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The Svalbard Archipelago is made of three terranes accreted together during the
Caledonian Orogeny showing dominantly N–S-trending fabrics, folds and faults.
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Core complexes exhumed in the late Silurian–Devonian due to normal top-north,
top-west and top-east movements along bowed shear zones.
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Devonian collapse basins in Spitsbergen formed during late–post-Caledonian sinistral
transtension and were deformed during Late Devonian Ellesmerian contraction.
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In central Spitsbergen, undeformed Mississippian rocks overlie folded Devonian strata, 
suggesting Late Devonian-earliest Mississippian (Ellesmerian) contraction.
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In Svalbard, Pennsylvanian rifting led to the formation of thick N–S-trending sedimentary
basins like the Billefjorden Trough, which parallel dominant Caledonian fabrics.
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0 In the Cenozoic, extension led to the opening of the North Atlantic Ocean, and subsequent
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In Pyramiden, folded Devonian metasedimentary rocks are juxtaposed against sheared, 
coal-rich, Mississippian strata.
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Mississippian coal-rich strata in Pyramiden are arranged into Z-shaped duplexes
separated by décollements, indicating top-west Cenozoic thrusting.
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Coal-rich screes in Triungen suggest the presence of Cenozoic duplexes and décollements 
similar to those observed in Pyramiden.
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Z-shaped geometries of high-amplitude seismic relfections in Tempelfjorden
suggest the presence of Cenozoic duplexes in Mississippian coal-rich strata.
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Restoration of the Adriabukta transect prior to Cenozoic contraction–transpression
suggests that Ellesmerian structures in southern Spitsbergen formed during extension.
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A major N–S-trending basement ridge in Isfjorden may represent the southwards
continuation of the Bockfjorden Anticline core complex.
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In Isfjorden, lens-shaped reflections may represent incisement processes
commonly related to core complex exhumation.
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The potential continuation of the Bockfjorden Anticline in Isfjorden appears offset
by > 10 km left-laterally, and c. 5 km vertically down to the south. 
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Gravimetric, aeromagnetic and seismic data in the Barents Sea show the existence of
potentially inverted WNW–ESE- to NW–SE-striking Timamian thrusts.
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In Storfjorden, a high-angle brittle fault folding the seafloor merges with a suite of
moderate amplitude reflections possibly representing a major WNW–ESE-striking thrust.
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Bathymetry data in Billefjorden show that the N–S-striking Billefjorden Fault Zone is
left-laterally offset by WNW–ESE-striking fault-related escarpments.
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Bathymetry data in Kongsfjorden show that WNW–ESE-trending fault-related escarpments
offset a N–S-striking Cenozoic thrust by 4.5 km left-laterally.
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Devonian–Missippian dykes in eastern Spitsbergen may be part of a large
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In Devonian–Mississippian times, continuous extension segmented Spitsbergen along 
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