weather prediction for the wind estimate (PNWP). This
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method use the same 10 meter wind speed and direction data as the AnEn method, but now
in combination with a wind park model from WindPRO software. As the WindPro park model
assumes wind speed at turbine height, we have included a park depended wind scaling constant
¢ giving park power output as

PWP™P = ppc [eWy, Dy] (3)

where the park power curve function ppc|-] is a linear interpolation from the park specification
covering wind ranges 0,5-29,5 m/s and 12 wind directions (N, NNE, NE, ...) of the WindPRO
Park Power Verification Model (PPV) [12]. The input to the PPV model is based on N50
maps of Norway from Norwegian Mapping Authority, with 20 meter elevation levels and terrain
roughness index, and the PPV model takes into account the power curve for each turbine, the
placement of the turbine, the local topography and the wake effects between turbines [12]. The
wind scaling constant c is chosen for each wind park site by optimizing the model output RMSE
using the training data set, as described in Eq. (5).

Using the same input data for both PNWP and AnEn, allows for a fair comparison between
the models as they share the same inherent variability from the numerical modeling of a changing
weather pattern.

2.3. Forecast performance

The wind power data in this study are measured hourly total output, PW?, during 2016 for
each site listed in Table 1 provided by the Norwegian Water Resources and Energy Directorate
(NVE)2. The power production time series are normalized with the corresponding wind park
installed capacity, as listed in Table 1, as this allows a direct comparison between the different
wind parks.

The wind forecast data is chosen so that all lead times are within 2016, creating a total of
1456 power forecast time series each of 66 lead times, PW5, where m corresponds to the anen,
pnwp or pre forecast method, ¢ is the lead time and i is the forecast time series. The forecast
data is split into a training set comnsisting of the first Ny = 1200 times series, and the last
Np = 200 time series are used to calculate the prediction performance for each method.

Based on the error e’} between the predicted and observed power production

ety = PW[ — PWY; (4)
the root mean square error (RMSE) at each lead time ¢ is defined as [13]

RMSE" = Ni % (eg;.)Q. (5)

P

The training set consisting of the first Np = 1200 time series, corresponds to the period from
January 1st to October 26th, is used to find the optimal RMSE scaling factor ¢ for each wind park
combining Eq. (3) and Eq. (5). The verification period runs from November 9th to December
29th, and the no overlap period between those ensure that there is no overfitting for the scaling
factor.

The different power forecast methods is further analyzed using the bias b}"*, or the mean error
.

I A
b?:e?:prze?ﬁa (6)
i=1

2 https://www.nve.no/energiforsyning-og-konsesjon /vindkraft /
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standard deviation of the error,

Np

oM = std (") = J Npl_ > (e;f;.)Q (7)

i=1

and the skill score ssi* based on the mean square error and the pre basic persistence forecast

- (RMSE]™)? .
(RMSEP™)?

syt =

(8)

Note that ss?"“ = 0, and that the skill score can be interpreted as the effective improvement
in other two method compered to the basic persistence forecast. A value above zero shows
that the method is better than the PRE method, and the value can also be interpreted as the
improvement in percent [14].

The last statistical quantity used in the comparison of the methods is the Pearson correlation
coefficient defined as [15]

m 1 % PW —PW[™\ ( PW¢, — PW? o)
T Np 12\ std (P std (PWy) )’

where PW;™ and std(PW;™) is the mean and standard deviation of the forecast methods, using
the notations and definitions in Eq. (6) and Eq. (7), respectively. The correlation coefficient
ri* € [—1, 1] describe the linear relationship between the forecast and measured value, where a
value close to 1 (or -1) indicates a strong relationship and a value close to 0 means that these
to quantities are uncorrelated [16].

3. Results

The RMSE for each power forecast method as a function of lead time are shown in Fig. 2, where
the number in the parenthesis is the lead time averaged RMSE of the corresponding forecast
method. The persistence method (PRE), shown as black solid lines, performs as expected with
low RMSE at low lead times, but RMSE increases rapidly as t increases for all wind parks.
Comparison between the wind parks shows that Nygardsfjellet has the highest RMSE values,
which may indicate a more rapid change of wind pattern at this park. The differences between
the parks are in general quite small, and the average RMSE across wind parks, shown in lower
right plot Fig. 2, shows that RMSE increases the first 20 hours and then stabilizes at RMSE
0.45 — 0.5.

The numerical weather forecast results, PNWP, are shown as a red dashed-dotted lines in
Fig. 2. For this forecast method, the RMSE starts around 0.2-0.25 at ¢ = 1 hour, and increases
almost linearly with lead time for all parks up to lower average RMSE value 0.35-0.4 than the
other three, which indicates that the meteorological forecast is more precise here. The PNWP
results are significantly lower than PRE for ¢ > 2 for all wind parks, but at shortest lead time
the persistence method still preforms better. Note also that the PNWP seems to increase slower
in the 12-36 lead time region for Fakken and Nygardsfjellet wind parks compared to the three
other wind parks, indication that this method could provide good input for day-a-head trading.

The AnEn forecast results, shown as a blue dashed line in Fig. 2, provides a lower RMSE than
the PNWP in all case. The overall results shows a RMSE with more than 10% improvement
for all lead times. The improvement is highest and lowest for Havgygavlen and Nygardsfjellet,
respectively. The AnEn method shows in overall a consistent linear increase in RMSE from
0.2 to 0.3 for lead time 1 to 66 hours, and the performance variation is very small between the
different parks.
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Figure 2. RMSE results for each wind park as function of lead time, with the lead time averaged
RMSE in legend parenthesis. Lower right plot shows the overall RMSE averaged all wind parks.

The upper left plot in Fig. 3 shows the overall bias of the different forecast methods. PRE
has a bias close to zero, while PNWP and AnEn are slightly over- and underestimating the
power output, respectively. The bias increases for higher lead times, but the lead time averaged
bias is under 2%. This bias in the AnEn case might come because of yearly variation of wind
speeds, as the verification period at the end of the year might include more high wind events.

The overall standard deviation of the errors are shown in the upper right plot of Fig. 3. The
standard deviation for all methods are almost identical to the RMSE results plotted in the lower
right corner of Fig. 2. This shows that the prediction error is mainly caused by high variation
in all cases, and not from bias.

The PRE method has a high correlation coefficient close to 0.92 for ¢ = 1, but the correlation
drops rapidly and falls below 0.50 at t = 7 hours. The PNWP and AnEn forecast methods, on
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Figure 3. Overall performance of PRE, PNWP and AnEn methods. Upper left: Bias. Upper
right: Standard deviation of error. Lower left: Correlation. Lower right: Skill score

the other hand, starts with a correlation close to 0.8 but the decay is significantly slower and the
correlation does not drop below 0.5 even for the longest lead time ¢ = 66. The AnEn method
has a slightly higher correlation with measurement compared to the PNWP method.

The last plot is the skill score results, shown in the lower right corner of Fig. 3. To allow
for easier readout for each lead time, the hourly results are shown as black dots, red circles and
blue crosses, for PRE, PNWP and AnEn forecasting method, respectively. This figure shows
that PRE performers best for ¢ = 1, for ¢t = 2 the PRE and AnEn methods performs equally
good as SS{"" = 0, but for all other lead times the AnEn forecast performs best. The average
improvement of AnEn and PNWP compared to PRE is 66% and 51%, respectively, and for lead
times ¢ € [12,36] relevant for day ahead energy trading, these numbers increases to 75% and
65%.

4. Conclusions
In this paper we have investigated five different wind parks in northern Norway with respect to
power prediction using three different prediction methods: PRE, PNWP and AnEn.

We have shown that the AnEn method provides a robust power forecast at all wind parks
in this study. Overall, the RMSE for this method is 44% lower than the persistence method
and 16% lower than optimized wind speed from numerical weather prediction and power curves.
The performance of all methods is also investigated using standard deviation of error, skill score
and Pearson correlation coefficient, and the AnEn method perform better than persistence for
t > 2 hours lead time and better than PNWP for all lead times.

The large improvement in RMSE from PNWP to AnFEn method in the case of Havgygavlen
wind park might be explained by the high ruggedness index for this site. It is well known that
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numerical weather models have higher errors in complex terrain, but the AnEn method seems
to be successful in handling those cases. Our results about the robustness and improvement
using AnEn method compared to PNWP in complex terrain are similar to those represented in
[4], although the latter uses all ensembles to create a probabilistic power forecast and we have
used a deterministic approach. Furthermore, the results in this paper expands the use of the
AnEn method into several wind parks located in a coastal complex terrain, which add some new
insight into the performance of both AnEn and PNWP based methods.

The site ruggedness (RIX) has been used in the literature to classify the complexity of the
terrain, and it is well known that the performance of short-time forecasting of wind speed and
direction strongly depends on the terrain complexity [3]. The MetCoOp weather forecast has
been used in this study, and the wind power forecast from the PNWP method have almost
identical large variance both at Havgygavlen with a RIX value of 10-20, and for Kjgllefjord and
Raggovidda where the RIX values are in the 0-5 class. On the other hand, the Fakken and
Nygardsfjellet wind park have the lowest RMSE errors, although these parks have the highest
nearby mountains. Our results indicates that both nearby mountains and mountain range,
valleys, fjords and sharp cliffs can create local events that affects the performance, in both
negative and positive direction. The RIX value alone do not provide a clear indication to the
trustfulness of the PNWP forecasting method in our case, and a closer evaluation of the NWP
performance in general may be necessary in complex terrain.

When it comes to operational wind power forecast systems, it is important to keep in mind
that the numerical weather prediction results are not available immediately. The MetCoOp
forecast at initiation time (00, 06, 12 and 18 UTC), uses some time both to collect receive and
process all observations and to do the numerical simulation, which implies that the forecast
typically is available for public 2.5 hours after the initiation time. The AnEn method is not
computer intensive and does not add extra time in this setting, but in practice both AnEn and
PNWP method results should be shifted two leads hours forward because of the NWP processing
time for a fair comparison with the PRE method. Thus, we could expect that the PRE method
performers best up to ¢t = 3 lead hours, and AnEn best after this. As day-a-head power trading
typically has to be submitted before 12:00 the day before, this corresponds to lead time in the
12-36 hour region. For these lead times, the wind power forecast system is less effected by the
NWP processing time and the AnEn method should be a natural choice among the methods
investigated in this paper.

In this paper, the input wind parameters to the PNWP and the AnEn power prediction
models are limited to a numerical weather prediction model with 2.5 km horizontal resolution
taken 10 meter above the ground. If the input came from a higher resolution model, and/or the
wind parameters at turbine hub heights were used, we would expect a decrease in RMSE for
the PNWP. Changing the input parameters could also improve the AnEn performance, and it
would have been interesting to quantify the ratio on improvements in these models.

Our results are limited to five wind parks and about one year of data, and some forecasts
time series from other models had to be included. With longer training data, using a single
operational forecast model and more advanced versions of analog ensembles, we can expect
increased performance in AnEn.

5. Learning objectives

The paper introduces different classes of short-time power prediction, and explain an
experimental setup for the investigation of model performance. The wind parks included
represents different complex terrain types, including high steep mountains, valleys, fjords and
sharp cliffs. This might create significant localized speed up or wind shadow area effects. Out
results indicates that the analog ensembles method provide an robust and efficient method to
short-time power production in complex terrain.
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