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1 Introduction

Market failures in resource industries can often be classified as "problems of the com-
mons”, which means that a scarce natural resource is not imputed a rent. Analysis
of open access and optimal management of common property resources already has a
major place in advanced textbooks in resource econonﬁcs [1], {2] and (3]. Renewable
marine resources such as fish, seals and whales are, in addition to their common prop-
erty nature, difficult to assess and their population dynamics are poorly known. Future
management of renewable natural resources will probably place greater emphasis on spe-
cies interactions. This incréases the need for theoretical and applied interdisciplinary
work. Theoretical exi)loratioﬂ of the relationship between concepts and objectives in
biology and economics and implications of these for management will prove valuable for
interdisciplinary empirical resource management.

The theory of optimal management of renewable resources is fairly well developed
within the single species context; see e.g. Munro and Scott [4] for a review of the fisheries
economics literature. The policy implications of this analysis depends, to some degree,
on the optimization criteria used. In single species models biological criteria such as
maximum sustainable yield (MSY) and maximum yield per recruit, in general give solu-
tions embodied in the solutions based on economic criteria, such as maximum sustainable
economic yield (MEY) and maximum present value of rent (MPV) [1].

The problem of managing two or more interacting species is far more complex. Several

authors have extended single species analysis to include multispecies interactions and



harvesting, for example:

a) Theoretical analysis of management of competing species and predator-prey sys-
tems, e.g. Clark [1] ch. 9, Hannesson (5|, May et al. [6], Silvert and Smith (7],
Flaaten [13] and Getz [8]. The latter is especially concerned about the optimal

path towards the long run steady state harvesting regime.

b) Analysis of harvesting interactions, e.g. Clark [1] ch. 9, Clark [2] ch. 5, Lipton
and Strand [9] and European Communities [10]. The latter is especially concerned

about particular fisheries and of assessment methods.

c¢) Applied studies on interacting species, e.g. Conrad and Adu-Asamoah [11] on com-
peting species of tuna and Flaaten [12] on plankton feeders—fish-sea mammals

interactions.

This article analyses steady state solutions in groups a) and c). Biological and
economic optimization criteria are set in a common two species framework to analyse
similarities and differences of their solutions. The implications of these solutions for
management are compared both between them and with solutions from single species
analysis.

The Gause-model [14] of two competing species is reviewed in section 2. Section 3
demonstra.te; how to derive the maximum sustainable yield frontier (MSF) and the locus
of MSF-stocks. Section 4 shows that maximizing economic yield (rent) with positive

harvesting costs and zero discount rate implies optimal stock levels above the locus of
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MSF-stocks. Isorent lines prove to be ellipses in the state plane in this model. Section
5 shows that maximizing the present value of economic rent under costless harvesting
with a positive discount rate implies optimal stock levels below the locus of MSF-stocks.
With positive costs optimal harvesting might imply harvesting one of the species at a
loss. Hence, open access harvesting of a system of competing species, using single pro-
duct technology, may imply economic underexploitation of a common property resource.
Section 5 also shows how the optimal stock levels are altered by changes in the exog-

enous social rate of discount, harvest prices and harvesting costs. Section 6 concludes

the article.
2 Biological Competition

Most two species models analysed in the literature can be shown to have either a stable
point or a stable limit cycle [15], p. 81. This is also the case for the Gause-model used
in this paper.

Let W; and W, denote the stocks of two competing species. The model is specified

as
W1 =dW1/dt=1‘1W1(1 ——Wl/Ll)—alWle (1)
Wz = sz/dt = Tsz(l - Wz/LQ) — a; W W,, (2)

where 7, and r; are the intrinsic growth rates of the respective species.’ L, and L, are the
single species carrying capacities at which species one and two, respectively, will settle
in the absence of the other species and harvest. In case of no competition, the per capita

growth rate of species i, W;/W;, decreases from r; for stock levels close to zero, to zero for
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stock levels equal to its own carrying capacity. The presence of a competitor reduces the
per capita growth rate in proportion to the biomass of the competitor. The competitor
coefficients, a; and a,, tell how much the per capita growth rate of species one and twd,
respectivgly, are reduced per unit of the other species.

To simplify the model rewrite the variables W; and W, into a dime‘nsionless form.

Defining X; = W,/L; and X; = WQ /L2 equations (1) and (2) can be rewritten as
X, =dXy/dt = Gi(X1, Xa) = Xa(l - Xy — oy Xa) (3)

X; = dX;/dt = G3(X1,X3) = 12 X3(1 — X3 — a3 Xy), (4)

where a; = a;L3/r, and a3 = a;L,/r; are the dimensionless competitor pa.rame;ters
(a1, a2 > 0). These parameters tell, in a dimensionless form, how severe the competition
from the other species is upon species one and two, respectively.

Harvesting is introduced in a simple way in the model by assuming that the resource
stocks are harvested independently of each other, with constant effort per unit of time,
F; (i = 1,2). The effort is scaled such that F; =1 corresponds to constant catchability

coeflicients equal to r;. The normalized catch rates will be
= rn R X, (5)

Y2 = 1 3 X,. (6)

The growth rates in equations (3) and (4) now will be changed to

Xl = 1"le1(1 -_ Xl - ale - Fl) (7)
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Figure 1: The phase diagram of the model of competing species.
X.g = Tng(l - Xz - C!zXl - Fz) . (8)
The equilibrium properties of this ecological system depend only on the harvest efforts,
F, and Fj, and the competition parameters, a; and a;. The intrinsic growth rates, r,

and r,, affect the dynamics of the system outside equilibrium. The isoclines are found

~ from equations (7) and (8) by setting X, =0 and X, = 0. This gives
Xa=(1/ay)1-X1 - F) for X,=0 (9)

X,=(1-aX;—F) for X,=0. (10)

The phase diagram for the system with a stable node, C, is shown in Figure 1. The

isoclines for the pristine system without harvesting (F; = 0; i = 1,2) are shown as solid
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lines whereas the isoclines for the harvesting case are the dotted lines.? The pre-harvesting
levels of the stocks are denoted X whereas the post-harvesting levels are denoted XF.
Even if there is a competitive coexistence equilibrium in the pristine system, harvesting
may extinct one of the species.

If positive, stable equilibrium levels of X, and X,, denoted XIF and X7, exist si-
multaneously, they are found where the isoclines intersect. From equations (9) and (10)

follow

_ l-oy -k +aFy

F
Xl - l—alaz (11)
1 —a; — F3 + agF;
F _ 2 2 241
Xp = (12)

To have an interior, stable equilibrium with both stocks positive without harvesting, it
is necessary to have

a; <1 and a3<l1. - (13)

The species which has the lowest competitor parameter, a;, will have the highest stock
level, X?, at the pristine equilibrium, i.e. the equilibrium without harvesting. To have
an equilibrium with both stocks being positive when just species i is harvested, it is

necessary that the effort rates do not exceed the following levels
FF<l—o; and F;=0, (i=1lor2, i#j). (14)

Equations (11) and (12) show that the equilibrium level of each stock is negatively
affected by the own effort ré.te, and positively affected by the effort rate of the com-

petitor. This means i.a. that it is possible to increase each of the stocks above its
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pristine level by harvesting only the competitor. The sustainable yield area in Figure 1
is the quadrangle ABCD. Combinations of stock levels outside this quadrangle are not
possible to maintain.? The sustainable yield area is of great importahce as a biological
restriction on the economic utilization of the competing species. This may be compared
with the biomass axis in the yield-biomass diagram of sihgle species models. To obtain a
positive sustainable yield in a single species model it is necessary that the stock remains
between its minimum viable level and the carrying capacity of the system. This com-
pares to a bounded area in the biomass plane of two species models, e.g. the quadrangle
ABCD in Figure 1. Within the boundaries mentioned above each stock level in a single
species model may produce a given sustainable yield. Likewise, in a two species model
a given combination of the two stock levels within the sustainable yield area, produce
a combination of susfaina.ble yields of the two species. The concept of maximum sus-
tainable yield (MSY), and the corresponding stock level, in single species models are
of great biological importance, as well as of economic importance as a reference point
for optimal management of the stock. The corresponding concept to MSY for the two

species model of competition will be introduced in the next section.
3 The Maximum Sustainable Yield Frontier (MSF)

The importance of the MSY concept in biological and bioeconomic single species analysis
is well known. The concept of maximum sustainable yield frontier (MSF) will be shown
to be of the same importance for the two species analysis as MSY is in the single species

framework. The MSF is derived* by maximizing the sustainable yield of one species for
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a constant sustainable yield of the other. This problem is equivalent to that of welfare
economics: deriving the production possibility frontier by maximizing the output of one
good for a specified amount of output of the other, given a fixed amount of factors of
production. In a two species model of competition fhe Hﬁited amount of factors of
production are embodied in the carrying capacities and the intrinsic growth rates. In
the real world the limited factor of production can be e.g. the zooplankton communities
of the sea in the case of competing fish species, and the grass of the plain ip the case of
grazing animals.
From equations (5)—(8) the following equilibrium hawést rates are derived, i.e. when
X, =X,=0,
1 =rXi(l- X1 — a1 Xa) (15)

y2 = 2 X5(1 ~ X3 — axXy). (16)

The problem of maximizing y; subject to the constraint y, = constant, can be done using

the Lagrange method. First we introduce the Lagrangian cxpression
L= ‘I‘ng(]. - ng - a:Xl) - M("le(l - Xl - C!1X3) - yl) . (17)

From the necessary conditions for optimality the following quadratic equation, which

implicitly gives X; as a function of X, is derived:
20 X7 +4X, X, + 2y X2 - (2 4+ a3) Xh — (2+ ) X2 +1 =0, (18)

when X; > 0. For X; = 0 it follows immediately from maximization of y; in equation
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Figure 2: The maximum sustainable yield frontier (MSF) for two competing species, for
parameters given in the text.

(16) that

X;==, when X, =0. ‘ (19)

N =

Correspondingly it is easy to see that
1
X, = 3 when X; =0. (20)

For each level of X; we cémpute X; from (18) and the resulting yields, y; and y,, are
given by (15) and (16). The locus combining the yields of the two species is shown in
Figure 2 for parameters o; = 2/3, a3 = 1/2, 7, = 1, r; = 3/4. In this example species
one has the greatest reproductive potential, biologically speaking, as seen from the MSF

in Figure 2.
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The curve depicted by X, = XM5F(X,), implicitly given by equations (18)-(20) we
| shall call the XM5F _locus. The MSF will be affected by changes in 7, and r,, énd so will
the XM5F_Jocus be, as seen from equation (18) recalling that a; = a;L;/r; (3,7 = 1,2;
i #35)

Equation (18) is an equation of a conic section of the form

In this case 4AC < (2B)?, since ajo3 < 1 and B = 2, and the XM5F.locus given by
equation (18) is a hyperbola. Only the branch giving 0 < XM#5F < 1 (i = 1,2) make
sense, biologically speaking. The other branch is therefore excluded from the analysis.

In the X; — Xz-plane the curve of X; = XM5F(X,) implicitly given by (18) will always
be downward sloping since

ng _ 4(12X1 +4X3 —(2+az)

=~ _ YMSF :
dX: 4o Xz +4X: — (2+ 1) <0 along X;=X;"°"(X;) (22)

for X],Xz € [0,05] .

Since limymsr_,;/ XMSF = (0 we have

dXz)MSF _ Qg — 2

x,h_r.?/z (Xm <0, (23)

ay

and, since limymse_, XMSF _1/2

dX MSF
lim( ’) =—22_<0. (24)

Xi—0 del aQy — 2

Equations (22)-(24) show that the slope of the X™5F-locus will depend on the parameters

a; and ay, i.e. on the slopes of the isoclines.?
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From a biological point of view one could say that the X™5Y_stock level in single
species models is the optimal one. The corresponding biologi(;,a.l optimal harvesting in a
two species model would be one of the inumerable combinations of stocks generating the
MSF. Which poiht on the MSF, and the XM5F_curve, is "best” is not possible to decide
just from a biological reasoning. The inclusion of economics is ne:cessa.ry to make such
a decision. This is the subject of the following two secfions, and it will be shown that

MSF-harvesting is the economic optimum only in special cases.
4 Maximum Sustainable Economic Yield

As demonstrated in the preceding section the competing species may be harvested on a
sustainable yield basis for both of the species at inumerable combinations of the two stock
levels. To see at which stock levels the system will settle under commercial harvesting,
~ we shall study the two extreme harvesting regimes of open access harvesting and a profit
maximizing sole owner. We shall mostly be concerned with solutions in the interior of
the sustainable yield quadrangle.® The dynamic behaviour of the biological and economic
system will not be considered, we shall rather concentrate on analysing equilibrium points
by means of comparative statics.

Given the Schaefer harvest function of equations (5) and (6), and assuming constant

costs, c;, pver unit of rescaled effort, E; = r;F;, the unit harvesting cost becomes
C,'(Xg) = C.'/X.' (l = 1,2) . (25)

Assuming the demand for each of the two species is independent of each other and
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infinitely elastic with respect to its own price, p; and p, are the constant prices of species.

one and two, respectively. Under these assumptions the net profit per unit of harvest is
(X)) =p-a/X; (i=1,2), (26)

and the total profit from the harvest of each of the two species is
(X)) =(p— /Xy (i=1,2). » (27)

Bioeconomic equilibrium requiers we simultaneously have’

W;(JY,') =0 and X,' =0 (‘l - 1, 2) . (28)

Denoting the open access stock level of the two species as X{° and X3°, it is seen from

(27) that unless y; = 0 the open access stock levels are
X =ca/pc (F=12). (29)

Equation (30) also implies the standard tragedy of the commons result that price equal
average costs (Cornes and Sandler [17]; Dasgupta and Heal [3]). Given our assumptions
the open access stock levels solely depend on economic parameters.® However, the bio-
logical parameters will affect the harvest rates as seen by substituting from equations
(5)—(6) and (28)-(29) into the growth equations (7) and (8).

In Figure 3 the open access equilibrium point, X*, is (arbitrarily) outside the X™5F.
curve, for parameters ¢; = 1, ¢ = 1, py = 4, p2 = 2, which imply X{°* = 1/4 and
X$° = 1/2. Note that decreasing the stock levels somewhat, to move the equilibrium
point in the SW-direction from X* to the X¥5F | would increase bioldgica.l yield from

both species.
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Figure 3: The areas of sustainable yield and positive profit, for parameters given in the
text.

The total profit from harvesting the two species can be derived from equation (27):
(X1, X2) = (1 — a1/ X1)y1 + (P2 — 2/ Xa)ys - (30)

Equation (30) gives the standard industry profit function consisting of a profit per unit
_expression and a steady state harvest quantity for each of the two species. Substituting
for y; from (15) and (16), inserting X° from (29) and normalizing profit by dividing by
p171 in (30) gives

W(Xl,Xz) = (Xl et Xloo)(]. - Xl - 01X2) (31)

+ ﬂ(Xz - X;o)(l et Xz - agXl) y

where 8 = py72/pi71 is the bioprice ratio, and 7(X1, X3) = n*(Xy1, X3)/p171.
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Interpreting equation (31) it should be noticed that it consists of two terms, one
for each of the two species, and each term is a product of two parts. The first part,
(Xi: — X°), takes care of the stock effect,’ i.e. the effect the size of the stock has on the
net profit due to decreasing costs as the stock rises. The stock level must be above the
open access level, X°, to yield a positive proﬁt. The second part is the expression from
which the isocline is derived. Since the isoclines are the borders of sustainable yield of
the respective species, the product of the two parts can be interpreted the following way.
On the one hand it pays to stay below the isoclines because that enhances biological
yield, however, on the other hand it pays to have stocks above the open access levels
because that reducés harvesting costs thereby increasing the unit harvesting profit. All
in all there xhust be a tradeoff between these two effects to maximize the total profit
expressed by equation (31).

Before proceeding to the problem of finding the optimal combination of the two stocks,
we shall have a closer look at which combinations of stocks in Figure 3 give positive total
profit. The zero profit line obviously passes through the X*-point, and there must
also be zero profit at point C where the isoclines intersect, i.e. where the growth rates
simultaneously equal zero. At point E in Figure 3 the term (X; — X7°) equal zero and
the yield from species two is zero because (1 — X; — a3X;) equal zero. Both terms in
~ equation (31) are therefore equal to zero, and so is of course the total profit. For the
same reasons this also happens at point F. To see what the zero profit line looks like
outside the four points X*°, F', C and E, we start with the more general case of what

the isoprofit lines in general look like.
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Figure 4: Isoprofit ellipses and the sustainable yield regioh.

Rewriting the net profit function in equation (31) gives

1I'(X1,X3) = _X12 - ﬂXzz - (al + ﬁag)X1X2 + (1 + Xfo +,3a2X§°)X1 (32)

+ (B4 68X + an X°) X2 — (X° + BX5).

For a given profit level, 7, this is an equation of a conic section, cfr. equation (21).
When 4AC —(2B)* > 0 and B # 0 this is the equation of an ellipse with axes not parallel
to the abscissa and the ordinate axes.!® The isoprofit lines are therefore ellipses in the
X; — X;3-plane. Some isoprofit lines, with the zero profit line as the outermost, are srhown
in Figure 4, for biological parameters used in Figure 2 and economic parameters used

in Figure 3. Combinations of stocks within the zero profit ellipse, inside the sustainable
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yield quadrangle, give sustainable positive total profit. The size of the zero profit ellipse
depends on the paramet;rs of equation (32), i.e. on economic as well as on biological
parameters. An increase in the open access stock levels, i.e. a change in point X*
towards point C in Figure 4, contracts the area of profitable harvgsting. Such a change
eventually results in a zero profit ellipse that does not intersect the abscissa (and/or the
ordinate axis). Reduction of the intrinsic growth rates also reduces the area of profitable
joint harvesting of the two species.

In the single species model stock levels between the open access level, X*°, and the
carrying capacity are capable of giving positive sustainable profit. The lower bound,
X, is solely determined by economic and harvest-technological factors, whereas the
carrying capacity is a pure biological constraint. In this model of competingb épecies the
upper bound of the profit yielding stock levels is a pure biological constraint given by the
isoclines intersection point, C, in Figure 4. Also for the lower bound is there a similarity
between this two species model and the single species model, the open access stock levels
are solely determined by economic and technological factors. The points E and F on
the zero profit ellipse correspond to a mixture of economic, technological and bioldgical
factors. Howéver, it should be noted that these points are uniquely determined by the
open access stock level, X*°, and the pristine stock levels.

Assuming there is an interior solution, the necessary conditions for the maximization

of the profit in equation (31) gives the following MEY-stocks:!!

xmev _ 2801+ X’;) :;/2(ﬂ +X*) (33)
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XMEY _ 2(8 +X:;:1£1 +X*) , . (34)

where v = a; + a8, X®° = X&® + aaB8XP, X® = 0, X + XS, recalling that 8 =

parz/pit1. XMEY is the center of the isoprofit ellipses and the optimal long run stock
levels in case of zero discount rate, and is shown in Figure 4.

Harvesting at stock levels either below X{° or below X;° can make sense in the case
that one of the two species has a low economic value, expressed by p;/c;, and the other
has a high value. The low valued species, species two in Figure 4, therefore should be
harvested at a loss. To implement such a solution it is necessary to subsidize the harvest
of species two to reduce this stock below its open access level. This amount of subsidy is
more than offset by increased sustainable economic yield of species one. Hence, the total
profit from joint harvesting of the two species increases.

From the analysis of single species biomass models is knowﬁ that XMEY 5 YMSY jp
case of stock dependent harvest costs. In the special case of costless harvesting, or no

stock dependent costs, the MEY and the MSY stock levels coincides: XMEY = XMSY

In this two species context we shall show:

Theorem 1. In case of two competing species and costless harvesting the
combinations of stocks giving the maximum economic yield (MEY) coincides
with the combinations maximizing the yield of one species for a given yield

of the other (MSF).

The result stated in Theorem 1 is being proved over all possible bioprice ratios, 3.

The XMEY is a single point for a given set of bioprices.
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In the case of costless harvesting, ¢; = X{° = 0 (¢ = 1,2), § may be eliminated
from the necessary conditions for an interior solution of the maximization of sustainable

economic yield in equation (31), to give
2a3X12 + 4X1X2 + 2a1X; - (2 + C!z)Xl - (2 + al)Xz + 1=0. (35)

Equation (35) gives X, = XMFY(X,) and is exactly the same as equation (18) which
gave X, = XM5F(X,). We have thereby shown Theorem 1.

Having studied the case of costless harvesting, now proceed to the case of positive
harvesting costs for both species, i.e. ¢; > 0 (i = 1,2), to show, for all possible bioprice

ratios,

Theorem 2. In case of two competing species that are harvested independ-
ently of each other at positive harvesting costs, the MEY combinations of

stocks are greater than the MSF combinations.

To show this start by eliminating @ from the necessary conditions for the maximization

of sustainable economic yield in equation (31), to arrive at

2a;X1’ + 4X1Xz + 2a1X,’ b (2 -+ Qg + agX{” + (2 - a)X,°°)X1 (36)

— (@t + (2 @)X+ X)X + (14 X2+ XP) =0,

where a = ajaz. This is an equation of a conic section. The constants of the two
quadratic terms and that of the product term in equation (35) are the same as in the

MSF-case given in equation (18), while the three others are different. This means that
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also the MEY combinations of the two stocks are described by a hyperbola in the case
of positive harvesting costs. Since the constants of the quadratic terms and the product
term are equal in the MEY and the MSF cases, the asymptotes of the hyperbolas have

the same slope in these two cases. Therefore, the MEY- and the MSF-hyperbolas can

not intersect. In case of the MSF we have shown in equation (20) that!?

XM5F =1/2  when X}MF =0. (37)

To find the intersection point between the MEY-hyperbola and the abscissa, return

to the profit equation (31). When X; = 0 the MEY stock of species one is found from
dr/dX,=1-2X; -X =0, (38)
which Vgives, by use of (37),
XMBY — XMSF | X>/2 when XMEY -y, | (39)
In other words, if species two is extinct the maximum economic yield of species one is

obtained for a larger stock level than the one giving maximum sustainable yield. Since

the MEY- and the MSF-hyperbolas can not intersect this implies

XMSF <« XMEY | when >0 (i=1,2), (40)

and theorem 2 is proved.
Having focused on maximum sustainable economic yield in this section, we now pro-

ceed with the objective of maximizing present value of rent from the two competing

species.
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5 Maximum Present Value of Rent

Given joint management of the two competing species and assuming the objective of the
management program is to maximize the present value of the rent from the resources,

the objective functional is
PV = / e n( Xy, X,)dt, (41)
0

where (X}, X 2) is defined in (30) and § is the social rate of discount. The social managers
problem is to choose the harvest rates, the y’s, so as to maximize the present value, given
the biological constraints imposed by the growth equations (7) and (8). Assuming the
solution is an interior one, there are two joint equilibrium equations that must be satisfied

at the optimum (see [1], ch. 9.3). They can be written as
bl(Xl)Gu + bg(Xz)Gn - C’I(X1)Gl(X1,X2) = 651(X1) (42)

b1(X1)Gha + b2(X3)Gag — c3(X2)Ga(X1, X3) = 6bi(X3), (43)

where b;(X;) are defined in (26), c}(X;) = da(X;)/dX; and G;; = 8G;(X,,X,)/0X;
(3,7 = 1,2). The growth functions, G;(X,,X3) (i = 1,2) are defined in equations (3)
and (4). At the optimum the net profit from investing in the resource capital of species
one, i.e. the Lh.s. of equation (42), should equal the net profit from pbssibly investing
the current profit at the social opportunity cost of capital, §.

Dividing equation (42) by the social rate of discount gives, on the l.h:s., the change
in the present value of the infinite horizon sustainable economic yield per unit of change

in the stock level. Expressed this way the L.h.s. is often referred to as the user cost of
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the resource. This should equal the current profit from harvesting of one unit of the
stock given on the r.h.s. Compared to the single species model the additional term on
the Lh.s. of equation (42), b2(X;)G21, reflects the addition to the marginal value product
of species one afforded by means of species two. The interpretation of equation (43) is
similar.

In single species models the optimal resource stock is above the open access stock
level, whereas that need not be the case for the predator in predator—prey models (see
[5] and [13]). To see that the latter result also applies to any one species in a model of
competing species we rewrite equations (42)—(43) and, after having taken the dériva.tives,

arrive at

(1= X - @0 Xs) = (X~ XP) - asf(Ka = XT) = (i = X7) (49

Bl — X3 — o Xy) — B(Xz - X7°) — (X, — X7°) = }%(Xz —-Xz),  (45)

where it is substituted for X = ¢;/p; and 8 = pyra/pir1. The long run optimal equi-
librium stocks implicitly given by equations (44) and (45) shall be denoted XMPV and
XMPV, The first term on the Lh.s. of equation (44) will always be positive within the
sustainable yield area. Assuming the optimal stock level of species two is above its open
access level implies the last term on the Lh.s. of (44) is negative, included the minus
sign. Now it is possible that XMPY < X which implies that the harvest of species one
should be subsidized at the optimum. This result is more likely if a;, p, and/or rl—are
low, or ¢; high, compared to the corresponding parameters of species two. The loss from

the harvest of species one is more than offset by the increased profit from the harvest of



species two which is more bioeconomic valuable. This reasoning of course also holds for
the opposite case with species two being harvested at a loss.

From single species models is well known that in the extreme case of costless harvesting
the optimal stock level will always be below the MSY level when the discéunt raté is posi-

tive. This result from the single species models shall be used to prove

Theorem 3. For costless harvesting and a positive discount rate the com-
bination of stocks giving the maximum present value (MPV) of harvesting

will be inside the locus of MSF stocks.

To prove Theorem 3 insert ¢; = X = 0 (z = 1,2) into equations (44) and (45) and

eliminate 3. This gives the following equation

2&1X12 + 4X11Y2 + 2(11X; - (2 + a: - 0261 - 262)X1 (46)

- (2+a1—a163—261)X,+1+5152—61—63=0,

where §; = §/r; (i = 1,2) are the bioeconomic growth ratios. This is an equation of the
quadratic form and compared with the equation of MSF stocks in (18), it is noticed that
the constants of the two quadratic terms and that of the product term are equal, while
the three others are different. Hence, the X™FV.locus is a branch of a hyperbola with
asymptotes parallel to the asymptotes of the XM5F hyperbola. Therefore, they do not
intersect. |

To find the terminal point of the XMfV.locus at the abscissa, insert X, = 0 into the
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PV function in equation (41) to arrive at
pv=/°°e—“ X(1-X)dt, X;=0, XP=0 (i=1,2). (47
(1]

The problem of maximizing PV is now reduced to that of a single species problem (known

from Clark [1], ch. 2), and the solution is
XMPV —(1-6))/2, X,=0, XP=0 (i=1,2). (48)

Since the terminal point of the XMV locus at the abscissa is inside the corresponding
point at the XM5F Jocus, the conclusion is that the entire X MPV locus is inside the
XMSF _Jocus in the case of costless harvesting. Thereby Theorem 3 is proved.

From Theorems 2 and 3 and from equations (44)—(45) it now follows that in the gen-
eral case of stock dependent costs and a positive social rate of discount the X#*Y _locus
is between two borders. The inner border is determined by the stock levels, XM5V
maximizing the present value of the resource rent for the zero cost case and a given
(maximum) social rate of discount. The outer border is determined by the stock lev-
els, XMEY maximizing the sustainable economic yield in the case of (maximum) stock
dependent costs. For a given bioprice ratio, 3, of the two species the long run optimal
equilibrium stock levels are uniquely determined by a point in the X; — X;-plane at or
between these two borders, depending on the size of the harvest costs and the social rate
of discount.

In single species biomass models with positive harvest costs and a positive social rate

of discount, the optimal stock, X™*V approaches the MEY stock level when § — 0, and

234



approaches the open access stock level, X*°, when § — oo (see [1], ch. 2). For this two

species model of competing species we can now show

Theorem 4. In a model of two competing species the long run optimal
equilibrium stock level for any one species may be below the open access
stock level. When that is the case the optimal stock level of this particular

species increases with an increase in the social rate of discount.

In this model equations (44)—(45) approaches the necessary conditions for the maximi-
zation of sustainable rent in equation (31) when § — 0. This is to say that XMFV ap-
proaches XMFY when the social rate of discount approaches zero. It also follows from
equations (44)—(45), after having divided by §, that the r.h.s. must approach zero when
§ — oo, i.e. the XMPV approaches the open access stock levels, X°. Thereby it is

demonstrated that like in the single species model we have

}i_'r%X,.MP" = XMEY (i=1,2) (49)
and
Jim XMPV = X (i=1,2). (50)
This also implies
angv >0 if XPV< X°° (i=1 or 2), (51)

and Theorem 4 is proved. The results in Theorem 4 is not possible to have in single

species models, but it may happen for the predator in predator-prey models [13].
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The long run optimal equilibrium stock levels are functions of biological and economic
parameters. It is of interest to analyse how these stock levels are changed by marginal

changes in the harvest prices and effort costs. Let us first prove

Theorem 5. For two competing species the effect of an own price increase
on the long run optimal resource stock is negative, whereas an increase in
the price of the other species increases the optimal stock level of the former

species.

Start with the equilibrium equations (42) and (43) which may be written as

19n()

P ox. =k =12, (52)

With harvest price, p;, and effort cost, c;, as exogeneous variables, differentiating equation

(26) gives
_ 96:() . 96() . 9b()
bip = B, >0, bic = Be; <0 and bie = 3z, >0, (53)

which shall be used in the analysis. Differentiating equation (52) w.r.t. p;, rearranging
somewhat and by using Cramer’s rule we find

OXMPV  8biy (&35 — 8baa)

opy, |D| (>4
AXMPV _ 6b1P8X38X1 ’ (55)
Op; | D
where
D | % o afan

- _8x 8x _ §b
BX16X, x’ 22

236



The second order conditions for the existence of an interior solution to the maximization

problem in equation (41) are

i’_’f, __82_"'(. n

8xX 8X,8.

Bwl Bl’w >0 and <0 ’ (56)
—Cr aXz

BX,6X,  8XJ i

and from this follows that 8°wr/8X? < 0. The second order conditions imply |D| > 0

because of (53). Taking the second-order derivatives of the profit function (31) w.r.t. X;

we get
&

Sa = e (i=12) (57)

and
r

R 75 P S L (58)

The results in (57)~(58) imply that the second order conditions are met, and |D| > 0.
From (54) and (55) now follows that

XM PV MPV
90X, <0 and X3
Op Op1

>0. (59)

Since the relationship between the two species in this model is symmetric it is obvious that

differentiating w.r.t. p; in equation (52) give similar results as in (59), hence, Theorem

5 is proved.

Using the same method as to prove Theorem 5 it is straightforward to prove

Theorem 6. For two competing species the effect of an own effort cost
increase on the long run optimal resource stock is positive, whereas an increase
in the effort cost of the other species reduces the optimal stock level of the

former species.
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From Theorems 5 and 6 we learn that a price increase (cost decrease) for one of the
two species initially augments the value of the resource capital of this particular species
proportionally to the price increase (cost decrease). However, it p#ys to transform some
of the increased wealth into capital in general, rewarding the society with the interest
expressed by the discount rate, and some into the resource capital of the competing
species. The reward to the society from the latter investment is increased revenues and

reduced harvesting costs for this competing species.
6 Conclusion

The concept of sustainable development has been widely recognized by the release of
the report of the United Nations’ World Commission on Environment and Development
(18]. However, the interpretation of this concept is not always clear. For renewable
resources such as foresfs, wildlife and fish it seems evident that within a multispecies
framework sustainable development must take place for combinations of stocks within
the sﬁstaina.ble yield area. Harvesting at the maximum sustainable yield frontier (MSF)
may at a first glance seem evident from a biological point of view. Howevér, from an
economic point of view MSF-harvesting is optimal only in special cases, such as when
there is no discounting and harvest costs are zero.

Identifying the limits of sustainable yields in ecosystems is mainly an ecological taék,
whereas the utilization of such a system for sustainable economic development in addition
involves aspects of economics, technology and social organization. Hence, successful

sustainable economic exploitation of a complicated ecosystem is a complex pl;oblem which
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requires a multi-disciplinary approach.

Acknowledgement

The author would like to thank Arne Eide, two anonymous referees and an associate
editor of this journal for their comments on an earlier draft of this paper. Financial

support from the Norwegian Fisheries Research Council is acknowledged.

239



Notes

1The dynamics of the model was analysed in Clark [1], ch. 6.6. We assume that there

is a competitive coexistence equilibrium solution of the model.

2The effect of one species on another is similar to the interaction of Cournot oligo-
polists. The isoclines in this model of competing species are identical to the reaction

functions of the Cournot model with linear demand and costs.

3Essentially all deterministic two species models will have a bounded sustainable yield
area, but not necessarily a quadrangle. The predator-prey model used in Flaaten [13]

has a triangle as the sustainable yield area.

“The notion of MSF was used by Flaaten [12]. The method, however, was first

described and used by Beddington and May [16].

5Since the XMSF jg a hyperbola and it is downward sloping at both of the terminal

points of the first quadrant, it is concave to the origin in the sustainable yield area.

8Solutions at the boundaries of the sustainable yield quadrangle, with only one species
being harvested, may often be the case in the real world. Flaaten [13] analysed such cases,

however, it will not be done in this article.

It is not immediately obvious what "open access” in general means in the context of

multispecies harvesting. However, recalling the assumption of technically independent
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harvesting of the two competing species, open access bioeconomic equlibrium in this case

means that profit on each species must be zero.

8In general technological parameters also affect the open access stock levels. However,
in this case with the Schaefer production function and rescaled fishing effort such that
the catchability coefficient equal unity, the open access stock levels in equation (29) are

seemingly independent of the harvest technology.

®The stock effect is usually interpreted as the effect a marginal increase in the stock

level of one species has on its own harvesting costs.

%The angle, v, between the axes of the ellipse and the coordinate system can be
found from tan2v = 2B /(A — C), according to standard geometry. In the case of the

profit ellipse of equation (32) v is found from tan2v = (a; + Ba3)/(1 - B).

Graphically the MEY-stocks are found at the intersection of X; = (1+X*° —~X,)/2

and X, = (8 + X — vX,)/2 derived from equations (33) and (34).

12Golutions outside the sustainable yield area are not of biological or economic interest.

Therefore, only the negative root is of interest in this case.
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