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Abstract 

 

From the invention of the atomic force microscope (AFM) in 1986, tremendous efforts have been put 

into developing this tool. The AFM has long been considered as one of the top choices to probe the 

nanoscale world with the ability to achieve nanoscale resolution imaging of surfaces under different 

environments. Advances in instrumentation combined with the exploitation of sophisticated data 

analysis methodologies are set to meet the demand for higher resolution forms of microscopy that allow 

for direct visualization, identification, nanometric or atomic defects and structure, and material phases. 

This combination is not arbitrary but responds to the necessity of employing algorithms to decouple and 

interpret the complex signals and contrast channels that result from both standard instrumentation and 

the extra complexity added by the instrumentation designed to increase throughput and enhance 

resolution and quantification. Starting with interpreting AFM data using single mode force spectroscopy 

method to explicating multiple channels acquired with advanced multifrequency methods, it has reached 

a point that resorting to big data approaches might provide broader understanding toward surface 

properties in the material science community. Finally, this thesis shows that it is possible to submit the 

data capturing complex physical phenomena like the tip-surface interaction in AFM to a specific 

question and obtain the answer regardless of the complexity and/or unknown factors of the phenomena. 
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Chapter 1 

 

 
 

Overview 

 

This thesis is arranged in the following manner. Chapter 2 provides the background introduction 

to the importance of surfaces and interfaces, the reason why to investigate materials surfaces properties, 

and some common surface characterization techniques. In particular, a brief development of atomic 

force microscope (AFM) is presented. In Chapter 3, the methodologies used in this thesis are reported. 

These methodologies include the force reconstruction and Hamaker coefficient determination. Within 

the force reconstruction section, two factors, i.e. the assumption of the power law, and the statistics 

applied for data analysis, that could affect the validation of this method are discussed. Then, in Chapter 

4, 3 case studies to test the methodologies are presented in the structure of motivation, sample 

preparation, and results and discussions sections. Next, a discussion of applying computer science 

assisted approach for analyzing AFM data is showed in Chapter 5. An example for this application is 

shown in Chapter 6. Finally, Chapter 7 provides the possible future works and the summary of this 

thesis. 

This thesis is based on the publications listed in the List of Papers section. 
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Chapter 2 

 

 
 

Background 

 

 

2.1 Surfaces and interfaces 
 

Solid surfaces, being discontinuities from one material to another, exhibit unique properties 

different from the bulk1. As a new surface is created from a solid material, either surface relaxation 

occurs that atoms closed to the surface exhibit expanded interlayer separation compared to the bulk, or 

surface reconstruction arises in which the lateral distances between surface atoms change. The surface 

of a material is the part that interacting with the surroundings. All interactions (both physical or chemical 

interactions) take places on the surfaces, such as all chemical reactions, catalysis, corrosion, adhesion, 

etc. Furthermore, as exposing to ambient conditions, a solid surface would be covered with (either 

physically or chemically adsorbed) contaminants such as gases, water vapor, and hydrocarbons, which 

exist on every surface of any solid matter. This affects the way of how we perceive a material.  

Since almost all the industrial processes like oxidation, chemical activity, deformation and 

fracture, bonding, friction, lubrication, etc., involve or depend on the surface properties of the material, 

it is necessary and essential to tell whether a surface possess the desired properties. In the field of surface 
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analysis, surface characterization techniques encompass physical, chemical, mechanical, structural, 

thermal, optical, and electrical aspects, making it a cross-disciplinary area. 

 

 

2.2 Characterization techniques 
 

Most of surface characterization techniques involve a probe interacting with the material. This 

probe can be electrons, photons (light), x-rays, neutral species, ion beams or physical cantilevers. In 

some techniques, a probe beam strikes the material, and the information extracted either from the 

changes of the material or from the probes are used for analysis. As for mechanical techniques, 

mechanical contacts between a probe and a material surface are required. In this thesis, atomic force 

microscopy (AFM) is focused and methodologies are developed based on this instrument to study the 

material surface properties. A brief introduction and the reasons behind using AFM is present in the 

following session. 

 

o Atomic Force Microscopy (AFM) 

The AFM was presented to the community in 19862, and the same year in which a Nobel Prize 

went to the invention of its sister instrument, the Scanning Tunnelling Microscope. In 1986, the 

general idea of AFM was to employ some form of physical phenomena that would allow imaging 

surfaces in different environments2. To achieving this, a micro-cantilever with a sharp probe at its 

end is brought into proximity with a sample’s surface and the emerging atomic forces between the 

tip and the sample are monitored. Dealing with this sample perturbations and with the wide range 

of acting forces at the tip-sample junction has recurrently led the development of the instrument.  

An example of an AFM tip imaging a molecule adsorbed onto a mica’s surface in the static or 

quasi-static mode is illustrated in Figure 2.1. In this mode, by exploiting Hooke’s law, the constant 

applied force is applied. As the tip makes mechanical contact with the surface and raster scans over 
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the sample, lateral and normal forces can deform, cut and/or displace the molecule. In the dynamic 

modes, deformation and lateral perturbations can be minimized3 (Figure 2.2), while improving 

resolution, sensitivity and quantification of the different atomic forces and phenomena. 

 

 

Figure 2.1 Illustration of static AFM imaging. An AFM tip, operated in static or quasi-static mode, imaging a molecule 

before (a), during (b) and after (c) contacting the sample. 

 

 

Figure 2.2 Illustration of dynamic AFM imaging. An AFM tip, operated in the dynamic mode, imaging a molecule 

before (a), during (b) and after (c) contacting the sample. 

 

Later, two schools of dynamic AFM had differentiated by feedback mechanism: the frequency 

modulation FM AFM4, and the amplitude modulation AM AFM3. Controlling a single frequency 

was manageable and quantification of dissipative and conservative interactions was possible in both 

AM5 and FM6 in the late nineties and early two thousand. At around this time, it became increasingly 

obvious7-8 that ignoring higher frequencies implied ignoring information about the atomic processes. 

From an energy point of view, it could be said that energy from the frequency at which we excite 

disperses to higher frequencies because of the non-linear impact. An illustration of this phenomenon 

is shown in Figure 2.3. Such relationships were also rapidly recognized8 that one had to “hammer”9 

the sample in order to increase the signal to noise ratio of the higher frequency components. This 

turn of events seemed worrisome, since one of the big goals consisted in decreasing the interaction 

in order to image soft matter10-12. Garcia et al. provided a solution to this dilemma in 2004 with what 
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is considered the origin of multifrequency AFM in the AM mode. Their solution implied directly 

and externally exciting higher frequencies before the interaction even occurred (Figure 2.3). They 

found that these higher frequencies were now sensitive and accessible without even mechanically 

contacting samples and were therefore suitable for gentle imaging13. In an important contribution to 

the theory, the FM community proposed that the higher driven frequency was influenced by the 

average derivative of the tip-sample force14-15 (Figure 2.3). The proposed expression was rapidly 

adopted by some of the original proponents of multifrequency AFM16 to directly map material 

properties such as the effective Young modulus of proteins16. This work further led to close form 

solutions in FM AFM for the effective Young Modulus, sample-deformation and viscosity17.  

 

 

Figure 2.2 Illustration of the contrast mechanism behind multifrequency AFM. a, Imaging with a single drive frequency 

(standard or monomodal dynamic AFM) and with large oscillation amplitudes excites higher frequency signals. b, 

Externally exciting two frequencies (multifrequency AFM). c, The higher driven frequency in multifrequency AFM is 

influenced by the derivative of the tip-sample interaction F’. 

 

Meanwhile extended forms of multifrequency18-19 and methods20-22 to exploit higher harmonic 

responses have been proposed by others. The overall result could be summarized as the availability 

of multiple observables, signals, expressions, and contrast channels in a myriad of driving scenarios 

that currently allow imaging with small and large amplitudes in the liquid, air and vacuum 

environments. The outcome is somehow reminiscent of the so-called zoo of particles that emerged 

in particle physics. Only, in this case, it was the zoo of contrast maps that emerged. It is almost like 

the community was driving the field into the big data era, something that had otherwise not escaped 

the notice of some pioneers23.  
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2.3 State of the art machine learning in AFM 
 

 Exploiting computer science techniques to assist the data analysis involved in other fields, such 

as biology and the social sciences, has been routine for several years now. In materials science this 

phenomenon is much more recent and is only starting to materialise.  Optimized computational methods 

are particularly relevant when dealing with data sufficiently complex that the simpler statistical or 

analytical methods become human “unreadable”. With this we mean that there are now standard 

machine learning techniques, particularly well-suited to imaging and image interpretation, and that these 

may facilitate human understanding when multiple parameters, or higher dimensional analysis, makes 

direct interpretation complex. Sometimes, analytic expression, for which fundamental laws or principles 

are unavailable or overly complex. More and more research groups starting to adopt the approach of 

incorporating machine learning methods in the design of the project. Huang et al.24 employed a support 

vector machine algorithm in AFM images for pattern recognition, feature identification without human 

interference. Sokolov et al.25 used three different machine learning algorithms to identify cancer cells 

from normal cells with images obtained from height and adhesion channels. Mencattini et al.26 studied 

cell-nanoparticle interactions with the help of two types of classification algorithms: support vector 

machine and linear discriminant analysis. Most of the applications are image-based methods, and very 

few attempts have been made to use forces reconstructed from AFM measurements. One of the reasons 

being that imaging is an easier technique for users to get hold of, yet there are advantages to develop 

force-based method. While recording forces with AFM measurements correctly could be very laborious, 

it provides availability of more parameters/features that could be used into machine learning techniques 

provided the phenomena is richer than the simpler models used in imaging. Second, with the many 

attempts by the community to ever increasing the number of functionally independent number of 

experimental observables, let that be via enhancing instrumentation sensitivity or extracting information 

via probing the force through different interaction regimes27, the interpretation of the imaging channels 

can be assisted by the increasingly advancing imaging extraction and interpretation techniques in 

machine learning.  
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Chapter 3 

 

 
 

Parameters and methodology 

 

 

3.1 Force 
 

In addition to using AFM to scan over samples for topographical investigation, it’s also 

exploited as a force spectroscopy wherein on reconstructs the nanoscale force profile from 

experimental observables to recover the force as a function of tip-sample separation distance 

(d)28-30. While in the contact mode of operation, one could say it is the simplest way to obtain 

force profiles, yet the noise or jump to contact phenomenon might leave the results 

meaningless31-32. In dynamic AFM, the integral form of the equation of motion (first derived in 

1997 by exploiting the Hamilton Jacobi formalism33) is typically derived by assuming Euler–

Bernoulli beam theory34. It can be reduced to a standard driven harmonic oscillator with 

damping and the addition of the tip-sample force that introduces the non-linearities. Several 

authors have inverted the integral equation of motion by exploiting transforms including the 

Laplace transform leading to the modified Bessel function of the first kind and allowing 
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reconstruction via a Pade approximant representation35 (with error below 5%), the Legendre 

transform36 and the Fourier transform37. 

Here, the method used to reconstruct the force-distance curves (FDCs) is the Sader-

Jarvis-Katan formalism35, 38-39, which is a derivation of the results obtained via the Laplace 

transform and show that solutions are equivalent in AM and FM38. The FDCs are reconstructed 

(both conservative and dissipative) by considering variations in cantilever amplitude (A) and 

phase (P) as a function of variations in separation distance d. The conservative tip-sample force 

F can be written as:  

 𝐹 = 2𝑘 ∫ [(1 +
𝐴

1
2(𝑢)

8√𝜋(𝑢−𝑑)
) 𝛺(𝑢) −

𝐴
3
2(𝑢)

√2(𝑢−𝑑)

𝑑𝛺(𝑢)

𝑑𝑢
] 𝑑𝑢

𝑢=∞

𝑢=𝑑
   Eq.  1 

where u is the variable of separation distance, A is the amplitude of tip oscillation, k is the 

spring constant, and the phase Ω is the normalized frequency shift. Ω is expressed by40-41: 

𝛺(𝑑) = [1 +
𝐴0

𝑄𝐴
𝑐𝑜𝑠(𝛷(𝑑))]

1/2
− 1      Eq.  2 

where A0 is the free amplitude of tip oscillation, Q is the quality factor, and Φ is the phase lag relative 

to the driving force. Noted that A0 is a key parameter to achieve a smooth transition to the repulsive 

regime, i.e., avoiding bistability and discontinuity in the amplitude-phase-distance curves42-43. Usually, 

A0 is set to 3 times higher than the critical amplitude Ac value44-46, which is the minimum free amplitude 

A0 required to reach the repulsive regime.  Eq. 1 and Eq. 2 has been implemented in Matlab with standard 

functions and the resulting raw force F has been smoothened with the standard rloess method (moving 

average filter of 30) from Matlab prior to calculating FAD. The speed of acquisition was limited by the 

AFM, i.e. one amplitude and phase curve ~1 second.  

The absolute value of minimum force in the FDCs is extracted from the experimental data and 

defined as adhesion force (FAD) as illustrated in Figure 3.1. The magnitude of FAD depends on the AFM 

tip radius and sample surface chemistry, and FAD can be expressed as:  
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𝐹𝐴𝐷 = −
𝑅𝑡𝑖𝑝𝐻

6𝑎0
2          Eq.  3 

where Rtip is the tip radius, H is the Hamaker coefficient which will be explained in the later section and 

a0 is the intermolecular distance. Noted that all the forces reconstructed in this thesis were acquired with 

monomodal AM AFM. 

 

 

Figure 3.1 Schematic of reconstructing FDC from the amplitude and phase-distance curve. 

 

Furthermore, by using the sphere-flat plane model, FAD between an AFM probe and the sample 

surface under investigation can be expressed as: 

|𝐹𝐴𝐷| = 4𝜋𝑅𝑡𝑖𝑝𝛾        Eq.  4 

where γ is the surface energy. 

As it could be seen in Eq. 5, fundamental forces are typically written in terms of power laws47-48 

with inverse-square laws being central in fundamental physics47. In this respect, one of the questions in 

nanosciences is to verify whether physical laws are dependent on the size of the interacting bodies48. In 

the context of van der Waals forces, using Hamaker49 and Lifshitz50-51 theories provide fundamental 

expressions for the interaction between a sphere and a plane so that these can be tested against AFM 

experimental results. For the interaction between a sphere of radius R and a plane (Figure 3.2), the 

theories agree in predicting inverse-square laws at fractions of a nm or several nm of separation, in 

ambient conditions and in a vacuum. In ambient conditions, there is a lack of availability of experimental 
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data to test the ubiquitous inverse-square law. Therefore, in the following section, we tested the inverse 

square law for attractive forces in the proximity of the surface, and the dependence of such law on the 

size of the AFM tip. The methodology is based on the ideal sphere-plane interaction for simplicity and 

for the reasonable possibility of modelling an AFM tip as a sphere and a sample's surface as a plane.  

 

 

Figure 3.2 Sphere-plane model for an AFM tip-surface interaction. 

 

 

 

Power laws of the force 

The AFM data was collected in ambient conditions. In the experiments, Rtip was monitored in-

situ with the AC method providing a functional relationship in dynamic AFM between the minimum 

free amplitude A0 required to reach the repulsive regime and the effective radius Rtip, i.e. 

Rtip=4.75(Ac)
1.1. The Ac method allows computing the effective radius in seconds and was used here 

to monitor Rtip. Data sets for 5 different cantilevers were collected. We start by writing a general 

power law52-53 with power n as 

𝐹 = −
𝛼

𝑑𝑛         Eq.  5 

where F is the force at a distance d and the parameter α might contain the geometrical and/or 

chemical properties of the interacting system. In the Hamaker and Lifshitz formalisms50, α is written 

in terms of a constant H (chemistry) and the radius of the sphere R (geometry) according to 
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𝛼 =
𝑅𝐻

6
         Eq.  6 

We then start by transforming Eq. 3 and assuming the following power law applies  

𝐹 = −
𝑅𝐻

6𝑑𝑛         Eq.  7 

The experimental force profile acquired on a graphite surface and shown in Figure 3.3 is 

employed for illustrative purposes. First, we identify FAD as the adhesion force50. Second, we 

identify the intermolecular distance d=a0 at which F=FAD. This means that by further decreasing d 

below a0, atoms on the sphere will repel atoms on the surface54 and vice versa and imposes a (lower-

bound) limit in the applicability of the power law52. Furthermore, it allows us to define absolute 

experimental distances d that agree with standard definitions43, 55. Third, a one to one relationship 

between d and F is assumed.  

 

 

Figure 3.3 Experimental FDC parameterized via FAD and β 

 

To test the range of applicability of Eq. 7, we parameterize the FDCs using FAD by considering 

the force F at a distance d such that F=βFAD. By varying β from 0 to 1, the FDCs can be fully 

parameterized and quantified56 (see Figure 3.3). Then, we consider a reference value of β to define 

a force (F0= β0FAD)-distance (d0) pair as follows   

𝐹0 = 𝛽0𝐹𝐴𝐷 ≡ −
𝛼

𝑑0
𝑛        Eq.  8 
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All other force-distance pairs (Fi, di) can also be parameterized 

𝐹𝑖 = 𝛽𝑖𝐹𝐴𝐷 ≡ −
𝛼

𝑑𝑖
𝑛        Eq.  9 

Combining (4) and (5) results in the following expression 

[
𝛽𝑖

𝛽0
]

1 𝑛⁄

=
𝑑0

𝑑𝑖
         Eq.  10

 

Noted that n=2 according to standard Hamaker49 and Lifshitz51 formalisms for van der Waals-

Cassimir57 forces with a sphere-plane geometry50 and when d<2-3 nm38. Eq. 10 makes the ratio d0/di 

being easily computed from experimental FDCs and thus allows to test Eq. 7 for the full range of 

distances of interest. Eq. 10 predicts the ratio (βi/β0)
1/n is independent of R. For this purpose, 

experimental FDCs were acquired on a graphite sample as a function of R. The value of a0 for 

graphite can be estimated by employing the standard expression of surface sciences50, 55, 58 

𝑎0 = √
𝐻

24𝜋𝛾
         Eq.  11 

The value of H for graphite-silicon dioxide systems interacting in vacuum-air59 has been 

reported to be H≈1.35×10-19 J while60 γ ≈ 55 mJ/m2 resulting in a0≈ 0.18 nm50, 61. Values of R ranging 

from ≈4-36 nm was obtained on the graphite sample with 5 different cantilevers. In order to test the 

predictions of Eq. 10 on the data, a reference value at β0=0.15 was chosen and other values of βi 

were βi= 0.25, 0.35, 0.45, 0.55, 0.65, 0.75 and 0.85 resulting in βi/β0= 1.7, 2.3, 3.0, 3.7, 4.3, 5.0 and 

5.7. The respective experimental ratios d0/di were computed for the 5 different cantilevers62.  

In Figure 3.4, the results obtained for d0/d1 (β1/β0) and d0/d7 (β7/β0) have been plotted versus tip 

radii R. The respective β ratios for ratios predicted for a power law of n=2 have also been plotted in 

the figure for comparison (dashed lines). Fig. 3.4 indicates that there is a possible functional 

relationship between d0/di and R that can be expressed as (R in nm) 

𝑑0

𝑑𝑖
= 𝜃1𝑖𝑅 + 𝜃0𝑖        Eq.  12 
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The results from linear regression (obtained with the standard lm function in R and using the 

model in Eq. 12) are reported in Table 1. Normality is assumed for the predicted intervals at 95% 

confidence. The goodness of fit is obtained via the standard coefficient of determination RR. 

 

 

Figure 3.4 Experimental values (circles) as a function of R of (a) d0/d1 and (b) d0/d7 versus the predictions (dashed 

lines) of (β1/β0)1/2=1.3 and (β7/β0)1/2 =2.4 and lines of best fit (blue lines) and respective prediction intervals (black 

lines) according to Eq. 12. 

 

By combining Eq. 10 and Eq. 12, the power n can be further written as 

[
𝛽𝑖

𝛽0
]

1 𝑛⁄

= 𝜃1𝑖𝑅 + 𝜃0𝑖        Eq.  13 

Then, the predicted power n at a given βi/β0 ratio follows at once from Eq. 13: 

𝑛𝑖(𝑅) =
𝑙𝑜𝑔(𝛽𝑖 𝛽0⁄ )

𝑙𝑜𝑔(𝜃1𝑖𝑅+𝜃0𝑖)
        Eq.  14 

To get the physical implication, the power law in Eq. 7 obtained from the experimental data can 

be written as 

𝐹 = −
𝑅𝐻

6
𝑑

−[
𝑙𝑜𝑔(𝛽𝑖 𝛽0⁄ )

𝑙𝑜𝑔(𝜃1𝑖𝑅+𝜃0𝑖)
]
       Eq.  15 

 

The numerical values of the regressors θ1i and θ0i can be found in Table 1. The predicated powers 

n at β1/β0 (continuous lines) and β7/β0 (dashed lines) computed from Eq. 14 are shown in Figure 3.5 

with corresponding predicted 95% confidence intervals. The non-zero value of the regressors θ1i in 

Table 1 gives the direct physical implication that the effective power n depends on the tip radius R 

and presumably also on the distance d in the FDC at which n is computed relative to β0. In particular, 
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Figure 3.5 shows that for β1/β0, the power n might be an order of magnitude (n ≈ 20) larger than that 

predicted by standard vdW models (n ≈ 2) provided the tip is sharp, i.e. R < 5-20 nm. Then, n gets 

closer to n ≈ 2 as R increases. 

 

Table 1 Numerical results from the regression analysis carried out with R as a single variable for Eq. 12. 

βi/β0 θ1 θ1 at CI 95% θ0 θ0 at CI 95% (βi/β0)1/2 RR 

1.7 0.003 0.002-0.005 1.029 1.004-1.055 1.291 0.611 

2.3 0.006 0.003-0.009 1.084 1.031-1.138 1.528 0.543 

3.0 0.011 0.006-0.016 1.133 1.056-1.210 1.732 0.626 

3.7 0.016 0.009-0.023 1.222 1.116-1.328 1.915 0.649 

4.3 0.021 0.011-0.031 1.396 1.237-1.555 2.082 0.601 

5.0 0.021 0.004-0.038 1.772 1.507-2.038 2.236 0.392 

5.7 0.021 0.002-0.040 2.317 2.029-2.605 2.380 0.388 

 

 

The dependence of n on βi/β0 can be exploited by writing a more general model that includes 

the ratio βi/β0 and three regressors λ2, λ1 and λ0: 

𝑑0

𝑑𝑖
= 𝜆2𝑅 + 𝜆1𝛽∗ + 𝜆0       Eq.  16 

where the variable βi/β0 has been written as β* for simplicity. Eq. 16 is the equation of a plane 

and the best fit (plane) with the full set of raw data acquired (circles), is shown in Figure 3.6. Table 

2 shows the numerical values of the regressors, the predicted 95% confidence intervals and the 

goodness of fit (RR). 
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Figure 3.5 Prediction of n from Eq. (10) for β1/β0 (continuous lines) and β7/β0 (dashed lines). 

 

The prediction for the effective power n can now be written as a single expression at any distance d 

as a function of R: 

𝑛(𝑅, 𝛽∗) =
𝑙𝑜𝑔(𝛽∗)

𝑙𝑜𝑔(𝜆2𝑅+𝜆1𝛽∗+𝜆0)
       Eq.  17 

Again, by combining Eq. 7 and Eq. 17, the power law results in 

𝐹(𝑅, 𝛽∗) = −
𝑅𝐻

6
𝑑

−[
𝑙𝑜𝑔(𝛽∗)

𝑙𝑜𝑔(0.014𝑅+0.361𝛽∗+0.99)
]
      Eq.  18 

The predictions of Eq. 17 are shown as a function of β*= βi/β0 and R in Figure 3.7. The vertical 

axes correspond to the predicted power n and the x and y axes correspond to the β* and R. For R=5, 

20 and 35, Eq. 17 predicts means of n=15, 2.6 and 2.0 respectively. 

 

 

Figure 3.6 Experimental values for d0/di as a function of R and β* and regression results according to Eq. 16. 
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Table 2 Numerical results from the regression analysis carried out with R (tip radius) and β as variables for Eq. 16. 

λ2 λ2 at CI 95% λ1 λ1 at CI 95% λ0 λ0 at CI 95% RR 

0.014 0.009-0.018 0.361 0.332-0.390 0.099 -0.029-0.227 0.72 

 

 

 

Figure 3.7 Respective predictions of n according to Eq. 17. 

 

 

In summary, from experimental AFM data, the effective power n has been shown to depend on 

the tip radius R and the distance d in the FDC. The dependence of the power n on R implies that there 

is a nanoscale to (loosely) mesoscale transition in the power law. This transition is very sharp since 

n can be as large as 10-30 for very sharp tips, i.e. R< 5 nm. A physical implication is that very sharp 

tips might be rapidly trapped onto a surface once they get sufficiently close to it. The relationship of 

the power with distance physically implies that a single power n is not sufficient to completely 

characterize the FDC, probably because of the combination and presence of forces of different nature. 

On the other hand, provided the size of the tip is large enough, i.e. R > 20-30 nm, the universal 

inverse-square law seems to be reasonably matching our results. The results here apply only for a 

graphite-silicon dioxide tip, but the methodologies employed here can be easily extended to any other 

tip-sample system. This provides a means to find a universal nanoscale power law. 
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o AFM cantilever details 

The AFM cantilevers employed in this section were OLYMPUS AC160TS with k  40N/m, f0  

300kHz, and Q factor  500. 

 

 

 

 

o Statistics  

A major motivation behind mapping material properties with nanoscale resolution relates to 

understanding the relationships between dimensions48, 63-64 and properties since these might allow 

fine tuning these properties. The AFM is commonly employed to map nanoscale heterogeneity65-67. 

From FDCs, several material dependent features can be recorded. Being one of the important 

prerequisites to analysis the acquired data, exploring the experimental conditions and requirements 

to establish the presence or absence of nanoscale compositional heterogeneity by considering 

experimental errors in the context of accuracy and precision as function of the samples’ size N is 

indispensable. The results show that it is possible to improve precision, i.e. decrease the interval or 

margin of error, while maintaining accuracy, i.e. repeatedly including in the given interval or within 

a margin of error the true mean of the parameter being measured, by sufficiently increasing N. 

However, this is not achievable by directly assuming normally distributed distribution. Applying 

standard theory of inference concepts with the normal distribution assumptions (or Student's t-

distribution) leads to very large errors and finally to erroneous or inconsistent conclusions. In this 

session, the results show that averaging over at least 200-300 points might be required to obtain a 

normally distributed distribution68. In order to obtain sample sizes of 10-30 data points, at least 2000-

9000 data points per experiment are acquired and hence the associated time-cost would be 

considerable17, 22, 69-71. A set of metrics to deal with accuracy and precision of force measurements 

and a protocol for measurements are employed, and a set of standards to compare between sample 

compositional heterogeneity with nanoscale force measurements is defined. The fundamental 
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principle behind the investigation deals with the very definition of reproducibility and repeatability 

in terms of accuracy and precision. Therefore, general criteria to ensure that these hold without 

restricting assumptions is established.  

Sapphire has been employed as a model system to establish accuracy and precision in the 

measurements and the convergence to a value as the sample’s size increases. Two parameters that 

can lead to systematic errors have been carefully considered. First, during a given experiment the tip 

radius R might vary due to wear – typically increasing R. In order to avoid such errors in our 

experiments, the tip’s effective radius was monitored in situ with the Ac method45 and remained 

constant which lies within the error of the Ac method. Second, variations in the position onto which 

the laser beam is reflected from the cantilever’s surface might lead to slight variations in the volt to 

meter conversion. To avoid this systematic error, the laser was aligned and adjusted for at least 30 

minutes prior to acquiring data. 

FDCs were collected on a sapphire surface at a constant rate of 0.5 Hz, i.e. 1 force profile every 

2 seconds. Sets of data of 5000 points or more were acquired continuously for hours. As an example, 

two force profiles have been plotted in Figure 3.8. One of them is n=100 (blue line), and the other 

one belongs to the same set of data (5000 points) for n=4000 (purple line), i.e. data points are 

separated in time by at least two hours. The fact that FAD ≈ -1 nN for these 2 data points provides that 

the tip radius R remained constant throughout the measurements since FAD should rapidly increase 

with R according to Eq. 4.   

A full set of raw data (light blue circles) collected continuously for ~5000 data points is shown 

in Figure 3.9. The data have been smoothened with the standard rlowess function of Matlab72 with a 

smoothing coefficient of 0.03 (continuous blue line). The mean of the 5000 data points is shown in 

the dashed black line. At this point, the metrics Accuracy Ratio (AR) and Interval of Error (IE) were 

defined; IE refers to a given radius of an interval throughout. 
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Figure 3.8 Two FDCs acquired on a sapphire surface. Blue line: n=100. Purple line: n=4000. 

 

 

 

Figure 3.9 A set of experimental raw data with 5000 data points. Light blue circles are raw data, black dashed line is the 

mean of this data set and blue line is the smoothened result using Matlab. 

 

First, accuracy is defined with the concept of AR to compute the confidence that the estimated 

mean, accounting for the error, i.e. an IE, will include the true mean within a given experimental set-

up. More thoroughly, if an AFM experiment was set up without readjusting or recalibrating 

cantilever-photodiode parameters, the constraint AR<0.05 means that any IE produced only will 

include the true mean at least 95% of the times the measurement performed. This concept is 

illustrated in Figure 3.10 where three intervals IE are shown. The first two on the left do not include 

the true mean (dashed lines) as indicated by crosses while the other one on the right does (tick). The 

AR metric produces AR=2/3≈0.66 indicating lack of accuracy or a confidence of 33%. 
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Figure 3.10 Illustration exemplifying the method to numerically compute accuracy of the intervals in a measurement. 

 

The focus here is on the detection or identification of the relative contrast necessary to establish 

heterogeneity in the context of repeatability within an experiment. Thus, the mean referred here is 

which would be measured if the measurement was conducted many times. Assumed that 1000-5000 

data points are enough to conclude that the true mean coincides with the estimation of the mean. 

Thus, the use of the term true mean should not lead to ambiguity. The IE provides the precision of 

the measurement. That is, the maximum resolution with which two properties can be distinguished.  

First, let’s assume that a Student’s t-distribution can be employed to define IE via confidence 

interval CI. These intervals IE(CI) are IE determined from a CI. From this, FAD can be written as the 

mean of the N data points <FAD> with a given uncertainty computed as 

𝐹𝐴𝐷 = 〈𝐹𝐴𝐷〉 ± 𝑡𝛼
2⁄

𝜎

√𝑁
       Eq.  19 

where the term in brackets is the sample’s mean <FAD>, σ is the estimate of the standard deviation, 

N is the sample’s size and tα/2 comes from a Student’s t-distribution for a given α (here 0.02). The 

error or precision is then defined by  

𝐼𝐸(𝐶𝐼, 𝑁) = 𝑡𝛼
2⁄

𝜎

√𝑁
        Eq.  20 

and coincides with the product between the 0.98 quantile of the Student’s t-distribution and the 

Standard Error (N -1 degrees of freedom). Eq. 20 is used to compute IE(CI) of data acquired on a 

sapphire’s surface for 4 different data sets (5000 data points each) as shown in Figure 3.11. The 

vertical axis corresponds to the IE(CI) at α=0.02 and the horizontal axis is the sample’s size N. 
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Figure 3.11 IE(CI) computed with four different data sets (5000 points each). 

 

Reproducibility has been tested by acquiring data in two ways. First, by not readjusting the 

system, the data was obtained with the first cantilever (continuous black lines), and then the data in 

dashed blue lines were obtained after stopping the data collection for several minutes. As shown in 

the figure, differences in IE(CI) with increasing N for these two data sets are minimal. Later, the data 

in continuous blue lines were obtained by using a different cantilever. With a third cantilever, the 

data in dashed black lines were obtained. A general outcome is that the IE(CI) consistently and 

monotonically decreases with increasing N. 

 

 

Figure 3.12 Normalized IE(CI) of four data sets (at N=100). 
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Practically, Eq. 19 and Eq. 20 imply that it is possible to increase precision by increasing N. 

Furthermore, the largest variations in IE occurs from changing cantilevers and readjusting the 

photodiode. Variations in σ as a function of N however were independent of experiment as shown in 

Figure 3.12 by normalizing IE(CI) at N=100 as 

𝐼𝐸(𝐶𝐼)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑡𝛼

2⁄
𝜎(𝑁)

√𝑁

𝑡𝛼
2⁄

𝜎(100)

√𝑁

        Eq.  21 

Figure 3.1.12 shows strong support that the assumption of 5000 data points suffices to reach 

high precision and are representative of the system under study.  

The IE(CI) metric has been put to test by employing a sapphire’s surface as a model sample. 

The data from Figure 3.1.11 has been grouped into sets of N=30 data points (Figure 3.13) and means 

(black dashed lines) and IE(CI)s (continuous blue lines) have been computed via Eq. 19 and Eq. 20.  

 

 

Figure 3.13 Calculated IE(CI)s with N=30. Black dots are means for N=30, black dashed line is the mean for N=5000, 

and blue lines are IE(IC). 

 

By inspection, most of the IE(CI) do not include the mean calculated with the 5000 data points. 

This situation does not improve by increasing the number of data points (Figure 3.14). The 

immediate practical implication from this would be erroneously conclusion that the sapphire surface 

presents nanoscale heterogeneity. A direct consequence from this conclusion is that the FAD depends 

on the number of points that the user takes. The objective of this study is to establish consistency 
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between measurements on a given location of a sample, so that comparisons between different 

locations of a sample, or different samples, can be carried out. Thus, this inconsistency needs to be 

solved.  

 

 

Figure 3.14 Calculated IE(CI)s with N=300. Black dots are means for N=300, black dashed line is the mean for 

N=5000, and blue lines are IE(IC)s. 

 

The normality of the data sets was established with the use of both the standard jbtest and 

lillietest normality tests from Matlab. This implies that a normal distribution could be obtained with 

means obtained from N=200-300 data68, and the data sets did not pass the test when averaging over 

smaller values of N. Now, the concept of AR is defined from the IE(CI) metric computed from Eq. 

19 and Eq. 20 

𝐴𝑅(𝐶𝐼, 𝑁) =
𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑 (𝐼𝐸(𝐶𝐼))

𝑇𝑜𝑡𝑎𝑙
       Eq.  22 

where N is the sample’s size employed to compute an IE(CI), excluded (IE(CI)) is the number of 

IE(CI)s that exclude the 5000 data points mean, and total refers to the total number of CIs (here 

5000/N). The AR(CI, N) metric addresses how well IE(CI)s do in including the mean of 5000 data 

points as a function of N (Figure 3.15). The IE(CI)s do best when including less than 30 data points, 

i.e. N<30. When averaging the data over N=30, AR(CI, 30)= 0.70 (70% of the intervals exclude the 

mean) and when averaging over N=300, AR(CI, 300)= 0.75 (75% of the intervals exclude the mean). 
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In summary, the AR(CI, N) metric is too large when employing IE computed with the use of  Eq. 

19 and Eq. 20.  

A metric that provides 1) an error interval that becomes smaller, i.e. higher precision, as N 

increases while 2) also providing accuracy, i.e. the intervals should include the true mean needs to 

be established. The method described earlier fails in the second requirement. Therefore, we turn to 

the mean and standard deviation estimates from the sample’s populations and construct a theory 

related to Chebyshev's inequality73. 

 

 

Figure 3.15 The behavior of AR(CI)s of four data sets with respect to N. 

 

The same data from Figure 3.11 has been employed to plot the behavior of the standard 

deviation σ (N-1 degrees of freedom) as a function of N (Figure 3.16). σ increases by≈20% from 

N=2 to N≈10, ≈10% from N≈10 to N≈100 (Figure 3.17). Considering σ as a function of N, FAD with 

errors from the estimate of σ can be written as  

𝐹𝐴𝐷 = 〈𝐹𝐴𝐷〉 ± 𝜆𝜎        Eq.  23 

where λ (λ>0) is a factor for selecting a given width for the error and can be related to the parameter 

k in Chebyshev's inequality. The precision of the measurement can be written as 

𝐼𝐸(𝜆) = 𝜆𝜎         Eq.  24
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The use of Eq. 23 and Eq. 24 now reduces to deducing λ that is consistent with the 

measurements. Therefore, an accuracy ratio AR(λ) can be written as  

𝐴𝑅(𝜆) =
𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑 (𝐼𝐸(𝜆))

𝑇𝑜𝑡𝑎𝑙
       Eq.  25

 

 

 

Figure 3.16 σ calculated from 4 data sets. 

 

 

Figure 3.17 σ of four data sets increases slightly as N increase. 

 

The above expression quantifies the accuracy of the measurement and can be employed to test 

the validity of Eq. 23. In particular, AR(λ)< 0.05 with a meaning similar to that of a CI of 95% 

would be desired. The dependence of AR(λ) on N and σ is shown in Figure 3.18. The vertical axis 

is AR(λ) and the horizontal axis stands for N. The values of λ are 0.5 (dashed black lines), 1 (dashed 

blue lines), 2 (continuous black lines) and 3 (continuous blue lines). AR(λ) monotonically decreases 
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with increasing N independently of λ. Yet, larger λ is required for the condition AR(λ) < 0.05 to 

apply with a small number of data points, i.e. N~10-100. This implies that higher precision requires 

more data points.  

 

 

Figure 3.18 AR(λ)’s behavior with respect to N. 

 

The actual values of AR in Figures 3.19 and Figure 3.20 are: AR(2)= 0.12 (N=30) and AR(2)= 

0.04 (N=100) where λ=2 throughout. The accuracy of the measurement is determined by the 

minimum number of data points required to reach a given accuracy in terms of AR(λ). Thus, if 

accuracy of 95% is required, a minimum value of N needs to be found such that AR(2)<0.05. The 

pair N=30 and λ=2 should be excluded since AR(2)>0.05 (N=30). The pair N=100 and λ=2 is 

sufficient for this experiment since AR(2)<0.05 (N=100). Since λ=2, the estimated error interval is 

IE(2)=2σ(N=100). That is, σ is ≈48 pN and the total uncertainty is ≈96 pN. Thus, heterogeneity 

could be established if the means in FAD of two materials were at least 96 pN apart. If more precision 

was required (smaller λ), larger N would be needed. The behavior of IE(λ) or precision with 

increasing λ is shown in Figure 3.21. The accuracy of the measurement increases with decreasing λ; 

while precision decreases with increasing λ. Here the small conclusion could be drawn: the accuracy 

increases with increasing λ and N while the precision increases with decreasing λ.  
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Figure 3.19 Calculated AR(2) with N=30. 

 

 

 

Figure 3.20 Calculated AR(2) with N=300. 

 

 

Figure 3.21 The behavior of IE(λ)s calculated with N=100 under different precision criteria. 

 

Next, a block copolymer polystyrene-b-polymethyl methacrylate (PS-b-PMMA) thin film was 

employed to exemplify the methodology explained above. The two phases (PS and PMMA) were 

identified (cross for phase 1 and triangle for phase 2). The characteristic cylinders of the PMMA17 

can be seen in Figure 3.22.   
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Figure 3.22 AFM scanning operated in the repulsive regime. Cross indicates phase 1 and triangle represents for 

phase 2. Scale bar of 100 nm. 

 

The aim is to establish the minimum number of points N necessary to accept the hypothesis that 

the two phases are different in FAD, and provide the IE (radii) with a given confidence level, i.e. 

95%. The minimum difference Dm is defined, accounting for errors, and computed using the metrics 

Eq. 23-Eq. 25. First, the difference between estimated means in the two phases is 

∆𝜇 = ‖〈𝐹𝐴𝐷(1) − 𝐹𝐴𝐷(2)〉‖        Eq.  26 

where (1) and (2) stand for the two phases under comparison and the parameters are identified with 

the estimates of the means μ1 and μ2 respectively, i.e. Δμ=μ2-μ1. If the IEs are computed from Eq. 

24, then Dm can be written as 

𝐷𝑚 = ∆𝜇 − 2𝜆𝜎∗        Eq.  27 

where σ* is the mean of the two standard deviations. While σ monotonically increases with N, the 

rate of change is so small that σ can be considered a constant in the context of Eq. 24 and Eq. 27. A 

constraint to determine nanoscale heterogeneity can now be written as 

𝐷𝑚 > 0         Eq.  28

 

or 

𝐷𝑚

𝜎∗ > 0         Eq.  29
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The advantage of Eq. 29 is that Dm is given in terms of σ. From Eq. 26 and Eq. 27, the minimum 

value of λ to establish nanoscale heterogeneity can also be estimated: 

 

∆𝜇

2𝜎∗ > 𝜆         Eq.  30

 

from which the critical value of λc can be written as 

𝜆𝑐 =
∆𝜇

2𝜎∗         Eq.  31

 

λ controls precision via Eq. 24 and this value cannot be selected arbitrarily for a given N since 

accuracy also depends on it from Eq. 25. The constraint AR(λ)<0.05 will ensure that estimates in 

FAD for a given material will be consistent in the repeatability and reproducibility of experiments 

while λ will control Dm that can be detected, i.e. precision.  

The values of Eq. 28 and Eq. 29 obtained for the PS-b-PMMA copolymer are given in Table 3 

as a function of λ and N while ensuring AR(λ)<0.05. A minimum of N=250 data points are required 

for an accuracy of AR<0.05 when λ=0.5. From the table, a minimum N≈80 (80 points per phase) is 

needed to ensure that Dm>0 with λ=1. Replicates (Rep) are given in Table 3 for λ= 0.5, 1, 2 and 3. 

The results imply that with N<100, differences in the order of 10-102 pN can be detected.  

In summary, we have shown that reporting the sample’s mean, standard errors and standard 

deviations only might lead to inconsistent conclusions. Then, a set of metrics have been introduced 

in terms of accuracy and precision in the measurements that have been shown to ensure 

reproducibility and repeatability in experiments. These metrics have been employed to conclusively 

establish the presence or absence of compositional heterogeneity via a given parameter derived from 

force measurements with a given number of data points N, and with a given margin of error while 

ensuring that the results are repeatable and reproducible. Finally, this work should aid to produce 

robust comparisons between data sets originating from nanoscale force measurements and will assist 

to produce repeatable and reproducible outcomes in the field. 
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Table 3 Numerical values for the minimum number of data points N to establish nanoscale heterogeneity from FAD (on 

PS-b-PMMA). Positive Dm/σ values are required to establish nanoscale heterogeneity and the minimum number N 

follows for a maximum value of λ, i.e. N≈80 and λ≈1. Expression (17) predicts a maximum λc≈1.5. 

minimum N λ AR mean difference  Rep.1  Rep.2  Rep.3  Rep.4  Rep.5 

250 0.5  <0.05 Dm [pN] 158 113 
   

Dm/σ 2.4 1.9 
   

80 1 <0.05 Dm [pN] 141 117 80 38 85 

Dm/σ 1.6 2.3 1.3 0.7 1.6 

12 2 <0.05 Dm [pN] -17 0 5 170 78 

Dm/σ -0.5 0 0.1 3.6 1.5 

4 3 <0.05 Dm [pN] -37 -138 -90 -78 -71 

Dm/σ -1.2 -3.6 -2.1 -1.8 -1.8 

 

o AFM cantilever details 

The AFM cantilevers employed in this section were OLYMPUS AC160TS with k  40N/m, f0  

300kHz, and Q factor  500. 

 

 

 

3.2 Hamaker coefficient 
 

o Introduction 

Rapid chemical mapping of substances with nanoscale resolution has been a target of 

nanotechnologists17, 74-75. The broader community relies on probing and identifying chemical 

substances via standard spectrometry methods that exploit electromagnetic radiation generating 

footprints associated to a wavelength of the electromagnetic spectrum at which resonance is 

observed76. The preference for such methods is based on robust and reproducible quantification and 

parameterization in measurements achieved by standard spectroscopy methodologies and the 

possibility to directly map a physically relevant parameter to chemical substances. To advance 

nanotechnology or nanosciences, higher lateral resolution is often mandatory77-78. While AFM 
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methods offer the possibility to enhance lateral resolution to sub-nm levels, quantification 

commonly requires very specialized equipment18, special environmental conditions such as ultra-

high vacuum74-75, 79 or the use of atomically flat surfaces74. Here, we set to map a parameter related 

to the sample’s chemical composition, i.e. the Hamaker coefficient H, directly from the standard 

observables in bimodal AFM via the non-invasive non-contact mode of operation whereby 

mechanical contact with the sample is avoided.  

 

o Sample preparation 

Highly Ordered Pyrolytic Graphite (HOPG) was cleaved with traditional scotch tape method 

and aged in air for more than 48 hours for the surfaces to reach thermodynamic equilibrium with 

the ambient air (Temperature at 23±2°C and relative humidity (RH) ~55±5%). Calcite samples were 

cleaved along (1014) plane and aged in ambient conditions for more than 48 hours for heterogeneity 

to form on the surfaces and be visible in the AFM data acquired here. (1H,1H,2H,2H perfluorodecyl) 

acrylate (PFDA) samples were provided by Prof. Gleason. The PFDA was deposited on Si wafer 

with the use of the Initiated Chemical Vapor Deposition (iCVD) method. 

 

o Bimodal AFM operation  

The AFM was operated in standard bimodal AFM by keeping the perturbed amplitude, A1 or 

Asp, of the first mode constant while imaging and allowing the phase shifts of the first and second 

modes and the amplitude of the second mode respond freely to the tip-surface force. AFM 

cantilevers were excited at the first 2 modal resonance frequencies. The 2 resonance frequencies 

were determined by thermal analysis of the cantilevers near the sample surface (~50 nm). The 

effective tip radii were calculated through the Ac method45. The Ac value was kept monitoring 

throughout at intervals of 10 to 30 minutes in between experiments. If no reasonable variations in 

the Ac value were observed, we assumed the tip remained constant at R≈10 nm as reported by the 

manufacturer.  
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o AFM cantilever details 

The AFM cantilevers employed in this section were OLYMPUS AC160TS with k  40N/m, f0  

300kHz, and Q factor  500 for the force reconstruction method, and OLYMPUS AC240TS with k 

 2N/m, f0  70kHz, and Q factor  100 for the bimodal operation. 

 

o Results and discussions 

The objective here is to routinely produce maps that is recognized by the broader scientific 

community, i.e. the H coefficient, with nm or sub-nm resolution. Thus, let’s recall Eq. 343, 49-50 and 

rewrite it as 

𝐹 ≈ −
𝑅𝐻

6𝑑2         Eq.  32 

where d is the tip-surface distance. The parameter H has many advantages. For example, it can be 

tabulated and associated to a given chemical substance59, it can be derived from fundamental and 

well-known properties of a material, such as the dielectric constant and the refractive index, and can 

be derived from fundamental quantum field theory50, 80. Physically, the Lifshitz theory shows that 

an effective H value can be found to apply in Eq. 32 and account for London dispersion (frequency 

dependent) forces, permanent (Keesom) and permanent-induced (Debye) dipoles (zero-frequency 

contributions)50. Here, the experimental H is an effective H that accounts for such broad range of 

phenomena is assumed. Then, provided R is known, the peak force in a single oscillation of the 

cantilever in dynamic AFM can be written as 

 𝐹 (𝑑𝑚𝑖𝑛, 𝐻) ≈ −
𝑅𝐻

6𝑑𝑚𝑖𝑛
2        Eq.  33 

where dmin is typically referred as the minimum distance of approach81. In bimodal AFM the virial 

V expressions, forming the basis of the bimodal theory82-84, can be written as 

𝑉𝑚(𝑑𝑚𝑖𝑛) ≡
1

𝑇
∮ 𝐹𝑧𝑚𝑑𝑡 = −

𝐴𝑚(𝑑𝑚𝑖𝑛)𝑘𝑚𝐴0𝑚

2𝑄𝑚
𝑐𝑜𝑠 𝜙𝑚(𝑑𝑚𝑖𝑛)  Eq.  34 
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where m stands for mode number, i.e. m=1 and 2 respectively in bimodal AFM, F is an arbitrary 

tip-sample force, Am is the oscillation amplitude, A0m is the free or unperturbed oscillation amplitude, 

Qm is the quality factor- for simplicity, A01 ≡ A0, A1 ≡ Asp and as customary in dynamic AFM (Figure 

3.23). Then, by combining Eq. 33 and Eq. 34 

𝑑𝑚𝑖𝑛 + 𝑏𝑑
𝑚𝑖𝑛

2
3⁄

+ 𝑐 = 0       Eq.  35  

where dmin is the only unknown since b and c can be written in terms of the known parameters. The 

H coefficient then follows as85 

𝐻 = −
3𝜋𝑘2𝐴02 𝑐𝑜𝑠 𝜙2

0.83𝑅𝑄2𝐴2
√𝑑𝑚𝑖𝑛

5 𝐴𝑠𝑝      Eq.  36 

 

 

Figure 3.23 Scheme of the geometrical and operational parameters and excitation in bimodal AFM. From the four 

experimental observables the H is computed explicitly for each pixel in the image. 

 

Bimodal AFM images were obtained in standard bimodal13 AFM operated in the AM mode for 

the HOPG sample, i.e. constant first mode amplitude where Asp is “locked” and employed to recover 
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standard topography13, 17, 83. Eq. 32 applies only at d large enough with no mechanical contact43, 50 

and should be controlled in the experiments. In dynamic AFM, the tip-sample proximity d is known 

to be controlled via the operational parameters A0 and set-point Asp
86-88. In short, when above the 

critical amplitude Ac, mechanical contact occurs during the interaction45. Here, A0
C =A0/Ac and a set 

point ratio Ar=Asp/A0 are defined, and we work at A0
C<2/3. The experimental results obtained in 54 

bimodal images on an HOPG sample with 5 different cantilevers and 3 different AFM users are 

shown in Figure 3.24 for H vs Ar, in Figure 3.25 for H vs A0
C and in Figure 3.26 for H vs Ar and 

A0
C. The black circles account for the mean of each experimental image (256x256 pixels per image) 

and the best fits (obtained with standard libraries in the R language) are also shown. The coefficients 

of determination were 0.13, 0.68 and 0.77 for H vs Ar, A0
C and Ar -A0

C implying that the main 

controlling parameter is A0
C. Here we focus on the range at which the values of H obtained in the 

bimodal images approximately match the values obtained by fitting Eq. 33 to the FDCs. Thus, the 

data indicates that provided A0
C ≈0.5-0.6 (Figure 3.26) the effective H obtained via the bimodal 

images approximately matches the results from FDCs.  

 

 

Figure 3.24 Experimental results (circles) for H as a function of Ar. 
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Figure 3.25 Experimental results (circles) for H as a function of A0
C. 

 

 

Figure 3.26 Experimental results (circles) for H as a function of Ar -A0
C. 

 

Table 4 Table presenting experimental parameters, H values obtained from FDCs, bimodal images, the Lifshitz 

theory, and errors for HOPG, mica, calcite and PFDA. 

 
Asp  [nm] A0 [nm] Ar Ao 

C HIMG [aJ] H LT [aJ] ∆HLT %  HFIT ∆HFIT % 

HOPG 1 3.12 4.77 0.65 0.28 0.016 0.132 -737 0.150 -851 

HOPG 2 12.41 15.90 0.78 0.60 0.129 0.132 -2 0.150 -16 

mica 1 3.93 4.34 0.90 0.22 0.013 0.080 -528 0.100 -686 

mica 2 9.97 12.19 0.82 0.56 0.128 0.080 37 0.100 22 

calcite 1 3.21 4.13 0.78 0.31 0.019 0.081 -326 0.031 -63 

calcite 2 5.83 7.04 0.83 0.53 0.030 0.081 -170 0.031 -3 

PFDA 1 3.74 4.95 0.75 0.58 0.010   0.014 -41 

PFDA 2 3.33 5.30 0.63 0.63 0.017   0.014 17 
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A summary of the results is provided in Table 4 for images obtained at A0
C≈1/4 and A0

C≈0.6 

for the HOPG and mica samples. The set of data provided in Table 4 consists of; Asp, A0, Ar, A0
C, 

HIMG (mean H obtained from the bimodal image), HLT (H predicted by the Lifshitz theory), HFIT (H 

obtained from the fit from FDCs), the error in H from the image relative to the prediction by the 

Lifshitz theory (∆HLT) and the error relative to the fit (∆HFIT) – errors are given in %. Figure 3.27 

shows an example of HFIT from experimental reconstructed FDCs. 

 

 

Figure 3.27 Raw experimental (red dots) HOPG and b) PFDA FDCs and (blue lines) best fits obtained by employing 

standard linear regression on the raw data. 

 

Data is also provided in Table 4 for a PFDA sample89 (Figure 3.27) and a calcite sample (Figure 

3.28). The PFDA sample presents chemical heterogeneity in the 1-2 nm range90 which complicates 

manually selecting a given homogeneous position on the surface to probe chemistry as opposed to 

the HOPG and mica samples. Thus, the HFIT values obtained from FRCs in Table 4 for PFDA are a 

mean average of the heterogeneous surface. Bimodal images however can provide information in 

the 1-2 nm range14, 16 while simultaneously providing a quantitative value for H with such resolution. 

The calcite sample displays two distinct regions when the sample is exposed to the ambient air. This 

is the heterogeneity that we observed on the calcite surface for which FDCs and images were 

acquired. An H value can be computed from the two regions directly from the FDCs. The values 

that resulted from force profiles were H ≈ 0.047 and 0.015 aJ for the two phases respectively.  
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Figure 3.28 H map of PFDA obtained in bimodal AFM. Scale bar: 10 nm. 

 

 

Figure 3.29 H map of calcite obtained in bimodal AFM. Scale bar: 75 nm. 

 

The H map in Figure 3.27 agrees with that the PDFA sample presents chemical heterogeneity 

in the 1-2 nm range89-90. Cross sections corresponding to the H images are shown for PFDA (Figure 

3.29) and calcite (Figure 3.30). Crests and troughs of the cross-sections of H are found in the sub 

2nm range – as measured at half height (Figure 3.29). The raw data in presented as blue dots per 

pixel and a smoothened fit (blue lines) obtained with the use of the smoothing rloess function in 

Matlab (10% span).  
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Figure 3.30 Cross sections of the H map of PFDA corresponding to the dashed lines in Figure 3.27. 

 

 

Figure 3.31 Cross sections of the H map of calcite corresponding to the dashed lines in Figure 3.28. 

 

o Conclusion 

In short, a theory of bimodal AFM has been presented that can be employed to recover an 

effective value of the Hamaker coefficient H directly from experimental observables while imaging 

in standard bimodal AFM in the non–invasive attractive mode of operation. The values of H 

obtained from such computation are in good agreement with the standard Lifshitz theory and with 

the fits resulting from experimental FDCs. In addition, a simple methodology has been further 

presented to optimize the range of operational parameters for which H is in closest agreement with 

the standard Lifshitz theory.  
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Chapter 4 

 

 
 

Validation of Methodology 

 

 

In this Chapter, validation of previously described methodology is presented. Various materials 

were prepared and investigated including CaCO3, TiO2, and Si. Results are arranged as case study style 

that put together motivation, sample preparation, discussion and conclusion as a comprehensive section 

for each material. 
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4.1 CaCO3 

 

o Motivation 

Waterflooding is the dominating secondary recovery strategy used in the oil industry for its 

efficiency and economic feasibility91. One of the most important factors affecting the efficiency of 

waterflooding processes is the wettability of porous surfaces within reservoir rocks92, which carry 

the inherent complexity of the physical morphology and the chemical composition. While the former 

includes permeability, pore connectivity, and pore size distribution in the reservoir, the latter links 

with the molecular interactions between the different phases crude oil, brine and rock (CBR). 

Studies relating to this have been extensively performed91-96, but a conclusive understanding of the 

parameters including the intrinsic properties of the material composing the reservoir and the 

extrinsic conditions that the reservoir has been subjected to has not yet been completely obtained. 

It has been shown that oil recovery of the carbonate reservoirs can be improved by altering the 

reservoir wettability97-99 to slightly water-wet. However, the fundamental understanding of reasons 

behind this improvement remains elusive91. Due to the lack of spatial resolution, macroscopic 

techniques fail to provide information for the wetting behavior within the pore, hinting higher spatial 

resolution measurements, i.e., in submicrometer to micrometer range, are needed.  

Calcite (CaCO3) with rhombohedric crystallographic structure is the most common carbonate 

mineral used to represent the rock formation100 and the most stable polymorph of calcium carbonate. 

In addition to the intrinsic properties of the material, i.e., cleavage planes, the wetting history, i.e., 

the calcite being wetted first by water or oil, is also expected to play a role in affecting the wettability 

of calcite. Furthermore, upon exposure to the environment, surface wettability changes due to 

adsorption of atmospheric contaminants29, 101.  
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o AFM cantilever details 

The AFM cantilevers employed in this section were OLYMPUS AC160TS with k  40N/m, f0 

 300kHz, and Q factor  500. 

 

o Sample preparation 

Calcite Iceland spar was mechanically cleaved along the (1014) cleavage plane with a hammer 

with gloves and handled carefully to avoid contamination from the environment due to aerosol 

adsorption. Calcite cleaves along the unit rhombohedron labeled as plane 1 as the perfect cleavage 

plane and was confirmed with x-ray diffraction XRD with rotating sample stage to reduce the 

preferred-orientation effect as shown in Figure 4.1. 

 

 

Figure 4.1 Calcite Iceland spar used in this study and the XRD spectrum (peak at 29.4) showing the plane of (1014). 

 

o Results and Discussions 

We examine the wettability of the (10 1 4) calcite cleavage plane upon exposure to the 

atmosphere. We aimed to show the nanoscale measurements based on the AFM techniques 

described in the previous chapter are able to describe macroscale wettability indicating it is possible 

to assess the pores wettability with improved spatial resolution approach. 
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First, macroscopic measurements, i.e., water contact angle measurements, were carried out to 

evaluate the wettability of calcite when exposed to ambient conditions. As shown in Figure 4.2, 

freshly cleaved (1014) plane exhibited superhydrophilic property with contact angles (CA) smaller 

than 5°. Here, when calcite was freshly cleaved, we defined t=0h. Upon aging, CAs increased and 

reached 73.8±8.5° after 120 hours of cleaving. The AFM root-mean-square (RMS) roughness 

examination of the surface difference between as cleaved and after 24h exposure is 50 pm, showing 

the morphological variation is negligible and cannot be responsible for such wettability alteration. 

Yet, as shown in Figure 4.3, AFM phase imaging - which provides information on the surface 

chemical composition102 - presented contrasts, implying the formation of chemistry heterogeneity 

as a consequence of exposure to ambient conditions. 

 

Figure 4.2 Time dependent contact angles for calcite (1014) plane. 
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Figure 4.3 AFM phase image for calcite (1014) plane. Scale bar: 500 nm. 

 

With this finding, we recorded the phase contrasts of the AFM scan with aging time, i.e. from 

t=0h to t=10h, to study the development of chemistry heterogeneity of calcite surfaces. As shown 

in Figure 4.4 (a), no contrast was present in phase images at t=0h: we called this state of pure calcite 

1st phase. With time elapsed, 2nd phase emerged in the form of lighter color. We can see from the 

figure that the 2nd phase established from the surface steps edges and formed continuous patches 

over the scanned area. As shown in Figure 4.4 (b), the increase in the 2nd phase percentage is linear 

with R2 > 0.97. The presence of surface heterogeneity strengthens the need for micro to nanoscale 

understanding of the surface properties. 
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Figure 4.4 (a) Time sequence AFM phase images for (1014) plane. Scale bar: 500 nm. (b) show the percentage of 

2nd phase growing with time. 

AFM force spectroscopy technique was also performed to quantify how the calcite 

surface properties changed when the 2nd phase appeared. Bimodal distribution103 in the adhesion 

force FAD can be clearly seen in Figure 4.5. Since Rtip was monitored throughout the experiments 

ensuring no change occurred, FAD here is then solely affected by sample surface properties, 

indicating that the two phases present on the calcite surfaces are chemically different. In 

addition, both AFM force measurements and AFM phase images showed that chemistry 

heterogeneity develops as freshly cleaved calcite is exposed to the ambient conditions, and 

consequently changes the surface properties. 

 

 

Figure 4.5(a) Force profiles for both phases on (1014) plane. (b) Histogram of FAD for the 1st and 2nd phase. Blue 

and green dots represent for experimental data while the continuous lines stand for averaged force curves. 

 

Furthermore, by invoking the relationship between FAD and the surface energy γ (Eq. 4) 

, together with the 2nd phase growth rate presented in Figure 4.4, we could estimate the change 

in effective adhesion force FAD of a certain area and normalize the change with respect to the 

FAD value at t=0h to disregard the uncertainty in evaluating the true value of Rtip. Therefore, we 

could have: 

 𝐹𝑖
∗ =

|𝐹𝐴𝐷,𝑖|

|𝐹𝐴𝐷,0|
=

𝛾𝑖

𝛾0
        Eq.  37 
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where F*
i stands for normalized effective FAD at time i. For macroscopic measurements, by 

recalling Young-Dupré relation, we have: 

 𝑊 = 𝛾𝐿(1 + 𝑐𝑜𝑠𝜃)        Eq.  38 

where W is the work of adhesion, γL is the surface energy of water and θ is the contact angle. 

By normalizing the change at t=0h, we could compare the results in macro- and nanoscale. That 

is, normalized macroscale parameter W can be written as: 

 𝑊𝑖
∗ =

𝑊𝑖

𝑊0
=

(1+𝑐𝑜𝑠𝜃𝑖)

(1+𝑐𝑜𝑠𝜃0)
        Eq.  39 

where W*
i represents normalized work of adhesion of time i. In Figure 4.6, by plotting F*

i 

together with W*
i, the macroscale and nanoscale measurements show good agreement as linear 

regression test showing that the fitting slopes had no significance difference. W*
i determines the 

strength of the water contact macroscopically and F*
i captures at the nanoscale adhesion forces 

variation. Nevertheless, while like W*
I, F

*
i is capable of describing the surface wettability, F*

i 

holds additional advantages that it studies the calcite surface with higher spatial resolution.  

 

 

Figure 4.6 Macroscopic and nanoscopic measurements trend on (1014) plane. 
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FTIR experiments were then performed to investigate the possible composition of 2nd 

phase. A newly cleaved calcite (1014) plane was put under to mid-IR beam and then left 

exposed to the ambient air. IR spectrum at t=0h was taken as the baseline signal and compared 

with the spectra after 24 hours of exposure: the increase in spectra peaks intensity will indicate 

the surface composition variation. Figure 4.6 shows the absorbance spectra of (1014) plane. In 

the figure, the peak at 2400 cm-1 belongs to the instrument artifact signal which fluctuated in 

every measurement independent of users and samples. The only variance in the spectrum falls 

in 3200-3600 cm-1 which belongs to O-H stretching signal, while the C-O bending and 

stretching vibrations of calcite characteristic peak104 in 1420 cm-1 show no difference. The 

increase in O-H bonding signal could be the result of loosely bound water on the surface as 

reported earlier. In order to reach thermodynamic equilibrium, freshly cleaved calcite adsorbs 

water from the humid air forming hydrated105 CaCO3 to minimize the surface energy.  

 

 

Figure 4.7 FTIR spectrum shows the change in peaks intensity of aged calcite (1014) plane 
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o Conclusion 

We have shown that freshly cleaved calcite undergoes the wettability transition from 

superhydrophilic/hydrophilic to hydrophobic after exposure to ambient conditions for 120 h by 

adsorbing water from the environment and forming hydrated CaCO3. The presence of hydrated 

CaCO3 film is supported by FTIR spectra. Corroborating nanoscale measurements allow us to study 

calcite surface properties with finer spatial resolution.  

 

 

4.2 TiO2 

 

o Motivation 

Titanium dioxide (TiO2) attracts a lot of research interests for its suitable for many 

applications106-109. It has been commercially exploited as it has the ability to combine the effect of 

photocatalysis and photoinduced, specifically UV-induced, hydrophilicity. UV light could induce a 

large number of surface oxygen vacancies and dangling bonds generation and facilitate the 

molecular water dissociative adsorption110-111. 

Water contact angle measurements have been widely used to study TiO2 macroscopic wettability 

during and after UV exposure. However, the nanoscale mechanisms of the photoinduced wettability 

and the changes in surface chemistry are difficult to assess. Previous studies of TiO2 wettability112-

113 have shown that it is difficult to decouple the effects of surface chemistry, i.e., crystal 

arrangement and hydroxylation, from those of morphology.  

Better understanding of the wettability properties of TiO2 films could lead to improving TiO2-

based self-cleaning coatings. However, for indoor applications where UV light is limited, such 

coatings lose their superhydrophilic properties. Therefore, developing a means of inducing 

permanent hydrophilicity in the TiO2 film that is not dependent on UV illumination would be highly 

desirable. High-temperature annealing treatments are found to be one possibility, which is already 
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widely used in thin film fabrication since it reduces the strain generated during the fabrication 

process and modifies the film crystallinity, morphology, and adhesion to the substrate. Therefore, 

annealing may induce desirable changes in the TiO2 surfaces. 

 

o AFM cantilever details 

The AFM cantilevers employed in this section were OLYMPUS AC240TS with k  

2N/m, f0  70kHz, Q factor  100, k  80 N/m, f2 ≈ 420 kHz, and Q2  400. 

 

o Sample preparation 

Deposition of TiO2 films were carried out on 25 × 75 mm2 soda-lime glass substrates (Sigma-

Aldrich) with e-beam evaporation. Acetone and isopropanol (10 min for each) were used to clean 

the substrates with an ultrasonic bath. 99.9% pure TiO2 (Plasmaterials) pellets (1−3 mm) were used 

as source materials in the Temescal BJD-2000 e-beam evaporation system. The deposition chamber 

was vacuum pumped to 3.0 × 10−6 Torr, and the substrates were rotated at 40 rpm during the 

deposition. The electron gun voltage and the deposition rate were 10 kV and 1 Å  s−1 and obtained a 

final thickness of 250 nm. After deposition, films were annealed in air using the following program: 

first heating to 475 °C (ramp rate: 10 °C/min), 5 min at 475 °C, heating to 500 °C (ramp rate: 2.5 

°C/min), and 4 h at 500 °C. Apart from 500°C, another batch of films was annealed at 350 °C 

following a similar temperature program. We labeled the samples without thermal treatment “as-

deposited TiO2”, whereas “350-TiO2” and “500-TiO2” refer to the samples that were annealed at 

350 and 500 °C, respectively. 

 

o Results and Discussions 

In this study, the AFM techniques described in the previous chapter is incorporated with 

macroscopic measurements, i.e., the water static contact angle (SCA), to develop a more 

comprehensive understanding of TiO2 thin film surface modifications.  
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TiO2 thin film surfaces are first checked with AFM imaging. Figure 4.8 shows the AFM 

topography and phase images for as-deposited and annealed samples. As-deposited TiO2 and 350-

TiO2 present similar morphology, while 500-TiO2 surface displayed some structures that were 

further analyzed with XRD measurements. Figure 4.9 shows the XRD patterns of the TiO2 films for 

as-deposited and annealed samples showing that the film becomes crystalline after annealing at 500 

°C with the peaks characteristic of the anatase phase114 located at 2θ = 25.33, 37.82, 48.08, and 

55.12°, which can be indexed as the (101), (004), (200), and (211) planes.  

 

 

Figure 4.8 AFM topography image of as-deposited TiO2 (a), 350-TiO2 (b), and 500-TiO2 (c) and AFM phase image of 

as-deposited-TiO2 (d), 350-TiO2 (e), and 500-TiO2 (f). 
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Figure 4.9 XRD diffractogram of as-deposited TiO2, 350-TiO2, and 500-TiO2, in which the dashed black diffractogram 

is a reference XRD of pure anatase. 

 

Figure 4.10 shows that the CA of the as-deposited films before UV irradiation is 96 ± 10°, 

exhibiting hydrophobic characteristics. On the other hand, the 350-TiO2 sample showed 

intermediate behavior (CA = 45 ± 8°), while the 500-TiO2 sample is moderately hydrophilic with 

CA = 20 ± 7°. After a 150 min exposure period to UV light, the water droplet spreads out on the 

film surface almost completely, yielding small CAs smaller than 10° for all the samples. Similar 

trends were observed with TiO2 films prepared by different deposition techniques like MOCVD115 

(metal organic chemical vapor deposition), the sol−gel process116, and radio-frequency magnetron 

sputtering117. However, the temporary range needed for those samples to switch from hydrophilic 

back to hydrophobic after discontinuing UV irradiation ranged from a few hours to a maximum of 

3 days. Yet, the samples presented in this study have much more stable hydrophilicity characteristics 

after being exposed to UV irradiation for 150 min. This is confirmed by the CA measurements that 

equal 18 ± 5, 35 ± 5, and 60 ± 6° for 500 TiO2, 350-TiO2, and as-deposited TiO2, respectively, after 

3 months of storage under dark conditions. Thus, the result obtained with 500-TiO2 is improved in 

terms of long-lasting hydrophilicity. 

 



 53 

 

Figure 4.10 Time evolution under UV irradiation of the CA for as-deposited TiO2, 350-TiO2, and 500-TiO2, along with 

CA after 3 months of storage in the dark. 

 

As material wettability is affected by morphology and surface chemistry118-121, the surface RMS 

roughness of TiO2 thin film samples has been examined. The RMS roughness before and after UV 

irradiation are 3.7 ± 1.1 and 4.1 ± 0.6 nm for as-deposited TiO2, 4.8 ± 3.8 and 4.1 ± 3.2 nm for 350-

TiO2, and 13.6 ± 1.5 and 11.3 ± 1.8 nm for 500-TiO2. This small difference in the RMS roughness 

values before and after UV treatment for these samples implying the wettability alteration of the 

TiO2 thin film should not be attributed to morphological changes. However, since 500-TiO2 presents 

a higher roughness than as-deposited and 350-TiO2, to fully assess the effect of roughness on 

wettability, the following Wenzel equation has been employed to estimate contact angle for the 

smooth surface122-123: 

𝑐𝑜𝑠 𝜃𝑚 = 𝑟 𝑐𝑜𝑠 𝜃𝑌         Eq.  40 

where θm is the experimentally measured contact angle, r is the roughness factor, and θY is the 

calculated contact angle for a perfectly smooth surface. We obtained calculated θY values of 96.3, 

45.1, and 26.5° for as-deposited, 350-TiO2, and 500-TiO2 samples before UV treatment and 11.3, 

9.3, and 18.5° after UV treatment, respectively. The detailed CAs are recorded in Table 5. The 

calculated contact angle θY for as-deposited TiO2 and 350-TiO2 before and after UV treatment are 

within the CA experimental measurement error, i.e., θY ∈ [θm − error, θm + error], yet this is not the 

case for 500-TiO2. This indicates that the RMS roughness of the 500-TiO2 film plays a role in 
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affecting the hydrophilic properties of the surface. That is, the more hydrophilic character of 500-

TiO2 may be the result of roughness of the surface. However, the wettability variation resulting from 

UV exposure is dependent on a significant change in surface chemistry. Additionally, as mentioned 

before, the hydrophilic properties of TiO2 thin films are preserved for a longer time in the absence 

of UV when the film has been treated at 500 °C. 

 

Table 5 Detailed m and Y for As-Deposited TiO2, 350-TiO2, and 500-TiO2 before and after UV Treatment. 

 Before UV After UV 

m Y m Y 

as-deposited TiO2 96 ± 10° 96.3° 9 ± 2° 11.3° 

350-TiO2 45 ± 8° 45.1° 7 ± 2° 9.3° 

500-TiO2 20 ± 7° 26.5° 6 ± 2° 18.5° 

 

 

 

Figure 4.11 Hamaker mapping of as-deposited TiO2 (a), 350-TiO2 (b), and 500-TiO2 (c) before UV irradiation and as-

deposited-TiO2 (d), 350-TiO2 (e), and 500-TiO2 (f) after UV irradiation. 
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The variation in surface chemistry was examined by comparing the Hamaker coefficient values 

for all three samples before and after UV exposure. To avoid complications in this work, we 

normalized Hamaker coefficients85 by the value before UV exposure so that we can evaluate the 

change is an easier way. As presented in Figure 4.11, we could see increased Hamaker coefficient 

values after UV exposure of 94.9, 155.6, and 52.7% for as-deposited TiO2, 350-TiO2, and 500-TiO2. 

To further look into the reasons behind how annealed TiO2 could possess such properties, the 

amplitude versus distance curves recorded via AFM have been analyzed as shown in Figure 4.12. 

The six cantilever oscillation amplitude (A1) versus distance (Zc) curves represent as-deposited and 

350-TiO2 and 500-TiO2. A negative slope at small Zc curves after UV exposure can be seen in the 

figure. As it has been explained in the previous chapter that this feature indicates the presence of a 

nanoscale water layer on the sample surface56, 124 and thereby demonstrates the nanoscale 

hydrophilicity of the UV-treated surfaces.  

 

Table 6 Adhesion Force for As-Deposited TiO2, 350-TiO2, and 500-TiO2 before and after UV Treatment. 

 Before UV After UV 

 FAD (nN) Standard error FAD (nN) Standard error 

as-deposited TiO2 0.76 0.25 0.84 0.34 

350-TiO2 0.62 0.28 1.71 3.21 

500-TiO2 2.82 1.64 6.84 2.54 

 

In addition, when reconstructing the tip-sample interaction force profiles, the FAD extracted from 

the profiles is 0.76 ± 0.25 nN for as-deposited TiO2, 0.62 ± 0.28 nN for 350-TiO2, and 2.82 ± 1.64 

nN for 500-TiO2. By using Eq. 4, we know that a larger FAD yields a larger surface energy, and 

hence a smaller contact angle is expected. The results of 500-TiO2 samples having a higher FAD are 

in consistent with the macroscopic CA measurements. The detailed adhesion force for all of the 

samples before and after UV treatment is recorded in Table 6.  

 



 56 

 

Figure 4.12 AFM probe A1 versus Zc curves for as-deposited TiO2 (a), 350-TiO2 (b), and 500-TiO2 (c) before UV 

irradiation and for as-deposited TiO2 (d), 350-TiO2 (e), and 500-TiO2 (f) after UV irradiation. 

 

With the force reconstruction method, we obtained information on a single point of the studied 

sample. To get FAD for a larger region, we employed Bimodal-SASS method124 to acquire data for 

calculating the tip−sample interaction force while scanning. As a prerequisite of this technique that 

the AFM probe oscillating in the negative slope region highlighted in Figure 4.12 with green circles, 

and it could not be performed in the absence of UV irradiation. Figure 4.13 shows average force 

maps for all of the samples after UV irradiation. All three samples exhibited heterogeneity on the 

nanometer scale. Furthermore, for the sample annealed at 500 °C and highlighted by red circles, it 

shows larger TiO2 crystals, and are characterized by a higher adhesion force: both factors are thought 

to be responsible for the lower CAs and the higher FAD for the 500-TiO2 samples. 

 

 

Figure 4.13 Average force maps for as-deposited-TiO2 (a), 350-TiO2 (b), and 500-TiO2 (c) after UV irradiation 



 57 

o Conclusion 

The wettability alteration of e-beam-evaporated TiO2 thin films with modification of annealing 

at 350 and 500 °C and UV exposure have been studied with nano- and macroscale characterization 

techniques. It has been shown that the TiO2 films exhibit crystallization in the anatase polymorph 

after being annealed at 500 °C. 500-TiO2 (CA ∼20°) is found to be substantially more hydrophilic 

than 350-TiO2 (CA ∼45°) and as-deposited TiO2 (CA ∼96°) without UV irradiation. The reasons 

causing this difference in wettability can be attributed to the RMS roughness of the samples and 

FAD, which is smaller for as-deposited and 350-TiO2 samples than for 500-TiO2. The higher FAD of 

500-TiO2 indicates the higher surface energy than the other two samples, resulting enhanced wetting 

properties. AFM observations provided indisputable evidence of an adsorbed water layer on all the 

UV-exposed samples. Force mapping techniques showed that the crystalline part of the 500-TiO2 

sample exhibited an increased FAD. On the basis of this, it was proposed that the hydrophilicity of 

the 500-TiO2 film is a result of this partially crystallization and the consequent surface chemistry 

modification instead of being a mainly morphology-dependent effect. In addition, the annealing 

process and the annealing temperature prolong the TiO2 film hydrophilic properties as CA 

measurements of 500-TiO2, 350-TiO2, and as-deposited TiO2 were ∼18, ∼ 35, and ∼60°, 

respectively, after 3 months of aging in the dark. With these results, the nanoscale mechanisms that 

determine the wetting properties of TiO2 films have been shown to improve hydrophilicity 

performance. The effectiveness of annealing TiO2 thin films above 350 °C to induce UV-

independent hydrophilicity may suggest an alternative pathway to designing multipurpose 

indoor/outdoor coatings. 
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4.3 Si 
 

o Motivation 

CA measurements are often involved in wettability studies as the primary approach - a method 

to assess the degree of wetting putting a droplet of liquid in contact with a solid surface. When 

considering an ideal solid surface, which is flat, rigid, chemical homogeneous, nonreactive, and 

insoluble, the equilibrium contact angle captures the minimal Gibbs free energy of the solid/drop 

system. Yet when encountering rough surfaces, the Gibbs free energy of the system would 

encompass an extra variable f, in addition to the apparent contact angle, θ. For this rough surfaces 

case, Wenzel123, Cassie and Baxter125 established the basis for studying equilibrium rough surfaces 

wetting many years ago by thermodynamically modeling the entire system and providing equations 

that give the relationship between an apparent CA describing the wetting state and the Young 

contact angle. Both Wenzel and Cassie−Baxter equations are applicable in macroscopic scale when 

the droplet is sufficiently large, in comparison to the roughness scale. However, in microscale 

wettability where chemical heterogeneity plays an important role, these equations could not provide 

an accurate model. The lack of spatial resolution in traditional methods gives out the message that 

it is necessary to discern the role of chemistry and morphology to study microscale wettability. 

There is a good example illustrating the importance of well-characterization of microscale 

wettability from the oil industry. In waterflooding-based enhanced oil recovery (EOR), especially 

for sandstone-like reservoirs, the most important factor affecting the efficiency of waterflooding 

processes92 is the wetting properties of the reservoirs. Hence, the influence of wettability on the 

efficiency of this process has been extensively studied, but still lacks a satisfactory understanding. 

The key of this problem lies in the physical morphology and chemical composition of the core since 

these factors influence the behavior of a reservoir and determine the relative permeability and 

distribution of fluids inside of it. 
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o AFM cantilever details 

The AFM cantilevers employed in this section were OLYMPUS AC160TS with k  30N/m, f0 

 280kHz, and Q factor  400. 

 

o Sample preparation 

Periodically staggered structures on a Si substrate were created with E-beam lithography (Raith 

e-LINE). Among the structures, the characteristic diameter of the pores is ~180 nm with the depth 

~120 nm and lattice constant of 510 and 270 nm (Figure 4.14). A new Si wafer was diced and 

sonicated with acetone and IPA (each step ~5 min), then immersed in DI water ~1 min to remove 

any trace of solvent. Then, the wafer was annealed at 200 °C for 30 min. PMMA A2 (950K) was 

used as an ebeam positive resist. After spin coating with HMDS and PMMA A2 (3000 rpm for 60 

s) and prebaking (softbaking) at 180 °C for 90 s, the resist thickness was measured with as a 

Filmetrics F40-UV reflectometer and with reading of 72 nm. The pattern was imprinted on a 1.4 × 

1.4 mm2 area. An acceleration voltage (EHT) of 25 kV and an aperture size of 20 μm were chosen 

to obtain the necessary resolution, and to reduce the time of the large-area patterning. The dose was 

140 μC/cm2 and element step size for patterning was 10 nm. After ~2 h of patterning, the resist was 

developed using MIBK/IPA (1:3) for 30 s and then rinsed by IPA and DI water for 35 and 30 s. 

After this, the structure was etched by SAMCO RIE-200iP fluorine with SF6 (10 sccm) and CF4 

(100 sccm) at 1 Pa for 55 s, using the RF powers of BIAS: 15 W and ICP: 100 W. The hard mask 

was removed with a flow of O2 at 50 sccm for 2 min. Finally, native oxides or any kind of residuals 

from earlier processes was removed by HF etching (49% for 2 min). 

For SiO2-Coated structures, SiO2 was deposited on the structure with an Oxford FlexAL ALD tool 

at 150 °C for 200 cycles. Precursors were BTBAS-t-butylaminosilane and O2, and the purging gas 

was Ar. A detailed deposition cycle was 3 s pulse of BTBAS precursor (80 Torr), 3 s Ar purge, a 3 

s pulse of 60 sccm of O2 at a 250 W plasma power (15 Torr), and a 2 s Ar purge. A J.A. Woollam 

variable angle ellipsometer was used to measure SiO2 layer thickness, and fitted with a Cauchy 

model, giving a thickness ~30 nm and refractive index of 1.44. “Silanization” was done by 
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adsorption of C19H42O3Si in a fume hood. Five drops of C19H42O3Si were placed in an aluminum 

foil cap and the wafer was placed on top as a seal for the cap. After 2.5 h, the wafer was placed on 

a hot plate (150 °C) for 10 min to cure and evaporate the excessive silane. 

 

 

Figure 4.14 (a) Two-dimensional square lattice of pores on a Si substrate. (b) AFM scans show a pore depth ~120 nm. 

 

o Results and Discussions 

The aims of this project are to investigate the wetting properties of well-defined macroscopic 

surfaces by combining CA measurements and the AFM technique described in the previous chapter. 

The submicron pores of reservoir rocks were portrayed in our controlled laboratory method by 

fabricating idealized periodically staggered structures on Si using e-beam lithography. The process 

consistently creates self-similar, repeatable pore dimension structures. We modify the chemistry of 

this predefined Si pattern by coating it with a 30 nm SiO2 layer and silane functionalization. The 

SiO2 layer was deposited with atomic layer deposition (ALD) to assure uniform coverage between 

and within the pores.  

For the CA experiments on structures with different chemistry, a sufficiently small deionized 

(DI) water droplet volume, i.e., 1 μL, was used so that any spreading is fully contained within the 

1.4 × 1.4 mm2 area of the structure when investigating the patterned structure (see Figure 4.15). In 

order to minimize evaporation of the water droplet and ensure experimental repeatability, the 
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experiment was carried out at conditions close to those of saturated vapor. Despite the small size, 

the drop is large enough compared with the characteristic length scales of the periodic structures.  

 

 

Figure 4.15 Photograph of the 1 μL of DI water placed on flat and periodically staggered (structure) SiO2-, Si-, and 

silane-functionalized substrates. 

 

Figure 4.16 shows the CAs collected on flat and patterned surfaces of SiO2-, Si-, and silane-

functionalized substrates. The CAs on the flat surfaces are in consistent with the data reported 

previously126-127, which gives 24.1 ± 3.0, 76.7 ± 0.9, and 91.7 ± 1.5° for SiO2-, Si-, and silane-

functionalized Si substrates, respectively. As for the CAs on the structure surface, 14.1 ± 1.1, 85.5 

± 2.3, and 98.9 ± 0.2° were obtained for SiO2-, Si-, and silane-functionalized Si substrates. 

 

 

Figure 4.16 Average values for CAs of a 1 μL of DI water droplet. 
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All of the numbers reported in this work are averages of 30 droplets over 5 different samples, 

that is 6 droplets for each sample, to show the repeatability of CA measurements. The differences 

between CAs on the flat and the structures are examined with Wenzel or Cassie−Baxter models. 

The well-known Wenzel123 and Cassie−Baxter125 equations give:  

Wenzel: 𝑐𝑜𝑠 𝜃𝑚 = 𝑟 𝑐𝑜𝑠 𝜃𝑌        Eq.  40 

Cassie-Baxter: 𝑐𝑜𝑠 𝜃𝑚 = 𝑟𝑤𝑓 𝑐𝑜𝑠 𝜃𝑌 + 𝑓 − 1    Eq.  41 

where θm is the measured contact angle, θY is the contact angle on an ideal surface, r is the roughness 

ratio, rw is the roughness ratio of the wetted area, and f is the fraction of the wetted area. Here we 

used the values of CA on the flat surfaces for θY, 1.078 for r, 1.003 for rw, and 0.868 for f. r, rw, and 

f were obtained from AFM imaging analysis. Applying the Wenzel model for the SiO2 sample and 

the Cassie−Baxter model to the Si- and silane-functionalized Si substrates, the calculated θm values 

for SiO2-, Si-, and silane-functionalized Si substrates are 10.2, 86.1, and 99.0°, which are very 

similar to the experimentally obtained CAs on the periodically staggered structure. All of the CA 

values are summarized in Table 7.  

 

Table 7 CAs on Flat and Structured SiO2-, Si-, and Silane-Functionalized Si Substrates along with CAs Calculated from 

the Cassie−Baxter and Wenzel Models 

 
SiO2 (deg) Si (deg) silane (deg) 

flat 
24.1 ± 3.0 76.7 ± 0.9 91.7 ± 1.5 

periodically staggered 
14.1 ± 1.1 85.5 ± 2.3 98.9 ± 0.2 

Cassie−Baxter 
 86.1 99.0 

Wenzel 
10.2  

 

 

To decouple the roles of chemistry and morphology, we exploit the AFM technique to 

reconstruct the force field exerted by the sample surface. Force profiles on flat and structures on 

SiO2-, Si-, and silane-functionalized Si substrates are reported in Figure 4.17. Each presented curve 

is an average of 200 measurements taken at 5 different spots on each sample. Student’s t test showed 
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that there is no significant difference between flat and structured regions within each sample and 

significant difference across different samples. By comparing the shape of the profile, force profiles 

on flat and structured area are identical. As the AFM probe tip radius (∼10 nm) is at least 1 order 

of magnitude smaller than the scales of the structure (∼200 nm), this makes the probe unaffected by 

the morphology of the surface. Furthermore, this outcome also indicates that by disregarding the 

morphology factor of the surface the AFM probe senses the same chemistry on the flat and 

structured surfaces. This is a conclusion that cannot be derived with macroscopic measurements due 

to spatial limitation. 

 

 

Figure 4.17 Force profiles on flat and structures on SiO2-, Si-, and silane-functionalized substrates. 

 

 

Figure 4.18 The |FAD| for the flat and structures for all the samples is within the standard deviation of the experiment. 
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Next, by using Eq. 4 and ensuring R constant throughout the experiment, we could compare FAD 

across the samples and refer to a direct proportionality between FAD and γ. As the FAD values are 

identical for the flat and structures with no statistical significance (Figure 4.18), we confirm that the 

AFM tip with the spatial resolution of ∼10 nm could determine the sole effect of surface chemistry 

while the macroscopic CA measurements would be affected by the surface roughness. 

 

o Conclusions 

In this study, we prepared flat and periodically staggered Si surfaces with SiO2 coating or silane 

functionalization. CA and AFM measurements were both performed on these different structures 

(flat and staggered pores) and surface chemistries. This study showed that the CA measurement is 

constrained by its intrinsic spatial resolution limit and hence when characterizing the wettability of 

surfaces with microscopic roughness, it’s not able to decouple the effects of morphology and 

chemistry. This method gave a ∼10° difference in CA on the flat and periodically staggered 

surfaces. However, with AFM measurements, it can disregard the surface morphology, sensing only 

the chemistry of the rough solid surface. Our methodology has shown that with a higher spatial 

resolution-characterizing technique, we could overcome the morphology−chemistry coupling issue 

that complicates wettability studies and can be potentially employed to probe the wettability 

alteration due to surface chemistry functionalization and rough surfaces caused by nanoscale 

patterning. 
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Chapter 5 

 

 
 

Machine learning in AFM 

 

 

It could be argued that the AFM community has reached a point reminiscent to what physicists 

lived when facing the emerging zoo of particles in particle physics. At this point, we face a growing set 

of contrast maps emerging from multiple observables, signals, expressions, and contrast channels, that 

currently allow imaging with small and large amplitudes in liquid, air and vacuum environments. In this 

chapter, we propose a radical form of data analysis where AFM data is directly transformed into abstract 

machine learning features. The concept is encapsulated in the Mendeleev-Meyer Force Project 

(TMMFP) where data should be tabulated in a manner reminiscent of the construction of the periodic 

table. The goal is to group and tabulate substances using nanoscale force footprints rather than atomic 

number or electronic configuration as in the periodic table. The process is divided into: 1) acquiring 

force data from materials, 2) parameterizing the raw data into standardized input features to generate a 

library, 3) feeding the standardized library into an algorithm to generate or exploit a model to identify a 

material or property. We propose producing databases mimicking the Materials Genome Initiative, the 

Medical Literature Analysis and Retrieval System Online (MEDLARS) or the PRoteomics 

IDEntifications database (PRIDE) and making these searchable online via search engines resembling 

Pubmed or the PRIDE web interface.   
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Background 
 

The starting point for the standardization or tabulation of materials consists of FDCs acquired 

with AFM. These curves contain the nanoscale footprint of the substance or material and are typically 

acquired with an AFM. The force between the tip of an AFM and a surface is monitored as a function 

of separation or distance. The sensitivity of the AFM should provide information from all the relevant 

nanoscale force footprints or force contributions between materials2. On the other hand, the quest to 

identify and recognize atoms or materials from atomic footprints or FDC data has remained an active 

research field79, 128 which remains challenging when considering the generalization and standardization 

of measurements and procedures74, 129. In addition, experiments are typically sophisticated and are 

reported by carrying out extensive analysis from complex models or fundamental theory79 rather than 

via automated processes. About a decade ago, a significant advance was reported by invoking a 

particular form of normalization of the raw FDC data74 and single atoms were identified via specific 

atomic footprints. Similar approach was more recently employed to identify more complex 

heterogeneous systems79. Other forms of sample recognition and identification consist of modelling and 

parameterizing the FDC with physically relevant parameters such as stiffness17, adhesion, 

viscoelasticity130 or other parametric models131, or model free parameters71, 132-133. Parameterization 

typically involves an intermediate step after acquiring the raw data which consists of quantification and 

comparison. In this way, detected differences are exploited as parameter contrast maps that could be 

used to discriminate between materials130. Standardization and tabulation are lagging far behind134 other 

research fields such as proteomics, metabolomics and genomics that are heavily assisted by computer 

science, large databases, powerful search engines and submission protocols135
 that allow rapid access to 

the databases. Yet, Kalinin et al. have been early proponents of the exploitation of computer science 

techniques in probe microscopy.23, 133 Here we propose to integrate force spectroscopy and advanced 

computer science techniques. The objective is to parameterize the FDC raw data into features with the 

abstract meaning typically given to the features employed in machine learning algorithms. In this way, 

no restriction us imposed to the number of input features to identify a given material or family of 

materials or substances. Features are then employed to construct feature libraries for groups of families 
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or specific families. Finally, an algorithm is exploited to generate a model from a given feature library 

that groups materials according to similarity. Also, the concept of classification from standard machine 

learning where the output of the algorithm is zero when a non-match is predicted and one when the 

algorithm predicts a match is employed. In the prototype, a multilayer neural network is trained with the 

backpropagation method in Matlab72. F-score is used as a figure of merit to quantify Precision and Recall 

for the models. Precision and Recall are defined as in machine learning where Precision is the ratio 

between true positives and predicted positives and Recall is the ratio between true positives and actual 

positives. The F-score parameter combines Precision and Recall as 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙
      Eq.  42 

The advantage of employing the F-score rather than Precision or Recall alone is that high values 

in F-score will be obtained if and only if both Recall and Precision are high simultaneously. In a more 

intuitive note, Precision could be defined as specificity and Recall as sensitivity implying that high F-

score values include both high specificity and sensitivity. More detail on these figures of merit is given 

when discussing a practical example below.  

 

Methods 
 

o AFM cantilever details 

The AFM cantilevers employed in this section were OLYMPUS AC160TS with k  30N/m, f0 

 280kHz, and Q factor  400, and OLYMPUS AC240TS with k  2N/m, f0  70kHz, and Q factor 

 100. 

 

o Raw data acquisition:  

The initial step for parametrization and tabulation involves acquiring the nanoscale force 

footprint in the form of an FDC. This force arises from the atomic interactions between the atoms 
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on the tip and the atoms on the sample. It is also typical to associate FAD with mechanical contact 

between the AFM tip and the surface43. Only points in the force curves satisfying F<0 nN are 

considered since these provide enough information to classify materials.  

 

o Parametrizing raw data and transformation into input features:  

The second step consists of parametrizing the raw FDC. Measuring the distances in the well of 

the FDC in a similar fashion to that recently proposed elsewhere29, 62 is chosen. The steps are as 

follows: 

1) Take the FAD as the force reference for a given curve. This reference allows considering 

all other force-distance pairs with the use of a factor β as F=βFAD. 

2) Vary β from 0 to 1. Any arbitrary force curve can be fully parameterized and quantified62 

for F<0 nN.  

3) Limit β to 0.85, 0.75… 0.05 and normalize the distances in the well of the curves with 

the reference β=0.85.  

4) Compute the absolute distances dFβ=dF0.85, …, dF0.05 where β=0.85, …, 0.05 as 

illustrated in Figure 5.1 (ii). This produces 9 distances as input features for each single 

curve.  

5) Normalize the distances dFβ by computing the ratios dFi=dFβ/dF0.85 where i=1 to 8 

resulting in 8 normalized distances as illustrated in Figure 5.1 (iii).  

6) The distances dF1 to dF8 can be now employed as a table of input features for a machine 

learning algorithm to generate a model. To remove noise, the distances for a given 

substance or family of substances is averaged over 40-100 samples.  

An example of tabulation of input features to generate a feature library is shown in Table 8. In Table 

8, polyethylene high-density (PEHD), Polycaprolactone (PCL), glass, and silicon have been 

employed to generate three sets of input features. The three sets for each family form a feature 



 69 

library for polymers and silica respectively and concluding the second step of the procedure as 

shown as an illustration in Figure 5.1(iv).   

 

 

Figure 5.1 Illustrations of  i) raw data, ii) input features, iii) normalized input features, to iv) generation of a feature 

library and v) model generation from a feature library set. 

 

o Feeding the standardized input feature library into a learning algorithm:  

The third step consists of generating a model from a feature library as shown in Figure 5.1(v). 

In the case of Table 8, this model should be able to identify or detect whether input features belong 

to the polymer family or the silica family. In order to generate models, a standard multilayer artificial 

neural network in Matlab72 that included a regularization term λ to avoid overfitting is implemented. 

The steps are as follows: 

1) Inputting an input feature library, as shown in Table 8 and in Figure 5.1(iv), into a machine 

learning algorithm as illustrated in Figure 5.1(v). An artificial neural network composed of U 

units per layer L is chosen. Units stand for unit cells or neurons and each unit is modelled with 

a sigmoid function where the inputs are processed by the function and the output fed into the 

units U in the next layer L as illustrated in Figure 5.2. The very last layer of the system will 
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produce the predicted outputs. In the case of Table 8, the two unit cells in the last layer L will 

produce the predictive outcomes for the polymer (one unit) and silica (another unit) families. 

2) The model is first trained with a set of input features from a given library where the output is 

known. In the case of Table 8, the last unit cell for polymers should produce ones if and only if 

data from polymers is fed into the system and similarly for the unit cell of the silica family.  

3) Then the model is tested by inputting data into the model generated from the training data and 

comparing the output to the known values for the output. This is typical from supervised 

algorithms where the algorithm learns from inputting data for which the outcome is known by 

the user in advance. Errors in the outcomes are quantified via Recall and Precision and together 

via the F-score parameter as discussed above. In the experimental section we report errors on 

testing sets of data via Precision, Recall and F-score.  

This concludes the procedure of training and testing a model from feature libraries for substance 

identification. An illustration of the full process is shown in Figure 5.2.   

 

 

Figure 5.2 Scheme of the hierarchy and ordering of the number of layers L and number of unit cells U in the artificial 

neural networks. 

 

To test the performance of the models, raw data obtained by different users and with different 

cantilever-sample systems are acquired and fed into trained neural networks model produced from the 

feature libraries. Silicon is the first testing sample. Approximately 1000 data points were collected and 

then fed into the trained model. The performance of the models was calculated by computing Precision, 
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Recall and F-score. We defined true positives=TP, false positives=FP and false negatives=FN. Then 

Precision=TP/(TP+FP), Recall=TP/(TP+FN) and F-score as described above in Eq. 42. The results of 

the test are shown in Table 8 for a 2 L 2 U model, a 3 L 3 U model and a 4 L 4 U model. Values of F-

score above 0.5 indicates significant predictive power of the model to successfully identify and 

discriminate between the silica and polymer families. Values of 0.5 or below imply that the models lack 

sufficient predictive power. In Table 8, it can be seen that arbitrarily increasing L or U might not result 

in a better model. That is, relatively simple models, consisting of a few numbers of layers L and units 

U, might produce models with enough predicting power and might not be improved by increasing the 

complexity of the model arbitrarily136. Finally, zero values in the figures of merit indicate overfitting, 

i.e. the output from the unit cells in the last layer of the model is always 0.5 independently of the input. 

 

 

Table 8 Example of libraries employed as the input data to generate models for two groups of materials: polymers 

family (Pol) and silica (Silica) family. Figures of merit for 2L-2U, 3L-2U and 4L-4U models are also shown. 

β Set 1 Pol Set 2 Pol Set 3 Pol Set 1 Silica Set 2 Silica Set 3 Silica 

0.75 0.95 0.95 0.94 0.89 0.89 0.9 

0.65 0.88 0.88 0.88 0.8 0.78 0.81 

0.55 0.8 0.8 0.81 0.71 0.69 0.71 

0.45 0.7 0.72 0.73 0.61 0.6 0.61 

0.35 0.59 0.62 0.6 0.52 0.5 0.5 

0.25 0.45 0.48 0.48 0.4 0.38 0.37 

0.15 0.3 0.31 0.31 0.27 0.24 0.26 

0.05 0.1 0.1 0.13 0.11 0.09 0.1  
Precision Recall F1 Score 

2 L 2 U 0.8 0.66 0.72 

3 L 2 U 0.78 0.71 0.74 

4 L 4 U 0 0 0 

 

 

Table 9 shows a training feature library produced to discriminate between the PEHD and PCL 

polymers. The data was employed to train and produce models and the models were then tested. Again, 

we see that a single layer and two unit cells suffice to produce a model with enough predicting power 

to discriminate between the two samples, i.e. F-score > 0.5. These two examples illustrate how by using 
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multiple processes or steps, specific samples can be identified.  That is, a given model can be employed 

to discriminate between families, as in the case of the silica and polymer families described above (Table 

8). Then, a more specific model can be exploited to discriminate between samples in the same family 

(Table 9). A scheme of such flow is illustrated in Figure 5.3.   

 

 

Figure 5.3 Process of identifying and classifying data first into families or groups and then into specific substances or 

samples. 

 

Table 9 Example of libraries employed as input data to generate models for PCL and PEHD samples. Figures of merit 

for 1L-2U, a 2L-2U and a 3L-4U models obtained when feeding a test sample (PEHD) into the trained model are given 

β Set 1 PCL Set 2 PCL Set 3 PCL Set 1 PEHD Set 2 PEHD Set 3 PEHD 

0.75 0.949 0.95 0.947 0.929 0.927 0.936 

0.65 0.9 0.889 0.893 0.855 0.865 0.862 

0.55 0.839 0.823 0.819 0.772 0.785 0.783 

0.45 0.752 0.724 0.736 0.689 0.689 0.692 

0.35 0.655 0.606 0.624 0.572 0.573 0.585 

0.25 0.523 0.467 0.487 0.45 0.455 0.462 

0.15 0.349 0.322 0.317 0.292 0.309 0.31 

0.05 0.124 0.133 0.111 0.11 0.11 0.113  
Precision Recall F-Score 

1 L 2 U 0.71 0.59 0.64 

2 L 2 U 0.7 0.64 0.67 

3 L 4 U 0 0 0 

 

Next we employ a feature library capable to differentiate between calcite and CaF2. The surface 

of calcite can further be divided into two different substances or phases. The two phases are termed 

calcite P1 and calcite P2 and these are shown as a standard phase contrast image in Figure 5.4. The third 

substance of the feature library consists of CaF2. A model with 4L and 6U that gave an F-score=1 when 
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tested is constructed. Then, FDCs on an 80 nm2 area of the calcite sample were acquired. Then the model 

consisting of calcite P1, calcite P2 and CaF2 was tested against the 1024 data points collected.  

 

 

Figure 5.4 Two phases of calcite P2 (pink-purple) and calcite P1 (rest of the image) acquired as a standard phase image in 

dynamic AFM. 

 

The results are shown in Figure 5.5. The black pixels imply that the model could not assign or 

identify (107 out of 1024 pixels) any of the three samples to that pixel. The blue pixels stand for positive 

identification of calcite P1 (402 out of 1024 pixels), the green stands for positive identification of calcite 

P2 (459 out of 1024 pixels), and the red pixels stand for positive identification of CaF2 (56 out of 1024 

pixels). There was thermally-induced drift when collecting the force data. The patch of calcite P2 in 

Figure 5.4 has been circled in order to relate it to the displaced patch predicted by the model in Figure 

5.5. A feature library for calcite P1 and calcite P2 was then employed to generate models to discriminate 

between these two substances only. Figure 5.6 and Figure 5.7 show for a model of 1L-2U and 2L-3U 

where black pixels stand for ambiguity, blue for calcite P1 and green for calcite P2. As Figure 5.6 and 

Figure 5.7 look almost identical, this implies that increasing the complexity of the model from 1L-2U 

to 2L-3U did not significantly improve predicting power. The 1L-2U model is superior since it is equally 

predictive and computationally much simpler.  
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Figure 5.5 Prediction of the model produced from a feature library consisting of calcite P1 (blue), calcite P2 (green) and 

CaF2 (red). The black pixels refer to pixels where the model could not predict any output unambiguously. 

 

 

Figure 5.6 Predictions of the model (1L-2U) produced from a feature library consisting of calcite P1 (blue), and calcite P2 

(green). The black pixels refer to pixels where the model couldn’t guess any output unambiguously. 

 

 

Figure 5.7 Predictions of the model (2L-3U) produced from a feature library consisting of calcite P1 (blue), and calcite P2 

(green). The black pixels refer to pixels where the model couldn’t guess any output unambiguously. 

 

The generality of the model produced to discriminate between calcite P1 and calcite P2 above 

was tested with a second set of calcite data collected using a different AFM tip and a different calcite 
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sample. The results are shown in Figure 5.8. The thermal drift was much smaller in this case. A standard 

phase contrast image is shown in Figure 5.8a and the prediction of the model against force data for the 

same spot in Figure 5.8b.  

 

 

Figure 5.8 a, Two phases of calcite acquired with different tip and sample phase image in dynamic AFM. b, Guess of the 

model produced from another data set. The blue pixels refer to calcite P1, green pixels refer to calcite P2 and black pixels 

refer to pixels where the model could not predict any output unambiguously. 

 

 

Conclusion 
 

The use of libraries and models generated from libraries can be exploited to identify substances 

from force data alone. The generation of models should not be restricted to artificial neural networks 

either, but could be enhanced, or even replaced, by other methodologies. By implementing well known 

methodologies in machine learning such as support vector machines or Bayesian networks and 

exploiting them in parallel, it is possible to improve predictive power. These methods are standard in 

the machine learning field and packages can be found in Matlab, python and the R languages. Finally, 

the ordering or fabrication of libraries does not need to be limited to the air environment, but can be 

expanded to liquid and vacuum environments and to the use of probes other than silicon. Furthermore, 

the classification into families does not have to be restricted to material properties but can be enhanced 

to, for example, identifying the presence or absence of atomic irregularities or dislocations or identifying 

biological patterns or behavior of systems for which distinct features might be produced67, 133. The 
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number and type of input features might be further increased into linear or non-linear combinations of 

the features presented here or any other input feature, such as temperature, relative humidity, tip radius, 

geometry or chemistry, power law (as presented in the earlier chapter) that might enhance identification 

or recognition. Arguably the intuition of researchers working in a particular field will suggest the 

number and type of features that will make a given feature library preferable to produce a given model. 

In summary, the application of models and the massive testing of data should ultimately tell us what the 

limit of the proposed method of standardization is in the field of force spectroscopy.  
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Chapter 6 

 

 
 

Application of Machine Learning Assisted Analysis 

 

 

Motivation 
 

There is arguably a divide in the approach to finding answers to questions in the general 

sciences. The first one has two parts and consists in either looking into phenomena and finding 

expressions corresponding to fundamental laws, i.e. the strictest theoretical side of the sciences, or 

explaining phenomena probed experimentally directly from these first principles as mechanisms that 

provide the physical insight into our findings, i.e. the practical science that exploits the link between 

experiment and the strictest theory. The second consists in asking a question to a phenomenon and 

finding a correlation, i.e. an association in general, between knowns, i.e. the data that we have access 

to, and the unknowns, i.e. the answer to the question we are asking. We could argue that the task of the 

second method to finding answers to questions was typically dealt with by statistics for a long time.  

In the recent years, computer systems have considerably enabled and extended the second form 

of enquiry by allowing computing over extremely large sets of data, i.e. big data,  rapidly and efficiently, 

i.e. via artificial neural networks, vector supporting machines etc., and, importantly, via the exploitation 

of these “model free” algorithms that build a model without being explicitly programmed to, in order to 
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answer a specific question based on data alone137. Arguably, this last point defines the field of machine 

learning. It is now possible to find standard tool-sets in any standard programming language, i.e. Matlab, 

python or R, that include powerful machine learning algorithms to solve problems in this way138. It is 

not clear however where the two methods that we pointed out earlier meet or will meet, but we claim 

that it is at least advantageous to be able to answer specific questions of practical relevance from sets of 

data extracted from complex physical systems for which fundamental laws, principles, or expressions 

are either too complex or unavailable139.  

In the field of AFM, a sharp tip of nanometric radius held at the end of a microscopic cantilever 

is made to interact with a surface. In the interaction, complex conservative and dissipative phenomena40 

affect the dynamics of the cantilever41. A main paradigm of the field has been to extract information 

from the dynamics in relation to the properties of the surfaces140,141. On the other hand, the AFM field 

is expanding via two main fronts. Namely, 1) improving the instrumentation so the data itself contains 

more information of this tip-surface interaction22,18, and 2) improving the data processing, modelling 

and overall understanding of the phenomena in order to understand and interpret the available data142. It 

is not clear whether more information can be extracted from the phenomena, that is, whether enhancing 

the resolution of the system would provide more information about the nanoscale properties of the 

surface, or whether we have reached a point where data processing is the main bottleneck in terms of 

advancing in the field143,144. On the other hand, we have recently shown that simple power laws62 are not 

enough to explain the rich phenomena that we can probe in ambient conditions already, where air 

contaminants, such as CO2 and water, start adhering to the surface almost immediately after surfaces are 

produced145. This surface phenomena under ambient conditions, which we term here “surface aging”, is 

a dynamic process with many unknowns and possibly related to very complex physical processes such 

as ion exchange, surface energy dynamics and surface-tension thermodynamic equilibrium146,147, thus 

providing us with a suitable candidate question in AFM. Namely, “how long has a surface been exposed 

to ambient conditions?”. In principle, we expect that the tip-surface force will change with time and that 

these changes can be associated to our question via machine learning algorithms.  
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Application 
 

We employ HOPG as a model sample because it is easy to cleave with standard scotch tape. In 

this way, HOPG is cleaved creating a pristine surface and labelled 0h. After cleaving, the sample is 

exposed to ambient air (temperature T≈ 22 ± 2ºC and relative humidity (RH)≈ 50% ± 5%) for 24h at 

which point, and in principle, phenomena, physically and known or unknown by us as researchers, will 

act on the surface inducing the “surface aging” phenomena. In any case, we stand by our simple question 

“how old is this surface in hours?” and attend simply to the outcome of the machine learning algorithm.  

As input data, we employ FDCs that are standard in AFM. A complete set of experiments 

consists of force data taken in 6-time steps: 0h, 1h, 3h, 6h, 12h, and 24h. The data was collected with 

standard OLYMPUS AC160TS cantilevers with k (spring constant) ≈ 30N/m, f0 (natural frequency) ≈ 

300kHz, and Q ≈ 400. Thermal analysis was employed to calibrate the f0 of the cantilever with the free 

cantilevers at ~50nm above the sample surface148.  

Since it is well known that the tip radius R strongly affects the tip-sample interaction, the effective radius 

R was monitored in-situ with the use of the critical amplitude AC method45 and found to be 8nm ± 2nm. 

It is worth noting that R could also be employed as an input feature in the machine learning model. On 

the whole, this capacity to easily add input features that are believed to influence the outcome or to 

better characterize the model is a further advantage of these methods. 

After acquiring the FDCs, the profiles were parameterized into standardized input features for 

generating a feature or model library to answer our specific question. The way to create input features 

followed the same manner as described in the previous chapter. In short, FAD was taken as the force 

reference for a given force profile and only part of the well was considered, i.e. F < 0 nN (net attractive). 

Next, a factor β was introduced for parametrizing the force curves by varying β from 0 to 1, so as F = 

βFAD. In this work, we limited β to 0.05, 0.15, …, 0.85 and normalized these distances in the well with 

β = 0.85. That is, 9 absolute distances disFβ were first computed for each single curve, and then the 

normalization of input features was achieved by calculating the ratios disFi = disFβ/disF0.85 where i = 1 

to 8 giving 8 normalized distances. In order to remove noise, the final input features of disFi were the 
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average of 50 samples for each time step. Table 10 shows an example of tabulation of 2 sets final input 

features for each time step. A total of 56 sets input features formed the library for HOPG aging in the 

ambient conditions for 24h (the HOPG aging library). 

Figure 6.1 shows some of the force data and an illustration of the changes on the surface that 

might have produce the difference in F. It is worth nothing that while we represent water-adhesion in 

the illustration, knowledge of this physical phenomenon is, in principle, not required in order to answer 

our question. At this point, machine learning allows for 1) unsupervised machine learning methods to 

extract candidate input features for our supervised model, i.e. the generation of the library, or 2) our 

physical insight and inspection of the data to select input feature candidates. As explained, we decided 

to exploit the normalized distance in the well. We could have also reduced the data to nm units rather 

than go for pure normalization as we have done. This might have enhanced the explanatory power of 

our candidate features and might be something to explore in the future. On the other hand, in order to 

generate what is considered standard in machine learning, i.e. purely normalized features, here, we did 

not follow this possibility through. Instead, the features were directly fed into the Neural Network with 

L layers and U units per layer and an optimum model, i.e. the optimum number of layers and units, was 

sought.  

    

Figure 6.1 Evolution of force profiles as a function of d at each time step in hours h, as the HOPG surface ages by exposure 

to ambient conditions. 
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Table 10 Example of 2 sets of input features for each time step used to generate models for HOPG aging in the ambient 

conditions.  

β 0 h 

Set 1 

0 h 

Set 2 

1 h 

Set 1 

1 h 

Set 2 

3 h 

Set 1 

3 h 

Set 2 

6 h 

Set 1 

6 h 

Set 2 

12 h 

Set 1 

12 h 

Set 2 

24 h 

Set 1 

24 h 

Set 2 

0.75 0.91 0.94 0.92 0.87 0.93 0.92 0.92 0.93 0.93 0.95 0.93 0.92 

0.65 0.83 0.84 0.85 0.81 0.88 0.87 0.85 0.85 0.88 0.89 0.85 0.84 

0.55 0.75 0.77 0.79 0.75 0.82 0.81 0.79 0.78 0.83 0.83 0.76 0.76 

0.45 0.67 0.69 0.68 0.68 0.74 0.73 0.72 0.72 0.76 0.76 0.67 0.66 

0.35 0.57 0.60 0.61 0.57 0.63 0.63 0.65 0.65 0.67 0.67 0.57 0.57 

0.25 0.44 0.47 0.50 0.48 0.50 0.47 0.55 0.55 0.53 0.54 0.46 0.48 

0.15 0.30 0.31 0.34 0.32 0.29 0.29 0.39 0.38 0.33 0.37 0.32 0.32 

0.05 0.12 0.12 0.13 0.12 0.11 0.12 0.15 0.15 0.15 0.13 0.14 0.13 

 

The performance of the models was carried out by computing Precision, Recall and F1 score to 

obtain validation sets as typically carried out in machine learning. In standard supervised machine 

learning, the last step consists in submitting the model to predict from data that the model has never 

been exposed to. This provides final validation of the predicting power of the model. We took the model 

with the highest F1 ≈ 0.78 score reported in Table 11 (3L and 3U). FDCs were acquired with a different 

tip that otherwise had similar R and the data was labelled as before in order to confirm the viability of 

the model. A total about 1800 data points were collected, processed and averaged over 45 samples for 

1h, 6h, and 24h time steps. Then we tested the 3L-3U model against the testing datasets. We took 80%, 

i.e. 0.8 where the range is 0 to 1 in our hypothesis function h, as the trigger for the hypothesis value. 

The outcome of the predictions is shown in Figure 6.2. The open circles stand for either false positives 

or false negatives while the solid circles indicate true positives or true negatives, i.e. correct predictions. 

At 1h, the model produced only 7 false positive predictions (out of 16 averaged data points) with most 

of them falling into the 0h range. On the other hand, there were 10 true positives and 6 false negatives 

for the 1h set. The results are 5 and 1 false positive predictions for the 6h (8 false negatives and 9 true 

positives) and 24h (3 false negatives and 13 true positives) datasets respectively (out of 17 averaged 

data points per set).  
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Table 11 Performance of 2L 2U, 2L 3U, 3L 2U, 3L 3U, 4L 2U and 4L 4U models are evaluated by Precision, Recall and F1 

score. 

 Precision Recall F1 score 

2 L 2 U 0.79 0.63 0.70 

2 L 3 U 0.79 0.63 0.70 

3 L 2 U 0.93 0.58 0.72 

3 L 3 U 0.82 0.75 0.78 

4 L 2 U 1.00 0.00 0.00 

4 L 3 U 0.75 0.75 0.75 

 

 

Conclusion  
 

In summary, we have shown that a standard Neural Network can be employed to predict the 

time of exposure to ambient conditions of a graphite surface directly from AFM data. No knowledge of 

the underlying phenomena is required in order to predict the time of exposure. The complexity of the 

data and difficulty to reduce it to well-known first principles might in fact act as a positive in terms of 

enhancing the predictive power of the model since Neural Networks, and other Machine Learning 

methods, benefit from complexity and detail. We propose that model libraries can be employed to 

predict phenomena that answers to specific questions in AFM and that libraries could be customized 

and standardized in a similar way to that presented here.  
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Figure 6.2 Model exploiting a 3L3U model against input data sets at 1h (a), 6h (b), 24h (c). The open circles stand for 

incorrect predictions while the solid circles indicate correct predictions. Color codes are used to refer to the specific time 

steps: 0 h (red), 1 h (green), 3 h (brown), 6 h (blue), 12 h (orange), and 24 h (purple). 
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Chapter 7 

 

 
 

Wrapping up  

 

Future work 
 

This thesis has provided methodologies to investigate and characterize material surface 

properties. Furthermore, machine learning assisted data analysis approach is applied and shown to be a 

promising direction to advance. There are possible extensions to the current work: 

o The methodologies developed in this thesis are based on the experiments carried out in the 

ambient environment. This experimental condition may pose great limitation to the 

investigation of soft or biological samples that are viable normally in liquid conditions. 

Therefore, extending the methodologies applicability to liquid conditions could be one of the 

extensions. 

o As mentioned earlier, the machine learning algorithm applied in this thesis is artificial neuron 

networks. There are other algorithms like support vector machines or Bayesian networks that 

could be used as alternatives or exploited in parallel, and this could possibly improve the 

predictive power. In addition, it has only been explored the use of one parameter as features to 

train the machine learning model. Combining more parameters such as tip radius or Hamaker 
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coefficient, etc. as input features could be another extension that worth investigating to advance 

the method.  

 

 

Summary 
 

In this thesis, we have explored two ambits of current interest in AFM. First, that of force 

reconstruction under ambient conditions. Second, that of image generation in multifrequency AFM. 

Arguably, the tip-surface force profile contains all the phenomena to be explained in AFM. In particular, 

the force profile can, and has typically been, explained by models where the motivation typically is 1) 

to show that a given model, derived or known, matches the experimental force profile to then 2) extract 

material properties from it by either providing as much accuracy as possible, increasing throughput, or 

both.  

The first part of this thesis has been dedicated to inspecting the force profile as such without 

necessarily concerning ourselves with throughput. Our approach has shown that: 

1) the “attractive” part of the force profile, typically explained as the short-range van der Waals 

force, does not necessarily follow an inverse square law (2015). In fact, we have shown that power laws 

of 3-20 might be more suitable to describe the tip-surface interaction. This is particularly the case for 

the sharpest tips, i.e. R<20-30 nm. Above this range the power law can be said to be 2 as expected. This 

point puts restrictions to high resolution imaging since the shape of the force becomes tip size dependent. 

We could argue that it might be possible to modify the force expression to make it independent of the 

tip size by we have not shown it in our work.   

 2) That the procedure of recovering the force profile does not necessarily meet the conditions 

required by the central limit theorem which in turn allows assuming a normal distribution (2015). The 

main consequence of this second point is that acquiring ~30 data points per pixel does not justify 
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providing a mean and a standard deviation of a given parameter in order to account for errors. That is, 

the true mean is not correctly explained in this way implying that reproducibility is at stake.  

3) This first part of the thesis finishes with a machine learning approach to parametrizing the 

force (2016, 2019). With this approach the underlying phenomena can manifest via any complexity, i.e. 

power law, or any possible distance dependent function, without restricting accuracy, overfitting or bias. 

A disadvantage of this method is the increase of complexity in the computational side.  In the thesis, 

this part is actually presented last.  

 The second part of the thesis is dedicated to recover the parameter that is typically used to 

explain the van der Waals force interaction in ambient AFM, i.e. the Hamaker or H, while imaging. We 

assumed a power law of 2 (2015) and analytically derived an expression to recover H by exploiting the 

multifrequency method. Here two expressions are experimentally available and describe the attractive 

part of the force in terms of two unknowns, i.e. the minimum tip-surface distance and H. We have shown 

that an analytical solution is available assuming certain standard experimental conditions. This approach 

allows for higher throughput and quasi-instantaneous recovery of the parameter while performing 

standard multifrequency imaging.  
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