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Abstract

The production of proteins in a cell is a regulated process. This
means that the cell will only produce a type of protein when that type
is needed. A fundamental step where this regulation occurs is at gene
transcription. It is observed that transcription is regulated differently
for different genes, and the question is therefore asked: why has evo-
lution come up with different modes of transcriptional regulation for
different genes?

Mathematical models of biological evolution are important for two
reasons: 1) aiding researchers in understanding how complex biologi-
cal systems have emerged and 2) enabling modelers to predict future
outcomes of evolution. In this work, models of evolution of natural
populations are applied to better understand the mechanisms of gene
regulation in E. coli by investigating two predictor arguments of gene
regulatory mode, namely the demand rule and the rule of minimal
error load.

Two models of population genetics are derived: the Wright-Fisher
model and the Moran model. These discrete stochastic models are
approximated to continuous stochastic models and to continuous de-
terministic mean field models. The continuous stochastic models are
used to investigate the demand rule, while the continuous deterministic
models are used to investigate the rule of minimal error load.

In the continuous limits it is found that both discrete Wright-Fisher
and Moran models can be described by the same equations. Two spe-
cial cases are investigated in the model derivations: variable population
size for the Wright-Fisher model and non-zero selection coefficients for
continuous approximation of the Moran model. The models show that
the demand rule describes well the evolution for the most basic mode
of gene regulation, and that the rule of minimal error load describes
the evolution for a larger group of gene regulation modes.

It is concluded that one should use the rule of minimal error load to
investigate advanced systems of gene regulation. The demand rule is
correct only as a special case for the most basic mode of gene regulation.
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Part I
Models of Population Genetics

1 Introduction

Population genetics is a field within theoretical biology that began its devel-
opment in the first half of the 20th century. Using mathematics, it connected
the ideas of Mendelian inheritance with Darwin’s ideas of natural selection
and thus contributed to what is called the modern evolutionary synthesis.
In the following paragraphs a presentation of some of the underlying biology
of population genetics will be given.

Darwin spoke of evolution as ‘descent with modification’. In this work,
evolution is the change of gene frequencies in a population over the course of
generations. If there are n individuals with a certain gene in a population of
total size N, then that gene has the frequency x = n/N in that population.
The frequencies of genes in a population are always changing. As individuals
reproduce they pass on their genes to their offspring; since not all individuals
have the same number of offspring gene frequencies will change over time.
The main task of population genetics is to study in detail what underlies
these fluctuations.

To understand how gene frequencies change, one must understand the
function of genes and how they are passed on. The role of a gene in an
organism is to serve as a blueprint for the production of one or several
proteins in the organism’s cells. Genes are for the most part located on
chromosomes, which are long helical DNA molecules made up of base
pairs of the nucleotides G, T, C and A. An organism can have just one or
several chromosomes. Humans, for example, have 2 x 23 chromosomes in
each normal cell. Humans inherit one chromosome of the same kind from
each of their parents - one from their mother and one from their father, and
thus humans are diploid organisms. In the models examined in this work
the organisms are assumed to be haploid, which means they have only
one chromosome of each kind. It is further assumed that they reproduce
asexually by cell division. An example of a haploid, asexually reproducing
organism is the bacterium F. coli, which in this work will be used as a model
organism.

The specific location of a gene on a chromosome is called a locus. Dif-
ferent variants of the gene at a locus are called alleles. Different alleles are
identified by their different characteristic effects on their host organisms.
For example, consider a locus on an animal’s chromosome where the gene
for fur color resides. Different alleles at the locus will give different fur color
for the animal. On the molecular level, different alleles always have differ-
ent sequences of DNA nucleotides. Yet one allele may be represented by
different DNA sequences as long as the sequences produce the same charac-



teristic effect. Hence it is the characteristic, and not the specific molecular
sequence, that identifies the allele.

Evolutionary biologists have identified several mechanisms that drive
evolution. In the population genetics models considered in this work, three
fundamental evolutionary mechanisms will be described mathematically: ge-
netic drift, mutation and natural selection.

Genetic drift. In reproduction and hence in evolution there is an el-
ement of chance. The term that is used to describe chance in evolution is
genetic drift. As an example, assume a population of 100 individuals where
half of the population carries an allele for pink fur and the other half an allele
for brown fur. They are haploid individuals, reproduce by self-insemination
and have only one offspring each. For simplicity, assume that this species
reproduces seasonally and that the individuals live only one season. It is
then possible that, for some reason, in one season only 50 individuals repro-
duce, and by chance all of them are individuals with pink fur. Thus all the
offspring that season will have pink fur, and the allele for brown fur in the
population is lost, for no other reason than chance. This is the mechanism of
genetic drift. This mechanism will come into the population genetics models
from the fundamental assumption of random mating.

Mutation. DNA molecules in living organisms continuously suffer from
mutations. A mutation could be one base pair that changes into another, it
could be the deletion or insertion of a base pair, or it could be larger events
such as the duplication or deletion of whole stretches of DNA, like a cut and
paste operation on the chromosome. Mutations can be caused by external
factors, such as radiation, or by internal factors, such as mistakes made
by the cellular copying machinery. There is a certain probability that as
mutations change an allele’s base pairs, that allele will change into another
allele. This is the mechanism of mutation in evolution. Coefficients of
mutation rates will be used in the population genetics models to quantify this
effect. Although the rates of mutation will in general fluctuate in time, for
instance during environmental stress, mutation rates are assumed constant
in this work.

Natural selection. The different characteristic effects of the different
alleles invite to a ranking between them. Suppose an organism with pink fur
is easier to detect by predators than an organism of the same species with
brown fur. This will likely lead to more pink-furred individuals being killed
before reaching reproductive age. Hence the allele that gives brown fur is
more likely to be passed on to the following generations. Another way of
saying this is that the allele for brown fur has higher fitness than the allele for
pink fur. Since nature thus ‘selects’ the most fit organisms, this is called the
mechanism of natural selection. There are many ways by which selection can
affect an organism; biologists differentiate between sexual selection, survival
selection and several others. In the end however, the selection value of an
allele may be identified with the relative reproductive rate of an organism



carrying that allele compared to its fellow species members bearing different
alleles in the same environment. From this definition, it is clear that the
selection value - often called the selection coefficient - of an allele depends on
the environment. In the population genetics models, a selection coefficient
will be given to each allele to quantify the fitness difference between them.
Since an allele can be beneficial to the organism in one environment but
detrimental in another, the selection coefficients of the alleles will be time
dependent. For instance, two alleles can affect an organism equally until a
stressful situation arises. Again considering the species with pink and brown
fur, the color of the fur of the organism may not matter unless there are
predators around. The alleles for pink and brown fur can thus be assumed to
be selectively neutral during those periods (perhaps while sleeping in the nest
or at night) while the allele for pink fur may have a selective disadvantage
during other periods of time (such as while foraging for food during the day).

Having described the biological background necessary to understand the
parameters of the population genetics models, the objective of this work
will now be stated. The aim of this work is twofold. The first aim is to
derive mathematical models that describe the change of allele frequencies
in a population over time, incorporating the above mentioned evolutionary
mechanisms. These models are the Wright-Fisher and Moran models of pop-
ulation genetics. They will first be introduced as discrete time, stochastic
models. Starting from these, continuous time stochastic models and contin-
uous time mean field models will be derived. The second aim is to apply
both kinds of continuous time models to shed light on a problem in biology.
The problem is the identification of factors that drive the evolution of gene
regulation. Gene regulation put simply is how a cell decides when to turn a
gene ON and OFF. One explanation of these factors is the Savageu demand
rule, another is the rule of minimal error load. The validity of the demand
rule and the rule of minimal error load will be tested using the population
genetics models.

2 The Wright-Fisher model

The Wright-Fisher model is named after Sewall Wright and Ronald Fisher,
two of the pioneers of population genetics. The model will first be intro-
duced as a discrete stochastic Markov process and then approximated to a
continuous Fokker-Planck equation.

At the heart of the Wright-Fisher model is a population that reproduces
with non-overlapping generations. This means that individuals from two
different generations can not exist together. At each time step in the model
all the individuals of the current generation reproduce randomly and then
die. Their offspring constitute the next generation.

The traditional way of introducing this model is with a constant popu-



lation size, N(t) = N. In this work a Wright-Fisher model that includes a
time depended population size will be introduced as well.

It is the assumed random mating of the parents that determines the
distribution alleles in the offspring. It permits thinking of the individuals,
or alleles!, in the offspring generation as having been randomly sampled from
the parent generation. This thinking lends itself naturally to the binomial
distribution.

2.1 The binomial distribution

The basic example of a binomial distribution is the distribution of the result
of a series of coin tosses. The coin has two sides, the heads(H) side and
the tails(T) side. The probability that a toss gives H is given by p and the
probability that the toss gives T is given by 1 — p. If the coin is flipped
N times, the number of Hs, a stochastic variable X, is then binomially
distributed:

P =) = (3 )= (2.1)

From real-world coin-flips one initially expects p = 0.5. The outcome is then
said to be random. Returning to the example with fur color, associate H
with the event that an individual with pink fur is born into the offspring
generation. Then, flipping 50 successive Hs in 50 flips would correspond to
only individuals with pink fur reproducing one season. The allele for brown
fur is lost since no Ts were flipped. This is how genetic drift comes into the
Wright-Fisher model.

One can imagine effects that could influence the value of p. If occasion-
ally a coin that landed on H changed into a T, the value of p would decrease.
In terms of evolution, this would be a mutation during reproduction in the
allele for pink fur that changed it into an allele for brown fur. And if there
was some inherent quality of T that caused it to land face up more often
than H, the value of p would decrease further. This would correspond to the
allele for brown fur having a higher fitness than the allele for pink fur.

2.2 The Wright-Fisher model for two alleles

Assume that two alleles, called A and B, can occupy a chromosomal locus
in a population of size N(t). In generation ¢ allele A has the frequency
' = n//N(t). The "-notation is used to identify the number and frequency
of alleles in generation ¢, as opposed to n or z which denote the number
and frequency of alleles in generation ¢4 1. Later, when the model is clearly
defined, the "-notation will be dropped for the sake of readability. The model

!Since the organisms are haploid, one can identify an organism with its alleles in a 1-1
fashion.



will be specified in terms of x = x 4, the frequency of allele A, but of course
xp can always be found from the relation zp =1 — x.

The variable of interest in the continuous approximation of the Wright-
Fisher model is the allele frequency z. However, the model will initially
be defined in terms of the discrete allele number n. The variable z will
be introduced when the approximation of the model to continuous gene
frequencies is made.

The probability that out of N(¢+ 1) offspring there will be n with allele
A is equal to the probability of selecting n parents that will give birth to
a child with allele A out of N(¢+ 1) reproduction events, or samples. This
probability is given by the binomial distribution as

N(t+1
P(n;t + l\n'; t) _ < ( n+ )>p?<1 _ pl)N(tJrl)*n’ (22)

where p; is the probability of sampling a parent that gives birth to a child
with allele A. In general, p; will be a function of 2/, the frequency of allele A
in the parent generation, as well as mutation rates and selection coefficients.
The parents are assumed to be sampled with replacement, which means that
one or more parents may reproduce several times.

To see how genetic drift, mutations and selection are introduced to p1,
each mechanism will be introduced one at a time. First, assume that there
are no fitness differences between the two alleles and that mutations do not
occur during reproduction. Then p; is simply the probability of selecting an
A individual in a population where n’ out of N(t) are A:

p=2z. (2.3)

If this value is used in equation (2.2), that equation describes the allele
evolution in the population under influence of genetic drift only.

Next, consider the occurrence of mutations. Genetic drift happens as
before but mutations are now assumed to occur as one generation changes
into the next. Allele A is assumed to mutate? into allele B with probability
v and allele B into allele A with probability u. Each allele can theoretically
mutate into an arbitrary DNA molecule; so for consistency in the two allele
model one can either assume 1) that no other allele than A or B can occupy
the locus in question or 2) that allele A is one specific allele and allele B is
the set of all other possible alleles. In this work the interpretation 2) will be
used.

With mutation in the picture there are now two pathways by which a
child with allele A can be born from the parent generation. Either the
parent carried allele A and no mutation occurred or the parent carried allele

2Mutation rates in bacteria are typically O(107®) per base pair per cell division. The
values of p and v depend on how many base pairs the alleles consist of (how long the gene
is) and how many base pair changes that are capable of changing one allele into another.



B which mutated into allele A during reproduction. This gives the following
modified expression for p;:

p1=(1—-v)z' +pu(l—2). (2.4)

Third, assume that one of the alleles increases its bearer’s chance to
reproduce compared to bearers of the other allele. Thus one allele has a
selection advantage over the other, or alternatively one allele has a selection
disadvantage compared to the other. A selection disadvantage for one allele
is assumed to reduce the probability for that allele to be sampled for repro-
duction. To quantify this effect, allele A is given a selection coeflicient of 1
and allele B a selection coefficient of (1 — s). Thus if s is positive allele A
has a selection advantage and if s is negative allele A has a selection disad-
vantage. In general, s will be taken to be positive, so that allele B will be
considered the less fit of the two. With selection in the picture, the probabil-
ities that allele A and allele B are sampled for reproduction are respectively
given by

¢ﬂﬁw:%> (2.5)
/ b2
o' t) = (1 — s(t))? (2.6)
z is the partition sum given by
z=p1+ (1—s(t)p2, (2.7)

to ensure that the sum of the two probabilities is equal to one, and pp is
given by (2.4). Writing the probability that a child is born with allele A as
¢1(2',t) will from now on be beneficial, since aspects of this probability as
a mathematical function will be considered. Since focus is on allele A, the
notation ¢(2',t) = ¢1(2’,t) will be used. The full expression for ¢(a’,t) is
given by

p+(1—v—pa

1) = 1—s(t)(1—p)+s(t)1—v—p)" (28)

When the approximation of the Wright-Fisher model to continuous x is
made, this probability must be given an approximate value. The approxi-
mation is obtained by assuming that the model parameters u, v and s are
O(e). It is assumed throughout this work that € is a number less or equal to
1072, and it is also assumed that N (t) is large enough so that 1/N(t) = O(e)
for all t. As shown in the appendix, the approximation is given by

(2’ t) = 2’ + eM (2, t) + O(€?), (2.9)

where
M t) =p+st)(1 -2z’ — (v+p)'.



For the most part of this work s(¢) will be written as s for simplicity of
notation.
With ¢(x,t) replacing pi, equation (2.2) becomes

P(n|n') = (Z) P — p) N, (2.10)

Here N = N(t+ 1) and P(n;t + 1|n';t) = P(n|n’) are used to simplify
notation. Equation (2.10) gives the transition probabilities between the dif-
ferent possible numbers of individuals with allele A during the reproduction
event. Thinking of the numbers (0,1,...,N) as the states the population
can occupy, the reproduction event can be seen as a process that changes
the state of the population. This process is Markov, since it is the allele
frequencies, and the model parameters, of the parent population (the state
at time t) that determines the allele frequency of the offspring population
(the state at time t + 1).

One can calculate the exact probability that the population has n allele
A at time t + 1 from the marginal distribution

N(t)
P(n,t+1) =Y P(nn)P(n,1), (2.11)
n’/=0

using (2.10) to find the values of P(n|n’). The interpretation of P(n,t+ 1)
is that for a large ensemble of populations, a fraction P(n,¢+ 1) will have
n individuals with allele A in generation ¢ + 1.

In terms of computation, the probabilities for all values of n at time ¢t+1
can be found from the matrix equation

P(t+1) = PP(t). (2.12)

Thus, given an initial distribution of alleles P(0), one can find the prob-
ability distribution for n in the population for all time. This determines
the evolution of the system and thereby defines the discrete Wright-Fisher
model.

From now on the variable of interest will change from the allele number
n to the allele frequency = n/N. The reason is that this change of variable
will mediate the diffusion approximation of the Markov model, as will be
presented in the following section. The coordinate change does not change
the probability values, since P(n,t) = P(x,t), where z = n/N.

In the two following sections the derivation of the diffusion approxima-
tion will be sketched, first for N(¢) constant and then for N(¢) variable. The
complete investigations are given in the appendix.

2.2.1 The diffusion approximation for N(¢) constant

In this section a continuous Fokker-Planck differential equation will be de-
rived from the discrete Markov model. This derivation yields the classic

10



diffusion equation for population genetics where population size N(t) = N
is constant.

The idea behind the diffusion approximation is to assume that the pop-
ulation number is large enough so that the marginal distribution (2.11) may
be substituted for its continuous counterpart. Rewrite

P(n,t+1) Z P(n|n’)P(n,t) (2.13)

as
N

P(Nz,t+1)= Y _ P(Nz|Naz') P (Nz/,t). (2.14)
n’/=0

This equation can in turn be written as
P(xy,t+1) Z P(xy|2, ) P(zpy,t). (2.15)
Now scale the equation by multiplication with N and N/dx so that

N
NP(2n,t+1) = > NP(xp|on)NP(2,,t)o, (2.16)
n'=0

where dx = 1/N. Rewrite this as

N
flan,t+1) = Z (zn|2!) f (2], t) 6. (2.17)

Letting N — oo this can be approximated by

flz,t+1 /f zl2’) f(2,t)dx (2.18)

where S € [0,1]. The allele number n is now considered to be a continuous
variable and f(z,t) is taken to be a continuous probability distribution with
the same moments as P(n,t)/N. Let Q(z) be a continuous function with
compact support on S = [0, 1] with the following boundary values

QW) =" (1) =0 (2.19)

for all non-negative integer values of k. The set of such functions make
up the linear test space D. By multiplying equation (2.18) with Q(x) and
integrating over x, the following identification is made for the left hand side
of the ensuing equation:

(f1Q /f z,t+1)Q(x)dx. (2.20)

11



By the linearity of the integral, this is a linear functional, and by assumption
it is also continuous, and thus f can be considered as a distribution. The
motivation for interpreting f in this way comes from a paper by McKane
and Waxman [1] which shows that f will in general have singularities at the
boundaries. This interpretation also comes naturally since f is a continuous
probability distribution. Inserting (2.11) on the right hand side of (2.20)
results in

(fQ //f x|z f(2',1)Q(z)dz’dz. (2.21)

On the right hand side of this equation an expansion of Q(x) about 2’ given
by

2
Q@) = Q@) + P8 ng T (a2 4 (20",

is inserted, where Az = z — z/. By rearranging terms it is shown in the
appendix that this gives

o 2 2da’ 2 zlz’ aQ@'J) 2
= [ 16 0@ + [ s nplade T

2 x/
+3 /S f(x',t)E[(Ax)ﬂx']ag;Q o' + 0(2). (2.22)

The term O(e?) comes from higher order moments of Az|z’ as seen from
equation (2.23) below. The moments of Az are found using (2.10):

E[Az|2'] = eM(2',t) + O(e?)
E[(Ax)?|2] = Var(Aas|x ) + E[Az|2)?
= Var(Az|2') + O(€%)
E[(Az)’[2") = O(e?) (2.23)
Var(Az|z') = D( ) + O(é?), (2.24)

where D(2') = 2/(1—2"). The approximate values of the moments come from
using the approximation for ¢(a2’,t) given in equation (2.9) when deriving
them. Inserting the the moments E[Az|z'] and E[(Ax)?|2'] in (2.22), and
recognizing that the differentiated @) functions represent differentiation of f
in the distributional sense, one finds

0 e 0?

(1= 11,Q) = —e(o [ (2, )M (2,8, Q)+ (555 (2, D)), Q)+O(E)

(2.25)
Since there is no longer a need separate between x and 2, the variable x’ has
changed name to = for convenience. From (2.25), the following difference

12



equation is satisfied in the distributional sense:

0
Flat+1) = fo,t) = e[ (e, )M ;)]
+ Liz[
2N Ox?
To go from difference to differential equation, it will be necessary to scale

the time variable. The following change of coordinates on the time variable
is introduced:

fla,t)D(x)] + O(e?).  (2.26)

t
=< (2.27)
Thus X
flx,t) = f(x, NT) = f(z,7) (2.28)
and
f(z,t+At) = f(z, NT + A7) = f(z, 7+ A1), (2.29)

where At = 1 and AT = % Introducing the coordinate change and dividing
(2.26) by AT, one finds

~

f(z, 7+ A7) — f(z,7 0 ;
Fom 2 80 2 J@T) _ 0 (f(a, m)st(a, )
e 0°

T 9o.2

[f(z,7)D(z)] + O(e?), (2.30)

where M (z,7) = NM(z,7) indicates that N has been absorbed into the
parameters of M(z, 7). By letting N — oo, the above difference equation
becomes a differential equation,

T 2
@D O (M 0] + 5 oy

ot __%[

f(z,t)D(x)], (2.31)

to O(e?). Here abuse of notation has been used to rewrite f(z,7) and
M(z,7) as f(x,t) and M(z,t).

Equation (2.31) is by physicists called a Fokker-Planck equation, while
in mathematical literature it is more often referred to as the forward Kol-
mogorov equation [2]. When used in the context of evolutionary theory it is
called the diffusion equation of population genetics. This equation describes
the time evolution of the allele frequency probability distribution for two
alleles to O(e?), where € is the order of the model parameters p, v, s and
1/N. In physics literature on the Fokker-Planck equation M (z,t) is called
the drift coefficient and D(x) is called the diffusion coefficient; they repre-
sent the deterministic and the stochastic part of the equation respectively.
Thus, intuitively, what contributes to genetic diffusion is the variance of the
change of gene frequency, captured in D(zx), while the mutation rates and
the selection coefficient in M (z,t) give a deterministic direction to this drift.

13



The labeling of M (z,t) as the drift coefficient is not convenient in the con-
text of population genetics since it is when M (z,t) = 0 that one describes
what in evolutionary biology is called pure genetic drift. If M (z,t) = 0 then
(2.31) is more famously known as the heat equation. Mathematically, (2.31)
is a linear second-order partial differential equation of parabolic type [3].

In (2.31) the diffusion coefficient D(x) is given by D(x) = z(1 — z) and
M (z,t) is given by

M(z,t)=U+S{t)(1 —z)z — (V+U)x,
where
U=Nu, V=Nv, S(t)=Nst), (2.32)

The interpretation of f(x,t) in the Fokker-Planck equation is that for
large values of IV

/b f(z,t)dx (2.33)

is a good approximation of the fraction of populations in a large ensemble
of populations where the allele A frequency «x is between a and b at time ¢

[1].

It should be noted that the diffusion approximation has traditionally not
been derived from (2.11) as was done here. For example in [2] and [4], the
diffusion equation is derived by just assuming that a continuous Markovian
stochastic process for the change of allele frequency exists, independently of
- but surely motivated by - the discrete Wright-Fisher model.

2.2.2 The diffusion approximation for N(t) variable

When the population size can change over generations, the conditional prob-
ability for P(n,t+ 1) is given by

P(n,t+1) Z P(n|n")P(n/,t). (2.34)

From this equation one arrives at
N(t)
N(t+1)P(xy, t+1) Z N(t +1)P(xp|x )N () Pz, t)ox,  (2.35)

where dx = 1/N(t). Rewrite this as

flzn,t+1) = Z F(@n|zn) f (2, t)0z (2.36)
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Letting N (t) — oo equation (2.36) be approximated by

flx,t+1) = /Sf(as|x/)f($/,t)dm/, (2.37)

where S € [0,1]. The allele A number n is considered to be a continuous
variable and f(z,t) is taken to be a continuous probability distribution with
the same moments as P(n,t)/N. Define the space D of functions Q(z) €
C*°[0, 1] with compact support on S and boundary values

QW (0) =™ (1) =0 (2.38)

for all k € Z. D is as such a linear test space. Multiplying both sides of
(2.37) by Q(z) and integrating over x one obtains

[ fatr 0@ = [[ fale)i@ Q@ (239
5 S
The left hand side of this equation is now associated with the distribution
ft+12
(17,Q) = [ Flavt+ D@z (2.40)
S
A Taylor expansion of Q(x) about the value 2’ gives

2Q(z") 10°Q(z)
Ox Az+ 2 92

Qz) = Q) + (Az)® + O((Az)?),

where Az = x—2'. Q(z') and its derivatives are in D since 2’ € S. Proceed-
ing similarly from here on as for the case with N (t) constant, one arrives at
the difference equation

fz,t+1) = f(z,t) = H(z,t) + O(?), (2.41)
satisfied in the distributional sense, where

€ 0?2

H(o,t) = —e2[f(2, ) M(,1)] + T 5

oz [f(z,t)D(z)]  (2.42)

Define a new time variable 7 as

t+1 ds
T= . 2.43
o N 249
The generation time step in the new variable is given by
Ar— -t (2.44)
T= :
N(t+1)
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Applying the variable change from ¢ to 7 and dividing by A7, (2.41) becomes
f((L’,T—f—AT) — fA(JI,T)

A = N(t+1)H(z,7) + O(e?), (2.45)
Letting N(t) — oo for all ¢ one finds
af(x, 9 0
00 D (oM 0]+ 4 2@ nD@)  (240)

to O(e?), after applying abuse of notation. The difference between this
equation and the one for N(t) constant is that the model parameters in
M (z,t) are now multiplied by the time dependent population size N(¢+1).

2.2.3 The mean allele frequency equation

By solving the above derived Fokker-Planck equation one can find the time
evolution of the probability distribution for the allele frequency x. From
the probability distribution one gets a full description of the Wright-Fisher
model. However, the mean of z, denoted by (z), is an interesting parameter
to investigate on its own, and this can be done without having to solve
the Fokker-Planck equation first. In this section a differential equation that
describes the time evolution of the mean allele frequency will be derived for
N(t) constant.

Let n(t) denote that allele A number at time ¢. The mean of this number,
given by E[n(t)], will be found from the identity

E[n(t + 1)] = E[E[n(t + 1)|n(t)]]. (2.47)

E[n(t + 1)] will from now on be written as (n)(t + 1) and E[n(t 4+ 1)|n(t))]
as (n|n’). The value of (n|n’) is given by the binomial distribution (2.10).
Thus,

(n)(t+1) = N{¢p(z',1)). (2.48)

Dividing this equation by N gives
(x)(t+1) = (@)(t) + (M (z,t)) + O(?), (2.49)

where abuse of notation has been used by removing the -notation and the
usual approximation for ¢(z,t) has been used. Seeking the (M (z,t)) func-
tion on the right hand side of this equation to be a function of (z), an
expansion of M (x,t) about (z) is performed. The expansion is given by

OM ({(z),t) 10°M ((x),t)
Tor Tt

since @3 M (z,t)/0z3 = 0. Differentiating and inserting for M (x,t), one finds

M(z,t) = M({z),t)+ (z—(x))?, (2.50)

M(z,t) = M((z),t) + s(1 — 2(z) — (u+v))(z — (z)) — s(z — (x)) (2.51)
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Taking the mean on both sides of this equation, (M (z,t)) is found to be
(M(z,t)) = M({x),t) — sVar(z). (2.52)
Inserting the right hand side of this equation in equation (2.49), one finds
(x)(t +1) = (x)(t) + eM((x),t) — esVar(z) + O(c?) (2.53)
Subtracting (x)(t) from both sides of this equation gives
(2)(t+1) — (x)(t) = eM ((z),t) — esVar(z) + O(e?). (2.54)

By applying the coordinate change

1
- 2,
T N (2.55)

and dividing the equation by A7 = 1/N, one finds

(@) (T + A7) — (2)(7)
AT

where where S = Ns. Letting N — oo results in a differential equation for
the mean allele frequency:

d{z)
dt
where the familiar abuse of notation has been used. Similarly as for the
Fokker-Planck equation, the parameters in M ((x),t) have been scaled by
multiplication with N. Equation (2.57) describes the mean allele A fre-
quency in the population to O(e?).

= eM((z),T) + eSVar(z) + O(e?), (2.56)

= M({x),t) + SVar(z), (2.57)

2.3 The Wright-Fisher model for K alleles

By deriving the continuous approximation of the Wright-Fisher model for
two alleles one finds a Fokker-Planck equation that can readily be solved on
a computer. However, in nature it is not realistic that only two alleles can
reside at a locus. Therefore the Wright-Fisher model for K alleles is now
introduced. The discussion in section 2.2 can be generalized by assuming
that there are K possible alleles at a locus instead of just two. To each
of the K alleles a selection coeflicient is assigned, s; for allele ¢. During
reproduction each allele can mutate into one of the others with a specified
mutation probability. U;; is the mutation probability from allele i to allele
j-

The probability of change of allele number is given by the multinomial
distribution:

K-1

N(t n Nre_ _

P(n|n') — (nl (n)K 1> 11 KK—ll(l _ ng)N(t) >k nk7 (2.58)
_ P
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where n = (n1,...,nx_1) contains the number of alleles 1 through K — 1
in the population. ng is left out since it can be found from the first K — 1.
It is shown in the appendix that ¢;(2’,t) is given by

di(x' 1) = o) + eM(2/, ) + O(€?), (2.59)
where

./\/lz-(w’,t) =A; + .’L’; (B + (1 - X)SK - Si) -+ (1 — X')UKZ — xQUiK, (260)

where
K1 K1 K1
X = r,, B= sgxy, and A; = Z(HJLUM —ziUi).  (2.61)
k=1 k=1 ki

The K-allele marginal probability distribution, from which the diffusion
approximation will be reached, is given by

P(n,t+1) ZP n|n')P(n’,t). (2.62)

2.3.1 The diffusion approximation for N(¢) constant
Starting from equation (2.62) one can argue as was done for two alleles and
N(t) constant, and end up with

Pz, t+1 /P z|x')P(z’ t)dx (2.63)

The interval o is defined as [0,1]%~1. Let Q(x) be a scalar valued test
function with compact support on o for which

9°Q(0) = 9°Q(1) = 0, (2.64)

for all non-negative integer elements in a@ = (o, 2,...,ax_1). Here 0¢
is a multi-index notation for the partial derivative. See the appendix for
details on this notation. Multiplying both sides of equation (2.63) with the
K — 1-dimensional Taylor expansion of Q(x), integrating over ¢, and then
rearranging terms, one finds

/fmt+ dm—/fwt[/fw@d4 Q(z')da

+ Z/f(w’,t) [/ Amif(m’|m’)dm} 36;55)(1%,

4+ = Z/fac t) [/A:cle]f:ch:)daz] RC )d "+ 0O(e).

1,7=1 xl]
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In the appendix, this is shown to be equal to

/Q(w)f(w,tﬂ)dsc:/f(a:’,t)@(m’)dg;'

K-1 !
E [ [ [ i) e

(2

0*Q(=")

T

+= Z/fﬂ: t) / Az Az f(zi, zj|2’)dz;dz; da’ +O(e?).

z] 1 7101

(2.65)

The terms within the squared brackets correspond to E[Az;|2’] and E[Az; Ax;|z’]
respectively, whose values are found in the appendix. Inserting these values
gives

K-1 ,
_/f(wl’t)Q(ccl)da“'_ Z/f(:c’,t)eMz‘a%);a.:)dm’
7 i=1 v

(2

1 K-1
L / It
ton f&', )C (), 5)

ij=1"°

0*Q(z")

8xixj

da’ + O(e?), (2.66)

where

v zh(1—ah) ifi=j.

1-
Interpreting the integrals in equation (2.66) as distributions, and interpret-
ing the differentiated ) functions as differentiation in the distributional
sense, one ends up with

Z

K-1 t K-1 2 rt
t+1 of* Mi € O f'Ci, O(e2
(s Q- L0+ X gt @40
(2.67)
The variable 2’ has changed name to x for convenience. Thus, the following
difference equation is satisfied in the distributional sense

K-1

0
Sl )= (@.0) = —e 3 5o f(@ M. Fon Z &%
(2.68)
The transformation of time given by
1
= — 2.
T=% (2.69)
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is introduced, the difference equation is divided by A7 = 1/N, and the limit
N — o0 is taken to give

0 oo 12 @2
& (m7t) == ; 8:132 [f(ac,t)/\/ll(m,t)] + 5 i]zjl al‘il'j [f(m,t)C(:nZ, :EJ)]

(2.70)
to O(e?) after allowing for abuse of notation. This is the diffusion equation
for population genetics for K alleles and constant population size. The term
C(x;,xj) comes from the covariance of the frequencies x; and z;, and M;
has been scaled by multiplication with N.

2.3.2 The diffusion approximation for N(t) variable

By combining the derivation procedures of the Fokker-Planck equations for
K alleles with constant population size and two alleles with variable popu-
lation size, it is shown in the appendix that the Fokker-Planck equation for
K alleles and non-constant population size is given by

[f (@, 8)C (i, ;)]

(2.71)
to O(€?). The only difference between this equation and the one obtained
for K alleles and constant population size is that the model parameters in
M;(z,t) are scaled by multiplication with N (¢ + 1) instead of N.

of (=, = o | K-l
fE?t ) - ; o [f(x, t) M;(x, t)] + 3 Z

0x; T
ig=1""""7

2.3.3 The mean allele frequency equation

The mean allele frequency equation for K-alleles and N(t) constant is de-
rived in the same way as for 2 alleles. By performing the same initial steps
as were taken for the case with 2 alleles, but for higher dimensions, one ends
up with the K-allele form of equation (2.49) for the mean of «:

(x)(t+1) = (x)(t) + e(M(z, 1)) + O(%). (2.72)
Isolating the ith element of this equation gives:
(@) (t+1) = (z:)(t) + e(Mi(, 1)) + O(€). (2.73)
The expansion of M;(z,t) about (z) is given by
1

Mi(z,t) = Mi(<w>7t)+DMz‘(<w>,t)T(w—<w>)+§(w—<w>)TD2Mi(<w>7t)T(w—<w>),
(2.74)
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where DM, ({z),t) is the gradient and D> M;({x),t) is the Hessian of M;((x),t).
Performing the differentiations and taking the mean on both sides of the en-
suing equation gives

1 K-1
(Mi(x, 1)) = My((@),1) + 5 > (s — sk)Cov(aj, z;), (2.75)
7j=1

Inserting this value into equation (2.72) and proceeding as for the derivation
for 2 alleles, one finds

K20 i) o) + %

K—1
> (S; — Sk)Cov(wj, z;) (2.76)
j=1

to O(€?). These equations describe the mean allele frequencies for alleles 1
through K — 1. In the applications it will be argued that the terms with

covariance are small enough to be neglected.

3 The Moran model

The Moran model was introduced in the late 1950s by P Moran [5]. As
the Wright-Fisher model, it is a model of the change of allele frequency in
a randomly mating population. The difference between the two is that the
Moran model has overlapping generations. At each time step in the Moran
model, one individual is randomly chosen to die and another individual is
chosen to be born with a probability equal to ¢(x,t). The stochastic process
of the Moran model is as such a birth-death process. Since one individual
dies and one is born at the same time, the Moran model is at heart a model
with constant population size N. The time step in the Moran model is
defined as one generation [6], even though only one individual reproduces.
Hence the definition of generation is different in the Moran and Wright-
Fisher models. In the Moran model one generation is one reproduction
event, and in the Wright-Fisher model one generation is N simultaneous
reproduction events.

The Moran model will first be given a discrete stochastic description.
From the discrete description a continuous allele frequency approximation
will then be sought. To obtain the continuous model description, the Moran
model will be specified in terms of a Master equation which in turn will be
approximated to a Fokker-Planck equation.

The methods for the derivations of the Master and Fokker-Planck equa-
tions for the Moran model are adopted from [6]. In that paper, Blythe and
McKane develop the Fokker-Planck approximation for the Moran model
without selection, that is for s = 0. In this work, their result is extended by
deriving the Fokker-Planck equation with s # 0. An added complexity in
the derivation for s # 0 is that the approximation of ¢(x,t) to O(e?) must
be introduced.
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3.1 The Moran model for two alleles

Assume a population of size N, where at time ¢ there are n individuals
with allele A and N — n individuals with allele B. Whereas in the Wright-
Fisher model the allele frequency could theoretically go from 1/N to 1 in
one generation, in the Moran model the number of alleles can at each time
step only decrease by one, stay the same, or increase by one. The number
of A will increase by one if a B is chosen to die and an A is born; stay the
same if an A (B) is chosen to die and an A (B) is born; increase by one if a
B is chosen to die and an A is born. The probability that an A dies at each
event is simply given by its frequency, z, and thus the probability that a B
dies is given by 1 — z. The probability that an A is born is given by ¢(z,t)
and the probability that a B is born is given by 1 — ¢(x,t). The equation
for ¢(z,t) is obtained using the same reasoning as was used to find ¢(z,t) in
the Wright-Fisher model in section 2.2. The three elements of the transition
matrix of the Moran model are thus given given by:

P/ +1n) = (1 —2")¢(2,t) (3.1)
P(n'In) = a'¢(w,t) + (1 — 2)(1 - ¢(a, 1)) (3.2)
Pn' —1n') = 2/(1 — ¢(2',1)). (3.3)

Since in each generation there are only three possible steps of action, it
is possible to express the Moran model by a Master equation in an easy-to-
follow manner. The Moran model is a Markov model, so it is defined by the
marginal distribution

P(n,t+1) ZP (n|n")P(n’, t), (3.4)

where P(n|n’) is found from (3.1). Subtracting P(n,t) on both sides of (3.4)
gives

P(n,t+1) ZP n|n’)P(n',t) — P(n,t) (3.5)

—Z (n[n)P(n/,t) = Y P(n/|n)P(n,t), (3.6)
n'#n n’#n

since Y, P(n'[n) = 1. The terms with n = n’ cancel and are therefore
omitted.

It is now desired to change to a continuous time variable. In order to
do that, two further assumptions about the Moran process must be made.
First assume that time is divided into discrete parts, At, such that at most
one reproduction event occurs within At. Dividing the previous equation
with At one thus finds

P(n,t+ At) — P(n,t) _ 3 P(n!n’)P(n/’t) -y P(n,m)P(n,t). (3.7)

At At At
n'#n n'#n
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Then assume that reproduction events take place at a unit rate, such that
on average one reproduction event occurs every generation. The rate at
which reproduction is assumed to take place is taken to be T'(n|n’). This
rate is related to the original transition probability by

P(nln’) = T(nln')At + O((At)?), (3.8)

where the last term represents the probability that two or more reproduction
events occur during At. Inserting (3.8) into (3.7) and taking the limit At —
0 gives

n'#n n'#n

which is the Master equation for the Moran model. For large values of IV, it
will be shown that the Master equation can be approximated by a Fokker-
Planck equation. To get there, the approximation for ¢(z, t), the probability
that an individual with allele A is born, as given by

d(z,t) =z + eM(x,t) + O(e?) (3.10)

must be used. This approximation ensures that the following Fokker-Planck
equation is O(e?). However, since in the following an expansion about the
parameter N~1 to O(N~3) will be used, the O(€?) term will be replaced by
O(N~3). This does not cause any problems since 1/N = O(¢). As well, the
model parameters u, v, and s in M (x,t) have to be scaled as follows:

_ Nu Nv Ns

g = = —. A1
v="F v=St 5= (3.11)

Using these parameters (3.10) turns into

bx.1) = o+ <Mz, t) + O(e), (3.12)
where M (z,t) = (N/2)M (z,t). The difference between the scalings in (3.11)
and the ones for the Wright-Fisher model as found in (2.32), is the factor 2.
It will ensure that the resulting Fokker-Planck equation is of identical form
to the one of the Wright-Fisher model.

The strategy for obtaining the Fokker-Planck equation is to first approx-
imate the transition rates T'(n|n’) to O(N~3) and Taylor expand the proba-
bilities P(n’,t) about P(z,t). These approximations are then inserted into
the Master equation and multiplied to O(N~3). Finally, allowing N — oo
results in a Fokker-Planck equation identical to the one of the Wright-Fisher
model, only with different scaling of the parameters and time. The full de-
tails of the following derivation is given in the appendix.
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Fully expressed, the Master equation (3.9) is given by:

dP(n,t)

e T(nln—1)P(n—1,t)+T(n|n+1)P(n+1,t)—[T'(n — 1|n) + T'(n + 1|n)] P(n,t).
The four transition rates are given by

T(nln—1) = (1 "o )

T(nln+1) = (

T(n—1jn) = (1~ o(a, 1)
T(n + 1|n) = (1 - %)(]ﬁ({ﬂ,t),

which are sorted to O(N ~3) using the approximation for ¢(z,t) as in (3.10).
The allele number 7 is now assumed to be a continuous variable. The prob-
ability functions P(n,t) with n continuous are thus assumed constructed
from the functions with discrete n by interpolation such that they retain
the same properties of the original functions. The Taylor-expanded proba-
bility functions with continuous n are given by

1 0f(x,t) 1 0%f(x,t)
N Oz 2N2 022
1 0f(x,t) 1 9%f(x,t)

P(n+17t):f(x7t)+N o IN2 o2

P(n—1,t) = f(x,t) + O(N73),

+O(N?),

where a change of variable from n to x = n/N has been introduced and
f(x,t) is the name for P(z,t) after the change of variable. Inserting these
approximations into the Master equation and sorting to O(N~3), one obtains

Of (x,t) 2
o _m[S(2x—1)+(U+V)—2)f(xat)

+ (1 =2z — eM(z,t))Py(x,t) + %x(l — 2) Py (z,t) | + O(N?).

This equation can be simplified to

Of(x,t) _ 2 [_ 0 1 0?

el) | oM )+ 5 D) + O,

Making the variable change on ¢ as given by 7 = 2t/N? and letting N — oo
gives
of(x,t) 0 1 0?

o = o f @ )M (@, )] + 5

[z, t)D(x)],



which is the same Fokker-Planck equation as for the Wright-Fisher model.
As before, abuse of notation has been used on M (x,t) and f(x,t). M(x,t)
and D(z) are defined as for the Wright-Fisher model, except that the model
parameters in M (z,t) are scaled by multiplication with N/2 in stead of N.
This equation describes the time evolution of the allele probability distri-
bution with overlapping generations to O(e?). The scaling of ¢ shows that
with the Fokker-Planck description of the models, one generation in the
Wright-Fisher model is N/2 as long as in the Moran model.

3.2 The Moran model for K alleles

The arguments in section 3.1 can be generalized to include K alleles. By
doing this, the Master equation for K alleles is found to be

81353?’0 = Z T(n|n")P(n't) — Z T(n/|n)P(n,t), (3.13)

n'#n n'#n

where as in the Wright-Fisher model n is the vector of allele numbers.

It is shown in the appendix that by performing the same steps as outlined
in the previous section, one finds the same Fokker-Planck equation as was
found for the K-allele Wright-Fisher model:

m 2
210 Za (o) @)+ Zaa (i) (1), (3.14)

Again time is scaled as 7 = 2t/N? and the mutation rates and selection
coefficients in M, (x,t) have been multiplied by N/2.

3.3 The mean allele frequency equation

Just as for the Wright-Fisher model, equations for the mean allele frequency
in the Moran model can be derived. Since the derivation of the mean allele
frequency equations for the Moran model is similar to the one for the Wright-
Fisher equations, the case with K alleles is considered directly without first
performing the 2-allele derivation.

Again the identity E[n] = E[E[n|n’]] will be used to find (x)(t+1). The
expression for E[n|n'] is given by

(n|n') ZnP (n|n). (3.15)

Fach n; € n in this sum can either increase by one, decrease by one or
stay the same in one reproduction event. Using the notation of (E.1) in the
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appendix to simplify the expression of P(n|n’), this sum is expressed as

n n
K-1 : :
(n|n') =n'P(n'|In') + Z n,+1 | P(n;+1n')+ | nj—1 | P(n;—1|n'),
i=1 - :
N1 Ny 1

which can be written as

=n' <P(n/1 +1n )+ -+ P(nly_; —1In') + P(n'|n/)>+

P(n} +1n’) — P(n} — 1|n’)
P(n;+1n') — P(n}, — 1|n/)

P(n_y +1|n') — P(n_; — 1|n’)

The sum of probabilities in the first line of this equation is equal to 1, since
it represents all possible state-transitions during reproduction. By isolating
element 7 in the previous vector equation, one finds

(niln’y = nl + P(n} + 1|n) — P(n} + 1|n’). (3.16)
Inserting for
Pnj+1|n') = (1—-x;)¢i(x,t) and P(ni+1n') = z;(1—¢i(x,t)), (3.17)
one finds
(ng|n')y = nl + eM;(x,t) + O(€2). (3.18)
Applying the identity E[n| = E[E[n|n']] to equation (3.18) gives

() (t+1) = (n;)(t) + e(M(z, 1)) + O(€2). (3.19)

As before, one secks the function M(z,t) in this expression in terms of (x).
Expanding M, (x,t) about (x) gives

Mi(z,t) = Mz'((fv%t)+DMi(<iL‘>,t)T(fc—<w>)+%(w—<w>)TDQMi(<w>vt)T(ﬂﬁ—<w>),
(3.20)

where DM ({z),t) is the gradient and D2 M;({x),t) is the Hessian of M;((x),t).

By taking the mean on both sides of this equation, one finds

K—-1
(M;(z, 1)) = M;({z), 1) + % 3" (sj — sx)Covl(zi, ;). (3.21)
j=1
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Inserting this expression into (3.19) gives

K-1

(n3) (t+1)— () () = eM; () %Z i—sx)Cov(zs, ;) +O(e2). (3.22)

Jj=1

Dividing this equation by N gives

() (1)) (0) = ¢ M), 0) +

DN

K—1
Z - — sx)Cov(z, ) + O(e)
7=1

(3.23)
What can be seen from this equation is that in the time scale of the Moran
model the change of allele frequency for each reproduction event is O(4).
In the Wright-Fisher model, terms of O(e¢/N) where neglected as O(e?) and
left out of the equation. Anticipating the scaling of ¢, this term is allowed
to remain for now.
Scaling the time parameter as 7 = W and dividing (3.23) by A1 = %
gives

NG ) — () (T - e i1
(i) +AAT) (i) ):eM,;(<:1:>,7')—|—§ S (S5 — Skc) Cov(ai, z;) + O(2).

J#i

(3.24)
Letting N — oo gives

K-1
W) — eMilfe)n) +5 3 (8 - S)Cov(anay), (329

i

to O(e?) where the usual abuse of notation has been used. This is the mean
allele frequency differential equation for the Moran model. The parameters
in M(z,t) are multiplied by N/2, as for the Fokker-Planck approximation
of the Moran model.

Part 11
Numerical Methods

In this part, numerical methods to solve the population genetics models of
the previous part will be introduced and discussed.

4 The Fokker-Planck equation for two alleles

The Wright-Fisher and Moran models have in part 1 been approximated
by the same Fokker-Planck equation (3.14) when the population size N (t)
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is constant for the Wright-Fisher model. What tells them apart after the
diffusion approximation is how the time step is interpreted and that the
model parameters in the Moran model are scaled slightly differently. In this
section the solution method of the Fokker-Planck equation for two alleles
and N (t) constant will be discussed. Throughout it will be the generations
and parameters of the Wright-Fisher model that will be used.

4.1 Boundary conditions and fixation probabilities

The range of the variable x in the Fokker-Planck equation is [0,1]. The
boundaries of this range correspond to two interesting phenomena in allelic
evolution; when x takes the values of 0 and 1 allele A is respectively lost or
fixed in the population. Traditionally, the Fokker-Planck equation for pop-
ulation genetics has been assumed to be valid only in the range (0,1), as the
appearance of singularities at the boundaries made analytical investigations
difficult. Citing Kimura: “This is a partial differential equation with singu-
larities at the boundaries, so that no arbitrary conditions can be imposed
there” [7]. The singularities appear where in the discrete Wright-Fisher and
Moran models probabilities would sum to 1. The continuous approximation
has turned these values into a Dirac delta functions. Previously, one has re-
sorted to the backward Kolmogorov equation to investigate loss and fixation
of alleles, see e.g. [8]. One could argue that this is not a satisfactory result
for a mathematical theory of population genetics: a full description of the
probability distribution for x is given by the discrete models, so one should
hope that this full description is recaptured in the diffusion approximations.
Quite recently, McKane and Waxman proposed a way by which the full
essence of the original discrete model is maintained in the diffusion approx-
imation [1]. Their result is that the singularities observed at the boundaries
should be associated with the probabilities for fixation and loss.

The fundamental principle in the paper by McKane and Waxman is that
the probability that the allele frequency is in the range [0,1] should at all
times be unity. In other words, probability should be conserved:

/1 flz,t)de =1 (4.1)
0

for all values of t. The diffusion equation can be written as

of(et)  i(a,t)
ot x (42)

where v
J(@,t) = M(z, ) f(2,t) = 5 - [D(@) f (2, 1)]. (4.3)

The function j(z,t) is thus the probability density flux. Integrating (4.2)
over z € [0,1] and applying (4.1) gives

J(0,t) = j(1,1). (4.4)
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This facilitates boundary conditions on the probability flux. By equation
(4.1), no probability can be lost to the area outside [0,1]. It is therefore
reasonable to impose the boundary conditions

(0,8) = 0 (4.5)

Using these boundary conditions, it is shown in the paper by McKane and
Waxman that the general form of the solution to the diffusion equation is

[z, t) = To(t)d(x) + Ty (8)6(1 — ) + f(x, ). (4.7)

In this equation IIy(¢) and II;(¢) are the probabilities that x has become 0
and 1 by time ¢ respectively (in other words, that allele A has become lost
and fixed), §(z) and §(1 — ) are Dirac delta functions, and f(z,t) is the
solution of (4.2) for z € (0,1).

It is shown in the same paper that IIy(¢) will appear in the solution only
if there is no mutation from allele B to allele A and II; (¢) will appear only if
there is no mutation from allele A to allele B. If there is no mutation either
way both IIy(¢) and II;(¢) will appear. This is reasonable, since an allele
can strictly never be fixed in a population if there is a possibility that it
mutates into a different allele. However, since mutations are always present
in nature there can never be any true, mathematical fixation of alleles in a
natural population. It is nevertheless interesting to investigate what might
be called quasi-fixation of alleles in the diffusion approximation, since this
is what is actually observed in nature. Quoting Kimura: “In other words,
after a sufficient number of generations almost all populations will be in such
a situation that the gene is either almost fixed in the population or almost
lost from it. To distinguish this from the fixation or loss in the case of small
effective population number, the terms ‘quasi-fixation‘ and ‘quasi-loss‘ are
proposed.” [7]. Although Kimura defined these terms for the quasi-loss and
quasi-fixation he observed with a stochastic selection coefficient, they will
be used in this work as interpretations of the accumulation of probability
close to the boundaries in the solution of the Fokker-Planck equation.

The numerical solution method of the diffusion equation that will be
introduced in the next section will facilitate this identification. The values
f£(0,t) and f(1,¢) from the numerical solutions will be associated with the
probabilities for respectively loss and fixation of allele A. In the absence of
mutations, these values will be absolute fixation and loss probabilities, while
in the presence of mutations these values will be called quasi-fixation and
quasi-loss probabilities.
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4.2 Numerical solution scheme

The numerical solution scheme will be developed from the equation

of (,t) _ 9j(x,1)

o or (48)
where 18
i(x,t) = f(z,0)M(z,t) - 5 o= [f (2, ) D(2)]. (4.9)
The notation
flae,t") = fi! (4.10)

is used to denote the numerical approximation, where k& and n are indices
that discretize values for = and ¢t. Central difference approximation is used
for the right hand side of (4.8):

a n M 1 n n

%F(xk,t )= Fm( kil T Fk_%)a (4.11)
to O((Ax)?). Note that here Az is the step size of the discretization of =,
and not the difference between the allele A frequency in generation ¢ and
t + 1 as in part I. Using the forward difference approximation for the left
hand side of (4.8) gives

(0, 7) = (fH = 1), (4.12)

ot = Al

to O(At). Combining these two expressions, the time advancement is given
by
At
+1 _

i = M(F;Zr% - ;?,%) + I (4.13)
where the total error is given by a term O(At) 4+ O((Ax)?). To identify the
half-step terms on the right hand side of this equation, central difference is
used on the right hand side of (4.9):

Fi' = (FM)} — 53 (D) s — (FD)_y) (414)

to O((Az?)). Using this equation one can identify
1

Fon= (M) = 55 (FD)ig = (FD)k)
Ty = (M — 5 (FD) — (D)), (1.15)

Using the identity

) = Q(HM’;) I L oa),  (416)
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one finds

(M}, = ML — (D] + O((A?)
(FM)_y = SIUME — (MY 4+ O((A%). (417)

Inserting (4.17) into (4.15) and then the ensuing result into (4.13), one
obtains

7 = 5ae (UMD =200+ (PR = 5 (DI =26 D)+ (D)) )1

(4.18)

to O(At) + O((Az?)). This is the solution scheme for the Fokker-Planck
equation (4.9). The boundary values (4.5) impose the conditions

ot = E(F% -0) - fo
At
n+1 __ n n
N —E(O—FN,%)—fNa (4.19)

where the index n = N identifies z = 1. These conditions do not use that
the flux is zero in F(0,t) and F(1,t), as were the boundary conditions. Rather
it is assumed that the flux that zero in the half-steps outside the range of
x: F(—0.5,t) = F(1.05,¢t) = 0. In spite of not using the exact boundary
conditions, this configuration still solves the equation well.

Let p be the initial allele A frequency. Since f(x,t) is a distribution, the
initial condition can be given in terms of a delta function:

f(x,0) =d(x —p). (4.20)

In the discrete, numerical version this is translated to

fi=np. (4.21)

The above solution scheme together with the boundary values and initial
condition provides a numerical solution algorithm for the diffusion equation
for population genetics.

4.3 Sample solutions

Some solutions of the Fokker-Planck equation are presented in this section to
show how the different parameter regimes of p, v and s affect the probability
distribution for the allele frequency. The numbers given for the parameters
in the figures are multiplied by N; when the figure shows u, the number is
uN. Calculations were run as long as it took for the distributions to attain
equilibrium.
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The frequency distributon f(x,t)

Figure 1 shows how the probability distribution changes for various mu-
tation rates. Observe the change in shape as yN and vN pass below the
value 0.5. For rates above this value the allele could not be lost or fixed.
For rates below this value mutation is no longer strong enough to resist
the random effects of diffusion that make it likely that the allele will ei-
ther quasi-disappear from the population or become quasi-fixed. Since fixa-
tion probabilities will be central when investigating the applications of the
Fokker-Planck equation, the regime will be then be uN,vN < 0.5.

Initial frequency = 0.5, N = 100. Time = 100 generations

0.1
0.09 nw=>5v=5s=0
n=2,v=2,s=0
0.08 n=1Lv=1s=0
=05 rv=05s=0
0.07F f=02v=025=0
0.06
0.05
0.04
0.03
0.02
0.01
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Frequency

Figure 1: The solutions of the diffusion equation are given for equal mutation
rates and zero selection to emphasis the change that occurs for decreasing
mutation rates. At puN, vIN = 0.5 the distribution undergoes a crucial
change of shape.

Figure 2 shows the effect selection has on the shape of the probability
distribution. Recall that the selection coefficient gives allele B a fitness
disadvantage when positive. Its effect on the distribution is intuitively to
shift the peak of the distribution in the direction of increased frequency of
allele A.
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The frequency distributon f(x,t)

Initial frequency = 0.5, N = 100. Time = 100 generations
0.1r

0.09-

0.08 -

0.07

0.06 -

0.05

0.04

0.03-

0.02

0.01r

0 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency

Figure 2: The solutions of the diffusion equation for increasing values of s.

The larger the selection coefficient, the further the peak of the frequency
distribution is shifted in the direction of increasing x.
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The frequency distributon f(x,t)

Dirac delta functions will appear at the boundaries when either u/N or
vIN are 0. These are, in a mathematical sense, true fixation probabilities
[1]. Figure 3 shows solutions for decreasing rate ¥/N until it reaches zero.
When this occurs, a delta function at £ = 1 appears in a numerical sense. In
other words, all the values close to the boundary are very close to zero, while
the boundary will have some value that is interpreted as the true fixation
probability.

Initial frequency = 0.5, N = 100. Time = 300 generations

0.1
=2 =2.5=0
0.09}- p=sv==as
pn=2,v=06,s=0
0.08+ p=2,v=0>55s=0
n=2,v=04,5s=0
0.07 - n=2v=0,s=0
0.06 -
0.05
0.04
0.03
0.02
0.01
0 i - _ /\ !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Frequency

Figure 3: Decreasing the mutation rate v/N until it reaches zero. Observe
the drastic change that occurs around vN = 0.5.

5 The mean field equation for four alleles

The mean field equations will be solved for K = 4 alleles, which results in
three differential equations describing the allele frequency of alleles x1, x2
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and x3:

o M) )+ 5 ;(Sj — S4)Cov(zj, 21) (5.1)
a<8312> =My ((x),t) + ;;(Sj — 84)Cov(zj, ) (5.2)
ag@ = My((@), 1) + % ;(sj _ S4)Cov(a;, x3). (5.3)

(5.4)

These equations will be solved under the parameter regime 1/s << N <<
1/p, where s and u represent all selection coefficients and mutation rates.
In terms of S and U this is the same as S >> 1 and U << 1. Under these
conditions Rouzine et al. show in [9] that for K = 2 alleles the steady state
variance of x is given by

U
= 5q2
when 1/sln(s/pu) << N << 1/u, where in their work p = v. For these
values of N the variance is small enough that it can be omitted from the
equations above. This coincides with the deterministic limits of the diffusion
equation, obtained when N — oo. In this limit the two allele mean frequency
equation is given by

Var(z) (5.5)

O(x)

ot
as shown in [9]. Since Rouzine et al. only consider the case of two alleles,
there is no approximate value for the covariance between allele frequencies.
However, it is assumed here that for NV large enough both, the covariance
terms in (5.1) can be neglected. Thus the system that will be solved is
written in vector notation as

o)
ot

= M((z),1), (5.6)

= M((x),1), (5.7)

where x = (21, 29, 23)T and M ({x),t) = (M ({x),t), Ma({(zx),t), M3((z),t))".
A standard Runge-Kutta method of fourth order will be used to solve this
equation numerically.

The strength of the mean field equations is that systems with more than
two alleles can be investigated numerically. This allows for a broader scope
of applications. Their weakness is that the parameter regime as discussed
above must be upheld. As such, notions of fixation probability will not be
applied to the mean field equation; however, one still hopes to obtain some
relevant information from their solutions.
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5.1 Sample solutions

The four allele mean field equations will be now be solved for a simple
example, that shows how one can use the mean field equations to predict an
evolutionary process.

Assume that the model organisms lives in an environment that fluctuates
between two conditions, called condition 1 and condition 2. It is assumed
that the organism is a bacteria, but no assumptions about the characteristics
of the alleles are specified. The different alleles are however assumed to
give different benefits to their host organisms in the different environmental
conditions. Table 1 lists the selection coefficients of the alleles in the two
conditions. Note that these selection coefficients are given as S = sN.
From this table one can for example read that allele 1 is detrimental to the
organism in condition 1 but beneficial in condition 2. Assume further that

Table 1: Selection coeflicients

Allele Condition 1 Condition 2

1 4 -2
2 0 2
3 3 -1
4 -3 )

there exist two distinct populations, separated in space with no interaction
between them. Call them population a and population 5. Not only are
they separated in space, but they are also separated in how often they are
subjected to the two different conditions of the environment. Assume that
species « is in condition 1 10% of the time and in condition 2 90% of the
time. Assume that species 3 is in both conditions equally often. This could
for example correspond to two different population of the same species living
in two different climates.

The number of generations within which the conditions vary is set to 80.
Different bacteria can have wildly different cell division times, so one can
in general not define a typical time frame for a bacterial generation. As-
suming that this species of bacteria is replicating itself fairly rapidly in both
environments, 80 generations in the Wright-Fisher sense can correspond to
a time frame of between two weeks and two months. However, the results
of the simulations for the mean field equations are stable with respect to
variations in this number. It is for the most time the time spent in either
condition that determines the outcome, as will be seen for a specific example
in part III.
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The mutation rates for the simulations are U;; = 0.01 for 4,5 =1,...,4,
the initial frequencies of the alleles are 0.25.

The populations were sampled for 700 generations. Figure 4 shows the
fate of population «. This population has a polarized allele distribution, with
allele 1 dominating other three. Figure 5 shows the fate of population 5. In
this population there is no dominant allele, and the population contains a
mix of the different alleles.
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Figure 4: The mean frequencies of the four alleles for population «. Allele
1 stands out as the dominant allele.

This example can be used to explain speciation, which is the process
by which new species arise. Assume that over time, allele 1 becomes fixed
in population «. Assuming that different alleles at other loci become fixed
in the two populations as well as a result of spending time in two different
environments, the DNA of the two populations might over time become
different enough that it makes sense to classify them as two different species.
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Figure 5: The mean frequencies of the four alleles for population 3. There
is no dominant allele, leading to a mixed population.
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Part I1I
Model Applications

This part will begin with a presentation of the areas and mechanisms within
molecular biology that motivate the solutions of the population genetics
models in this work. This will be followed by a presentation and a discussion
of the obtained solutions. Finally, applications of the models to cancer
biology will be discussed.

6 Biological setting

Bacteria, which are single celled organisms, use carbohydrate as energy to
power the chemical processes that enable them to survive and reproduce.
Three carbohydrates in particular will be considered in the model applica-
tions, namely glucose, lactose and arabinose. These three sugars are avail-
able to the bacterium E. coli in its natural environment in mammalian
intestines. Through a series of chemical reactions, E. coli can degrade car-
bohydrates into other molecules which it will then use for fuel and building
materials. These reactions are catalyzed by proteins manufactured by the
cell itself. The proteins involved in carbohydrate degradation are called
degradation proteins.

The cell produces proteins from its protein blueprints: the genes. In a
bacterium, this process happens as follows. A molecule called RNA poly-
merase will ‘read’ a gene and produce an RNA molecule, called mRNA, that
contains the same information that is carried by the gene. This process is
called gene transcription, since part of the chromosome DNA molecule
is ‘transcribed” to an RNA molecule. The information contained in the
mRNA molecule can then be used by the cell to construct a protein. The
cell constructs the protein by linking together a sequence of amino acids
in accordance with the information contained in the mRNA molecule. The
process of making a protein from an mRNA molecule is called translation,
since information in the alphabet of RNA nucleotides is ‘translated’ into
the language of amino acids. Thus, information is carried from the gene
the through an intermediate mRNA molecule to the final protein product.
The sum of the processes of transcription and translation is called gene
expression.

Different carbohydrates are be available to E. coli at different times,
and different degradation proteins are needed to degrade the different car-
bohydrates. At any given time, how does the cell know what degradation
proteins to produce? A naive way of making use of carbohydrates would be
for the cell to produce all kinds of degradation proteins at a constant rate.
In this case, when carbohydrates enter the cell, regardless of their type,
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degeneration proteins stand ready to metabolize them. Unfortunately, this
approach is detrimental to the cell. The benefit of having energy instantly
available does not weigh up for the energy needed for constant production
of the degradation proteins.

While there are some genes that are being transcribed almost constantly
(called house-keeping genes), most genes are regulated. A regulated gene
is a gene that is expressed only when its gene product is needed. More
specifically, and to be further explained below: what is requlated is the access
of RNA polymerase to the gene’s DNA. As a response to an environment
with many different carbohydrates, the genes for the degradation proteins
are regulated. For a good and concise introduction to the theory of gene
regulation see [10].

6.1 Regulating genes with activators and repressors

The way gene regulation works is by signals. Production of the degrada-
tion proteins may start in the presence of a signal, or more specifically a
signaling molecule, often called an inducer. Since different carbohydrates
have different inducers, the cell knows which specific degradation proteins
to produce when a carbohydrate is available. Though in the presence of
a specific inducer, before producing the degradation proteins, the cell will
first consider if degrading this carbohydrate is worth the metabolic effort.
In other words, it will consider if the energy spent metabolizing the car-
bohydrate is worth the energy received from this process. There could be
several reason why a cell would choose not to react on the presence of a
carbohydrate’s inducer. For instance other, more easily obtainable energy
sources (usually other carbohydrates) might be available. If the cell chooses
to react upon the carbohydrate’s inducer, however, it will allow RNA poly-
merase increased access to the relevant DNA, and thus initiate production
of degradation proteins. This ‘considering’ of the cell can be achieved with
gene regulation.

There are several ways by which the bacterial cell can allow RNA poly-
merase increased access to DNA. What most of them have in common is
that they involve regulators called transcription factors. Transcription
factors are proteins that can bind to DNA, often close to the genes they reg-
ulate, and interact with RNA polymerase by either blocking or facilitating
its access to DNA. Transcription factors can be categorized as activators or
repressors, depending on if they increase or decrease the activity of RNA
polymerase on DNA. Figure 6 shows the difference between the two modes
of regulation in the presence of a yellow transcription mediating inducer
molecule. While looking at this figure, consider also that inducers can play
the opposite role. The inducer could bind instead of lift the repressor, and
lift instead of bind the activator. Later, an example will be encountered
where the inducer plays this role for the activator for a specific regulatory
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mode in F. coli that is involved in metabolizing lactose.

Repressor regulation. The place where the repressor binds DNA is
called the repressor binding site. When the repressor sits on DNA it
blocks the access of RNA polymerase to DNA, by decreasing the chemical
binding strength between the polymerase and DNA.

An example of a gene system® regulated by a repressor is the genes for
degrading the lactose carbohydrate in E. coli. When lactose is not present
in the cell, the repressor will be bound to DNA, blocking RNA polymerase’s
access to DNA, as in Figure 6 a). When lactose is present, however, the
lactose inducer molecule interacts with the repressor in such a way that
the repressor falls of DNA, thus allowing access to RNA polymerase, as in
Figure 6 b).

Activator regulation. The action of the activator is opposite that of
the repressor: when an activator is bound to the activator binding site
it facilitates the access of RNA polymerase to DNA, by increasing the
binding affinity of the polymerase. Put simple, the activator ‘pulls’” RNA
polymerase down to the DNA.

An example of a gene system regulated by an activator is the genes for
degrading arabinose in E. coli. When arabinose is not present in the cell,
the activator is not able to bind DNA, as in Figure 6 c¢). This in turn keeps
RNA polymerase from binding and subsequently initiating transcription.
However, when arabinose is present, the arabinose inducer molecule inter-
acts with the activator so that it can bind DNA, as in Figure 6 d). This
in turn allows RNA polymerase to bind DNA via the activator and thus
initiate transcription of the gene.

Two or more regulators. A single repressor or activator offers basic
control of RNA polymerase’s access to DNA. For even tighter regulation,
two or more transcription factors can be used in combination.

An example of a gene system with two regulators is in fact the lactose
degradation system considered above. What was not mentioned then is
that an additional activator is almost constantly bound to DNA near the
lactose system. The activator only falls off when the carbohydrate glucose is
present in the cell. In the absence of glucose, the system is hence controlled
by the repressor alone. However, when glucose is present a signal molecule
causes the activator to unbind, efficiently halting gene transcription. This is
the above mentioned case when the inducer plays the opposite role than in
Figure 6. Glucose is not available to E. coli most of the time, so to say that
the lactose system is regulated by a repressor is a good approximation. This
extra mechanism has evolved because E. coli will metabolize glucose before
any other carbohydrate, since glucose is the most efficient energy source
available to E. coli.

The example just discussed shows how a gene’s regulatory mechanism

3A system is a set of genes regulated by the same transcription factor(s).
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Figure 6: An inducer initiates gene transcription using two different regu-
latory mechanisms. In (a) the repressor blocks RNA polymerase’s access to
DNA, while in (b) inducer signals have caused the repressor to unbind its
binding site, leaving DNA polymerase free to transcribe the gene. In (c)
RNA polymerase does not bind DNA because the activator is not bound,
while in (d) inducer signals have cauigd the activator to bind so that DNA
polymerase might initiate transcription.



acts as a logic gate. For IF glucose AND lactose — use only glucose. IF
NOT glucose AND lactose — use lactose. The more AND, IF and OR
considerations the cell needs to make before initiation gene transcription,
the more commands will be needed in the logic gate. In terms of biology:
more transcription factors will be needed in the regulatory mechanism.

6.2 Predicting the outcome of evolution

Considering that many activators and repressors can work together to regu-
late gene transcription, and keeping in mind that each activator or repressor
can be either activated or deactivated by an inducer, and that there exist
even more regulatory functions than those considered here, it is evident that
transcriptional regulation can be very complex indeed. Citing systems bi-
ologist Uri Alon: “(...) cells evolved to survive, and not for scientists to
understand” [11]. From this complexity, evolution has chosen for each gene
system a particular regulatory configuration of repressors and activators.
Thus the question rises: for a given gene system, is there any way to predict
the regulatory system as an outcome of evolution? This is one of the ques-
tions Alon tries to answer in his book “An Introduction to Systems Biology:
Design Principles of Biological Circuits” [12]. The biological examples and
much of the discussion in part III of this work is based on chapter 11 in
this book. To answer the question if the outcome of evolution can be pre-
dicted, the models derived in part I of this work will be solved motivated by
the Savageau demand rule and the rule of minimal error load to postulate
outcomes of evolution of regulatory systems.

7 Defining and testing the Savageau demand rule

If gene expression in the presence of an inducer is desired, as in Figure 6,
both regulation by activator and by repressor can achieve this, as can be seen
in that Figure. Why, then, has evolution chosen different regulatory modes
for the aforementioned arabinose and lactose degradation systems? This
question was raised by Savageau [13], which he answered by formulating
what is called the Savageau demand rule, which for the purposes of
this work can be stated as: ‘The mode of gene regulation is correlated
with the demand for gene expression in the organism’s natural environment.
High demand genes are regulated by activators and low demand genes are
regulated by repressors’.

The demand of a gene is a way of quantifying how often the function
carried out by the gene product is needed in the cell. In the mathematical
models, the demand of a gene will correspond to the frequency of time that
the signal that prompts RNA polymerase to transcribe the gene is present
in the cell.
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7.1 The demand rule explained by stability against muta-
tions

The argument by stability against mutations was the argument for the de-
mand rule given by Savageau [12][13]. The observation behind the argument
is that most mutations to an organism’s DNA are harmful. In the context
of gene regulation, a harmful mutation is in this argument taken to be one
that causes loss of regulation. By loss of regulation it is meant that the
regulating transcription factor (the activator or the repressor) is no longer
able to bind DNA [12]. See Figure 7 for examples of loss of regulation in an
activator and a repressor.

7.1.1 An example with a high demand gene

To understand the stability argument, assume as an example a gene that is
in high demand. Assume also that gene transcription should be started in
the presence of an inducer. Since the gene is in high demand, the inducer
molecules will be almost constantly present in the cell.

First, assume that this gene is regulated by an activator. Loss of
regulation in a mutant thus corresponds to the activator in that mutant
becoming unable to bind DNA. If the activator can not bind DNA, RNA
polymerase can in turn not bind either, see Figure 7 a), so that gene tran-
scription can not be initiated. Since the gene is in high demand its protein
product must be important. Loss of regulation causes a drastic reduction
in the production of this protein, so the mutated cell will likely have a
marked reduction in fitness compared to other, unharmed cells in the pop-
ulation. Therefore, mutants that have lost their regulatory function are
selected against strongly and quickly removed from the population. Since
mutants that have lost their regulatory function are quickly removed from
the population, the regulation by activator is a stable regulatory mode in a
high demand gene.

Next, assume that this gene is regulated by a repressor. Loss of
regulation now results in constitutive (i.e. constant) gene expression, see
Figure 7 b). Since the gene is in high demand its gene product is needed
almost all the time. A mutant with lost regulation is producing the gene
product all the time, so it does not have its fitness greatly reduced. Such
a mutant might survive in the population unpunished. By genetic drift its
descendants might eventually take over the population, causing the regula-
tory mode to be lost for all cells, and thus reducing the fitness of the entire
population. When this population at some later point will encounter diffi-
cult living conditions or competition for resources with another population,
it is more likely to die out because of its collectively reduced fitness. Thus,
regulation by repressor is not a stable requlatory mode for a high demand
gene.
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Figure 7: Comparing functional to dysfunctional regulators. (la) The ac-
tivator is unable to bind DNA, halting expression. (2b) The repressor is
unable to bind DNA, leading to constitutive expression.

45



By having considered a high demand gene regulated by a repressor and
an activator, it is concluded that regulation by activator is the more stable
regulatory mode in high demand genes. For a gene in low demand, the
argument is symmetrical, but will be sketched for clarity.

7.1.2 An example with a low demand gene

Consider a gene that is in low demand whose transcription should be started
in the presence of an inducer.

First assume that this gene is regulated by an activator. For a mutant
where regulation is lost, gene expression will stop all together. Since the
gene was in low demand, one may assume that the gene product is not of
critical or immediate importance to the cell, and therefore the fitness of the
mutant is not greatly reduced. Since the fitness of the mutant is not greatly
reduced, its descendants might take over the population by genetic drift,
causing a fitness reduction for the entire population.

If on the other hand the gene is regulated by a repressor, loss of regula-
tion in a mutant results in constitutive expression. The metabolic burden
suffered by a mutant from constantly producing mostly unneeded proteins is
assumed to be quite large, so that such a mutant will be at a strong selective
disadvantage, and thus quickly removed from the population. It is therefore
concluded that regulation by repressor is the more stable regulatory mode
in low demand genes.

7.1.3 Conclusions and limitations of the stability argument

The stability argument concludes that regulation by activators is the most
stable mode for high demand genes and that regulation by repressors is the
most stable mode for low demand genes. This speaks in favor of the demand
rule. Indeed, “[The] demand rule appears to be in agreement with 100 gene
systems (...) from E. coli and other organisms (...)” [12]. Two examples are
the arabinose and lactose degradation systems considered earlier. Arabinose
is frequently available to F.coli and its system is regulated by an activator,
and lactose is rarely available to E.coli and its system is regulated by a
repressor.

The question then rises: does this apply to the cases with two or more
regulators? Say that a gene should be regulated by two regulators. Will this
gene be regulated by two activators if demand is high and by repressors if
demand is low? As will be seen, this is not the case.

The stability argument has some limitations. First, it does not take into
account that one regulatory mode can mutate into another, so that both
modes may coexist in a population. If both regulatory modes coexisted in a
population, one would have to consider if one of the modes has an inherent
fitness advantage over the other. Only by assuming that there is no such
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inherent fitness advantage to either regulatory mode is it plausible to test
populations regulated by repressors and populations regulated by activators
separately, as was done in the stability argument.

It is however known that relatively few mutations can cause a repressor
to turn into an activator and vice versa [10]. If by mutations both modes are
present in the population and one has a fitness advantage over the other, the
advantageous mode might take over the population by natural selection, thus
overriding the effect from stability against mutations. According to Alon
“Mutant-selection arguments are valid only if there is no intrinsic fitness
advantage to one of the two modes of control. If such intrinsic differences
exist, they would dominate over the differential effect of mutations.” [12].
In his book, Alon then introduces another argument, which originates from
a paper that he co-authored [14] and which is based on the concept of
minimal error load. However, before the error load argument is introduced,
the Fokker-Planck equation will be used to show that the stability argument
can be put to the test numerically and shown to be correct for the case of a
single repressor or activator.

7.2 Testing the demand rule for a single regulator

The stability argument predicts that the regulatory mode chosen by evo-
lution is the one that is most stable against detrimental mutations. The
stability of the regulatory mode will be tested by assuming that a mutant
with loss of regulation has just been introduced to a population, and the
probability that the allele of the introduced mutant eventually becomes fixed
in the population is used as a measure of the stability of the established reg-
ulatory mode.

The organisms of the population are assumed to be to F. coli, but the
outcome of the test can be applied to haploid, asexual organisms in general.
Allele A will correspond to the functional regulatory mode, initially present
in every cell. Allele B will correspond to the introduced allele that causes loss
of regulation. Allele A should be interpreted as the collection of DNA which
ensures functional regulation. This is the DNA of the transcription factor
binding site and the DNA of the gene that is the blueprint for transcription
factor protein itself. Allele B should be interpreted as any mutant of allele
A that causes loss of regulation. To measure the stability of allele A to
withstand the introduced mutant, the probability that the introduced allele
B will eventually become quasi-fixated in the population is used. From here
on, when discussing quasi-fixation of alleles in the presence of mutations,
the term ’quasi’ will be dropped for convenience.

The evolution of the two regulatory modes in the population will be
tested for both a high demand gene and a low demand gene. This gives four
possible test scenarios (repressor low and high, and activator low and high),
but because of the symmetry of the stability argument only two scenarios
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need to be investigated. For simplicity, a high demand gene is defined as a
gene where the inducing signal is present 90% of the time and a low demand
gene is defined as a gene where the inducing signal is present 10% of the
time. The number of generations within which demand varies is set to 80,
the same as for the mean field simulations in part II. Applying these values
for demand to the discussion in 7.1 results in the two selection reduction
vectors for allele B as given in Figure 8 and Figure 9. These plots show
during which generations allele B is selected against (when S > 0) and
during which generations allele B is subject to genetic drift (when S = 0).

High demand and positive regulation

Low demand and negative regulation
T T T T T

Selection coefficient
T

0 I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Generations

Figure 8: In these two scenarios, allele B is selected against most of the
time. Generations are in units of 103.

As can be seen from Figure 8 and Figure 9, the four scenarios offered
by two regulatory modes and two types of demand are reduced to just two
different selection vectors, and thus to just two numerical simulations. This
is because it has been assumed that the fitness reduction from stopping pro-
duction of a high demand gene product is the same as the fitness reduction
from over expressing a low demand gene product. For real regulatory sys-
tems this can not be assumed to be true, but it is assumed here for the sake
of simplicity.

1000 generations were simulated for N = 100 individuals for values of .S
from 0 to 10 for a high demand gene under both repressor and activator reg-
ulation. A value of S = 4 corresponds to allele B having a fitness reduction
of 0.04 per cent compared to allele A. Step lengths of Az = 1/100 for the
frequency and At = 1/100? for time were used. The initial value of allele A
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High demand and negative regulation

Low demand and positive regulation
T T T T T

Selection coefficient
T
|
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Figure 9: In these two scenarios, allele B is subject to genetic drift most of
the time. Generations are in units of 103.

was f(0,t) = 0.99. The mutation rates? are Ny = N10~7 and nv = N1075.
The mutation rates values are so small however that they have little impact
on the calculations.

For each simulation the probability that allele B had fixated in the pop-
ulation after the 1000 generations was stored. A plot of the final fixation
probabilities is given in Figure 10. The fixation probabilities are calculated
from the value of the numerical probability distribution at f(0,¢) where
t = 1000. It is clear from Figure 10 that if a high demand gene is regulated
by an activator, the chance of a dysfunctional mutant taking over the pop-
ulation is much smaller than if the gene is regulated by a repressor. This
result validates the predictions of the demand rule. The results for a low
demand gene are not shown since they mirror the results in Figure 10. They
verify however that a low demand gene is more stable against mutations
when regulated by a repressor, in compliance with the demand rule.

It can be asked if the use of fluctuating selection values in stead of a
mean value for s(¢) has an effect on the fixation probabilities. In order to
investigate this, the solutions obtained by solving the Fokker-Planck equa-
tion were compared to an exact formula for the fixation probability of allele
B, which is valid when there are no mutations and s(t) is constant. This

Tt is assumed to be 10 times more likely to mutate from functional to dysfunctional
regulator than the other way around.
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0,01

High demand and negative regulation
High demand and postitive regulation
Exact formula using the mean S*0.9
Exact formula using the mean S*0.1

0,005

Fixation probabilities

Figure 10: Fixation probabilities of the mutated allele B. Allele B has a much
higher probability to become fixed when the high demand gene is regulated
by a repressor. The selection values on the horizontal axis correspond to .S
as shown in Figures 8 and 9. The solutions from the exact formula show that
fluctuating selection values do not greatly affect the fixation probabilities for
this example.
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formula is given by (see [4] p. 119 and [8])

e—2S(N-1)/N _ ,—28

—e
1—e 28

Iy = (7.1)
By evaluating this formula for N = 100 and S = S found from the integral
of S(t) in Figures 8 and 9, fixation probabilities for allele B almost identical
to those from the solution of the Fokker-Planck equation were found. The
discrepancies as seen in Figure 10 are not significant over numerical sources
of error. The conclusion is that fluctuating selection values do not affect the
conclusions of the stability argument for the demand rule.

8 Defining and testing the rule of minimal error
load

The argument behind the rule of minimal error load is that regulatory modes
suffer fitness reductions - called error loads - when its transcription factors
are not bound to DNA. Two sources of these errors will be explained: non-
specific binding and residual binding.

A transcription factor is either bound to its binding site or diffusing in
the cell. What causes a transcription factor, or any other protein for that
matter, to bind DNA are forces between the protein molecule and the DNA
molecule. A protein’s binding affinity for a length of DNA is a function
of the sequence of nucleotides along that length. What identifies the tran-
scription factor’s binding site is then a specific sequence of nucleotides that
the transcription factor binds strongly. However, every protein has a prob-
ability to bind to every suitable length of DNA. A transcription factor may
therefore bind other sites along DNA than its intended binding site. This
is called non-specific binding. Thus, when a regulatory mode’s binding
site is vacant, other transcription factors than those associated with the reg-
ulatory mode may bind to this binding site, interfering with transcription.
This interference may result in either increased or decreased transcriptional
activity, each of which reduces the fitness of the cell [12].

Residual binding is when the transcription factor for a regulatory
mode binds its own binding site when it is not supposed to. An signal
molecule typically reduces the binding affinity of its transcription factor by
only one to two orders of magnitude compared to when the inducer is absent
[12]. Thus, even if the signals says that the transcription factor should be
free of DNA, it can still bind, but with a reduced affinity.

Both non-specific binding and residual binding cause a fitness reduction
for the cell when a binding site is unbound its regulatory protein. The
error load rule can be stated as: ‘evolution chooses the regulatory mode
for each system so that the mode’s transcription factors are bound most of
the time.’
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8.1 The argument by minimal error load for one regulator

For subsequent comparison with the Fokker-Planck and mean field models,
an account of Alon’s error load argument, using his notation, will now be
given. Alon identifies what he calls the total error load for systems regulated
by repressors and activator by Er and F 4, respectively. These values are
given by the fraction of time the regulatory mode has an unbound transcrip-
tion factor times the selection disadvantage suffered during this time:

ER = psi1 (8.1)
Ex=(1-p)sa,

where p is the demand of the system, and the two s’es are the fitness re-
ductions suffered when the transcription factor is not bound to its binding
site.

A brief note: in this work’s language, s and Er can be identified as
the integrals of the functions in Figure 8 and Figure 9 when s; = so = S.
From this identification one can use the selection estimates from the error
load argument in the Fokker-Planck equation.

By assuming that evolution seeks the minimal error load for each system,
Alon finds the parameter values for p, s; and so where evolution would
choose regulation by repressor by evaluating

Er < Fa, (8.3)

which gives that repressors are advantageous whenever

p<1/(1+ 3. (8.4)
52
This corresponds to repressor regulation for small values of p and activator
regulation for large values of p, which is in agreement with the argument by
stability against mutations.

For an introduced mutant, being advantageous is not enough to achieve
fixation. Alon states that only if the difference F4 — Er exceeds some
threshold s, will a mutant that regulates by repressor achieve fixation in
a population where regulation by activator is the default.

The model that Alon puts forth is good as it gives much insight with
little mathematics. However, the error load argument is basically just a way
of identifying fitness differences caused by different regulatory modes. The
argument that evolution will choose regulation by repressor when Fr < E4
and E4 — ER > Spin, 18 just a way of saying that evolution will choose the
most fit organism, and that a mutant organism can take over a population
if its selective advantage is strong enough.

There are two immediate advantages gained from analysing the error
load argument with the Fokker-Planck equation instead of with Alon’s in-
equalities. The first is that exact fixation probabilities for each parameter
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regime can be found. The fixation probabilities are a way of saying when the
selective advantage is strong enough that one regulatory mode will overtake
the other. The other is that by taking into account the effect of mutations,
one can rule out the effect of fixation whenever uN > 0.5, as can be seen
from Figure 1 in part II. Although S = 0 in that figure, fixation will not
occur for any O(e)-permitted value of S = sN in the uN > 0.5 regime.

However, the Fokker-Planck equation will not be used in this work to
investigate the error load argument for one transcription factor. In stead,
the mean field equations will be used to study the the error load argument
for a gene regulated by two regulators.

8.2 The argument by minimal error load for two regulators

By arguing as for the case with one regulator, Alon produces error load
inequalities for two simultaneous regulators. While the error load argument
supported the argument by stability against mutations in the case of a single
repressor or activator, the inequalities he obtains show that the matter is
more complicated when more advanced regulatory mechanisms are consid-
ered. This will be seen from simulations in the next section, where the case
with two simultaneous regulators controlled by two inducers will be tested
using the mean field equations derived in part I. With two simultaneous
regulators, there are four possible regulatory modes: AA, AR, RA and RR,
where R symbolizes regulation by a repressor and A symbolizes regulation
by an activator. The order of the letters identify what regulatory mode the
two inducers in the cell act on. This will be further explained below.

8.3 Testing the rule of minimal error load for two simulta-
neous regulators

Assume that the transcriptional activity of a gene Z in a cell is governed by
two transcription factors that in turn are controlled by two signal molecules
called L and G. There are many ways by which two signals and two tran-
scription factors can regulate gene transcription; see [12] ch. 2 for a brief
discussion. The combination that will be considered numerically in this sec-
tion is as follows: transcription of gene Z should be initiated in the presence
of signal L. but should be shut down in the presence of signal G, regardless
if L is present or not. This is an example considered by Alon in [12], and
it can be shown to correspond to the gene regulatory mechanism for the
lactose degradation proteins in E. col.

A notation for when either signal is present or absent in the cell will be
needed. If 0 and 1 denote the absence and presence of a signal respectively,
(G,L) = (0,1) indicates that G is absent and L is present in the cell, and will
be referred to as state (0,1). Table 2 shows how the regulatory mechanism
should react in the different signaling states.
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Table 2: Desired response of the regulatory mechanism. The first entry in
the parenthesis corresponds to G and the second entry corresponds to L. 1
denotes presence and 0 denotes absence of either signal.

(0,1)

(1,1
(1,0
(0,0

)

— — —

The desired response of the regulatory mechanism to the two signals L
and G as given in Table 2 can be realized with either of the four possible
regulatory modes: AgAr, AgRp, RgAr or RgRy. As mentioned above,
the order of the letters show what inducer acts on what transcription factor;
here indicated by a subscript.

The task at hand now is to identify when the transcription factors are
bound and unbound for each of the four regulatory modes. When that
identification is made, errors can be attributed to each mode whenever it
has unbound transcription factors. These errors can then be used for the
selection coefficients Sy, So, S3 and Sy in the mean field equations.

8.3.1 Analysing regulatory mode AgA; in detail

Table 3 summarizes the analysis of regulatory mode AgAry.

Table 3: Analysis of the Ag Ay, regulatory mode. p;; is the fraction of time
the system spends in state (i,j) and S4 and Sgr are the selection disadvan-
tages suffered when respectively an activator and a repressor are unbound
their binding sites.

’ (G,L) \ Transcription mode \ # of bound transcription factors \ Fitness reduction ‘

(0,1) ON 2 0

(1,1) OFF 1 p11S4
(1,0) OFF 0 2p1()SA
(0,0) OFF 1 P00S A

In the first row the state is (0,1), so the transcription mode is ON. The
way by which transcription can be ON in a mechanism regulated by two
activators, is if both activators are bound to their binding sites. Since both
transcription factors are bound, the error load argument states that while
in this state, the regulatory mode Ag Ay suffers no reduction of fitness.
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In the second row the state is in (1,1), so the transcription mode is OFF.
By considering the row, it is understood that the activator controlled by G
is bound only for G = 0. Since G = 1 in this state, the conclusion is that the
activator controlled by G is not bound in state (1,1). Similarly, it is seem
from the first row that the activator controlled by L is bound only when L =
1. Since L =1 in this state, the conclusion is that the activator controlled
by L is bound in this state (1,1). Hence, only the activator controlled by L
is bound to DNA in state (1,1). The regulatory mode Az Ay thus suffers a
fitness reduction S4 when in state (1,1).

The remaining two rows are treated in the same way, and so are the
modes AR, RA and RR. The fitness reductions of each mode in each state
are given in Table 4. Note that the row for mode AA corresponds to the
last column in Table 3. The rows for the other modes correspond to the
last columns of their corresponding tables (not shown). From Table 3 the
selection coefficients for each regulatory mode is found.

Table 4: Selection coefficients for the regulatory modes in each of the differ-
ent signal states.

| Mode | (0,1) | (0,0) | (1,0) | (1,1) |
AA 0 P00SA 2p1054 P1154
AR | pnSr 0 p10Sa | p11(Sa + Sr)
RR | 2po1Skr Po0SR 0 P11SR
RA | po1Sr | poo(Sr+ Sa) | p10Sa 0

8.3.2 Why the demand rule is no longer applicable

For this system, demand is defined as the fraction of time the system spends
in state (0,1). The reason why demand is no longer a predictor of regulatory
mode is simply because there are now four possible states, instead of just
two as for the case with one regulator. While the fraction of time spent in
the ON state (0,1) determines demand, there are now three OFF states. The
time spent in each OFF state contributes differently to the fitness reduction
of the regulatory mode, as can be seen from Table 4. For the case with only
one regulator, there was only one OFF state, so there could be no variation
in fitness reduction.

The specific experimental setting for testing the error load argument
will now be defined. Assume that a gene Z is in low demand, which again
is taken to mean that the cell spends 10% of its time in state (0,1), so that
por = 0.1. The times spent in the remaining states can in principle be
distributed freely, subject to poo + p1o + po1r +p11 = 1. Two distributions of
these values will be considered in the simulations.
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In the first simulation, the cell spends equally much time in the remaining
states. This means that pgy = p1p = p11 = 0.3. Using these values, the
evolution of the allele frequencies in the population is given in Figure 11.
In this figure the regulatory mode RA stands out as dominant most of the
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Figure 11: The evolution of allele frequencies in a population that is in the
ON state (0,1) 10% of the time and in the states (1,0), (0,0), and (1,1) 30%
of the time. Regulatory mode RA dominates the population most of the
time.

time.

In the second simulation, the cell spends time in the remaining states
according to the following values: pgg = 0.8, p1g = 0.1, and p;; = 0. This
corresponds to a situation where both signals occur rarely in the cell, and
where they never occur together. The evolution of the population using
these values is given in Figure 12. In this figure it is clear that regulatory
mode AR is dominant. It is not difficult to imagine that due to stochastic
effects it could become fixed in the population with a high probability.

In both simulations, the model parameters are given by Sp = S4 = 6
and U;; = 0.1 for all ¢ and j. Further, all four alleles are initially present at a
frequency of 0.25. Although this is not a likely real-world scenario, the main
point of this simulation is to show that the demand rule cannot be used for
regulatory modes with more than one transcription factor. Comparing the
Figures for the two simulations, one sees that even though in both cases
the gene Z is in low demand, the error load argument predicts two different
evolutionary scenarios. This demonstrates that the question of regulatory
mode is no longer a question of demand. Indeed, by going through differ-
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Figure 12: The evolution of allele frequencies in a population that is in the
ON state (0,1) 10% of the time and in states (1,0), (0,0) and (1,1) 10%,
80% and 0% of the time, respectively. Regulatory mode AR dominates the
population.

ent distributions for the values p;;, any of the four modes can be made to
dominate the population.

The values for pg1, poo = 0.8, p1o = 0.1, and p1; = 0 in the last simulation
are inspired by the lactose degradation system. Gene Z can symbolize the
gene system that codes for the lactose degradation proteins, and G and L are
the glucose and lactose inducer molecules respectively. The reason why the
pi; are distributed like this for the lactose system, is because when glucose
is present in the cell the access of lactose and other carbohydrates to the
cell is blocked [12]. Further, both glucose and lactose are rare in E. coli’s
environment, which explains why the cell spends most of its time in state
(0,0). As predicted by the simulation, the lactose system in E. coli is indeed
regulated in this fashion: the glucose inducer controlls the activator and the
lactose inducer controlls the repressor.

9 Applications to other areas in biology

The population genetics models have in this work been applied to the evo-
lution of gene regulatory mechanisms in a population. The way that gene
regulation could be described by the population genetics models, was that
different gene regulatory modes could be identified as different alleles and
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selection coefficients could be associated with each allele through the argu-
ments of stability against mutations and error load. In the same way, any
characteristic in an organism that can be realistically identified with a gene
that has alleles of varying fitness can be modeled in the same way.

A field where population genetics models are in frequent use is the mod-
eling of the evolution of cancer. Put simply, cancer is a collective term for
cells that grow abnormally fast. In a population of normal cells, the initial,
fast growing cancer cell is produced from the normal cells by mutations.
The mutation rate at which that happens can be use in population genetics
models. The different growth rates between cancer cells and normal cells
provide a way of quantifying the cancer cells’ selectional advantage. Assume
that normal cells have growth rate r; and cancer cells have growth rate ro
(the growth rate of cells can be measured in cell divisions per hour). One
can then identify the normal cells’ selective disadvantage by s = r1/ra [15].
With both mutation rates and selection coefficients readily available, cancers
are well suited for the population genetics models found in part I.

A study that uses the Moran model to study the evolution of so called
cancer stem cells is one by Dingli et al. [16]. It is argued that since the
number of stem cells in certain compartments of the body are kept constant
by intercellular communication, the constant population size Moran model
is well suited to describe the evolution of stem cells. Stem cells divide
slowly, and may either divide into two new stem cells, one stem cell and
one differentiated cell, or two differentiated cells. The stem cells alternate
between these three types of division to both keep the number of stem cells
constant as well as to be able to renew the surrounding tissue with fresh
cells. A differentiated cell is a specialized cell, the specialization of which
depends on the tissue that the stem cell resides in [16].

It is hypothesized that a mutant stem cell that divides into two new stem
cells more often than it should, might be a source of cancer. Dingli et al.
use the Moran model to show that such a mutant will take over the stem
cell pool rapidly. Based on this, the conclusion is that research is needed
to identify genes in stem cells that play a part in deciding which of the
three types of division the stem cell chooses, to better be able to understand
tumor growth and possibly identify novel targets for cancer therapy.

A study by Nowak et al. uses the Moran model to study cancer in the
colon [15]. This study highlights some of the limitations of the Moran and
Wright-Fisher models. “The Moran process describes evolutionary dynamics
in a well mixed population of cells. All cells are in equivalent positions
(...). There are no spatial effects.” [15]. The authors then construct a
stochastic process, called the linear process, that does take into account the
architecture of so called colonic crypts. Using fixation probabilities, they
show that the linear process predicts a much lower number of cancers than
the Moran model. Since the linear process is assumed to better describe
the colonic crypts, they argue that “(...) patterns of cell division in tissues

o8



of multicellular organisms have evolved to delay the onset of cancer.” [15],
using the Moran model as a kind of evolutionary neutral reference.

Part IV
Concluding remarks

10 Summary

In this work, two models for population genetics were developed, namely the
Wright-Fisher model and the Moran model. The Wright-Fisher model had
its foundation in stochastic sampling from a binomial distribution, while the
Moran model was a stochastic birth-and-death model. It was shown that the
continuous approximations of both models yielded the same Fokker-Planck
equation. As well, equations that describe the change of the mean allele
frequency over time were deduced for both models.

Two results of interest can be noted from derivations of the models.
The first is that an extension to the continuous Wright-Fisher model was
suggested by introducing variable population size. This extension not part
of text book material on the subject. The second is that a Fokker-Planck
approximation of the Moran model with selection was derived. This is an
extension of the result obtained in [6] where s = 0.

A solution method for the Fokker-Planck equation with constant popu-
lation size by finite differences was introduced, and boundary values of this
equation and the concept of fixation were discussed. Both the Fokker-Planck
equation and the mean field equations were applied to simulate an evolu-
tionary process where different gene regulatory mechanisms were 'compet-
ing’ against each other. The results of these simulations were used to argue
that the Savageu demand rule is correct for the case for regulation with one
transcription factor, but does in general not hold when the number of tran-
scription factors involved in regulation exceeds 1. Additionally, fluctuating
selection values compared to mean values did not affect the conclusions of
the mutational argument for the demand rule for the example considered.
Finally, applications of population genetics models to the field of cancer
biology were discussed.

11 Discussion

11.1 The Wright-Fisher model for N(t) variable

As mentioned, the continuous Wright-Fisher model, or Kolmogorov forward
equation, with a variable population size is not text-book material on the
subject. One reason for this could be that while the Kolmogorov forward
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equation describes the allele probability distribution, it is the Kolmogorov
backward equation that has been used to find formulas for interesting results
such as fixation probabilities and the mean time until fixation. Indeed, to
investigate the effect of logistic growth and decline of the population size,
Kimura and Otha used the Kolmogorov backward equation [17]. However,
McKane and Waxman have have recently identified the singularities appear-
ing at the boundaries of the Kolmogorov forward equation as fixation prob-
abilities. As such, a similar investigation to theirs for N(¢) variable could
allow workers to identify singularities at the boundaries as fixation proba-
bilities for the Kolmogorov forward equation with variable population size.
This would abolish the need for the backward equation in an investigation
of fluctuating population size.

11.2 The validity of the simulation results

The results of the numerical simulations have been used to argue what gene
regulatory mechanism in F. coli evolution favors in different environments.
Of course, these conclusions are valid only if the models themselves can
be thought to accurately describe the bacteria in their natural setting: the
mammalian intestines. No such justification has been given in this work,
and thus the presented results should be considered with some sceptisism.
For example, in the sample solution of the Fokker-Planck equation, the pop-
ulation size was assumed to be N = 100, which is far from an accurate esti-
mate of the number of E.coli cells in the gut. The actual number is O(10'°).
Using that number would however not give an accurate model description
either, since the total population is likely divided into subpopulations, each
of which may be describable as a population on its own, with possibly some
migration of cells between populations. However, in principle a justifica-
tion of this model application can be made. In order to do so, a thorough
literature search on E. coli must be made, or the modeler must engage in
collaboration with biologists. Then hopefully one can identify plausible val-
ues of V; decide if one should take into account fluctuating mutation rates;
determine how often the different carbohydrates are available to E. coli; and
decide if other evolutionary mechanisms, such as migration between popu-
lations, should be included in the model. This however is outside the scope
of this work.

11.3 Applications of the rule of minimal error load

It has been suggested in this work that the rule of minimizing error load
should be used to predict the regulatory mode of genes or gene systems
in bacteria. This should be tested by comparing the predictions of this
rule with more real world examples. If found to be correct, this argument
gives novel insight into the best way by which a cell can regulate its genes.
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This information is not just of pure theoretical use. Synthetic biology is
an emerging field within biotechnology [18] that aims to create designer
organisms. To see how far this field has come, a team recently synthesized
an entire bacteria’s genome from scratch [19] by using other bacteria and
yeast as molecular machines. If one should create a synthetic bacteria, then
one would inevitably have to decide how to regulate that bacteria’s genes.
As has been seen in this work, there are many ways by which gene regulation
may be realized in the cell. If the error load argument holds, researches can
use this information to design the gene regulatory mode for their synthetic
bacteria for the best possible result.

12 Suggestions for further studies

The argument by stability against mutations and error load have been pre-
sented as two different arguments. However, if one solved the Fokker-Planck
equation for 3 alleles, one for repressor regulation, one for activator regula-
tion and one for lost regulation, the stability argument and the error load
argument can be combined in one model. The statement quoted by Alon in
part 3: “Mutant-selection arguments are valid only if there is no intrinsic
fitness advantage to one of the two modes of control. If such intrinsic differ-
ences exist, they would dominate over the differential effect of mutations.”,
is of course a simplification of the matter. Using a model with three alleles,
one could investigate exactly when intrinsic fitness differences dominate over
stability against mutations.

Another interesting prospect is to solve the Fokker-Planck equation for
variable population size. In order to do this, effects at the boundary must
first be rigorously investigated. This investigation is outside the scope of
this work. There are several interesting population size scenarios one could
consider. One would be to investigate increasing and decreasing logistic
functions for N(t) to verify the result obtained by Kimura and Ohta, namely
that a selectively advantageous allele has an has a “higher chance of avoiding
extinction in an increasing population than in a declining population” [17].
Another fascinating study would be to investigate the effect of so called
population bottlenecks, which is when a population’s size decreases rapidly
in a short period of time, sometimes followed by a period of rapid growth.
It is a well known result in evolutionary theory (as can be shown using
other population genetics models) that in populations of small sizes genetic
drift is a stronger force than what it is in large populations, where selection
becomes a more dominant force.
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Appendices
A The diffusion approximation for two alleles and
N(t) constant

A.1 Approximating ¢(z',t)
Multiplying p, v, and s by the bookkeeping parameter € = 1, (2.8) one finds

e+ (1 —ev —ep)a’

o) = 1—es(l—eu)+es(l—ev—ep)a
ept+ (I —ev —ep)a’
1 —es(1—2a) 4+ O(e?)
— (et (1— v — eua’)[1 + es(1 — ') + O(E)]

=2’ +eM(2',t) + O(?)
(A1)

where
M2 t)=p+st)(1—a)a' — (v+ p)a’

A.2 Moments of Az|z’

The moments of Ax|z’ are found using that n, the number of A alleles in
the next generation, is binomially distributed when n’, the number of A
alleles in the previous generation, is known. To shorten expressions, ¢(t, z')
is written as ¢ and M(2/,t) as M. Further N is considered so large that
1/N <e.

E[Az|2'] = E[z — /|2
= E[z|2/] — 2/
1 /

= NE[n|n'] -z

— (b — g;’
= eM + O(e%).

E[Az?|2/] = Var(Az) + E[Az|2/]?
= Var(Az) + O(é?).
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Var(Az|z') = Var(z — 2/|2")

1

:WVar(n]n’)

_o(1-9)

N

_ x(l—x)+]\;M(1—2x) L o)
_exl(1—2a') 9
—T+O(€ )

since ¢/N < O(€?) and 1/N = O(¢). To find the higher moments of Az|z’,
the moment generating function for the binomial distribution, given by

\Dm(¢7 t) = (1 - (b - ¢€t)m7 (AQ)
was differentiated for m = 3 to find

(N - DN —2)¢° +3(N —1)¢* + ¢
N2 ’

E[z?|2] =
Next, from ¢(2',t) = 2’ + eM + O(e?) the following identities were found:

$* (', t) = (2')% + 2ex’ M + O(€?)
(1) = (&) +3e() M + O().

Thus

E[Az3|2)] = E[23|2/] — 32/ B[2?|2'] + 3(2')?E[z|2’] — (2')3

2
— (1= - 3= DG+ s -3 [0 )+ ]
+3(2)%6 — (2')°
2
— (1= e+ o a1 D) - o] - @+ 0
TSV O s
—($)3+3($)26M—T+T
— 32 [(w')2 + 22’ eM — (@')° + o (z')? — x'eM}
N N
@)+ 0@
— 0(&). (A.3)

A.3 The Fokker-Planck equation

The derivation in this section is partly adopted from [4].
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Rewrite

P(n,t+1) ZP n|n')P(n',t) (A4)
as
x N x x!

This equation can in turn be written as

N
P(zp,t+1) = Z (|2 ) P2y, t). (A.6)

Now scale the equation by N so that

N
NP(zpt+1) =Y  NP(an|zw) NPy, t)o, (A7)
n/=0

where dx = 1/N. Rewrite this as

N

F@n,t+1) =" flaalz),) f(ah, t)ox. (A.8)

n/=0

Letting N — oo this can be approximated by
flz,t+1 /f z|2') f(2' t)d (A.9)

where S € [0,1]. n is now considered to be a continuous variable and f(z,t)
is taken to be a continuous probability distribution with the same moments
as P(xzp,t). Define the space D of functions Q(z) € C*°[0, 1] with compact
support on S and boundary values

QW) =" 1) =0 (A.10)

for all non-negative integers k. Because of the boundary values, D is a linear
test space. Multiplying both sides of (A.9) by Q(z) and integrating over x,
one obtains

/ flz,t+1)Q(x)dx = // f(z|2") (2!, 4)Q(z)da’d. (A.11)
5 S
The left hand side of this equation is now associated with the distribution
ft+12

(f1Q /f z,t+1)Q(z)dx (A.12)
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A Taylor expansion of Q(z) about z’s gives

e L 9Q3") 19*Q(2")
Qr) =Q(z') + TAQU + §W(A$)2 +0((Az)?),

where Ax = z—2'. Q(2') and its derivatives are in D since 2’ € S. Inserting
the expansion for Q(z) in the right-hand side of (A.11) gives

= [ f(2',t) flz]z)dz| Q(z")da'+ | f(a',t) Az f(z)|z")dz 8—Q(m’)daﬂ’
Jot | [oeme] @urare s | [ aestoitios| 5

+;/Sf(x’,t) [/S (Am)Qf(:c|x’)d:c] ;Q( ")z’ + O().

The first omitted term in this equation is an integral with integrand E[(Ax)3|2/],
which is O(e?). Higher order terms correspond to integrals of higher order
moments, which are O(€?) as well. The terms within the squared brackets
correspond to 1, E[Az|2'] and E[(Az)?|2'] respectively, which are inserted
to give

:/Sf(a:',t) "da' —|—e/fx t) 883( "da'
*Q

— t)D—=(z')dz' + O(€?),
tax L @E DT + o)
These terms are now identified as distributions. The variable 2’ changes
name to x since the disctinction between the two is no longer needed. The
terms with differentiated test functions are interpreted as differentiations in
the distributional sense. Thus

9 ftM e 92f'D

IN 02 Q(z)) + O(%). (A.13)

= (f1,Q) — (e

?Q) (

Inserting this expression into (A.11) and rearranging terms one obtains

(71— 1.Q(@)) = (H.Q) + 0(e), (A.14)
where
H(wt) = e (fla. )M (2. )] + 2 (f(a. ) D (@)
’ ox ’ ’ 2N Oz2 ’ ’

Thus the following difference equation is satisfied in the distributional sense:

Flet+1) = f(at) = —e - [flat)M(x, 1)



To go from difference to differential equation, the following change of coor-
dinates on the time variable is introduced:

T=—. (A.16)

Thus

A

flz,t+ At) = f(x, NT + A7) = f(x, 7 + AT), (A.17)
where At =1 and A7 = %. Dividing (A.15) by A7 one obtains
fA(l‘7T+AT)_fA(xaT) 2

- = — @, )N, 7))

+ ——(f(z,7)D(x)) + O(?). (A.18)

Here M(z,7) is NM(z,7). This is taken to be a scaling of the model
parameters, so that

M(z,7) =U+ S(1 —2)z — (V +U)z, (A.19)

where U, V and S are the model parameters y, v and s multiplied with
N. By letting N — oo the above difference equation becomes a differential
equation,

of (xz,t) 0 1 0?

ool = I [ OM (@O + 5 g @)D, (A20)

to O(€e?). Abuse of notation has been used in this equation by writing
f(z,7) = f(x,t) and M(z,t) = M(z,t).

B The diffusion approximation for two alleles and
N(t) variable

B.1 The moments of Azx|z’

It is assumed that ﬁ < e for all t. The moments of Az|z’ are then given
by:

E[Az|2] = E[z — 2|2]

= mN(t+ )¢ —a
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E[Az?|2)] = Var(Az) + E[Az|2/]?
= Var(Az) + O(€?)

Var(Az|z') = Var(z — 2'|2")

1 /
= mVar(nm )

_exl(1—2a')
- m +O(€2).

E[Az3|2] = O(e?) (B.1)

as for the case when N(t) is constant.

B.2 Obtaining the The Fokker-Planck equation

Rewrite
P(n,t+1) an\n ' 1) (B.2)

as

N(t) /
n n n
P{Nit+1)——,t+1| = P{N({t+1 N(t P N(t
< (t+ )N(t+1)’ * > nzo ( (t+ >N(t+1)’ ()N(t)) ( ()Nt
(B.3)
This equation can in turn be written as
P(zp,t+1) = Z P(xp|2, )Pz, t). (B.4)

Multiply this equation from the left with 1/N(¢+1) and multiply and divide
by N(t) on the right hand side to give

N(t+1)P(zp,t +1) = Z N(t + 1) P(2p|2n )N () P(aps, t)6z,  (B.5)

where dx = 1/N(t). Rewrite this as

N()
flan, t+1) Z fxp|xw) f(an, t)ox (B.6)

where f(zp,t+1) = N(t + 1)P(ay,t + 1), f(aplz]) = N(t + 1)P(xp |z,

)P
and f(x,,t) = N(t)P(z,,t). Letting N(f) — oo equation (B.6) can be
approximated by

(r,t+1 /f z|') f(2',t)d (B.7)

67




where S € [0,1]. n is now considered to be a continuous variable and f(x,t)
is taken to be a continuous probability distribution with the same moments
as P(xy,t). Define the space D of functions Q(z) € C*°[0, 1] with compact
support on S and boundary values

QW) =" (1) =0 (B.8)

for non-negative integers k. D is as such a linear test space. Multiplying
both sides of (B.7) by Q(z) and integrating over z, one obtains

/Sf(:zc,t + 1)Q(z)dx = é/ f(xl2) f(2', t)Q(x)dx'dz. (B.9)

The left hand side of this equation is now associated with the distribution
ft—&-l:

(117,Q) = [ Flavt+ D)z (3.10)
S
A Taylor expansion of Q(x) about the value 2’ gives
, o ! 1 82 /
Q) = Q) + 220 no o LT (npyp - o((aay,

where Az = x — 2’. Q(2) and its derivatives are in D since 2’ € S. Pro-
ceeding similarly from here on as was done for the case with N(¢) constant,
one arrives at the equation

(f™* = f1,Q) = (HN', Q) + O(€*), (B.11)
where,

€ H?

O flz,t)D(z)].  (B.12)

Thus, the following difference equation is valid in a distributional sense

fz,t+1) — f(z,t) = H(z,t) + O(2). (B.13)
Define a new time variable 7 as
t+1 dS
T = . B.14
0 NG (B.14)

Since this is a 1-1, strictly increasing function one can define ¢t = ¢g~!(7)
from 7 = g(t). Hence one can rewrite f(x,t) as follows:

fl@t) = fz,g7 () = f(z,7) (B.15)

and )
flz,t + At) = f(z, 7 + AT). (B.16)

68



The generation time step in the new variable is given by

t+2 ds
AT = . B.17
v NG (A7
Since N(t) is constant in the interval [t + 1,t 4 2):
1
AT = ——— B.18
TTNGET Y (B-18)
Introducing 7 to equation (B.13) and dividing by A7 one obtains
AT) — A
M7 287 = 10T _ g4, 7)1 0(), (B.19)

AT

where H(z,7) = N(t+1)H(z,7). Letting N(t41) — oo for all ¢, one finds,
by allowing abuse of notation,

Of (z,t)

5 = H(z,t), (B.20)
to O(e?). H(z,t) is given by
0 1 02
H(xz,t) = p [f(z,t)eM (x,t)] + 2922 [f(z,t)D(x)]. (B.21)

C The diffusion approximation for K alleles and
N(t) constant

C.1 Obtaining and approximating the ¢ function for K alle-
les

The K-allele probability function ¢(,t) can be found by following the same
procedure as for the 2-allele ¢(x,t) in the main text.

First considering only the effect of mutations. Assume that each allele
can mutate into any of the others. Let U;; be the probability of mutation
from allele ¢ to allele k. Thus the probability that a child is sampled with
allele ¢ is so far given by

Pi=ai(1-> U)+ > 24Uk (C.1)
ki ki
Then introduce selection by defining ¢;(x’,t) as
w;i P;
Z )
where w; = (1 —s;) and Z = > wi P. Introducing the model parameters as
O(e) and proceeding as in (A.1), one finally obtains

bi(x' 1) = zh + eM(' 1) + O(€2), (C.3)

gbi(m, t) =

(C.2)
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where
Mi(a:',t) =A; + $; (B + (1 — X)SK — Si) + (1 — X)UK’L — ZL‘;UIK (04)

In this equation

K-1 K-1 K—1
X = Z T, B= Z sgxy, and A; = Z (). U; — 2iUs)  (C.5)
k=1 k=1 k#i

The terms with subscript K in (C.4) appear from the implicit writing of
as 1 — X.
C.2 Moments of Ax|z’

The moments of Az|x’ are obtained from the properties of the multinomial
distribution (2.58) using the approximation (C.3). One thus finds

E[Az;|2] = eM; + O(€2).

E[Az;Azj|z’] = Cov(Ax;, Azjlz’) + E[Az; |2’ |E[Axj|x’]
= Cov(Ax;, Azjlz’) + O(€%).

—E€x; T 2 e . .
COV(AIL’Z‘, A.’L’]|$/) — Em,%_x,—;— 0(6 ) if ¢ 7é J
LT+ 0(F) ifi=j.
After a lengthy calculation along the same lines of (A.3) one finds
E[Az;Az;jAx|z] = O(€?) (C.6)

for i,j,l€[1,2..., K —1].

C.3 Obtaining the Fokker-Planck equation

The marginal distribution for the number of alleles in generation ¢ + 1 is
given by
P(n,t+1)= Z P(n|n/)P(n’,t), (C.7)
[0 |+ng=N

where |n/| =n} +nb+ -+ +ng_1. One can argue as for the case with two
alleles, and end up with

fle,t+1)= / flz|x) f(z', t)dx’. (C.8)

The interval o is defined as [0,1]%~1. In general define o; = [0,1]". Let
Q(x) be a scalar valued test function with compact support on o for which

5*Q(0) = Q1) =0, (C.9)
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for all non-negative integer values of «; in v, where o = (g, g, ..., @4y ... g —1).
The multi-index notation is given by 9% = 97"05%...05" where 0" =
9% /0xi". 0 and 1 are the K — 1 dimensional zero vector and a K — 1
dimensional vectors of 1s. Multiplying both sides of equation (C.8) with the

K — 1-dimensional Taylor expansion of Q(x) and and then integrating over

o, one finds

Lf(m,t+ 1)Q(x)dx = /Uf(:c/,t) {/o f(ac]:c’)d:n] Q(z')dx’

+i§ /,, f(@t) [ /U NG f(m’ym')dw} agi‘f/)dw/

1 = / ! 82 ' !
+5 o ) [/U Az;Az;f(z|x )dw] ai(;j)dw +0(é%),

ij=1"°

after changing the order of intergration. Left out terms correspond to
O(E[Az;AzjAz]) and the orders of higher moments, all of which are O(¢?).
The notation dz;z; is shorthand writing for dz;0x;. The left hand side of
this equation is identified with the distribution fi*!:

(f5=1Q) :/Q(m)f(w,t+1)dw. (C.10)

In the second and third term on the right hand side, the order of integration
is changed once more to obtain

= /U [ t)Q(x")da’
" KZ: /(,f (=,4) / A ( / K2f(w|w’)dm> dxi] @%g’>dw,

1 K , , 52 / ,
=P [ | [[ anas, ( IR >dw> ey | T2 a0,

Recognizing that the innermost integrals are marginal distributions for f(z;|x’)
and f(z;,z;|x’) the previous equation becomes

/Q<w)f(w,t+1>da::/f(a:’,t)Q(a:’)dx'

K-1 /
+2 / f(a', ) [/ Az f(xilz')dz; (%gix ) da
i=1 Y7 o1 i

K-—1 ) , 82Q(:IZI) , )
+2@-;1/o—f (®59) / Azidajf (@, zj|w)dvide; | =5 - = de +O(E).
L 101

(C.11)
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The terms within the squared brackets correspond to E[Az;|2] and E[Az; Az j|2’]
respectively. Inserting these values gives

IS 0Q(x')
= [ f@ 0Q()dx' = 3 [ fa! heMi=p=da’

9*Q(x')

8{Ei$]’

K-1
€ 2
+ 5N > | f&@ 1)C(a), o) dz’ + O(e?),

=177
where
—xha if i #£ 4
Clahaly =4 % Hi7
zi(l—af) ifi=y

Interpreting the integrals as distributions, and interpreting the differentiated
Q functions as differentiation in the distributional sense, one ends up with

aftm, & 9rrte
(FhQ) = (11Q) = Y (5= Q) + 3 5u(T5 Q) + 0(e).

i=1 v ij=1

(C.12)
The variable &’ has changed name to . Thus, the following difference
equation is satisfied in the distributional sense

K-1 K-1

9 0
flx, t4+1)—f(x,t) = — Z Eﬁiqrif(m’t)Mi($7t)+% 2 Baiz;

=1 1,]=

[z, t)C (s, xj)+(’)(62).

(C.13)
This equation is divided by A7 = 1/N obtained from the introduced time
transformation

(C.14)

1
TN

and the limit N — oo is taken to give
K-1

2 et = - Y LM + LY
ot ’ N i1 895@ ’ n 2 1 al’il’j

[f (2, 1)C (i, z;)]
(C.15)

1,)=
to O(e?), where M, has been scaled by multiplication with N.
D The diffusion approximation for K alleles and
N(t) variable

D.1 The moments of Ax|z’

The moments of Ax|x’ are given by:

E[Azi|x’] = eM; + O(e?).
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E[Az;Azj|z'] = Cov(Ax;, Axj|z’) + E[Az; |2/ |E[Axj|x']
= Cov(Az;, Azj|z’) + O(e?).

ZT 02 oy
Cortasas e =4 T O
J\Zf(t+1)z +0(e”) ifi=j.

BlAzidz;Azel] = O() (1)

fori,j,le[1,2..., K —1].

D.2 Obtaining the Fokker-Planck equation

Starting from

P(n,t+1) = Z P(n|n/)P(n’,t). (D.2)
/| +nk=N(t)

and proceeding as for 2 alleles with variable N (t), one finds
Pz, t+1) = / P(z|z')P(z’,t)dz’. (D.3)
From this equation one can proceed as for the K-allele case when N (t) is

constant. One ends up with the following difference equation satisfied in the
distributional sense:

K-1 K-1 62
fa )= f(@t) == 3 g fl@OMil@ O+ gy 7 5 f @ )0l a)+O()
i=1 v ij=1 """

(D.4)
where M;(z,t) and C(z;,z;) are defined as for the case when N(¢) is con-
stant. This equation is the divided by A7 = 1/N(t 4 1) obtained from the
transformation

t+1 1
T = ds D.5
0 NG (B:5)
and the limit N — oo is taken to give
P K—-1 o 1 K-1 52
af(m7t) = - ; (9562 [f(mvt)M’L(mvt)] + 5 ijZ:1 81’1‘1'3‘ [f($,t)0($l, :EJ)]
(D.6)

to O(e?), where M; has been scaled by multiplication with N (¢ + 1).
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E The Fokker-Planck approximation of the Mas-
ter equation from the Moran model

The Master equation is given as a function of the allele number while the
Fokker-Planck equation is given in terms of the frequency. The variable
change from between these two occurs as the probability functions and
transition rates of the Master equation are expanded to O(N~3). First
the Fokker-Planck equation for two alleles will be derived followed by a gen-
eraliztion to K alleles. For simplicity of notation N (¢4 1) and M(«,t), and
in the K-allele case P(x,t), are written as N and M, and P. Further, the
notation

(nl,...,ni—1,...,nj+1,...,nK_1):(ni—l;nj—l—l) (El)

is used to simplify the expressions for T'(n|n’), P(n/,t) and ¢;(x,t) in the K
allele derivation. As stated in the main text the correctness of this derivation
to O(€?) is implicit through the approximation of ¢(x, ).

E.1 The Fokker-Planck approximation for 2 alleles
The Master equation for two alleles is given by

ap(g::’t) = Z T(’I’L’n’)P(n/’t) _ Z T(n’|n)P(n,t), (E?)

n'#n n’#n
In the first sum, ., T'(n|n’)P(n’,t), the approximated transition rates
are

T(nln—1) = (1= "o 1)

:(1—x+%)(az—%+%M—)
=z(1—2z) +%(2x+2M(1 —z)— 1)+$(2G(1—x)+2M— 1) +O(N?)
T(nln+1) = (51 - 6("6)
1 11
:(x—i-N)(l—x—N—NM*)

1 1 »
:x(l—x)+N(1—2x—2xM)+W(2Gx—2M—1)+(’)(N ),

where
_ G _9
M :M—FN—FO(N )
G
+ _ G -2
M™=M N—I—(’)(N ),

74



in which G = S2x — 1)+ (U+V). M~ and M were obtained from evalu-
ating M (z — +,t) and M (z + +,t) respectively using the scaled parameters

V= S5

The Taylor expansions of P(n/,t) are given by

P(n—1,t) = Pa,t) %Px(:r,t)

1
P(n+1,t) = P(x,t) + pr(x,t)

1 -3
1 -3
—FWanc(l',t)-i-O(N )

After some algebra the first sum in the Master equation thus becomes

S° T(nfn') P(r!, ) = 20(1 — 7) + %M(l — 92)P(a, 1)
n'#n

03 206~ 2)P(a,1) + 21— 20 — M)Pa(a, 1) + 2(1 — ) Pra(r, )] HO(N ).

From the transition rates
n

T(n— 1) = 2(1 = (3, ) (£3)

T(n+1jn) = (1 - 2)é(5 1) (E.4)
the second sum is more straightforward to find:

2

Z T(n'|n)P(n,t) = [2:1:(1 —x)+ NM(l —2z)| P(x,t).
n'#n
Subtracting the last sum from the first, the Master equation is

(W - % [(G —2)P@t)+ (1 =2z = M)Po(2,1) + %m(l - x>pm<x,t>} +O(N7?),

which can be simplified to

o N2

. 2
Of(w,t) _ 2 [—(%(f(x,t)M(x,t))Jr;(;(D(x)f(x,t))]+O(N_3)-

Introducing 7 = 2¢t/N? and letting N — oo gives the same Fokker-Planck
equation as for the Wright-Fisher model. The correctness of this equation
is given to O(€?).
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E.2 The Fokker-Planck approximation for K alleles

The Master equation for K alleles is given by:
P
agZ’ﬂ = gﬂT(nln’)P(n’, t) — n;T(n’m) P(n,t) (E.5)

Since it is quite comprehensive, the derivation of the K-allele model will be
more detailed than for the 2-allele model.

There are six distinct transition rates that go into the Master equation,
up to summation over ¢ and j. The following three transition rates

e T'(nln; — 1)
e T'(nln; + 1)
o T'(n|n; — 1;n; +1)
go into the first sum, 3./, T(n|n')P(n’,t). The last three
e T'(n; —1n)
o T'(n; +1n)
e T'(n; —1;n; + 1|n)

go into the last sum, 2, ., T(n'|n)P(n,t). To clearly see the task ahead,
here is the Master equation with all terms included:

K-1
=> (T(n|ni —1)P(n; — 1,t) + T(n|n; + 1)P(n; + 1,1)

=1

+ ZT(nmZ —1;n; +1)P(n; — 1;nj + 1), t))
J#i
K-1
T(ni —1n) + T(ni + 1|n) + > _T(n; — Lin; + 1|n) | P(n,t)
i=1 j#i

(E.6)

In the following section the terms that condition on n will be expanded to
O(N73).

E.2.1 T(n; —1[n), T(n; + 1|n) and T'(n; — 1;n; + 1|n)

Since the number of alleles in the parent generation is given by n the tran-
sition rates in the last sum of the Master equation are easier to compute.
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One finds

K-1 —1
> T(n/|n)P(n,t) = ( S 2i(1-) bl ) +(1-X)gi(, 1)+ mj(m,t))) P(x,t).
n'#n i=1 k=1 i

(E.7)

After inserting for ¢ and simplifying this becomes

K-1
:(Z 2$i(1*X)%‘%(Mi(l*X)*$iM)+Zl‘i(£Cj+%Mj) )P(m,t),

i=1 j#i
(E.8)
where
K-1 -1
M=>"M;, X=>u (E.9)
k=1 i=1

E.2.2 T(nn; —1;n; +1)

This is the rate by which an individual with allele ¢ is born and an individual
with allele j dies, given that in the parent population there were n; —1 and
n; + 1 individuals with allele 7 and j respectively. Thus the transition rate
becomes

K-1 K—1 1 1 1
S Y Tl — tim 1) = Y (e + oo~ i )
i=1 j#i =1 j#i
(E.10)
The expression for ¢;(z; — %; xj + %, t) is found after some calculation to

be

1 1 1 9
Bilwi = 305+ 30 1) = M .Gi + O(N2), (E.11)
where
Gi=U;+U;j + Ui + si(1— ;) + TiS; — (1-X)sg — B. (E.12)

Hence (E.10) becomes

K-1
= Z Z:Cixj + %(ml —x; + 2$j/\/li) + %(ijGi +2M; — 1) + O(N_B).
i=1 j#i
(E.13)
The Taylor expansion of P(n; —1;n;+1,t) about P(n,t), after changing to
variable x, is given by

1 1 _
P(n;—1;n;+1,t) :P+N(Pj—B)+W(ij+ai—2ﬂj)+0(z\f 3). (E.14)
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Multiplying this equation with (E.13) one finds

K-1
1
= Z ZP.%‘Z':U]' + N [P(acz -+ 2iji) + (Rﬂ — PZ)HJJ.%]
i=1 i
1
+m

After subtracting common terms found in (E.8) and observing that by sym-
metry

K-1
>N Play— )+ (P — P)zjmi=0+0=0 (E.16)
i=1 j#i

one is left with

K-1
1
= E E m |:P(2$jGi + 2M; — 1) + (Pj — PZ)(.TZ —xj+ 2$j./\/li)
i=1 j£i

N | =

+ ~(Pjj + Pii — 2Bj)] +O(NT3). (EAT)

The sum over j must be evaluated since this equation will be added terms
where the sum is only over 7. The final result is

K-1

2 A

= N2 E:P[gi(X — i)+ ) Ui+ @iy x5(sj — Sx) — (X — 1)Uk
i=1 j#i j#i

K
4 (K —2)M; — 5+1} +Pi[X—i—xi/\/l—(K—1)xi—MX
1 _
+ 5 (Pui(X — i) — Z Pyjzjz; + O(N73) (E.18)
JF#i
E.2.3 T(n|n;—1) and T (n|n; + 1)

First consider T'(n|n; — 1), the rate by which allele K dies and allele i is
born, given that in the parent population there were n; — 1 individuals with
allele i. The transition rate is given by

K-1 K-1 1 1
; T(nln; —1) = ;(1 — 2 + 350w — ). (E.19)

The expression for ¢;(z; — %, t) is given by

R V) =
) =2 = 5+ Mit 156+ OV ) (E.20)

di(x; — %
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|:P(2iji + 2M; — 1) + (PJ — PZ)(CCZ —x; + 2:13]‘./\/[,‘) + §(ij + Py — 2Pij) +O(N73).

(E.15)



where G; is given by
Qi =U;+Upx + Ui + si(1 — ;) + x;sx — B — (1 — X)sk. (E.21)

Hence the expression (E.19) is given by

K-1 1
= a(l-X)+ ~ i+ @M = 1)(1 = X)]
i=1
_ L 2 (1 — -3
+ 53 [2/\41 1+ 2G;(1 X)] +O(N73), (E.22)
The Taylor expansion of P(n; — 1,t) is given by

1
P(ni—1,t) =P — P+ 2N2P”+(9( 3). (E.23)

Multiplying the transition rate (E.22) with its probability of occurence and
subtracting common terms found in (E.8) one finds

=

1
~ [Pl = (1= X)) = Pai(1 - X)]

™

=1

1 4 1
+m [P(2Mz -1+ 29(1 — X)) — Pl($z + (2MZ — 1)(1 - X)) + §Pul'1(1 - X) +O(N_3)
(E.24)
Next consider T'(n|n; + 1), the rate at which allele ¢ dies and allele K
is born with n; 4+ 1 allele ¢ in the parent population. The transition rate is
given by
K-1 K-1
Z T(nln; +1) = o (x t))
z:l k=1
K-1 1 1 A
(2
— ; <xi+N> (1—X—N(1+2Mz~)+2 5
2 M (2 1t)+1(U- Ukk + 5 (si ) ) | +ONT?)
N / E\Tq N’ N ik Kk TE(Si SK .
k#i
(E.25)
Inserting
1 1 .
M (z; — N’t) = My + N(Um —Ugk + xi(si —sk)), k#i, (E.26)
and multiplying with
1
P+ 1,t) = P+ P + 2N2P”+O( %) (E.27)
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and then subtracting common terms found in (E.8) one finds

K-1

2 % (1-X)—a)+ Pzi(1 - X)]
1 . .
+ W {P(Zx,(gz —U; + Uk + %ﬁ:xk(sz — SK))) - (1 + 2./\/12)

1
+ P (1= X) = i1+ 2M)) + 5 Pi(1 — X)| + 0N, (B.28)
where (7[( =Ug — Ukg;.

E.2.4 The Fokker-Planck equation

Having obtained all the expressions in (E.6), equations (E.18), (E.24) and
(E.28) are added. After some calculation one arrives at

K-1

N2 Z P QZ - — —l— (K —1)M; = M —l—l‘iﬁK — (X —2))Ug;i — z;U; + ijUji
J#i
1 1
+ Pl = Kaj + Mi) + 5 Pzl = i) = 5 > Pjrir;. (E.29)
J#i
Noting the following cancellations,
K-1 K-1 K-1
Z ((K*l)./\/lz*./\/l) = 0, Z (l‘iUK*(X*$Z’)UKi) = 0, Z ($iUi*ZCL‘jUji) = 0,
= =1 i=1 j#i
(E.30)
one is left with
OP@.1) _ 2 N~ p (6 K) 4 2P@D 0 gy
o N? i ’ ) Oz ! !
10%P(x t) 0?P(x,t)
2 8:6? Z Oxix; zizj. (E31)
This simplifies to
K-1 K-1
of(x,t) 2 0 1 0?
= 79 - a_ 7 7t 7t a 70 ilg 7t )

(E.32)
where P(x,t) has been changed to f(x,t). Introducing 7 = 2t/N? and
letting N — oo one obtains the same Fokker-Planck equation as for the
K-allele Wright-Fisher model.
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