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Abstract 

Identifying resources driving long-term trends in predators is important to understand 

ecosystem changes and to manage populations in the context of conservation or control. 

The arctic fox population in Iceland has increased steadily over a period of 30 years, an 

increase that has been attributed to an overall increase in food abundance. We hypothesized 

that increasing populations of geese or seabirds were driving this growth. We analyzed 

stable isotopes in a long-term series of collagen samples to determine the role of these 

different resources. The isotopic signatures of arctic foxes differed consistently between 

coastal and inland habitats. Whereas δ15N displayed a non-linear change over time with a 

slight increase in the first part of the period followed by a decline in both habitats, δ13C 

was stable. Stable isotope mixing models suggested that marine resources and rock 

ptarmigan were the most important dietary sources, with marine resources dominating in 

coastal habitats and rock ptarmigan being more important inland.  Our results suggest that 

seabirds may have been driving the arctic fox population increase. The rapidly increasing 

populations of breeding geese seem to have played a minor role in arctic fox population 

growth, as rock ptarmigan were the most important terrestrial resource despite a 

considerable decrease in their abundance during recent decades. This study shows that a 

long-term population trend in a generalist predator may have occurred without a 

pronounced change in main dietary resources, despite ongoing structural changes in the 

food web, where one species of herbivorous birds increased and another decreased. 
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Introduction 

High latitude ecosystems are both naturally dynamic and presently subjected to long-term 

changes due to climate warming (Post et al. 2009). Ecosystem changes are often propagated 

to individual species by trophic interactions (Schmidt et al. 2017).  Owing to their position 

at the top of food webs, predators may be especially prone to ecosystem fluctuations and 

change (Ehrich et al. 2015). Changes in resource availability such as a collapse of key prey 

populations (Schmidt et al. 2012; Miles et al. 2015) and/or dietary shifts to lower quality 

prey (Reynolds et al. 2019) may drive negative population trends, whereas population 

increase can result from growing prey populations (Serrouya et al. 2017), or from access 

to new resources such as anthropogenic subsidies (Elmhagen et al. 2017). Identifying the 

drivers of long-term predator population trends as resulting from fluctuations in main prey 

or from new resources, appearing with structural changes in the food web, is important to 

understanding how ecosystems are impacted by climate or human activity. Such 

knowledge is also a prerequisite to manage predator populations both regarding 

conservation concerns (Ims et al. 2017) or control (Serrouya et al. 2017). A first step to 

understand these relationships is to study the dynamics of predator diets. While the short-

term dynamics of the diet (i.e. seasonal or annual variation) are well studied in many 

predator species, long-term studies (i.e. at multi-decadal time scales) are rare.  

The arctic fox, Vulpes lagopus,  is a medium sized canid with a circumpolar distribution in 

the northern hemisphere (Berteaux et al. 2017). It has been chosen as a climate change 

flagship species by the International Union of Conservation of Nature (IUCN), and it is 

retracting and/or decreasing in the southern part of its range due to increased competition 

with red foxes, changes in prey abundance and to habitat loss (Mclaughlin 2009; Ims et al. 
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2017). Due to these different threats, conducting long-term studies of the population 

dynamics and resource use of this species becomes crucial (Berteaux et al. 2017). Arctic 

foxes have been attributed to two main resource use strategies: lemming foxes and coastal 

foxes. Lemming foxes behave as lemming (Lemmus and Dicrostonyx spp.) specialists and 

their reproduction follows the resource pulses of the lemming cycle. Coastal foxes live in 

areas where small rodents are absent, such as in Svalbard, Iceland and on other arctic 

islands and feed on marine resources such as seabirds as well as on terrestrial birds or 

ungulate carcasses (Braestrup 1941; Angerbjörn et al. 2004a; Eide et al. 2012). They have 

access to both inland and coastal habitats and resources, resulting in a rather stable annual 

food availability (Hersteinsson and Macdonald 1996; Angerbjörn et al. 2004b) and hence 

little short-term variation in diet compared to arctic foxes in rodent dominated ecosystems 

(Elmhagen et al. 2000).   

Islands may be the safest refuge for arctic fauna in a warmer future (Fuglei and Ims 

2008).  In Iceland, the arctic fox maintains a large population along the constantly ice-free 

coasts (Palsson et al. 2016). The arctic fox is regarded as a vermin, based on supposed 

killing of sheep (Ovis aries) and damage to eider duck (Somateria mollissima) colonies. 

Fox hunting has been encouraged and legislated for since the thirteenth century, and is still 

coordinated and subsidized by the Wildlife Management Institute (Hersteinsson et al. 

1989). The hunting data suggest a sharp fall in the arctic fox population all over Iceland 

from the 1950s into the 1970s and this has been attributed primarily to a decrease in rock 

ptarmigan (Lagopus muta) numbers (Hersteinsson 1987; Hersteinsson et al. 1989; 

Angerbjörn et al. 2004b; Pálsson et al. 2016). Since the late 1970s, however, there has been 

a steady increase in the fox population for thirty years, followed by a new decline since 
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2008 (Fig. 1). Hunting represents the main cause of mortality, but the hunting effort has 

been stable since the 1950s and is regulated by Icelandic law. Hunting in winter is 

subsidized by the municipalities, whereas in summer hunting is carried out by professional 

hunters. Hunting effort does thus not depend on fox abundance making hunting an unlikely 

driver of the population fluctuations (Pálsson et al. 2016; Unnsteinsdottir et al. 2016).  

Changes in arctic fox population size in Iceland have been attributed to changes in 

carrying capacity mainly determined by the abundance of food resources (Pálsson et al. 

2016; Unnsteinsdóttir et al. 2016) and possibly related to climate (Hersteinsson et al. 2009). 

Based on prey remains at dens, Pálsson et al. (2016) conclude that the increase of the fox 

population was to a large extent due to increasing geese and wader populations providing 

resources during the breeding period. In addition, they suggested that ptarmigan is an 

important resource for foxes in inland areas, and that long-term population size fluctuations 

in this species (Nielsen 1999) could have repercussions on the arctic fox population 

dynamics. Several ptarmigan populations, however, have exhibited decreasing trends over 

the period of the arctic fox increase (Fuglei et al. 2019). Likewise, for arctic foxes living 

on the coast, seabirds are the main prey (Unnsteinsdóttir et al. 2016), and any increase in 

seabird populations could have sustained the increment in fox abundance. According to 

Hansen et al. (2018), the overall abundance of seabird has indeed been increasing 

considerably from 1970s to the end of 1990s. Here we hypothesize that the prolonged 

increase in the arctic fox population was related to an increase in food resources. The key 

driver could be either the increasing goose and wader populations, which may have partly 

replaced ptarmigan in the diet, or the increase in seabirds.  



[Escriba aquí] 
 

Diseases or parasites (Goltsman et al. 1996), interspecific competition or habitat 

changes could also be hypothesized to have caused the conspicuous changes in arctic fox 

population size. However, no infectious fox diseases such as rabies or distemper are found 

in Iceland (Gunnarsson et al. 1993). Moreover, arctic foxes do not have any important 

interspecific competitors in Iceland, and the only other terrestrial mammalian predator, the 

mink (Mustela vison) has exhibited a parallel population increase (Magnusdottir et al. 

2014). There is no reason to assume an increase in habitat extent, and an increase in habitat 

quality would most likely be related to more available resources.  

There are many ways to study the diet of predators, such as direct observations, 

stomach content analysis, feces dissection, description of prey remains on dens 

(Angerbjörn et al. 1994), fatty acid analysis and stable isotope analysis (Kelly 2000; Ben-

David and Flaherty 2012; Ehrich et al. 2015). Whereas direct methods such as stomach 

contents or feces dissection provide snapshot information about diet on a specific day and 

prey remains on dens provide information representative for the breeding season, the stable 

isotope ratios of predator tissues reflect the resources assimilated over a longer time period 

(Inger and Bearhop 2008; Ben-David and Flaherty 2012; Layman et al. 2012). Stable 

isotope ratios can also be determined from bones, fur or feathers, opening possibilities to 

assess long-term dietary trends based for example on museum collections (Reynolds et al. 

2019). 

In this study, we used stable isotope signatures from a time series of bone collagen 

samples to determine the main resources used by arctic fox in Iceland over a period of 30 

years covering the population’s strong increase since 1980.  We hypothesized that 1) the 

rapidly growing goose population may have been an important new resource driving the 
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increase of arctic foxes, particularly in inland areas, replacing the declining ptarmigan. In 

this case, we would expect to see a change in diet over the study period. Alternatively, 2) 

the increasing seabird populations may have supported the arctic fox growth. As seabirds 

have always been a major resource for the arctic fox in Iceland, in this case we would not 

expect any important change in diet. Because previous studies have shown that foxes use 

different resources in coastal and inland habitats (e.g. Angerbjörn et al. 1994; Hersteinsson 

and MacDonald 1996; Dalerum et al. 2012; Pálsson et al. 2016), we also investigated 

whether possible change in resource use were different between the two habitats. The long-

term population growth in the Icelandic arctic fox, which is unusual for endemic northern 

apex predators, represents an interesting case also in a more general context.  Structural 

alterations of food webs, potentially with bottom-up effects on apex predators, currently 

happen in many ecosystems driven by rapid environmental change.  For instance, goose 

populations are increasing in many areas of the Arctic (Ims et al. 2013), but little is known 

about the long-term consequences of this increase for predator populations.  

Materials and Methods 

Study Area 

Iceland is an island in the North Atlantic Ocean, close to the Arctic circle (63o20-66o30N; 

13o30’-24o30’W), with a total area of 103,000 km2. The island is influenced climatically 

by a branch of the Gulf Stream, with average July temperatures of 10.6oC and average 

January temperatures just below freezing (Ogilvie 2012). Most of the interior of the country 

is not inhabited by humans and consists of sandy deserts, mountains and glaciers. Western 

Iceland has a higher proportion of productive seashores than northern, eastern and southern 

Iceland combined and supports most of the large seabird colonies (Hersteinsson et al. 
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2009). As the coast is ice-free all year round (Dalerum et al. 2012), arctic foxes in coastal 

habitats have access to more stable food resources over the year. In contrast, inland habitats 

experience substantial seasonal fluctuations in resources (Dalerum et al. 2012). The 

resources available to foxes in coastal areas can be carcasses of marine mammals and birds, 

crustaceans and other invertebrates, fish, waders or eider ducks. Areas close to seabird 

cliffs provide plenty of resources during the breeding season in summer (Hersteinsson 

1984; Hersteinsson and Macdonald 1996; Hersteinsson et al. 2009). Inland foxes depend 

mostly on migrating birds (geese, waders and passerines) or resident birds such as 

ptarmigan (Hersteinsson 1984; Angerbjörn et al. 1994; Hersteinsson and Macdonald 1996; 

Hersteinsson et al. 2009). All foxes may occasionally feed on sheep (Hersteinsson and 

Macdonald 1996) and reindeer (Rangifer tarandus) carcasses. Cattle (Bos taurus) and 

horse (Equus ferus caballus) carcasses can be used as baits by foxhunters. In winter, foxes 

from both habitats use ptarmigan, cached items (Hersteinsson et al. 1989) and a small 

proportion of rodents (Helgason 2008), while foxes close to the coast in addition have 

access to marine resources. 

Arctic fox samples 

The collection of bones used in this study was obtained from carcasses voluntarily donated 

by foxhunters from all over Iceland and kept by the Icelandic Institute of Natural History 

in Reykjavik. The collection consists of skulls and lower jaws of adult arctic foxes (one-

year-old or more) from 1979 to present. For each fox, we determined the distance from the 

coast of the culling location. In accordance with Dalerum et al. (2012), foxes were 

classified as coastal when culled less than 3 km from the shoreline. All other foxes were 

classified as inland. This classification assumed that foxes were sedentary, and that the 
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culling location reflected the area where the fox has been growing up, which may not be 

the case for a highly mobile predator such as the arctic fox (Angerbjörn et al. 2004b). Age 

was determined by counting annual cementum lines of canine tooth roots (Allen and Melfi 

1985; Unnsteinsdóttir et al. 2016) at the Icelandic Institute of Natural History in Reykjavik 

and used to determine the year of birth for each fox. For the present study, we selected 

foxes born in between 1979 and 2008, covering the time of a more than threefold increase 

in estimated population size (Fig. 1).  From each decade, 22 adult males and 22 adult 

females were selected for analysis, resulting in 3*44 = 132 lower jaws in total. In order to 

achieve an even spatial distribution, half of the individuals of each sex in each decade were 

chosen from Western and from Eastern Iceland (Fig. 2) respectively. Individuals to analyze 

were chosen among all available individuals in each category (area, sex and decade) using 

a random number selection procedure.  

Collagen was extracted from lower jaws following a standard method based on 

Brown et al. (1998) and modified according to Richards and Hedges (1999). The collagen 

obtained was weighed (1-1.2mg), packed in small tin foil cups, and analyzed for stable 

isotopes of carbon and nitrogen at the Stable Isotopes in Nature Laboratory (SINLAB) at 

the Canadian Rivers Institute, University of New Brunswick. 

Bone collagen has a very slow isotopic turnover after the animal is fully grown. 

Thus, although it can reflect the lifetime average dietary intake in long-lived species, it is 

biased towards the period of most rapid growth (Libby et al. 1964; Tieszen et al. 1983; 

Roth 2003). Arctic foxes grow until the age of 8-9 months, and after that growth is 

insignificant (Hersteinsson et al. 2009). Therefore, and because in this study 86% of the 

foxes were between one and two years old when they were culled, we assumed that the 
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stable isotope signatures of the collagen represented the diet during the first year of life 

(Online Resources 1).   

Prey samples 

Muscle samples of prey preserved in ethanol were obtained from The Icelandic Institute of 

Natural History in Reykjavik, Iceland. Ethanol storage has been shown to have a negligible 

effect on dietary estimates based on stable isotopes (Javornik et al. 2019). Three or more 

samples from each of the following species were collected in 2015: ptarmigan, eider duck, 

wood mouse (Apodemus sylvaticus), greylag goose (Anser anser), golden plover (Pluvialis 

apricaria), whimbrel (Numenius phaeopus), sheep, horse, cattle and kittiwake (Rissa 

tridactyla). The muscle samples were prepared for stable isotopes analysis according to 

standard methods (Ehrich et al. 2011) and analyzed at SINLAB as for the fox collagen 

samples. Additional prey signatures of starfish (Asteria rubens), redshank (Tringa totanus), 

common snipe (Gallinago gallinago), black guillemot (Cepphus grille), were provided by 

Rannveig Magnusdottir (unpublished data). Number of prey samples, isotopic signatures 

and approximate dates of collection are given in Online Resources 1.  

Statistical analysis   

All statistical analyses were performed using the software R 3.3.2 for Windows (R Core 

Team 2016). The stable isotope ratios were expressed using the standard δ notation (in ‰), 

with the international reference being the Vienna Peedee Belemnite for δ13C values and 

atmospheric nitrogen for δ15N values (Jürgensen et al. 2017). The relationship between the 

arctic fox signatures for each habitat and the different potential prey was assessed 

graphically. The isotopic signatures of organisms are similar to those in the resources they 
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consume, modified by a species and tissue specific discrimination factor (Ben-David and 

Flaherty 2012).  Because the discrimination for arctic fox bone collagen has not been 

determined experimentally, we applied several different discrimination factors to assess 

how robust our results were to this uncertainty. Specifically, we used estimates for wolf 

collagen (Fox-Dobbs et al. 2007), red fox collagen (Krajcarz et al. 2018), and arctic fox fur 

and muscle (Crowley et al. 2010; Lecomte et al. 2011). Because none of them resulted in 

a plot where the fox values were within the polygon delimited by the prey values, we 

determined an additional arbitrary discrimination factor, which places the arctic fox 

signatures closer to prey signatures (referred to as fit; Online Resources 1). For the plots 

(Fig. 3), we used the values from arctic fox fur (Δ13C = 2.58 ± 0.44 and Δ15N = 3.64 ± 0.69) 

(Lecomte et al. 2011). Because lipids are depleted in 13C relative to other tissues and muscle 

can be a lipid-rich tissue (Kelly 2000), the prey muscle signatures were corrected for lipid 

content using the normalization equation of Ehrich et al. (2011). Since the Industrial 

Revolution, there has been a decrease of δ13C in the biosphere due to an increase of 

anthropogenic CO2 (the Suess effect; Keeling 1979; Reynolds et al. 2019). The raw δ13C 

data were corrected for this effect using a mean rate of δ13C change of -0.026‰ per year, 

which is close to atmospheric estimates and to mean estimates for Atlantic waters (Olsen 

2006). All fox and prey isotopic ratios were corrected to levels, which correspond to the 

first year of the study.  

The temporal changes in arctic fox isotopic values were analyzed using linear 

models. We used δ13C and δ15N as response variables, while the year each fox was born 

(from 1979 to 2008; time) and habitat (coastal or inland) were used as explanatory 

variables. For each stable isotope ratio, we assembled four candidate models. We compared 
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a model including the additive effect of time and habitat to a model with and interaction 

between the two. In addition, to account of a possible non-linear effect of time, we included 

a quadratic term for time both as additive effect, and in an interaction with habitat (Online 

Resource 1). Models were compared using Akaike’s Information Criterion corrected for 

small sample sizes (ΔAICc). Models with a difference in AICc of <2 were considered 

equally adequate (Burnham and Anderson 2002) and the simpler models were chosen 

following Occam’s Razor (Dunbar 1980) (Online Resource 1). The fit of the selected 

model was assessed graphically by looking at the distribution of the residuals. Finally, the 

parameters from the selected models were estimated including and excluding some 

influential values identified in the graphical assessment of the residuals. 

The proportions of different resources in the diet of arctic foxes over time were 

estimated using Bayesian stable isotope mixing models, as implemented in the package 

MixSIAR (Stock et al. 2018). Because mixing models perform best with a moderate 

number of potential sources, and in order to use clearly distinct sources, the potential prey 

items were grouped according to the similarity of their isotopic signatures. Five groups of 

resources were created: Marine (starfish, eider duck, whimbrel, kittiwake, black guillemot), 

Farm (horse, sheep), Terrestrial (red-shank, common snipe, golden plover, wood mouse), 

Greylag goose and Rock ptarmigan. Even though whimbrels are waders, they were placed 

in the marine group because their signature was closer to the marine resources. Cattle was 

excluded because the signature was far away from the other farm animals. Greylag goose 

and Rock ptarmigan were kept as distinct groups, because they were focal species for our 

research questions. Time was included as a continuous covariate and the analyses were run 

separately for inland and coastal foxes. To account for uncertainty in the artic fox bone 
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collagen discrimination factor, we used large standard errors in the estimation as 

recommended by Savory et al. (2014) (SD of Δ13C = 1.0‰ and Δ15N = 1.0‰) and repeated 

the analysis with each of five different discrimination factors (Online resource). We ran 

the analysis according to the recommendations in the MixSIAR manual and used equally 

likely proportions for all dietary components as prior, 1,000,000 MCMC replicates 

(500,000 burn-in) and a Residual*Process error. Convergence of the estimation was 

checked based on Gelman-Rubin Diagnostic and Geweke Diagnostic. Despite long runs, 

the analyses did not converge well using time as a continuous covariate (Online Resource 

1). Therefore, we ran this analysis also using a factor for three discrete time periods 

corresponding to each of the three decades over which the samples were collected (1979-

1989; 1990-1999; 2000-2008). 

Results 

Temporal and spatial variation in isotopic values 

The isotopic signatures of the prey species displayed the typical gradient from low values 

for both ratios in terrestrial species to higher values in marine species (Fig. 3). The lowest 

δ15N values were observed for rock ptarmigan, whereas the lowest δ13C values, although 

with higher δ15N, were observed for domestic herbivores, horses and sheep. Geese were 

intermediate between ptarmigan and farm animals, while waders were isotopically more 

heterogenous. The common snipe had values close to the terrestrial herbivores, cattle and 

wood mouse, whereas the whimbrel had marine signatures and the redshank occupied an 

intermediate position (Fig.3). Isotopic signatures were obtained for a total of 130 arctic fox 

samples. The isotope ratios of both coastal and inland foxes spread over the whole gradient 

of prey signatures from terrestrial species to marine species. As expected, there was a 
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tendency for more coastal foxes towards marine resources and more inland foxes towards 

terrestrial resources (Figure 3).  

For δ13C, the most parsimonious linear model was the simplest model consisting of 

a linear effect of time in addition to habitat. The model including a quadratic effect of time 

received a slightly lower AICc score than the simplest model (ΔAICc = 0.52), but this 

difference did not support the inclusion of the quadratic term (Table 1). The selected model 

showed a clear effect of habitat on δ13C, which was on average 2.37‰ (SE = 0.41, p < 

0.001) lower for inland foxes than for coastal foxes, but no effect of time (-0.04‰ per year, 

SE = 0.02, p = 0.13; Fig. 4; Table 2).  

For δ15N, the best model according to AICc included a quadratic effect of time in 

addition to habitat. It revealed a significant concave curvilinear response of δ15N to time 

with parameter estimates of -0.01‰ time2 (SE = 0.00) + 0.28 time (SE = 0.14). After a 

slight increase in the beginning of the study period, there was a decrease in δ15N after the 

middle of the period. In addition, there was a clear effect of habitat as in δ13C. In inland 

foxes, δ15N was on average 3.48‰ (SE = 0.56, p < 0.001) lower than in coastal foxes. 

There was no indication that this difference has changed over the study period (ΔAICc for 

a model with an interaction between time and habitat was 1.97; Fig. 4; Table 2).   

Inference about diets based on mixing models 

The mixing models including time as a continuous covariate did not converge well, but for 

models with time included as three distinct periods, convergence diagnostics were 

satisfactory for some of the discrimination factors used (Online Resources  1). For both 

habitats, good convergence and unimodal posterior probability distributions were obtained 
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using the discrimination factor for arctic fox fur (Lecomte et al. 2011). Marine resources 

and rock ptarmigan were the two main prey groups in the diet of the arctic fox in Iceland, 

both in coastal and inland habitats (Fig. 5). As expected, marine resources were more 

important for coastal foxes, where they represented about two thirds of the diet, whereas 

ptarmigan represented about one quarter (Fig. 5; Online Resources 1). For inland foxes, 

ptarmigan were the most important resource representing approximately half of the diet. 

Marine resources were somewhat less important, but 95% posterior credibility intervals of 

predicted diet proportion overlapped to some degree with ptarmigan. Greylag geese, farm 

animals and other terrestrial resources were much less important in both habitats and their 

credibility intervals did not exclude 0.   

Overall, dietary proportions varied little over the three time periods and credibility intervals 

for all resources overlapped largely between time periods. The suggested shifts in dietary 

proportions indicated a slight increase in the proportion of marine resources in the second 

period for coastal foxes, followed by a slight decrease in the third period in agreement with 

the results from the linear model for δ15N. In the last period, there was a slight increase of 

ptarmigan. For inland habitats, the suggested dynamics were opposite, with a slight 

increase of the proportion of ptarmigan in the second period and the third period with a 

decrease in the use of marine resources. The estimations using other discriminations factors 

were largely congruent with these results and revealed only very minor shifts in dietary 

proportions over time. The arbitrary fit discrimination factor suggested a somewhat higher 

contribution of greylag goose to the diet in all periods for both inland and coastal foxes, 

whereas the discrimination factor for arctic fox muscle (Lecomte et al. 2011) resulted in a 
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higher proportion of marine resources and a lower proportion of ptarmigan in the diet of 

coastal foxes (Online Resources 1).  

Discussion  

Over the 30 years period of population increase of the Icelandic arctic fox population, the 

stable isotope ratios of carbon varied little. For nitrogen, on the contrary, a slight increase 

in δ15N was followed by a clear decrease. Although the isotopic signatures differed 

significantly between coastal and inland foxes, there was no statistical support for 

differences in temporal trends of isotopic values between the habitats. While the analysis 

of the isotopic ratios themselves suggested possible dietary shifts during the period of 

population growth, the estimation of dietary proportions from isotopic mixing models 

indicated that the major resources, marine resources and rock ptarmigan, had remained the 

same, and their proportions in the diet showed only minor changes over time.  

Pálsson et al. (2016) suggested that an increase in goose numbers, increased use of 

marine resources and probably waders caused the rise of the fox population over the 

decades after 1980. Populations of greylag geese, but also of pink-footed (Anser 

brachyrhynchus) and barnacle geese (Branta leucopsis) have experienced a strong increase 

in Iceland during the last decades making them a potential emerging resource for local 

predators, which could have replaced to some extent the declining year-round resident 

ptarmigan population. Contrary to these expectations corresponding to our first hypothesis, 

our data did not indicate increasing use of geese by inland arctic foxes. The initial increase 

in δ15N while δ13C remains constant could be compatible with a shift from ptarmigan to 

geese in inland foxes, but towards the end of the period there was a clear decrease in δ15N, 

which would rather be compatible by an opposite switch back to ptarmigan. Moreover, the 
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mixing model results suggested that geese played a minor role in the diet of arctic foxes 

during the whole study period, while rock ptarmigan remained the most important 

terrestrial prey. Because of their negative population trend (Fuglei et al. 2019), it is, 

however, unlikely, that ptarmigan have been driving the arctic fox growth. The collagen 

isotopes analyzed here reflect the resources used by young foxes over first 8-9 months of 

their life, whereas Pálsson’s results were based on prey remains at den. Dalerum et al. 

(2012) reported that the diet of adult foxes differs somewhat of the diet of juveniles. 

Moreover, geese are only present on Iceland in summer, therefore they may be a resource 

used only during a short time and represent only a small part of the total resources used by 

a growing fox, despite their high relative abundance in prey remains. Moreover, eggs of 

geese and samples of other goose species (barnacle goose or pink-footed goose), were not 

included in this study, leaving the possibility that these could still be a resource for young 

foxes.  

Marine resources provided the main part of the diet of coastal foxes but were 

important throughout the study period for inland foxes as well. According to the findings 

of Dalerum et al. (2012), coastal habitats in Iceland are generally more heterogeneous than 

the inland, and with access to seabird colonies and productive coastlines they provide more 

stable year-round resources. The mixture of terrestrial and marine isotopic signatures 

displayed by coastal and inland foxes show that they have access to both marine and 

terrestrial resources in both habitats. As arctic foxes are quite mobile animals, dispersing 

around 10-30 km, and sometimes much more, from their natal ground after a few months 

(Angerbjörn et al. 2004a; Angerbjörn et al. 2004b, Pamperin et al. 2008, Tarroux et al. 

2010, Fuglei and Tarroux 2019), this was indeed expected. It is rather surprising that we 
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observed a consistent difference in average isotopic ratios in arctic foxes, which were 

culled only a few kilometers from the coast.  

For arctic foxes at the coast, in western Iceland, seabirds are the main prey, and any 

increase in seabird populations could have supported an increase in the fox population 

without a change in diet (Unnsteinsdóttir et al. 2016). Harvesting data of puffin (Fratercula 

arctica) and other seabirds in Iceland show that these populations have been increasing 

considerably from the 1970s to the end of the 1990s but have declined rather rapidly since 

about the year 2000 (Hansen et al. 2018). Our isotopic data, showing a high proportion of 

marine resources in coastal foxes over the whole study period, but also to a certain degree 

in inland foxes, are compatible with our second hypothesis that seabirds and marine 

resources have been the main driver of the population increase. A constant proportion of 

marine resource use is indeed suggested by the stable δ13C ratios throughout the study 

period. The fox population growth based on rich marine resources might have spilled over 

into inland habitats through individuals dispersing from the coast to inland habitats. As 

western Iceland harbors most of the highly productive coastal habitats (Hersteinsson et al. 

2009), whereas inland habitats are more typical for eastern Iceland, this process could also 

explain the slightly delayed onset of arctic fox population growth observed in eastern 

Iceland. If seabirds and marine resources in general were the main driver of the fox 

increase, the decline in δ15N observed in the later part of the study period could be 

explained by two processes. First, the δ15N values of seabirds in the southern Atlantic have 

been shown to decrease in recent decades with 0.48 ‰ per decade due to changes in the 

underlying food web and a diet shift from fish to dietary items at lower trophic levels 

(Reynolds et al. 2019). Ecosystem changes affecting the availability of prey are also one 
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of the likely causes for seabird decline in the north Atlantic (Fauchald et al. 2015) and may 

well be associated to a decrease in trophic level of prey species, resulting in lower δ15N 

values in the seabirds, and lower δ15N values in arctic foxes. Second, when seabirds decline 

in abundance, arctic foxes may increasingly feed on marine resources from lower trophic 

levels such as eider ducks, waders, crustaceans and other invertebrates, or fish.  

Helgason (2008) studied the winter diet of Icelandic arctic foxes through analyses 

of scats and stomach contents and showed that foxes consumed large proportions of big 

mammals. However, the isotopic signatures in this study did not show any important 

contribution of this prey group to the diet of arctic foxes, which could be related to the fact 

that the main period of growth of foxes, which is reflected in the collagen, is in summer 

and fall. In addition, stomach contents are affected by the baits used by hunters, which 

consist often of large mammal carcasses such as horses. 

Regarding the results from our mixing model analyses, it must be noticed that the 

signatures of the foxes did not exactly fit with the prey signatures. This could be due to 

prey signatures having seasonal fluctuations not covered well in our samples or because 

the discrimination factors used were not accurate, as they had not been estimated for 

collagen in arctic foxes. Nevertheless, many possible discrimination values were tested to 

increase the sensitivity of our analysis. Moreover, not all the possible prey species were 

sampled for study, as we lacked notably goose eggs, barnacle geese and pink-footed geese, 

crustaceans, lamb, etc., which could have provided a more comprehensive picture. Finally, 

our prey samples did not cover the temporal extent of the arctic fox samples. The 

assumption that the prey signatures were stable over time is supported for example by the 

findings of Barrett et al. (2011), who documented that stable isotope signatures in cod from 
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several areas in the North Sea were nearly constant over centuries. But, as mentioned 

above, changes in marine food webs may also have caused changes in some dietary 

sources. All this may have caused some biases in the diet estimation.  

Conclusion 

Using a long time series of isotopic signatures reflecting the diet of young individuals, we 

were able to investigate which food resources may have been the drivers of the prolonged 

increase of the Icelandic arctic fox population. We found evidence that the population 

growth may have been supported mainly by the increase of seabird populations and other 

marine resources, which have been a major component of the diet during the whole period. 

This study should be elongated until present, to observe if the recent decrease in arctic fox 

population could be related to the decrease in seabird population in Iceland. Rapidly 

growing goose populations, which potentially represent a new major resource for arctic 

predators, appeared much less important. The important changes driving the fox population 

were thus not the structural changes in the terrestrial food web, where one species of 

herbivorous birds increased and another decreased, but fluctuations in the abundance of the 

main resource for this population, the marine resources.  
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Table 1 Candidate models considered for δ13C and δ15N as response variables. Explanatory variables 

were time and habitat (coastal and inland). + indicates additive effects and * indicates and interaction. For 

each model the number of parameters (K), AICc and the difference in AICc to the best model (ΔAICc) 

are presented. The selected models (i.e. the one with the lowest AICc) are shown in bold. Models which 

differed by less than 2 in ΔAICc from the best model, and were chosen because they were simpler than 

the best model, are shown in italics and bold 

  Model K AICc ΔAICc  

δ13C     

 Time+habitat+I(Time^2) 5 585.94 0 

 Time+habitat 4 586.46 0.52 

 Time*habitat+I(Time^2) 6 588.13 2.19 

 Time*habitat 5 588.60 2.66 

δ15N      
 Time+habitat+I(Time^2) 5 670.80 0 

 Time*habitat+I(Time^2) 6 672.76 1.97 

 Time+habitat 4 674.62 3.83 

  Time*habitat 5 676.49 5.69 
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Table 2 Parameter estimates from linear and quadratic models assessing the effects of time and habitat 

(inland or coastal) on (a) carbon isotope (δ13C), (b) nitrogen isotope (δ15N) from bones of Icelandic arctic 

foxes. The intercept is the coastal area, effect sizes are shown as contrasts to the intercept 

 

  Value 
Std. 

Error 
t value P 

(a) δ13C Fixed effect    

Intercept -17.52 0.49 -36.09 <0.001 

Time -0.04 0.02 -1.53 0.13 

Habitat Inland -2.37 0.41 -5.79 <0.001 

(b) δ15N Fixed effect    

Intercept 9.96 0.95 10.53 <0.001 

Time 0.28 0.14 2.05 0.04 

I(Time^2) -0.01 0.00 -2.44 0.02 

Habitat Inland -3.48 0.56 -6.15 <0.001 
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Fig. 1 Estimated population size (estimates based on age-cohort analysis and hunting statistics), 

with standard error bars of the arctic fox in Iceland from 1978 to 2011 (from Unnsteinsdóttir 

2014). Dots represent foxes born in each year and vertical lines the three different decades.   

Fig. 2 Map of Iceland displaying the division between West and East Iceland. For the purpose of 

this study coastal habitat was defined within 3km of the shore, while inland as all terrain more 

than 3km from the shoreline. The dark gray represents the areas where the foxes were culled. 

Fig. 3 The isotopic signatures (‰) of the possible prey for Icelandic arctic foxes corrected for 

trophic discrimination (discrimination factor estimated for arctic fox fur; Lecomte et al. 2011) are 

plotted with their respective standard deviation together with the signature of each analyzed arctic 

fox. Symbols distinguish between foxes culled in coastal and inland habitat 

Fig. 4 Isotopic signatures of Inland and Coastal foxes are plotted according to year of birth of 

each fox. Lines show trends as predicted by the most parsimonious linear and quadratic models 

(continuous line for Inland and dashed line for Coastal).  (a) δ13C and (b) δ15N isotopic 

signature (‰) 

Fig. 5 MixSIAR (Stable isotope mixing model) results showing the scaled posterior probability 

density of the proportion of the prey groups in the diet of coastal and inland foxes 
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