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Abstract 

 

Background: Acute liver failure (ALF) results in disturbed ammonia metabolism, urea 

synthesis capacity decreases and hyperammonemia develops (1). Ammonia accumulates to 

toxics levels in the brain, leading to cerebral oedema (2). Glutamine synthetase (GS) 

detoxifies (temporarily) ammonia to glutamine. However, glutamine is split by phosphate-

activated glutaminase (PAG) again to ammonia and glutamate (1). 

We aimed to investigate whether organ specific changes in both GS and PAG activities are 

involved in the development of hyperammonemia in ALF. We also studied these relations in 

the context of a novel ammonia lowering treatment concept, L-Ornithine + Phenylbutyrate 

(OP)(2). Methods: 24 female pigs were randomised into three equal groups: ALF (induced by 

liver devascularisation), ALF + OP and sham-operated. Arterial ammonia was measured 

every 2 hours. At the end of the experiment at T=8 hrs, the animals were sacrificed, tissue 

samples from the kidneys, lungs, muscles, duodenum, brain and ileum were dissected and 

“flash” frozen at -80 °C in liquid nitrogen for storage before further tissue processing. 

To measure GS activity we applied a modified version of the methods previously described 

by Minet et al (3) and Seiler et al(4). PAG activity was determined by measuring ammonia 

production following incubation for one hour at 37 °C with O-phthaladelhyde (OPA) (5). 

Results: GS activity in ALF group, in almost all tissues studied, was increased. PAG activity, 

in all tissues studied, was increased. We observed reduction in PAG activity in all tissues in 

ALF-OP treated animals. Conclusion: Increased GS activity in muscles, lungs and small 

intestines contributes to ammonia detoxification during ALF. Increased PAG activity in 

kidney, small intestines and lungs contribute to systemic hyperammonemia in ALF. OP 

treatments lead to decrease in PAG activity, hence reduction in arterial ammonia and 

prevention of intracranial hypertension in pigs with ALF. 
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Background  

 

The liver plays a central role in whole body nitrogen metabolism. Liver failure and resulting  

hepatocellular dysfunction results in disturbances in body nitrogen homeostasis (1). This is  

due to impaired hepatic urea synthesis capacity, intra- and extra hepatic portacaval shunts and 

because of  reduced perivenous glutamine synthesis capacity, resulting in reduced capacity to 

detoxify ammonia in the liver(1). 

This leads to ammonia accumulating to toxics levels in the brain and result in increased ICP  

and hepatic encephalopathy (HE) (1). HE is a common, reversible neuropsychiatric 

complication of lever disease affecting about 20-30% patients with cirrhosis. HE may only 

affect quality of life (e.g. impairments in attention; coordination; driving ability), but in some 

patients this progresses to coma and death (2). In patients with ALF, an arterial ammonia 

level of >150 µmol/L has been found to be predictive of brain herniation (6). Hence, 

ammonia-lowering strategies remain the main therapeutic target for the treatment of HE. 

However, currently available treatment protocols have been shown to be largely ineffective 

(6, 7). 

In liver failure the most important temporary alternative pathway for ammonia detoxification 

is the formation of glutamine from ammonia and glutamate catalysed by the enzyme 

glutamine synthetase(GS) (figure 1)(11).The glutamine formed is then taken up by other 

organs, (i.e. small intestine and kidney) and split by the intra-mitochondrial phosphate-

dependent enzyme glutaminase (PAG) into glutamate and ammonia(1). Thus, ammonia is 

regenerated instead of being excreted through the kidneys, which causes an ammonia re-

bound effect (9, 10). 

Many ammonia-lowering strategies have been directed towards reducing the production of 

ammonia in the gut, such as with non-absorbable antibiotics and cathartics (non-absorbable 

disaccharides) (11). A recently published meta-analysis concluded that there was lack of 

evidence for the routine use of these strategies for the treatment of hepatic encephalopathy 

(HE) in patients with cirrhosis. No clinical trials have been performed with these strategies in 

patients with ALF (12, 13). Accordingly, treatment of hyperammonemia and intracranial 

hypertension in ALF remains an unmet clinical need.  

One approach is to increase the amount of substrates to stimulate ammonia-removing 

pathways such as in the urea cycle and/or glutamine synthetase (GS). The administration of 

amino acids L-ornithine and L-aspartate to patients with cirrhosis as well as to rats with 
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portacaval anastomosis resulted in an increase in urea production (14, 15). Targeting GS by 

providing the substrate (glutamate) is potentially an effective way of detoxifying ammonia 

through the production of glutamine. However, as already mention above, instead of being 

excreted through the kidneys, glutamine is capable of being metabolised in the gut or kidney 

and regenerating ammonia, causing an ammonia-rebound effect (2). Therefore, the 

understanding of interorgan ammonia metabolism is the basis of the hypothesis in which the 

combination of L-ornithine and phenylacetate would increase excretion of ammonia in pigs 

with ALF (figure 2) (2). Phenylacetate is an established treatment of hyperammonemia in 

patients with urea cycle enzyme deficiencies (16-18). These patients have markedly increased 

blood glutamine concentrations and to prevent an ammonia-rebound effect, phenylacetate 

conjugates with glutamine producing phenylacetylglutamine which cannot be metabolised 

through glutamine synthetase and instead is excreted through the kidneys (16-18). In a 

recently performed study we aimed to test this hypothesis in a large animal (porcine) model 

of ALF (induced by hepatic devascularisation) which develops typical clinical and 

biochemical features of ALF (19-22). Our focus was to demonstrate the efficacy of L-

ornithine phenylacetate (OP) and whether a reduction in plasma ammonia is associated with 

attenuation in both brain ammonia concentrations and intracranial pressure (ICP). 

Results from OP study 

The results showed that the administration of OP to pigs with ALF successfully reduces 

arterial and extracellular brain ammonia levels and as a result prevents any rise in ICP during 

the experimental period (figures 3-5).  

Aim for the present study 

The aim of this study was to investigate whether organ specific changes in both GS and PAG 

activities are involved in the pathogenesis of the development of hyperammonemia in liver 

failure. Furthermore, we aimed to study these relations in the context of this novel ammonia 

lowering treatment concept, OP.  
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METHODS 

Study outline 

The study was performed in the Surgical Research Laboratory at the University of Tromsø, 

Norway and was approved by the Norwegian Experimental Animal Board. A well-validated 

and characterised large animal model which recapitulates the cardinal features of human ALF 

including acute hyperammonemia and increased ICP was used (16). Twenty-four female pigs 

weighing 27-35 kg were randomised using the sealed envelope system into three groups:  

(i) ALF + vehicle     (n=8) 

(ii) ALF + L-Ornithine + Phenylacetate  (n=8) 

(iii) Sham operated + vehicle    (n=8) 

 

One pig (ALF + OP) was excluded due to surgical complications. Two pigs (one ALF and 

one sham pig) were excluded due to technical errors. Accordingly, data from 21 pigs was 

thus included in the present study.  

 

At the end of the experiment at T=8hrs, immediately after the animals were sacrificed, tissue 

samples (2 cm x 2 cm) from the kidneys, lungs, liver, muscles (hindleg), duodenum and 

ileum were dissected and quickly “flash” frozen at -80 °C in liquid nitrogen for storage 

before further tissue processing.   

Glutamine synthetase activity assay   

To measure glutamine synthetase activity we applied a modified version of the methods 

previously described by Minet et al.(3) and Seiler et al.(4). Tissue was homogenized with 10 

x volume of the imidazole-EDTA buffer, and subsequently diluted using the same buffer. 

Reaction buffer was composed of the following: Imidazole (80.7mM), Sodium arsenate 

(40.3mM), Sodium ADP (81uM), L-Glutamine (30.3mM), MnCl24H2O (1mM). The pH was 

adjusted to 7.0. Immediately before use aliquots were diluted 1:1 with 1 M NaOH and then 

adjusted to pH 7.0. This solution was further diluted 1:1 with water. Tissue homogenate (80 

µl) was mixed with 70 µl reaction mixture. Hydroxylamine solution (2M; 10µl) was added 

immediately before the samples were incubated (usually for 20 minutes) at 37 °C under 

gentle shaking. The reaction was terminated by adding 80µl of a solution of 2.42% FeCl and 

1.45% TCA in 1.82% HCl Insoluble material was removed by centrifugation and the 
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absorbance of the supernatant was measured at 540 nm. Blanks were made as the incubation 

mixtures, except that instead of the enzyme preparation (i.e. tissue homogenate) 80 µl of the 

imidazole-EDTA (homogenisation buffer) buffer were added. Glutamic acid-γ-hydroxamate 

was used as standard (range 0-10 mM).  Appropriate dilutions were prepared as needed by 

adding water. 

Calculations; 

                                          ADP; Mn
2+

; AsO4
3+

  

Glutamine + H2NOH                     Glutamyl-γ-hydroxamate + NH3 

                                                     GS  

 As shown in the formula, the relation is 1:1, which allowed us to calculate the enzyme 

activity directly from the concentrations in the standard curve. 

PAG activity assay  

Mitochondrial protein was measured by the determined method of Bradford with bovine 

serum albumin (BSA) as standard (Stigma). 3 tubes were prepared: sample, buffer and 

control sample, then 35 µl of reaction buffer (K2HPO4 150 mM pH 8; L-Gln (L-Glutamine, 

Sigma, ref. 49419) 171 mM, NH4Cl 1 mM, adjust to pH 8) was added to 2 tubes (buffer tube 

and sample tube, not control sample one). After sample incubation in a wheel for 30 min at 

4 ºC, 25µl of mitochondrial solution was added (in incubation buffer with protease inhibitor, 

Triton X-100, β-mercaptoethanol) to obtain protein concentration between 5 to 10 mg/ml. 

After incubation for 45 min at 37 degrees Celsius the reaction was stopped with 10 µl of 100 

g/L trichloroacetic acid (TCA).  Blanks were prepared separately following the incubation of 

the reaction medium/buffer and samples were mixed before TCA. When the sample-

mixture reaction was stopped, the reaction mixture was placed in ice for 15 min and then 

centrifuged at 12, 000 r/min for 5 min at 4 ºC.  The micro-titre plate was loaded with 5 µl of 

supernatant and 150µl of OPA reagent (0.2 mol/L K2HPO4, ph 7.4; 56 ml/L ethanol; 10 

mmol/L O-Phthalaldehyde; 0.4 mmol/L β-mercaptoethanol) to each well. The plate was 

incubated in the dark at room temperature for 45 min. Standards for NH4Cl were prepared 

to concentrations of 50-300mg/L. Absorbance was measured at 405 nm with a 

spectrophotometer. 
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Calculation; 

 

Total Volume x Dilution in plate 

 

Time x Volumen de muestra 

     70x10
-6

 x 155/5             

     60x 25 x 10-3                 X 1000= mU/ml 

     

Specific activities (SA) of enzymes were expressed in international units per milligram of 

mitochondrial or homogenate protein (samples and tubes of standard curve too) (5). 

Statistical analysis 

Data was expressed as mean ± SEM. Statistical analysis were performed using the Statistical 

Package for the Social Science, version 14.0 for windows (SPSS, Chicago, Ill). The Mann-

Whitney U test was used to test for differences between groups. Probability values P≤0.05 

were considered significant for all tests applied. 

 

RESULTS 

GS activity 

 Muscle Glutamine Synthetase Activity: Hindleg muscle glutamine synthetase (GS) 

activity was higher in the ALF+OP (40.6±21.1 nu/mg protein) and the ALF groups 

(19.1±9.9 nu/mg protein) compared with the sham operated groups (8.9±1.3 

nu/mg protein) but this difference did not reach statistical significance (P=0.10).  

(Figure 6)                                  
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Kidney GS activity: Kidney GS activity was higher in ALF+OP (290.27 ±38.85nu/mg 

protein) and the SHAM groups (237.51 ±13.65) compared with the ALF operated 

groups (236.00±15.92), (figure 7). The difference between SHAM and ALF is not 

significant statistically (p>0.05). 

Lung Glutamine Synthetase Activity: Lung glutamine synthetase (GS) activity was 

higher in the ALF (115.76±16.09 nu/mg protein) compared with the SHAM groups 

(107.52±15.78nu/mg protein), and compared with the ALF+OP operated groups 

(67.58±5.94nu/mg protein). The difference between ALF and SHAM did not reach 

statistical significance. (Figure 8).                                                                                                                                                       

Duodenal Glutamine Synthetase Activity: Duodenal glutamine synthetase (GS) 

activity was higher in ALF groups (100.33± 18.03 nu/mg protein) and the ALF +OP 

groups (79.46 ± 10.47 nu/mg protein) compared with the sham operated groups 

(76.35±7.38nu/mg protein).(Figure 9). 

Ileum Glutamine Synthetase Activity: Ileum glutamine synthetase (GS) activity was 

higher in the ALF (138.46±16.54nu/mg protein) compared with the SHAM groups 

(97.11± 15.50nu/mg protein) and with the ALF+OP operated groups 

(92.09±10.97nu/mg protein) (figure 10). The difference in GS activity in ALF and 

sham is significant statistically (p>0, 05).                                                                                                                           

PAG activity 

(Muscle PAG activity:   Results not available) 

 Kidney PAG activity: Kidney PAG activity was higher in the ALF (73.00±10.75 

nu/mg) compared with the ALF+OP groups (67.07±8.60 nu/mg protein) and with 

the sham operated groups (52.96±13. 19nu/mg protein). PAG activity in kidneys of 

ALF group is significantly higher than in SHAM operated group (p>0.05). (Figure 

11). 

Lung PAG activity: Lung PAG activity was higher in the ALF (106.67±11.00 nu/mg 

protein) compared with the ALF+OP groups (107.86±10.29 nu/mg protein) and 

with the sham operated groups (89.04±8.69nu/mg protein). PAG activity in lungs 
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of ALF group is significantly higher than in SHAM operated group (p>0.05). (Figure 

12).                                                                                                                                   

Duodenum PAG Activity: Duodenum PAG activity was higher in the ALF 

(303.70±62.27 nu/mg protein) compared with the ALF+OP groups 

(295.76±43.17nu/mg protein) and with the sham operated groups (197.38±43.78 

nu/mg protein). (Figure 13). 

Ileum PAG Activity: Ileum PAG activity was higher in the ALF (193.37±32.25 nu/mg 

protein) and the ALF+OP groups (133.62±43.47 nu/mg protein) compared with the 

sham operated groups (109.62±18.21 nu/mg protein).(Figure 14) 

 

DISCUSSION 

The liver plays a central role in whole body nitrogen metabolism. Acute liver failure 

results in disturbed body nitrogen homeostasis due to impaired hepatic urea 

synthesis capacity (1) and the intra- and or extrahepatic shunting of portal blood 

into systemic circulation. This leads to an alteration in interorgan ammonia 

trafficking and hyperammonemia, which contributes to the risk of development of 

cerebral oedema (2). This is in connection with the toxicity of ammonia at elevated 

levels in the body. In this situation, the most important temporary alternative 

pathway for ammonia detoxification is the formation of glutamine from ammonia 

and glutamate catalysed by enzyme glutamine synthetase (8). Other organs in the 

body can take up glutamine, where it is split by the intra-mitochondrial phosphate 

–dependent enzyme glutaminase into glutamine and ammonia (1). Thus, ammonia 

is regenerated instead of being excreted through the kidneys, and causing 

ammonia re-bound effect (9, 10). 

The aim of our study was to investigate whether organ specific changes in both GS and PAG 

activities are involved in the pathogenesis of the development of hyperammonemia in liver 

failure. Furthermore, we aimed to study these relations in the context of this novel 

ammonia lowering treatment concept, OP.  
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Muscle GS activity is higher in ALF group compared to sham operated group. In ALF-OP 

treated there was even further increase GS activity. This data support data from a study 

carried out early which showed that skeletal muscle metabolism plays an important role in 

ammonia metabolism in chronic and acute liver failure. Skeletal muscle constitutes 

quantitavely most important localization of the enzyme glutamine synthetase (1). 

Our data show a slight reduction in the activity of GS in the kidneys of ALF group compared 

with sham groups. In ALF-OP treated group, there is increase in GS activity. This data is 

difficult to interpret.  

Our data shows a trend towards an increase in the lung GS activity in the ALF groups 

compared to sham animals. In ALF-OP treated group, we observed reduction in GS activity 

in the lungs. Data from previous studies shows that lungs are able to remove ammonia from 

circulation during the initial stage of ALF (24). 

In the Duodenum, our data shows also a trend towards increase in GS activity in the ALF 

group compared with sham groups. In ALF-OP treatment group there is reduction in GS 

activity. 

GS activity was increased in the ileum of ALF groups compared to that of sham operated 

groups. In the ALF-OP treatment group we noticed reduction in GS activity. 

 

Data for muscle PAG activity was difficult to interpret, so it was not included under results. 

However, our data shows that PAG activity is increased in the kidneys of ALF group 

compared to sham operated groups. This support a study carried out on PCA rats which 

showed increased PAG activity in kidneys. It was also concluded in that study that this could 

contribute to hyperammonaemia (25). In ALF-OP treated groups, there is reduction in PAG 

activity. 

PAG activity was increased in the lungs of ALF pigs than in sham operated groups. In ALF-

OP treated group, there was a slight increase in PAG activity. 

In the Duodenum, PAG activity was increased in the ALF group than in sham operated 

groups. A study has shown that increased PAG activity in the duodenum contributes 

significantly to systemic hyperammonaemia (25). In ALF-OP treated group we observed 

slight reduction in PAG activity. 

PAG activity was increased in the ileum of ALF groups compared to that of sham operated 

groups. This is in agreement with previous studies in animal models and patients with liver 

disease have pointed to an important role for the gut and kidneys in the production of 
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ammonia (25). This means that ileum plays a role in contributing to systemic 

hyperammonaemia during ALF, in addition to duodenum and kidneys, major contributors to 

systemic hyperammonaemia. In the ALF-OP treatment group we noticed reduction in PAG 

activity in the ileum. 

The data with respect to GS and PAG activity in the brain is difficult to interpret due to large 

variations. Therefore the data was not included under results. 

Overall, it is possible that during the measurement of absorbance, high background noise 

could have affected the results of GS and PAG activities. Poor mixing of test materials or of 

different solutions could also have affected results. Results of GS and PAG activities could 

also have been affected by titration mistakes. 

In conclusion, the results of our study shows a strong trend to increase in GS activity in ALF 

group, in almost all tissues studied. This could contribute to the temporary alternative 

pathway for ammonia detoxification, by formation of glutamine from ammonia and 

glutamate. Our result also shows a very strong trend towards increase in PAG activity, in all 

tissues studied. This could contributes to the so called ammonia re-bound effect, where other 

organs in the body, most especially kidney and gut, take up glutamine split it with the help of 

PAG enzyme into glutamine and ammonia. Thus, ammonia is regenerated instead of being 

excreted through the kidneys. This contributes to systemic hyperammonaemia during ALF, 

which leads to cerebral oedema. 

Our data also indicate that OP can stimulate glutamine production through GS 

solely by increasing its substrate (glutamate). We also observed a strong tendency 

towards reduction in PAG activity in all tissues in ALF-OP treated animals. This is 

because phenylacetate, in OP, conjugate with ornithine-derived glutamine, which is 

substrate for PAG, forming phenylacetylglutamine which is excreted into the urine. 

This lead to reduction in substrate for PAG, thus decrease in PAG activity in ALF-

OP group. Therefore, OP successfully attenuated an increase in arterial ammonia 

which was accompanied with a decrease in cerebral ammonia and prevention of 

intracranial hypertension in pigs with ALF. 
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Legends to figures 

Figure 1 

Schematic illustrating that glutamine is an intermediate ammonia (NH3) sink. (a)Interaction 

of glutamate and ammonia by glutamine synthetase (GS) produces glutamine, whereas (b) the 

interaction of glutamine with glutaminase produces glutamate and ammonia (2). 

 

Figure 2  

Shows that a combination of L-ornithine and phenylacetate (OP) can potentially reduce toxic 

levels of ammonia, in that L-ornithine increasing glutamine production (ammonia removal) 

through glutamine synthetase in skeletal muscle and phenylacetate conjugating with this 

ornithine-derived glutamine, forms phenylacetylglutamine which is excreted into the urine.  

 

Figure 3-5 

Shows that the administration of OP to pigs with ALF successfully reduces arterial and 

extracellular brain ammonia levels and as a result prevents any rise in ICP during the 

experimental period.  

 

Figure 6                                                                                                                                                                

GS activity in hindleg skeletal muscle from pigs with ALF, ALF+OP, and sham operated 

controls Mean+SEM. 

Figure 7 

GS activity in kidneys from pigs with ALF, ALF+OP, and sham operated controls. 

Mean+SEM. 

Figure 8 

GS activity in lungs from pigs with ALF, ALF+OP, and sham operated controls. Mean+SEM. 
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Figure 9  

GS activity in duodenum from pigs with ALF, ALF+OP, and sham operated controls. 

Mean+SEM. 

Figure 10 

GS activity in ileum from pigs with ALF, ALF+OP, and sham operated controls. 

Mean+SEM. 

Figure 11 

PAG activity in kidney from pigs with ALF, ALF+OP and sham operated controls. 

Mean+SEM 

Figure 12 

PAG activity in lungs from pigs with ALF, ALF+OP and sham operated controls. 

Mean+SEM 

Figure 13  

PAG activity in duodenum from pigs with ALF, ALF+OP and sham operated controls. 

Mean+SEM 

Figure 14 

PAG activity in ileum from pigs with ALF, ALF+OP and sham operated controls. 

Mean+SEM 
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