MultiStage: Acting Across Distance

Fei Su, Giacomo Tartari, John Markus Bjgrndalen,
Phuong Hoai Ha, Otto J. Anshus

Department of Computer Science
University of Tromsg, Norway
{fei.su,giacomo.tartari}@uit.no, {jmb,phuong,otto}@cs.uit.no

Abstract. We report on a prototype system helping actors on a stage
to interact and perform with actors on other stages as if they were on
the same stage. At each stage four 3D cameras tiled back to back for
an almost 360 degree view, continuously record actors. The system pro-
cesses the recorded data on-the-fly to discover actions by actors that it
should react to, and it streams data about actors and their actions to
remote stages where each actor is represented by a remote presence, a
visualization of the actor. When the remote presences lag behind too
much because of network and processing delays, the system applies vari-
ous techniques to hide this, including switching rapidly to a pre-recorded
video or animations of individual actors. The system amplifies actors’ ac-
tions by adding text and animations to the remote presences to better
carry the meaning of actions across distance. The system currently scales
across the Internet with good performance to three stages, and comprises
in total 15 computers, 12 cameras, and several projectors.

Keywords: Temporal Synchronization; Remote Interaction; Computer
Mediated Collaboration.

1 Introduction

We envision computer mediated collaborative performances where actors at
physically remote locations, as illustrated in Figure 1, interact and coordinate
their actions as if they are next to each other on the same stage or in the same
room. Through various means, including audio, video and animations, each actor
has a remote presence at one or several remote stages. We are interested in how
to mask the effects of delays and distance.

In this paper we describe a system doing this for the visual side of a remote
presence: MultiStage collects state, like video, about each stage through vari-
ous sensors, like cameras and microphones, and analyses the observed state to
identify information like actor gestures. State data and information is streamed
between stages to maintain a remote presence for each actor, and to monitor
and control the system.

Each stage has several incoming data streams that are used to create a pres-
ence of remote actors. Actors in a room watch and react to the remote presence
of other actors. There can also be several third parties, audiences, just observing,

Fig. 1. Four dancers at three different stages dance together. Each stage is equipped
with sensors to detect actors and a display to visualize the remote presence of all the
performers. The rope and knot represent the global system binding together the stages.

and not directly participating. Audiences can be physically present at one of the
stages, or be on the Internet. An audience local to a stage can watch the local
physical events unfolding, and watch visualizations of both the local and remote
events.

In principle, there will always be some delay from an event happens until it
can be observed. Light alone needs 134ms to travel the length of Earth’s equa-
tor. In practice, the total delay when observing a remote event includes delays
coming from the sensors, transferal of data from sensors to computers, process-
ing of the sensor input, network transmission, on-route processing, receiving and
processing the received data, and preparing and visualizing the data locally.
Even if the delays can be reduced, they can never be removed. Consequently, we
have to live with the delays, and find ways of reducing the effect they have on
the actors and the audiences. The effect of the delays can be reduced through
different techniques including on-the-fly manipulation of the remote presence
representation of actors. We must also mask the effect of distance. On a the-
ater stage the actors use several techniques including costumes, makeup, and
exaggerated movements to reach out to the audience. We propose to let a user
instruct the system through gestures to add enhancements to the remote pres-
ence. For example, a given arm movement could be turned into a text bubble

above the visualization of the user, or a glowing halo around the arm. We call
this amplified interaction.

There are many commercial tele-conferencing and messaging systems where
two or several persons interact through instant text, video and audio as well as
file transfer. The latencies can be quite tolerable. However, teleconferencing sys-
tems are best when used in unstructured interaction without interactively fast
synchronized movements of participants. Tele-conferencing systems are typically
not flexible with regards to manipulating remote presences, and how they are
arranged on, say, a display. They also lack functionalities for amplified interac-
tion.

2 Related Literature

Several research systems for collaboration exist. In [1], [2] and [3] two room in-
teraction systems are described with a focus on achieving audio synchrony. They
compensate for the network latency by delaying local actions correspondingly,
making both rooms experience the same delay. In [2] a series of experiments
based on the DIP system is described with focus on the audio delay, and how
the delay affects musician’s cooperation. An artificial delay of 50ms to the re-
mote room’s audio stream was tolerable. With the same latency added at both
rooms it became possible to play easily together with a delay of up to 65ms.
This approach used by DIP for audio can also be used by MultiStage for video.

In [4] a remote camera system for teleconferencing supporting user coopera-
tion between a local and a remote room is described. The system captures 360-
degree images as well as supports pan/tilt /zoom of cameras. The audio and video
can be recorded. Consumed network bandwidth is from 1.95 to 7.4MBytes/s.

In [5] a three-room distributed collaboration system is described, allowing
three people to collaborate in a virtual environment. At each room there is
a multi-touch table, camera, speaker, microphone, and two LCD monitors to
display the two other rooms. The shadow of remote hand and arm gestures are
captured by an infrared camera and displayed on the multi-touch table to show
the remote person’s behavior.

In [6] a remote presence system using a remote controlled android is de-
scribed. The state of the android includes idle, speaking, listening, left-looking
and right-looking. A teleoperator control android’s behavior by choosing its
state. They conclude that using an android gives a strong remote presence.

In [7] a system intended for informal meetings between rooms is described.
The system merges the images from panorama cameras acquiring the background
of a room, with a camera acquiring the users when they are close by the dis-
play. The system amplifies the remote presence of the users by allowing users to
maintain eye contact during a conversation.

In [§8] a multi-camera real-time 3D modeling system for tele-presence and
remote collaboration is described. 3D models of users are computed from 2D im-
ages from multiple cameras, and the 3D models are streamed to remote rooms

where users are visualized in a virtual 3D environment. Computing and visualiz-
ing collisions and reaction forces to virtual objects in the virtual space strengthen
the remote presence. The system is built on top of a middleware that simplifies
the use of a compute cluster to obtain 3D meshes and textures from the cameras.

In [9] a multi-modal corpus for research into human to human interaction
through a virtual environment is presented. The virtual environment is defined
as a virtual dance studio where a dance teacher can teach students choreogra-
phies. Both teacher and students are represented in the virtual studio by 3D
avatars. The corpus consists of the recordings of the 3D avatars and outputs
form other sensors, such as cameras, depth sensors, audio rigs and wearable in-
ertial measurement devices. A dance instructor and a musician provided also
some ground truth annotations for the corpus.

In [10] a study on hand gesture speed classification with the goal to improve
the human-computer interaction is presented. The aim of the study is to train a
virtual human to detect hand’s movement in a noisy environment. The factors
of the study are multiple body features like hand, wrist, elbow and shoulder,
evaluated against different gesture speed such as slow, normal and fast.

3 Temporal Causal Synchrony between Actors

Some actions by actors are causally related. One actor does an action, and some
time later another actor does an action because of the first action. A system
must preserve the order of the actions when they are causally related.

Even if causality is preserved, there is a delay between an action and the
corresponding reaction(s), and the system should ideally keep the delay low
enough to make actors experience it as if they would when on the same physical
stage. How large the delay is indicates how well actors are in temporal causal
synchrony.

We define actors to be in loose temporal causal synchrony with each other
when there are no special demands on delays. This is typically the case in un-
structured interaction where it does not matter a great deal if actions by actors
are slightly delayed or out of order with each other. This will typically be the
case in teleconferencing with approaches like Skype.

However, for structured interaction with coordinated movements, as in syn-
chronized dancing and in rapid action-reaction situations like, say, martial arts,
correct causal ordering and short delays become critical to preserve the illusion
that the actors are on the same stage. We define interactive temporal causal
synchrony to be when actions by an actor is seen in causal order and as fast as
actors are used to when being on the same stage.

Delays are unavoidable, and they can be large and even varying enough so
that interactive temporal causal synchrony can not be achieved. In these cases
we must mask the effects of the delays to create an illusion of synchrony. Some
approaches are outlined in the following.

Actor feedbacks: The actors reacts to the remote presence videos as if
they were the actual other actors. Depending on how large the delays are and

how much they vary, the interactions can become awkward. Only loose temporal
causal synchrony can be expected to be achieved.

Shared clock, shared performance start-time, individual actor scri-
pts: We synchronize the clocks of all computers, set a performance start-time
and begin a count-down at each stage. When the count-down finishes each actor
starts acting according to a script defining what the actor should do and when
the actor should do it (for instance, two actors doing handshake). Assuming that
the scripts are made correctly, even if the actors don’t actually interact it will
seem to an audience as if they do. In this approach the scripts have been made
with knowledge about the delays, and each script tell the actor when, modified
by the delay, to do an action.

Shared clock, individual performance start-time, individual or sha-
red actor scripts: We synchronize the clocks, and select a start-time for the
performance. We select one stage to be the live stage. The other stages are
secondary stages. We measure the delay from the live stage to all secondary
stages and modify the start time of each stage’s count-down according to the
delay between it and the live stage. When the count-downs finishes, all remote
presences will move at the same time and in synchrony with the actors present
at the live stage. The actors and the audience at the live stage will see the other
stages as if they are in interactive temporal synchrony with the live stage. Actors
and the audiences at the secondary stages will experience the effects of delays.

Act-by-wire: We synchronize the clocks, and start the stages at the same
time. The computers are continuously monitoring and measuring several metrics
including delays between stages. If one or several videos are arriving late because
of delays, the computers do on-demand manipulations and animations of the live
video or substitute the live video with a pre-recorded video. If there are scripts
available telling the system what each actor was meant to do, the system can
create animations mimicking the expected movements. If there are no scripts
telling the system what to do, it can try to predict the movements of an actor
based on the most recent movements, or it can blur what is going on such that
the audience not so easily notices the delays. In all cases, the goal is to create
an illusion of interactive temporal causal synchrony.

4 Amplified Actor Interaction and Gestures

On a theater stage, with a significant physical distance between actors and the
audience, bold makeup, clothes, and exaggerated movements are used to better
project to the audience what the actors are doing.

In remote interactive performances there is a distance not only to an audi-
ence, but also between the actors. Consequently, the actors need their appear-
ance, movement and gestures to be amplified such that they become easier to
see and understand both for the other users and for the audience. In this way
we extend the range of human interaction to remote locations and enrich the
communication between them. We term this amplified interaction.

-

~——

| s
<\ 3D 360" 3D 360" 3D 360"
@ Cameraw/ P Camera w/ Camera w/
K two two two
computers L computers computers
> ” "

’ -]

. V/

7
7

Fig. 2. To do experiments, MultiStage is set up with three stages and four actors in
the same room. Each stage has its own camera rig. Each stage displays all actors. The
global system binding together the stages are located either locally or on a remote
computer across the Internet. Note: the flame animation has been enhanced in the
figure for better visibility.

To be able to detect what an actor is doing, we must surround him with
an interaction space [11]. An interaction space detects human movements, and
analyzes them looking for gestures. A gesture represents a pre-defined command
to the system to execute code to do some functionality.

A gesture can be simple, like raising an arm, or complicated like doing two-
arm movements. They can also be active like walking in a specific direction or
passive as in standing still posturing. A collective (collaborative) gesture is a
combination of the above kinds of gestures. Collective gestures can happen at
the same stage, or be distributed, comprised of gestures from multiple stages.
For example, when two actors at different stages, within some short timespan,
raise their left arms above their head this can be interpreted as, say, a command
to the system to animate a lightning between the two raised arms and display it
on all the displays.

Based on the gestures we can create effects in the remote presence manifesting
itself at remote rooms. A user’s arm movement can in the remote presence be
amplified by having a text bubble appear in the video, and by adding other
visual effects to the representation of the user. The users remote presence can

Fig.3. The four 3D Kinect camera rig used at each stage for almost 360 degrees
coverage.

even be enhanced by executing a model of the user and using its output as the
basis for the remote presence.

To experiment with the system, we set up three stages, named stage 1, 2
and 3, see figure 2, in a single room. There are two actors on stage 1, and one
actor at each of the other two stages. Even if all three stages were co-located in
the same room they each occupied a different area of the room, and they each
had their own interaction space and display. Each interaction space uses four
Kinect 3D cameras, see figure 3. The cameras are arranged in a square with two
computers receiving camera output and doing processing on the images. Four
Kinects arranged in a square cover almost 360 degrees. We typically place the
camera rig in the middle of a stage, and act around it. The room where the
stages are located has a large 6m by 3m display wall. Each stage displays the
remote presences of local and remote actors onto its assigned area of the display
wall.

To simulate both the situation when all stages are on the same local network
as well as when they are connected through a wide area network, the Internet,
we locate the global side handling the distribution of data between the stages
either locally at Tromsg or at a computer in Oslo or Copenhagen.

The images picked up by the cameras are analyzed and sent as data streams
to all stages. This data represents the actors and to some degree what they are
doing. The data is used to create a remote presence of each actors. This can take

the form of a simple video, a manipulated video, or an animation of the actor
as illustrated in the figure. Each stage has a display where the remote presence
of each actors is displayed inside the same virtual stage.

On the virtual stage three of the actors have been amplified. At Stage 1 the
kneeling actor with hands on his head is interpreted by the system as showing
agitation, and the system has added an animated fire above his remote presence.
The other actor at Stage 1 does nothing the system recognizes, and a low reso-
lution video of him is displayed at all stages. The actor at Stage 2 knows that if
he keeps his hands in the pocket, has a hat on, and emulates walking, his remote
presence will be that of an animated figure of a walking man with long dark
coat and a hat. The actor at Stage 3 knows that if he has something looking
like a sword in his right hand his remote presence will be that of a knight with
a sword.

Presently, the prototype system cannot do all of the described functionality.
The actual dynamic gesture and posture recognition is not yet in place. Conse-
quently, the three amplified remote presences in Figure 2 were predetermined to
be what they are.

5 Design and Implementation of Prototype

The design of the prototype, please see Figure 4, comprises several systems in-
cluding the collaboration system, the human interaction system, the administra-
tor interaction system, and an internal state & performance monitoring system.

The MultiStage system has a local side and a global side. The local side
primarily focuses on what is happening locally on a stage. The systems imple-
menting the local side executes on computers local to a stage. These systems
include:

(i) the local detection system doing local state monitoring (LSM) recording
what the cameras see, and doing on-the-fly local analysis (LSA) of the data to
find interesting objects and events in the videos. The data is streamed to the
global side for further analysis and distribution to the other stages.

(ii) the remote presence system subscribing to data streams from the other
stages, and creating a remote presence of remote actors. Presently the primary
remote presence technique is to visualize remote actors on a very large display
per stage. In the future we may add physical devices like robots to the remote
presence.

(iii) the human interaction system inform actors on when they should start
actions, like moving arms, according to a given script. It will also in the future
enable an actor to give gesture input to control a remote physical presence, like
a robot and manipulating how the actor is displayed.

(iv) the temporal causal synchrony system applies the techniques discussed
previously in this paper to reduce the effects of delays.

The global side is the glue binding the stages together, taking care of distri-
bution of data between stages, and doing analytics needing data from multiple
stages. The global side includes these systems:

Computer

Administrator

RoomR,R=0t05 System

I Room 0
I | Display North I
R E—
o — : @ |
Collaboration g =
I Human Syslerm,l @ : |
| Interaction |« Controliable a
Monitor | N o
System Cnzee) 5
Synchronization 2 | 9
1
I es Computer
Computer Computer @ | |
I — — “@omin | B
am Nor
| Computer | | |
| | s
Monitor
| | — |
| | o Performance Push Data I
I ® Monitor Stream |
B = Hreeer]| | i |
= 3 | |
| K | | 2 I @ @
| g g |
I M Stream _2, | Stream
| | Pt || S | =i |
>
e | | I
I | | g © Cam South | I
— — = - — — DSDS |
I | Detection Side I Computer
| Computer | J
I | Global Side
L 1/
I Display South | :
Local Side
Incoming and on forwarded streams from
LSA: Local State Analysis Room
LSM: Local State Monitoring
GSA: Global State Analysis (2) GSA generated streams
GSM: Global State Monitoring
DSDS: Distribution of State Data Streams @ Streams to remote presence subscribers

Fig. 4. The Design of MultiStage showing the systems at each stage and the global
systems binding stages together.

(i) the administrator (or director) interaction system lets an administra-
tor/director manage the systems, and setting start times for performances.

(ii) the global state detection system doing global state monitoring (GSM)
collecting data from all the stages, and making it available for on-the-fly global
state analysis (GSA) to detect distributed state like collective gestures and col-
lisions when actors at different physical stages occupy the same volume on the
virtual stage.

(iii) the distribution of state data streams (DSDS) system managing sub-
scriptions from stages for data streams, and doing the actual transmitting of
data to the remote presence computers locally to the stages.

Both the local and global side executes the internal state and performance
monitoring system doing live performance measurements of several metrics in-

cluding latency and bandwidth. These are made available to the global sides
administrator interaction system. The performance measurements are also made
available to the temporal causal synchrony system.

The systems were implemented on the operating systems Linux and Mac OS
X and using several languages including C, Python and the Go programming
language [12]. The animations and 3D models are rendered using the Horde3D
graphical engine [13].

The prototype in Figure 2 can be configured to run on a variable num-
ber of computers. We typically have three to four computers per stage, two
for the global side, and one computer for the administrator interaction system.
With three stages the prototype comprises in total 12-15 computers. All com-
puters can be connected through a combination of wireless network, switched
gigabit Ethernet network and a wide area network (between Tromsg and Oslo
(1500km)).

6 Evaluation

To characterize the performance of MultiStage a set of experiments were con-
ducted. All computers used were modern Mac Minis at 2.7GHz. Each stage had
three computers: two with two cameras each, and one with a large display. The
global side had two computers: one for the global state monitoring and analysis,
and one for the distribution of state data streams. Each stage and the global
side had a network switch each. All switches were connected to a switch with
access to the Internet.

For all experiments all stages were on the same 1GHz switched Ethernet LAN
inside the Department of Computer Science at the University of Tromsg. The
DSDS, the system distributing data streams to the stages, was either on the same
LAN as the stages, or located on a Planetlab [14] computer at the University of
Oslo, 1500km away. In this case, all data sent between stages went from Tromsg
to Oslo and back again. This separates the stages across the Internet.

Using the Python Psutil module [15], we measured the CPU utilization,
amount of physical memory in use, and incoming and outgoing network traf-
fic for all computers in use. We also measured three types of latencies: (i) the
latency between the global side DSDS computer and the stages. We measured
this by recording the time when we send a message from DSDS to a stage, and
recording when a reply message comes back to DSDS; (ii) the end to end latency:
the time it takes for a physical event happening on a stage to be picked up by
the cameras and until a visualization of the actor is actually displayed on the
same stage. We used a video camera with a high frame rate to record several
videos of a user and the remote presence done on a display behind the user. We
then counted frames to see how many frames it took from the user moved to the
visualization caught up; (iii) the latency an actor can tolerate before the illusion
of being on the same stage breaks. We subjectively decided this through two
experiments. In the first we had an actor moving his arms while we observed
him and his remote presence simultaneously. In software we artificially added

a delay to the remote presence until we subjectively decided that the remote
presence lagged too much behind to be mistaken for being on the same stage.
In the second experiment an actor shaked hands with a remote actor. The delay
between the actors was artificially increased until we subjectively decided that
the handshake was not happening as fast as it would if the actors were physically
on the same stage.

Factors in the experiments were the number of stages (1 to 3), the resolution
of the images from the cameras (bounding box alone, 1000 to 5000 points per
image), the number of cameras per stage (0 to 4), and the location of the DSDS
subsystem distributing data between stages (LAN in Tromsg vs. WAN to Oslo).

The results show that the resource usage in all cases are either very low
or low. The implication is that the system is not resource limited. There is
practically no loss of data in the experiments with the DSDS on the same LAN
as the stages. When we separate the stages with a WAN by locating the DSDS
on a computer in Oslo 1500km away, we see just an insignificant increase in data
not getting across to all stages. The implication is that we can expect that the
system typically will have satisfactory bandwidth available even when the stages
are separated by the Internet.

When all stages and the global side were on the same LAN, the round-trip
latencies were between 1-2ms. When the DSDS system was on a computer in Oslo
the round-trip latencies were around 32ms. This matches well with measurements
reported by PingER [16] for Europe.

On a LAN the end to end latency was between 90-125ms. With the DSDS
at the computer in Oslo, the end to end latency was between 100-158ms. Two
times the end to end latency, 200-316ms, is the delay that actors will experience
from they do an action until they see a visualization of another actor reacting.
We term this the actor to actor latency.

We subjectively decided that movements being delayed less than 100ms main-
tains the illusion of being on the same stage. However, the objective measure-
ments show that an actor to actor latency is at typically 300ms. Consequently,
the system should apply its techniques to mask the effects of the too long delay.

In the handshake experiment, we decided that an actor to actor latency of
about 600ms was just acceptable and could be mistaken for how people shake
hands when both are present in the same room. Longer delays bordered on
creating a feeling that the remote actor was being obnoxious by delaying just a
bit too long before responding to a hand shake. This indicates that the prototype
is able to maintain the illusion of being on the same stage for hand-shake type
of interactions.

The variation in latency we measured is because of several factors, including
the distributed architecture of the prototype and the frame rate of the projector,
video camera (240 fps) and the Kinects (30 fps), and other traffic on the LANs
and WAN.

7 Conclusions

The subsystems and bindings between them makes for a complex actor collab-
oration system. While good programming practices will reduce the number of
failures, a simpler system will provide for a higher probability of avoiding fail-
ures right before and during a performance. We will simplify based on the lessons
learned from the prototype.

We believe that the built-in on-line monitoring of the state of the individual
components of the system is important to discover where problems happen,
and to help in fixing them. The on-line performance monitoring is critical for
discovering delays long enough so that the system can try to mask their effect.

Having stages across the Internet is a challenge for the system because traffic
load, failures and outages are mostly unknown before they happen. We have
documented that the system scales to at least three stages with a total of at
least 12 outgoing and 36 incoming data streams. Based on the performance
measurements we conclude that the location of the data stream distribution
server binding together the stages is not critical for the end to end latency of the
system when it is used to do natural interaction, like handshakes, where delays
of even 600ms is tolerable. However, when movements are meant to happen
simultaneously and synchronized, the distribution server should be located where
it provides for the lowest latencies. Data available in services like PingER [16]
can help to choose a location to minimize latency between stages.

With regards to bandwidth, the location of the distribution server is presently
not critical. This may change if the data streams grow in size and number. How-
ever, if the global analyzer and distribution sub-systems are located on computers
on the same local area network as one or more of the stages, the Internet traffic
is significantly reduced. This will penalize the other stages but could be useful
for a performance with local audiences or where synchronized interactions are
mostly among actors on the local stages.

Even if the system can do temporal synchrony and mask away delays, it is not
yet clear how practical the system is in actual use. While we have not done formal
user study experiments exploring the system capabilities with actors needing
to tightly coordinate their movements, we have documented the performance
limits of the MultiStage system. This provides for a sound prototype platform
for experiments in a context of distributed performances with real actors.

Acknowledgment

We would like to thank Ken Arne Jensen for helping us build the camera rigs and
make it look like something done by the creatures in Alien, Jon Ivar Kristiansen
for help with the network and silently testing us by giving us a broken switch,
and Maria Wulff-Hauglann for being brave enough to lend us shiny new Mac
Minis so we could do a third stage.

This work was funded in part by the Norwegian Research Council, projects
187828, 159936,/V30, 155550/420, and Tromsg Research Foundation (Tromsg
Forskningsstiftelse).

References

10.

11.

12.
13.
14.
15.
16.

. Sawchuk, A., Chew, E., Zimmermann, R., Papadopoulos, C., Kyriakakis, C.: From

remote media immersion to distributed immersive performance. In: Proceedings
of the 2003 ACM SIGMM workshop on Experiential telepresence, ACM (2003)
110-120

Chew, E., Kyriakakis, C., Papadopoulos, C., Sawchuk, A., Zimmermann, R.: Dis-
tributed immersive performance: Enabling technologies for and analyses of remote
performance and collaboration, NIME 06 (2006)

Zimmermann, R., Chew, E.; Ay, S., Pawar, M.: Distributed musical performances:
Architecture and stream management. ACM Transactions on Multimedia Com-
puting, Communications, and Applications (TOMCCAP) 4(2) (2008) 14

Sato, Y., Hashimoto, K., Shibata, Y.: A new remote camera work system for tele-
conference using a combination of omni-directional and network controlled cam-
eras. In: Advanced Information Networking and Applications, 2008. AINA 2008.
22nd International Conference on, IEEE (2008) 502-508

Tang, A., Pahud, M., Inkpen, K., Benko, H., Tang, J., Buxton, B.: Three’s com-
pany: understanding communication channels in three-way distributed collabora-
tion. In: Proceedings of the 2010 ACM conference on Computer supported coop-
erative work, ACM (2010) 271-280

. Sakamoto, D., Kanda, T., Ono, T., Ishiguro, H., Hagita, N.: Android as a telecom-

munication medium with a human-like presence. In: Human-Robot Interaction
(HRI), 2007 2nd ACM/IEEE International Conference on, ACM (2007) 193-200
Dou, M., Shi, Y., Frahm, J., Fuchs, H., Mauchly, B., Marathe, M.: Room-sized
informal telepresence system. In: Virtual Reality Workshops (VR), 2012 IEEE,
IEEE (2012) 15-18

Petit, B., Lesage, J., Menier, C., Allard, J., Franco, J., Raffin, B., Boyer, E., Faure,
F.: Multicamera real-time 3d modeling for telepresence and remote collaboration.
International journal of digital multimedia broadcasting 2010 (2009)

Essid, S., Lin, X., Gowing, M., Kordelas, G., Aksay, A., Kelly, P., Fillon, T., Zhang,
Q., Dielmann, A., Kitanovski, V., et al.: A multi-modal dance corpus for research
into interaction between humans in virtual environments. Journal on Multimodal
User Interfaces (2012) 1-14

Elgendi, M., Picon, F., Magnenat-Thalmann, N.: Real-time speed detection of
hand gesture using kinect. In Springer, ed.: Proceedings of the Autonomous So-
cial Robots and Virtual Humans workshop, 25th Annual Conference on Computer
Animation and Social Agents. (2012)

Stodle, D., Troyanskaya, O., Li, K., Anshus, O.: Tech-note: Device-free interaction
spaces. In: 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on, IEEE
(2009) 39-42

Go: http://golang.org/

Horde3d: http://www.horde3d.org/

Planetlab: https://www.planet-lab.eu/

Psutil: http://code.google.com/p/psutil/

PingER: http://www-iepm.slac.stanford.edu/pinger/

