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ABSTRACT
Determinants of bone acquisition in late adolescence and early adulthood are not well‐described. This 2‐year follow‐up study
explored the associations of body weight (BW), body mass index (BMI), and changes in weight status with adolescent bone
accretion in a sample of 651 adolescents (355 girls and 296 boys) between 15 and 19 years of age from The Tromsø Study: Fit
Futures. This Norwegian population‐based cohort study was conducted from 2010 to 2011 and was repeated from 2012 to 2013.
We measured femoral neck, total hip, and total body bone mineral content and areal bone mineral density (aBMD) by dual‐energy
X‐ray absorptiometry. We measured height, BW, calculated BMI (kg/m2), and collected information on lifestyle at both surveys.
Mean BMI (SD) at baseline was 22.17 (3.76) and 22.18 (3.93) in girls and boys, respectively. Through multiple linear regression,
baseline BW and BMI were positively associated with ΔaBMD over 2 years of follow‐up at all skeletal sites in boys (p < 0.05), but
not in girls. ΔBW and ΔBMI predicted ΔaBMD and ΔBMC in both sexes, but the strength of the associations was moderate.
Individuals who lost weight during follow‐up demonstrated a slowed progression of aBMD accretion compared with those
gaining weight, but loss of BW or reduction of BMI during 2 years was not associated with net loss of aBMD. In conclusion, our
results confirm that adequate BW for height in late adolescence is important for bone health. Associations between change in
weight status and bone accretion during follow‐up were moderate and unlikely to have any clinical implication on adolescents of
normal weight. Underweight individuals, particularly boys, are at risk of not reaching optimal peak bone mass and could benefit
from an increase in BMI. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society
for Bone and Mineral Research.
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Introduction

Osteoporosis is a major public health concern and a
frequent cause of disability in Western societies.(1)

Norway has one of the highest reported hip fracture
incidences in the world.(2) Areal bone mineral density
(aBMD) is a surrogate measure of bone strength and a

strong predictor of fracture risk.(3) Although genetics
explain a substantial proportion of the variance of an
individual’s bone mass, lifestyle factors influence skeletal
dynamics particularly during growth. Adolescence is a
critical period for bone accretion and attainment of peak
bone mass, defined as the highest bone mass obtained in a
lifetime.(4) Suboptimal acquisition of peak bone mass may
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lead to increased risk of osteoporosis and fragility fractures
in later life.(5,6)

It has long been established that there is an association
between BW and bone mineral parameters in the adult
population.(7) High BMI is generally considered to have an
osteo‐protective effect, while rapid loss of BW is associated
with bone loss.(8,9) In childhood and adolescence, however, the
relationship between weight status and bone accretion is more
controversial. Both detrimental and protective effects of BW
have been reported.(10–18) There are few studies with repeated
measures exploring bone accretion and longitudinal relation-
ships.(16) Obesity and overweight in childhood and adolescence
are a growing concern worldwide with rising prevalence during
the past decades.(19) In European countries, including Norway,
there has been a shift in the BMI distribution, with an increase
in BMI in the upper percentiles.(20) For health benefits, obese
and overweight individuals are recommended to reduce their
weight by approximately 10%. In older adults, evidence
suggests that a weight reduction of that magnitude will induce
a loss of bone of 1% to 2% and even up to 4% at highly
trabecular sites such as the trochanter.(21)

Associations and interplay between anthropometric traits,
aBMD levels, and bone accretion in late adolescence are not yet
fully described and understood at a population level. The
mechanisms behind the weight and bone relationship are not
clear as both direct and indirect effects related to mechanical
forces, nutrition, age, and hormonal status could be involved.
The objectives of this 2‐year follow‐up population‐based study
were to explore the associations between baseline BW, baseline
BMI, changes in BW (ΔBW), and changes in BMI (ΔBMI) on
changes in bone mineral parameters in a Norwegian popula-
tion from 15 to 19 years of age. We hypothesized that higher
baseline BW and BMI, as well as ΔBW and ΔBMI would be
positively associated with changes in bone parameters, and
that negative ΔBW and ΔBMI could be detrimental to bone
accrual in adolescents entering young adulthood.

Subjects and Methods

Subjects

Detailed information on the Fit Futures Study participants and
study procedures has been published previously.(18) Briefly, the
Fit Futures study, an expansion of the Tromsø study in
Northern Norway,(22) invited all first year upper‐secondary
school students (15 to 17 years of age) in Tromsø and the
neighboring municipalities to a comprehensive health survey in
2010 to 2011 (TFF1). In this initial survey, 1117 participants
were invited and 1038 adolescents (508 girls and 530 boys)
attended (attendance rate of 93%). Two years later, in 2012 to
2013, we invited all TFF1 participants and all third‐year
students in the same upper‐secondary schools to a follow‐up
survey, Fit Futures 2 (TFF2), providing 688 repeated measures
of aBMD (66% of the original cohort; Fig. 1). The Clinical
Research Unit at the University Hospital of North Norway
conducted both surveys during school days. The participants
received information about the study in classrooms and all
participants gave written informed consent at the study site.
Participants younger than 16 years of age had to bring written
consent from their guardians to take part in the survey. The
data collection in TFF1 and TFF2 was approved by the
Norwegian Data Protection Authority and the Regional
Committee of Medical Research Ethics (REK nord) with

project‐specific approval for the present study (Ref. 2013/
1459/REK nord).

Measurements

Femoral neck (FN), total hip (TH), and total body (TB) bone
mineral content (BMC; g), bone area (BA; cm2) and aBMD
(g/cm²) were measured by the same instrument (GE Lunar
Prodigy; GE Lunar, Madison, WI, USA) by DXA and analyzed
with enCORE pediatric software (GE Healthcare, Piscataway, NJ,
USA)(23) in both TFF1 and TFF2. We used auto‐analysis software
and default region of interest, according to a standardized
protocol. The primary outcome of the study was aBMD, but
BMC and BA are reported to complement the understanding of
bone accretion and growth. The precision of measurements
expressed as coefficient of variation ([SD/mean] × 100) has
previously been estimated to be 1.14% at the TH and 1.72% at
the FN measured in vivo.(24) We used measurements of the left
hip. In 15 cases the left hip data were erroneous or missing and
the right hip data were reported for both TFF1 and TFF2. We
measured height and BW to the nearest 0.1 cm and 0.1 kg on a
Jenix DS 102 Stadiometer (Dong Sahn Jenix, Seoul, Korea),
following standardized procedures. BMI was calculated as BW
divided by height squared (kg/m2), and participants were
stratified into BMI quartiles. To explore if relationships changed
with various BMI cut‐off points, we also categorized partici-
pants into underweight, normal weight, overweight, or obese.
Participants <18 years of age were stratified based on their sex‐
and age‐specific BMI according to half‐year cut‐off points
described by Cole and Lobstein.(25) To describe the crude
impact of change‐in‐weight status on bone accretion, we
dichotomized participants into BMI losers and BMI gainers.

Interviews and questionnaires

Information on ethnicity, the possibility of pregnancy (exclu-
sion criterion for DXA), the presence of acute and chronic
disease, and the use of medication and hormonal contra-
ceptives was elicited by clinical interviews. We collected
pubertal maturation information, perceived physical activity
level, alcohol consumption, and tobacco use by electronic self‐
administered questionnaires. Pubertal status for girls was
determined based on age at menarche and answers were
categorized into “Early” (<12.5 years at menarche), “Inter-
mediate” (12.5 to 13.9 years), or “Late” (>14 years) pubertal
maturation. We used the Pubertal Developmental Scale (PDS)
to assess pubertal maturation in boys. Secondary pubertal
characteristics such as growth spurt, pubic hair growth,
changes in voice, and facial hair growth were rated on a scale
from 1 (Have Not Begun) to 4 (Completed), were summarized,
and then were divided by 4. We categorized a score <2 as
“Have Not Begun”, 2 to 2.9 as “Barely Started”, 3 to 3.9 as
“Underway,” and a score of 4 as “Completed.”(26) Perceived
physical activity level was assessed by a scale developed by
Saltin and Grimby.(27) The participants were asked to grade
leisure time physical activity an average week during the last
year with four alternatives: sedentary activities only; moderate
activity like walking, cycling, or exercise at least 4 hours per
week; participation in recreational sports at least 4 hours per
week; and participation in hard training/sports competitions
several times a week. Questions on smoking and snuffing had
three alternatives: Never, Sometimes, or Daily. We assessed the
frequency of alcohol consumption with a scale from 1 to 5:
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“Never,” “Once per Month or Less,” “2‐4 Times per Month,” “2‐3
Times per Week,” and “4 or More Times per Week.” Answers on
the use of medication known to affect bone, presence of
diseases known to affect bone, hormonal contraceptive use,
smoking, snuff use, and alcohol consumption were dichot-
omized into “Yes” and “No.”

Statistical analyses

All analyses were sex‐specific. Population characteristics are
presented by BMI quartiles at baseline. Continuous variables are
presented by means (SDs) and categorical variables by count
(percentages). We compared BMI quartile groups by using one‐
way ANOVA with Bonferroni correction and χ2 test. Welch’s
ANOVA with Games‐Howell post hoc procedure was used if
equal variances assumption was violated. We computed annual
bone‐ and anthropometric‐change variables to account for
differences in time between baseline and follow‐up measures
when describing change and in crude comparisons of groups.
Student’s t test was used to compare BMI losers and BMI gainers.
Associations between the exposure variables baseline BW,

baseline BMI, ΔBW, and ΔBMI and outcomes FN, TH, and TB
ΔaBMD and ΔBMC during follow‐up were assessed by multiple
linear regression using the bone mineral follow‐up score as
outcome and baseline score as a covariate (Y2 = β0 + β1Y1 +
β2XBW + β3…). Initially we conducted a crude univariate
analysis. We then compared the results using change‐score
analysis (Y2 – Y1 = β0 + β1XBW) and checking for consistency

because baseline adjustments in change‐score analysis may
introduce bias.(28,29) All adjusted models included baseline
anthropometric measures, time between measurements, pub-
ertal maturation, and perceived baseline physical activity level.
Other variables previously known to be of clinical importance
like ethnicity, alcohol consumption, smoking, snuff use,
diagnosis known to affect bone, medication known to affect
bone (see Table 1, and hormonal contraceptive use (all baseline
measures) were then added as covariates using a backwards
elimination strategy where p = 0.10 were used as cut‐off to
enter or leave the model. Any covariate with p ≤ 0.10 in a final
model was included in all final models. Based on this
procedure, alcohol consumption and diagnosis known to affect
bone were excluded. We fitted separate models for baseline‐
and change‐exposure variables. Models with ΔBW were
adjusted for Δheight. We checked for confounding and
plausible 2‐way interactions related to age, pubertal matura-
tion, and baseline weight versus weight change relationships.
Because of statistical significance (p < 0.05) we added interac-
tion terms BW *menarche age and BMI * menarche age in
corresponding baseline ΔaBMD FN models in girls. In boys, a
significant interaction between ΔBMI * BMI was detected and
included in three ΔBMI models: FN ΔaBMD, FN ΔBMC, and TB
ΔBMC; ΔBW * BW was added to the ΔBW TB ΔBMC model.
Interactions were further explored and visualized by graphs.
Late introduction of the PDS questions in TFF1 may be the

reason for a relatively high percentage of missing puberty
values for boys: n = 53 (17.9%). Other missing covariates were
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Fig. 1. Flowchart of participation in Fit Futures 1 (TFF1) 2010 to 2011 and Fit Futures 2 (TFF2) 2012 to 2013. The Tromsø Study, Fit Futures.
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Table 1. Characteristics by BMI Quartiles at Baseline TFF1 (2010 to 2011). The Tromsø Study, Fit Futures

BMI quartiles at baseline

Total
First quartile
(n = 89)

Second
quartile
(n = 89)

Third
quartile
(n = 89)

Fourth
quartile
(n = 88) p value

Girls (n =
355)

Age (years) 16.61 (0.387) 16.69 (0.44) 16.64 (0.36) 16.60 (0.38) 16.52 (0.35) 0.042
Body height (cm) 165.03 (6.48) 165.77 (6.49) 165.92 (6.15) 164.65 (6.44) 163.95 (6.70) 0.127
Body weight (kg) 60.37 (10.61) 51.31 (4.48) 56.59 (4.03) 60.87 (5.12) 72.97 (11.65) <0.001
BMI (kg/m2) 22.17 (3.76) 18.65 (0.76) 20.54 (0.48) 22.42 (0.62) 27.13 (3.97) <0.001
FN aBMD (g/cm2) 1.07 (0.12) 1.03 (0.11) 1.06 (0.13) 1.07 (0.13) 1.13 (0.11) <0.001
TH aBMD (g/cm2) 1.06 (0.13) 1.02 (0.11) 1.05 (0.13) 1.06 (0.13) 1.12 (0.11) <0.001
TB aBMD (g/cm2) 1.14 (0.08) 1.09 (0.06) 1.13 (0.07) 1.14 (0.07) 1.20 (0.06) <0.001
FN BMC (g) 4.91 (0.71) 4.62 (0.59) 4.82 (0.65) 4.89 (0.68) 5.31 (0.72) <0.001
TH BMC (g) 32.01 (4.84) 30.06 (4.31) 31.39 (4.48) 31.82 (4.51) 34.81 (4.84) <0.001
TB BMC (g) 2522.89

(387.38)
2256.31
(258.47)

2451.88
(266.57)

2528.10
(333.98)

2859.05
(407.61)

<0.001

FN BA (cm2) 4.59 (0.34) 4.50 (0.35) 4.57 (0.29) 4.59 (0.33) 4.73 (0.37) <0.001
TH BA (cm2) 30.15 (2.33) 29.53 (2.26) 30.05 (1.83) 30.07 (2.40) 30.95 (2.58) 0.001
TB BA (cm2) 2207.37

(233.59)
2061.63
(165.65)

2170.54
(157.77)

2211.85
(207.55)

2384.14
(262.91)

<0.001

Ethnicity White 347 (97.8%) 84 (94.4%) 89 (100%) 88 (98.9%) 86 (97.7%) 0.068
Others 8 (2.2%) 5 (5.6%) 0 (0%) 1 (1.1%) 2 (2.3%)

Menarche age
(n = 348)

Early 110 (31.0%) 17 (19.3%) 22 (24.7%) 35 (40.2%) 36 (41.4%) 0.002
Intermediate 165 (46.5%) 42 (47.7%) 48 (53.9%) 39 (44.8%) 39 (44.8%)
Late 73 (20.5%) 29 (33.0%) 19 (21.3%) 13 (14.9%) 12 (13.8%)

Physical activity at
baseline

Sedentary 42 (12.0%) 17 (19.1%) 9 (10.0%) 7 (7.9%) 10 (11.2%) 0.054
Moderate 141 (39.5%) 36 (40.4%) 26 (28.9%) 35 (39.3%) 44 (49.4%)
Sports 110 (30.8%) 22 (24.7%) 36 (40.0%) 28 (31.5%) 24 (27.0%)
Competition 63 (17.6%) 14 (15.7%) 19 (21.1%) 19 (21.3%) 11 (12.4%)

Alcohol (yes) 262 (73.2%) 58 (65.2%) 68 (75.6%) 72 (80.0%) 64 (71.9%) 0.160
Smoking (yes) 68 (19.0%) 13 (14.6%) 15 (16.7%) 22 (24.4%) 18 (20.2%) 0.349
Snuffing (yes) 108 (30.2%) 22 (24.7%) 24 (26.7%) 33 (36.7%) 29 (32.6%) 0.282
Hormonal contraceptives use (yes) 118 (33.0%) 24 (27.0%) 32 (36.0%) 32 (36.0%) 30 (25.4%) 0.532
Medication known to affect
bone (yes)a

8 (2.2%) 1 (1.1%) 3 (3.4%) 3 (3.4%) 1 (1.1%) 0.646

Diagnosis known to affect
bone (yes)b

4 (1.1%) 0 1 (1.1%) 3 (3.4%) 0 0.199

Total
First quartile
(n = 74)

Second
quartile
(n = 74)

Third
quartile
(n = 74)

Fourth
quartile
(n = 74) p value

Boys (n =
296)

Age (years) 16.60 (0.37) 16.50 (0.38) 16.63 (0.38) 16.67 (0.33) 16.61 (0.36) 0.034
Body height (cm) 177.25 (6.52) 177.30 (6.45) 177.12 (7.05) 177.56 (6.56) 177.00 (6.10) 0.957
Body weight (kg) 69.81 (13.68) 57.10 (5.16) 64.43 (5.49) 71.46 (5.49) 86.26 (14.11) <0.001
BMI (kg/m2) 22.18 (3.93) 18.14 (.85) 20.50 (.60) 22.64 (.62) 27.45 (3.64) <0.001
FN aBMD (g/cm2) 1.11 (0.15) 1.01 (0.11) 1.12 (0.14) 1.13 (0.13) 1.19 (0.16) <0.001
TH aBMD (g/cm2) 1.12 (0.15) 1.02 (0.11) 1.12 (0.13) 1.15 (0.14) 1.20 (0.16) <0.001
TB aBMD (g/cm2) 1.18 (0.10) 1.10 (0.08) 1.18 (0.08) 1.20 (0.08) 1.24 (0.09) <0.001
FN BMC (g) 5.99 (0.99) 5.32 (0.75) 6.01 (0.87) 6.12 (0.90) 6.53 (1.04) <0.001
TH BMC (g) 40.17 (6.64) 35.61 (5.20) 40.11 (5.76) 41.30 (6.09) 43.65 (6.79) <0.001
TB BMC (g) 2963.78

(469.83)
2556.57
(340.84)

2877.81
(330.39)

3084.27
(385.23)

3336.46
(432.67)

<0.001

FN BA (cm2) 5.38 (0.39) 5.29 (0.43) 5.37 (0.35) 5.40 (0.35) 5.48 (0.39) 0.024
TH BA (cm2) 35.73 (2.47) 34.71 (2.61) 35.69 (2.31) 36.03 (2.21) 36.48 (2.47) <0.001
TB BA (cm2) 2496.46

(240.06)
2307.67
(189.40)

2443.49
(175.25)

2555.57
(201.59)

2679.11
(222.11)

<0.001

Ethnicity White 291 (98.3%) 74 (100%) 71 (95.9%) 74 (100%) 72 (97.3%)
(Continues)
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menarche age in seven girls and physical activity in one girl and
three boys. Multiple imputations based on predictors and
outcome variables were performed to predict missing values.
We assumed missing at random and 20 imputations were
conducted,(30) and we report pooled estimates. Normal
distribution, linearity, homogeneity, and outliers were explored
by residual analysis. In girls, two outliers were excluded in TH
ΔaBMD: one in FN ΔaBMD and one in TH ΔBMC models. We
used weighted least square regression in all TB ΔBMC models in
girls to account for heteroscedasticity. Significance level was set
to p = 0.05 and all procedures were performed in IBM SPSS
Statistics for Windows, version 24 (IBM Corp., Armonk, NY, USA).
Figures were made in RStudio (RStudio, Boston, MA, USA;
(http://www.rstudio.com/)

Results

Descriptives

We included 651 adolescents with repeated measurements in
the analyses, 355 girls and 296 boys (45.2% boys). At baseline,
mean age was 16.6 years (range, 15.7 to 17.9), and 18.6 years
(range, 17.8 to 20.1) at follow‐up. Average follow‐up time was
1.94 years (SD 0.2). Table 1 displays the baseline characteristics
according to BMI quartile groups. In girls, mean group BMI for
first to fourth quartile were 18.65, 20.54, 22.42, and 27.13 kg/m2,
respectively. In boys, means were 18.14, 20.50, 22.64, and
27.45 kg/m2, respectively.
One‐way ANOVA analyses showed that cross‐sectional

anthropometric, aBMD, and BMC measures differed signifi-
cantly with a positive linear trend between BMI quartiles at
baseline, except body height. These cross‐sectional differences

persisted at follow‐up 2 years later (not shown). In girls,
menarche age differed significantly with higher prevalence of
early menarche at the two upper BMI quartiles compared with
the bottom quartile (p = 0.002). In boys, physical activity at
baseline differed significantly (p = 0.004) with a higher pre-
valence of sedentary behavior for the upper quartile (39.7%)
compared with the other quartiles, and there was a low
proportion of snuff users in the second quartile compared with
the three other groups (p = 0.003).
Among girls, 5.9% of participants were classified as under-

weight, 75.4% normal weight, 14.0% overweight, and 4.7%
obese according to Cole’s weight classification at baseline with
a mean group BMI of 17.6, 21.9, 26.2, and 33.9 kg/m2,
respectively. Among boys, 8.4% of participants was classified
as underweight, 70.6% normal weight, 14.5% overweight, and
6.4% as obese. Mean group BMI in boys were 17.2, 21.0, 26.2,
and 32.5 kg/m2, respectively. Proportions in the two upper
categories increased during follow‐up. In girls, the prevalence
of overweight and obesity combined had increased to 20.6% in
2 years. In boys, the prevalence of overweight and obesity
combined increased to 28% at TFF2 (data not shown).
In girls, mean annual BW and BMI change was 1.38 kg (95%

confidence interval [CI], 1.12 to 1.64) and 0.41 kg/m2 (95% CI, 0.31
to 0.50). Boys gained 2.70 kg (95% CI, 2.35 to 3.04) and 0.61 kg/m2

(95% CI, 0.51 to 0.72), respectively. Eighty‐eight girls (24.6%) and
48 boys (16.2%) lost BW with an average annual loss of –1.60 (95%
CI, –1.92 to –1.28) and –1.97 (95% CI, –2.43 to –1.51) kg. One‐
hundred eleven girls (31.3%) and 62 boys (20.9%) reduced their
BMI during follow‐up, with a mean annual decrease of −0.56 (95%
CI, –0.66 to –0.46) and –0.66 (95% CI, –0.81 to –0.51) kg/m2. We
observed a clear difference in longitudinal growth between girls
and boys. In girls, 280 (78.9%) of the participants had an
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Table 1. (Continued)

Total
First quartile
(n = 74)

Second
quartile
(n = 74)

Third
quartile
(n = 74)

Fourth
quartile
(n = 74) p value

Others 5 (1.7%) 0 (0%) 3 (4.1%) 0 (0%) 2 (2.7%)
Puberty

development
scale
(n = 241)

Just started 22 (18.1%) 9 (16.7%) 12 (18.8%) 9 (14.3%) 14 (22.6%) 0.216
Underway 177 (72.8%) 43 (79.6%) 49 (76.6%) 45 (71.4%) 40 (64.5%)
Completed 22 (9.1%) 2 (3.7%) 3 (4.7%) 9 (14.3%) 8 (12.9%)

Physical activity
at baseline
(n = 293)

Sedentary 77 (26.3%) 24 (32.9%) 10 (13.5%) 14 (19.2%) 29 (39.7%) 0.004
Moderate 75 (25.6%) 21 (28.8%) 22 (29.7%) 16 (21.9%) 16 (21.9%)
Sports 70 (24.2%) 17 (23.3%) 20 (27.0%) 17 (23.3%) 17 (23.3%)
Competition 62 (23.9%) 11 (15.1%) 22 (29.7%) 26 (35.6%) 11 (15.1%)

Alcohol (yes) 195 (65.9%) 49 (66.2%) 41 (55.4%) 50 (67.6%) 55 (74.3%) 0.109
Smoking (yes) 62 (20.9%) 19 (25.7%) 9 (12.2%) 16 (21.6%) 18 (24.3%) 0.173
Snuffing (yes) 108 (36.5%) 30 (40.5%) 14 (18.9%) 30 (40.5%) 34 (45.9%) 0.003
Medication known to affect

bone (yes)a
6 (2.0%) 1 (1.4%) 2 (2.7%) 1 (1.4%) 2 (2.7%) >0.999

Diagnosis known to affect
bone (yes)b

5 (1.7%) 1 (1.1%) 1 (1.1%) 2 (2.7%) 1 (1.1%) >0.999

Continuous variables are described by mean (SD) and categorical by count (%).Cut-off points for BMI quartiles (kg/cm2) were 19.71, 21.43, and 23.48
in girls and 19.39, 21.56, and 23.77 in boys.
aMedication known to affect bone (ATC): D07A Plain corticosteroids, H03A Thyroid preparations, N03A Antiepileptic, R01AD Corticosteroids, R03BA

Glucocorticoids (inhalants), and H02A Corticosteroids for systemic use.
bDiagnosis known to affect bone (according to the 10th revision of the International Statistical Classification of Diseases and Related Health

Problems): E03 Hypothyroidism, E10 Diabetes type 1, F50.9 Eating disorders, K90.0 Celiac disease, and M13 Arthritis.
aBMD = Areal bone mineral density; BMC = bone mineral content; BA = bone area; FN = femoral neck; TH = total hip; TB = total body; ATC =

Anatomical Therapeutic Chemical.
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increment in height between measurements with an annual
mean of 0.053 cm (95% CI, 0.049 to 0.056). Almost all the boys
(93.2%, n = 276) grew taller during the 2 years of follow‐up.
Annual mean change was 1.024 cm (95% CI, 0.928 to 1.120).

Cross‐sectional measures and the individual aBMD trajec-
tories from TFF1 to TFF2 and unadjusted means within baseline
BMI quartiles are illustrated in Fig. 2. Post hoc analysis showed
that, among boys, the first quartile had significantly lower, and
the fourth quartile significantly higher FN, TH, and TB aBMD
than the other quartiles at both time points (p < 0.05). There
were no significant differences in aBMD status between second
and third quartiles in any of the three skeletal sites, neither at
baseline nor at follow‐up. In girls, the pattern appeared similar
to boys, but less polarized in the lower BMI quartiles. The aBMD
levels in girls in the first quartile did not differ significantly from
the two middle quartiles at the femoral sites.
When participants were stratified into BMI categories, the

relationships slightly changed. Figure 3 indicates that although
not statistically significant, and unlike the girls, boys in the
obese category had lower mean FN, TH, and TB aBMD at both
measure points compared with their overweight peers. Boys
classified as underweight had significantly lower aBMD at
baseline compared with those with normal weight (FN:
p = 0.001, TH: p = 0.005, TB: p < 0.001) and this pattern
persisted during the 2 years of follow‐up in crude analyses.

Body weight, body mass index, and bone accretion

Changes in anthropometry, ΔaBMD, and ΔBMC during follow‐up
according to baseline BMI quartiles are presented in Table 2. In
crude comparisons of quartiles, no statistically significant differ-
ences were found, except ΔBW, ΔBMI, and ΔTB BMC in girls. The
first quartile gained more weight compared with the second
quartile, and accumulated more total body bone than the fourth
quartile.
Figure 4 depicts mean ΔaBMD (Fig. 4A) and ΔBMC (Fig. 4B)

among BMI losers and BMI gainers between TFF1 and TFF2.
Reduction of BMI seemed to induce a slower bone accretion
rate, especially in boys, but no mean bone loss was observed in
any BMI loser group in either girls or boys. Among girls,
statistically significant differences between the two groups
were found only at TB ΔBMC (p < 0.001). Among boys, TH
ΔaBMD (p = 0.027), TB ΔaBMD (p = 0.011), FN ΔBMC (p = 0.033),
TH ΔBMC (p < 0.001), and TB ΔBMC (p < 0.001) were significant.
The same pattern was observed with loss of BW. In boys, the
BW loser group (n = 48) had a mean annual increment in TH
aBMD of 0.006 g/cm2 (95% CI, 0.000 to 0.012); the BW gainers
had a mean of 0.012 g/cm2 (95% CI, 0.010 to 0.015; not shown).
The crude and adjusted associations from multiple linear

regression models between baseline BW, baseline BMI, ΔBW,
ΔBMI, and ΔaBMD and ΔBMC are presented in Table 3. In girls, no
associations between baseline measures and ΔaBMD were
identified, but both baseline BW (p= 0.009) and baseline BMI
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Fig. 2. Femoral neck‐, total hip‐, and total‐body aBMD in girls and boys
from TFF1 (2010 to 2011) to TFF2 (2012 to 2013). Individual measures and
group mean according to BMI quartiles at baseline. Girls, n = 355. Boys, n =
296. The Tromsø Study, Fit Futures. In girls, cut‐off points for BMI quartiles
were 19.7, 21.4, and 23.5 and in boys 19.4, 21.6, and 23.8, respectively. The
grey area (violin plot) shows the full population distribution at TFF1 and
TFF2 in both girls and boys. The points specify each individual
measurement and the thin dotted lines show participants individual
accretion during follow‐up. The thick lines indicate the baseline BMI quartile
group mean aBMD accretion between measurements. aBMD = Areal bone
mineral density; BMI = body mass index (kg/m2).
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Fig. 3. Mean aBMD accretion of femoral neck, total hip and total body aBMD in girls and boys between baseline survey TFF1 (2010 to 2011) and the
follow‐up survey TFF2 (2012 to 2013) according to baseline BMI categories underweight, normal weight, overweight, and obese. The Tromsø Study,
Fit Futures. Girls, n = 355. Boys, n = 296. In girls, the BMI intervals for baseline BMI categories were: underweight: 16.2 to 18.2, normal weight: 18.1 to
24.7, overweight: 24.5 to 29.1, and obese: 29.8 to 41.2 (kg/cm2). In boys, the intervals were 16.2 to 17.8, 17.7 to 24.2, 24.2 to 28.9, and 29.6 to 40.3
(kg/cm2), respectively. Error bars = 95% confidence interval. aBMD = Areal bone mineral density; BMI = body mass index (kg/cm2).
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(p= 0.021) were significantly associated with ΔBMC in the adjusted
TH models. In boys, baseline BW and BMI were statistically
significant predictors of both ΔaBMD and ΔBMC in most models.
Exceptions were crude FN ΔaBMD/ΔBMC and TB ΔBMC. ΔBW and
ΔBMI had a consistent positive association with both ΔaBMD and
ΔBMC in all adjusted models, except ΔBMI ΔaBMD TH (p= 0.086).
The influence on ΔaBMD was strongest at femoral sites in boys,
but overall changes in aBMD were moderate considering the size
of the units of exposure. A baseline BMI difference of 1 SD (3.93
kg/m2) was associated with a 0.008 g/cm2 difference in TH ΔaBMD
over 2 years (p= 0.002), whereas 1 SD ΔBMI (1.89 kg/m2) during
follow‐up was associated with 0.004 g/cm2 ΔaBMD (p= 0.086).
Statistically significant interactions were detected in six models.
Pubertal maturation moderated the relationship of baseline BW/
BMI and FN ΔaBMD in girls, whereas initial BW and BMI appeared
to influence some of the change in weight–bone accretion
associations in FN and TB among boys. The relationships between
bone accretion and weight change were strongest among boys
with low BMI/BW at baseline (Table 3, Fig. 5A and Fig. 5B).

Discussion

In this population‐based study we explored the associations
between BW, BMI, ΔBW, and ΔBMI with changes in bone
parameters in adolescents entering young adulthood. Under-
weight boys had significantly lower mean aBMD at baseline and
this disadvantage persisted during 2 years of follow‐up. Change in
BW and BMI appeared to be a significant predictor of aBMD
change for both girls and boys in the adjusted models, but the
increments of aBMD for each unit change in exposure were
relatively modest. Findings suggest that the influence of weight
change might be strongest among boys with low BMI. Loss of BW

or reduction of BMI was not associated with net loss of aBMD;
however, our results indicate that the bone accretion rate slowed
down whenever weight was lost or BMI reduced during follow‐up
in both sexes. In the present study, more than one of five
adolescents was classified as overweight or obese at baseline; the
prevalence increased during follow‐up for both girls and boys.
The results supported our initial hypothesis with a few

exceptions. In girls, the influence of baseline weight status on
ΔaBMD was limited compared with the results in boys. This may
be caused by gender differences in maturation. Cessation of
longitudinal growth in girls and strong genetic control reduce the
accumulation of bone mass. Previously published results indicate
that girls reach a femoral aBMD plateau between 17 and 19 years
of age.(18) The influence of baseline BW and BMI may therefore be
less in girls in this age interval because adaptation to mechanical
loading is greater in a growing skeleton.(31)

A positive cross‐sectional association between BMI and aBMD
and a positive association between baseline BW and increased Z‐
score in femoral sites over 2 years in boys have previously been
shown in the Fit Futures cohort.(18,32) In the present study, we
report that cross‐sectional associations between BMI and aBMD
were still present at TFF2 in both girls and boys 2 years later. Our
findings are in accordance with a recent meta‐analysis and
systematic review by Van Leeuwen and colleagues.(16) They
included 27 observational studies on the relationship between
BW and bone mineral parameters in participants between 2 to
18 years of age and concluded that overweight and obese
individuals had significantly higher aBMD and BMC than
counterparts with normal BW. However, only one longitudinal
study exploring the long‐term consequences of childhood
obesity was included in the meta‐analysis. Threshold effects of
BMI´s positive influence on bone have been previously
reported.(33,34) Although nonsignificant and based on a small
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Table 2. Annual change in body height (cm), body weight (kg), BMI (kg/m2), aBMD (g/cm2) and BMC (g) between TFF1 (2010‐2011)
and TFF2 (2012‐2013) by BMI quartiles at baseline. The Tromsø Study, Fit Futures

BMI quartiles at baseline

Total First quartile Second quartile Third quartile Fourth quartile p‐value

Girls
(n = 355)

Δ Body height 0.365 (0.455) 0.419 (0.521) 0.389 (0.388) 0.325 (0.435) 0.326 (0.455) 0.417
Δ Body weight 1.383 (2.501) 1.928 (1.718)2 0.934 (1.944)1 1.275 (2.238) 1.394 (3.614) 0.004
Δ BMI 0.406 (0.910) 0.608 (0.656)2 0.243 (0.699)1 0.381 (0.852) 0.392 (1.280) 0.005
Δ FN aBMD 0.003 (0.019) 0.003 (0.018) 0.003 (0.019) 0.005 (0.020) 0.002 (0.018) 0.755
Δ TH aBMD 0.005 (0.017) 0.006 (0.017) 0.004 (0.018) 0.006 (0.017) 0.005 (0.016) 0.809
Δ TB aBMD 0.009 (0.010) 0.009 (0.010) 0.010 (0.009) 0.009 (0.011) 0.006 (0.010) 0.094
Δ FN BMC 0.014 (0.095) 0.011 (0.093) 0.017 (0.093) 0.017 (0.096) 0.013 (0.099) 0.970
Δ TH BMC 0.180 (0.592) 0.241 (0.605) 0.116 (0.557) 0.171 (0.626) 0.193 (0.580) 0.563
Δ TB BMC 39.609 (60.362) 55.290 (37.087)4 32.229 (50.509) 45.379 (52.165) 25.379 (86.922)1 0.001

Boys
(n = 296)

Δ Body height 0.929 (0.867) 1.076 (1.011) 0.896 (0.619) 0.864 (1.103) 0.882 (0.624) 0.414
Δ Body weight 2.697 (3.022) 2.928 (2.332) 2.974 (2.413) 2.661 (3.370) 2.224 (3.732) 0.481
Δ BMI 0.614 (0.950) 0.692 (0.718) 0.713 (0.736) 0.629 (1.082) 0.424 (1.170) 0.315
Δ FN aBMD 0.16 (0.027) 0.018 (0.025) 0.015 (0.026) 0.013 (0.028) 0.020 (0.028) 0.402
Δ TH aBMD 0.012 (0.022) 0.010 (0.022) 0.010 (0.023) 0.009 (0.023) 0.017 (0.022) 0.093
Δ TB aBMD 0.023 (0.015) 0.024 (0.016) 0.022 (0.015) 0.021 (0.015) 0.024 (0.016) 0.475
Δ FN BMC 0.100 (0.176) 0.107 (0.173) 0.089 (0.175) 0.077 (0.176) 0.129 (0.180) 0.308
Δ TH BMC 0.566 (1.072) 0.514 (1.067) 0.527 (1.177) 0.440 (1.029) 0.783 (0.997) 0.229
Δ TB BMC 118.818 (77.247) 121.371 (67.240) 121.005 (69.577) 118. 124 (81.233) 114.773 (90.133) 0.951

aBMD =Areal bone mineral density (g/cm2), BMC = Bone mineral content (g), FN = Femoral neck, TH = Total hip, TB = Total body, BMI = Body mass
index (kg/cm2), body weight in kg, Δ = change. Cut‐offs points for BMI quartiles were 19.71, 21.43, 23.48 (kg/m2) in girls and 19.39, 21.56, 23.77
(kg/m2) in boys. Average follow‐up time was 1.94 years (SD 0.2).1234 Significantly different from specified quartile (p < 0.05) analysed using bonferroni
post‐hoc test for multiple comparisons.
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number of subjects, we observed that adolescent boys classified
as overweight had the highest mean aBMD, higher than those
classified as obese. This pattern was not observed when
participants were stratified into BMI quartiles. The mean BMI
was higher in the obese category (32.5 kg/m2) than the fourth
BMI quartile (27.1 kg/m2), representing the tail of the distribu-
tion. In girls, the associations between baseline BMI categories
and measured bone traits were positive and had a linear trend.

Change in body weight and BMI and accretion of aBMD

Bone loss during weight reduction is well‐documented in older
individuals, but not yet demonstrated in younger populations.(21)

We found no net loss of aBMD or BMC in participants losing BW or

reducing their BMI during follow‐up. However, mean annual BMI
reduction was modest (−0.56 kg/cm2 among girls and −0.66 kg/
cm2 among boys) over 2 years in our study. To investigate more
extreme cases of weight loss, an elaborate analysis stratifying
ΔBMI in deciles was conducted (within 10th percentile, mean
annual ΔBMI of −1.16 kg/m2 in both girls and boys), but a
significant loss of aBMD was still not detected (not shown). The
association between weight loss and loss of bone is more
consistent in older compared with younger individuals.(35) This
may be linked to relatively better maintained muscle function in
the younger age groups.(21) There is a strong relationship between
lean mass and bone, and healthy adolescents are less vulnerable
to loss of muscle function during weight reduction compared
with older peers. Furthermore, older people may be more prone
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Fig. 4. Mean annual (A) aBMD and (B) BMC change in BMI losers and BMI gainers between baseline survey TFF1 (2010 to 2011) and the follow‐up
survey TFF2 (2012 to 2013). The Tromsø Study, Fit Futures. Girls, n = 355. Boys, n = 296. BMI loser girls: n =111, BMI losers boys: n = 62. FN = Femoral
neck; TH = total hip; TB = total body; ΔaBMD = change in areal bone mineral density (g/cm2); ΔBMC = change in bone mineral content (g); BMI = body
mass index (kg/cm2). Error bars = 95% confidence interval. Two‐tailed t‐test for differences in mean: ns: p > 0.05, *p ≤ 0. 05, **p ≤ 0.01, ***p ≤ 0.001.
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to bone loss because of reduced efficiency in calcium absorption
with age.(36)

The determinants of bone acquisition in the period of late
adolescence to early adulthood are understudied,(4) and there are
a limited number of studies of weight change and bone in a
comparable population. Most studies are among pre‐, peri‐, and
postmenopausal women, in relation to weight‐reduction inter-
ventions, eating disorders, use of medications, or bariatric
surgery.(21,37,38) Studies on anorexia nervosa in adolescence are
not directly comparable, but longitudinal studies of weight gain
and restoration of BW show significant, although slow, improve-
ment and normalization of aBMD levels.(39) In a recent study,
extensive BMI gain during puberty was associated with lower
increments in aBMD.(40) Exploring the effect of weight change on
bone mass in obese female adolescents, Rourke and colleagues(41)

found no bone loss, but concluded that reduction of BW induced

a reduced bone growth rate over 12‐month follow‐up—results
that are comparable to our findings.
The effect of weight reduction on bone depends on whether

it is voluntary or involuntary, the rate of change, age, sex, and
initial weight.(37) In the current study, we had no information
on the reason for our participants’ BW reduction, whether it
was based on dieting, disease/illness, or natural fluctuations.
Normally, adults’ BW fluctuates by >0.25 kg/year, but in
adolescence BW may be more unstable.(42) Furthermore, we
have no information on when during the 2‐year follow‐up the
weight change occurred. The adaptive response delay of bones
makes interpretations harder. Changes in weight precede
skeletal adaptation to mechanical loads; the bone mass
adaptation rate seems to depend on direction and magnitude
as changes are more rapid during unloading than reloading.(8)

Bone adaptation to weight change has also been shown to be
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Table 3. Adjusted associations between baseline and changes in weight parameters and femoral bone development during two
year follow‐up. The Tromsø Study, Fit Futures

FN TH TB

Crude Adjusted Crude Adjusted Crude Adjusted¤

β p β p β p β p β p β p

Girls n = 355 ΔaBMD Body weight .003 .099 .001* .669 .003 .116 .003 .189 .002 .184 .000 .971
Body weight x
menarche age

−.003 .013

BMI .001 .546 .001* .779 .002 .335 .002 .200 .000 .925 −.001 .607
BMI x menarche age −.003 .009
Δ Body weight .004 .057 .002 .002 .005 .005 .005 .004 .002 .026 .002 .083
Δ BMI .001 .560 .001 .001 .004 .030 .004 .016 .002 .110 .001 .169

ΔBMC Body weight .024 .029 .019 .105 .171 .013 .182 .009 9.891 .294 7.074 .461
BMI .009 .378 .010 .339 .112 .076 .148 .021 −3.405 .642 −1.900 .803
Δ Body weight .026 .008 .024 .009 .221 <.001 .218 <.000 64.494 <.001 66.417 <.000
Δ BMI .015 .125 .021 .025 .181 .002 .287 .001 60.323 <.001 63.387 <.000

FN TH TB

Crude Adjusted Crude Adjusted Crude Adjusted

β p β p β p β p β p β p

Boys n = 296 ΔaBMD Body weight .008 .005 .009 .009 .008 .005 .009 .002 .006 .002 .006 .005
BMI .006 .076 .008 .008 .006 .021 .008 .002 .004 .024 .005 .007
Δ Body weight .007 .015 .004 .004 .008 .002 .005 .023 .008 <.001 .007 .003
Δ BMI .003 .333 .005# .081 .004 .083 .004 .086 .006 .001 .006 .001
Δ BMI x BMI −.008 .004

ΔBMC Body weight .059 .009 .078 .001 .072 .023 .374 .005 33.515 .008 34.190 .007
BMI .051 .017 .070 .001 .268 .043 .399 <.000 16.358 .130 18.815 .085
Δ Body weight .064 .001 .040 .030 .548 <.001 .328 .005 93.669 <.001 87.503§ .000
Δ Body weight x body
weight

−19.109 .004

Δ BMI .031 .120 .049# .017 .347 .005 .452 .002 77.863 <.001 84.189# .000
Δ BMI x BMI −.056 .003 −24.348 .001

All β coefficients are per SD change in exposure. BMC = Bone mineral content (g), FN = Femoral neck, TH = Total hip, TB= Total body, BMI= Body
mass index (kg/m2), body weight in kg. Δ = change. adjusted models included age, sexual maturation, physical activity level, baseline aBMD or BMC
measurement, time between measurements, ethnicity, use of medication known to affect bone, hormonal contraceptives use (girls), snuff use and
smoking. In girls, one outlier in FN ΔaBMD (n = 354) models was excluded, two in TH ΔaBMD (n = 353) and one in TH ΔBMC models (n = 354). All
baseline body weight models were adjusted for baseline height. ΔBody weight models were adjusted for baseline height and Δ height, whereas Δ BMI
models adjusted for baseline BMI. Multiple imputation were conducted based on predictors and outcome variables in the adjusted models and
pooled estimates are shown. ¤ Weighted least square regression (n = 348 because imputation were not used). *The effect of weight and BMI should be
measured as (β1 + β3 (menarche age)), #The effect of Δ BMI should be measured as (β1 + β3 (BMI)), § The effect of Δ body weight should be measured
as (β1 + β3 (body weight)). All interactions are based on mean‐centered variables and visually explored in Figure 5.
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modified by exercise, nutrition, and medication.(21) Compared
with high initial body weight, leaner individuals have been
demonstrated to suffer greater bone loss during weight
reduction.(21) We detected a statistically significant interaction
between baseline BMI and ΔBMI in ΔaBMD FN model in boys
indicating that the relationship between ΔBMI and bone
accretion were strongest in boys with low BMI at baseline. In
a crude analysis, this could very well be participants in the first
quartile “catching up” based on age and pubertal maturation,
but the relationship persisted after adjustments and the
interaction was still present in the fully adjusted model. This
interaction is potentially interesting; however, associations and
relationships need to be tested and confirmed in other cohorts.
BMI reflects both muscle and adiposity; the mechanisms

behind the relationship between weight status and bone are
complex and multifactorial. Excess weight may have both
negative and positive influences on bone health through
different mechanisms. The process of bone modeling is
sensitive to mechanical loading: It has been stated that high
BW improves bone mineralization by increasing the forces
applied on weight‐bearing bones.(43) This effect has similarities
to the positive effect of weight‐bearing physical activities on
bones.(16,44) Both weight‐bearing activity and excess BW could
lead to more lean mass. Greater lean mass, in addition to
compressive force, produces increased tensile force on bone
load and muscles produce the largest physiologic force on
bone.(45) Results in our study indicate that, in girls, weight‐
based (and weight‐bearing‐based) interventions to maximize
the genetic potential of peak bone mass at femoral sites should
be implemented before the age of 15 years to be most
effective. This is in agreement with studies indicating that
prepuberty is the best time to change bone mass trajectory.(46)

On the other hand, weight‐bearing activity is essential during
growth and excess BW may be associated with sedentary
behavior (in the present study, 39.7% of the boys reported to

be sedentary in the upper BMI quartile). In addition to the
mechanical‐loading factors, adipose tissue may exert an impact
on bone homeostasis and bone turnover through various
adipokines like leptin and estrogen.(15) Mechanisms behind the
correlation between changes in weight and bone changes in
older populations are proposed to be related to estrogen
bioavailability or/and decreased calcium intake. Studies
showing a reduction of BMC in the distal forearm during
dietary weight reduction suggest hormonal aspects are
involved, not just gravity and a response to weight‐bearing
related forces.(47) There is also evidence suggesting that obesity
may influence the timing of puberty. Dimitri and colleagues(10)

highlight the effect of sex‐related changes in body composition
when studying relationships between bone and body size.
Obese children reach peak height velocity earlier than age‐
matched lean children do, and late menarche is a determinant
of lower aBMD and a known risk factor for fractures later in
life.(48) Thus, an early menarche in obese girls may have a long
term osteoprotective effect. In the present study, menarche age
moderated the baseline BMI versus FN ΔaBMD relationship.
Among girls with self‐reported late menarche age, BMI
appeared to be negatively correlated with FN ΔaBMD during
follow‐up. This interaction was, however, partly driven by a few
individuals with baseline BMI >35 with considerable regression
line leverage, and the statistical significance of interaction
attenuated (p = 0.083) when these participants were excluded
in a sensitivity analysis.

Strengths and limitations

The population‐based design and repeated measures from a
well‐described representative sample of both sexes from
different municipalities gave strengths to the present study.
The sample size provided an opportunity to analyze the results
in smaller subsamples, and explorations of the tails of the
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Fig. 5. Visualization of interactions (A) baseline BMI and menarche age in girls and (B) baseline BMI and ΔBMI in boys in femoral neck ΔaBMD
regression models. The Tromsø Study, Fit Futures. Girls: n = 354. Boys: n = 296. Interaction plots show unadjusted relationships from linear regression
models, but the interactions persisted after adjustments of relevant confounders. Menarche age: mean (SD) =12.98 (1.19), baseline BMI in boys: mean
(SD) = 22.18 (3.93). aBMD = Areal bone mineral density (g/cm2); BMI= body mass index (kg/m2); Δ = change.
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distribution are of clinical interest. Using a dedicated research
unit at the University Hospital of North Norway ensured the
high quality of the data acquisition. We used the same
densitometer through both surveys, with continuous valida-
tions following a standardized common protocol. The main
limitations of this study were the short follow‐up period of 2
years and that individuals were only measured twice. Short
follow‐up periods increase the risk of being obscured by
variability in DXA measurements. On the other hand, the
recommended minimum interval between DXA scans is 6 to 12
months.(49) Difference scores with two time points have
limitations when exploring growth and development processes
because the shape of the trajectory is unknown and additional
measures would be preferred.(50) There are different ap-
proaches when assessing correlates of change between two
time points. Difference‐score as outcome (Y2 – Y1) and follow‐
up measurement (Y2) as outcome using baseline (Y1) as a
covariate are two frequently used methods. Authors recom-
mend a comparison of methods for agreement because in
some situations these two approaches can lead to a different
conclusion in nonrandomized studies based on the statistical
phenomenon regression to the mean and Lord’s paradox.(29,51)

We found agreement in femoral ΔaBMD models, but discre-
pancy in some of the TB and BMC associations (Supplemental
Table S2). Thus, results from the multiple regression model
concerning some of the TB and BMC in this study should be
interpreted with caution. Nevertheless, discrepancies may also
be explained by the fact that dissimilarities in models as
difference‐scores without baseline adjustment fail to take the
initial aBMD or BMC levels into account, consequently
addressing slightly different concepts.
The 2D areal DXA measures have a tendency of over-

estimating BMC of larger bone because wider bones are also
thicker; hence, the interpretation of measures of growing
skeletons must be done with caution because of this size
dependency.(52) This concern especially applies to our male
participants still experiencing longitudinal growth. Shape,
body habitus, and changes in body composition may affect
DXA measurements; it has been suggested that DXA may
not be a valid technique for evaluating bone/weight
associations.(53) The impact of thickness of body tissue
overlaying the measured area could be a concern in
longitudinal studies of the effect of BW changes.(54,55)

However, this mainly applies to lateral scans not performed
in this study(56,57) and weight loss <6 kg has been shown to
have limited influence on DXA aBMD measures.(37) Dietary
intake information such as calcium intake and vitamin D
levels may play a role in bone accretion. Unfortunately,
information on nutrition was not available in The Fit Future
study. Changes during follow‐up in some of the control
variables, such as increased proportions of smokers and
snuff users, make the interpretations of associations harder
(Supplemental Table S1). Nonparticipation and loss to
follow‐up bias could be a problem. With the high atten-
dance rate of 93% of those invited at baseline, the
nonparticipation exposition is limited. Drop‐out analysis
showed a higher proportion of boys, smokers, snuff users,
and consumers of alcohol (girls) among the 32% lost at
follow‐up compared with those who participated in both
surveys. Girls lost at follow‐up had a moderately higher
mean baseline BMI (p = 0.053). This could lead to under-
estimation of the association between BMI and bone
accretion found in this study.

In conclusion, our results indicate that weight status during
late adolescence could play a part in the concept of maximizing
bone mass and density during growth for prevention of future
fractures. ΔBW and ΔBMI predicted ΔaBMD and ΔBMC in both
sexes. Although statistically significant, the magnitude of these
changes in aBMD during follow‐up was moderate and unlikely
to have significant clinical implication on peak bone mass for
adolescents with an adequate BW. Loss of BW or reduction of
BMI was not associated with net loss of aBMD, but individuals
who lost weight during follow‐up, demonstrated a slowed
progression of aBMD accretion compared with those gaining
weight, especially among boys. Considering that more than
one of five adolescents was classified as overweight or obese at
baseline and with an increasing prevalence during follow‐up
for girls and boys, the bone health perspective must be
compared with other health benefits. However, adequate
weight is important for bone and our results indicate that
underweight adolescent boys may benefit from a BMI increase.
Particularly underweight individuals losing weight during this
critical period of bone accretion could be at risk of a less than
optimal peak bone mass acquisition, thus not achieving their
full genetic potential for skeletal mass. Because of the short
follow‐up of 2 years, results must be interpreted with caution.
Further analyses should also examine the effect of lifestyle
factors present at baseline. Moreover, the cohort should be
followed into adulthood to further explore factors that can alter
the bone mass trajectory.
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