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Abstract 

The association between an action and its sensory consequence has been linked to our sense of agency 

(SoA). While ecological validity is crucial in investigating such a complex phenomenon, previous 

paradigms focusing on the cortical analysis of movement-related images used simplified 

experimental protocols. Here, we examined the influence of action-associated predictive processes 

on visual event-related potentials (ERPs) in a paradigm that models everyday actions more precisely, 

using a commercial gesture control device, ecological stimuli depicting a human hand and a 

behavioural training to reinforce the sense of control over action outcomes. We assessed whether a 

more natural setup would result in robust ERP modifications following self-initiated movements 

relative to passive viewing of the same images. We found no compelling evidence for amplitude 

modulation for the early occipital C1 and P1 components. Crucially, we observed strong action-

associated amplitude enhancement for the posterior N1, an effect that was not present in our previous 

study that relied on conventional button-presses. We propose that the N1 effect in our ecologically 

more valid paradigm can either reflect stronger attentional amplification of domain-specific visual 

processes following self-initiated actions, or indicate that sensory predictions in the visual N1 latency 

range manifest in larger (rather than reduced) ERPs. Overall, our novel approach utilizing a gesture-

control device can be a potent tool for investigating the behavioural and neural manifestations of SoA 

in the visual modality. 
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Highlights 

● Action-associated modulations of the visual C1, P1 and N1 ERPs were assessed 
● Ecological validity of the paradigm was improved by using a gesture-control device 
● The N1 component was larger for movement-induced stimuli 
● N1 enhancement following actions seems to be specific to this experimental setup 
● Our paradigm offers a new approach to investigate the sense of agency 

  



 

 

The sense of agency (SoA) refers to the experience of being the source of self-initiated 

actions and their sensory consequences [1]. Although, this phenomenon is a central feature of 

voluntary human actions, its neural underpinnings need further exploration. It is widely accepted that 

SoA largely depends on the association between an action and its possible outcome. If perceived 

outcomes match our initial predictions about action-related changes in the sensory environment, SoA 

is reinforced, which is typically manifested as supressed neural and perceptual responses for self-

initiated stimuli [1]. Several studies found that event-related potentials (ERPs) evoked by action-

associated stimuli are smaller in healthy adults (a phenomenon commonly referred to as ‘sensory 

attenuation’, SA), whereas clinical conditions such as schizophrenia or obsessive-compulsive 

disorder are characterized not only by aberrant SoA, but also by weaker SA [2, 3, 4]. 

Although there is converging neuroimaging and electrophysiological evidence for SA 

for somatosensory and auditory stimuli [5, 6, 7, 8], results obtained in the visual domain are more 

controversial [9, 10, 11, 12]. Discrepancies between studies focusing on action-associated 

modulations of visual ERPs might stem from the rather complex interaction between prediction and 

attention [13], as well as on the degree of the predictability and ecological validity of the stimulus 

[14]. 

Ecological validity is a key factor of neurocognitive experiments. Human cognition is 

extremely complex; therefore, it is crucial that researchers strive to reproduce the features and 

circumstances of the investigated phenomenon in the laboratory. Numerous paradigms set to 

investigate action-associated auditory processing used the participants’ own voice or touch as stimuli 

(e.g. [2, 3, 8]). However, the few studies conducted so far in the visual domain fail to demonstrate 

such a degree of ecological validity: the majority of them involved simplified tasks using abstract 

stimuli (e.g., checkerboards) evoked by voluntary button-presses [9, 11, 12]. During natural arm 

movements such as reaching out for an object or gesticulation, we often see our own hand as a visual 

consequence of the action. Thus, we argue that an experimental setup in which a hand movement is 

followed by the sight of a hand in such a position that corresponds to the movement, would represent 

higher ecological validity. Hence, our aim here was to develop a new ERP paradigm that models 

everyday actions more precisely and therefore, allow studying SoA-associated neural processes in 

the visual modality. We utilized a gesture-control device complemented with an additional task to 

induce a stronger sense of control over presented stimuli and to attune the action and the visual 

outcome. We adapted our previous paradigm [14] and presented ecological stimuli depicting a human 

hand. To validate this new procedure and to investigate if it elicits stronger ERP modulations to self-

initiated stimuli in healthy participants, we analysed three posterior components (C1, P1, N1) arising 

within 200 ms post-stimulus [15]. We predicted that a more natural setup and a training intended to 



 

 

enhance SoA over the stimuli would result in enhanced action-associated ERP modifications relative 

to those reported in studies using conventional button presses and/or abstract visual stimuli. 

Twenty-two healthy volunteers (mean age = 26.05 years, SD = 5.68, 11 female) 

participated in the experiment. Eighteen participants were right-handed, three left-handed, one mixed-

handed, as verified by Edinburgh Handedness Inventory [16]. All participants reported normal or 

corrected-to-normal visual acuity and no history of neurological or psychiatric disorders. The study 

conformed to the Declaration of Helsinki and was approved by the Review Board of the Institute of 

Psychology, University of Szeged. All individuals provided signed informed consent and received no 

financial compensation for their participation. Participants were seated 70 cm in front of a 20-inch 

LCD screen in a dark, sound-attenuated room. The visual stimulus depicting the dorsum of a hand 

with palm open (congruent with the gender and handedness of the subject; size: 12.2°×8.0°; 

luminance: 10.7 cd/m2) was presented for 300 ms using Psychopy 1.801 [17]. The left-hand stimulus 

was the mirror image of the right-hand stimulus. A red fixation cross (size: 0.6°) was always present 

at the centre of the screen and participants were asked to maintain fixation throughout the experiment. 

We used a Myo armband (Thalamic Labs, Kitchener, Canada) to facilitate the 

participants’ feeling of ownership towards the stimuli (Figure 1). The Myo armband is a wireless 

device, enabling users to control technology by using a set of sensors: eight electromyographic 

(EMG) sensors detect muscle activity of the forearm, while a 9-axis inertial measurement unit (IMU) 

is responsible for identifying the orientation and the movement of the arm. The armband streams 

EMG and IMU data at 200 Hz and 50 Hz to the computer via Bluetooth Low Energy. 

We adopted the contingent paradigm with three conditions: passive viewing (PV), 

motor-induced (MI), and motor-only (MO), 120 trials in each. During PV, stimuli appeared with 

randomized interstimulus interval (ISI) of 1500-2450 ms (with 50 ms steps, 20 ISIs in total) while 

participants were asked to maintain fixation. In MI blocks, participants were required to perform wrist 

dorsiflexions in a self-paced manner, aiming at a rhythm of about 2 seconds. Participants were 

instructed that the software would not respond to fast responses (<1500 ms, unbeknownst to the 

participants) and that each movement would be immediately followed by a briefly presented hand 

stimulus. In MO blocks, subjects had to produce self-paced movements identical to those in the MI 

task, but no stimulus would appear on the screen (Figure 1A). In the MI and MO conditions, EEG 

markers were sent out when the muscle contraction of the forearm reached a certain, individually 

calibrated threshold. In the PV condition, EEG markers were synchronized to the end of the 

predetermined ISI, preceding the onset of new stimulus by one frame (16.6 ms). In MI and PV blocks, 

stimuli also appeared with exactly one frame delay following the EEG marker, allowing direct 

comparison of ERPs obtained in the two conditions. Conversely, markers were synchronized to the 



 

 

EMG-monitored onset of actions, enabling to calculate MI-MO difference waveforms to control for 

movement-related EEG signals. 

We included a fourth, ’reinforcement of control’ (RoC) condition to develop strong SoA 

over the hand stimulus. These trials started with the presentation of a red square (size: 2.46°× 2.46°) 

appearing at random screen locations (Figure 1B). The participants’ task was to ‘grab’ the square by 

moving the hand stimulus over the square on the screen such that they would control stimulus 

movement by moving their hands. Once the stimulus covered the square, they had to make a fist by 

flexing their fingers, which would trigger the replacement of the hand stimulus with an image of a 

fist of the same hand (size: 9.2° × 6.2°). At the same time, the red square disappeared, and a new trial 

was initiated by the appearance of the target square at another location. There were no time constraints 

for this task, but participants were asked to ‘grab’ each square as fast and accurately as possible. The 

RoC task was performed before each of the three experimental conditions with 20 trials each. 

Additionally, single RoC trials were presented unexpectedly during PV, MI and MO blocks, after 

every 15th-21st trial (resulting in 6-8 RoC trials per block). EEG collected in RoC trials was not 

analysed. The scripts used for armband calibration, action-stimulus reinforcement (RoC block), 

stimulus presentation and sending out EEG markers (PV, MI and MO blocks) and are available at 

https://github.com/6uliver/myo-module-for-erp-studies-on-soa/. 

The duration of PV blocks was around 6 min, whereas MI and MO blocks lasted for 

about 6–9 min, depending on individual response times. Participants could have a short rest between 

the blocks. MO and MI blocks started with a short practice that consisted of at least 15 trials, and 

lasted until the timing of dorsiflexions exceeded 1500 ms on >80% of trials. During the practice, 

participants got immediate feedback about their response times to get acquainted with task 

requirements. The duration of the whole experiment was about 1 hour, while the tasks (3 experimental 

plus 3 RoC blocks) lasted for about 30 min. 

EEG was recorded with a BioSemi ActiveTwo Amplifier (BioSemi, Amsterdam, The 

Netherlands) at a sampling rate of 1,024 Hz, using 32 scalp Ag/AgCl electrodes placed in accordance 

with the extended International 10/20 system (at positions Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8, 

FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, O1, 

Oz, O2). In addition, two electrodes were placed at the outer canthi of both eyes to record horizontal 

eye movements. Artifacts related to vertical eye movements (blinks) were monitored at electrodes 

Fp1 and Fp2. The recording reference and the ground electrodes (common mode sense and driven 

right leg electrodes in the ActiveTwo system) were placed in close proximity to the Cz position. Data 

were collected without applying frequency filters. 



 

 

EEG was analysed with the EEGLAB [18] and ERPLAB [19] toolboxes for MATLAB 

(MathWorks, Natick, MA). EEG markers in all experimental conditions were shifted by 16.6 ms to 

correct for the delay of stimulus presentation. Continuous EEG was band-pass filtered between 0.5–

30 Hz using an infinite impulse response Butterworth filter (12 dB/oct). Epochs with 100 ms pre- and 

600 ms post-stimulus were extracted. Epochs containing baseline fluctuations, muscle and horizontal 

eye movement-related artefacts were removed manually, yielding at least 110 artefact-free epochs for 

all participants and stimulus conditions. Ocular artefacts were removed with independent component 

analysis. Further, sinusoidal noise stemming from AC power line fluctuations (50 Hz line noise + 

harmonics) was removed with the CleanLine plug-in for EEGLAB. Data were re-referenced to Fz 

electrode, and epochs corresponding to each experimental condition were averaged. ERPs obtained 

in the MO block (containing neural activity associated with motor preparation and execution) were 

subtracted from MI data of the same participant, resulting in “corrected motor-induced” (C-MI) 

difference waveforms. Thus, we could compare PV and C-MI data directly to assess changes in visual 

processing related to action-associated predictive processes. Mean baseline-to-peak C1, P1, and N1 

amplitudes were extracted at posterior channels (C1: Oz; P1: O1/Oz/O2; N1: P7/P8) in the 68–78 ms, 

86–126 ms, and 160–180 ms time windows, respectively. These intervals were selected to centre 

around the peak of each component on the waveform averaged across all participants and 

experimental conditions. 

The effect of CONDITION (PV vs. C-MI) and its potential interaction with 

ELECTRODE location (for the P1 and N1 components) was tested with Bayesian repeated-measures 

ANOVA implemented in JASP 0.9.2, using default prior scales [20]. In contrast to conventional null 

hypothesis significance testing (NHST), Bayesian statistics enable the estimation of evidence 

favouring either the alternative or the null hypothesis using Bayes Factors (BFs, BF10 > 3 and BF10 < 

0.33 indicating at least moderate evidence favouring the former and the latter, respectively). To enable 

comparison with previous reports using NHST, we also performed repeated-measures analysis of 

variance (ANOVA) with CONDITION and ELECTRODE (if applicable) as within-subject factors. 

Significance level was set to .05; Greenhouse-Geisser-corrected F and p values are reported if the 

assumption of sphericity was violated. Effect size (ηp
2) was also calculated. 

Grand-averaged ERP waveforms, bar plots representing modulations in ERP 

amplitudes across experimental conditions, and posterior scalp distributions of the PV -vs. C-MI 

difference waveforms are presented in Figure 2. Analysis of the C1 component indicated no evidence 

for movement-induced amplitude modulation (main effect of CONDITION: BF10 = 1.11, F(1,21) = 

2.98, p = .099, ηp
2= .12). For the P1 component, there was moderate evidence for increased amplitude 

following self-initiated actions (CONDITION: BF10 = 3.69), but NHST did not indicate a significant 



 

 

main effect (F(1,21) = 1.65, p = .213, ηp
2= .07). Furthermore, we found no interaction between 

CONDITION and ELECTRODE (BF10 = 0.14, F(2,42) = 1.04, p = .362, ηp
2= .05). Finally, there was 

strong evidence for enhanced N1 amplitudes for movement-induced stimuli (CONDITION: BF10 = 

57796.15, F(1,21) = 27.61, p < .001, ηp
2= .57), and this effect was comparable above the two 

hemispheres (CONDITION x ELECTRODE: BF10 = 0.3, F(1,21) = 0.31, p = .585, ηp
2= .01). 

Our new paradigm with improved ecological validity revealed robust action-associated 

N1 enhancement above both hemispheres. The posterior N1 (or N170) component is sensitive to the 

presentation of faces and body parts [21, 22], and has been associated with activity in domain-specific 

modules of the visual system [23, 24]. From this perspective, it is not surprising that the N1 was the 

waveform showing the strongest movement-related modulation in the current study. Given that ERP 

amplitude enhancements are often associated with attention [11, 12, 13, 14], stronger attentional 

amplification of visual analysis in the MI condition is a probable underlying mechanism for the N1 

effect. Although top-down predictive processes seem to modulate the amplitude of the N1 in the 

opposite direction, with smaller N1 components representing a stronger correspondence between 

expected and encountered stimuli [4, 13, 25, 26, 27], previous studies in the visual modality also 

found enhanced amplitudes connected to voluntary actions [11, 12]. Still, in our prior study, we found 

the N1 to be insensitive to self-initiated presentation of stimuli depicting a human hand, albeit that 

the paradigm relied on a more conventional setup with button presses, and did not include a RoC 

condition to reinforce the association between movements and their sensory consequences [14]. 

Taken together, the larger N1 component in our MI condition with the current experimental setup 

might either reflect stronger attentional amplification of visual processing [11, 12], or point toward 

the notion that movement-related predictive processes in the visual domain increase rather than 

suppress the posterior N1. The current design, however, does not allow the differentiation between 

these two possible explanations; thus, further studies, applying systematic task manipulations, are 

needed. Either way, our finding on the N1 can be viewed as the manifestation of action-associated 

modulation of intermediate-level visual processing that is both sensitive to the category of the 

stimulus and to the dynamic context in which it is being encountered. 

Despite our expectations [14], we did not find compelling evidence for C1 reduction 

and P1 enhancement for movement-induced stimulus presentation. To account for these negative 

findings, we consider the possibility that by designing a protocol with improved ecological validity, 

ERP effects observed in our previous study (affecting the C1 and P1 components, [14]) shifted 

forward in time and influenced later stages of visual analysis (i.e., the P1 and the N1). 

Overall, the present paradigm consisting of a gesture-control device combined with a 

short training seems to be a potent tool for investigating the mechanisms underlying action-related 



 

 

modulation of visual processes, especially those associated with higher-level analysis of the sensory 

environment. Our approach can facilitate research towards understanding the behavioural and neural 

manifestations of SoA across a wide range of experimental setups, both in healthy populations and in 

clinical conditions such as schizophrenia and obsessive-compulsive disorder. Future work should aim 

to achieve even greater ecological validity by precisely modelling real-life actions in a controlled 

environment, e.g., utilising gesture-control devices in virtual reality.      
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Figure 1. (A) Overview of the experimental protocol. Trials for conditions PV, MI and MO (yellow 

lines) were presented in separate blocks (counterbalanced order across participants), each being 

randomly interrupted by single RoC trials (vertical red lines). Each block was preceded by a RoC 

training consisting of 20 trials (long red lines). (B-D) Visual depiction of the three experimental 

conditions used to collect EEG data. Conditions PV and MI consisted of identical visual stimuli, 

whereas conditions MI and MO were characterized by identical motor requirements. (E) The structure 

of RoC trials: after the appearance of a red square (target; E1), participants were required to navigate 

the hand stimulus above it by moving their arms (E2), and to ‘grab’ the target by making a fist (E3), 

which would trigger the disappearance of the target. MI = motor-induced, MO = motor-only, PV = 

passive viewing, RoC = reinforcement of control 

 



 

 

 

Figure 2. (A) Visual event-related potentials recorded at five posterior scalp locations on waveforms 

from our three experimental conditions (PV, MI, MO) as well as on the MI – MO difference 

waveform (C-MI). (B) C1, P1, and N1 ERP amplitude data (means and standard errors of Oz, 

O1/Oz/O2, and P7/P8 electrodes, respectively) extracted for the PV, C-MI and PV – C-MI 

waveforms. C‐MI = corrected motor‐induced condition; MI = motor-induced, MO = motor-only, PV 

= passive viewing 


