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Abstract 21 

Corkwing wrasse, Symphodus melops, is one of the main species used as cleaner fish 22 

to combat sea lice infestation in salmon aquaculture; however, there is little knowledge about 23 

its biology. Here, we describe the embryonic development of this species and examined the 24 

viability of the eggs under three temperature regimes. The experiments were conducted at 25 

three water temperature regimes, 12, 15 and 18 ˚C, which resemble common sea water 26 

temperatures registered during the spawning season of corkwing wrasse at different latitudes 27 

along the Norwegian coast. Corkwing wrasse spawn small spherical eggs of 0.75-0.80 mm in 28 

diameter (mean 0.78, cv = 3.6 %) with several oil droplets and go through eight 29 

developmental stages until hatching. The shortest hatching time was registered after 144 h at 30 

18 ˚C, hatching after 222 h and 372 h at 15 and 12 ˚C, respectively. These observations 31 

provide important baseline biological information to advance the establishment of commercial 32 

rearing techniques and sustainable fishing management practices for this heavily exploited 33 

species. 34 

 35 

 36 

Keywords: fish egg, developmental stages, cleaner fish, salmon aquaculture, hatching time, 37 
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3 
 

Introduction 39 

The use of cleaner fish as biological treatment to combat sea lice infestation in 40 

Norwegian salmon farming has reached unprecedented levels (Blanco Gonzalez and de Boer 41 

2017), with more than 54 million fish used in 2017 (Statistics Norwegian Directorate of 42 

Fisheries: http://www.fiskeridir.no/Akvakultur/Statistikk-akvakultur/Akvakulturstatistikk-43 

tidsserier/Rensefisk). At present, five main species are used as cleaner fish, namely: corkwing 44 

Symphodus melops, goldsinny Ctenolabrus rupestris, ballan Labrus bergylta and rock cook 45 

Centrolabrus exoletus wrasses and lumpfish Cyclopterus lumpus (Deady et al. 1995; 46 

Skiftesvik et al. 2013). While most lumpfish used in salmon farms are of hatchery origin, the 47 

vast majority of wrasses are wild-caught fish, except for a small number of cultured ballan 48 

wrasse (Statistics Norwegian Directorate of Fisheries: 49 

http://www.fiskeridir.no/Akvakultur/Statistikk-akvakultur/Akvakulturstatistikk-50 

tidsserier/Rensefisk). The abundance of wild wrasses in Norway has increased drastically 51 

over the last decades (Barceló et al. 2016), a trend that appears associated with the warmer sea 52 

water temperatures registered (Knutsen et al. 2013). As result, millions of wrasses are fished 53 

in warmer southern regions and annually translocated to salmon farms located in colder 54 

northern areas where local stocks are not large enough to support their high demand (Blanco 55 

Gonzalez and de Boer 2017). The intensive fishing pressure on wrasses raised concerns about 56 

the sustainability of the fishery and a maximum fishing quota was implemented for the first 57 

time in 2016. In 2017, approximately 20 million wild wrasses were used by the salmon 58 

industry (Statistics Norwegian Directorate of Fisheries: 59 

http://www.fiskeridir.no/Akvakultur/Statistikk-akvakultur/Akvakulturstatistikk-60 

tidsserier/Rensefisk), despite little knowledge about their biology (Blanco Gonzalez and de 61 

Boer 2017). Additional concerns lie in the possibility that translocated wrasses with distinct 62 

genetic profiles to recipient populations (Blanco Gonzalez et al. 2016; Jansson et al. 2017) 63 
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may escape (Espeland et al. 2010), and spawn viable eggs that may survive the colder 64 

temperatures experienced in northern regions (Blanco Gonzalez and de Boer 2017; Faust et al. 65 

2018). Eventually, they could establish a genetically distinct population and/or compromise 66 

the viability and evolutionary potential of the species (Blanco Gonzalez et al. 2016; Faust et 67 

al. 2018). The development of breeding programs to produce domesticated wrasses was 68 

proposed as an alternative to reduce the fishing pressure on wild stocks and mitigate any risk 69 

associated with fish translocations (Blanco Gonzalez and de Boer 2017). 70 

Major constraints to the development of wrasse aquaculture are the facts that wrasses 71 

grow slowly (Costello 1991), requiring at least two years before they can be placed in the 72 

salmon nets (Helland et al. 2014), and that their metabolic and feeding activity on sea lice 73 

decrease at temperatures below 10°C (Costello et al. 1995: Sayer et al. 1996), which are 74 

common around Norwegian salmon farms during winter months. Initial attempts to produce 75 

the three most abundant wrasse species in Norway brought promising results (Skiftesvik et al. 76 

1996; Stone 1996; Van der Meeren and Lønøy 1998). However, the small size at mouth 77 

opening in the two smallest species, goldsinny and corkwing wrasse, represented a major 78 

challenge during first feeding, and rearing techniques were directed exclusively towards the 79 

larger ballan wrasse (Helland et al. 2014). 80 

Corkwing wrasse is the second largest wrasse used as cleaner fish in Norway and, 81 

together with ballan wrasse, it is the only species used to remove sea lice during the second 82 

year of salmon in the net pens (Skiftesvik et al. 2013). This fact makes these two species 83 

particularly interesting for the salmon aquaculture industry. Similarly to other cleaner 84 

wrasses, the metabolic activity of corkwing wrasse is correlated to sea water temperatures. At 85 

sea water temperature below 8°C, they enter a hypometabolic state (Costello et al. 1995) 86 

while high mortality rates have been reported below 4°C (Bjelland et al. 1996). The spawning 87 

season of corkwing wrasse in Norway extends from late April to August, when territorial 88 
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males gather and overlap several layers of different algae species to build and guard complex 89 

nests where females will lay their sticky eggs (Uglem and Rosenqvist 2002). The larval 90 

development of corkwing wrasse was described earlier by Quignard (1967); however, there is 91 

no information about the embryonic development of the species. 92 

This study describes for the first time the embryonic development of corkwing wrasse. 93 

Additionally, it confirms the viability of corkwing wrasse eggs under three temperature 94 

regimes commonly found along the Norwegian coast during the spawning season. This 95 

manuscript provides fundamental baseline biological information on this heavily exploited 96 

species and contributes to advancing the future development of rearing techniques for this 97 

cleaner fish. 98 

 99 

Materials and Methods 100 

The parental stock used in this study comprised one male (total length = 18.5 cm, total 101 

weight = 88.4 g) and one female (total length = 16.0 cm, total weight = 52.8 g) caught using 102 

eel pots by a local fisherman in Arendal, Norway, on 24th June 2014 at 17 °C. The fish were 103 

kept at approximately 10 °C following natural fluctuations in a large mesocosm basin of 104 

approximately 5000 l located at the facilities of the Institute of Marine Research (IMR) at 105 

Flødevigen, Arendal. The seawater was pumped up from 19 m depth and kept at an exchange 106 

rate of 2-3% per day. On June 27th 2016, the parental pair were caught with eel pots from the 107 

basin where the temperature was 16.7 °C, manually stripped and eggs and milt were split in 108 

three small PVC cylinder collectors attached with a net of 160 microns where eggs adhered 109 

and ensured good aeration. Each PVC cylinder with fertilized eggs was immersed in 450 l 110 

squared tanks at 12.0±0.4, 15.0±0.4 and 18.0±0.3 ˚C, respectively, to follow the embryonic 111 

development under the three temperature regimes. The election of these values of temperature 112 

is based on the fact that they are common sea water temperatures registered during the 113 



6 
 

spawning season of corkwing wrasse at different latitudes along the Norwegian coast. The 114 

lighting regime in the tanks simulated natural light (18L:6D). Egg inspections were performed 115 

on batches of 10-20 eggs every 15 min for the first 8 h and subsequently every 6 h until 50% 116 

of the eggs hatched. Their developmental stages were examined under a binocular 117 

microscope, key features annotated and photographed under a Leica MZ16a stereomicroscope 118 

(Leica, http://www.leica-microsystems.com) fitted with a Tucsen CMOS IS1000 camera 119 

(Tucsen, http://www.tucsen.com/). We also recorded timing of the developmental stages and 120 

hatching times; however, this information should be considered orientative, as only one single 121 

breeding pair was used in our experiments. The images were then analyzed with the software 122 

Fiji (Schindelin et al. 2012). In order to determine the size of spawned eggs and newly 123 

hatched larvae, a total of 20 eggs and 20 newly hatched larvae were measured and their 124 

average values and coefficient of variation, cv = sd / mean x 100, determined. The details of 125 

the embryonic development of corkwing wrasse were monitored after the gelatinous layer that 126 

cause debris and contaminants to attach to the sticky eggs was carefully removed using 127 

dissecting needles. The criteria to consider a new stage of development was set as where 50% 128 

of the batch of eggs sampled had reached the subsequent stage. Each batch of eggs was used 129 

only once and they were preserved in 95% ethanol after examination in case they were needed 130 

to create the illustrations. 131 

 132 

Results 133 

Corkwing wrasse spawned small spherical eggs of 0.75-0.80 mm in diameter (mean 134 

0.78, cv = 3.6 %). The eggs were attached by mucus to the bottom of the PVC cylinder 135 

collectors and it was necessary to remove the gelatinous layer with dissecting needles to 136 

examine the unique features during the embryonic development. The eggs presented several 137 

small oil droplets embedded in the yolk which remained through the whole embryonic 138 
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development until hatching. The embryonic development of corkwing wrasse is documented 139 

in VIII stages by the progressive occurrence of specific developmental stages through 140 

cleavage, blastulation, gastrulation and segmentation to hatch (see illustrations in Fig. 1 and 141 

Fig. 2 and detailed description in Table 1). In short, at 15 ˚C, the first cleavage takes place 142 

after 2 h and 15 min with subsequent cell divisions recorded at regular intervals of 15-30 min 143 

(Fig. 2a-2i). Initially, multiple oil droplets are located at the vegetal pole. Later on, they 144 

spread gradually through the animal pole. After the blastulation (Fig. 1c) and gastrulation 145 

(Fig. 1d) stages, the appearance of the somites marks the beginning of the segmentation stage 146 

where the embryo starts developing progressively. After 90 h, the tail detaches from the yolk, 147 

the presence of otoliths becomes apparent and the embryo starts acquiring some 148 

pigmentations. At stage VII, after 174 h, the tail of the embryo reaches the head, the presence 149 

of melanophores and xanthophores darkens the embryo gradually and its movement and 150 

heartbeat become more frequent. After 222 h, 9 days and 6 h, the chorion is broken and a 151 

newly hatched larva of 2-2.5 mm in total length starts swimming freely. 152 

Timing of the developmental stages presented in Table 1 correspond to a temperature 153 

of 15.0±0.4 ˚C, a common value during the spawning season of corkwing wrasse in the 154 

proximities of the facilities where these experiments were conducted. In parallel to the 155 

observations and characterization conducted at 15 ˚C, our experiments confirmed that 156 

corkwing wrasse eggs can survive and hatch at 12 ˚C and 18 ˚C. At 18±0.3 ˚C, the embryonic 157 

development of corkwing wrasse sped up and hatching time shortened to 144 h, 6 days and 158 

6h. In contrast, those eggs exposed to the colder sea water temperatures commonly found in 159 

northern regions, 12±0.4 ˚C, delayed their rate of development and hatching occurred after 160 

372 h, 15 days and 12 h. 161 

 162 
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Discussion 163 

This study describes for the first time the embryonic development of corkwing wrasse, 164 

one of the main cleaner fish species used against sea lice infestation in European salmon 165 

aquaculture. The embryonic development of corkwing wrasse encompasses VIII stages by the 166 

progressive occurrence through cleavage, blastulation, gastrulation and segmentation to hatch.  167 

Corkwing wrasse spawn small spherical eggs ranging 0.75-0.80 mm in diameter 168 

(mean 0.78, cv = 3.6 %), in the lower limit of those previously recorded by other authors 169 

(Quignard 1967; Stone 1996). The presence of a gelatinous layer of mucus attached to the 170 

surface, the occurrence of several small oil droplets embedded in the yolk, and the progressive 171 

succession of developmental stages observed in corkwing wrasse eggs resemble common 172 

features among several demersal marine labrids (Dulcic et al. 1999; D’Arcy et al. 2012).  173 

We registered large variation in hatching times among corkwing wrasse eggs exposed 174 

to different temperature regimes, ranging between 144 h (6 days) at 18 ˚C and 372 h (15 days 175 

and 12 h) at 12 ˚C. Previously, at 14-15 ˚C, Stone (1996) recorded hatching times ranging 176 

between 9 to 15 days while Torstensnes (2016) reported that the first eggs hatched after only 177 

144 h (6 days). Interindividual variation and sea water temperature are known to play an 178 

important role in in the rate of development of marine fish eggs (Pepin 1991; Chambers and 179 

Leggett 1996; Brooks et al. 1997). Using a single breeding pair, we followed the embryonic 180 

development of corkwing wrasse eggs; however, the lack of inter-individual variance refrains 181 

from driving comparisons of egg sizes or hatching times to previously published work. Future 182 

studies rearing a larger broodstock are encouraged as fluctuation in hatching times may have 183 

major implications on egg production, survival, connectivity, and eventually on population 184 

viability (Laurel and Bradbury 2006; Houde 2008; Laurel and Blood 2011). 185 

Our results confirmed that corkwing wrasse eggs produced by a breeding pair from 186 

southern Norway could hatch at 12 ˚C, a common summer temperature at higher latitudes in 187 
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Norway where wrasses are commonly translocated to. These observations support the results 188 

of a recent study conducted by Faust et al. (2018) who reported successful reproduction of 189 

translocated individuals of southern origin neighboring salmon farms in mid Norway. It 190 

should be noted, however, that corkwing wrasse may be translocated to northern areas at the 191 

limit of their temperature tolerance (Costello et al. 1995; Bjelland et al. 1996; Maroni and 192 

Andersen 1996), where sea water temperatures above 12.0 ˚C may be restricted to very short 193 

periods. Further investigations should help to clarify to what extent translocated wrasses may 194 

colonize new areas further north and how low temperatures compromise the viability of 195 

corkwing wrasse eggs and larvae. 196 

Newly hatched corkwing wrasse larvae in this study were 2-2.5 mm in total length, 197 

again in the lower limit of the sizes previously reported by Quignard (1967) and Stone (1996). 198 

They are smaller than those of most labrid species found in European waters (see Kožul et al. 199 

2011). One exception is goldsinny wrasse, the other main cleaner wrasse species used in 200 

Norwegian salmon farms, whose larvae are smaller and less developed (Stone 1996). Indeed, 201 

the small size of the larvae at the time of mouth opening in corkwing and goldsinny wrasses 202 

has been a major constraint to develop the rearing techniques for these species. Instead, 203 

efforts have been directed towards the larger ballan wrasse which is the only wrasse species 204 

farmed commercially (Blanco Gonzalez and de Boer 2017). The development of aquaculture 205 

techniques to produce large numbers of domesticated wrasses may open new opportunities to 206 

mitigate the intensive fishing pressure on wild wrasses as well as the ecological and genetic 207 

risks associated with fish translocated populations (Blanco Gonzalez and de Boer 2017). The 208 

production of offspring from wild specimens with regular broodstock replacement may also 209 

help to reduce the risk of inbreeding in case of escapees; although it may bring some of the 210 

threats reported to hatchery-released practices (Blanco Gonzalez and Umino 2012). This 211 

manuscript provides important baseline biological information on this heavily exploited 212 
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species and contributes to advances in the future development of commercial rearing 213 

techniques for this cleaner fish. 214 
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Tables 324 

 325 

Table 1. Developmental stages of corkwing wrasse, Symphodus melops, eggs at 15±0.4 ˚C. 326 

The time where 50% of the batch of eggs sampled had reached the stage, a description of the 327 

morphological features and illustrations at each stage are also provided. 328 

  329 
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Figure Legends 330 

 331 

Figure 1. Embryonic development in corkwing wrasse, Symphodus melops, from fertilization 332 

until hatching. a) Stage I: fertilized egg gastrula, b) Stage II: first cleavage, c) Stage III: 333 

blastula d) Stage IV: gastrula, e) Stage V: Segmentation: somites visible. Embryo covers 334 

approximately 1/2 of the yolk circumference, f) Stage VI: Segmentation: tail detaches from 335 

yolk. Embryo covers approximately 3/4 of yolk circumference, g) Stage VII: Segmentation: 336 

embryo reaches the head. Beginning of the stage, h) Stage VII: Segmentation: embryo reaches 337 

the head. Tail starts overlaps the head of the embryo, i) Stage VII: Segmentation: embryo 338 

reaches the head. Before hatching, the tail of the embryo overlaps approximately 1/4 of its 339 

body. j) Stage VIII: Hatching. Newly hatched larva. A: anal opening, AP: animal pole, B: 340 

brain, BD: blastodisc, BE: beak-like mass, BL: blastula, BM: blastomere, CH: chorion, EY: 341 

rudimentary eye, GA: gastrula, GR: germ ring, H: heart, KV: Kupffer’s vesicle, L: lens, MF: 342 

membranous fin, O: Olfactory apparaturs, OD: oil droplet, OT: otolith, OV: otic vesicle, PF: 343 

pectoral fin, PI: pigments, PS: perivitelline space, SM: somite, VP: vegetal pole; Y: yolk; YS: 344 

yolk-sac. 345 

 346 

Figure 2. Development of the cleavage stage in corkwing wrasse, Symphodus melops, a) first 347 

cleavage: 2-cells lateral view, b) second cleavage: 4-cells apical view, c) third cleavage: 8-348 

cells apical view, d) fourth cleavage: 16-cells lateral view, e) fifth cleavage: 32-cells apical 349 

view, f) sixth cleavage: 64-cells lateral view, g) seventh cleavage: 128-cells apical view, h) 350 

eight cleavage: 256-cells lateral view, i) 512-cells apical view. 351 
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Table 1. Developmental stages of corkwing wrasse, Symphodus melops, eggs at 15±0.4 ˚C. The time where 50% of the batch of eggs sampled had 
reached the stage, a description of the morphological features and illustrations at each stage are also provided. 
 
Stage Name Time Description of morphological features Illustration 
I Fertilised egg 15 min The newly fertilised egg has a cloudy yellowish core with the blastodisc 

situated at the animal pole and the yolk at the vegetal pole. It presents a 
narrow perivitteline space which widens gradually to occupy approximately 
10 % of the egg diameter and the blastodisc and yolk become more uniform 
in colour (Figure 1a). 

Figure 1a 

II Cleavage 2 h 15 min The first cleavage occurred after 2 h 15 min and subsequent cell divisions 
took place at regular intervals of 15-30 min (Table 1 and Figure 2a-2i). 
Initially, the blastodisc is cleaved into two even blastomeres that occupies 
approximately 1/3 of the egg while the yolk occupies about 2/3. At the site 
of the cleavage the blastodisc narrows and gives the blastodisc an ellipsoidal 
shape when seen from an apical view (Figure 2a). At the vegetal pole, the 
yolk presents multiple small circular oil droplets that will spread gradually. 
The second cleavage is perpendicular do the first one, dividing the 
blastodisc along its longitudinal axis into 4 blastomeres that are similar in 
size and shape (Figure 2b). After the third cleavage, blastodisc divided into 
8 cells (Figure 2c), the oil droplets gradually spread through the yolk 
towards the animal pole and after the next cell division they appear evenly 
dispersed throughout the yolk (Figure 2d). At the end of this stage, the 
blastodisc is divided into 512 small blastomeres and adopts a circular shape 
with lightly bulging edges (Figure 2i).    

Figure 1b and 
Figure 2a-2i 

III Blastula 6 h At this stage, it becomes difficult to distinguish individual blastomeres 
(Figure 1c). Instead, a homogenous half-moon shaped clump of cells is seen 
at the animal pole, it is called blastula. In the blastula stage the border 
between the blastodisc and the yolk is smooth, running in a continuous line 
which envelops the yolk. 

Figure 1c 

IV Gastrula 15 h At this stage, the blastula has flattened outwards into a dome shaped gastrula 
at the animal pole. The germ ring starts migrating over the yolk towards the 
vegetal pole which starts narrowing and becomes more elongated and 

Figure 1d 
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ellipsoidal in shape (Figure 1d). From a lateral view the Brachet’s cleft, a 
visible line between the epiblast and the hypoblast can be seen, and the 
posterior and anterior part of the future embryo starts becoming 
distinguishable. At the end of this stage, the germ ring envelops the yolk 
almost completely and the embryo covers about half of the circumference 
of the yolk. At this point, oil droplets appear concentrated in the opposite 
side to where the body of the embryo is developing. 

V Segmentation: somites 42 h The appearance of somites in the central part of the embryo marks the 
transition from gastrulation to segmentation. The embryo thickens and the 
yolk gradually shrinks in size. A beak-like mass of cells is seen anteriorly 
to the head and the rudimentary eyes and Kupffer’s vesicle become apparent 
(Figure 1e). As the embryo elongates the beak-like mass of cells disappear 
from the anterior part of the head and the lenses of the eyes become visible. 
The otic vesicles appear posteriorly to the eyes, the Kupffer’s vesicle 
enlarges and more somites are seen posteriorly along the body of the 
embryo. At the end of this stage oil droplets tend to concentrate in the area 
close to the head and tail of the embryo which is still fully attached to the 
yolk. 

Figure 1e 

VI Segmentation: tail 
detaches from yolk 

90 h At this stage the Kupffer’s vesicle shrinks and disappears, while the tail of 
the embryo starts to detach from the yolk (Figure 1f). As the embryo 
elongates the brain and heart become clearly visible, the otic vesicles 
enlarges and the otoliths are evident. The embryo starts displaying a 
membranous fin, more somites are apparent and a few melanophores reveal 
signs of pigmentation which become more evident in the next stage. 

Figure 1f 

VII Segmentation: embryo 
reaches the head 

174 h The tail of the embryo reaches the head and continues growing, overlapping 
the body of the embryo (Figure 1g-1i). At this stage, the embryo darkens 
gradually and show denser pigmentation. Melanophores and xanthophores 
appear aligned along the dorsal and ventral side of the body of the embryo 
covering approximately the upper 2/3 of it (Figure 1h). A few melanophores 
are also evident are visible in the yolk-sac. The pectoral fin becomes visible 
posteriorly to the otoliths. The yolk presents some pigmentation and oil 
droplets appear again evenly dispersed. Eyes are more developed and the 

Figure 1g-1i 
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movement and heartbeat of the embryo become more frequent. At the end 
of this stage, the tip of the tail encircles approximately 1/4 of the body of 
the embryo (Figure 1i). 

VIII Hatching 222 h The chorion of the embryo is broken and the newly hatched larva of 
approximately 2-2.5 mm in total length swims freely (Figure 1j). A few 
melanophores and oil droplets are still observed in the yolk-sac. The head 
presents an enlarged brain and well developed eyes, while the olfactory 
apparatus becomes evident. The heart and a more developed small pair of 
pectoral fins are now visible and the anal opening is recognized (Figure 1j). 

Figure 1j 
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Figure 1. Embryonic development in corkwing wrasse, Symphodus melops, from fertilization 
until hatching. a) Stage I: fertilized egg gastrula, b) Stage II: first cleavage, c) Stage III: blastula 
d) Stage IV: gastrula, e) Stage V: Segmentation: somites visible. Embryo covers approximately 
1/2 of the yolk circumference, f) Stage VI: Segmentation: tail detaches from yolk. Embryo 
covers approximately 3/4 of yolk circumference, g) Stage VII: Segmentation: embryo reaches 
the head. Beginning of the stage, h) Stage VII: Segmentation: embryo reaches the head. Tail 
starts overlaps the head of the embryo, i) Stage VII: Segmentation: embryo reaches the head. 
Before hatching, the tail of the embryo overlaps approximately 1/4 of its body. j) Stage VIII: 
Hatching. Newly hatched larva. A: anal opening, AP: animal pole, B: brain, BD: blastodisc, 
BE: beak-like mass, BL: blastula, BM: blastomere, CH: chorion, EY: rudimentary eye, GA: 
gastrula, GR: germ ring, H: heart, KV: Kupffer’s vesicle, L: lens, MF: membranous fin, O: 
Olfactory apparaturs, OD: oil droplet, OT: otolith, OV: otic vesicle, PF: pectoral fin, PI: 
pigments, PS: perivitelline space, SM: somite, VP: vegetal pole; Y: yolk; YS: yolk-sac. 
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Figure 2: Development of the cleavage stage in corkwing wrasse, Symphodus melops a) first cleavage: 
2-cells lateral view, b) second cleavage: 4-cells apical view, c) third cleavage: 8-cells apical view, d) 
fourth cleavage: 16-cells lateral view, e) fifth cleavage: 32-cells apical view, f) sixth cleavage: 64-cells 
lateral view, g) seventh cleavage: 128-cells apical view,  h) eight cleavage: 256-cells lateral view, i) 
512-cells apical view. 
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