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ABSTRACT 29 

High levels of halogenated organic contaminants (HOCs) have been found in the marine 30 

predatory seabird great skua (Stercorarius skua) from breeding colonies in the Northeastern 31 

Atlantic, with large unexplained inter-colony variation. The present study aimed at analyzing 32 

if the HOCs occurrence in breeding great skuas in remote colonies was explained by local 33 

baseline food web exposure determined by long-range transport, or by ecological factors such 34 

as diet specialization and relative trophic position in the breeding area. The occurrence of 35 

organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated 36 

diphenyl ethers (PBDEs) was analyzed in plasma of 204 adult great skuas collected over two 37 

years (2008 and 2009) and 5 colonies across the North-Atlantic from Shetland to Svalbard. 38 

The ΣHOCs levels in plasma ranged across two orders of magnitude, from 40 to 7600 ng/g 39 

(wet weight) and differed significantly across the great skua colonies. The variation in 40 

contaminant occurrence among colonies did not reflect long-range transport through a 41 

latitudinal or remoteness gradient, as the second northernmost colony (Bjørnøya), had the 42 

highest contaminant concentrations. No latitudinal or remoteness gradient was evident in the 43 

contaminant pattern among the colonies. The contaminant levels increased significantly with 44 

increasing δ15N values, and regurgitated pellets of undigested prey suggested that great skuas 45 

with higher δ15N values had a higher proportion of bird prey in their diet, mostly seabirds. In 46 

contrast, great skuas from colonies with lower δ15N and lower contaminant level fed mostly 47 

on fish. The enrichment of δ13C increased with decreasing δ15N and lower contaminant levels. 48 

Therefore, individual behavior of great skuas, such as migration strategies and diet 49 

specialization, rather than long-range transport and thus baseline food web exposure, explain 50 

among and within colony variance in contaminant occurrence. 51 

 52 
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 55 

Capsule: Trophic level and diet specialization, not long-range transport, explains the large-56 

scale variation in contaminant occurrence in the avian predator great skuas breeding in the 57 

Northeastern Atlantic.  58 
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INTRODUCTION 59 

High levels of halogenated organic contaminants (HOCs) have been found in the marine top 60 

predator great skua (Stercorarius skua) from remote breeding colonies in the Northeastern 61 

Atlantic with large unexplained inter-colony variation (Leat et al. 2013). Adult birds are 62 

exposed to HOC through the diet, and lipid soluble recalcitrant HOCs biomagnify through the 63 

food web with increasing HOC concentrations with trophic position (Borgå et al. 2001; Ruus 64 

et al. 2002; Borgå et al. 2004). As great skuas are migratory, a central question is whether the 65 

source of HOCs is predominantly from the local food web near the breeding colonies or from 66 

their wintering areas. The great skuas’ wintering areas have previously been shown to explain 67 

up to 22% of the variation in HOC concentrations in some of the breeding colonies, leaving 68 

much unexplained variance in HOC occurrence to other factors such as local sources during 69 

the breeding period (Leat et al. 2013). Local HOC sources, both the baseline exposure and 70 

ecological factors like trophic position and diet specialization, may influence the HOC 71 

occurrence, as they affect the trophic magnification in the food web (Borgå et al. 2012). 72 

 73 

A principal source of spatial variation in contaminants in the abiotic environment is the 74 

location relative to primary emission sources. Primary emission sources of HOCs have been 75 

concentrated in industrialized- and agricultural areas mostly in the mid-latitudes of the 76 

northern hemisphere (Breivik et al. 2004). However, long-range transport of HOCs in the 77 

atmosphere has distributed these pollutants to remote environments, including the Arctic 78 

(Muir and de Wit 2010). Although long-range transport is considered the main source of 79 

contaminants to the Arctic, local sources such as settlements and military sites may contribute  80 

as well (Brown et al. 2009). One of the physical processes governing long-range atmospheric  81 

transport is cold condensation; that is, semi-volatile HOCs shift from gas phase to condensed  82 
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phases with decreasing temperature (Wania and Mackay 1993). Differences in chemical´s 83 

volatility lead to compositional shifts in pollutant pattern along latitudinal and altitudinal 84 

temperature gradients, a process often referred to as global distillation (Wania and Mackay 85 

1993). As an alternative to global distillation, the remoteness hypothesis suggests that it is the 86 

differential removal of pollutants from the air with distance from emission sources, rather 87 

than a temperature gradient, that leads to environmental gradients of pollutants (von Waldow 88 

et al. 2010a, von Waldow et al. 2010b). Comparisons of HOCs in wildlife between eastern 89 

and western Greenland at similar latitude appear to support the remoteness hypothesis, with 90 

higher HOC concentrations in eastern Greenland closest to European emission sources 91 

(Vorkamp et al. 2004). However, observational data show that latitudinal gradients often 92 

coincide with remoteness from emission sources, particularly in Europe (von Waldow et al. 93 

2010a, von Waldow et al. 2010b).  94 

 95 

Most studies of spatial distribution and long-range transport of pollutants focus on abiotic 96 

compartments such as soils water and air (Agrell et al. 1999, Meijer et al. 2003, Gioia et al. 97 

2006, Gioia et al. 2008, Lohmann et al. 2009). Few studies have been carried out in biota, but 98 

a study of great black-backed gull (Larus marinus) along the Norwegian coast recognized the 99 

pattern of contaminant occurrence predicted by global distillation (Steffen et al. 2006). Also, 100 

studies of eagles suggested that at remote sites without local point sources, long-range 101 

transport of contaminants is important (Elliott et al. 2009, Fort et al. 2014).  102 

 103 

The effect of diet on biomagnification of HOCs is well known and established for food webs 104 

using stable isotopes of nitrogen (δ15N) as a measure of relative trophic position (Fisk et al. 105 

2001, Borga et al. 2012). Even within a seabird colony, a positive association between trophic 106 

position and contaminant concentrations may be significant (Sagerup et al. 2002), although 107 
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such intraspecific relationship is rarely documented in wildlife, probably due to restrictions in 108 

sample sizes and lack of sufficient dietary variance among individuals. Whilst most great skua 109 

pairs are generalist predators, some specialize on specific prey types and in some cases on 110 

individual species (Furness 1987, Phillips et al. 1997). Therefore, some of the variation in 111 

HOC occurrence in top predators such as great skuas may be explained by variation in diet, 112 

either among or within colonies. 113 

 114 

The distribution of great skua breeding colonies across the Northeast Atlantic cover a large 115 

spatial scale (60°N to 80°N), and thus provides the opportunity to analyze if the spatial 116 

variance of HOCs reflects the pattern caused by long range transport, or if trophic level and 117 

diet specialization overrides this food web baseline signal. Concentrating on a single species 118 

controls for some aspects of biological variability, which can affect HOC concentrations such 119 

as species-specific biotransformation rates, and physiological adaptations, for example 120 

metabolic rates. The great skua feed opportunistically on a wide range of prey, including 121 

adults and chicks of seabirds, terrestrial mammals, pelagic fish, demersal fish discarded from 122 

fishing boats, prey gained through kleptoparasitism of other seabirds, and some caught in 123 

surface waters (Furness 1987). Indigestible prey remains are regurgitated in the form of 124 

pellets, from which prey can be identified to taxon or in some cases species level. The diet of 125 

individual skua pairs can be studied as they are highly territorial, and regurgitated pellets are 126 

thus highly likely to be produced by the birds occupying that territory.  127 

 128 

The aim of the present study was to unravel if the occurrence of HOCs in great skuas across 129 

the North Atlantic was explained by local baseline food web exposure determined by long-130 

range transport, or by relative trophic positions and local diet habits. We hypothesized that if 131 

long-range atmospheric transport is the dominant process affecting HOC concentrations in 132 
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great skuas, plasma concentrations would decrease either with increasing latitude or 133 

remoteness from emission sources. In addition, the pattern of HOCs was predicted to show 134 

increasing proportion of less halogenated (thus more volatile) compounds in the northern 135 

colonies or with increasing remoteness. If the HOC levels were predominantly described by 136 

the great skuas trophic position and diet specialization we expected the HOC levels to be 137 

related to the stable isotope signatures of nitrogen (δ15N) and carbon (δ13C), and to prey 138 

remains in regurgitated pellets. None of the breeding colonies included in this study are close 139 

to large urban areas, therefore it is presumed that sources of HOCs are dominated by long-140 

range atmospheric transport rather than local emission sources. 141 

 142 

MATERIALS and METHODS 143 

Sampling 144 

Blood was sampled using heparinized syringes from 204 incubating adult great skuas in five 145 

colonies in 2008; Ny-Ålesund 78°55’N, n=5; Bjørnøya 74°29’N, n=15; Hjelmsøya 71°03’N, 146 

n=4; South-East Iceland 63°52´N, n=21; and Runde 62°23’N, n=5 (listed with decreasing 147 

latitude), and in three colonies in 2009; Bjørnøya n=51; Iceland n=56, and Shetland 60°09’N, 148 

n=47 (Table 1, Table S1). Plasma and red blood cells were separated by centrifuging and 149 

frozen at -20°C. Birds were sexed by molecular methods using DNA extracted from red blood 150 

cells following a modified protocol (Griffiths et al. 1998). Whilst all birds sampled in 2009 151 

were successfully sexed, some of the individuals sampled in 2008 were not due to insufficient 152 

quantity of red blood cells for analyses. 153 

Remoteness indices 154 

Remoteness of the colonies was estimated using remoteness indices with night-time light 155 

emissions and cropland areas as proxies for HOC emissions from industrial and agricultural 156 

activities respectively (von Waldow et al. 2010b) (see supporting information for details). For 157 
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the two emission scenarios, the colonies increased in remoteness as follows; Shetland and 158 

Runde < Hjelmsøya and Iceland < Bjørnøya < Ny-Ålesund using night-time light emissions 159 

and Shetland and Runde < Hjelmsøya < Iceland < Bjørnøya < Ny-Ålesund using cropland 160 

area. Recently quantification of remoteness was modulated to take into account the 161 

contaminants’ physicochemical properties (Göktaş and MacLeod 2016). As these results were 162 

highly correlated with von Waldow’s remoteness index, the colonies were ranked according 163 

to the original remoteness index. 164 

 165 

Contaminant analyses 166 

OCs (HCB, Dieldrin, Mirex, QCB, OCS, ß-HCH, trans-nonachlor, oxychlordane, cis-167 

nonachlor, cis-chlordane,  pp´-DDT, pp´-DDE, pp´-DDD, and PCB congeners: 31/28, 52, 49, 168 

74, 70, 101, 99, 110, 149, 118, 153, 105/132, 138, 158, 187, 183, 128, 177, 156/171, 180, 169 

191, 170, 201, 195/208, 194, 205, 206, 209) and PBDEs (congeners 47, 99, 100, 153, 154) 170 

were extracted and measured in a total of 204 plasma samples at the Great Lakes Institute for 171 

Environmental Research (GLIER) at the University of Windsor Ontario Canada by gas 172 

chromatography electron capture detection (GC-ECD) (Lazar et al. 1992). Lipid content 173 

(extractable organic content) in plasma was gravimetrically determined. The details of the 174 

analyses are described in Leat et al. (2013). Recoveries of the internal recovery standard PCB-175 

30 were 77.4 +10% (mean + SD) in 2008 and 69.5 + 9.6 % in 2009. The data were recovery 176 

corrected.  Method detection limit was 0.08 μg/kg for PCBs and 0.05 μg/kg for all other OCs. 177 

Method detection limits for PBDEs varied by congener; PBDE-47 0.373 μg/kg, PBDE-99 178 

0.361 μg/kg, PBDE-100 0.471 μg/kg, PBDE-153 0.420 μg/kg, PBDE-154 0.488 μg/kg. 179 

 180 

Dietary descriptors 181 
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Stable isotopes of nitrogen and carbon (δ15N and δ13C respectively) were measured in red 182 

blood cells as described in detail elsewhere (Leat et al. 2013). The analytical precision based 183 

on the standard deviation of a NIST 8414 standard (bovine muscle) for 2008 and 2009 data 184 

was 0.07 and 0.18‰ for δ15N and 0.08 and 0.09‰ for δ13C, respectively. An internal 185 

laboratory fish muscle standard was included for 2009 data for which the standard deviations 186 

were 0.22‰ and 0.08‰ for δ15N and δ13C, respectively. The variation in spatial baseline 187 

isotopic signature among remote sites (Green et al. 2016) is assumed to be negligible 188 

compared to signature variation caused by differences in diet  in the great skuas. 189 

In 2009, breeding territories of blood-sampled birds in each colony were searched for 190 

regurgitated pellets every 2-3 days, until the nest failed or fieldwork ceased. In 2008 and 191 

2009, additional sampling of regurgitated pellets from great skuas breeding territories also 192 

took place on an ad hoc basis in the Bjørnøya colony. Pellets were examined and classified by 193 

prey type; bird, fish, mammal or other, and identified to species level whenever possible. 194 

Carcasses of large birds, e.g. ~20 days old great skua chicks and rabbits (Shetland) were 195 

counted as equivalent to 1 pellet. Sagittal otoliths recovered from the regurgitated pellets were 196 

used to identify the fish species consumed (Härkönen 1986). A minority of all pellets 197 

contained more than one prey type and were divided proportionally between the identified 198 

groups of prey i.e. 0.5 fish, 0.5 bird. Vegetation in pellets was excluded from the dietary data 199 

analysis as it was considered to have been ingested incidentally along with animal dietary 200 

items. Territories with > 5 regurgitated pellets were classified as specialists if ≥ 70% of pellets 201 

came from one dietary prey group (bird fish or mammal) (Votier et al. 2004). Otherwise, they 202 

were classified as generalists. Regurgitated pellets were destroyed once sampled, and 203 

identified on site to prevent double counting, or they were removed for further examination. 204 

Food regurgitated whilst handling the birds was not included in calculations of diet 205 

composition, but was used to identify prey items from the pellets.  206 
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Data analysis 207 

Data from 2008 and 2009 were analyzed separately, as not all colonies were sampled, as not 208 

all variables were included in both years. That is, whilst the sex of all individuals sampled in 209 

2009 was identified using DNA, the majority of individuals sampled in 2008 were not sexed 210 

due to insufficient material for DNA analysis. Treating the years separately allows sex to be 211 

included as an explanatory variable in the analysis of the 2009 data. Twelve individuals, three 212 

from Bjørnøya and nine from Iceland, sampled in both 2008 and 2009 were included in the 213 

analysis. Since males do the majority of foraging during incubation and often regurgitate food 214 

to the female at the nest (Catry and Furness 1999, Caldow and Furness 2000) the registered 215 

data (HOCs, stable isotopes, regurgitated pellets) in males and females of the same nest (pair) 216 

may not be independent. To ensure independence of data, only the first bird sampled per 217 

territory/nest was included in the analysis. 218 

 219 

OCs were included in the data analysis if concentrations were above method detection limits 220 

in ≥ 70% across the colonies. In total 40 organochlorines were included in the analysis: 28 221 

PCBs ranging from tri- to deca- homologues, and 12 organochlorine pesticides including 222 

HCB, OCS, β-HCH, Mirex, trans-nonachlor, cis-nonachlor, oxychlordane, pp'-DDT, pp'-223 

DDD, and pp'-DDE. Non-detects in the included contaminants were replaced by modelled 224 

values below the detection limit, using the distribution of concentrations above the detection 225 

limit of an individual HOC as described in Leat et al. (2013) and in supplementary 226 

information (Helsel 2006). Some of the 2009 data are published in Bourgeon et al. (2012) and 227 

Leat et al. (2013).  228 

 229 

In all analyses, PCBs were grouped according to homologue group as volatility and long-230 

range transport depends upon the degree of halogenation. Detection rates of the five PBDEs 231 
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analyzed (PBDE-47, 99, 100, 153, and 154) varied between congeners, colonies and years 232 

(Figure S2). PBDE 47 was detected in 97% of the samples and in samples where all five 233 

PBDEs were above detection limit (n=89, four individuals sampled in both years were 234 

excluded from the 2009 dataset), PBDE 47 was positively correlated with the other PBDEs 235 

(Spearman’s rank correlations: rho = 0.81, S = 22236, rho = 0.84, S = 18349, rho = 0.61, S = 236 

46348, rho = 0.67, S = 38931, p <0.001 in all cases) (Figure S3). Therefore PBDE 47 was 237 

used as a proxy for commercial penta-BDEs in analysis of spatial variation in PBDE 238 

concentration. 239 

 240 

Lipid content in plasma did not differ significantly between colonies (2008: F447= 0.39, p = 241 

0.81; 2009: F249= 2.4, p = 0.098, two low outliers were removed to meet assumption of 242 

normality of residuals) and all HOC concentrations are presented on a wet weight basis. 243 

 244 

Contaminant concentrations and patterns among colonies were investigated using the 245 

multivariate methods redundancy analysis (RDA) and principal component analysis (PCA) 246 

using the vegan package in R (R Development Core Team 2015). Colony, δ15N, δ13C and 247 

lipid content were included as explanatory variables (active in RDA, passive in PCA) for both 248 

years. The percentage of variation attributable to each explanatory variable was assessed by 249 

RDA. This was done by comparing the residual variance of the full model with models 250 

constrained to each explanatory variable in turn, separately (by conditioning out the other 251 

explanatory variables). Sex was included as explanatory variable in 2009, only. HOC 252 

concentrations were logarithmically transformed to reduce variance heterogeneity and 253 

skewness, whilst to investigate HOC pattern the data were standardized by norm to analyze 254 

the relative contribution of each contaminant to the total.  255 

 256 
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The sum of the OCs, and PBDE 47, were used to examine the overall relationships between 257 

diet, mainly carbon source (δ13C), and relative trophic level (δ15N), and HOCs. Relationships 258 

between stable isotopes and HOCs concentrations were investigated using general linear 259 

models with backwards stepwise selection to remove non-significant variables. HOC 260 

concentration data were log transformed to reduce heterogeneity and skewness (Full model 261 

for 2009 in Equation 1).  262 

 263 

log ΣOC or log ΣPBDEs = δ15N + δ13C + %lipid + sex + ɛ   (Eq. 1) 264 

 265 

The relationship between diet measured by regurgitated pellets and stable isotopes was 266 

investigated by linear models whereas the relationship between pellets and HOCs was 267 

examined visually due to small sample sizes of pellets. 268 

 269 

RESULTS AND DISCUSSION 270 

Overall, the data show that great skuas feeding at higher trophic levels and specializing on 271 

bird prey (inferred from stable isotopes and regurgitated pellets) have higher concentrations of 272 

pollutants, and that this is the main explanation for variation in HOC occurrence among 273 

colonies, rather than global distillation and remoteness (colonies spanning nearly 19 degrees 274 

latitude) to primary sources and wintering sites (Leat et al. 2013). Large sample sizes were 275 

obtained from Bjørnøya, Runde, Iceland and Shetland (15 – 56 individuals), whereas small 276 

sample sizes from Hjelmsøya, Runde and Ny-Ålesund (4 – 5 individuals) limit the 277 

interpretation of results from these colonies. Contaminant concentrations decreased in the 278 

following order: Bjørnøya (2009) >Bjørnøya (2008) > Hjelmsøya (2008) > Runde (2008) > 279 

Iceland (2009) > Ny Ålesund (2008) > Iceland (2008) > Shetland (2009). pp’-DDE and PCB 280 

153 were the contaminants of highest concentrations in all colonies for both years, followed 281 
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by oxychlordane, mirex, and trans-nonachlor (Table 1).  282 

 283 

HOCs occurrence in great skua plasma and long-range transport 284 

To meet the predictions of global distillation or remoteness hypotheses, Runde/Shetland and 285 

Ny-Ålesund should be extremes, representing least remote/lowest latitude and most 286 

remote/highest latitude, respectively. However, great skuas from Ny-Ålesund and Runde had 287 

intermediate contaminant concentrations compared to those of the other colonies (Table 1). 288 

Great skuas from Shetland had lowest contaminant concentrations, despite being the least 289 

remote/lowest latitude colony. The HOC concentrations were higher in the remote and high 290 

latitude colony Bjørnøya, compared to the other colonies both in 2008 and 2009. Skuas from 291 

Bjørnøya had twice as high mean ΣOC concentrations as the second most contaminated 292 

colony in 2008 (Hjelmsøya), and more than 3.5 times the mean concentrations from Iceland in 293 

both years (Table 1).  294 

 295 

Lipophilic HOC concentrations in the blood of birds are known to increase with decreasing 296 

body mass and lipid reserves (Bustnes et al. 2012b, Bustnes et al. 2017). Therefore, 297 

differences among colonies in the average body condition of great skuas offer a potential 298 

explanation for spatial differences in HOC concentrations. However, the present study is 299 

biased towards the selection of breeding birds. Great skuas are long-lived and may offset 300 

breeding seasons if conditions are poor (Catry et al. 1998). Hence, birds in poor condition are 301 

unlikely to have been sampled. There was, however, no significant difference in body mass or 302 

wing length of great skuas among colonies sampled in 2009 (Bourgeon et al. 2012). Thus, 303 

body condition was not considered an important explanatory factor for variation in HOC 304 

occurrence in the present study, and therefore not included in the statistical analyses.   305 

 306 
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PCA plots of HOC concentrations and patterns are presented in supporting information 307 

(Figure S1). No clear latitudinal gradient was found (selected representative HOCs are 308 

presented in Table 1). The direct multivariate redundancy analyses (RDA) accounted for 32% 309 

and 60% of the variance in HOC concentrations in 2008 and 2009, respectively (Table 2). 310 

Significant explanatory variables accounting for most of the variance in concentrations were, 311 

in decreasing order: colony, lipid%, δ13C and δ15N in 2008; and colony, δ15N, δ13C and lipid 312 

in 2009 (Figure S1, Table 2). The direct multivariate redundancy analyses accounted for 52% 313 

and 18% of the variance in HOC patterns in 2008 and 2009, respectively (Table 2). 314 

Significant explanatory variables accounting for most of the variance in patterns were, in 315 

decreasing order: colony, δ15N and δ13C in 2008; and colony, sex, δ15N and δ13C in 2009 316 

(Figure S1, Table 2). Male great skuas had higher HOC concentrations compared to females, 317 

which is in accordance with findings in other avian wildlife (Bustnes et al. 2003, Bustnes et 318 

al. 2005, Bustnes et al. 2007, Bustnes et al. 2017). However, neither the lipid content or sex 319 

were found to be major contributors to the inter-colony difference in HOC occurrence in great 320 

skuas. There was no clear latitudinal trend in the relative pattern of HOCs in general, or in 321 

PCB homologue patterns in either year. The contaminants with the largest variance in relative 322 

contribution among the samples were penta- to nona-CB homologue groups, pp’-DDE, pp’-323 

DDT, oxychlordane and Mirex. If long-range transport would explain the contaminant pattern 324 

found in great skuas, the pattern in the Bjørnøya colony should have had proportionally more 325 

volatile HOCs, and the pattern in the Iceland colony would have been intermediate to 326 

Shetland and Bjørnøya, which is not the case.   327 

 328 

The lack of a latitudinal or remoteness gradient in concentrations and pattern of HOCs in 329 

great skuas is in contrast to abiotic studies (Agrell et al. 1999, Meijer et al. 2003, Gioia et al. 330 

2006) and the few previous studies of geographic distribution of HOCs in biota (Ter Schure et 331 
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al. 2002, Vorkamp et al. 2004, Steffen et al. 2006, Bourgeon et al. 2012, Bustnes et al. 2012a). 332 

Most of the species in which latitudinal or remoteness gradients in HOCs have been found are 333 

cold blooded species occupying lower trophic levels compared to the great skua (Ter Schure 334 

et al. 2002, Vorkamp et al. 2004, Bourgeon et al. 2012, Bustnes et al. 2012a). The HOC 335 

pattern in the skuas across the colonies is dominated by recalcitrant and biomagnifying HOCs. 336 

Therefore, biotransformation of HOCs in the trophic levels preceding that of the great skua, 337 

and in the great skua itself, seem to obscure long-range abiotic transport patterns. In general, 338 

biotransformation is efficient in warm blooded species compared to cold blooded lower 339 

trophic level species where the contaminant pattern to a higher degree resembles that of the 340 

abiotic environment (Borga et al. 2004). The dominance of highly chlorinated PCBs 341 

congeners in the pattern of HOCs in Bjørnøya birds in 2008 is indicative of a pattern 342 

dominated by biomagnification, rather than long-range transport (Borgå et al. 2001).  343 

 344 

Relative trophic position and HOC concentrations in great skua 345 

The stable isotope signatures differed among colonies (Figure 1, Table 1, MANOVA 2008: 346 

Pillai = 0.87 F448 = 10 p <0.001; 2009: Pillai = 0.96 F2150 = 70 p <0.001) and there were no 347 

differences between sexes (2009: Pillai = 0.018 F1150 = 1 p = 0.26). In 2008, great skuas from 348 

Bjørnøya had higher δ15N than Iceland, Ny-Ålesund and Runde skuas (r2 = 0.42, F448 = 10.5, 349 

p <0.001, Tukey p <0.005). Hjelmsøya, with similar δ15N to Bjørnøya, had higher δ15N values 350 

than Iceland (p = 0.042). In 2009, skuas from Bjørnøya had higher δ15N values than Iceland 351 

and Shetland skuas (Kruskal-Wallis χ2 = 121, df = 2, p <0.001, post hoc comparisons 352 

Wilcoxon Signed rank tests p<0.001), and Iceland skuas had higher δ15N than Shetland (p 353 

<0.001). As stable isotopes and colony could not be judged as independent variables, colony 354 

was excluded from models investigating the relationship between HOC concentrations and 355 

stable isotopes. 356 
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 357 

Across colonies there was a positive linear relationship between δ15N and ΣHOC 358 

concentrations (2008: R2= 0.11, slope=-0.55, p=0.007, 2009: R2= 0.59, slope=0.93, p<0.0001, 359 

Figure 2). Although lipophilic recalcitrant HOCs show increasing concentrations with trophic 360 

position in the food web (Borgå et al. 2001, Fisk et al. 2001, Ruus et al. 2002, Lavoie et al. 361 

2010), such relationships are rarely shown within one species. However, δ15N levels were 362 

found to be positively related to OC concentrations in both bald eagles (Haliaeetus 363 

leucocephalus) (Elliott et al. 2009) and white-tailed eagles in Norway (H. albicilla) (Bustnes 364 

et al. 2013), and to HCB, DDTs and PCBs (from muscle) in Bjørnøya glaucous gulls (Larus 365 

hyperboreus) (Sagerup et al 2002.), and weak positive relationships were found between δ15N 366 

and HOCs in liver of northern fulmars (Fulmarus glacialis) (Knudsen et al. 2007). Even 367 

though there are no measurements of baseline δ15N from the study area, we assume that δ15N 368 

is an indicator of relative trophic level. Green et al. (2016) reported that blue mussels (Mytilus 369 

edulis) occupy the same trophic level along the whole Norwegian coast (range: 5-8‰), with 370 

some stations appearing to be outliers (particularly low or high δ15N). However, the δ15N 371 

levels in these stations was attributed to anthropogenic influence, i.e. increased anthropogenic 372 

input. Thus, we assume that the difference in isotopic signal across the remote colonies in the 373 

present study, reflects differences in diet specializations rather than differences in baseline 374 

isotopic signal. In the present study, positive linear relationships between δ15N and log sum 375 

HOCs within the colonies were found for the Iceland colony in 2009 but not 2008 (R2=0.07, 376 

p=0.05, and R2= 0.17, p=0.5, respectively), in Shetland in 2009 (R2=0.10 p=0.03), and the 377 

Bjørnøya colony in 2008 but not 2009 (R2=0.26, p=0.03, and R2= 0.004, p=0.67, 378 

respectively). These results suggest variation in individual diet specialization or prey taxon 379 

availability between breeding seasons.  380 

 381 
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The regurgitated pellets indicated differences in diet and occurrence of specialist and 382 

generalist predators among colonies, with trophic position increasing from Shetland to Iceland 383 

to Bjørnøya (χ2 = 296, df = 4, p <0.001, respectively). Great skuas from Bjørnøya had a 384 

higher proportion of bird in their diet (2008: χ2 = 229, df = 1, p <0.001, 2009: χ2 = 132, df = 1, 385 

p <0.001), whilst great skuas in Iceland and Shetland had a higher proportion of fish (χ2 = 86 386 

and χ2 = 95, p <0.001) (Table 4). Great skuas from Shetland also had a higher proportion of 387 

other diet items. Of the regurgitated pellets in Shetland, 19% (n = 71) contained mammal 388 

remains, mostly rabbit (Oryctolagus cuniculus), whilst only one regurgitated mammal pellet 389 

was recorded in Iceland, At Bjørnøya, the arctic fox (Vulpes lagopus) is the only mammal 390 

present. The regurgitated mammal pellets from Shetland were concentrated in 14 territories 391 

out of 42, of which only 7 had more than one regurgitated mammal pellet. Of the territories at 392 

Bjørnøya where 5 or more pellets were collected (n =56, a mean of 13 pellets per nest), the 393 

majority were bird specialists (2008: 67%, 2009: 77%, Table 4). In contrast, 47% of great 394 

skua territories from Shetland were occupied by fish specialists and 43% by generalists.  In 395 

Iceland, only three territories had more than 5 pellets, and recorded two fish specialists and a 396 

generalist. Details of identified bird and prey species can be found in Supplementary 397 

Information. 398 

 399 

Carbon source and HOC occurrence 400 

Bjørnøya, Hjelmsøya and Runde were depleted in δ 13C compared to Iceland and Ny-Ålesund 401 

in 2008 (r2 = 0.74, F448 = 38, p <0.001, Tukey p <0.005) (Table 1). Likewise, in 2009 skuas 402 

from Bjørnøya were depleted in δ 13C compared to Iceland and Shetland (r2 = 0.52, F2151 = 83, 403 

p <0.001, Tukey p <0.001) (Table 1). Across all colonies, there was a negative linear 404 

relationship between carbon source (δ13C) and ΣHOC concentrations (2008: R2= 0.19, slope=-405 

0.73, p=0.0004, 2009: R2= 0.24, slope=-1.34, p<0.0001, Figure 2). Most reported studies have 406 
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found few or no significant relationships between δ13C values and HOCs in avian tissues 407 

(Ruus et al. 2002, Sagerup et al. 2002, Knudsen et al. 2007), however, Lavoie et al. (2010) 408 

found sum brominated flame retardants (BFRs) to increase with δ13C. Studies of coastal 409 

breeding eagles report that PCBs, DDE and PBDEs in chicks increase with marine input and 410 

increasing δ13C levels (less negative values) (Elliott et al., 2009), and thus is opposite to the 411 

findings from the present study. The study by Elliott et al., (2009) also included some 412 

individual eagles breeding in estuaries or further up river and therefore reflect more riverine 413 

and freshwater systems.  For white-tailed eagles in Norway, there was a negative relationship 414 

between δ13C levels and POPs (Bustnes et al. 2013) similar to this study. δ13C measurements 415 

from the present study varied only from -19.8 to -17.7‰, which is at the end of scale 416 

compared to the study by Elliott et al. (2009), which might explain the contrasting findings. 417 

 418 

Spatial patterns in δ13C are well known in the Southern Ocean with δ13C decreasing with 419 

increasing latitude (Quillfeldt et al. 2010), but less is known from the northern hemisphere. In 420 

the present study, δ13C in great skuas does not simply decrease with increasing latitude, as 421 

Ny-Ålesund δ13C is comparable to Iceland rather than Bjørnøya. Runde skuas are grouped 422 

with Bjørnøya and Hjelmsøya in δ13C values. We hypothesized that the Shetland skuas feed to 423 

a greater degree on the terrestrial (less seabird prey, more mammal prey) system as reflected 424 

in the regurgitated pellets, and that this further contributes to lower HOC exposure, as HOC 425 

levels in the terrestrial system are generally lower than the marine system for the North 426 

Atlantic and Arctic region (AMAP 2004). If so, Ny-Ålesund and Iceland would also reflect a 427 

more enriched δ13C accompanied with lower HOC levels compared to e.g. Bjørnøya. Remains 428 

of mammals were found in regurgitated pellets from Iceland, and also the Ny-Ålesund skuas 429 

are known predators on eggs and chicks of terrestrial feeding geese (Bustnes, Personal 430 

communication). However, none of these colonies had a distinct terrestrial δ13C signal. 431 
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Bjørnøya was the colony with the lowest δ13C values indicating a marine signal, and the 432 

highest levels of HOCs, which support the general assumption that marine food webs are 433 

more contaminated than terrestrial food webs. However, further research is needed on the 434 

baseline levels of δ13C along a northern-Arctic, latitudinal gradient, as has been done for 435 

southern-Antarctic areas.  436 

 437 

Measuring diet – combining stable isotopes and pellet data 438 

When combined with regurgitated pellets, the indication for colony differences in HOCs 439 

being mostly driven by the trophic position at breeding site is even stronger. Across both 440 

years, birds from Bjørnøya had the highest HOC concentrations and the highest δ15N values, 441 

which probably resulted from Bjørnøya skuas having the highest proportion of bird prey in 442 

their diet. Bjørnøya had the highest proportion of individuals specializing on bird prey, and 443 

these skuas had consistently higher concentrations of both OCs and PBDEs compared to 444 

generalist skuas in Bjørnøya. This has also been found for glaucous gulls (Larus hyperboreus) 445 

at Bjørnøya (Bustnes et al. 2000). Shetland at the other extreme had a more mixed diet 446 

dominated by fish, with only one bird prey specialist, several skuas feeding on terrestrial 447 

mammals (rabbit), and the lowest δ15N values and HOC concentrations across colonies. 448 

Iceland had intermediate HOC concentrations and δ15N values, and a higher proportion of bird 449 

prey in their diet, than birds at the Shetland colony. No pellets were collected from the three 450 

smaller colonies, Ny-Ålesund, Hjelmsøya and Runde, holding less than 60 pairs at each 451 

location (around 10, 5 and 50 pairs for both years, respectively). These three colonies are 452 

located near to large colonies of other species including geese and eider ducks, providing 453 

potential prey either through kleptoparasitism or by preying directly on eggs, chicks or adult 454 

birds. Small great skua colonies have been shown to have a higher incidence of seabird 455 
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predation (Votier et al. 2007). However, HOC concentrations in Ny-Ålesund, Hjelmsøya and 456 

Runde were lower than birds from Bjørnøya, where seabird prey dominate.  457 

 458 

Stable isotopes and regurgitated pellets both provided information on the diet of great skuas in 459 

the breeding season, and can be used to analyze the relationship between diet and HOC 460 

concentrations. One obvious difference is that the regurgitated pellets only reflect the 461 

momentary diet and give specific information on prey items, whereas the stable isotopes 462 

integrate the carbon source and relative positioning in the food web over time. In the present 463 

study, red blood cells were analyzed for stable isotopes, which integrates the stable isotopes 464 

over the past 2-3 weeks (Bearhop et al. 2002). Pellets tend to over represent the proportion of 465 

mammal and bird in the diet due to their amount of indigestible material, and the longevity of 466 

pellets composed of fur or feathers in the environment (Furness and Hislop 1981, Votier et al. 467 

2001). Regurgitates may also be biased in the other direction as a bird diet may be more 468 

difficult to regurgitate than a fish diet (Furness 1987). However, presuming that the bias in 469 

pellet data towards birds and mammals is constant across colonies, pellets still reflect 470 

differences in diet among colonies.  471 

 472 

Contaminant levels compared to other studies 473 

The organochlorine concentrations in great skua plasma were amongst the highest found in 474 

plasma of seabirds in contemporary studies. Glaucous gulls (Larus hyperboreus), particularly 475 

those breeding in Bjørnøya, are known to have high concentrations of HOCs associated to 476 

negative effects (Verreault et al. 2010). Great skua from Bjørnøya in 2009 had twice the DDT 477 

concentrations found in glaucous gulls from Bjørnøya in 2002 and 2004 (Verreault et al. 478 

2005). Higher OC concentrations in great skua compared to seabirds of a similar ecological 479 

niche is not confined to Bjørnøya. Also, in Ny-Ålesund on Svalbard, OC concentrations in 480 
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great skuas exceeded those of glaucous gulls (Verreault et al. 2006), although both great skuas 481 

and glaucous gulls have lower levels in Ny-Ålesund than Bjørnøya (Verreault et al. 2005, 482 

Verreault et al. 2006). OC concentrations in great skuas from Hjelmsøya are higher than in 483 

whole blood of great black-backed gulls at Hornøya in northern Norway (Bustnes et al. 2005). 484 

There are no close comparisons across species available for the least contaminated colony 485 

Shetland, however, plasma concentrations there exceeded those of great black-backed gulls 486 

whole blood concentrations in Norway (Bustnes et al. 2005).  487 

 488 

As in the present study of great skuas, PBDEs are generally found at low concentrations 489 

compared to many of the most persistent OCs in the above-mentioned avian top predators 490 

(Verreault et al. 2006, Chen and Hale 2010). As with OC, PBDE concentrations in great skuas 491 

exceeded those of glaucous gulls (Verreault et al. 2007). Although the dietary niches of 492 

glaucous gulls, great black-backed gulls, and great skuas overlap (Cramp and Simmons 1983) 493 

the exact composition of their diets may differ both during the breeding and non-breeding 494 

season. Differences in migration route and wintering areas may also contribute to both inter- 495 

and intra-species differences (Steffen et al. 2006, Magnusdottir et al. 2012, Leat et al. 2013).  496 

 497 

The HOCs that dominated the great skua pattern at all colonies (pp’-DDE, PCB-153, 498 

oxychlordane, mirex, trans-nonachlor), also dominate the pattern in other seabird species 499 

(Bustnes et al. 2005, Helberg et al. 2005, Borgå et al. 2007, Lavoie et al. 2010), due to their 500 

high recalcitrance and lipid solubility. Trophic level and diet specialization are the most likely 501 

explanation for the higher levels in great skuas than other species, in addition to physiological 502 

differences such as metabolic rate, longevity, or biotransformation ability. 503 

 504 
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A strength of the present study was the large sample size covering the great skua breeding 505 

population of the north-eastern Atlantic which allowed a broader spatial perspective. Large 506 

sample sizes are needed to test relationships between dietary descriptors and contaminant 507 

levels within the same species.  These results show that large scale spatial variations in HOC 508 

occurrence in great skua is dominated by ecological factors such as local diet and trophic 509 

position. In combination with previous studies it can be concluded that these factors are more 510 

important than both wintering area and long-range transport of contaminants from primary 511 

sources. Condition, lipid content and sex differences are less important factors in the broader 512 

spatial perspective. As such, for remote regions, long-range transport and predictions of 513 

global abiotic distribution of contaminants is not sufficient to predict risk of contaminant 514 

exposure in wildlife. 515 

 516 
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Table 1. Concentrations (μg/kg ww) of selected organochlorines (OCs) and polybrominated diphenylethers (PBDEs) in plasma and stable 687 

isotope signatures of nitrogen (δ15N) and carbon (δ13C) in red blood cells (‰) of adult great skuas by breeding colony and year (arithmetic 688 

mean± SD, min-max of concentrations). 689 

  Ny-Ålesund 
(n=5) 

Bjørnøya 
(n=15a) 

Hjelmsøya 
(n=4) 

Iceland  
(n=21) 

Runde      
(n=5) 

Bjørnøya 
(n=51) 

Iceland  
(n=56) 

Shetland 
(n=47) 

       % Lipids 1 ±0.4 0.84 ±0.42 1.04 ±0.12 0.90 ±0.3 0.90 ±0.12 0.92 ±0.18 0.88 ±0.21 0.87 ±0.17 
 0.5-1.6 0.33-1.73 0.96-1.22 0.08-1.5 0.74-1.05 0.30-1.2 0.11-1.4 0.5-1.2 
            δ15N  13.2 ±0.3 13.9 ±0.4 13.7 ±0.4 13.1 ±0.4 13.3 ±0.3 14.6 ±0.4 13.3 ±0.4 12.7 ±0.4 
 12.8-13.7 13.4 -14.9 13.3-14.2 12.5 - 13.6 13.0-13.7 13.7-15.3 12.0-14.0 11.0-13.6 

δ13C  -18.2 ±0.2 -19.1±0.3 -19.3 ±0.4 -18.2 ±0.3 -18.8 ±0.2 -19.1 ±0.3 -18.5 ±0.3 -18.5 ± 0.3 
 -18.5 to -17.9 -19.8 to -18.8 -19.7 to -18.9 -18.6 to -17.7 -19.0 to -18.6 -19.7 to -18.5 -19.3 to -17.9 -19.2 to -17.9 

β-HCH 1.9 ±1.4 0.497 ±0.443 1.03 ±1.35 0.532 ±0.628 0.383 ±0.227 2.4 ±2 1.1 ±1 0.192 ±0.192 
 0.134-3.8 ND-1.8 0.205-3 ND-2.2 ND-0.56 0.381-11 ND-4.2 ND-1.2 
Oxy-Chlordane 14 ±11 63 ±39 21 ±30 12 ±11 15 ±22 98 ±69 17 ±16 3.9 ±7.6 
 0.979-35 12-142 4.1-65 ND-44 2.9-54 7.7-335 1.8-92 0.424-51 

HCB 12 ±7.4 10 ±8 11 ±9.3 4.7 ±3.1 6.5 ±4.5 23 ±11 4.6 ±2.4 1.9 ±1.8 
 1.3-20 2.6-28 2.9-25 0.972-14 2.6-14 4.5-57 0.741-11 0.6-12.5 

Mirex 14 ±8.4 18 ±12 9.9 ±8.7 12 ±18 7.7 ±8.3 51 ±34 12 ±11 4 ±4.5 
 1.5-28 ND-39 3-22 ND-88 2.5-22 7.3-134 2-64 0.628-26 

pp'-DDE 163 ±108 196 ±130 179 ±188 175 ±148 160 ±173 526 ±307 164 ±158 55 ±60 
 10-325 40-508 51-458 31-544 50-461 59-1286 19-782 7.7-347 

PCB 153 127 ±69 383 ±181 143 ±102 113 ±106 122 ±91 485 ±301 120 ±102 61 ±55 
 8.9-222 93-676 64-284 19-515 40-269 107-1660 22-509 9-279 

ΣOCs 496 ±248 1657 ±820 825 ±600 445 ±458 679 ±519 2410 ±1452 641 ±507 316 ±249 
 39-757) 404-3073 375-1694 81-2270 269-1557 532-7619 141-2754 81-1376 

PBDE 47 11 ±7.6 13 ±9.3 12 ±8.8 3.9 ±4 15 ±21 17 ±25 7.1 ±4.6 3.9 ±2 
  ND-25 3.4-39 4.9-23 ND-16 2.7-52 ND-127 ND-21 0.935-10 

a n=13 for % Lipids   690 

2008      NORTH    SOUTH 
 

2009     NORTH                 SOUTH 
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Table 2 Multivariate redundancy analysis of HOC concentrations and patterns in great skua 691 

plasma collected in 2008 (5 colonies) and 2009 (3 colonies). 692 

Explanatory  Variation p-value  Total variation explained 693 
variable explained (%)   by RDA (%) 694 

Concentration 695 

2008 a  Colony 34%  0.001  32% 696 

  Lipid % 28%  0.003 697 

  δ15N  5.3%  0.001 698 

δ13C  6%  0.004 699 

 700 

2009  Colony 9.8%  0.001  61% 701 

  Lipid % 0.6%  0.04 702 

  δ15N  3.1%  0.001 703 

δ13C  0.3%  0.001  704 

Sexa  3.2%  0.15 705 

Patterns 706 

2008 a  Colony 23%  0.001  48% 707 

  Lipid % 4.5%  0.12 708 

  δ15N  0.6%  0.002 709 

δ13C  0.3%  0.001 710 

 711 

2009  Colony 53%  0.001  18% 712 

  Lipid % 1.6%  0.98 713 

  δ15N  7.9%  0.001 714 

δ13C  4.8%  0.001 715 

Sexa  12%  0.04 716 

a Sex was not included in the 2008 models as the sex of the majority of individuals was 717 

unknown718 



Table 3. Diet composition of breeding great skuas from three breeding colonies in 2008 and 719 

2009 estimated from regurgitated pellets. Number and type of diet specialists (≥70% of pellets 720 

belonging to one dietary group, Votier et al. 2004), and generalists from study territories 721 

where more than 5 pellets were recorded. 722 

Colony Bjørnøya Bjørnøya Iceland Shetland 

Year 2008 2009 2009 2009 

Date 07/07-19/07 12/07-18/08 04/06-11/07 09/06-28/07 

No. of pellets 146 215 115 368 

% Composition    

Fish 23 17 71 57 

Bird  76 82 27 19 

Mammal N/A 0 1 19 

Other 1 1 1 5 

No of territories with more than 5 pellets   

Specialists 11 13 2 30 

Fish 0 0 2 14 

Bird 8 10 0 1 

Mammal 0 0 0 2 

Generalists 3 3 1 13 

 723 

  724 



 

 
 

2 

FIGURE CAPTIONS 725 

Figure 1. Relationship between δ 15N and δ 13C 726 

Figure 2. Relationship between isotopes and contaminant concentrations 727 

Figure 3. Relationship between isotopes and diet inferred from pellet type 728 

Figure 4. Contaminant concentrations between different specialists (diet inferred from pellets) 729 

 730 

  731 
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 732 

  733 

 734 

Figure 1. Great skua stable isotope values (‰) of nitrogen (δ15N) and carbon (δ13C) in red 735 

blood cell (n = 214) by colony and year. Mean with 95% confidence intervals. 736 

 737 

 738 
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  739 

  740 

 741 

Figure 2.  Relationships between the sum of halogenated organic contaminants (HOCs), 742 

concentrations in plasma, and stable isotopes of nitrogen (δ15N) and carbon (δ13C) in red 743 

blood cells of great skuas by colony and year (top: 2008, bottom: 2009). 744 
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 745 

 746 

Figure 3. Stable isotope values (‰) of red blood cells of great skuas from Bjørnøya (top) and 747 

Shetland (below), classified from pellet type as specialists or generalists.  748 
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 749 

Figure 4. Sums of organochlorine and PBDE concentrations (µg/kg, ww) by territorial diet 750 

specialisms classified by pellet type. 751 

 752 

 753 
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