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/ Abstract

Segmenting and labelling tumors in multimodal medical imaging are often
vital parts of diagnostics and can in many cases be very labor intensive for
clinicians [I]. The effort in advancing time-saving methods in the medical
health sector might be of great help for busy clinicians and can maybe

even save lives.

Furthermore, creating methods that generically, accurately and success-
fully process unlabelled data would be a major breakthrough in deep

learning.

This thesis aims to address both these challenges by exploring and im-
proving current methods involving adversarial discriminative domain
adaptation on multimodal imaging, and address weaknesses, not only
in adversarial discriminative domain adaptation, but also in the general

adversarial discriminative cases.
More specifically, this thesis

1) applies CNNs to segment soft tissue sarcoma tumors in PET, CT
and MRI modalities and to the author’s best knowledge achieves

state-of-the-art results,

2) explores unsupervised adversarial discriminative domain adaptation
on segmentations of soft tissue sarcoma tumors between permuta-
tions of PET, CT and MRI and

3) demonstrates weaknesses in state-of-the-art adversarial discrimina-

tive training, and finally

4) improves and provides groundwork for further research on said

techniques.

Additionally, the thesis will also provide strong fundamental background
for applying adversarial discriminative domain adaptation for use in
medical modalities, including a solid introduction to deep learning in

medical imaging, both from a theoretical and practical aspect.
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Part I / Introduction

1. Image analysis for medical applications

The implementation of electronic health records in United States hospitals, has
risen from 8.7% in 2008 to an extraordinary 99.1% in 2017 [6] [7]. These findings
strongly suggest that the amount of digitally available data within the medical
health sector is growing extremely quickly due to modernization of equipment

and the convenience of having digital access.

It is highly infeasible, if not impossible, to manually analyze this vast accu-
mulation of information, and efforts are unceasingly being made to automate
models to discover patterns in the data. Furthermore The American Association
of Medical Colleges expects a shortage of over 130 thousand physicians by 2025
[8], and estimates that the number of doctor office visits will increase from 462
million in 2008 to 565 million in 2025 [9]. In turn, it might be of great advantage
and importance to research and obtain potential time-saving methods as tools for
increasing efficiency. Automated systems that provide clinicians with intelligently
filtered information could be good candidates of such. Systems of this nature are

often referred to as computer-based clinical decision support (CDS) systems [10].

Automating medical image analysis by combining computer science and mathe-
matics can be dated back to at least the 1970s. Through the couple of decades
that followed, medical image analysis was mostly done by hand crafted sequen-
tial algorithms, with analytic mathematics and if-else statements. Automated
medical image analysis at that time was often done with sequential application
of low-level pixel processing (edge and line detector filters, region growing) and
mathematical modeling (fitting lines, circles and ellipses) to construct compound
rule-based systems that solved particular tasks. At this early stage its main
applications were detecting edges and lines, and fitting elementary shapes like

circles and ellipses to perform classification and detection [I1].

Machine learning has been increasingly adopted in the design of such automated

systems [I, [12]. Presently, as a constituent field, deep learning has made advances
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leading to the development of algorithms that surpasses even expert medical
professionals on multiple tasks, such as detecting skin cancer [I3] and pneumonia
detection [14]. Deep learning also has the advantage to discover features, relations
and correlations that might not be immediately visible to humans [15]. MIT
Technology Review considered deep learning one of the top 10 breakthrough
technologies in 2013 [16], and as of 2016 deep learning was considered the leading
machine learning tool in the general imaging and computer vision domains [I7].
Deep learning algorithms have recently become a very popular approach for

medical image analysis [11].

Even though adaptation of CDS systems for practical use in hospitals have been
fairly slow [I8], research that can prove useful in CDS systems from deep learning

is increasingly being proposed in multiple fields.

As for instance in one of the author’s prior publications Classification of Post-
operative Surgical Site Infections from Blood Measurements with Missing Data
Using Recurrent Neural Networks [19], where a new recurrent neural network

architecture was applied to predict sepsis in patients after operations.

Object detection in images is often a vital part of diagnosing. Automatization of

this process has been attempted for many years.

Within the field of deep learning, convolutional neural networks (CNNs) have
particularly dominated the computer vision tasks. CNN architectures have
achieved state-of-the-art status in many tasks related to computer based medical

image analysis [17, [11].

The seemingly first [I1] convolutional neural network (CNN) applied to medical
imaging dates all back to Lo et al. in [1995| [20]. They use a mere four layer CNN
for noduletection in x-ray images.

In the scientific community, CNNs weren’t considered particularly useful until
Krizhevsky et al.|in [2012] proposed AlexNet, a Convolutional Neural Network
(CNN). The purpose of this network was solving the ImageNet challenge, and

[)Nodule: a small swelling or aggregation of cells. [21]
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it did performed extremely well [22]. Following this discovery, new deep CNN
architectures have frequently been proposed and deep learning as a field has
dramatically improved state-of-the-art in several domains [23] and has now in

some tasks even surpassed human performance [15, 24].

Today, well trained CNNs can compare and extract relevant features in a unique,
flexible, robust and effective way compared compared to classical algorithms using
hand-crafted features. Specifically, CNNs have produced exquisite performance
in object detection, segmentation and classification of images. All of these tasks
can often be considered vital parts of diagnosing and can in many cases be
very labor intensive for clinicians. Additionally, said tasks are often too complex
to represent and solve by using analytical equations as done by the primitive
aforementioned algorithms [I]. Modern CNNs are particularly proficient when
presented with ‘normal” 2D pictures image analysis tasks. Said tasks usually
consists of variations within classification, segmentation and detection. These
properties makes them exceptionally interesting for use in medical images for
CDS systems.

All of these tasks have multiple use cases. For instance classification of the image
as a whole could be useful for e.g. classifying malignant or non-malignant tumors.
When doing detection the objective is to localize structures in the image space, for
example detecting tumors in 3D PET scans. This differs from pure classification
since it is looking for whether (and often where) an object is located in an image.
In segmentation, the purpose is to provide a region-wise classification, often pixel

by pixel, whilst retaining a semantic structure.

A diverse selection of image generation methods have been proposed using deep
learning architectures [11]. These generative models can have many useful applica-
tions in medical imaging. A few examples would be removing noise or obstructing
artifacts, normalizing, improving the overall resolution or colour quality and
domain adaptation. One family of such generative models is called generative
adversarial network (GAN), and is often implemented using convolutional neural

networks.
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Most of the aforementioned results are mostly on data where the algorithms
have a priori knowledge about what it wants to learn (supervised learning). To
get this category of data (labelled data) medical experts have to make it, as for
example manually segmenting tumors on a PET image or continuously reporting
how the patient is doing. All of this also has to be done in a fashion so that the

algorithms can understand it.

A great deal of data, especially in the medical sector, does not have ground
truth, and will therefore be incompatible with supervised learning methods. So
called unsupervised methods are getting increasingly better and are in the works.
An interesting approach to working with unlabelled images is through a process
called domain adaptation. Domain adaptation utilizes information obtained by
the available labelled data, and applies this to unlabelled data. Examples would
be images from different scan qualities, different modalities, images from different
hospitals. An alternative approach for dealing with unlabelled data would be

turning to fully unsupervised methods, and deep clustering analysis.

Unsupervised methods, for reasons that will be introduced later, can be regarded
as unreliable and unpredictable in interpretation, and thus might be too insecure
for medical use. Even though a great deal of medical images are unlabelled,
not much work has been done with unsupervised methods medical imaging,
or in health data in general. This makes it all more important to explore the

possibilities and limitation of this field.

Unsupervised deep learning is still considered a field in it’s infancy. It is the
perception of the author that there is a fair amount of untapped potential in

this field, and also related to it’s applications in medical imaging.
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1.1. Generative models in medical image analysis

Generative models may appear to have a rather restricted variety of useful
applications. However, generative models can be used in a much greater extent
than generating entire images, or artificially sample from distributions. As will
be apparent, generative models are both used independently as methods, but
seemingly more frequently used as an intermediate step for many tasks in for
example domain adaptation, image reconstruction, segmentation and subsample

selection.

A diverse selection of image generation methods have been proposed using
deep learning architectures [11]. These generative models can have many useful
applications in medical imaging. A few examples would be removing noise or
obstructing artifacts, normalizing, improving the overall resolution or color quality
and domain adaptation. One family of such generative models is called generative
adversarial network (GAN), and is often implemented using convolutional neural

networks.

One of the tasks that are amongst the most unmistakeable fit for GANs is
image reconstruction. Reconstructing images is very useful in medical imag-
ing. Removing unwanted noise or correctly interpolating or estimating content
of incomplete images, could prove extremely valuable assets. Yang et al. [25]
did image reconstruction by removing unwanted elements (and thus generate
background) by suppression of bony structures in X-ray. Oktay et al. [26] re-
constructed high-resolution cardiac MRI from one or more low-resolution MRI

volumes.

GANSs have been used as a instrumental part of other complex models. In such
cases, the GAN often has the function of learning loss functions that express
measurements that are intractable to obtain manually, compared to for example

higher-order statistics.
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In domain adaptation, GANs can be used for training a discriminator to obtain
invariant features across domains, like in Ren et al. [27]. 2D X-ray images have
much clearer structures and sharp boundaries compared to CT X-ray. Zhang
et al. [28] propose an unsupervised domain adaptation application with a GAN
that learns, using CT scan data, to parse anatomical objects from unlabelled

X-ray images.

GANSs in medical imaging are of course also used for image generation. PET
and X-ray scans exposes patients for big doses of radiation, which is harmful
[29], whilst MRI does not at all. Thus being able to generate PET and CT (X-
ray) scans from MRI would prove very preferable over having to do potentially
damaging scans. Li et al. [30] showed in [2014, by generated PET images from
MRI images using GANSs, that estimating PET from MRI works for diagnosing
Alzheimer’s disease when the PET images are missing. Image-to-image translation
from MRI to CT was later done by Nie et al. [31] in 2016, GANs are also used
for improving e.g. semantic segmentation [32] and Dong et al. [33] brings this
one step further to unsupervised domain adaptation, and applying it to estimate

the cardiothoracic ratio through segmentation of chest X-ray images.

GANSs continues to be a very popular topic today and is the subject in many
publications accepted by high-end conferences. For example Mahapatra et al.
[34] used a conditional GAN (cGAN), combined with a bayesian neural network
[35] as a feature generator in an active learning select the most informative
samples for training data. The cGAN was used to generate chest x-ray images

with different disease characteristics, conditioned on real images.
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1.2. Challenges in medical images for CNNs

Medical images posses a set of typical characteristics that presents a particular
set of challenges to classical CNN architectures. Following is a general overview
of the challenges that affects the CNNs known abilities and overall performance,
as it is useful to have an oversight of the role and obstacles that convolutional

neural networks are facing.

The requirement for both local and global context for doing satisfactory classifi-
cation, segmentation and detection, might be necessary to a greater extent in
medical images. For instance when classifying a tumors malignancy, the region
around said tumor could simultaneously be equally important as a microscopic
image of a small part of the tumor. This could possibly be due to a result of
individual variations between patients or the nature of the object or lesion to
be processed. This challenge has been mainly dealt with by using multi-stream
networks in a multi-scale fashion [I1] [36], 37]. That is feeding multiple cropped

and/or zoomed sub sections of an image into multiple parallel CNNs.

An additional noteworthy challenge is revealed when considering the technical
aspect. In contrast to earlier mentioned natural coloured 2D images considered
in computer vision, medical images are often images depicting spatial 3D data.
Consequently, correctly incorporating 3D information is often necessary for good
performance within detection, classification and segmentation. The images are
typically represented as sequences along one of the axes, consisting of orthogonal
2D slice snapshots at intervals along the third axis. Additionally, some medical
images like hyper spectral images might have more than the default 3 channels

that corresponds to color in natural images.

Even though CNNs can process 3D images with minor modifications of the
architecture, those modifications alone are often not enough to sufficiently utilize

the spatial 3D information.

There have also been many different approaches to effectively take advantage
of the 3D information in the image. Setio et al. [36] proposes a multi-stream
CNN to binary classify points of interest in chest CT. Nie et al. [3§] trains a 3D
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CNN to assess survival in patients suffering from high-grade glioma tumors in
the brain.

Another popular approach, especially for landmark localisation and segmentation,
is to treat the 3D data as sequential orthogonal 2D planes Litjens et al. [I1].
Even though it does not exclusively apply to medical images, another challenge,
primarily in regards to object classification, is the unbalanced datasets. During
object classification, typically each individual pixel is classified and frequently
only a small portion of the images contains a small segment with the object on
it. This will result in a huge class imbalance with a training set which is rather
heavily slanted towards the non-object class. The non-object class is often even
further extended when working 3D images, since only a small portion of these

images yet again contains the region of interest.

1.2.1. Segmentation

Segmentation is the most common subject amongst papers applying deep learning
to medical imaging [I1], and is also common in both natural image analysis as
well as in medical imaging. Typically, segmentation happens pixel wise, so that

every individual pixel is classified whilst ideally retaining a semantic structure.

For capturing global contexts of the image, often so called fully convolutional
neural networks, (or f{CNNs), are used. That is when the last (often fully connected

layer) is replaced by another convolution layer with a high receptive field.

fCNNs in their original formulation causes a drastic decrease in resolution. There
are several methods proposed to counteract this resolution decrease [I1]. Long
et al. [39] presented a method called ‘shift-and-stitch’, which is f{CNN applied
to shifted versions of the input image. Then at the end the results are stitched

together to obtain a better full resolution version of the final output.

This idea is brought one step further by the one of the most well known [I1]
CNN architectures for segmentation of medical images: U-net by Ronneberger

et al. [40]. U-net has an upsampling part where ‘up’ or ‘transposed’ convolutions
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are used to increase the image size. Although this is not the first paper to
introduce the transposed convolutions, Ronneberger et al. also incorporated
‘skip-connections’ to connect opposing contracting and expanding convolutional
layers. The other novelty in U-net was the equal amount of up sampling and

down sampling layers.

Boundary detection would be a branch of segmentation, and detection of bound-
ary points required for model based segmentation is very challenging for organs
with inhomogeneous appearance on images. For example in MRI, the contrast of
the image for one organ might be very variational due to the use of difference
settings and scanners at different clinical institutions. Brosch et al.| presented
PROMISE12, where they used CNNs to obtain state-of-the-art performance in
boundary detection [41].

As earlier mentioned, working with 3D medical images with CNN presents chal-
lenges per se, but segmentation entails the extra intrinsic challenge: annotation
of the data. If the data is not qualitatively annotated in sufficient quantities,
it will likely prove difficult to produce 3D segmentation outputs with sufficient
quality to be useful. Since medical images often are represented as dispersed
slices, the annotated samples would be sparse due to inadequate coherency of
the annotated areas. To address this, Cigek et al. [42] proposed a structure based

on U-net that provides full 3D segmentation from sparse 3D annotated data.

Also, standard images from modalities like MRI, PET and CT is represented
as 2 dimensional orthogonal dispersed slices. The literature seems to attain the
best results when, in these cases, consider the images as multiple 2 dimensional

images and disregard the 3 dimensional information in these modalities[11].

Ultrasound also entails challenges for CDS systems, especially for orthopaedic
surgery procedures e.g. high amounts of various imaging artefacts and a low
signal-to-noise ratios. Wang et al. [43] uses what they call a pre-enhancing
convolutional neural net, and uses the U-net [40] for segmentation and attaches a
dense layer from one of the hidden U-net layers to simultaneously do segmentation

and classification. They call the U-net variation cU-net.
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1.2.2. Classification

CNNs have achieved state-of-the-art performance in multiple tasks. A fairly
recent example is the CNN architecture CheXNet by Rajpurkar et al. [14] that
achieved state-of-the-art performance in classifying different 14 diseases from
chest x-ray images and even surpasses human performance in detection of some
of these.

Hosseini-Asl et al. [44] used a 3D CNN in an autoencoder architecture and
achieved state-of-the-art results in early diagnosing patients with Alzheimers
disease (versus no cognitive impairment) from MRI images. Another CNN
architecture with state-of-the-art diagnostic abilities is proposed by Pratt et al.
[45] and it diagnoses diabetic retinopathy from digital photographs of the fundus
of the eye.

10
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2. Contributions and novelties

This section of the thesis intends to give the reader an impression of what
the contributions and novelties proposed in this thesis are. Here segmentation,
unsupervised domain adaptation, momentum reset scheme and confusion score

will be outlined individually.

The contributions in this thesis are applying adversarial discriminative domain
adaptation on the permutations of the three medical image modalities: PET, CT
and MR. Segmentation of these three modalities is also presented and attains

state-of-the-art result on all of three tasks.

In addition to the contributions stated above, two novelties will be presented,
namely momentum reset and the confusion score. They will be discussed in depth
in [Part Il but the fundamental ideas, motivations and rudimentary overview is

presented below.

2.1. Segmentation and unsupervised domain

adaptation

This thesis provides contributions on segmentation of soft tissue sarcoma tumors
on PET, MR and CT modalities. To the author’s best knowledge, the results of

the segmentations are state-of-the across all three modalities.

Subsequently all permutations of all three domains from the same dataset will
be presented through the unsupervised domain adaptation algorithm ADDA
[46]. This as well, to the author’s best knowledge, has not been done before.

11
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2.2. Novelties

Unsupervised discriminative adversarial approaches are notorious for being
unstable in training and have issues with convergence [47, [48] 49, 50]. Below are

two proposed novelties that will address both these issues.

2.2.1. Momentum in adversarial discriminative training

Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Networks by Radford et al. [50], with 3840 citations on google scholar
[51], is a very well known article on DCGANSs. They propose a set of constraints
on the architectural topology of convolutional GANs which clearly improves
results drastically. Radford et al. also mentions that GAN work performed prior
to their article had used simple momentum to accelerate training, while |Radford
et al. uses the Adam [52] optimizer, however notably with lower then the proposed

momentum value.

Even though the use of moment based optimizers still are necessary to obtain good
results, it is the contention of this thesis that the momentum term used in the
optimizers in state-of-the-art adversarial discriminative models, disrupts training
due to the effect of the cross-interaction between the adversarial parameters.
Specifically that the training of one adversarial might drastically change the loss
landscape of the other adversarial, which consequently leaves the momentum

terms pointing in the wrong direction.

12



2 / Contributions and novelties

2.2.2. Confusion score

In the literature, determining when the training of an unsupervised adversarial
discriminative model is complete, has been at a extrema of one of the the
calculated adversarial loss functions, after a set number of iterations or some
early stopping convergence criteria that also often is based on the adversarial

loss.

However as the loss function of one adversarial is dependent on the other, the
resulting loss function is not monotonic. For instance, when the a discriminator
has trained multiple steps, the loss of the generator would likely increase as the

discriminator has improved its performance.

Therefore proposes a new stopping criterion, which takes advantage

of the theoretical aspects of convergence presented in Goodfellow et al. [53].

13
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3. Hypotheses

In addition to the segmentation and unsupervised domain adaptation of medical

images modalities, this thesis will attempt to empirically demonstrate two

hypotheses based on the arguments that are outlined in two foregoing sections

(2-2.]and 2.2.2), and further described in [Part ITI)in sections [I2] and [L1}

Hypothesis I:

Hypothesis II:

The typical use of momentum in adversarial discriminative train-
ing could in many cases cause the loss landscape of one adversarial
to drastically change due to the parameter updates of the other.
Therefore, periodically resetting the optimizer parameters, as
proposed in the momentum reset scheme described in [Section 11],
will allow the optimizer to regain momentum in the correct di-
rection, and in this way tend to perform better than without

resetting momentum.

Using the confusion score presented in to determine
the optimal stopping point for the discriminator will in many
cases produce better results than the common stopping criteria

that is based on adversarial loss value.

will be tested using the proposed novelty ‘momentum reset scheme’,

which suggests to reset the accumulated optimizer parameters during training.
The momentum reset scheme will be described more thoroughly in

IHypothesis II:{will be tested by comparing the proposed confusion score with

the other common measurements, namely discriminator loss and loss convergence

(after many iterations). The confusion score will be motivated and explored in

Section
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4. Thesis outline

The thesis is composed of five parts: [Part I. Introduction|, [Part IT: Theory and]
related workl, [Part III: Novelties, and finally [Part IV: Experiments|

will introduce the fundamental, and most important concepts within
machine learning theory. The theory here is specifically focussed on methods
applied in the contributions of the thesis, namely segmentation, unsupervised
domain adaptation and the two novelties. This theory is composed of a thorough
introduction to to the fundamentals of training in [Section 6] including an overview
and definition of supervised and unsupervised learning. Consecutively in
neural networks, the heart of deep learning, are introduced. Neural networks
motivate one of the core architecture used in the experiments, CNNs which
will be presented in [Section 7.3 The theory ties together when adversarial
discriminative models are described in [Section 9 and [Section 10} Finally ADDA
is presented in , which is one of the core models used in the main
contributions in the thesis. During the presentation of ADDA, the the algorithm

is applied to two ‘simple’ datasets, for demonstration purposes.

With the applicable theoretical background is presented, will explore a
more thorough motivation of the proposed novelties, namely momentum reset in
and confusion score in [Section 121

Part IV|is an overview and interpretation of the results from experimental
contributions. It first presents the experimental setup in [Section 14] subsequently
for segmentation in an ADDA in [Section 14.3] In [Section 15| the

results of segmentation and adversarial discriminative domain adaptation are

stated, interpreted and discussed, also in relation to the performance of the

proposed novelties.

The thesis concludes with [Part V] Here aspects of the novelties are discussed

and future work and ideas are proposed, followed by concluding remarks.
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5. Notation

As definitions might not be consistent in the literature, and the author might
differ from conventions, it is important to define the terms. This way it is easier
to express equations and other terminology in a clear and unambiguous fashion.
This section provides a reference describing notation used throughout this thesis

unless otherwise specified or clear from context.

General typesetting:

a Any scalar.

a A vector.

a; The value of a defined vector a at index 3.
A A matrix.

A, ;= Ali,j] The value in a matrix at row ¢ and column j.
A A Tensor.

A Domain.

Specific symbols:
0 Denotes parameters for a function.

x; Vector containing one sample from a distribution.
X  Matrix containing samples from a distribution p; X = [x1,X2,...,X;,...].
y  Desired output / labels.

A Performance measure.

Operators:

E Expectation.

J Jacobian operator ([Jxfli; = gg;)

g—; Short hand for jacobian: g—;‘ = JyX.

V(i j)A  Elementwise gradient on A with respect to w; ;.

® The Hadamard product (elementwise multiplication).
Other:

P, g, b, d Arbitrary probability distributions.

XEp x is a sample from p.

acA a is a vector in the domain (or set) A.
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A note on random variables

Commonly, random variables are clearly separated from realized variables. How-
ever, this thesis does not address probability theory in a way that requires random
variables to be distinguished from realized variables. To enhance readability,
stochastic variables are not addressed as such. In this regard, the notation x ~ p
means that, unless otherwise clear from context, the vector x contains from

realized values distributed with distribution p.

More formally: let Y; be a stochastic variable distributed as p, and with corre-
sponding values y; when realized. Furthermore let the vector y contain these
variables when realized: y = {y1, ..., yn}, then this will be denoted in the thesis
as

X ~Porxecmp,

and should, unless the context suggests otherwise, be read as ‘realized samples,
x, distributed as p’ and ‘realized samples x that originated from distribution
P’ respectively (the distinction is mostly philosophical). The same notation is

applies for random vectors, and random matrices as well in a similar fashion.
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6. Fundamentals of training

Statistics is considered the anchor of machine learning theory, and statistics is
(at least usually) expressed through mathematics. As this thesis aims to show
both supervised segmentation and unsupervised domain adaptation using deep

learning, it is important to first present the underlying theory of these aspects.

The most fundamental theory will be presented in these following sections.
Namely how an architecture ‘learns’ anything, common approaches to make it
perform well and show why deep learning differs from pure optimization theory

in classical statistics and mathematics.

Firstly supervised learning will be address, followed by overfitting, and an
introduction to gradient descent, momentum and the Adam [52] optimizer.
Subsequently, unsupervised learning will be defined and the main ideas behind

unsupervised learning will be outlined.

Finally, this section will introduce two commonly used loss functions, and

conclude with a thorough overview of common performance measures.

6.1. Supervised learning and Classification

Consider a vector x; with an accompanying paired value y;. Suppose that x; has a
probability distribution p and that y; is distributed conditionally on x;: y;|x; ~ q.
The ideal goal in supervised learning is, if y; and x; are considered random
vectors, to obtain the expectation Ely;|x;| for any x in its distribution. In other
words, a map [ is sought f* : x; — E[y;|x;], or notationally easier, f* : x; — i,

with objective that f holds for all possible samples in the distribution p.

The challenge is that f* might not even exist, and even if it did, in the vast
majority of non-trivial cases, one will not predict exactly how it behaves or have

any chance of obtaining a tractable analytical expression for it.

However, if we assume that empirical samples from the distribution p, and their

paired values y; are available, then this would of course mean that empirical
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information about f* also is available. We utilize this empirical data to obtain a
different map f, with parameters 6, where hopefully f and f* is as similar as
possible when evaluated at any x vectors contained in the true distribution p.

This might be formalized as
min |f(x,0) — /(x)| ¥x € p (1)

The conventional strategy in supervised learning is to choose a fairly generic
function f with many associated parameters 6. Nevertheless, choosing any generic
function for f and strictly minimize with respect to 8 will not solve the problem.
The important thing to note is that the goal is to optimize for all the data
in the distribution. Thus directly obtaining the actual extrema of f given some

of the data, will fail this crucial objective.

In deep learning, and in many machine learning algorithms, it is common to
choose a performance measure A, in addition to f, that is optimized indirectly.
Indirectly here means that the model itself should not use A to update its
parameters, but A will rather be used for other important decisions as model
evaluation and stopping criterion. Thus the task becomes to obtain the optimal
parameters 0" in accordance with and A. An example of such a performance
measure is percentage of correctly classified data points (accuracy). More of
these performance measures will be presented [Section 6.6] Optimizing of the
parameters @ is commonly performed by an algorithm that belongs to a group

of algorithms called gradient descent.

To directly optimize the parameters, a distance (or alternatively a similarity)
measure is usually defined. This measure will be referred to as the ‘error function’,
&. The error function is typically a function that maps the input data and the
labels to a number:

E:(xi,yi)—~c,ceR

& will be the function to compare the empirical evaluations of f and, the ideal
function, f*. From here on out, the empirical evaluation of f* might be denoted
mathematically as y; = £ (x;). And similarly for the estimation ¥; = f(x;). y;

is referred to as the ‘end goal’, output value, ‘label’ or ‘ground truth’, and y; are
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referred to as ‘predictions’ or ‘model outputs’ This error function, evaluated at

Vi, ¥i, will be denoted here as E(y;,¥:) = E(yi, f(x;,0)) or simply as E.

For de facto purposes, the optimization problem is often formulated as a mini-

mizing problem of this intermediate function [54]:
0" = arg mlng<YZ7 f(XZa 0))7
0

where £ is still interpreted as a dissimilarity or distance measure. As we wish to
minimize £ it is reasonable, and common, to favor functions with property of

being strictly monotic and where a global minima exists.

As to not restrain the optimization process to deal with one datapoint at a time,
we can define the loss function as an expectation over the distributed datapoints.
The (ideal) loss function J* is defined as:

J(0) = Expl€], (2)
and accordingly, the goal could be written in terms of this loss function:

optimize J*(0) = Eyp[&]. (3)

0
However, the ideal loss function, J*, is not directly attainabl@ Hence the loss
function is often estimated (by the law of large numbers [55]) with the average

of all the errors: .
min J(0) = ﬁZEZ(Yiayi)‘ (4)

The loss function in is what will be considered when the term ‘loss function’

is used throughout the thesis.

Commonly in the literature, loss functions are non-convex functions, and thus are
to be optimized with minimizing [56] 57]. This leaves us with the following goal:
to obtain a function f with parameters @ that represents E[y;|x;] as identically
as possible. In other words: find a machine learning architecture and obtain the
parameters .

0" = arg min J.
0

[PlUnless the true distribution of the data is known, in which case applying machine learning
would be redundant
23
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6.1.1. Overfitting

——— Training accuracy

-------------- Validation accuracy

Divergence point

Iterations

Figure 6-1: Conceptual sketch of accuracy differences due to overfitting. When passed the deviation
point, the algorithm is ‘learning the data set’ and not the distribution.

If one were to disregard the performance measure .4 when obtaining 8" and only
acquire the appropriate extremas of £(y, f(x;;8)) by applying only the empirical
data, the resulting map would often provide close to perfect performance scores
on said empirical data samples, but would have significantly poorer scores on

unseen data. This effect is conventionally referred to as overfitting.

There are actions that can be taken to help prevent overfitting, and some are
discussed in of this thesis. However, the most impactful step is likely
performing a subsampling of the data during training. Due to the optimisation
of the model being done iteratively, a very common approach is to split up
the available data into several sets (training, validation and test). Training and
validation are used during training, and test is data that is reserved for doing a

final evaluation of the model.

First the gradient descent algorithm is applied to the model only evaluating
the training data. When training has concluded, the performance score between
train and test data will be compared. One would expect the training and test

performance to be similar as well as hopefully improving during iterations.

The validation dataset is commonly used to observed how the model performs
on unseen data. When this is the case, testing data should still be used. This
is because hyper parameters, as for example the learning rate, of the model
are now adjusted to favor a good validation set, and might not genenralize
further. However, the training and validation performance scores will likely start
diverging at some point, as demonstrated in [Figure 6-1] This is usually when
we consider the a good stopping point found in the supervised case. As training

goes on, overfitting might also cause the validation accuracy to decrease.
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6.2. Gradient descent

Even if overfitting was not a problem when obtaining the extrema of f with
respect to @, analytically obtaining the minima of J* in (2)), or even J in (4)),
would be either impossible or infeasible for most deep learning models. The
goal remains unchanged: to obtain a low value of the error function, but also

constrained to return satisfactory results for both training and validation dataset.

To iteratively tend towards the minima of £, a very common approach is to
use some variation of gradient descent [23]. Gradient descent is a method where
the gradients of the error function are estimated, and then used to update the

parameters:
o€

t+1) — p(t) _

where p is called the learning rate.

In gradient descent, the parameters are updated scalar-wise. 8 does not have to be
a vector as it can be any collection of parameters. Here the scalar representation
of one parameter at training iteration ¢ is simply denoted ), and represents

any and all parameters in @ at t.

For smaller architectures, getting stuck in local minima is a major problem [57].
To address this it is very common to apply an algorithmic scheme that is called
SGD. Stochastic gradient descent is equivalent to gradient descent, except from
the sole difference that the data is randomly sampled (often without replacement)
into smaller batches. The loss function is calculated over the batch, and thus the
parameters of the architecture is then updated batch-wise as batches propagate
through the model. When all the sampled data points have been through the

training procedure once, then that is commonly referred to as one epoch.

Stochastic gradient descent performs significantly better than its ‘deterministic’

counterpart. In fact, gradient descent without stochastic mini batching is nearly

unheard of in modern literature.

However, as the network size grows, local minima becomes of less of a problem

as the optimization algorithms are able to navigate them [57].
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Gradient descent, as well as the stochastic version, has trouble navigating saddle
points and other areas where the surface curves significantly more steep in one
dimension than in another [58, 59]. When the SGD algorithm encounters such a
saddle point, SGD oscillates across the slopes of the ravines while only making
hesitant progress along the bottom towards the local optimum. Luckily, the
literature provides many suggestions as to how the performance can be improved
especially through variations within stochastic gradient descent. These techniques

are commonly referred to as optimizer algorithms, or just optimizers.

6.3. Momentum and Adam

Momentum [60] is a method that helps accelerate SGD in the relevant direction
and dampens oscillations. This is achieved by adding a fraction v to the update

vector of the past time step to the current update vector.

The update rule now becomes

o0&
(t+1) __
v = YV¢—1 + luae(t)
Q(t-i-l) _ Q(t) . ’U(t—H), (6)

The Adam optimizer

The optimizers presented in (|5)) and @ are considered fairly simplistic compared
to state-of-the-art algorithms. The optimizer that is heavily favored in the
literature is the adaptive moment estimation (ADAM) [52] optimizer. The
ADAM optimizer calculates the two first moments and performs bias correction,

with the following update rules [52].

26



6 / Fundamentals of training

First estimating the moment

m(tH) = Blmt -+ (1 — 51)2;5; (7)
2
D — Bovy 4 (1 — f3) (2;;) (8)

then performing bias corrections
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Even though ADAM is the most popular optimizer, and seemingly the one
that often yields the best results, there are overwhelmingly many variations of
gradient descent optimizers. The inclined reader is referred to An Overview of
Gradient Descent Optimization Algorithms by Ruder [58].

Interestingly, the optimizers tend to attain the best results when the momentum
terms are high. For instance Kingma and Ba [52], the authors of ADAM, proposes
that 81 = 0.999 and [, = 0.9, which successively indicates that the overall

structure might be more important than the local ones [56], 57].

ADAM has also received some criticism in regards to convergence recently [61].
However, to the authors best knowledge, it is still considered the optimizer
that has the best chance of attaining good results, despite moment estimations

confusing discriminative adversarial training.
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6.4. Unsupervised learning

So far, only the supervised case has been considered. Even though the goal
remains pretty much the same, unsupervised learning has an additional constraint.
As this thesis will perform experiments that are considered unsupervised, the

rudimentary philosophy of unsupervised learning will be presented here.

In supervised learning, a measure of performance, A, is indirectly optimized.
This measure directly provides information on how the model is performing
by comparing a priori ‘end goals’ with the output of the architecture. That is,
supervised learning depends on ‘end goal’ values (y;’s). Datasets containing these
values are referred to labelled datasets. However, consider the case when the
values, y;, accompanying our samples, X; ~ p, are not to be considered by the
model. More specifically that means obtaining y;|x; is impossible. The lack of
labelled data is a big challenge in deep learning, and by definition, supervised

methods cannot work with such data.

An unsupervised architecture is defined as such by not utilizing prior knowledge
about what the output will be. Hence, an unsupervised performance measure
measure that utilizes a priori ‘end goals’ cannot exist by definition [62]. Never-
theless, in unsupervised learning, there also has to be defined some measure to
optimize. In fact, proposes new performance measure will be presented,

and as will be apparent, will be useful in certain unsupervised cases.

In contrast to a supervised loss function, an unsupervised loss function is a
function that does not depend on supervised labels in any way. Let £ be said
measure, then instead of attempting to obtain the map, f* : x; — y;, a different

more generic parametric map is sought:
g: (Xi7 0) = g<Xl7 9)7

where L(g(x;,0)) attains the optimal value of £. Again this has to hold for all

samples in the distribution.

A loss function in the unsupervised case could be defined accordingly as

Tunsp(0) = ExpL(g(x:0)), 9)

unsup
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where £ is some measure of optimization that only takes the estimated probabil-

ities from data points, and of course should be unaware of their true labels.

Accordingly, with the same arguments as for , it cannot be directly attained,

and again is estimated as

Tunan(0) = 1 3 £(g(x:50)) (10)

The typical procedure for obtaining the map ¢ is still performing gradient descent
on the parameters 6 such that £ (g(x;@)) is optimized for all the samples x in
the distribution. The unsupervised goal can be formulated as first choosing the

architecture, g, and then obtain 0

0" = arg optimize £ (g(x; 0)) Vx € p. (11)
0

Clustering is on of the most popular branches of unsupervised learning and would
commonly apply some transformation to the data and then define the loss £ such
that it reflects how well the data is clustered. A cluster is often thought of as
some automatic grouping of data, that reveals some underlying, often semantic,
structure. Clustering can be referred to as ‘unsupervised segmentation’ and
‘unsupervised classification’ [63], because as in classification adn segmentation,

the end goal is to assign instances to classes.

The difference is that said classes are not known to the model a priori, but has
to be learned autonomously in the unsupervised case. A cluster could be defined
using some input data X together with some assignment map C : X — ¢ where
c € Cand Cis a set containing the possible clusters. £, when clustering, is often
a measure of the density and separability of distributions, as for instance the
Cauchy Schwartz divergence depicted in [Figure 6-2|

Deciding what performance measure to optimize, as well as how to implement the
L function, is very problem dependent. Many such functions are often statistically

motivated based on probability distributions.
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Figure 6-2: Illustration of characteristics of two distributions with a low Cauchy-Schwarz divergence

A quick example would be the Cauchy-Swartz divergence, which was used
in another one of the authors prior publications Recurrent Deep Divergence-
Based Clustering for Simultaneous Feature Learning and Clustering of Variable
Length Time Series [64], much based on Deep Divergence-Based Clustering by
Kampffmeyer et al. [65]. The idea with Deep Divergence Based Clustering [65] [64]
is that the data is assumed to consist of clusters that can be transformed to a
space where they represent, in large parts, linearly separable groups if the data is
transformed into a space where the probability distributions are more distinctive.

In [64] we apply the Cauchy-Swartz divergence (Figure 6-2|) as a measurement
of how divergent (different) multiple probability distributions are.
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6.5. Loss functions

Loss, or cost, functions are generic functions that are designed to evaluate how
well an algorithm is performing. The loss function should be continuous and
differentiable for back propagation purposes and, as motivated in [Section 6.1] be
a monotonic function that has a local minima. If we recall the definition of the
loss function from , the expectation itself is not attainable, and what is to be
presented here are the estimations of the loss function. Here the loss functions

are estimations of such (as suggested in (4))).

As will be discussed later, in the experiments of this thesis, the cost function
in the unsupervised part is actually the cross entropy, which is primarily used
for supervised learning. Consequently, no loss functions that are typical in the

unsupervised case will be presented here.

6.5.1. Loss functions in supervised learning

In supervised learning, the cost functions are functions of the label and the
output of the architecture, and is often interpretable as a distance measure
between the true label and the prediction made by the model. The choice of loss
function is not a trivial one, and is very problem dependent. Here, the theory
behind the two most common loss functions will be introduced. In these loss
functions, consider the true labels of data sample i: y; and let y; continue be

the output from the model.

Recall that a loss function is typically minimized, and as such, loss functions are

a ordinarily non-convex function that has a local minima.
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6.5.2. Mean squared error

The mean squared error is commonly used in regression problems. Especially in
linear regression. However, it has in the literature proved useful in some simpler

use cases. The ‘error function” would be just the squared error
EWis Vi)mse = (Yi — ﬁz‘)2
And the actual loss function to be used in training (the estimation of (2))) is

= 2 Yy 9
mse_N y’L yl .

i

6.5.3. Cross entropy

In the experiments presented in , this is the loss function (with minor
modifications due to dimensionality differences) that is used for all architectures.
Following the notation, the cross-entropy loss could be expressed as the log-
likelihoo of yi|x;:
H(y:,yi) = Z —v;i10g(J;.)
J

Where ¢; ; is interpreted as a probability (that is 0 < §;; < 1 and 32, 9;; = 1).

From this, since y; ; = 1 only for one value of j this would ultimately only be
the logarithm of the probability of the class that the data point actually belongs

to. The entropy is thus higher for y; ; closer to 0 and lower for y; ; closer to 1.

The resulting loss function would often be the sum or average of the cross

entropies

. 1 .
J(y,y) = N Z Z —¥;.i1og(J;.4)-
7 1

() There are other interpretations of this loss function, and it has a solid base also in information
theory.
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6.6. Performance measures

When dealing with classification or segmentation, we want to know the classifiers
ability to classify correctly, or what here is called performance measures A.
Ordinarily, these performance measures will have the common property of
making use of a priori information about the end classification goal (labels),
and compares it with the output of the model (predictions). This thesis will
propose a performance measure in that will be further explored in the
experiments in [Part TV] Here common performance measures will be presented
to give the reader an overview and insight in common, and already established,

performance measures.

One natural, and commonly used performance measure, is the fraction of data
points that were correctly classified (accuracy). However a challenge with this is
that in many cases, the positive labels only constitutes a small part of the data
points with the negative class being the rest of said data points (or visa versa).
For instance, the (relatively small) tumor in a PET image is the positive class

whilst all the pixels without a tumor would be negative.

We are still interested in knowing the cases the classifier says are the true (or
positive) class. In segmentations considered in the experiments, this a priori
knowledge often consist of ‘regions of interest’ For the same reason as above, the
number of true positives is not very informative per se. Knowing only how many
true positives there are does not help solve the problem. There has to be some
reference point to make the number of true positives more meaningful. This is
where the different performance measures come in handy. It makes much more
sense to know, for example, what portion of the positives were correctly identified

somehow compared to the fraction of negatives were correctly identified.
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6.6.1. Common measures

For classification, especially for two-class problems, variety of measures have
been proposed. When doing prediction on a two-class problem, there are four
possible cases. These are combinations of what the model predicts compared to
what the truth is. For example, a model can predict that a datapoint is ‘true’,
typically 1, but the ground truth is that the datapoint is false, typically 0. In that
particular case we would have a false positive [66]. This is further demonstrated
in [Table 6-1 Different combinations of the confusion matrix form well known
performance measures as [66] and an overview is presented in :

Predicted class

True class Positive Negative total

Positive | t,: True positive | f,: False negative P

Negative | f,: False positive | ¢,: True negative n

Total P’ n N

Table 6-1: Confusion matriz for two-class problem

Name Expression Explanation

Fraction of wrongly classified observa-

1
error ~ (fp+ fn) tons

Fraction of correctly classified observa-
accuracy —(t, +1t,) =1 — error

N tions
. Also referred to as ‘recall’, sensitivity
tp-rate  t, = = and hit rate. Fraction of correctly clas-
p sified objects that are ‘true’.
f Also known as the false alarm-rate. The
fp-rate  f,. =2 fraction of positive classifications that
n :
should have been negative.
. t, Fraction of predicted positives that are
precission — .
P correctly classified.
o tn Fraction of observations correctly clas-
specificity — = 1-fp-rate . . o )
n sified as ‘negative’ or ‘false

Table 6-2: Common performance measures used in two-class problems
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6.6.2. Dice (Fy) score

The dice [67] score is a measurement of overlap. The images for segmentation
often only have a small area with positive scores. If the classifier learns to predict
all pixels to the negative class, one would still be able to get a high accuracy,
since most of the pixel-wise classification is correct. This despite the fact that

the region of interest may not be detected at all. Examples of this will be

demonstrated in the experiments ((Table 15-5| on page .

The dice coefficient is the overlapping area (AN B) divided by sum of the areas
of the prediction and the ground truth (A+ B). This way a big area of prediction
or ground truth will tend to have small dice score values if the overlap between

the ground truth and prediction areas are low.

B :Prediction

Figure 6-3: Venn diagram for explaining Dice coefficient

The dice score is given as

(12)
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The Fy score is fundamentally equivalent. However, it is formulated in such a
way that it provides a definition that extends beyond overlapping. F; will take
class imbalance into account and will tend to favor true positives over punishing
false positive, as would the Dice. The F; score is defined as the harmonic mean

of the precision and recall:

A 5 ( 1 N 1 >_1 9 ( precission - recall )
Fl p— pr—

precission  recall precission + recall
B 2t,
S 2t fat Sy

Note that f,, + f, is the total number of wrongly classified observations and ¢,

the number of true positives.

It’s easy to show that the dice score is equivalent to the I} score. If we consider
an image with A being the area containing the positive ground truth, and B the
predictions, as in Then AN B would be the number actual positive
pixels correctly classified as such (¢,). Furthermore, A could be expressed as the
overlapping region (,) in union with the pixels that should have been classified
as positives but weren’t: A = t, + f,. Then B would be the true positives in
union with the pixels that were classified as positive, but were in fact negative
B=t,+ f

_AnB 2,
A+ B 2,4+ fn+f,

and the F}) score is identical to the dice score.

Ap

= AF17
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6.6.3. Area Under the ROC Curve
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Figure 6-4: A classifier is often preferred if its ROC curve is closer to the upper-left corner (thus large
AUQC).

When performing classification on a two-class problem, we want a measurement
telling us how many positive classes did we get right. This is the tp-rate ¢, = t,/p.
However, if this was our only measurement the classifier could just assign all
the data points to the positive class, and similar to the accuracy case, perform
an ideal tp-rate: t, = 1. Therefore it is important to also look at the negative
classes. If we simultaneously look at the fp-rate f,. = f,/n we get the ratio of

wrongly classified negatives; We simultaneously want a high ¢, and a low f,,.

Classification models often returns soft classifications. That is a number between
0 and 1 where, say, 0 is negative and 1 is positive. To be able to calculate our t,,
and f,, these soft predictions have to become ‘hard’. A common way of doing
that is just by thresholding. However, the values of ¢,, and f,,. will depend a lot
on the value of said thresholding. For example, if we say that all values greater
than 0.001 is positive, it is likely that we get a high ¢, but also a high f,,.
Similarly if a high threshold (e.g. true if greater than 0.999) then we’d get a low
t, and, likely, a low f,,.
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Choosing this threshold is a matter of whether it is favorable to have false
positives compared true positives. For instance, this was to help decide whether
someone should get a thorough diagnosis on a terminal disease, one would likely
be okay with a higher f,, than if it was to decide whether a person should go to

prison. In other words, it is a design choice.

The ROC curve allows to model this trade off. AUC (the area under the ROC
curve) is also independent of said threshold. The area under the ROC curve thus
suggests how much ‘freedom’ one has to choose said threshold. It can also be

viewed as a measurement of how certain the model is in its predictions.

AUC would be a value between 0.5 and 1.0 where 0.5 would be the expected

result if the classifier was guessing at random.
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7. Neural Networks

The neural network is the heart of deep learning, and might be considered the
most fundamental architecture used in the experiments in of this thesis.

As motivated in the introduction, the neural networks, and their variations, are
natural choices when performing segmentation, classification and adversarial
discrimination, as it currently holds state-of-the-art status in many of these
tasks.

When ADDA is introduced in [Section 10.1] it will be clarified that in prior to
applying the adversarial discriminative domain adaptation algorithm on images,
a source map has to be obtained. In the case of the experiments performed in
[Part TV], the source map a part of a segmentation scheme. As also extensively
presented in of the introduction, a natural choice for segmentation, and
image classification in general, is the convolutional neural network architectures.

convolutional neural networks are special types of neural networks.

First the general feed-forward neural network will be presented, thereafter the so
called ‘back propagation’. This is then followed by the convolution operation which
motivates the convolutional neural network. CNNs are presented thereafter and
is followed by the related back propagation. Lastly, this section the ‘transposed
convolution’, with back propagation calculations, is motivated as it is applied in

architectures such as u-net, which is a fundamental part of the experiments in

[Part TV]
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7.1. Feed forward neural network

To motivate the theory and notation, the reader is first introduced to simple,
specific examples, and then the theory is generalized to the multi-dimensional

case, and notation is introduced accordingly.

7.1.1. Perceptron

a(xlwl == xng) — @

Figure 7-1: A basic perceptron.

The simplest neural network is the perceptron. It merely consists of an input
layer and an output layer. This simple architecture is essentially an inner product
between inputs and parameter weights. This result is often evaluated by a non-

linear function (o in |[Figure 7-1|). The perceptron can also be motivated using
logistic regression, and obtain an equivalent result [66].

The output y is often manipulated to be in the range of zero and one so that it
can be interpreted as the probability of class affiliation. This is typically achieved

by a non-linearity such as the sigmoid function.

To discretize the class affiliation, one could threshold on a value defined in the
image of o, which in turn will divide the plane into two parts which could
represent the two classes. Neural networks can in most cases be considered a
combination of an arbitrary number of perceptrons, and a feed forward neural

network is also often referred to as a multilayer perceptron (MLP).
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7.1.2. Forward pass

For clarity, in this two dimensional case, some of the notation will be different
in order to be explicit and avoid confusion. First, consider the basic example of
the two-layer perceptron in the two dimensional case. We have two values that
accompany one ‘end goal’ value Y3, which is the ‘label’. As earlier motivated, we

want to obtain an estimation of E[Yj|xy, xo]

Input  (Hidden)

layer layer aV (Output)
1 HC) ZE :i#l U(Val) = Zo1 \ layer (3
Zod -
1 Wp1 VB
Wp2 - U(Vﬁ) - Yﬂ

ZaZ 7 b¢
) HO Z;; :ﬁh U(Vaz) = Zaz / ’

2

Figure 7-2: A two layer perceptron with one output layer.

displays, in detail, the different mathematical operations that is
performed at each step of this architecture. The first step is to calculate what is
shown on the figure as V;s. These are inner products between the parameters
and the data:

.
Va1 = WX + by = w1 + wiaxe + by

T
Va2 = WX + by = wo1 21 + waaxs + by.

The inner products (V,;) are then evaluated in an activation function (similar to

what is shown in [Figure 7-1)), and the resulting quantity is Z,; (i.e. 0(Vai) = Zas).
This is all now repeated for the next layer to calculate the final output of the

network, Yj:

Vﬁ = wma(Val) + wgga(vag) + bg
= Wp1Zo1 + WpaZa2 + bs
Y/g = U(VB) = a(wngal -+ wBQZag -+ bﬁ)
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If the network is expanded, as well as increased in sample size and dimensionality,
this notation would be very cumbersome. By generalizing the equation these

calculations become much easier:

Assume there are N samples having d observations X € R¥¥ and consider a

neural network consisting of ¢ layers with n; nodes in each layer.

Layer 1 Neuron k

Figure 7-3: An illustration of a fully connected neural network with notation.

The entire forward pass can be notationally cleaned up as follows.

Let the parameter weight in layer i of node k is denoted w¥. The matrix containing

all the weights in layer 7 is the n; weight vectors inserted column wise:

1 2 Uy

ol
Now, let the output of layer ¢ for all N samples be denoted

Also note that Zy = X.

To summarize the shapes:

Z; e RN
W, e R™-7,

42



7 / Neural Networks

To demonstrate the role of the loss function, let the last output neuron, y, be one
single node, such that the squared error can easily be used as the error function.
That is ny = 1 and Z, € RN, Now let y = ZT = [91, 2, ..., 9n] and y; be the

respective true label for the datapoint j, then

J =

N | —

Z@j — ;)%

7.1.3. Back propagation

For the architecture to actually learn something, it is imminent that something
is actually updated. Back propagation is the term used when gradient descent is
calculating, and applies, the parameter updates to a neural network. The name
likely originates from the calculation of gradients in the opposite direction of the

forward pass.

Assume n, neurons in the output layer, then we want to obtain new weights by

gradient descent:

o€
W =W, — y——, 14

i MW, (14)
where uaa—vf,i works element wise on the weight matrix W;, and
&= Z%:l(ym - @m)Q
Assume that the output of layer i is z;:

z; = o(v;)

V; = W;!—Zz‘_l, (15)

and thus zy = x.
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We want to obtain, for all weights, the gradient By the chain rule in

=
Wi
multiple dimensions, we get

o 0E Oz,
owl 0%, Ow?
o€ 0z,, 0o Ov,, 0z,, , OJo ov,

" 0z,, 00 OV, 0z,, ., 0o Ova, .  Owl

and from ([15)) it follows that
. .
Vig = D %i-15) Wiy
¢

and consequently

8Vi7p —
k — “i—1
ow;
(3vi7p o
dzk it

)

The resulting gradient for the weight now becomes

06 0 9o , o

;= Wor—1a.
owr. 0z, Ov,, """ 0v,, 1

-2

If we now move over to the dimentionality s.t.

oW, A
Now define
(5j588.,
"ol

and the weight update becomes

vaj" = _M(5£Y7"71)7
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where 07 = ¢!_ 0'(v)_,), with e!_; = 377, 6Fwhi.

Moving over to matrix notation, the following matrices are defined for a layer r:

VT c RRTXN, Zr c RanT,1+17ET c ]RnT*lXN,WT c RannT,1+17 Ar c Rrwa)

containing their respective lower case values. Finally, the updated W matrix for

a layer » would now be
Wr,new = Wr,old - ,UArerla (16)

with the following relations:

A=E,od(V,)
Er = W:JrlArJrl
V, = WT(erl)T

These equations are consistent with what is presented by Theodoridis and
Koutroumbas [6§].
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7.2. Convolution

As previously mentioned, the experiments in this thesis rely heavily on convo-
lutional neural networks. This variation of neural networks are based on the

convolution operation, as will be introduced here.

For notation, the convolution operator in it’s discrete representation in two

dimensions is here defined and denoted

Where X (z,y) and K (x,y) will be referred to as the input function and kernel
respectively. Note that is commutative and associative.

T11 | 12 | 13 | T1a | T15 | Tie

x e R T
21 25 26 11 | Y12 | N1 14
w11 w2 w3 Y y Y13 Y
W11 | Wi2 | W13
T N I < T
31 35 36 Ya:
. o o 5 Yo1 | Y22 Y23 | You
* | wop | Wa | Wz | =
T 39;2 .7);23 x'>24 z z
Ta1 45 46 : E
o o s Ys1 | Y32 | Y33 | Ys4
W31 | W32 | W33
Ts1 | Ts2 | T53 | Ts4 | Ts5 | Tse Ya1 Ya2 | Ya3 | Yaa

Te1 | Te2 | Tez | Ted | Tes5 | Tee

Figure 7-4: Illustration of the convolution operation

Convolution is a widely used tool in image processing. Using convolution, one
can find edges, find templates and features in an image. Also smoothing and
sharpening of images are also common actions to do on an image with convolution

as the main tool.
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7.3. Convolutional neural networks

It might not be immediately obvious how convolution could improve the per-
formance of a regular deep neural network. convolutional neural networks are
commonly known for performing best when applied to classification and seg-
mentation tasks on grid-like structures. For instance in images, videos and text
[54]. As it turns out, CNNs have several properties that prove advantageous for

solving a multitude of problems.

The most significant distinction between convolutional neural networks and a
classical neural network is that the matrix multiplication that constitues the

forward pass in is replaced with the convolution operation.

There are four properties that are especially prominent in regards to CNNs
[54]: sparse interactions, parameter sharing, equivariant representations, and
the possibility of working with inputs of variable siz@. These properties are
the most essential in a CNN as it is foundation in forming the CNNs ability to

capture overall semantics in grid-like structures.

In contrast to standard feed forward neural networks, CNNs can have sparse

connections between features.

A fully-connected neural network there is one parameter for every value in the
input dimension. However, in the convolutional case, the parameters are within
the kernels that are often significantly smaller than the number of values in
the input dimension. An image, for instance, has millions of pixels. However,
convolutional kernels that recognize features such as edge detection could be
obtained by small filters with kernel consisting of a single digit number of

parameters [54].

Parameter sharing refers to several features sharing the same parameter. That
is, for convolution, a parameter contained in the filter is used on every@ pixel in

an image.

[dThere are other architectures that also can do this, e.g. some structures of recurrent neural
networks allows for inputs of variable lengths.

[e]Virtually every pixel. Boundary pixels might be excluded depending on the design choices
made for the input and kernel (e.g. zero padding).
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Because convolutional neural networks typically are applied with significantly
fewer parameters than in the classical neural network case, it is naturally con-
siderably less computationally heavy both in memory usage. Together with the

skip-connections, CNNs also drastically reduces computational complexity.

In CNNs equivariance relates to position of items. If g is a function that translates
the input: g : (z,y) — (z + x,y + ), then convolution is equivariant to g:
X x K = g(X) % K. This is very useful when working with images, as it shows
that the convolution operation does not care about where a ‘feature’ is on the

image as long as it’s represented identically.

We can note that in the sense of how convolutional neural networks treats
convolution masks, they could in fact be interpreted as correlations. This is
because the networks learns the filters as parameters and thus the high values of
the output after the convolution takes place is identical to the estimated cross

correlation of the two, as the cross correlation

Cor(z,h) = (X * K)(z,y) = >_ > X(z+m,y+n)K(m,n) (18)

The difference from ([17)) is the sign (in convolution: X (x —m,y — n))

For images, it is often the case that pixels within a local neighbourhood are
highly correlated. This is a property that convolution takes great advantage of.
When convolution occurs, the resulting output from a pixel will be of high value
if the neighbourhood matches many of the pixels. That is if the filter is composed
in a way such that it reflects any correlations within the image it will be a high
value. For instance if you convolved two photographs together, it would likely
have the highest value when the convolution mask is as close to the center as

possible.

For example, a filter that has edges characteristic of a human eye would likely

show high value of eyes of the same rotation and size as the one of the filter.
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7.3.1. Pooling

Convolutional neural networks also often have pooling layers. For instance max
pooling and average pooling. In convolution, a window (the kernel) ‘slid” across
the image. For every iteration (or slide) it performs a weighted sum between
the pixels, as shown in . The pooling operation, one would replace weighted
summation with a different operation for this window. For instance with max

pooling the ‘cell’ that contains the highest value will be chosen, as illustrated in

igure 7-5

T11 | T12 | T13 | T14

Y1 | Y12 | Y13 N
T21 | T22 k&z To4
Y21 | Y22 | Y23 — INnax
T3l | T32 ﬁ33 T34
Y31 | Y32 | Y33

Tg1 | Ta2 | T43 | T4

Figure 7-5: Ilustration of the max pooling operation

7.3.2. Back propagation
Consider the convolution
Y[z, y| = (X« W)[z,y].

For instance the one depicted in Here we want to obtain the gradient

of the cost function with respect to a weight. By the chain rule we can find

>
irj

oJ 8ykl oJ
OYp,1 Ows 4 ”z,;l 7 Oy (19)

oJ

8ws,t

Of course one have to specifiy the correct limits, and appropriate values for

i,j,k and [ based on s and t. For instance, in the special case in [Figure 7-4]
s =t = 2 in the limits of the sum would be i = j € [2,5],k =1 € [1,4].
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Note here that can be written as a convolution:

%W[s,t}c] = (X * WJ) [S, t], (20)

where By J is the element-wise gradient By J|i, j] = 82‘_]‘. This is visualized in
2,7

Ti1 | Ti2 | T13 | T4 | T15 | T16

b aJ aJ aJ 8J
T21 122'3‘;{] 123-% 124-% zzs»% Tog O T e
B) 9, 9, B)
aJ aJ aJ Y11 Y12 Y13 Y14
il Il B < : ¢ aJ aJ aJ aJ
Ts1 e s o o B e B T o1
i ! ¢ B) 0, 0, ]
aJ aJ aJ _ * Y21 Y22 Y23 Y24
Owa1 | Owaz | Owas o o . h
4 3 : B 9, ) B
aJ aJ oJ Y31 Y32 33 Y34
Sl Il B aJ aJ aJ oJ
Z51 152'% 253'% 154‘% 155'% 56 Oyar | Oyaz | Oyas | Oyas

Te1 | Te2 | Te3 | Tea | Les | L66

Figure 7-6: Illustration of the convolution gradient backwards propagation

A more formalized approach for the back propagation, is to consider that convo-

lution can be written as a matrix multiplication. Looking at the one dimentional

case:
(x*h)[t] = Z x[t|h[t — 7] = xThf
T=1
Then we can define x' = [2[1], z[2], z[3], ..., z[n]] and
h,’{T = [ht—1, ht—2, hi—3, ..., hi—p], and further compose the appropriate matrix

required to represent the h function. The resulting matrix for the h function is a

variation of the so called Toeplitz matrix:
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h*x~~ Hx

0 0
0 0
h[1] 0
h|2] h[1]
: h[2]
him — 2] :
hlm — hlm —
hlm]  hlm —
h[m]

o1
o2
o3
eln).

2

1

(21)

Here, summing the gradients of the weights (this matrix will result in multiple

updates per weight), will result in a back propagation algorithm that is very

similar to (|16]).

For the two dimensional case, one could unravel the data and kernel matrices

appropriately to attain a similar result. If we consider the convolution X % A,

with some arbitrary matrix A, then we can rearrange the elements in X as in

igure 7-

L11|T1,2|L2,1|L2,2
T1,1(21,2|L1,3

L12(21,3|L2,1|L2,2
21122223 >

L21|X22|L31|L3,2
L3,11032|L3,3

T22|L23|L32|L3,3

X
X*

Figure 7-7: A simplified mapping for 2D convolution
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Then if we do the same unraveling with the A — A* matrix, then we could

write this convolution also as a matrix product:

X s A~ XA

Consequently, calculating the gradient for this layer would be very analogous to
the matrix multiplication for the feed forward neural network, by saying that the

output of the convolutional layer is the X and the parameters to be trained A",

It is important to note that most modern computer machine learning tools and
libraries are not using this approach to calculate the gradient during convolution.
This representation does, however, justify that CNNs and it’s back propagation

obey the chain rule.

7.4. Transposed convolution

Several convolutional neural network architectures, especially in segmentation,
rely on images to be transformed in the ‘opposite direction’ of a traditional
convolution emerge. For instance, in the aforementioned fCNN [39] architecture,
and in the u-net [40] architecture (which will be described in more detail in

Section 14.1)), up-sampling of the images is a vital part for the architectures.

Transposed convolution, sometimes referred to as deconvolutio or fractionally

strided convolution, is such a transformation.

Consider the convolution
X = (Y *W)[z,y],

where Y has been manipulated such that dim(Y) < dim(X). One way of doing
such a manipulation is zero padding, as illustrated in

The target objective here is for the model to generate some output X. Let Y be

the input from an earlier layer, and we let the W be trainable parameters.

[f'Deconvolution might suggest that this transformation is an inverse of convolution. It most
definitely is not [69].
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Tl | 12 | T13 | T4 | T15

Y Y12
X X

0 Y13 | Y14 0
Way Waz
To1 | T2 | T23 | T24 | T25
0 Y21 | Y22 | Y23 | Y2a 0 w11 | Wi2
T31 | T32 | L33 | T34 | T35 = *
0 Y31 | Y32 | Y33z | Y3 0 Wa1 | Wa2
Ta1 | Ta2 | T43 | Taa | Ta5

0 Ya1 | Y42 | Y43 | Yaa 0
T51 | Ts2 | Ts3 | Tsg | Tss

Figure 7-8: Zero padded convolution

Now, we want to obtain the gradients following the chain rule: By, 4/ =

Az ; . . L
> 8‘2‘7 . ai . The gradients with respect to W is similar to the one shown for
k 4,7 S,

normal convolution in ([20)):

Bwisd = (Y * BxJ)[s, 1],

oJ
0x; 5 °

where Bx J[i, j] also is elementwise

It can be shown (rather cumbersomely) that the gradient Bx.J is equal to the
gradient of input values convolved with a ‘flipped” weight matrix W* = flip(W),
as illustrated in [Figure 7-9;

BxJ[s,t] = (W' * By J)[s, 1].
Then we can obtain

Bwis ] = (Y 5 (W' 5 By J)[s,1])[s, 1],

and in turn we get, using the associative property of convolution,

Bwisg) = (Y * W x By J)|s,1].

¥x J for the example in is illustrated in
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Flipped
0 0 0 0 0 0
aJ aJ aJ aJ aJ
dx11 | Ox12 | Omiz | Ozia | Oz1s oJ o7 a7
.91 | OJ vJ
o7 | o7 | 81 | o1 | o7 0 =95 By | o3 | oy | 0
Oxa1 | Omoz | Oxaz | Owasa | Owas o7 o7 o7
LoJ | 9J | oJ | OJ
8] | 81 | 81 | 81 | aJ 0 2o By | 9y | Byoa | 0 W22 | Wat
Oxz1 | Oxzz | Oxssz | Oxza | Ovss = o7 o7 a7 97 ¥
a7 o7 o7 a7 o7 0 Oys1 | Oysz | Oyss | Oysa 0 12 11
Org1 | Omaz | Oxaz | Oxasa | Oras
0 aJ aJ aJ oJ 0
o7 o7 o7 a7 o7 Oya1 | Oyaz | Oyas | Oyaa
Oxs1 | Owsz | Owsy | Owsa | Oxss
0 0 0 0 0 0

Figure 7-9: Illustration of the convolution gradient backwards propagation

Because convolution can be written as a matrix multiplication, we know that

these gradients can be computed with the chain rule.
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8. Regularization

As discussed earlier, a key challenge in deep learning is making the algorithm
perform well on both training and (the withheld) validation data. A diversity of
strategies exist that are explicitly designed to reduce the validation error. Such
strategies are known as regularization [54]. Regularization is also heavily used in

discriminative training [50].

8.0.1. Batch normalization

When a neural network becomes deeper, the small changes within the distribu-
tions between layers amplify throughout. When this change in the distributions
of these layers occurs, the learning system is said to experience covariant shift
[70]. Toffe and Szegedy [71] argues that this notion can be extended beyond the
learning system as a whole to apply to its parts such as sub-network or a layer.
They propose normalization via mini-batch statistics to address this, by making
a feature of the data points have the mean of zero and the variance of one across

the batch. That is for a batch B = {xy,...,X;} a sample vector x; = (21, ..., %)

is normalized with x = (21, ...,4,,), where
A~ L EB[%’]
T = ——.
Varg(zy)

One issue with normalizing each input of a layer, is that it may restrain the input
and output when evaluated by a non-linearity (activation function). Another
issue is that when propagated through a network, the result might depend on
how the data was batched. To address this, loffe and Szegedy [71] introduce two
trainable parameters v and 3 that would be applied to the batch normalization
output v;:

Yi =% + 5. (22)

During training the batch normalization is applied, but when training is over,
only is applied with the trained parameters v and 3.
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8.0.2. Weight normalization

If some model parameter, for instance a weight in a neural network, becomes too
great of value, it might be indicative of the network learning the dataset and
not the overall general structure. The network might be biased against simpler
structures and would fail to generalize well. By adding a scaled L2 norm of the
parameters as a penalty term in the loss function, you prevent the parameters

from becoming big [72].

8.0.3. Dropout

There are many motivations to dropout [73]. One of them is to prevent the
model of becoming too dependent on one feature. The idea is to randomly drop
units and their connections in a network during training, hoping that it will
generalize better. It does this by removing, with a probability p, every unit
in a selected layer. To avoid bias, the outputs have to rescaled by multiplying
the probabilities with the outputs during validation or testing. Equivalently,
divide the output with p during training, which is how tensorflow [74], in which
the experiments are implemented, performs dropout. At test time the

resulting neural network should be used without dropout.
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9. Adversarial training

Adversarial training is when one architecture improves when ‘competing’” with
the other. As the name suggests, adversarial discriminative domain adaptation is
one such architecture, and is part of the main contributions of this thesis. In the
following sections, a theoretical background of adversarial discriminative domain

adaptation will be presented, starting with introducing generative adversarial
networks ([Section 9.1)), followed by a closer look at the adversarial discriminative

training concept (Section 9.2)), and is concluded with [Section 10.1] introducing
ADDA [46] together with performing ADDA on SVHN and MNIST.

9.1. Generative Adversarial Networks

Before diving into the adversarial domain adaptation, it is natural to introduce

the source of adversarial training: the generative adversarial network.

GANSs could be a clear step in the right direction in regards to process unlabelled
data in deep learning, as it is trying to imitate the data distribution, and thus
might contribute to dismantle and give some insight to the hidden information
within the distribution. Components of GANs are frequently used as intermediate

tools to obtain great results in both unsupervised and semisupervised cases.

Fundamentally, a generative adversarial network can be considered a statistical
sampler. Generating samples from a distribution given only a population also
have many statistical use cases. There are many methods designed for doing this.
Today, MCMC and bootstrapping methods are very popular. However, these
methods don’t generalize well to higher dimensions [75]. GANs, however, have

proven very useful for sampling in higher dimensions [49] 50].

In 2014, |Goodfellow et al.| presented the general adversarial network [53]. The
purpose is to generate a sample from a distribution given only a subsample of
the data in said distribution. This is achieved by an adversarial ‘fight” between

two classifiers: the discriminator and the generator.
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We continue to let x; be a sample from p. Let z € Z and 8, € ©,. With slight

abuse of notation G here would both represent a domain and a distribution.

Consider the map G : Zx© — G, where z € Z is any (often random) vector, then
ideally we want to obtain the surjective map that G = p, or, G : (z;6,) — x; € Pp.

G here is any continuous differential function G € C*° with trainable parameters
0

g

Suppose we additionally have a differential function D € C* : (q;;64) — (0, 1),
where q; is an arbitrary vector and 6, are trainable parameters. Then we want
D(q;) to represent the probability that the sample q; originated from p. That is

we want to design, ideally,

I, qep
D(q; 09) =
0, else

Now let z ~ Unif(0, 1) ﬁ then we want to train G = arg max D(G(z)), that is
a
ideally D(G(z)) = 1. That would then imply that G(z) € p for all z.

One possible mathematical representation of this would be

G = argGmin(l — D(G(z))) ~ argGmin(ln(l — D(G(z))))

So D and G are adversaries, where G wants to trick D, whilst D wants to stay

true .

[elNote z could be chosen in accordance to the probability integral transform, however, the
probability integral transform does not generalise easy to higher dimensions. This means
we consider z a prior distribution, and thus z does not have to be random uniform.

To be consistent with Goodfellow’s notation in [53], this part of the thesis will use
max, f(g(x)) to mean that for functions f and g, is not maximizing the functions, but
rather it’s parameters: the expression would more correctly be maxg, f(g(z;0c))

(h]

58



9 / Adversarial training

We want the discriminator D to correctly label the true data: maxp D(x). We
desire G to maximize the probability maxs D(G(z)) whilst we simulatneously

want D to minimize it minp D(G(z)), and we end up with a value function:

mGin max V(D,G) = E[ln(D(x))] + E[ln(1 — D(G(2)))]. (23)

However, Goodfellow et al. [53] argues that might not provide a sufficient
gradient for G to learn well. Rather than training G to minimize In(1 — D(G(z)))
we train it to maximise In(D(G(z))) (or equivalently minimizing — In(D(G(z)))),
which results in the same fixed point of the dynamics of G and D but provides

much stronger gradients early in learning as illustrated in

= —In(D(G(z)))
==1ln(1 — D(G(z)))
[—] Early gradient

Figure 9-1: Illustration of difference between minimizing In(1 — D(G(2z))) and —In(D(G(z))).

Optimising D to completion first is computationally prohibitive. Therefore an
algorithm that first do k steps training D and then one step of training G is
suggested by [53] as follows:
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Stepwise GAN training

for epochs do
for k steps do
// pc(z) is the (noise) prior of z
Sample Z ={z1,...,2,} from pg(z)
// Pdata iS the distribution of the dataset
// (which is our original data)
Sample X = {x1,...,X;,} from pPgata(X)
// Updating D(x) using SGD
9D=V9D Z V(G7 D;0p, 90)
i=1
end for
Sample Z = {z1,...,%Z,} from pg(z) // This is a new Z
0c=Vo., > In(1 — D(G(z;0c); 0p))
i=1

end for

Algorithm 1: Showing the idea of stepwise iterative GAN training

These discriminative adversarial training steps are also presented in a slightly

more general form in [Figure 9-2|

Goodfellow et al. [53] goes on to prove that if G is able to represent the appropriate
probability distribution and D is capable of discriminating from it and is allowed
to reach its optimum at each step of the algorithm above, the distribution of G

converges to the distribution of the data (G — p).

G and D are design choices. Although, they have to be chosen so that they
have capacity to represent the discriminant and the original data distribution.
Apart from that, the choice of functions does not affect the convergence of the

algorithm [53], which allows for a wide range of experimentation.
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9 / Adversarial training

9.2. Adversarial discriminative training in depth

The GAN is restricted to generative models. However, the idea of adversarial
discriminative training can be generalized further. Even the idea of adversarial
training alone can be generalized, but that is beyond what will be covered in
this thesis.

Similarly to the GAN, the discriminative adversarial training scheme is when one
attempts to improve one model by attempting to distinguish (or discriminate)

the outputs of this model from another data point.

xinput

D(Zfakm Zrcal)

Op

Figure 9-2: The structure of an adversarial discriminative algorithm.

Training a discriminator in an adversarial way presents a few challenges. As
the name implies, adversarial training can be interpreted as a ‘game’ between
a discriminator and a model. The discriminator is attempting to distinguish
between the fake information from the model and the real information from the
dataset. Salimans et al. [49] involves a concept called the ‘Nash Equilibrium’ from
game theory into this training procedure. In the case of adversarial discriminative
training, a Nash equilibrium can here be interpreted as the solution of this game
where both the discriminator and model cannot gain anything by changing only
their own ‘strategy’. shows a fairly generalized setup that introduces

discriminative adversarial training.
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(9-3a) Step 1: Forward pass.

The first step is the forward pass. This is when the discriminator outputs a mea-
surement of how well it is able to distinguish between the two data populations:

Zfake and Zreal .

Xinput - $<4 4 ' (((((: v J
an

N
N
ELLLLLLL

LI D(Zfake7 Zreal)

(9-3b) Step 2: Back propagate the model.

The consecutive step is to use the output value from the discriminator to compute
gradients, and in turn use the outputs to update the parameters 8,, ‘in favor of’

the model, whilst @ remains constant.

62



9 / Adversarial training

| Dzaeyzrea
| R VQDJ ( fak l)

an |

Op

(9-3¢) Step 3: Back propagate the discriminator.

Figure 9-3: Adversarial discriminative algorithm steps.

Finally the gradients for the discriminator parameters Vg, J is computed and
the parameters of the discriminator, 8p, are updated. However this is ‘in favor
of’ the discriminator. From this, it is also clear that Vjy fMJ depends on D and
Vo, J depends on fy, as is important for the proposed momentum reset scheme.
A different note is that despite discriminative training being unsupervised, it is
common to use cost functions that are primarily used for supervised learning.
Labels in the discriminative case are not from the dataset, but generated entities
for discriminating. This will not be in violation with the definition in because
it still only depends on the input data. Not any ground truth labels.

More formally, if
Zreal ~ Iba Xinput ~ P and Zfake = fM(Xinput; HfM>7 with Zfake ~ Q, (24)

then we want to train the model fj; to align the distribution g with p by
updating the parameters 8y,, of the deterministic map fy;. The goal is obtain a
map f,,; that is capable of representing said transform and, with a slight abuse

of notation, use this map to obtain the parameters

0" = arg optimize fy; : (Xinput € ,0) = Zyeal €
)
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An interesting observation is that if the underlying distributions p and b are too
similar, for some definition of similarity, one could argue that the training is not

completely unsupervised, even if their labels are known.

In the case where the underlying distributions p and B are unequal, is when this
type of training can be referred to as unsupervised adversarial discriminative

domain adaptation.

In addition to ADDA which will be introduced in the following
there are many different generative models that could be modified to perform

unsupervised domain adaptation algorithms.

For instance there are variational auto encoders [76, [77], pixelRNN [78] and
its convolutional version pixelCNN [79]. All of these architectures have the
common characteristic that they provide an explicit parametric specification of
a probability distribution (of the input). Such models are known as ‘prescribed

probabilistic models’ [80] or ‘explicit density-models’

In contrast, GANs are models of the category that are referred to as ‘implicit
(generative) models’. GANs, while still doing probability density estimation
as demonstrated in , are not restrained to a specific definition for said
distribution, and instead define a stochastic procedure that directly generates
data [80]. In fairly generic terms, implicit generative models do specify a density

distribution in the output space of Z,. that in effect forms a likelihood function.

Generally, the key distinction between the explicit and implicit models is that the
implicit does not attempt to obtain the parameters to probability distributions,
but rather the parameters to the deterministic map (fys in ) Consequently
the discriminator, depending on its architecture, is able to learn more complex,
and intractable probability distributions compared to if it had to be explicitly
defined [81], [80].

Implicit models like GANs are more natural to choose for many problems than its
counter part [80]. Because ADDA is heavily based on GANs is a good argument

as to why the ADDA scheme is of such importance to explore.
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10. Domain adaptation

-

(a) MRI (T2) (b) PET (c) CT

Figure 10-1: A PET, CT and MRI (T2) picture of tumours side-by-side. The red lines indicates
ground-truth contours of the gross tumor volume (GTV).

Consider a classifier that is performing excellently on segmenting tumors in a

MRI image, such as the one in [Figure 10-1al Now, pertaining to the fact that

the tumor is very visible in both the MRI and the PET image (Figure 10-1b),
one might think that segmentation of said tumor should be independent of these

domains.

Clearly they are different images, and would be even if the tumour was in the
same place, but they will in many cases contain overlapping, if not the same,
information about a tumor. If we take the MRI classifier under consideration, then
the process of tuning it towards understanding PET, images without knowing
where in the PET image the tumor is, is unsupervised domain adaptation in a

nutshell.

Being clear on terminology, then ‘source‘ data is the data where the ground truth
is available. The ‘target® data, on the other hand, is the data with inaccessible
or withheld ground truth labels, and this is what the model hopefully adapts to

being able to recognize in the same way as the target.
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Domain adaptation can hence be formalized:

Let (x,y); € X x Y be a learning sample as before. Assume that its distribution
is pairwise such that (x;,y;) ~ p. Furthermore let (q,u); € X x ) also be
random vectors, but with a distribution (q;,u;) ~ @. (assuming u; exists but
are unknown). The goal in unsupervised domain adaptation is to transfer the
knowledge of p and correctly label data from @. That is: to learn a map h such
that h : g+ p by not utilizing any of the labels u;. It is here clear that a
direct evaluation measurement in a domain adaptation model, that keeps the

unsupervised aspect intact, is difficult to define.

In fact, doing adversarial training might be regarded as unreliable due to not
having a qualitative performance measure available. It is hard to guarantee
that the convergence of the discriminator will necessarily result in a correct and

improved measurements of the target map.

Domain adaptation is not to be confused with transfer learning. Transfer learning
is a term to describe the fine tuning of a pre-trained classifier. What distinguishes
it from domain adaptation is the absence of ground truth, and thus domain

adaptation is unsupervised.

Of course, this is a coarse representation, and there is a big variety of methods
that can be categorized as domain adaptation. In this thesis the adversarial

discriminative domain adaptation model will be introduced in more detail in the

following [Section 10.1]
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10.1. Adversarial Discriminative Domain Adaptation

ADDA [46] is, as the title suggests, a generalized scheme of an architecture that
utilizes adversarial training to perform domain adaption. It is a widely used
algorithm that is often considered state-of-the-art model, or is the basis of many

state-of-the-art models, in unsupervised domain adaptation [46], 48] [33, [82].

In short, the ADDA procedure is obtaining a source map and then to use a
discriminator to train, based on the said obtained source map, a target map for
a target domain. The source map is often obtained by performing supervised

training on a model composed by said source map and a classifier, on a source

dataset. [Figure 10-2| shows it in more detail.

S.our?: Source map |
tnput: M, (X,,0,) — K, \ ‘:
X, |
6, =86, Classifier “2  Discriminator
Targ(i Target map F
- Mt 5 (Xt,ot) — Kt
Xi

Figure 10-2: The main ideas behind ADDA in one figure.

Consider two datasets: a source dataset and a target dataset. For instance, the
SVHN and MNIST datasets respectively. The main goal here is to correctly
classify MNIST. However, the labels of the MNIST will be unknown to the
model, and thus supervised training can only be performed on the source data,
SVHN. As this part is presented, SVHN — MNIST will be used as example
datasets. Results from this domain adaptation, obtained as a part of this thesis,

will continuously be reported.

In other words, the target map (MNIST) classification has to be obtained unsu-
pervised. To do this in the ADDA fashion, we are assume that the datasets are
somewhat similar in nature, especially in the sense of having similar dimensions

and information about what is to be classified.

On a side note, one could argue that it is a semi supervised method due to the

fact that the source dataset is being trained in a supervised manner. However,
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the core functionality of ADDA is to align the probability distributions of the
two maps, and the classification of the source is not really a part of this algorithm
as it is arbitrary. Additionally the literature consistently refers to ADDA as an
unsupervised method [46), [48), 33].

Source
Source map

i t:
. M, : (X,,8,) — K, \
X,

Classifier

(10-3a) Step 1: Classify/segment the source data with supervised training.

Before starting the adversarial training of ADDA (Figure 10-3al) the source
map and classifier and has to be trained on the source dataset. The classifier,

combined with the source map, would be ‘pretrained’ end-to-end. That is, just

as a ‘normal’ classifier.

For instance, the SVHN classification was performed using a fairly simple convo-

lutional setup, and provided a 0.9095 classification accuracy.

Before the second step, a design choice of parameter sharing has to be made.
The choice is whether or not to use a copy of the source mapping parameters
(i.e. weights) as initialization for the target mapping parameters 6, as seen
in [Figure 10-3b Using a copy of the source kernel as the target kernel is a
design choice, but in the case of multimodal images, it might be reasonable to
assume that the source mapping and target mapping have similar underlying
distributions to some degree. Thus it might be fair to expect that the remaining
work of aligning the distributions might be merely ‘fine tuning’ of the copy of

the source map.

In the case of SVHN — MNIST, the parameters from training SVHN were used
to initialize MNIST. When MNIST was propagated at this state, the classification
had an accuracy of 0.6424.
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Not trained

Source
Source map j
M : (X5, 05) — K ‘
X
0, =06,
Target
Target map
input:

Mt : (Xt,Ot) —> Kt

Xy

(10-3b) Step 2: Adverary training between target map and discriminator.

When the source map is trained (often supervised) to satisfaction, then the
consecutive step is perform unsupervised training of the target domain. This
is accomplished using a discriminator that is trying to differentiate whether
or not the data originates from the source map. In this step the
discriminator is applied to perform adversarial training with the target map. This
can be done in many different ways. A popular way is to train the adversarials
step-by-step and adjust the number of steps each one of the adversaries should
iterate. Notice that neither the source mapping nor the classifier are trained
in this step. That is we train the MNIST (source map), and leave the SVHN

(source map) and classifier untouched.

Classifier

Target
Target map
input:

M, : (X4, 0;) — K
X, + 1 (X1, 64) t

(10-3¢) Step 3: Classify using classifier

Figure 10-3: Adversarial Discriminative Domain Adaptation steps.

The hope is that, when the adversarial training of the discriminator and target

map is completed, the representation of the target mapping of target data is as

equivalent to the source mapping of the source input as possible. [Section 10.1.1|

contains is a summary of and discussion of the the SVHN — MNIST domain

adaptation results.
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What is not included in [Figure 10-2], but is presented in the generalized scheme
from Tzeng et al. [46], is that this model could be used for generative purposes
(by making the mappings generators) and also the discriminator here could be

two discriminators that are unique for each map.

This could be configured in such a way that the source and target mappings
have outputs in the same space. In this case they can be mapped into the
‘segment space. This could resemble segmentation using an auto encoder strategy
where the hidden space is our ‘target map’. This illustrates that the it’s hard to
provide an unambiguous definition that can provide a clear distinction between
domain adaptation and image-to-image translation, especially in the case of

image segmentation applications.

10.1.1. Remarks on the SVHN — MNIST results

Table 10-3: Overview of accuracy scores for SVHN — MNIST domain adaptation. Underline shows
best ‘architecture’ while bold numbers show best stopping method (whole row). Asterisk (*)
denotes that the results in current scheme was stopped at the same step. Note that there
is a difference between 0.7994 and 0.7944

Classification Before DA Scheme Highest | Confusion| Latest | Best loss
accuracy peak stop stop stop
0.9095 0.6424 ADDA 0.8218 0.7994 0.8128 | 0.7994
RESET 0.8169 0.7944* 0.8114 | 0.7944*

In this specific case, table shows that it is not much difference
between the proposed methods (confusion score and momentum reset) and the

conventional domain adaptation methods.

Momentum reset (RESET) apparently tends to perform a little worse than
conventional domain adaptation (DA) on this exact problem. Both SVHN and
MNIST are fairly large datasets, with small, clear semantic structures. When the
datasets are this big, it might be sensible to argue that the images contained in
said datasets represents their probability distributions fairly well. Especially in
the MNIST case. This in combination with how similar the images are information
wise (all centered numbers), a little the fine tuning might be what was required to
attain a fair result, as above. As a consequence, their adversarial loss landscapes

might look more similar and the estimated moments might not need to be reset.

70



Part 111 / Novelties

Now, that the required background theory is introduced, the reasoning behind
the hypotheses stated in the introduction will be further expanded and explored.

When doing adversarial training, each adversarial ‘player’ attempts to minimize
its own cost function, Jp(0p,80y) and Jy(@p,0y;) for the discriminator and
model respectively. A Nash equilibrium will here represent a point (67, 83,) such
that both cost functions are at a minimum with respect to the parameter of its
adversarial [49]:

(60%,,6073,) = (arg min Jy, arg min Jp).
) O

As Salimans et al. [49] points out, finding such Nash equilibria is a very difficult
problem. Especially in regards to the ‘adversarial game’ with non-convex cost
functions. The problem resides in that, a modification to @p that reduces Jp

might increase Jy;.

This reveals two clear issues. Firstly, this causes gradient descent to fail, and will
prohibit it to converge to the proper point in many games. As a consequence,
depending on the loss function alone to stop training will be unreliable. For
example if one player is reducing xy with respect to x and the other player
reduces —xy with respect to y, then using gradient descent results in a stable

orbit, rather than reach the desired equilibrium point x = y = 0 [49, [54].

The second issue is that this cross-interaction between the losses might cause
problems with the accumulated parameters in the optimizers. Often these are
motivated as moment estimations and referred to as ‘momentum terms’. Even
though using moment based optimizers have yielded good results for adversarial
models in the past, it seems to be limited to either generative models or simpler

datasets.
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In the literature, adversarial discriminative domain adaptation [46] is a fairly
young approach with far from overwhelmingly good results, as with many
unseasoned unsupervised methods, has been applied to very few real world
problems that provided results in the same range as supervised training. Most of
the literature presents results either from ‘simple’ datasets like MNIST, USPS or
SVHN. However, ADDA is to the author’s best knowledge considered state-of-

the-art in unsupervised domain adaptation and, as will be seen in [Section 10.1.1],
on said ‘simple’ datasets it performs pretty well.
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11. Momentum reset

The aforementioned problems bringst to light a very important issue with
unsupervised adversarial discriminative domain adaptation. When doing training,
moment estimating optimizers are often used, as for example ADAM. Because
Jyr depends on 8p and Jp in @), and the momentum does not change with these
cross-interactions between Jp and Jy;, the momentum might end up pointing
in the wrong direction, as illustrated in [Figure 11-1] In fact Radford et al. [50]
presents guidelines to make DCGANSs stable, where one of the criteria is to
reduce the momentum term in ADAM to 0.5 instead of it’s original suggested
0.9 [52).

- o

Momentum

Momentum / Adversaiil step

a4

Figure 11-1: [llustrates the effect when one adversarial updates, the cost function of the other changes
while the momentum remains unchanged.

The issue with a too large momentum rate in the wrong direction is that if the
model (the discriminator and/or target map) takes too many steps in the wrong
direction, it is more likely that the distribution learned by both the discriminator
and the target map would be less semantically correct and tend to more different

and random distributions.

One could try to not use any momentum, and only stochastic gradient descent,

but then the benefits of momentum [83] would be lost all together.

To still retain momentum, the idea is to let momentum accumulate, and then
reset it at a certain point. This reset point could be either after adversarial step

training is done, or after a set amount of steps.
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This might also allow the discriminative training adversarials to train more steps
per epoch iteration, allowing the discriminator to become stronger faster, which

might lead to quicker convergence.
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12. Convergence

Deciding when a discriminative adversarial model has attained satisfactory
results is far from a trivial task. Due to the constant shift in landscape of the
loss function, a typical loss in the the adversarial case does not necessarily
tend downwards as common loss functions do. In fact, an increase of the loss
functions on a mapping adversarial, or generative architecture in an adversarial
model, could be considered preferable because it would be consistent with the
discriminator doing a better job. This, in turn, might cause the generative

adversarial to perform better in its task.

Guaranteeing convergence to a satisfactory, ‘meaningful’, optimum is still an
unsolved problem [49, 63]. This makes it very challenging to determine an
objective and ‘reliable’ measurement of quality. Such a measure is necessary to
determine when the model has reached its optimum, peak performance, and
not remain unaware of the best results. For such a stopping criterion to be
reliable in regards to the unsupervised domain adaptation, it would ideally
have the property of being correlated with a high performance metric (if such a
metric exists). Of course, the model cannot know the performance metric due to
withheld labels, and thus actually checking correlation would be a thesis in and

of it’s own.

For the process to remain completely unsupervised, this criterion must be
completely independent of any a priori class information in any performance

metrics.

In the original GAN proposal [53], it is shown that after a sufficient number of
training steps, the generator distribution, G, will be equal in distribution to p.
At this point neither can really improve. When this ‘equilibrium’ occurs, the
discriminator would be unable to differentiate between the to distributions: i.e.

continuously return values close to %
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As a criterion for determining convergence of the GAN, just looking at the
tendency for the discriminator output value to approach % is a bit weak. For
instance, if the discriminator classifies all the inputs to positive class, it would
output a mean of % This in turn does not even hold if the datasets provided to

the discriminator are unbalanced.

A more robust requirement could be that the false positive rate and the true
positive rate are as equal as possible over multiple steps. That is: following the
notation in the confusion matrix in table : t, are number of true positives, ¢,
number of true negatives. p and n are respectively the number of positive and
negatives. Then we want to stop the training at step ns where the recall=¢,/p
and the specificity= f,/n are simultaneously as close to % as possible over
multiple steps. Specifically, one would want to obtain some measurement of how

confused the discriminator is. By formalizing this idea the confusion score is

proposed:
x t 1 fr 1
C.=E|[1-|2—-2|-|& - 25
s=gfi- -3 - )
or estimated as
C—1-— ¥ (Ireca L 4 |specificit 1|) (26)
s=1—— recall, — =| + [specificity, — =| |,
Ny o k75 p Ye T 5

where recall, and specificity,, are their respective values for the discriminator at

step k.

More specifically this score can be utilized to obtain the iteration n; at which
the Cs was highest:

L= C
n, = arg maxCj.

Ns
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More specifically implemented similarly to the following pseudo code:

Confusion score implementation

best_value=00
best_value_epoch=0
recalls=[]
specificities=[]
N,=100 // Set some ‘window’ value for determining stopping
for epoch_number=1,...,num_epochs do
// Train the adversarials
train_target(n; steps)
// Train discriminator and get the recall and specificity
for i=1,...,discriminator_steps
(recall,specificity)=train_discriminator(n,; steps)
append recall to recalls
append specificity to specificities
end for

if (length(recalls) and length(specificities)) > N, then

Ns

1
confusion_score=1 — N > |recalls[k] — 0.5| + |specificties[k] — 0.5

S k=ns—N;
if confusion_score > best_value then
best value=test value
best_value_epoch=epoch_num
end if
end if
end for

final result=restore_epoch(best_value_epoch)

Algorithm 2: Algorithm that determines discriminator ‘convergence’
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Of course, expecting this method to guarantee an optimal result is not realistic.
However, it does yield a performance that might be considered a satisfactory
rule of thumb and, as will be shown in the experiments in [Part TV] it will in

many cases be preferable over the lowest loss or latest training.

This measure of certainty, although designed for unsupervised adversarial dis-
crimination, can have clear use cases in other areas. For instance in supervised

models, with a measurement of certainty.

There is a notable property in this regard. A classifier in two class problem can’t,
for most common performance measures, perform worse than random. Thus
given a balanced dataset, a classification accuracy of less than 0.5 have to mean
that the classifier is able to classify the data better than random. One notable
property is that the confusion score is symmetric in this matter. If f, is high and

tp is low, simultaneously, it will still give a low confusion score, as by design.
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13. Background

?

This section will provide background information about the process of ‘sanitizing
the dataset to a flexible manageable format. Furthermore a technical outline of
how the resulting process works, as well as implementation details in regards to

dataset splits and preprocessing.
13.1. Data processing

The dataset is from the cancer imaging archive [84] [85]. It consists of images of
sarcoma tumors from three modalities, MRI, PET and CT. Additionally, MRI is
divided into two more sub groups: T'1 and T2, however only T2 will be considered
in this dataset as T1 not provided any satisfactory results and is not considered
in current state-of-the-art [2] on segmentation. The data is represented through
DICOM (or Digital Imaging and Communications in Medicine) files [86]. DICOM
consists of a lot of data: it can contain everything from patient information,
image modality, time the photo is taken and so forth. Further more, the ground
truth segmentations were in separate files, which was not straight forward to
connect to its correct segmentation part. Other issues presented themselves when
there were strong inconsistencies in the internal formats in regards to how the
tumors and images were stored, and link connections between tumor images
and the contour images. Formatting data to a manageable format is of course
expected to be a significant part of the workload. However, converting DICOM
into a more manageable format proved to require a deeper knowledge of said
format then first anticipated. As indicated above, processing said dataset has
in this project been far from a trivial task, and properly formatting this data
has been a pretty time consuming process. The challenge here was not only to
make the data compatible, but also flexible to work with across these modalities.
Furthermore, having searchable data, with a consistent train, test and validation
split, is important to get reproducible results. Also having the data in searchable
format and in a way that is easy to use for machine learning programmatically

is very beneficiary.
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13.2. The data handling process

DICOM input

v v
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Datagetter | |Query| > Q | - P
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cessing

4

TFRecords

Figure 13-1: Simplified schematic of the data formatting process

Presumably, the DICOM format is very handy for medical professionals. However,
extracting data into a tidy, consistent format did prove challenging due to
differences within each file, study and modality. It is immensely important that
the relations between tumor locations and area of scans are properly handled to

ensure correct classification and correct reporting of the final results.

This challenge was solved by creating a script that extracted the DICOM
information and inserted it into an SQL database with features and a reference
to the images that where still stored on disk in Numpy (.npz) format. From there
the data would be chosen based on queries to the SQL database and converted
to TFRecords [87] so that it could be used in training efficiently. The queries

selected modalities, part of body that has the tumor, age and other information.

As preprocessing, images were scaled down to 128 x 128 pixels, using the nearest-
neighbour interpolation. Further normalized with the linear scaling minmax
Sminmax (%) = (@min(2))/(max z—min(z)) for all the pixels in the input to be in the
range 0 to 1.
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13.3. Dataset splits and preprocessing

The data in the database is easily accessed and flexible based on queries. For
example one can simply query to get patients with a tumor in their thigh. To be
able to compare results, it is beneficial if the train, validation and test images
remained in their respective ‘split’ regardless of what query is performed. This
way one would to some degree ensure that good results from one query is not

due to the random selection of data points in to train/validation and test splits.

Therefore, every image in the database was assigned to a ‘split’ (either train,
test or validation) and remained that way across different queries. This way of
splitting the datasets would naturally come at the the cost of not having the
exact same sizes across said data selections. It is possible, for example, that the
ratio of images in test on validation sets are different based on which age was

included in the data selection process.

Another thing to consider when splitting this particular dataset is how to split
between patients. For the model to generalize well, it is important that images
of certain patients are withheld from training. In this regard, the validation set
and the test set contains the same 7 patients (with different images), whilst the

training dataset contains images from the remaining 42 patients.
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14. Method and setup

Here the specific architectures will be presented. The reader should be aware that
the momentum reset scheme is often here denoted as ‘RESET’, as to make it
easier to read. The experiment was written in python 3.6.8 [88] using Tensorflow
version 1.13.1 [89].

14.1. The U-Net architecture

U-net was presented in by Ronneberger et al. [40] with the aim to replace
window-sliding patch-wise approaches like Ciresan et al. [90]. X-net is considered
one of the very best topologies (architectures) for working with semantic seg-
mentation of medical images [I1]. It is clearly a natural architecture to consider

in regards to segmentation of medical images from PET and MR modalities.
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Figure 14-1: Architecture of original u-net [{0].
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The u-net architecture is illustrated in [Figure 14-T] It consist of two ‘paths’: one
‘contracting’ path and one ‘expanding’ path. In the original u-net formulation,
the contracting part was set up as a very typical convolutional neural network
structure [40}, 91} 23]: valid convolutions followed by a Rectified Linear Unit
(ReLlU) [92] and a 2x2 max pooling operation with stride 2 for downsampling,
which halves the dimensionality of the previous layer. Before the max pooling,

however, a copy of the output is saved for later use.

When the ‘contraction’ path is through, the expanding part begins. Now, the
network is upsampled layerwise by transposed convolution. However, at every

layer, the aforementioned copy of output at the corresponding ‘level’ is cropped

and concatenated with the transposed convolution (see [Figure 14-1)).

Ronneberger et al. [40] also proposes their own loss function which is essentially
an extension of the cross entropy loss, where the pixels are weighted based on
their border separations. U-net was originally designed to handle images of a
572 x 572 input size, and for computational budgeting, they had a batch-size of

one.

14.2. Segmentation setup

U-net, based on its remarkable earlier performance on medical images, presented
itself as the natural choice of architecture for segmenting the images from the
modalities in the dataset. Segmentation was successfully performed using the

aforementioned u-net [40].

For purposes of comparing performance on the structure, the same u-net ar-
chitecture has been used to train all modalities, both in the segmentation and

domain adaptation results.

All reported results might further be enhanced if the structure was adapted more

to the individual modality requirements.

The current state-of-the-art method for segmenting the soft-tissue sarcoma

dataset is Deep Learning-Based Image Segmentation on Multimodal Medical
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Imaging Guo et al. [2]. Their paper propose a fusion scheme for the images of
the tumors together and performs segmentation, in addition to segmenting the

modalities one-by-one.

Their preprocessing and data split approaches are similar as to the ones mentioned
in [Section 13.3] however they only withheld 5 patients for validation compared

to the 7 in the thesis experiments.

Their approach consists of dividing every pixel in a given input image into
patches of size 28 x 28. Each of these patches are representative for one pixel, and
as such, every patch is classified. The interpretation of the patch classification is
then whether or not the pixel, represented by the patch, is a part of a tumor or
not. Guo et al. [2] first applies a convolutional neural network and then a fully
connected network. Their CNN consist of five convolutional convolutional layers
and the fully connected has three layers. More details illustrated in [Figure 14-2]

2x2 2x2 2x2 2x2 2x2 | Avg FC
conv | |conv | [conv | |conv | |conv |Pool 864
16 36 64 100 144 | 23

288|| 2 |max

Figure 14-2: [llustration of the structure from the (prior) state-of-the-art. Taken from Fig.2. in Guo

et al. [Z]

In their work Guo et al. [93] it is mentioned that u-net is attempted for segmen-

tation, and yielded similar results.

Even though adversarial discriminative domain adaptation is the main focus of
this thesis, segmenting the images is a necessary step to perform the algorithm.
It is also reasonable to argue that the quality of result from the ADDA depends

on the performed pre-training of the source map, here, segmentation.

MR imaging sequences consists of two imaging sequences per patient: namely
T1 and T2. T1 did not perform well and in the experiments, only the T2 feature

from the MR images have been used.
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Figure 14-3: Experiment u-net setup. The beige boxes are convolutional layers are convolutions with
rectified linear unit (ReLU) (represented as a darker shade of beige). The orange ones are
strided convolutions that will make the size half the input. The grey boxes are upsampling
by zero padding. There is batch normalization between every layer.

displays the architecture used for segmentation in this thesis. It is
heavily based on the u-net [40] architecture. However, some modifications have

been made.

The weighted softmax cross-entropy loss proposed in the original paper, did
not indicate to improve the results in the experiments done, and has not been
applied. In the original u-net formulation, the U-net had only ‘valid’ convolutions.
In the following experiments ‘same’ convolution is used. Occurrences of tumors
in the edges of the images are degenerate cases, and the ‘same’ convolution
should in principle yield equivalent results. The intention is to allow easier
experimentation of depth and input dimensionality. Furthermore, as will be
discussed with domain adaptation setup , the max-pooling layers
have been replaced with strided convolutions (as suggested in Radford et al.
[50]). The stride is chosen to be 2, so that the downsampling continues to output
half of convolution output dimension. Segmentation results with and without
max-pooling will be presented, but max-pooling yielded terrible performance in
discriminative domain adaptation, and those results are omitted when performing

domain adaptation.
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14.3. ADDA setup

The target map is the same architecure as the source map (in [Figure 14-3)). After
segmentation, the parameter weights of the source map are copied into the target

map before domain adaptation. The scores at that point are also reported (as
‘Before DA’) in the tables.

In the original u-net formulation there are max-pooling layers. However, Radford
et al. [50] suggests in conditional GANSs to replace any pooling layers with strided
convolutions in the discriminator and fractionally-strided convolutions in the
generator [50]. Even though ADDA does not have a generator in the same sense
as a generative adversarial network, it definitely seems to have a very positive
effect on the overall performance of the adversarial discriminative part of the

model.

22
128x128

Figure 14-4: The discriminator architecture
The discriminator consists of 11 convolutional layers, where the last layer is
strided so that its output dimension is 2x 1. The loss for the discriminator is the

cross entropy loss function. However, this loss didn’t seem to improve experiments

performed in this thesis and has been omitted in the final implementation.
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15. Results

In this section the results from performing segmentation and domain adaptation
on the three modalities are presented. The segmentation results will be pre-
sented first and compared compared with the current state-of-the-art Guo et al.
[2]. Domain adaptation results are presented thereafter. The discussions and
conclusions regarding these results will be presented together with the results
themselves. However, the discussions and conclusions directly pertaining to the

proposed novelties are discussed and concluded in the final part of this thesis,

[Part IVl
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15.1. Segmentation

have two papers regarding this dataset, one where they only report
accuracy and one where they only report the Fy score [2].

m T g g

0.6 - -1 0.6 -
0.4 -1 04+ *
0.2 0.2

< N & < & &

a) Bozx plots comparing segmentation results with{b) Reconstructed box plot from Guo et al. A
p P g seg p
out mazx pooling. For consistency, a box plot  copy of the original can be found in

with outliers are presented in

Figure 15-1: Comparing box plots of segmentation of the image modalities. The @ marks means and
the horizontal lines across the boxes are medians.

Table 15-4: Validation data results on segmentation

Modality I Accuracy AUC

Conv  Maxpool Guo [2] | Conv  Maxpool Guo [93] | Conv  Maxpool Guo
PET 0.925 0.924 0.760 0.982 0.982 0.850 0.969 0.979 -
T2 0.923 0.902 0.800 0.981 0.980 0.920 0.968 0.976 -
cT 0.844 0.847 0.680 0.917 0.918 0.770 0.903 0.902 -

The proposed architecture clearly performs significantly better than the current
state-of-the-art in regards to F; score. However, it is important to note that even
if Guo et al. attains better accuracy in the T2 case, accuracy is a fairly
unreliable measure, as the classes are heavily imbalanced. In fact,
suggests that their accuracy is quite worse than if the classifier were to classify

all pixels as zero.
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(a) Segmentation examples of T2 (b) Segmentation examples of PT (c) Segmentation examples of CT
image. image. image.

Figure 15-2: Segmentation examples. Larger versions are presented z'n The orange contour
is the ground truth and red is the prediction. The right hand columns show the soft
assignments (probabilities) where the lighter an area s, the more probable that it contains
a tumor.

One important note however is that the withheld patients in the dataset might
be different between Guo et al. [2] and the presented experiments. Furthermore,
when the presented experiments were performed, the validation data and test
data had the same patients. This is different from Guo et al. [2], and could
potentially have an overall effect on the final results presented in the thesis.
However, the experiments have been run several times and the results presented
are representative for the typical output. This in turn indicates that such an

effect would be rather unlikely.

Table 15-5: Average portion of zeroes in ground truth segmentations per modality. If the classifier
classified all pizels to zero, these would be the resulting accuracies. Only amongst the
images actually containing a non-zero area with tumor.

Modality Zero-ratio
CT 0.9848
PT 0.9904
T2 0.9631
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15.2. Domain adaptation

On the following pages are the tables and box plots that pertains to the results

between the imaging modalities. The reader should note that there are additional
figures on pages [99] and that contains example outputs from the domain

adaptation.
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Table 15-6: Results of modality domain adaptation. Both DA and RESET here uses the confusion

stop architecture.

E15_7a) I I(15—7b) I (15-7¢c)
Adaptation | Performance | Before DA best JZEIS E1
modalities | metric (A) DA proposed
F 0.0754 0.0401 0.2038
CT — PT | Accuracy 0.9697 0.9092 0.9666
AUC 0.5116 0.5612 0.6724
Fy 0.1107 0.1407 0.2264
CT — T2 | Accuracy 0.8829 0.8591 0.8247
AUC 0.4945 0.5608 0.6422
F 0.0292 0.0292 0.1221
PT — CT | Accuracy 0.0149 0.0149 0.9514
AUC 0.4937 0.5529 0.5789
F 0.3367 0.3073 0.3922
PT — T2 | Accuracy 0.8853 0.8849 0.8774
AUC 0.5640 0.5738 0.6386
F 0.2024 0.1173 0.0266
T2 — CT | Accuracy 0.9368 0.8998 0.9347
AUC 0.7986 0.8039 0.7576
F 0.3799 0.0268 0.2602
T2 — PT | Accuracy 0.9705 0.8504 0.9495
AUC 0.8077 0.7570 0.8181
Column Values of target map through trained source
map before domain adaptation has begun
Column The best Fi results achieved without the op-
timizer parameter resets.
Column ADDA compared with RESET when run

with fairly similar specifications.

Table 15-7: Overview of Fi scores overview for domain adaptation on medical image modalities. The

bold numbers show best stopping method with the current adaptation modality. Underline
shows best scheme (DA / RESET) within the current stopping method. ‘Highest peak’ is
not considered when evaluating best stopping method.

(15-8a) (15-8b) (15-8¢) (15-8d)
Adaptation Highest peak Confusion stop LaLesf stop Best Toss stop

modalities

DA RESET DA RESET DA RESET DA RESET

CT — PT 0.1049 0.3485 0.0401 0.2038 0.0401 0.2038 0.0186 0.0186

CT — T2 0.2948 0.3870 0.1407 0.2264 0.0728 0.2831 0.0728 0.2264

PT —» CT 0.1656 0.1624 0.0292 0.1221 0.0873 0.0948 0.0292 0.1221

PT — T2 0.2812 0.3986 0.3073 0.3922 0.2668 0.3889 0.3271 0.3089

T2 —» CT 0.1919 0.1954 0.1173 0.0266 0.0708 0.0266 0.0292 0.1642

T2 — PT 0.2537 0.5186 0.0268 0.2602 0.0186 0.2776 0.2066 0.4466
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F, scores on RESET with confu- Iy scores on ADDA with confu-
sion stopping. sion stopping.
1r | 1r |
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(a) Bozplots of Fi scores for results using the RE- (b) Bozplots of Fi scores for results using the ADDA
SET scheme using confusion stopping. scheme using confusion stopping.
Accuracy on RESET with confu- Accuracy on ADDA with confu-
sion stopping. sion stopping.
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(c) Bozplots of accuracy for results using the RESET (d) Bozplots of accuracy for results using the ADDA
scheme using confusion stopping. scheme using confusion stopping.

Figure 15-3: Bozplots comparing scores between the ADDA and RESET schemes. The @ marks means
and the horizontal lines across the boxes are medians. Notice that the y-axes are very
different in the bottom row. (Range of y axes different on@ andlﬂ compared to@ and@)
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Table 15-6 is intended to give a comparison between schemes (RESET and
DA), as well as general DA results. [Table 15-7] is intended to compare stopping
methods.

There are of course no guarantees that any improvement will arise at all from
ADDA, and considering that this is an unsupervised method applied on a small
real world dataset with complex structures, the achieved results are clearly
deemed satisfactory, especially in regards to the proposed improvement. As is
clear in is that all but AUC favor the proposed methods, which
indicates that the tuning of the true positive rate and the false positive rate
is better, and that for the most part it does significantly better than random

guessing.

Obtaining hyper parameters for this project has been challenging. For the results
to be comparable, and yet keep the project to a realistic timeframe, it seemed
natural to seek an architecture configuration with accompanying hyper parame-
ters that capture representative results from all modalities and simultaneously
didn’t favor one modality. Fortunately the results would consistently tend to be
as presented in [Table T5-7] regardless of configuration of the U-net. However, if
one were to apply different architectures, or even just changed the setups, the

individual results might improve even more.

To the author’s best knowledge, performing unsupervised domain adaptation on

this dataset has not been done before.

One interesting observation in is that the classification accuracy tends
to decline after domain adaptation. After domain adaptation, there are more
positive pixels within the regions of where the tumor is (see table .
This might indicate that the discriminator is learning on the underlying structure
of the output, which is what we desire, and not on discriminating on the mere
number of correctly classified pixels. This is further reinforced with the increasing
in F; score and the fact that the decrease is relatively small. Inspection of the
result figures (see on pages 99 and respectively), further supports this line

of reasoning.
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The F; score will tend to reward true positives more than it will punish false
positives, as by design, it will be strict with smaller areas. actually
demonstrates this: when there are no pixels classified overlapping the ground
truth tumor, the F; score is equal (or very close to) zero. Additionally, it is easy
to argue that in tumor classification and segmentation, it is preferable to present

too many false positives over false negatives.

A related observation in [Table 15-6] is that on T2 — CT the classification
accuracy increases whilst the F; score decreased after domain adaptation. As
indicated by [Table 15-5] this accuracy is lower than if the entire image classified
to 0. This might suggest that larger parts of the image were false positives before
domain adaptation. In that state, the tumor might have been trivially covered
(if big areas of false positives were present). However after domain adaptation,
the number of positive classified pixels could have been reduced, but this at the
expense of removing true positive classified parts of the tumor. In turn one might
take this to indicate that it has not been training sufficiently long, but
suggests that it might not be the case because the the best loss stopping criterion

yielded significantly better results, however it is still decreased from the initial
‘before DA’ value.

A possible explanation is that the discriminator didn’t really get properly con-
fused, and that the loss only kept increasing after the initial training. This way
the training algorithm would have obtain the best loss value at an early epoch.
Upon further inspection of the RESET results, at the best loss, the target map
had only iterated 1914 iterations (7 epochs), whilst the target map confusion
was stopped at 8486 iterations (33 epochs) out of a total of 12903 iterations (51
epochs), which clearly support this hypothesis.

This is an indication of suboptimal hyper parameters. And as this result is similar
to the case for the other adaptation where T2 is the source dataset, this indicates
that the results might be improved by modifying these specific architecture and

hyper parameters.

This could in fact be caused by the target map becoming too dependent on

momentum, and goes in suboptimal directions. The interpretation is that when
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training the target map via the discriminator, it might focus excessively on a
too high-level part the underlying structure. For instance, the discriminator
might recognize data only corresponding (when classified) to coherent ‘blobs’,
but the location of the blobs aren’t impactful enough during training. The images
in are also consistent with these conclusions. In such an event it

would would likely cause the RESET to perform worse as it relies less heavily

on momentum terms, and when comparing [Figure 15-3d| with [Figure 15-3c| it is

consistent with what you would expect in this case as well. Tuning momentum
term parameters [3; and [y in and respectively and/or the momentum

parameter resetting period, might improve this result as well.

Although the results pertaining to ADDA are novel and as such could be
considered state-of-the-art, some of the results might not prove too challenging
to improve by tuning hyper parameters. Hopefully this thesis provide a solid

foundation to improve on said results, which is clearly encouraged by the author.
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Input Before DA After DA Probabilities (after)

F=0.271

F1=0.641

Fy=0.

F1=0.274

F=0.613

F1=0.155 F,=0.587

Figure 15-4: PT — T2 domain adaptation results with randomly selected images with Fi scores between
the 60th and 80th percentile. Ground truth is marked with the red line.
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Input Before DA After DA Probabilities (after)

Figure 15-5: CT — T2 domain adaptation results with randomly selected images with F; scores between
the 60th and 80th percentile. Ground truth is marked with the red line.
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Input Before DA After DA Probabilities (after)

F1=0.361

F=0.217 1=0.353

.%‘.

[1=0.311 F1=0.351

.‘*‘

F1=0.331 F1=0.346

Figure 15-6: T2 — CT domain adaptation results with randomly selected images with Fi scores between
the 60th and 80th percentile. Ground truth is marked with the red line.

101






Part V' / Discussion and concluding
remarks

In this final part, the proposed hypotheses presented in will be discussed
in light of the results presented in The performance of the novelties will
first be discussed individually and finally, a conclusion of the novelties and the

thesis as a whole.

16. Momentum reset discussion

As demonstrated throughout the momentum reset scheme did tend to

perform better in the experiments shown above.

However, the resetting of momentum parameters was intended as a demonstration
of the problem, and that is has potential to be improved upon. In this regard,
there are countless other approaches in regards to improving momentum in
adversarial discriminative training. One could, for example, do an upper capping

on the values, some variant of simulated annealing or design custom optimizers.

Another interesting approach would be to introduce an optimizer that has a
short time memory. For instance, adjusting the Adagrad [94] optimizer to only

account for the last n steps. The Adagrad update rule is

oE
0(t+1) — O(t) o N © 96(®) 7 (27)
G®

with G, € R is a diagonal matrix with each diagonal element is the sum of
the squares of the gradients up to time step t: GE? =3, %. In , both

the division and square root is element wise with G®.
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Adagrad’s main weakness is that the accumulation of the squared gradients in
G® becomes very big and thus the learning rate will shrink and eventually
disappear, as Ruder [58] points out. It is assumed that limiting the lower time
step has been attempted, and might not have given satisfactory results, but

might do so in the case of momentum in adversarial discriminative training.

As shown in the experiments, the momentum reset has some flaws. Firstly it does
not perform well if the architectures relies on momentum to get good results,
as shown in the experiments. Secondly, it might have issues getting stuck in
saddle points if the moment parameters suddenly are reset near such a point. If
there is a ‘rough patch’ in the loss function, or the loss function is of a rough
nature, resetting the momentum term could have a very negative effect. As
earlier stated, addressing this momentum weakness in adversarial discriminative,
does not mean that momentum should be taken out of the optimizer equation,

but rather that it should be handled as a separate problem.
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17. Confusion score discussion

For convenience, the expression for confusion score is repeated:

A

P 2

C.=FE|l-
° [ n 2

tl‘

o3| @

The confusion measure demonstrated a clear tendency to follow a stable, mono-
tonic structure compared to the discriminator loss and accuracy, that were clearly
more unpredictable. In it shows typical examples of how the loss and

accuracy could remain unpredictable, whilst the confusion score remains stable.

It is important to note that the loss here is from the discriminator and would

likely be inversely correlated with the target map loss.

Determining stopping criterion for unsupervised functions are hard. Even though
confusion score has been well behaved in experiments presented in this thesis,
it would definitely not mean that it is the optimal solution to the convergence
problem of training discriminative adversarial models. It has however proven
useful as a smooth measurement that reports the state of the discriminator quite

well in ADDA on the soft tissue sarcoma dataset.
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Figure 17-1: Values of confusion score and loss against training iterations for two different experi-

ments using the RESET scheme. The same rows have the same experiments. All from
the discriminators, sampled at reqular intervals.
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18. Conclusion

The momentum reset did improve on the state-of-the-art technique ADDA.
However, there might be other approaches to momentum reset which produces
superior results. The momentum reset scheme presented in this thesis is hopefully

regarded as solid preliminary work for such methods.

The confusion score demonstrated powerful performance in these experiments,
and being fairly lightweight, it might prove useful for training discriminators in
the future. Of course, obtaining a measurement that in a general way provides the
optimal solution to adversarial discriminative training might prove troublesome,
if not impossible, and the confusion is not intended to solve that problem.
However, it might be a step in the right direction in regards to approaching
training termination, and demonstrates that perhaps the loss isn’t necessarily

what should be the main focus when obtaining the stopping criterion.

This thesis set out to perform segmentation, unsupervised adversarial discrimi-
native domain adaptation, as well as set the groundwork fro improving upon
the state-of-the-art techniques for doing adversarial discriminative training. The
segmentation, to the author’s best knowledge, achieved state-of-the-art results.
The ADDA architecture had a strong tendency to improve the performance on

the classification after unsupervised training.

Furthermore, the confusion score demonstrated a trend of being more reliable
as a stopping criterion for discriminative training, than modern state-of-the-art

techniques.

The momentum reset scheme clearly demonstrates and address an important
flaw in state-of-the-art techniques for doing adversarial discriminative training.
Additionally it tended to consistently provide good results on the medical image
modalities, but performed inferior to state of the art methods on the simpler
dataset, arguably due to the model relying heavily on momentum on these

architectures.

This concludes this master’s thesis.
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/ Appendices

Appendix A. Source code

For the sake of transparency, and reproducibility, the code is uploaded to github:
() Strauman/Masters-thesis .

The final codebase accompanying this thesis contains over 15 000 lines of code.
With a lot of moving parts when comparing three times three modalities, two
schemes and three different stopping criteria, it might prove challenging to
navigate. The author is happy to provide answers to any questions or other

inquiries in regards to the code or any other parts of this work.

[lhttps://github.com/Strauman/Masters-thesis
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Appendix B / Segmentation plots

Appendix B.

Segmentation plots

R -

(a) Segmentation examples of T2 image.

(b) Segmentation examples of PT image.

ik

(c) Segmentation examples of CT image.

Figure B-1: The orange contour is the ground truth and red is the prediction. The right hand columns
show the soft assignments (probabilities) where the lighter an area is, the more probable
that it contains a tumor.
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Appendix C. Box plot from Guo et al. [2]
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Figure C-1: The original boxplot that |Figure Appendiz (] is based upon. The yellow arrows are a
part of the original figure. Original boz plot (Fig. 6.) from Deep Learning-Based Image
Segmentation on Multimodal Medical Imaging by Guo et al. [9]. The red bozes in the right
half of the figure (with title PET, CT and T2) are DICE segmentation result.
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