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Abstract 

Preeclampsia (PE) affects 3-5 % of pregnant women and may lead to maternal and/or fetal 

death. The main theory of PE is placental ischemia, leading to a dysfunctional placenta and 

clinical signs as hypertension and proteinuria in the mother. The primary aim of the thesis was 

to implement and optimise a method for high-resolution microscopy of placental cryo-

sections. Secondary aims were to compare the morphology, total antioxidant capacity (TAC) 

and the oxidative stress between normal- and preeclamptic placentas. Placental tissue from 

the fetal and maternal side were collected from three normal pregnant women and three 

preeclamptic women. For each patient; eight cryo-sections were prepared, four from each 

side of the placenta. Two were used as negative controls investigated for autofluorescence 

and two were used as positive controls labelled for morphological analysis. Positive controls 

were labelled with CellMaskTM Orange, staining cell membranes and 4’,6-diamidino-2-

phenylidole, dihydrochloride, staining nuclei. The TAC was determined by comparing the 

measured 3-ethylbenzothiazoline-6-sulphonic acid radical scavenging activity to an ascorbic 

acid standard curve. The oxidative stress was determined measuring the malondialdehyde 

content of the samples. Neither the normal nor the preeclamptic samples had 

autofluorescence affecting microscopy of the labelled sections. The method allowed 

visualisation of microscopic placental structures. In preeclamptic sections from the fetal side, 

there seemed to be more syncytial knots than in fetal sections from normal women. Bright 

red structures were detected in sections from the fetal side of preeclamptic samples and were 

not observed in normal sections. Because of their size, they were thought to be extravillous 

vesicles. The collection-, preservation- and labelling method was successfully implemented 

and is well suited for high-resolution microscopy. Although there were not found a significant 

difference in TAC and oxidative stress between normal- and preeclamptic placentas, neither 

on the fetal- or maternal side, the method is suited for placental tissue.  
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Introduction 

Preeclampsia (PE), eclampsia and hemolysis, elevated liver enzymes and low platelet count 

(HELLP) syndrome are pregnancy-related hypertensive disorders, generally characterized by 

new-onset hypertension after 20 weeks of gestation (1). Pregnant women are diagnosed with 

PE when the blood pressure ≥140 mmHg systolic or ≥90 mmHg diastolic, in combination with 

proteinuria. Women affected with PE may also have placental dysfunction or dysfunction of 

maternal organs due to the increased blood pressure (2, 3). Eclampsia and HELLP syndrome 

are severe complications of PE. Eclampsia is characterized by new-onset grand mal seizures, 

whereas HELLP syndrome is characterized by hemolysis, elevated liver enzymes and low 

platelet count (4, 5).  

Worldwide, PE affects 3-5 % of pregnant women (6). About 1 % of the cases are of a severe 

character, meaning that it is necessary to induce delivery preterm to avoid maternal death 

and/or stillbirth (7). PE affects women in both developed and developing countries and can 

occur in all pregnancies (6). Nulliparous women have a greater chance of being affected by PE 

compared to multiparous women, as the maternal immune system develops tolerance to 

paternal alloantigens following prolonged exposure. Men who have fathered a child where 

the pregnancy was complicated by PE has an increased risk of recurrence in later pregnancies. 

An extreme maternal age, either high or low, previous PE, obesity and chronic disease such as 

diabetes mellitus type I, renal disease and chronic hypertension, also increase the risk of being 

affected by PE. Due to the general increase in obesity, chronic disease and the increased age 

of nulliparous women, the incidence of PE is rising (8). 

PE is divided into early-onset and late-onset, depending on whether the symptoms occur 

before or after week 34 (9). Generally, early-onset PE is more severe compared to late-onset 

PE. Regardless of type, PE is a significant risk factor for both maternal and fetal health, both 

during and after pregnancy. PE may have adverse effects such as acute pulmonary edema, 

epilepsy, kidney and liver dysfunction and intrauterine growth restriction (IUGR), in addition 

to other short-term complications during pregnancy (3, 9). Women who have been affected 



 2  

  

by PE have an increased risk of being affected by cardiovascular diseases later in life (10). This 

also applies to the offspring from pregnancies complicated with PE. 

For these reasons, blood pressure and urine are regularly checked and analysed throughout 

the pregnancy (11). Women diagnosed with PE are carefully monitored for the remaining 

duration of the pregnancy. Currently, there is no cure to the condition, and the treatment 

consists of controlling the hypertension and inducing delivery (12). Whether delivery is 

induced or not, depends on the gestational age and the maternal condition. In late-onset PE, 

the fetus is mature and delivery can safely be induced. In early-onset PE, the fetus is not fully 

mature and the health risk of the woman by continuing the pregnancy is weighed against the 

risk of premature birth. 

Placental development and structure 

During pregnancy, the fetus is contained in the amniotic sack in the uterus, surrounded by 

amniotic fluid (13). The placenta is the organ responsible for nutrient and oxygen transport 

from mother to fetus, including removal of carbon dioxide and other waste products. This 

transport is mediated through the umbilical cord, connecting the fetus to the placenta. 

Therefore, placental structure and function have a vital role in fetal development. 

A normal mature human placenta is discoid shaped (Figure 1A and B), weighing about 

500 g (14, 15). The placenta has a chorionic- and a basal plate, separated by the intervillous 

space (14). Towards the fetus is the chorionic plate with the umbilical cord, which connects 

the fetus to the placenta (Figure 1A). Towards the uterine wall is the basal plate with its 

cotyledons (Figure 1B). Cotyledons are small circular structures and the smallest functional 

unit of the placenta, consisting of a stem villus and the villi branching out from it (15). In total, 

a placenta has 15-28 cotyledons. 
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Figure 1: The macroscopic structure of a term human placenta. A) Fetal side showing amnion and the umbilical cord. 
B) Maternal side with its membrane folded on the side to show the cotyledons. 

Placental development begins with the implantation of the blastocyst, which consists of two 

cell types; the outer trophoblasts and the inner cell mass (Figure 2A) (13). The trophoblasts 

develop into the placenta, whereas the inner cell mass develops into the fetus, and fetal 

membranes. 

Figure 2: Schematic diagram illustrating 
the placental development. A) Placental 
development starts when the blastocyst 
embeds into the endometrial epithelium. 
The blastocyst consists of two cell types; 
the outer trophoblasts and the inner cell 
mass. B) After implantation, the 
trophoblasts differentiate into two cell 
layers, the outer syncytiotrophoblasts and 
the inner cytotrophoblasts. C) The 
cytotrophoblasts proliferate and 
differentiate, thereby thickening the layer 
of syncytiotrophoblasts. Cytotrophoblasts 
secrete proteolytic enzymes, enabling 
syncytiotrophoblasts to send out 
projections towards the endometrium. 
Cytotrophoblasts and extraembryonic 
mesoderm follows the projections. The 
cotyledon is completed when the fetal 
capillaries are formed. 

Implantation starts with the blastocyst adhering to the endometrial epithelium in the 

uterus (13). Thereafter, the trophoblastic cells proliferate and differentiate into outer 

multinucleated syncytiotrophoblasts and inner cytotrophoblasts (Figure 2B). 

Cytotrophoblasts continue to proliferate and differentiate into syncytiotrophoblasts, 

thickening syncytiotrophoblastic layer. Spaces in the syncytiotrophoblastic layer called 
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lacunae are formed. When these fuse at a later stage in the development, the intervillous 

space is formed. Cytotrophoblasts secrete proteolytic enzymes, enabling syncytiotrophoblasts 

to send out projections, allowing the blastocyst to embed in the endometrium and form the 

early chorionic villi. When syncytiotrophoblasts erodes endometrial blood arteries, the 

lacunae are filled with blood. As separate lacunae merge, they form into the intervillous space. 

Cytotrophoblasts and the extraembryonic mesoderm follows the syncytiotrophoblastic 

projections, continuing the development of the chorionic villi (13). At last, fetal blood vessels 

are formed, completing the villi (Figure 2C). Some fetal villi continues to grow towards the 

basal plate and decidua, anchoring it to the basal plate, whereas other fetal villi are free in the 

intervillous space. Figure 3 presents the placental structure when the placental development 

is completed.(16) 

Figure 3: Placental structure. The fetus is 
connected to the placenta through the 
umbilical cord. Towards the fetus is the 
chorionic plate containing fetal blood 
vessels. From the chorionic plate, 
cotyledons emerge into the intervillous 
space, separated by placental septa. 
Nutritious and oxygen rich maternal blood 
is lead into the intervillous space through 
endometrial arteries penetrating the basal 
plate, embedding the cotyledons in 
maternal blood. Nutritious depleted and 
carbon dioxide rich blood is lead out of the 
intervillous space through endometrial 
veins. The figure is retrieved and modified 
from: Moore and Persaud, 1993 (16). 

Endometrial arteries and veins penetrate the basal plate (17). Whereas the arteries supply the 

intervillous space with maternal blood, the veins remove maternal blood. Each stem villus is 

first divided into three to five intermediate villi, which is further branched into 10 to 

12 terminal villi (18). The branching increases the surface of the cotyledon, making the 

nutritional exchange more effective. The insides of the cotyledons are of fetal origin, 

containing fetal capillaries. 

As shown in Figure 4, a cotyledon is defined by three types of differentiated trophoblastic 

cells: syncytiotrophoblasts, cytotrophoblasts and extravillous trophoblasts (17). 
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Cytotrophoblasts define the inner lining, whereas syncytiotrophoblasts define the outer 

lining. Syncytiotrophoblasts are the only cells of fetal origin that are in contact with the 

maternal blood. The fetal capillaries in the core enable nutritional exchange between the 

maternal and fetal circulation by simple diffusion across the syncytium. In this way, the 

placenta also prevents mixing of fetal and maternal blood (19). 

Figure 4: Overview of the cellular structure of a cotyledon illustrating the 
branched structure. The villus is constituted of trophoblasts; an inner layer of 
cytotrophoblasts (CT) and an outer layer of syncytiotrophoblasts (ST). The core 
of the villus is fetal, containing fetal capillaries, which enable nutritional 
exchange between the maternal and fetal circulation by simple diffusion across 
the syncytium. The extravillous trophoblasts (ET) are differentiated invasive 
trophoblasts, that invade the walls of maternal endometrial arteries to increase 
their diameter. Grey matter inside the villi is mesenchymal core. The figure is 
retrieved and modified from: Zeldovich, et al., 2011 (17). 

During the second trimester, the fetal requirement of nutrients are increasing (20). In normal 

pregnancies, extravillous trophoblasts invade the walls of the maternal endometrial arteries 

to increase their diameter, thereby increasing the blood flow to the intervillous space (21).  

The placenta in preeclampsia 
The main theory of the etiology of PE is based on the placenta being ischemic (22, 23). This is 

supported by a study that found that the uteroplacental blood flow is reduced in women 

affected by PE (24). Placental ischemia is thought to occur when extravillous trophoblasts fail 

to increase the diameter of the maternal arteries, leading to a hypoxic placenta. During the 

ischemic period, the blood in the intervillous space has low levels of oxygen and nutrients (6). 

Decreased circulation leads to inflammation and oxidative stress. The placental hypoxia also 

leads to endoplasmic reticulum (ER) stress, release of proinflammatory cytokines and 

extracellular vesicles (EV) (Figure 5). When this occurs, the balance between anti-angiogenic 

and proangiogenic factors is skewed; anti-angiogenic factors increase while proangiogenic 

factors decrease. This leads to manifestation of clinical symptoms such as hypertension, 
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proteinuria, oedema, elevated liver enzymes and IUGR. Therefore, inflammation and oxidative 

stress affect the placental function, as well as fetal development and maternal health during 

pregnancy. 

Figure 5: Schematic illustration of the 
pathophysiology of preeclampsia (PE). Factors 
affecting the physiological transformation of 
the spiral arteries by the trophoblasts are 
genetic factors, abnormal trophoblast-decidua 
interaction and oxidative stress. When this 
occurs, the deep placentation is defective as the 
diameter of the spiral artery fail to increase. Less 
oxygen and nutrient rich blood enter the 
intervillous space, rendering the placenta as 
dysfunctional, causing endoplasmic reticulum- 
and oxidative stress. In addition, more 
proinflammatory cytokines are secreted into the 
maternal circulation by trophoblasts. 
Extracellular vesicles containing micro- and 
nanoparticles are also released into the 
maternal circulation. This leads to the secretion 
of more anti-angiogenic molecules and less 
proangiogenic molecules, activating endothelial 
cells, and thereby causing the clinical 
symptoms. The figure is retrieved and modified 
from: Chaiworapongsa et al., 2014 (6). 

Oxidative stress 
Oxidative stress arises when the production of reactive oxygen species (ROS) exceeds the 

elimination, leading to ROS accumulating in the cell (25). ROS are highly reactive by-products 

of the oxygen metabolism in the cells, produced in different organelles with mitochondria 

being the largest contributor (26). As ROS have highly reactive properties, they can interact 

with central cellular structures, such as proteins, lipids and nucleic acids, thereby affecting 

their function (25). 
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Under normal conditions, there is a balance between the production and elimination of ROS. 

To maintain this balance, cells have different types of antioxidants and anti-oxidative systems 

to eliminate ROS, such as enzymes, peptides, vitamins and proteins (27). Some antioxidants 

are produced by the cells themselves, whereas other must be supplied through the diet. 

Reduced oxidative stress requires a balance between the amount of ROS and the total 

antioxidant capacity (TAC) of the cell or tissue. 

Controlled levels of ROS are essential for normal cell function since ROS function as secondary 

messengers in several signalling pathways (28). These signalling pathways have different 

functions, such as activation of transcription factors, apoptosis and cell differentiation. 

Therefore, ROS should be generated, and the levels regulated for normal placental 

development and function (29). 

Malondialdehyde (MDA) is a degraded lipid product and a well-studied biomarker of oxidative 

stress (30). As the levels of ROS increase, ROS react with surrounding cell membrane lipids to 

give lipid peroxidation products, such as MDA. Therefore, rising levels of MDA indicate 

increasing oxidative stress. By measuring the amount of MDA quantitatively, the oxidative 

stress level of the tissue can be determined. MDA reacts easily with thiobarbituric acid (TBA), 

resulting in a pink coloured adduct that can be measured quantitatively by 

spectrophotometry (27). MDA have been detected both in maternal circulation and placental 

tissue (30). It is shown that pregnant women in general have elevated levels of MDA. In normal 

pregnant women, the MDA level is balanced by increasing the TAC of the tissue, thereby 

eliminating ROS and preventing oxidative stress. Pregnant women affected by PE have higher 

levels of MDA compared to normal pregnant women. However, in women with PE, the TAC 

does not manage to overcome the increased production of ROS, leading to oxidative 

stress (31). 

Long-term and chronic oxidative stress have been shown to contribute to the initiation of 

placental and endothelial dysfunction, in addition to induce inflammation by releasing 

proinflammatory cytokines (28, 32, 33). These mechanisms have a retroactive effect that 

increases the oxidative stress, creating a positive feedback loop. 
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Proinflammatory cytokines 
Compared to normal pregnancies, pregnancies complicated with PE have higher levels of 

tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-17, in addition to reduced levels 

of IL-4 and IL-10 (34-38). Among these cytokines, TNF-α, IL-1β, IL-6 and IL-17 are 

proinflammatory, whereas IL-4 and IL-10 are anti-inflammatory. The proinflammatory 

cytokines are present in the maternal circulation, increasing the endothelial permeability 

allowing proteins to leave the circulation and occur in the urine (39). TNF-α increases the 

vasoconstrictor endothelin-1 and reduces the vasodilator nitric oxide, leading to 

hypertension (37, 40). 

Endoplasmic reticulum stress 
The ER is an organelle consisting of several sacks called cisternae. This organelle is responsible 

for protein folding and transport and lipid synthesis. Placental hypoxia leads to an ischaemia-

reperfusion injury in the intervillous space, which can lead to ER stress (41). During ER stress, 

proteins are incorrectly folded, resulting in accumulation of misfolded proteins in the ER. As a 

response to the ER stress, the unfolded protein response (UPR), a collection of signalling 

pathways are activated to overcome the ER stress. If the activation of UPR is not successful, 

the ER stress persists and leads to cessation of cell proliferation and apoptosis (42, 43). When 

trophoblasts undergo apoptosis, microparticles and nanoparticles are released into the 

maternal circulation (44).  

Extracellular vesicles 
EVs are lipid bilayers, ranging from 50 nm to 2 μm, containing cargo such as proteins, lipids 

and nucleic acids from the cell in which they were generated (45). There are two types of EVs 

classified by their size, content and origin: exosomes and microvesicles. Exosomes are 

30 nm-150 nm in size and originate from the endolytic pathway, while microvesicles are 

100 nm-1 μm in size and originate from direct budding or shedding, often in response to 

cellular stress (46).  

EVs are thought to be a way of intercellular communication, where the cells in which the EV 

originated can interact with and change the activity of specific target cells (47). During 

pregnancy, placental cells, mainly the trophoblasts, release EVs to change the activity of 

maternal target cells, thereby altering the maternal physiology to accommodate fetal 
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requirements (47, 48). Such EVs have been found after six weeks of gestation (49). It has been 

proposed that EVs modulate central processes in pregnancy, such as cellular adaptations to 

pregnancy-related physiological changes, regulation of immune responses and migration and 

invasion of placental cells (47).  

Compared to non-pregnant women, pregnant women have higher concentrations of EVs in 

the maternal circulation (50). Pregnant women affected with PE have an even higher 

concentration of EVs in the circulation and increases with disease severity. 

Biological markers in pregnancy and preeclampsia 
Biological markers (biomarkers) are measurable variables present in human tissues, cells or 

fluids that can be used either qualitative or quantitative to assess a person’s physiological 

condition at a given time (51). There are four types of biomarkers; diagnostic, predictive, 

prognostic and therapeutic (52). Diagnostic biomarkers are used to diagnose a disease, 

predictive biomarkers are used to assess the response of a treatment, prognostic biomarkers 

are used to assess the progression of a condition with or without treatment, and therapeutic 

biomarkers are substances that can be used as targets for a therapy. As biomarkers have a 

variety of applications, biomarkers can be various substances found within the human body, 

such as cells, proteins, DNA and RNA (51). 

In all pregnancies, cells and molecules originating from the placenta are shed and secreted 

into the maternal blood stream where they can be detected (53). These factors can either be 

passive, meaning they are a by-product of placental processes, or active, meaning they are 

released to change the maternal physiology to accommodate fetal requirements.  

A biomarker used to confirm pregnancy is human chorionic gonadotropin (hCG), a hormone 

produced by the syncytiotrophoblastic cells in the placenta (54). The levels of hCG increase 

from implantation until week 10, where it peaks, before it drops slightly and stabilizes (54, 

55). The hormone is present and detected in both the maternal circulation and urine. (55). As 

normal nonpregnant women do not produce hCG, the presence of the hormone in the 

maternal urine is a secure way of detecting pregnancy using simple commercial pregnancy 

tests. 



 10  

  

Generally, both passive and active molecules are thought to be dysregulated during 

pregnancy-related diseases, making it possible to detect these molecules prior to the disease 

onset (53). All pregnancy-related diseases are thought to have several different potential 

biomarkers. In 2004, World Health Organization stated that «… there is no clinically useful 

screening test to predict the development of preeclampsia» (56). Since then, studies have 

found several potential biomarkers for PE, including soluble fms-like tyrosine kinase 1 (sFlt-1) 

and placental growth factor (PGF) (57, 58). 

Fluorescent labelling methods and microscopy 
Fluorescent microscopy is an important tool for examining tissue samples, utilising the ability 

of fluorescent molecules called fluorophores. Fluorophores absorb and emit light at specific 

wavelengths, thereby enabling visualisation of the labelled structures and molecules within 

cells and tissues (59). 

Fluorophores absorb and emit light when their energy state is changed (60). When a photon 

hits a fluorophore, its electrons are excited to a higher energy level from its ground state level 

with lower energy. After a short time, the fluorophore transitions down to a lower energy 

level, releasing energy as vibrations and heat. Thereafter, the fluorophore transitions back to 

ground state level, releasing energy by emitting a photon. Following the principle of energy 

conservation, the incident photon is more energetic than the emitted photon. Each type of 

fluorophore has a characteristic excitation and emission spectra, making them ideal for 

observation in a microscope.  Fluorescence microscopes can be used to detect fluorophores 

and can use different sources such as mercury lamps or lasers to illuminate the samples. The 

released photons are detected by a photodetector such as a camera. As each fluorophore emit 

light at a specific wavelength, different amounts of energy are required to excite them. By 

using different optical filters, it is possible to capture fluorescent light of specific wavelengths, 

making it possible to detect several fluorophores in one sample. Therefore, it is important to 

ensure that the fluorophore emits light of a wavelength that is detectable by the microscope 

that is used. By using fluorophores emitting different wavelengths of light, several structures 

can be visualised in the same section. 
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Deconvolution is a 

computational method 

used to improve images on 

fluorescent microscopes, 

enhancing the resolution 

by removing out of focus 

blur using algorithms (61). 

For this to be done, the 

point spread function 

must be optimised. Optimisation occurs when the refractive index of the immersion oil 

matches the cover glass and is controlled using orthogonal view on individual DV images. 

When symmetrical shapes are obtained (Figure 6), there is an oil match (62). There is an oil 

mismatch when asymmetrical shapes occur, and the immersion oil should be changed as oil 

mismatch can cause reconstruction artefacts. 

Fluorescence microscopy has some disadvantages (60). Over time, fluorophores are 

photobleached, leading to a diminishing fluorescence. Structures within the cells may be 

autofluorescent, which may affect the imaging. Another limitation with conventional 

fluorescence microscopy, such as DV, is the resolution, which is limited by the diffraction of 

light to approximately 200 nm. Ultimately, this is what has led to the development of a new 

subset of fluorescence microscopy called super-resolution microscopy (SRM), allowing clear 

view of nanoscale subcellular structures. 

A subsection within SRM is structured illumination microscopy (SIM), a method using a striped 

illumination pattern projected over the sample in a controlled fashion to improve the 

resolution (63). The Moiré fringes that result on the sample plane allow to visualise small 

details that otherwise would not be visible by the objective lens of the microscope. By 

changing the location of the illumination pattern, different parts of the sample become 

observable. Typically, nine images of an image field are taken to achieve a high-resolution 

image, each one with a specific phase and orientation. A specific algorithm is used to process 

the information, reconstructing an image of the biological sample with a resolution of 

 
Figure 6: Point spread function in orthogonal view when there is an oil match. 
A) How the light looks in the horizontal orientation. B) How the light looks in the 
vertical orientation. Villegas, 2018 (73). 
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approximately 100 nm, increasing the resolution two-fold compared to DV. The PSF must also 

be checked in orthogonal view on individual SIM images to ensure oil matching. 

Aims of the study 

The primary aim of this thesis was to implement and optimise a collection and labelling 

method to better examine placental cryo-sections using high-resolution microscopy. The 

secondary objectives were to: 

• Investigate morphological differences of the placenta from normal pregnant women 

and women affected with preeclampsia using high-resolution microscopy techniques 

for cryo-sections. 

• Compare oxidative stress and total antioxidant capacity levels in placental tissue 

samples from normal pregnancies, and pregnancies complicated with preeclampsia 

using malondialdehyde assay and the ABTS scavenging activity of ascorbic acid, 

respectively. 

Materials and methods 

This study includes the collection, preparation and analysis of placental tissue samples from 

patients at the Department of Obstetrics and Gynaecology, University Hospital of Northern 

Norway (UNN). The study was approved by the Regional Committee for Medical and Health 

Research Ethics in Northern Norway (#2019/438) and Pasientvernombudet at UNN (reference 

number 2201). The research was performed following principles of the Helsinki 

declaration (64). All participants signed an informed consent form (Appendix A). The dignity 

of all participants was prioritized, and the study was observatory without inconvenience and 

discomfort for the participants. Collection of placental samples were performed after delivery 

and did not affect patient care. None of the research collaborators had any conflict of interest. 

In this study, tissue from three normal- and three preeclamptic placentas were collected. 

Inclusion criteria for women with PE were new-onset, persistently elevated blood pressure 

(systolic blood pressure ≥140 mm Hg or a diastolic blood pressure ≥90mm Hg) and proteinuria 

after 20 weeks of gestation (65). 
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Clinical evaluation 
The clinical evaluation was performed by the doctors at the Department of Obstetrics and 

Gynaecology, UNN, following the Norwegian guidelines for diagnosis and treatment of PE (65). 

Pregnant women suspected of being affected with or were diagnosed with PE were closely 

monitored and followed up. 

Statistics of baseline information 
Clinical data were analysed using IBM SPSS Statistics 21. Continuous variables are presented 

as mean ± standard deviation or median (range); categoric variables are presented as 

numbers (%). Differences between groups were tested using the Student’s T-test for 

parametric data and with the Mann-Whitney U test or 2test for nonparametric and 

categorical variables. A p-value lower than 0.05 was considered as statistically significant. 

Collection of placental tissue samples 

Placental tissue samples from normal pregnant women and women affected with PE were 

collected from the Department of Obstetrics and Gynaecology at UNN. Chemicals used for 

sample collection are listed in Table 1. 

Table 1: Chemicals used for collection of placental tissue samples. 

Chemicals Manufacturer Reference Purpose 

Sodium chloride 
(9 mg/mL) 

Fresenius Kabi AG 826968 
Rinse the collected 

tissue of blood 
 

The placental samples were obtained 

within 30 min after delivery. All tissue 

samples were collected approximately 

three cm from the umbilical cord (Figure 

7). Two tissue samples were collected for 

each study; one originating from the fetal 

side, and one originating from the 

maternal side. 

The tissue samples were acquired by 

cutting through the placenta to obtain a 

piece containing both the maternal- and 

 
Figure 7: Image of a placenta showing where the tissue 
samples were obtained. The image shows the fetal side with the 
umbilical cord. Tissue samples were taken approximately three 
cm from the umbilical cord. 
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fetal side (66). Thereafter, the piece was further cut to separate the maternal and fetal sides. 

The tissue pieces were rinsed for blood using 9 mg/mL sodium chloride and collected in 

separate tubes on ice for further preparation and storage. 

Morphological study 

Preparation of 4× PHEM buffer 
PIPES-HEPES-EGTA-Magnesium sulphate (PHEM) is a no-toxic buffer used for 

immunocytochemical studies as it gives better ultrastructural preservation (67). It is often 

used for electron microscopy studies and was therefore used for temporarily preservation of 

the tissue pieces prior to fixation. Chemicals used for buffer preparation are listed in Table 2. 

Table 2: Chemicals used to make the 4× PIPES-HEPES-EGTA-Magnesium sulphate (PHEM) buffer. 

Chemicals Manufacturer Reference Purpose 

EGTA1 Sigma-Aldrich E4378-100G Used in PHEM 

HEPES2 VWR Chemicals 441476L Used in PHEM 

PIPES3 Sigma P6757-500G Used in PHEM 

Magnesium sulphate Sigma-Aldrich M7506-500G Used in PHEM 

5 M sodium 
hydroxide 

Sigma-Aldrich 30620-1KG-R Used in PHEM 

1 Ethylene glucol tetraacetic acid (ethylene glycol-bis (β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid) (EGTA) 
2 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 

3 1,4 piperazine bis (2-ethanosulfonic acid) (PIPES) 

First, 36.28 g of 1,4 piperazine bis (2-ethanosulfonic acid) (PIPES) were added to 225 mL ddH2O 

and the pH was adjusted to 6.9 using 5 M sodium hydroxide. Then, 13 g of 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES), 7.6 g of ethylene glucol tetraacetic acid (ethylene 

glycol-bis (β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid) (EGTA) and 1.98 g of magnesium 

sulphate were added and the volume was adjusted to 250 mL using ddH2O. At last, the pH was 

adjusted to 6.9 using 5 M sodium hydroxide.  

Storage of placental tissue samples 
The collected tissue was fixed over night, immersed in gelatine and transferred to sucrose to 

prevent crystallisation during freezing. At last, the tissue was mounted on specimen carriers 

and frozen in liquid nitrogen. Equipment used for sample fixation and storage is listed in Table 

3 and chemicals in Table 4. 
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Table 3: Equipment used to store collected placental tissue samples. 

Equipment Manufacturer Reference Purpose 

VWR Digital 
Incubator 

VWR - Liquify gelatine 

Specimen carriers Leica 167001950 
Assembly of tissue 
pieces for storage 

B7925 Tube Rotator Agar Scientific - 
Ensure the tissue 
were immersed in 

gelatine and sucrose 

Table 4: Chemicals used to store collected placental tissue samples. 

Chemicals Preparation Manufacturer Reference Purpose 

Fixative 

15 mL 0.2 M PBS1, 
7.5 mL 8 % FA2 

diluted in 
4× PHEM3, 

7.5 mL ddH2O 

-  - 
Fixate tissue and 
preserve tissue 

morphology 

FA (8 %) 
7 mL 16 % FA in 
7 mL 1x PHEM 

- - Used in fixative 

FA (16 %) 
16 g FA in 

100 mL ddH2O 
- - 

To further dilute to 
8 % FA 

FA - Sigma-Aldrich 
158127-

500G 
Prepare 16 % FA 

Gelatine 
(12 %) 

12 g gelatine 
diluted in 

100 mL ddH2O 

Fluka 
Analytical 

48723-
500G-F 

Preserving tissue 
morphology; fill 

spaces and cavities 
in the tissue 

PBS (0.2 M) 
10 mL 1 M PBS in 

40 mL ddH2O 
Oxoid LTD BR0014G Used in fixative 

PBS (1 M) 
1 g PBS in 
1 L ddH2O 

Oxoid LTD BR0014G Washing 

PHEM (1×) 
10 mL 4× PHEM 

diluted in 
30 mL ddH2O 

- - 

Prevent tissue 
degradation and 

dehydration of the 
tissue 

PHEM (4×) - - - Dilute to 1× PHEM 

Sucrose 
(2.3 M) 

342 g sucrose 
diluted in 

100 mL ddH2O 
Sigma-Aldrich 16104-1KG 

Preventing 
crystallization 

during freezing 
1 Phosphate buffered saline (PBS) 
2 Formaldehyde 
3 PIPES-HEPES-EGTA-Magnesium sulphate buffer (PHEM) 
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The collected tissue samples were transferred to 5 mL of 1× PHEM. Thereafter, the tissue 

samples were cut in pieces of 1 mm3, immersed in 5 mL of fixative and incubated at 4 °C over 

night. 

After overnight incubation, the tissue samples were washed 2×5 min in 

5 mL of 1 M phosphate buffered saline (PBS) followed by incubation in 1 mL 12 % gelatine in 

a tube rotator for 1 h at 37 °C. The tissue samples were then transferred to 1 mL 

of 2.3 M sucrose on ice and incubated in a tube rotator at 4 °C over night.  

The tissue samples were assembled on specimen carriers before being frozen in liquid 

nitrogen. The specimen carrier was applied 2.3 M sucrose before a tissue sample was 

transferred onto it and frozen in liquid nitrogen. For each patient, five specimen carriers were 

prepared from each side of the placenta. The unassembled tissue samples were preserved in 

2.3 M sucrose and frozen in liquid nitrogen with the assembled tissue samples. 

Poly-L-lysine coating of cover glasses 
To make cells adhere to the cover glass and avoid detachment during labelling and washing, 

cover glass was coated with poly-L-lysine. Equipment used to coat cover glass is listed in Table 

5 and chemicals in Table 6. 

Table 5: Equipment used to coat cover glasses with poly-L-lysine. 

Equipment Manufacturer Reference Purpose 

13 mm #1.5 Cover 
glass 

VWR 631-0150 - 

Table 6: Chemicals used to coat cover glasses with poly-L-lysine. 

Chemicals Preparation Manufacturer Reference Purpose 

Poly-L-lysine 
(0.2 mg/mL) 

0.2 mg poly-L-
lysine in 

1 mL ddH2O 
Sigma P1274 

Provide 
adherence 

between tissue 
section and 
cover glass 

Cover glasses were cleaned using ethanol, rinsed with ddH2O and air dried on filter paper. 

Thereafter, 30-50 µL of 0.2 mg/mL poly-L-lysine were pipetted in the centre of the cover glass 

and settled for 30 min in a moist chamber. The cover glasses were rinsed with ddH2O and 
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dried on filter paper over night at room temperature. Poly-L-lysine coated cover glasses were 

stored in dust-free dishes at room temperature until use. 

Labelling of cryo-sections 
Ultrathin cryo-sections were prepared using the Tokuyasu method (68). The Tokuyasu method 

is a gentle method solidifying the tissue by freezing and cutting cryo-sections. From each 

placental sample, eight cryo-sections were prepared; four from the fetal side of the placenta 

and four from the maternal side of the placenta. From each side, two cryo-sections were 

prepared as negative controls for investigation of autofluorescence, and two cryo-sections 

were stained with CellMaskTM Orange (CMO) and 4’,6-diamidino-2-phenylidole, 

dihydrochloride (DAPI) to visualize cellular structures. Equipment used for labelling is listed in 

Table 7 and chemicals in Table 8. 

Table 7: Equipment used to label the placental cryo-sections. 

Equipment Manufacturer Reference Purpose 

British Standard 
Microscope slides 

ThermoFisher 10144633CF 
Assemble cover 

glass 

Nail polish - - 
Seal the edge of the 
mounted cover glass 

Poly-L-lysine coated 
cover glass with 
tissue sections 

- - - 

Six-edged nut - - 
Ensure the cover 
glass was in level 
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Table 8: Chemicals used to label the placental cryo-sections. 

Chemicals Preparation Manufacturer Reference Purpose 

BSA1 (1 %) 
0.5 g BSA in 

50 mL 1 M PBS2 
Sigma A8022 Blocking 

CMO3 (250 ng) 
0.5 μL CMO in 

999.5 μL 1 M PBS 
ThermoFisher  C10045 

Staining cell 
membranes 

DAPI4 (5 ng) 
1 μL DAPI in 

999 μL 1 M PBS 
Life 

technologies  
S33025 

Staining cell 
nuclei 

Methyl 
cellulose (1 %) 

250 μL 2% methyl 
cellulose in 

250 μL 2.3 M sucrose 
- - 

Prevent the 
section from 

drying out 

Methyl 
cellulose (2 %) 

2 g methyl cellulose in 
100 mL ddH2O 

Sigma 
M6385-

100G 

To further 
dilute to 

1 % methyl 
cellulose 

PBS (1 M) 1 g PBS in 1 L ddH2O Oxoid LTD BR0014G 
Washing and 

dilution of CMO 
and DAPI 

Prolong Gold - Invitrogen P36934 
Mounting 
medium 

Sucrose 
(2.3 M) 

342 g sucrose diluted 
in 100 mL ddH2O 

Sigma-Aldrich 16104-1KG 
Prepare methyl 
cellulose (1 %) 

1 Bovine serum albumin (BSA) 
2 Phosphate buffered saline (PBS) 
3 CellMaskTM Orange (CMO) 
4 4’,6-diamidino-2-phenylidole, dihydrochloride (DAPI) 

For each patient sample, eight ultrathin cryo-sections (1 µm) were prepared using the 

Tokuyasu method. Four sections originated from the fetal side of the placenta and four 

sections originated from the maternal side of the placenta. The sections were prepared on 

separate poly-L-lysine-coated cover glasses and covered with 1 % methyl cellulose. Sectioning 

was performed by engineer at the Facility for Advanced Microscopy, UiT – The Arctic 

University of Norway. 

All sections were cooled on a parafilm covered metal plate on ice for 10 min and washed 

3×7 min with 100 µL of 1 M PBS. Between each wash, the sections were prevented from 

drying by adding new PBS immediately after removing the previous wash, using absorbent 

paper. Following washing, the metal plate with the sections were taken off the ice, placed on 

bech and blocked in 100 µL of 1 % bovine serum albumin (BSA) for 30 min. Thereafter, the 

sections were washed 2×5 min in 100 µL of 1 M PBS. 
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From each side of the placenta, two sections were labelled. To label the sections, 100 µL of 

CMO (250 ng) were added, and the sections were incubated for 10 min protected from light. 

The sections were then washed 2×5 min in 100 µL of 1 M PBS as previously described. 

Thereafter, 100 µL of DAPI (5 ng) were added and the sections were incubated in the dark for 

5 min.  At last, the sections were washed 3×5 min in 100 µL of MilliQ-water and mounted. 

The remaining two sections were prepared as unlabelled negative controls. These were 

washed 3×5 min with 100 µL of ddH2O and mounted as described for the labelled sections. 

Mounting was performed by adding one small drop of Prolong Gold in the centre of a glass 

slide. The cover glass was immediately placed on top with the tissue section facing the 

mounting medium. If air bubbles appeared, the cover glass was carefully tapped with a plastic 

tweezer. A six-edged nut was placed on top of the cover glass to ensure that it was level. 

Thereafter, the sample was incubated for 1 h protected from light before the edge of the cover 

glass was sealed using nail polish. The mounted sections were stored at 4 °C, protected from 

light. 

Microscopy 
The unlabelled negative controls were only inspected for autofluorescence using the 

DeltaVision Elite High-resolution Microscope (DV), whereas the labelled slides were imaged 

using both the DV and the DeltaVision OMX V4 Blaze (OMX) microscopes. SoftWoRx and Fiji 

were used to reconstruct and process the images, respectively. Equipment used for 

microscopy is listed in Table 9 and chemicals in Table 10. 

Table 9: Equipment used for microscopy of the prepared tissue sections. 

Equipment Manufacturer Reference Purpose 

DeltaVision Elite 
High-resolution 
Microscope (DV) 

GE Healthcare - 
Localize the sample 

and ROI1 

DeltaVision OMX V4 
Blaze (OMX) 

GE Healthcare - Examine ROI 

SoftWoRx GE Healthcare - 
Image 

reconstruction 

Fiji Fiji Contributors - Image processing 
1 Region of interest (ROI) 
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Table 10: Chemicals used for microscopy of the prepared tissue sections. 

Chemicals Manufacturer Reference Purpose 

Cargille Laser Liquid 
Code 5610 (1.514) 

GE Healthcare 20130 
Optimize the PSF1 on 

the OMX2 

Cargille Laser Liquid 
Code 5610 (1.516) 

GE Healthcare 20130 
Optimize the PSF on 

the OMX 

Cargille Laser Liquid 
Code 5610 (1.518) 

GE Healthcare 20130 
Optimize the PSF on 

the OMX 

Ethanol (100 %) - - 
Clean the 

microscope slides 
1 Point spread function (PSF) 
2 DeltaVision OMX V4 Blaze (OMX) 

Prior to microscopy, the slide was cleaned using hand soap and water, carefully dried and 

cleaned with 100 % ethanol. The unlabelled sections were only checked for autofluorescence 

using the DV microscope at 10× magnification. The labelled sections were localized using the 

DV microscope at 10× magnification, gradually increasing the magnification to 

20× magnification to find regions of interest (ROI). Coordinates of the ROIs were used to find 

the same regions on the OMX to further investigate them at 60× magnification with immersion 

oil. To ensure that the refractive index of the oil matched the cover glass, the PSF of single 

emitters was observed in orthogonal view. If symmetrical shapes were not obtained, the oil 

was changed accordingly. 

During microscopy, the images were reconstructed using SoftWoRx. After microscopy, the 

images were processed using Fiji.  

Oxidative stress study 
The tissue samples were collected at different times and were stored at -70 °C until 

measurement. On the day of analysis, the samples were thawed, partly dried with tissue 

paper, weighed and homogenised by sonication. Equipment used for tissue homogenisation 

is listed in Table 11 and Table 12. 

Table 11: Equipment used to homogenise the placental samples. 

Equipment Manufacturer Reference Purpose 

Beckman Microfuge 
11 

Beckman - 
Spin down cell 

debris 

Branson Sonifier 250 Branson Ultrasonic - 
Homogenize the 

tissue 



 21  

  

Table 12: Chemicals used to homogenise the placental samples. 

Chemicals Preparation Manufacturer Reference Purpose 

PBS1 Dulbecco 
(0.1 M) 

10 mL 1 M PBS 
Dulbecco in 

100 mL ddH2O 
Sigma-Aldrich D8537-500ML 

Homogenize 
the tissue 

1 Phosphate buffered saline (PBS) 

After being transferred to ice, the samples were frozen at -70 °C for long-time storage. When 

enough samples were collected, the oxidative stress and TAC of all samples were measured 

simultaneously to ensure equal conditions. 

The frozen placental samples were thawed for an hour at room temperature. The samples 

were partly dried with tissue paper and 0.2-0.4 g sample were weighed and transferred to 

separate tubes. Each sample was added 0.1 M PBS Dulbecco with the ratio of 

0.5 mL/100 mg sample. All samples were sonicated separately with a probe sonicator 

(30 cycles/30 sec) and centrifuged at 1500×g for 20 min at 4 °C. From each sample, 

2 mL supernatant was transferred to new tubes and kept at 4 °C over night. 

Total antioxidant capacity assay 
The TAC of the placental samples was measured using 2,2’-azino-bis(3-ethylbenzothiazoline-

6-sulphonic acid) (ABTS) radical scavenging activity by the antioxidant molecules in the tissue 

sample (69). To determine the antioxidant content in the tissue samples, the optical density 

at 730 nm wavelength (OD730) of each tissue sample after the reaction with ABTS radicals was 

compared to a standard curve generated using ascorbic acid (a vitamin C equivalent). The 

intensity of the green colour of the ABTS radicals decreases as the amount of ABTS radicals is 

reduced, showing the TAC in the samples. Raw data is presented in Appendix B. Equipment 

used for TAC measurement is listed in Table 13 and chemicals in Table 14. 
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Table 13: Equipment used to measure the total antioxidant capacity (TAC) of the placental samples. 

Equipment Manufacturer Reference Purpose 

Agilent 8453 UV-
Visible 
spectrophotometer 

Agilent Technologies - Measure OD730 

Beckman Microfuge 
11 

Beckman - Centrifuge 

Semi-Micro Cells Agilent Technologies - 
Cuvette used to 
measure optical 
density (OD730

1) 

UV visible system 
(software) 

Agilent Technologies - 
Visualize the 

measurement 
1 Optical density at 730 nm wavelength (OD) 

Table 14: Chemicals used to measure the total antioxidant capacity (TAC) of the placental samples. 

Chemicals Preparation Manufacturer Reference Purpose 

ABTS1 (7.4 μM) 
4.06 mg ABTS in 
1000 μL ddH2O 

Sigma-Aldrich A1888-1G 
Generate 

ABTS radicals 

Ascorbic acid 
(1 mg/mL) 

100 μL 100 mg/mL 
ascorbic acid in 
900 μL ddH2O 

- - 

To further 
dilute to 

100 μg/mL 
ascorbic acid 

Ascorbic acid 
(100 mg/mL) 

9.2 mg ascorbic acid in 
920 μL water 

Sigma-Aldrich 
A2218-

25G 

To further 
dilute to 
1 mg/mL 

ascorbic acid 

Ascorbic acid 
(100 μg/mL) 

200 μL 1 mg/mL ascorbic 
acid in 900 μL ddH2O 

- - 

Make 
standard 

solution for 
the standard 

curve 

Potassium 
peroxodisulfate 
(2.6 μM) 

0.70 mg potassium 
peroxodisulfate in 

1 mL ddH2O 
Merck 105092 

Generate 
ABTS radicals 

1 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 

ABTS radicals were generated by mixing 3 mL 7.4 μM ABTS with 3 mL 2.6 μM potassium 

peroxodisulfate, followed by a 24 h incubation protected from light at room temperature to 

obtain dark green ABTS radicals. The green ABTS radicals were diluted with 200 mL ddH2O to 

achieve an approximate OD730 of 0.7 for the ABTS radicals measuring with a UV 

spectrophotometer. To set reference on the UV spectrophotometer at OD730, 600 μL ddH2O 

was used. All measurements were made using a 700 μL cuvette. 
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Ascorbic acid was prepared as a stock solution of 10 mg/mL and diluted 100 times to prepare 

a standard solution of 100 μg/mL, as shown in Table 14. From the standard solution, 140, 120, 

100, 80, 60, 40, 20, 10 and 0 μL were diluted to 1 mL with ddH2O to make the following 

standard concentrations: 14, 12, 10, 8, 6, 4, 2, 1 and 0 μg/mL, respectively. For each standard 

concentration, three independent measurements were taken. From each standard 

concentration, 300 μL was mixed with 300 μL ABTS radicals and incubated for 30 min at room 

temperature. After incubation, OD730 of each sample was measured with the UV 

spectrophotometer.  

When the measurements of the standard curve were completed, 1 mL tissue lysate was 

transferred to a new tube and centrifuged at 10 000×g for 20 min. Three independent 

measurements for each placental sample were taken. To measure TAC for the tissue samples, 

10 μL suspension (equivalent to 1 mg tissue), 290 μL ddH2O, and 300 μL ABTS radicals were 

mixed and incubated for 30 min. After the incubation, the OD730 of each sample was measured 

with a UV spectrophotometer. The TAC of the samples was determined by comparing the 

OD730 of each sample to the ascorbic acid standard curve.  

Oxidative stress assay 
The oxidative stress in the placental tissue samples were determined by measuring their MDA 

content. This was performed using the Lipid Peroxidation (MDA) Assay kit, with some 

adjustments from the manufacturer’s protocol to adapt it to placental samples (70). To 

determine the MDA content in the tissue samples, the optical density at 532 nm 

wavelength (OD532) of each sample was compared to a standard curve generated using MDA. 

As the intensity of the pink colour increases, the concentration of MDA increases, showing the 

oxidative stress in the samples. Raw data is presented in Appendix C. Equipment used for MDA 

measurements is listed in Table 15, kits in Table 16 and chemicals in Table 17. 
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Table 15: Equipment used to measure the oxidative stress in the placental samples. 

Equipment Manufacturer Reference Purpose 

Falcon 96-well plate Corning 303572 

Measure MDA 
concentration in 

standard- and tissue 
samples 

Epoch Microplate 
Spectrophotometer 

BioTek Instrument - 
Measure the optical 
density of each well 

Table 16: Kit used to measure the oxidative stress in the placental samples. 

Kit Manufacturer Reference Component Preparation Purpose 

Lipid 
Peroxidation 
(MDA1) 
Assay kit 

Sigma-Aldrich 
MAK085-

1KT 

MDA lysis 
buffer 

- 
Lysate 
cells 

MDA 
standard 
(0.1 M) 

10 μL 4.17 M MDA 
in 407 μL ddH2O 

To further 
dilute to 

2 nM MDA 

TBA2 - 
Create 

pink 
adduct 

1 Malondialdehyde (MDA) 
2 Thiobarbituric acid (TBA) 

Table 17: Chemicals used to measure the oxidative stress in the placental samples. 

Chemicals Preparation Manufacturer Reference Purpose 

MDA1 standard 
(2 mM) 

20 μL 0.1 MDA 
in 980 μL ddH2O 

Sigma-Aldrich - 
Make the 

standard curve 
1 Malondialdehyde (MDA) 

MDA was prepared as a stock solution of 0.1 M, which was diluted to 2 mM as shown in 

Table 17. Various concentrations of MDA were used to make the standard curve; 10, 8, 6, 4, 2 

and 0 μL of 2 mM MDA was diluted to 200 μL with ddH2O to make the following standard 

concentrations of 20, 16, 12, 8, 4 and 0 nM, respectively. From each standard concentration 

of MDA, 200 μL was mixed with 600 μL thiobarbituric acid (TBA). To measure the MDA content 

in the samples, 100 μL (equivalent to 10 mg tissue) of supernatant of each tissue sample was 

mixed with 100 μL lysis buffer and 600 μL TBA. Both the standard and the tissue samples were 

heated in a water bath at 90 °C for 1 h and cooled down on ice for 10 min to obtain a light 

pink-coloured MDA-TBA adduct.  

From the reaction mixture, 200 μL of each standard and tissue sample were transferred to 

two separate wells on a 96-well plate with the layout shown in Figure 8. OD532 for each MDA 
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standard and tissue sample were measured spectrophotometrically by an enzyme-linked 

immunosorbent assay plate reader. 

 
Figure 8: Schematic diagram showing the layout on the 96-well plate. To each well, 200 μL of solution were added. Rows 
B and C contain the different concentrations of the MDA standard, whereas rows D, E, F and G contain the tissue samples. 
“N” denotes samples from a normal placenta, whereas “P” denotes samples from a preeclamptic placenta. “F” denotes 
samples from the fetal side, whereas “M” denotes samples from the maternal side. 

Statistics 
The mean OD730 and OD532 were calculated for the TAC and MDA assays, respectively. The 

mean OD for each of the assays was used to calculate the mean antioxidant 

concentration (µg ascorbic acid/mg placental tissue) and the mean MDA 

concentration (nM MDA). To evaluate the statistical significance of the normal- and 

preeclamptic samples, Student’s T-test was used, and the p-values were determined. A p-

value lower than 0.05 was considered as significant. 

Results 

Phenotype of the study population 
The baseline demographic and clinical characteristics of the study population were routinely 

collected by midwifes and doctors at the Department of Obstetrics and Gynaecology, UNN, 

and is presented in Table 18. The mean proteinuria level in patients with PE was median 
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2 g/L (ranging from 1 to 3 g/L). None of the women included in the study had HELLP syndrome. 

In the preeclamptic group, two women delivered by caesarean section because of an acute 

deterioration of the patient’s condition. One woman in the normal group also had caesarean 

delivery. None of the women who delivered by caesarean section were in labour. The two 

other women in the normal group had vaginal delivery and one in the PE group. In each group, 

one woman had her labour induced. 

Table 18: Selected clinical parameters of the preeclamptic and normal group. The differences were tested using Student’s T-

test for parametric variables and with the Mann-Whitney U test or 2test for nonparametric and categorical variables, as 
appropriate. N/A, not applicable.  

 Preeclampsia 
(n=3) 

Normal 
(n=3) 

p-value 

Maternal agea 35±2.19 33±0 0.488 

BMI1 before deliverya 23.8±3.50 25.1±1.46 0.752 

Primipara n (%) 2 (66.67) 2 (66.67) 1 

Urine Stix protein (g/L)b 2 (1-3) N/A - 

MAP2 117.78±3.37 91.56±5.32 0.014 

Middle cerebral artery pulsatility indexa 1.32±0.24 1.39±0.02 0.842 

Umbilical artery pulsatility indexa 1.22±0.45 0.90±0.00 0.620 

Gestational age at delivery (weeks)a 34±3.71 40±0.67 0.230 

Caesarean section n (%) 2 (66.67) 1 (33.3) 0.000 

Neonatal birth weight (g)a 2812±965 3512±131 0.512 

Placental weight (g)a 484±107 578±14 0.432 

5 min APGAR score (median range)b 10 (9-10) 10 (10-10) 0.667 

Arterial cord blood pHa 7.26±0.04 7.23±0.07 0.825 

Arterial cord blood Base Excessa (mmol/L) -2.80±1.72 -10.15±0.65 0.048 

Venous cord blood pHa 7.28±0.03 7.28±0.07 0.983 

Venous cord blood Base Excessa (mmol/L) -3.70±2.17 -10.60±0.90 0.097 
1 Body mass index (BMI) 
2 Mean arterial pressure (MAP) 
a Data are given as mean ± standard deviation 
b Data given as median (range) 

One of the women in the PE group had early-onset PE (gestational week 27+3) and was 

admitted over time due to complications of her PE. The baby was premature and was admitted 

to the intensive care unit after delivery. The patient record stated IUGR during pregnancy and 

was found on repeated ultrasound scanning.  

Morphological study 
In total, eight sections were prepared from three normal- and three preeclamptic placental 

tissue samples, four from each side of the placenta. From these, two sections were prepared 
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as negative controls, whereas the other two sections were labelled with a membrane specific 

marker, CMO, and a nucleic acid specific marker, DAPI. Autofluorescence was detected by 

using the DV microscope. ROIs on the labelled sections were detected by using the DV 

microscope, which where further investigated using the OMX microscope. 

Autofluorescence of placental cryo-sections 
The autofluorescence of a normal placenta is presented in Figure 9 at 10× magnification. 

Figure 9A shows the autofluorescence of the fetal side, whereas Figure 9B shows the 

autofluorescence of the maternal side. 

 
Figure 9: Overview images at 10× magnification of unstained cryo-sections of a normal placenta, showing the 
autofluorescence. A) The fetal side of the normal placenta. B) The maternal side of a normal placenta. 

Figure 10 shows the autofluorescence of a preeclamptic placenta at 10× magnification; 

Figure 10A shows the autofluorescence of the fetal side, whereas Figure 10B shows the 

autofluorescence of the maternal side. 
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Figure 10: Overview images at 10× magnification of unstained cryo-sections of a preeclamptic placenta, showing the 
autofluorescence. A) The fetal side of a preeclamptic placenta. B) The maternal side of a preeclamptic placenta. 

Placental morphology of the fetal side 
Representative overview images of a cryo-section from the fetal side of a normal placenta are 

presented in Figure 11. In Figure 11A, the cryo-section is magnified 10×. Figure 11B shows the 

squared region in A at 20× magnification, where fetal villi with syncytiotrophoblasts (ST), fetal 

capillaries (FC) and syncytial knots (SK) are identified. 

 
Figure 11: Cryo-sections of the fetal side of a normal placenta. Cell membranes (red) are stained with CellMaskTM 
Orange and nucleic acids (blue) are stained with 4’,6-diamidino-2-phenylidole, dihydrochloride. A) Overview image at 10× 
magnification. B) The squared area in A at 20× magnification, showing a fetal capillary (FC), syncytiotrophoblasts (ST) 
and a syncytial knot (SK). 
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Approximately the same region is magnified to 60× and the resolution is increased using 

deconvolution as presented in Figure 12A. The squared region in A is enlarged in Figure 12B, 

where a fetal capillary and syncytiotrophoblasts are be identified. 

 
Figure 12: Cryo-sections of the fetal side of a normal placenta. Cell membranes (red) are stained with CellMaskTM Orange 
and nucleic acids (blue) are stained with 4’,6-diamidino-2-phenylidole, dihydrochloride. A) A mosaic using deconvolution. 
B) Enlargement of the squared area in A, showing syncytiotrophoblasts (ST) and a fetal capillary (FC). 

The resolution of a smaller region of the villi is further increased using SIM and is presented 

in Figure 13A. The squared region in A is enlarged and presented in Figure 13B, showing a fetal 

capillary and syncytiotrophoblasts. 
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Figure 13: Cryo-sections of the fetal side of a normal placenta. Cell membranes (red) are stained with CellMaskTM Orange 
and nucleic acids (blue) are stained with 4’,6-diamidino-2-phenylidole, dihydrochloride. A) A mosaic using structured 
illumination microscopy. B) Enlargement of the squared area in A, showing a fetal capillary (FC). 

Representative overview images of a cryo-section of the fetal side of a preeclamptic placenta 

are presented in Figure 14. In Figure 14A, the cryo-section is magnified 10×. In Figure 14B 

shows the squared region in A at 20× magnification, where fetal villi defined by the outer 

syncytiotrophoblasts and fetal capillaries are identified. 

 
Figure 14: Cryo-sections of the fetal side of a preeclamptic placenta. Cell membranes (red) are stained with CellMaskTM 
Orange and nucleic acids (blue) are stained with 4’,6-diamidino-2-phenylidole, dihydrochloride. A) Overview image at 10× 
magnification. B) The squared area in A at 20× magnification, showing fetal capillaries (FC) and syncytiotrophoblasts (ST). 
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Approximately the same region is magnified to 60× magnification and the resolution is 

increased using deconvolution and is presented in Figure 15A. The squared region in A is 

enlarged in Figure 15B, where fetal capillaries and syncytiotrophoblasts are be identified. 

 
Figure 15: Cryo-section of the fetal side of a preeclamptic placenta. Cell membranes (red) are stained with CellMaskTM 
Orange and nucleic acids (blue) are stained with 4’,6-diamidino-2-phenylidole, dihydrochloride. A) A mosaic using 
deconvolution. B) Enlargement of the squared area in A, showing fetal capillaries (FC), syncytiotrophoblasts (ST) and bright 
red structures. 

The resolution of a smaller region of the villi is further increased using SIM and is presented 

in Figure 16A. The squared region in A is enlarged and presented in Figure 16B, showing fetal 

capillaries, syncytiotrophoblasts and brighter red structures. The red structures range from 

about 100 nm to 500 nm in size. 
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Figure 16: Cryo-section of the fetal side of a preeclamptic placenta. Cell membranes (red) are stained with CellMaskTM 
Orange and nucleic acids (blue) are stained with 4’,6-diamidino-2-phenylidole, dihydrochloride. A) A mosaic using 
structured illumination microscopy. B) Enlargement of the squared area in A, showing fetal capillaries (FC), 
syncytiotrophoblasts (ST) and bright red structures. 

Table 19 summarises the structures identified in normal- and preeclamptic sections from the 

fetal side. Fetal capillaries, syncytial knots and syncytiotrophoblasts were found in both the 

normal- and preeclamptic sections, whereas brighter red structures only were identified in 

preeclamptic sections. Comparisons of the preeclamptic sections resulted in the identification 

of the same structures and similar morphology. The same applied for comparisons of the 

normal sections. 

Table 19: Structures visualised in the fetal side of the normal- and preeclamptic placental sections. “+” denotes that the 
structure is found in the sections, whereas “-“ denotes that the structure is not found in the sections. Comparisons of the fetal 
sections in the normal- and preeclamptic group revealed the same structures. The table is a summary of the findings. 

Fetal side 

 Normal 
(n=3) 

Preeclamptic 
(n=3) 

Brighter, red structures - + 

Fetal capillaries + + 

Syncytial knots + + 

Syncytiotrophoblasts + + 

Placental morphology of the maternal side 
Representative overview images of a cryo-section of the maternal side of a normal placenta 

are presented in Figure 17. In Figure 17A, the cryo-section is magnified 10×. Figure 17B shows 

the squared region in A at 20× magnification, where extravillous trophoblasts (ET), maternal 

capillaries (MC) and fetal capillaries are identified. 



 33  

  

 
Figure 17: Cryo-section of the maternal side of a normal placenta. Cell membranes (red) are stained with CellMaskTM 
Orange and nucleic acids (blue) are stained with 4’,6-diamidino-2-phenylidole, dihydrochloride. A) Overview image at 10× 
magnification. B) The squared area in A at 20× magnification, showing maternal capillaries (MC), fetal capillaries (FC) and 
extravillous trophoblasts (ET). 

Approximately the same region is magnified to 60× and the resolution is increased using the 

deconvolution and SIM as presented in Figure 18A and B, respectively. In both images, 

extravillous trophoblasts, maternal capillaries and fetal capillaries are identified.  

 
Figure 18: Cryo-section of the maternal side of a normal placenta. Cell membranes (red) are stained with CellMaskTM 
Orange and nucleic acids (blue) are stained with 4’,6-diamidino-2-phenylidole, dihydrochloride. A) A mosaic using 
deconvolution, showing extravillous trophoblasts (ET), fetal capillaries (FC) and syncytiotrophoblasts (ST). B) A mosaic using 
structured illumination microscopy, showing extravillous trophoblasts, fetal capillaries and syncytiotrophoblasts.  

Representative overview images of a cryo-section of the maternal side of a preeclamptic 

placenta are presented in Figure 19. In Figure 19A, the cryo-section is magnified 10×. Figure 
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19B shows the squared region in A at 20× magnification, where extravillous trophoblasts (ET) 

are identified. 

 
Figure 19: Cryo-section of the maternal side of a preeclamptic placenta. Cell membranes (red) are stained with CellMaskTM 
Orange and nucleic acids (blue) are stained with 4’,6-diamidino-2-phenylidole, dihydrochloride. A) An overview image at 
10× magnification. B) The squared area in A at 20× magnification, showing extravillous trophoblasts (ET). 

Approximately the same region is magnified to 60× and the resolution is increased using the 

deconvolution and SIM as presented in Figure 20A and B, respectively. In both images, 

extravillous trophoblasts are identified.   

 
Figure 20: Cryo-section of the maternal side of a preeclamptic placenta. Cell membranes (red) are stained with CellMaskTM 
Orange and nucleic acids (blue) are stained with 4’,6-diamidino-2-phenylidole, dihydrochloride. A) A mosaic using 
deconvolution, showing extravillous trophoblasts (ET). B) A mosaic using structured illumination microscopy, showing 
extravillous trophoblasts (ET). 
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Table 20 summarises the structures identified in normal- and preeclamptic sections from the 

maternal side. Extravillous trophoblasts were found in both normal- and preeclamptic 

sections, whereas maternal capillaries were only found in the normal cryo-sections. 

Comparisons of the preeclamptic sections resulted in the identification of the same structures 

and similar morphology. The same applied for comparisons of the normal sections. 

Table 20: Structures visualised in the maternal side of the normal- and preeclamptic placental sections. “+” denotes that 
the structure is found in the sections, whereas “-“ denotes that the structure is not found in the sections. Comparisons of the 
maternal sections in the normal- and preeclamptic group revealed the same structures. The table is a summary of the findings. 

Maternal side 

 Normal 
(n=3) 

Preeclamptic 
(n=3) 

Extravillous trophoblasts + + 

Maternal capillaries + - 

Oxidative stress study 

Total antioxidant capacity in normal- and preeclamptic placental tissue 
TAC of the tissue samples was determined by measuring the ABTS radical scavenging activity 

by the antioxidants present in the tissue samples. The radical scavenging activity was 

measured spectrophotometrically at 730 nm wavelength and the OD730 of each sample was 

compared to the standard curve of ascorbic acid. 

The standard curve for the antioxidant capacity of ascorbic acid was prepared by measuring 

the ABTS radical scavenging activity by the known concentrations of ascorbic acid, ranging 

from 0–10 ug/mL. The TAC of the tissue samples is expressed as ascorbic acid equivalent 

antioxidant activity guided by the standard curve as  shown in Figure 21.  
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Figure 21: The standard curve showing the ABTS radical scavenging activity of known concentrations of ascorbic acid. 
Results are presented as the mean of three independent measurements. By using linear regression, the equation of the line 
is y=-0.0652x+0.5873 and the regression coefficient (R2) for the line is 0.98. The standard curve was used to determine the 
ascorbic acid equivalent concentration of total antioxidant capacity in the placental tissue samples, using the average 
optical density at 730 nm wavelength of the three independent measurements for each sample.  

Table 21 shows the average OD730, TAC expressed as µg ascorbic acid/mg placental tissue and 

p-value for the normal and- preeclamptic tissue samples, for both the maternal and fetal side. 

The average OD730 was used to calculate the average TAC in the same placental samples using 

the standard curve for ascorbic acid. There is no statistically significant difference between 

the antioxidant capacities of the normal- and preeclamptic placental samples, neither on the 

maternal or the fetal side. 

Table 21: The total antioxidant activity (TAC) of normal- and preeclamptic placental tissue samples. Results are presented 
as the mean of the three normal- and preeclamptic samples, where each sample had three independent measurements. 

Side Sample Average OD730 

TAC (µg ascorbic acid 
equivalent/mg placental 

tissue) ± SD 
p-value 

Fetal 
Normal 0.28623 4.62 ± 0.59271 

0.23344 
Preeclamptic 0.32296 4.05 ± 0.37220 

Maternal 
Normal 0.27042 4.86 ± 0.53226 

0.82927 
Preeclamptic 0.27534 4.78 ± 0.22279 
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Oxidative stress in normal- and preeclamptic placental tissue 
The oxidative stress of the tissue samples was determined by measuring the MDA content in 

the placental tissue samples. After the reaction with TBA, OD532 of each sample was compared 

to the standard curve of MDA. 

The standard curve of MDA content was prepared by measuring the OD532 of known MDA 

content, ranging from 0 to 20 nM after the reaction with TBA. The oxidative stress of the tissue 

samples are expressed as the MDA content guided by the standard curve as shown in 

Figure 22.  

 
Figure 22: The standard curve for malondialdehyde (MDA). Results are expressed as mean of two independent 
measurements. By using linear regression, the equation of the line is y=0.0674x-0.1557 and the regression coefficient (R2) 
for the line is 0.96. The standard curve was used to determine the amount of MDA in the placental tissue samples using 
the average optical density at 532 nm wavelength for the two independent measurements for each sample. 

Table 22 shows the average OD532, MDA content in nM/mg placental tissue and p-value for 

the normal- and preeclamptic tissue samples, both the maternal- and fetal side. The average 

OD532 was used to calculate the average MDA content in the placental tissue samples using 

the standard curve for MDA content. There is no significant difference between the MDA 

content in the normal- and preeclamptic samples, neither on the maternal- or the fetal side.  
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Table 22: Oxidative stress expressed as the MDA concentration in normal- and preeclamptic placental tissue samples. 
Results are presented as the mean ± standard deviation (SD) of the three normal- and preeclamptic samples, where each 
sample had two independent measurements. 

Side Sample Average OD532 

Oxidative stress (nM 
MDA/mg placental 

tissue) ± SD 
p-value 

Fetal  
Normal 0.435 8.77 ± 0.932 

0.113 
Preeclamptic 0.521 10.03 ± 0.543 

Maternal  
Normal 0.407 8.35 ± 0.704 

0.735 
Preeclamptic 0.430 8.70 ± 1.516 

Discussion 

Clinical parameters 
Mean arterial pressure (MAP) and arterial cord blood Base Excess had a significant 

difference (p=0.014) between the two groups. MAP was measured prior to labour or 

caesarean section and was significantly higher in the women with PE compared to the normal 

women. This observation agrees with the main theory of PE saying that expansion of the spiral 

arteries diameter by the extravillous trophoblasts are incomplete (21). 

Arterial blood pressure base excess was the only parameter with a significant 

difference (p=0.048) between the umbilical cords from normal- and preeclamptic placentas. 

The umbilical cord has three blood vessels: one large vein transporting oxygenated blood to 

the fetus, and two smaller arteries transporting deoxygenated blood and other metabolic 

waste products from the fetus (71). Venous cord blood reflects the combined effect of the 

maternal acid-base status. Maternal factors as hypertension may lead to decreased uterine 

blood flow. Uteroplacental factors as placental infarction or dysfunction may also cause 

abnormal fetal oxygenation during labour (65). The pH, base excess and pCO2 (acid-base 

status) of arterial blood flowing through the umbilical cord provides valuable objective 

evidence of the metabolic condition of neonates at birth. 

The number of caesarean sections were significantly higher (p=0.000) in the preeclamptic 

group compared to the normal group. This is as expected since PE usually occurs preterm, 

meaning the fetus is not fully developed. Therefore, the pregnancy is maintained as long as 
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possible to enhance the fetal outcome (65). Caesarean sections are therefore performed 

when the maternal condition is critical, as the only current cure for PE is removal of the 

placenta. 

Other measured clinical patient parameters did not show a significance difference (p≥0.05), 

neither between the mothers nor the neonates. However, there was expected to be 

significant differences in e.g. BMI, maternal age and nulliparous, as these factors are thought 

to increase the prevalence of PE (6). Because proteinuria is one of the first signs of PE, the 

urine of the women in the normal control group were not analysed as they had no signs of 

proteinuria in their routine controls. 

Implementation and optimisation of methods for morphology 
studies 
The resolution of SIM is 100 nm compared to 50 pm in the transmission electron 

microscope (TEM) (63, 72). SIM is a versatile method where many fluorophores may be used 

in one experiment, allowing a detailed analysis of one section (63). TEM on the other hand, 

only allows using a few different sized gold labelled particles in one section (72). Also, high-

resolution fluorescent microscopy as SIM is a cheaper and quicker method to perform than 

TEM. 

In 2018, a Master project were conducted at the Optical Nanoscopy Research Group, 

comparing the image quality of cryo-sections and formalin-fixed paraffin-embedded (FFPE) 

sections from liver tissue using high-resolution microscopy (73). The previous Master project 

found that ultrathin cryo-sections allow better contrast images compared to FFPE sections. 

There are at least two reasons for this; first, cryo-sections are generally thinner than FFPE 

sections, leading to less out-of-focus information. Second, cryopreservation allows for 

ultrastructural preservation and better antigen accessibility for fluorescent markers as 

compared to FFPE samples (74). In addition to these findings, cryo-sections are easier and 

more time effective to label as it is not necessary to first embed the tissue piece in paraffin, 

followed by deparaffinisation steps prior to labelling. Because of this, cryo-sections were used 

in favour of FFPE in this thesis. 
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Prior to this study, no established protocol for collection and preservation of placental tissue 

for high-resolution microscopy of cryo-sections existed. The collection and fixation protocol 

were based on knowledge of fluorescent- and electron microscopy of placental and other 

tissues. This was used to further optimise the protocol for cryopreservation of placenta for 

high-resolution microscopy. First, fixation was performed following two different approaches; 

one using glutaraldehyde and formaldehyde, and one using only formaldehyde. Sections 

preserved using the fixative containing both glutaraldehyde and formaldehyde were not as 

evenly stained as the sections preserved in the fixative containing only formaldehyde. 

Therefore, the fixative containing only formaldehyde was used. 

Placental tissue has chorion villi submersed in the maternal blood in the intervillous 

space (75). Bernhard and Virion found in 1971 that tissues are better preserved when it is 

immersed in gelatine (76). This coincides with our previous experience from other collection 

and preservation protocols. When the tissue is immersed in gelatine, cavities are filled, and 

the tissue is prevented from collapsing.  Placental tissue samples that were used in the 

previous Master project were not immersed in gelatine prior to freezing, resulting in a 

distorted placental morphology. Also, the previously cryo-preserved tissues were fixed using 

various fixatives, making implementation of a labelling protocol difficult. Implementation of a 

protocol was difficult as there are many various parameters to optimise. 

In the previous Master study, it was found that cryo-sections did not adhere to the cover glass 

during the washing and labelling steps when it was not coated with poly-L-lysine (73). 

Therefore, only poly-L-lysine coated cover glasses were used in this study. The method used 

to label cryo-sections from liver in the previous Master project, and experience with labelling 

procedure of FFPE sections and sections for electron microscopy was used as basis for the 

optimised labelling method of placental cryo-sections. First, the methyl cellulose was not fully 

removed, leading to it being a hazy layer over parts of the sections, making it difficult to focus 

in the microscope. The methyl cellulose residues also lead to an unsuccessful labelling with 

CMO and DAPI. As a solution, the poly-L-lysine coated cover glasses with the cryo-sections 

were cooled down on a metal plate prior to washing, leading to an easier removal of the 

methyl cellulose and cryo-sections that were better labelled. Still, some autofluorescence that 
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might affect the imaging were detected. Because of this, the blocking solution was changed 

from normal goat serum (1 %) to BSA (1 %). Thereafter, the optimal concentration of CMO 

and DAPI were found by labelling different sections with different concentrations of CMO and 

DAPI. At initial phases of the study, it was also discovered that some parts of the sections were 

in focus whereas other parts were not. To ensure correct flatness of the focal plate, a six-

edged nut was placed on top of the cover glasses while the mounting medium hardened. 

During this study, there has been made attempts to label the cryo-sections with antibodies. 

Two trophoblast-specific antibodies were chosen: laeverin and HLA-G antibody (77, 78). 

Different batches of both primary- and secondary antibodies were used without success. 

Further investigations and optimisations are needed to successfully label cryo-sections with 

antibodies. For later experiments, longer incubation time for the primary antibody, using a 

different blocking solution and higher concentrations of the antibodies can be tested. 

Morphological investigation using high-resolution microscopy 
As shown in Figure 9 and Figure 10, neither sections from normal or preeclamptic placentas 

showed significant autofluorescence values that could affect or interfere with imaging of the 

stained sections. 

Because SIM has a higher resolution than deconvolution, SIM was used for morphological 

analysis (63). All normal- and preeclamptic sections confirm the expected morphology of 

placental tissue, having symmetrical nuclei and uniform staining with both CMO and DAPI, 

indicating that the tissue was well preserved and that suitable concentrations of CMO and 

DAPI were used. Comparison of normal- and preeclamptic cryo-sections within the group 

disclosed that sections from all patients had the same structures. However, one patient had 

early PE and the labour was induced preterm (gestational week 27+3). Therefore, the 

structures less developed in these tissues. 

A series of artefacts were discovered during this study, which could have been introduced 

during sectioning, preparation of the sections or microscopy. Some sections had stripes 

occurring from notches in the knife used to section the tissue sample and are not presented 

in the thesis. When these stripes affected the ability of analysing the images, new sections 
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were made. Virtually all sections had some folds, some more than others. This occurred after 

sectioning, when the tissue section was transferred to the poly-L-lysine-coated cover glass. 

The folded regions were not used for investigative purposes and are therefore not presented 

in the thesis. Sections with too much folds were discarded and replaced by new sections. 

During preparation, the ultrathin cryo-sections are invisible to the naked eye, making it 

impossible to inspect them during the various washing and labelling steps of the preparation. 

In cases were the section was accidentally touched with absorbent paper, tears and rifts may 

occur, affecting the overall morphology of the tissue, thus, requiring new sections to be made.  

Artefacts can be introduced during microscopy, such as oil mismatch. It was ensured that oil 

mismatch did not occur by checking the PSF in the orthogonal view of the software, to see 

whether symmetrical shapes occurred (Figure 6). If unsymmetrical shapes occurred, the oil 

was changed accordingly. In addition, some sections may be unevenly placed on the cover 

glass, leading to some structures being in focus, whereas other structures are not in focus. As 

the overall aim of the thesis was to implement a method for high-resolution microscopy of 

placental cryo-sections, the structures were not quantified. Prolonged exposure of light on 

the samples leads to photobleaching of the fluorophores and results in diminishing 

fluorescence. This occurred with the sample of the normal section from the maternal side 

presented Figure 18A and B. When the section was imaged in the fluorescence microscope 

(Figure 17B), maternal capillaries were visualised, whereas when the same region was imaged 

using SIM, the maternal capillaries could not be visualised (Figure 18A and B). 

On the fetal side, the same structures were visualised in both the normal- and preeclamptic 

samples (Table 19). In both the normal- and preeclamptic fetal sections, the 

syncytiotrophoblasts were evenly spread in the syncytium. All sections used for analysing 

purposes were uniformly stained. 

Bright red structures in the cytoplasm are seen in all preeclamptic sections on the fetal 

side (Figure 16B), but are not found in the normal sections from the fetal side (Figure 13B). 

Their size range from 100 nm to 500 nm in diameter; they might be EVs, according to their 

size (79). Organelles such as mitochondria are excluded since they have a diameter ranging 

between 0.5-1 µm (80). Previous studies have shown an abundance of trophoblastic 
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fragments, vesicles and cell free DNA and RNA in the maternal circulation during 

pregnancy (81). Compared to normal pregnancies, more are shed into the maternal circulation 

in PE (50, 81). The presumed EVs found in this study may be a biomarker of PE, and thus need 

to be investigated further with EV specific markers like vascular endothelial growth factor 

receptor 1 (Flt-1) and endoglin (82). 

When comparing the fetal side of the normal- and preeclamptic samples, it may seem to be 

more syncytial knots in the preeclamptic samples. Syncytial knots are a cluster of syncytial 

nuclei on the outer surface of a placental villi and a sign of syncytial damage, occurring when 

syncytial nuclei progress to apoptosis and aggregates (83). Such morphological changes in 

syncytiotrophoblasts may lead to reduction of the placental barrier, allowing leakage of fetal 

antigen into maternal circulation, thus, increasing the immune response and expose the fetus 

to harmful agents (84). Previous studies have found that there are two times more syncytial 

knots in placentas from women with PE compared to normal women (85). Fragments of the 

syncytial knots can be shed into the intervillous space and enter the maternal circulation. The 

number of syncytial knots increases with gestational age (86). Therefore, a morphological 

comparison of normal- and preeclamptic placentas should be carried out in women with the 

same gestational age at delivery. 

On the maternal side, extravillous trophoblasts, syncytiotrophoblasts and both maternal and 

fetal capillaries were identified (Table 20). The maternal side of the normal- and preeclamptic 

sections show similar morphology. It appears to be more scattered nuclei in the normal 

sections in general than the preeclamptic sections. The scattered nuclei may be extravillous 

trophoblasts as they are surrounded by a thicker cell membrane, containing glycocalyx, than 

other trophoblastic cells (87). However, to confirm this hypothesis, extravillous trophoblast-

specific marker must be used. Extravillous trophoblasts are differentiated trophoblasts that 

invade the decidua during the second trimester, increasing the diameter of the maternal 

arteries supplying the placenta with maternal blood, thereby adapting to the nutritional needs 

of the growing fetus (20).  

No maternal capillaries were identified in the preeclamptic sections from the maternal side, 

making a comparison impossible. The reason for this may be because the prepared sections 
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originate from the outer rim towards the fetal side of the collected tissue piece. Therefore, 

maternal capillaries can appear when more sections from parts deeper into the maternal side 

are prepared. For the same reason, fetal capillaries and parts of fetal villi such as 

syncytiotrophoblasts appears in some of the maternal sections as well. It is impossible to 

ensure that the orientation of each section is equal and achieve the same structures. There 

are also individual differences between women. However, individual differences were not 

observed in this study, probably because of a low number of samples. Also, if more markers 

are used to label the sections, individual differences in and between the normal- and 

preeclamptic group are easier to detect. 

Even though all the samples were collected at approximately the same distance from the 

umbilical cord, the pieces that are stored are very small and are randomly selected for 

sectioning. In a larger study, more sections from each patient could be prepared, increasing 

the possibility to visualise more structures and detect differences between the groups. The 

women included in the study should also have been matched for gestational age to ensure 

approximately equal development of the placenta. As the primary aim was to implement a 

method for collection, preservation and labelling, a limited number of sections were prepared 

for morphological analysis when the method was optimised. 

Total antioxidant capacity and oxidative stress study 
To our knowledge, neither the method used to measure TAC or MDA have previously been 

used on placental tissue. Therefore, normal values are not established. Three parallels were 

used in the TAC assay, whereas two parallels were used in the MDA assay. In both assays, all 

measurements were stable (Appendix B and C). Because of this, the method seemed to work 

on placental tissue. 

The TAC assay measures the tissue’s ability of ROS elimination. All tissues have some 

antioxidative micronutrients such as vitamin C and vitamin E that eliminate ROS (88). 

Antioxidants scavenge ROS, meaning the more antioxidants in the tissue, the higher 

antioxidant capacity and higher rate of ROS elimination (30). In this study, there was no 

significant difference (p≥0.05) between the TAC of normal- and preeclamptic placental tissue. 
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However, the TAC of the normal tissue samples show a trend of being generally higher than 

the preeclamptic, both for the fetal and the maternal side (Table 21). 

The MDA assay measures the MDA content of the samples. MDA is a product of lipid 

peroxidation after reacting with ROS, which occurs by oxidative stress. Therefore, a higher 

MDA value reflects an increased oxidative stress level in the tissue, whereas a lower MDA 

value reflects a lower oxidative stress level in the tissue. Although there was no significant 

difference (p≥0.05) between the normal- and preeclamptic tissue samples, there was a trend 

of the MDA content being higher in the preeclamptic samples, both for the fetal and maternal 

side (Table 22). 

The oxidative stress and the TAC of a tissue is closely connected. It is found that pregnant 

women in general have increased levels of MDA compared to non-pregnant women (30). Also, 

previous studies have found that the TAC of preeclamptic placentas are lower than the TAC of 

normal placentas (89, 90). The TAC of the placental tissue in normal pregnant women 

increases as the oxidative stress in the tissue increases, thereby eliminating ROS and prevent 

increased oxidative stress (30). Pregnant women with PE have higher levels of MDA than 

normal pregnant women with the same gestational age, meaning this adaptation of the TAC 

does not occur in pregnant women with PE, leading to oxidative stress (30, 31). Since other 

studies have found that there is a significant difference in the TAC and MDA content between 

normal- and preeclamptic samples, the difference is probably found if more patients are 

included in the study. 

Conclusions 

The implemented protocol for collection and staining of placental tissue is well suited for 

investigating placental morphology using high-resolution microscopy, as the placental 

morphology is preserved, and the sections are evenly stained. The method is cheaper, more 

rapid and easier than TEM. In preeclamptic sections, there seemed to be more syncytial knots 

than in normal sections, in addition to bright red structures that may be EVs which were not 

found in normal sections. The methods used to determine TAC and MDA content can also be 
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used on placental tissue. No significant difference was found between the TAC and oxidative 

stress levels of normal- and preeclamptic placentas.  

Future perspectives 
The current method for sample preparation is well suited for high-resolution microscopy. 

However, the method should be further developed to include labelling of specific proteins, 

cell structures and cell types with antibody-conjugated fluorophores. This allows a more 

thorough investigation of placental morphology. By labelling more structures, morphological 

differences between normal- and preeclamptic placentas can be more easily detected and 

different subsets of placental cells can be identified. In addition, quantitative studies 

comparing the amount of EVs and syncytial knots may be performed on tissue sections from 

placentas of normal pregnancies and placentas from women with PE. 

If the detected bright red structures are EVs, these are presumably secreted into the maternal 

circulation. To investigate whether this is the case, liquid biopsies from the maternal 

circulation can be performed. An advantage with this approach is that it is non-invasive and 

can be performed throughout the pregnancy. This approach can also be extended to include 

other biomarkers thought to be related to PE, such as microRNA, proteins and cell free fetal 

DNA. Over time, this result in the possibility of detecting pregnancies at risk of being affected 

with PE prior to disease onset. 
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Appendix 

Appendix A: Consent form 
A consent form was given to the pregnant women in Norwegian to ensure that they 

understood what they consented to. This form is translated and contains the same 

information that was given to the women.  

Preeclampsia is a disease affecting pregnant women with an incidence of 8-10 % worldwide 

and 4 % in Norway. The disease is potentially life-threatening disease for both the mother and 

her unborn child. Women with the condition have high blood pressure, proteins in their urine, 

edemas in the body and may affect different organs. The placenta has an important role in 

the development of preeclampsia. The aim of this pilot study is to implement high-resolution 

microscopy of placental tissue as an analytic tool used in diagnostic and research.  

I consent that information from conversations and examination during pregnancy, in addition 

to examination of placental tissue, can be registered and used for research. 

The collected material can be used for necessary research with the purpose of finding new 

biological and medical knowledge regarding preeclampsia. I am aware that it takes a long time 

to find all important factors and therefore, there is no set end-date for this research project. 

 I confirm that sufficient information has been given regarding the use of data and what will 

be stored. I know that no data from this research can be linked to my name, that my 

participation is voluntary, and that my consent can be withdrawn at any point without 

specifying a reason. I am informed that this research requires approval from Datatilsynet and 

the Ethical committee, and that questions can be directed to the doctor, researcher or 

midwife that invited to participate in the study. 

Yes, I consent to research …………………………………………………………………… 

                                                                                                          (date, signature) 

No, I do not consent to research …………………………………………………………………… 

                                                                                                         (date, signature) 
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Appendix B: Raw data, total antioxidant capacity assay 

 

# Name Abs<730nm>  # Name Abs<730nm> 
1 Vit C 0 0.60717  30 2P-F 0.33192 
2 Vit C 0 0.61291  31 2P-M 0.30345 
3 Vit C 0 0.61908  32 2P-M 0.27094 
4 Vit C 1 0.52748  33 2P-M 0.27909 
5 Vit C 1 0.51878  34 3P-F 0.31446 
6 Vit C 1 0.53769  35 3P-F 0.29080 
7 Vit C 2 0.45761  36 3P-F 0.29514 
8 Vit C 2 0.46185  37 3P-M 0.26657 
9 Vit C 2 0.46152  38 3P-M 0.24578 
10 Vit C 4 0.30982  39 3P-M 0.26322 
11 Vit C 4 0.30459  40 1N-F 0.32305 
12 Vit C 4 0.30557  41 1N-F 0.33059 
13 Vit C 6 0.15824  42 1N-F 0.33048 
14 Vit C 6 0.17039  43 1N-M 0.28997 
15 Vit C 6 0.16284  44 1N-M 0.28108 
16 Vit C 8 1.3879E-2  45 1N-M 0.28783 
17 Vit C 8 1.4417E-2  46 2N-F 0.25083 
18 Vit C 8 2.6336E-2  47 2N-F 0.25002 
19 Vit C 10 -2.5172E-3  48 2N-F 0.25396 
20 Vit C 10 -3.2301E-3  49 2N-M 0.22071 
21 Vit C 10 -2.1305E-3  50 2N-M 0.23843 
22 1P-F 0.32695  51 2N-M 0.23233 
23 1P-F 0.31905  52 3N-F 0.27886 
24 1P-F 0.31412  53 3N-F 0.27354 
25 1P-M 0.29078  54 3N-F 0.28473 
26 1P-M 0.27816  55 3N-M 0.29954 
27 1P-M 0.28004  56 3N-M 0.29194 
28 2P-F 0.36071  57 3N-M 0.29193 
29 2P-F 0.35352     
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Appendix C: Raw data, oxidative stress assay 
Table 23: Layout and raw data for the oxidative stress assay. The first line in each square denotes the type of sample, whereas the second line is the measured optical density at 532 nm 
wavelength (OD532) for the sample. Each sample was measured in two parallels. 

 1 2 3 4 5 6 7 8 9 10 11 12  

A  
 
 

           

B  
0 nM 
0.052 

0 nM 
0.054 

4 nM 
0.092 

4 nM 
0.099 

8 nM 
0.316 

8 nM 
0.321 

12 nM 
0.635 

12 nM 
0.642 

16 nM 
0.965 

16 nM 
0.972 

 OD532 

C  
20 nM 
1.358 

20 nM 
1.344 

         OD532 

D  
1P-F 

0.544 
1P-F 

0.562 
1P-M 
0.485 

1P-M 
0.472 

2P-F 
0.585 

2P-F 
0.591 

2P-M 
0.611 

2P-M 
0.621 

3P-F 
0.551 

3P-F 
0.552 

 OD532 

E  
3P-M 
0.395 

3P-M 
0.372 

         OD532 

F  
1N-F 
0.377 

1N-F 
0.365 

1N-M 
0.387 

1N-M 
0.395 

2N-F 
0.412 

2N-F 
0.425 

2N-M 
0.414 

2N-M 
0.423 

3N-F 
0.545 

3N-F 
0.536 

 OD532 

G  
3N-M 
0.454 

3N-M 
0.444 

         OD532 

H XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX 
 
 

 

 


