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My liposomal journey 

I heard in a lecture about some tiny balls. 

Consisting of lipids and fatty walls. 

Professor said, “Liposomes are future”, I recall. 

So I started my master in liposomes next fall. 

Dissolve lipid in methanol and evaporate “all”. 

Hydrate film to create vesicle walls.  

“Add curcumin, they have potentials”, someone called.  

“Liposomes are super, they can entrap them all!” 

Sonication and extrusion to make them small. 

Most cases sadly on benches, clothes, and walls. 

Experiments seemed to go downfall.  

Wait – master defended. PhD from next fall? 

Osmotically active liposomes, my next call. 

Redesigning LUVs formulations with cholesterol. 

Franz cell experiments – an immense haul. 

Success or not, under tonicity befall. 

Even though my journey has come to a stall. 

Further dreams for these vesicles are post-nasal. 

Start penetrating the brain’s impermeable wall. 

Maybe brain diseases can be cured after all. 

Iren Yeeling Wu 
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Abstract 

Central nervous system (CNS) disorders are accounted as the leading cause of disability and 

the second leading cause of death globally. Despite intense research efforts, CNS therapeutics 

covering a wide range of CNS disorders are still limited, possibly because of the complex 

pathophysiology of the CNS disorders and difficulties accessing the brain. One of the major 

barriers preventing drugs to reach the brain is the blood-brain-barrier (BBB). The BBB is 

responsible for preventing over 98% of drug molecules from the systemic circulation to reach 

the brain. Therefore, instead of utilizing the traditional drug administration routes, time and 

investment have been shifted towards new strategies to overcome the BBB. 

 

One of the innovative and promising strategies is the nose-to-brain delivery approach. Nasally 

administered drugs have shown to provide therapeutic effect locally, systemically and within 

the CNS. Despite promising results from in vivo studies, the main limitations using the nose as 

the administration site are related to drug’s potency in small volumes applicable to the nose, 

and the drug’s stability and permeability through the nasal mucus. Liposomes as drug carrier 

system exhibit the ability to entrap a wide range of poorly soluble drugs protecting them from 

early degradation and clearance. However, the nasal mucus tonicity fluctuates greatly due to 

its direct exposure to the peripheral milieu, thus influencing liposomes behaviour and their 

sensitivity to osmotic stress. Our hypothesis was that co-operation between osmotic stress 

and liposomal behaviour might be utilized to achieve controlled drug delivery systems. 

 

In the present study, we selected two markers and six drugs covering a wide range of relevant 

physiochemical properties to be entrapped into large unilamellar vesicles (LUVs). The various 

LUVs were verified to be osmotically active. Both linear and non-linear approximations were 

used to interpret the in vitro diffusion data and showed that release from LUVs was associated 

with their exposure to osmotic stress. These findings were consistent using the standard 

regenerated cellulose and biomimetic Permeapad® as the diffusion barriers. To achieve better 

in vitro/in vivo correlations, mucin was introduced into the in vitro diffusion study to mimic the 

nasal environment. Surprisingly, mucin did not affect the osmotic activity of the LUVs, nor had 

an impact on the drug release from LUVs. LUVs formulated with an increased amount of 

cholesterol incorporated into the bilayer (up to 25% w/w) showed decreased sensitivity to 

osmotic stress. However, the liposomes comprising 11% w/w cholesterol were the most stable 

formulations. Also, these formulations retained relatively good osmotic activity. 

 

The obtained data provide important information on the osmotic activity of liposomes and build 

the fundament for further development of innovative nose-to-brain drug delivery systems. 



 

IV 

  



 

V 

Nomenclatures 

Abbreviations 

AD  Alzheimer’s disease 

bFGF  Basic fibroblast growth factor 

BBB  Blood-brain barrier 

BCS  Biopharmaceutics classification system 
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CNS  Central nervous system 
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PBS300 Phosphate buffer saline with tonicity of 300 mOsm/kg 

PBS65  Phosphate buffer saline with tonicity of 65 mOsm/kg 

PCL  Poly(ε-caprolactone) 

PEG  Poly(ethylene glycol) 

PI  Polydispersity index 

PLA  Poly(lactic acid) 

PLGA  Poly(lactic-co-glycolic acid) 

PO  Peroral administration 

RGD  Integrin-binding peptide 

SA  Stearylamine 

SD  Standard deviation 

SL  Soy-lecithin 

SPC  Soy-phosphatidylcholine 

ZP  ζ-potential 

  



 

VI 

Variables and parameters 

∆mOsm/kg Difference between the measured osmolality of LUVs formulation and the 

exposing PBS 

∆Tf  Freezing point 

A-  Conjugate base of a weak acid 

A  Surface area 

B  Weak base 

BH+  Conjugate acid of a weak base 

C0
d  Initial drug concentration of the formulation 

Ca  Drug concentration in the acceptor compartment 

D  Diffusion coefficient 

HA  Weak acid 

i  van’t Hoff factor 

j  Mass flux 

K  Transport constant 

Kf  Cryoscopic constant 

logD7.4  Distribution coefficient at pH 7.4 

logP  Partition coefficient 

m  Molality 

Mt/M∞  Fractional permeated drug 

n  Transport exponent 

Osm(in)  Osmolality of the internal environment LUVs 

Osm(out) Osmolality of the external environment of LUVs 

Papp  Apparent permeability coefficient 

Papp
m  Apparent permeability coefficient with the presence of mucin 

pH  Concentration of hydrogen ions in a solution 

pKa  Ionization constant 

R  Barrier’s resistance 

R0  Ideal gas constant 

RB  Resistance to drug transport through permeable barrier 

RL  Resistance to drug transport through liposomal bilayer 

RT  Total resistance to drug transport 

T  Absolute temperature 

t  Time 

x  Barrier thickness 

π  Osmotic pressure 

πrel  Relative osmotic pressure 

  



 

VII 

Papers 

Paper I1: 

Wu, I. Y., Škalko-Basnet, N. & di Cagno, M. P. 2017. Influence of the environmental tonicity 

perturbations on the release of model compounds from large unilamellar vesicles (LUVs): A 

mechanistic investigation. Colloids Surf B, 157, 65-71. 

 

Paper II2: 

Wu, I. Y., Nikolaisen, T. E., Škalko-Basnet, N. & di Cagno, M. P. 2019b. The hypotonic 

environmental changes affect liposomal formulations for nose-to-brain targeted drug delivery. 

J Pharm Sci, 108, 2570-2579. 

 

Paper III3: 

Wu, I. Y., Bala, S., Škalko-Basnet, N. & di Cagno, M. P. 2019a. Interpreting non-linear drug 

diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur J 

Pharm Sci, 138, 105026. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

________________________ 

1© 2017 Elsevier B.V. Reprinted with permission from Elsevier. 

2© 2019 American Pharmacists Association®. Reprinted with permission from Elsevier. 

3© 2019 Elsevier B.V. Reprinted with permission from Elsevier.  



 

VIII 

 



 Introduction  

1 

1 Introduction 

Central nervous system CNS) disorders are a broad category of conditions, which according 

to the International Neuromodulation Society, are defined as; 

“…conditions in which the brain does not function as it should, limiting health and the ability to 

function. The condition may be an inherited metabolic disorder; the result of damage from an 

infection, a degenerative condition, stroke, a brain tumour or other problem; or arise from 

unknown or multiple factors” (INS, 2013). 

 

Due to the broad category of conditions which CNS disorders represent, they collectively 

account as the leading cause of disability and are the second leading cause of death globally 

(Feigin et al., 2019). In a global burden of disease study published in 2019, the prevalence, 

incidence, and mortality of 15 most relevant CNS disorders were estimated in 195 countries in 

the years 1990-2016. It was reported that in 2016, the three major contributors to CNS 

disability-adjusted life year (DALY) were stroke (42%), migraine (16%), and Alzheimer’s and 

other dementias (10%), as it can be seen in Figure 1.1. 

 

 

Figure 1.1: Ranking of age-standardized DALYs for CNS disorders by demographic region in 2016. 

Reproduced from Feigin et al., 2019, with permission from Elsevier. 

 

In terms of the absolute number of deaths and DALYs, both values have been increasing with 

39 and 15%, respectively, since 1990. On the contrary, age-standardized deaths and DALY 

values have generally been decreasing for all CNS disorders, suggested to be due to socio-
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economic development globally. However, Alzheimer’s and other dementias, and Parkinson’s 

disease do not seem to follow this trend and are suggested to continue to develop 

independently from socio-economic development. The prevalence of Alzheimer’s and other 

dementias are up to 9 times higher than Parkinson’s disease and is causing more deaths and 

DALYs in women compared to men (Feigin et al., 2019). Similar findings were reported in a 

Norwegian burden of disease study from 2018 (Tollanes et al., 2018). Alzheimer’s and other 

dementias were the second leading cause of deaths ranked after the cardiovascular diseases 

in 2016. With this alarming percentage, Alzheimer’s and other dementias are considered to be 

one of the most fatal diseases in Norway (Tollanes et al., 2018). 

 

 

1.1 The global burden of Alzheimer’s and other dementias 

Due to increasing life expectancy globally, the number of people affected by Alzheimer’s and 

other dementias is estimated to almost double by 2030 (82 million) and triple within the year 

2050 (152 million) (ADI, 2018, Alzheimer’s Association, 2018, FHI, 2019, WHO, 2019).  

 

Dementia is a syndrome which covers a broad classification of progressive neurodegenerative 

disorders describing memory impairment and thinking and behavioural disturbances that affect 

the daily life of patients (WHO, 2019). The most common form of dementia is Alzheimer’s 

disease (AD), representing up to 70% of the cases. According to the World Alzheimer report 

in 2018, new cases of AD are developed almost every minute in the United States alone 

(Alzheimer’s Association, 2018). Globally, the incidence rates of AD and other dementias are 

even more alarming, with newly diagnosed patients every three seconds (ADI, 2018). The 

highest incidence rates are anticipated to be 50% in Asia, 25% in Europe and 20% in America, 

respectively (ADI, 2018). 

 

In 2017, over 184 billion unpaid hours were spent by family members and caregivers to provide 

care to people with AD and other dementias in the United States. These hours were estimated 

to value more than 232 billion USD, emphasizing the great socio-economic burden dementias 

cause the society (Alzheimer’s Association, 2018). The annual estimated global cost of 

dementia in 2018 was 1 trillion USD and is predicted to be doubled by the year 2030 (ADI, 

2018). To decrease the global cost, it is of high necessity to develop more effective CNS 

diagnostics, therapeutics and prevention measures across the globe (Feigin et al., 2019). 

 

Despite intense research efforts for better CNS therapeutics, it is estimated that approx. 90% 

of molecules developed by the pharmaceutical industry for the treatment of CNS disorders, 
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never reach the market (Vlieghe and Khrestchatisky, 2013). Since 1998, 100 drugs have been 

tested for the treatment of dementia, whereas only four have been authorized for clinical use 

(ADI, 2018). The low success is presumably because of the complex pathophysiology of AD 

and other dementias, but most importantly the difficulties potential drugs experience in 

accessing the brain (Khan et al., 2017, Patel and Patel, 2017). 

 

Therefore, rather than focusing on the discovery of new drugs, the development of new 

strategies to increase the drug transport to the brain might have a greater impact on the therapy 

(Li et al., 2017, Wong et al., 2012). Five different barriers in the CNS have been attributed to 

limit drug access into the brain. They are namely the blood–brain barrier (BBB), the blood–

cerebrospinal fluid barrier, the arachnoid barrier, the blood– spinal cord barrier, and the blood–

retina barrier (Gorlé et al., 2016). Among all these barriers, the BBB represents the strongest 

resistance to drug permeation and is the largest interface for blood-to-neuronal extracellular 

fluid exchange (Abbott et al., 2010). For this reason, in the next section, the BBB’s anatomy 

and functionality in the body will be discussed, before addressing the strategies to overcome 

the barrier. 

 

 

1.2 The blood-brain barrier (BBB) 

The BBB is a term commonly used to describe the properties of the blood capillaries found in 

the CNS. The capillaries in the BBB differ from other peripheral capillaries because they are 

generally thinner (approx. 500 nm in diameter) and more complex (see Figure 1.2). 

 

 

Figure 1.2: Schematic representation of the capillaries generally found in the body and brain. Based on 

Abbott et al., 2010, Khan et al., 2017. 
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The main cell types in the BBB are the tightly packed endothelial cells that create the walls of 

the capillaries. Other types of cells include the mural cells (smooth muscle cells and pericytes), 

immune cells (macrophage, astrocytes), and neuronal cells (Abbott et al., 2010, Daneman and 

Prat, 2015). Secrete from astrocytes, endothelial cells, and pericytes create the basal lamina; 

the microenvironment supporting the efficient signalling between the capillary and the neuronal 

cells (Daneman and Prat, 2015). The synergistic interplay between the basal lamina and the 

various cell types contributes to the BBB properties. The BBB is an obstacle for drug transport 

into the brain, and to understand this, the transport mechanisms across BBB (summarized in 

Figure 1.3) will be first briefly described in chronological order. 

 

 

Figure 1.3: Routes of transport across the BBB. Based on Abbott et al., 2010, Patel and Patel, 2017. 

 

The passive diffusion process (Figure 1.3a) allows molecules to move across a cellular 

membrane through their electrochemical gradient (i.e. concentration gradient) without the 

requirement of metabolic energy. It has been observed that small (<500 Da) and lipid soluble 

compounds (logP 1.5-2.7) favour the passive diffusion through the BBB, whereas larger and 

polar compounds (polar surface area >80 Å2) are not suited for this type of transport (Abbott 

et al., 2010, Patel and Patel, 2017). 

 

Transporter-mediated transports (Figure 1.3b-c) are important for the control of influx and 

efflux of poorly permeable solutes that are regarded as either important or not important for 

the optimal synaptic function of the BBB. Influx of nutrients often follows the facilitated diffusion 

requiring no energy, whereas the efflux often happens through efflux pumps that consume 
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ATP. For efficient transport into the brain, transporters expressed on the luminal and/or 

abluminal wall of the BBB can be utilized (Abbott et al., 2010, Patel and Patel, 2017). 

 

Absorption- and receptor-mediated transports (Figure 1.3d-e) are transports related to the 

surface interaction between the neuronal endothelial cell and the potential drug. The 

absorption mediated transport involves electrostatic binding between a cationic compound 

(e.g. IgG, albumin) and the negatively charged endothelial cell membrane. It represents a 

relatively weak interaction in comparison to receptor-mediated transport, where a specific unit 

(e.g. ligand, peptide) binds covalently to specific receptors expressed on the BBB surface (e.g. 

transferrin, albumin, insulin). In both absorption- and receptor-mediated transport, the surface 

interaction triggers endocytosis/transcytosis, engulfing the compound, and leading to 

increased transport across the BBB into the brain (Abbott et al., 2010, Patel and Patel, 2017). 

 

Cell-mediated transports utilize the body’s own cells, such as macrophages, monocytes, and 

neutrophils who are recruited during inflammation (Figure 1.3f). These cells have good ability 

to travel in the systemic circulation and can pass through the BBB using 

endocytosis/transcytosis mechanisms to reach the site of inflammation (Abbott et al., 2010, 

Patel and Patel, 2017). 

 

The transport mechanisms across the BBB are highly selective and strictly controlling the 

transport of essential ions, nutrients and peptides to maintain brain homeostasis and optimal 

neuronal function (Abbott et al., 2010, Daneman and Prat, 2015, Patel and Patel, 2017). 

However, when there is a shift to an imbalance in the BBB, a different situation may occur. 

 

Alterations of the BBB integrity can cause brain damages and have been suggested to be the 

cause of CNS disorders (Abbott et al., 2010, Daneman and Prat, 2015). Several alterations of 

the BBB have been proposed. One theory includes the decrease in resistance in tight junctions 

between the endothelial cells, which allows an increase in paracellular transport of substances 

that is otherwise hindered. Another theory is that alterations in the transporter systems can 

directly affect the transport of essential molecules (i.e. glucose) which are vital to maintaining 

brain homeostasis. Alterations in the enzymes expressed in the cytoplasm of neuronal 

endothelial cells can also be important, as this will hamper the BBB from discarding harmful 

substances (i.e. neurotoxins). Moreover, inflammation has also been suggested to play an 

essential role in CNS disorders as inflammation might cause structural abnormalities and 

damage of the BBB, possibly causing a secondary immune response that can reduce the 

resistances of tight junctions (Abbott et al., 2010, Daneman and Prat, 2015). 
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Therefore, to develop efficient therapeutics for CNS disorders, the drug transport strategies 

across BBB must be applicable at disordered state as well as in a healthy state. Moreover, the 

choice of administration route is important as drug administration following traditional routes 

(i.e. systemic administration) often results in binding of the drug to plasma proteins. 

Consequently, systemic administration reduces the compounds ability to reach therapeutic 

concentrations in the brain without reaching intolerable systemic side effects (Patel and Patel, 

2017). 

 

In the past, strategies such as direct injection of potential drugs into the brain tissues, 

cerebrospinal fluid, or spinal cord have been attempted (Abbott et al., 2010). Furthermore, 

disrupting the BBB using hyperosmotic solution, ultrasound or electromagnetic radiation have 

also been examined (Patel and Patel, 2017). These invasive ways of drug administration are 

limited by the requirement for qualified personnel, as well as with the high risk of infection, 

tissue damage, little patient comfort, and high costs due to hospitalization (Alam et al., 2010, 

Patel and Patel, 2017). 

 

In the urge for finding new ways to circumvent the BBB, the nasal administration of drugs for 

the direct delivery to the brain (namely the nose-to-brain drug delivery) seems to be both 

innovative and promising approach. The nasal route represents a non-invasive administration 

route and offers therapeutic efficacy locally, systemically, and reaching the CNS (Erdő et al., 

2018, Khan et al., 2017, Patel and Patel, 2017). 

 

Before discussing the olfactory and trigeminal nerves` involvement in drug transport from the 

nasal cavity into the brain, a brief introduction of the nasal anatomy and physiology will be 

presented. 
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1.3 Nasal anatomy and physiology 

The nose consists of two nasal cavities with a septum of bone and cartilage between them 

(Crowe et al., 2018, Sahin-Yilmaz and Naclerio, 2011). Each cavity can be further divided into 

the anterior and posterior part as shown in Figure 1.4.  

 

 

Figure 1.4: Lateral section of the human nose and brain, showing the key regions and nerves relevant 

for nose-to-brain drug delivery. Based on Djupesland et al., 2014. 

 

The anterior part (0.4% of total nose area) is the area closest to the peripheral environment 

and creates an opening to the nasal cavity. The posterior part of the nose can be divided into 

the respiratory and olfactory region and represents approx. 90 and 10% of the total nose area, 

respectively. The main functions of the nose are to regulate for humidity and temperature of 

the inhaled air to be transported into the lungs. Along the process, inhaled particles pass 

through the posterior part of the nose and will be either eliminated or absorbed (Crowe et al., 

2018, Illum, 2003, Mistry et al., 2009, Sahin-Yilmaz and Naclerio, 2011). 

 

1.3.1 The respiratory region 

The respiratory epithelium consists of four types of cells. The surface is covered by non-ciliated 

and ciliated cells, the area closest to the epithelium consists of basal cells, and the goblet cells 

are lined among epithelium cells (see Figure 1.5b).  

  



 Introduction  

8 

 

 

Figure 1.5: Simplified representation of secreted mucin forming the mucus that covers the nasal 

respiratory epithelium. Based on Lock et al., 2018, Murgia et al., 2018. 

 

The respiratory region is highly vascular, and the cells presented here provide for the transport 

of water and ions between nasal mucus, cells, and control the cilia movements. Moreover, the 

goblet cells secrete mucin which is one of the most important components in the nasal mucus 

(Bansil and Turner, 2018, Crowe et al., 2018). 

 

The nasal mucus is a complexed hydrogel consisting mainly of water (95%) and mucins (2%) 

(Bansil and Turner, 2018, Quraishi et al., 1998). The primary structure of mucins is the protein 

backbone consisting of glycosylated and non-glycosylated regions (see Figure 1.5a). The 

glycosylated regions are covalently bound to oligosaccharide side chains and account for up 

to 80% of the molecular weight of mucins. For the non-glycosylated regions, cysteine-rich parts 

serve to form strong bindings with other cysteine-rich regions creating the mesh-like structure 

of the mucus (Bansil and Turner, 2018, Murgia et al., 2018, Quraishi et al., 1998). Due to 
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mucin’s hydrophilic (glycosylated regions) and hydrophobic nature (protein backbone), various 

inhaled particles can be entrapped in the mucus, and be prevented from absorption through 

the nasal epithelium (Bansil and Turner, 2018, Gänger and Schindowski, 2018, Murgia et al., 

2018, Quraishi et al., 1998, Taherali et al., 2018). 

 

1.3.2 The olfactory region 

The olfactory region is located in the upper part of the human nasal cavities (Figure 1.4, yellow 

region). Presented in this region are the olfactory nerves, trigeminal (ophthalmic branch) 

nerves, supporting and basal cells (Crowe et al., 2018). The olfactory epithelium is reported to 

be the only CNS tissue in direct contact with the peripheral environment (Djupesland et al., 

2014). Inhaled particles that come in contact with this nasal region are suggested to give the 

sensation of smell and associations to taste. Drugs that come in contact with the olfactory 

region is suggested to be transported directly into the brain (Crowe et al., 2018, Illum, 2003, 

Mistry et al., 2009). 

 

 

1.4 Nose-to-brain drug delivery 

The most discussed topic considering nose-to-brain drug delivery is the involvement of the 

olfactory and trigeminal nerves (Crowe et al., 2018, Erdő et al., 2018). These nerves expand 

themselves, leaving one end in the nasal cavity and the other end in the brain (Crowe et al., 

2018). The trigeminal nerves are the largest of the cranial nerves and originates from the brain 

stem and branch into the ophthalmic, maxillary, and mandibular nerves. It has to be mentioned 

that the trigeminal (ophthalmic and maxillary branch) nerves are also to be found in the nasal 

respiratory region (Figure 1.4). Drugs that come in contact with these nerves can be potentially 

transported into the brain as well (Crowe et al., 2018, Gänger and Schindowski, 2018). 

 

The transport mechanisms behind the involvement of olfactory and trigeminal nerves in nose-

to-brain drug delivery are not fully understood, but one theory includes both the extracellular 

(paracellular) and intracellular (endocytosis, transcytosis) transport mechanisms (Crowe et al., 

2018, Erdő et al., 2018, Gänger and Schindowski, 2018). Pre-clinical studies suggest that the 

rapid onset of action in CNS after intranasal administration (minutes) is due to paracellular 

transport through the nasal epithelium, leading to direct accumulation in cerebrospinal fluid, 

and thereby distribution into brain tissues. This transport mechanism is suggested to be more 

applicable for hydrophilic molecules below 500 Da. The slow onset of action (hours to days) 

due to neuronal endocytosis and transcytosis transport mechanisms is often reserved for 
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lipophilic molecules (Crowe et al., 2018, Djupesland et al., 2014, Erdő et al., 2018, Gänger and 

Schindowski, 2018). 

 

Utilizing nasal drug administration for brain delivery purposes have shown promising outcomes 

in clinical studies. Nasally administered benzodiazepines (e.g. diazepam and midazolam) for 

the treatment of epileptic seizures have shown to offer more convenience, more rapid onset of 

drug action and better bioavailability in comparison to intravenous or rectal administration 

forms (Henney et al., 2014, Kälviäinen, 2015). Clinical studies have also been carried out on 

nasally administered insulin for the treatment of AD and mild cognitive impairments (Claxton 

et al., 2013, Craft et al., 2017). Insulin administered daily over a study period up to 16 weeks 

showed cognitive and memory improvements suggesting direct nose-to-brain delivery (Claxton 

et al., 2013, Craft et al., 2017). Other clinical studies utilizing the nose-to-brain pathway with 

positive outcomes are summarized in a review by Erdö and colleagues published in 2018. The 

positive therapeutic effects have been suggested to be due to a combination of avoidance of 

first-pass metabolism and renal clearance leading to enhanced drug transport across the BBB 

(Erdő et al., 2018). 

 

Despite that the nose-to-brain drug delivery offers promising results, the long-term effects and 

safety of this administration route are still uncertain (Erdő et al., 2018, Schmid et al., 2018). 

This reflects the limited number of available marketed products. 

 

1.4.1 Nose-to-brain marketed products 

In the Norwegian market (Felleskatalogen, 2019), nasally administered drugs with effect site 

in the brain/CNS are for the chronic pain (fentanyl/Instanyl® from Takeda Pharma AS, Japan) 

and migraine (sumatriptan/Imigran® from GlaxoSmithKline AS, UK and zolmitriptan/Zomig®, 

from Grünenthal GmbH, Germany). Only one marketed local anaesthetic is available for 

intranasal administration (lidocaine/Xylocain®, Aspen Nordic, Denmark). As it can be noticed, 

the marketed drugs are used for symptomatic treatment rather than therapeutic treatment of 

CNS disorders, and these nasal formulations are reserved for short treatment periods. This 

might be due to the many factors that can affect the drug absorption when utilizing nasal route 

of administration. Moreover, long-term use of some intranasal drugs have shown the 

occurrence of local side effects such as congestion, nasal irritation, nose bleed and rhinitis 

(Erdő et al., 2018, Schmid et al., 2018). 

 

Despite the many advantages with nasal administration, the benefit vs safety has to be 

carefully evaluated before developing the nose-to-brain drug delivery system. For this reason, 
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in the next section, some of the considerations when developing nasal formulations are 

discussed. 

 

1.4.2 Considerations for nose-to-brain drug delivery 

The field of nose-to-brain drug delivery is relatively young, where the first patent involving this 

administration route was reported only 33 years ago (Crowe et al., 2018). Despite evidence 

supporting that there might be a direct pathway from the nose to the brain, the transport 

mechanisms are still not clarified (Crowe et al., 2018). Moreover, different factors might affect 

the absorption of drugs through nasal epithelium regarding anatomical, physiological, and 

environmental aspects. In Table 1.1, drug- and formulation-related properties that can affect 

drug absorption through the nasal epithelium are addressed (Khan et al., 2017). 

 

Table 1.1: List of drug- and formulation-related properties that can affect drug absorption through the 

nasal epithelium. 

 Properties For optimal absorption through nasal epithelium 

Drug-related 

Molecular size1 

<300 Da: little influenced by nasal mucus 

<500 Da: cross nasal mucus and epithelium 

>1000 Da: should be formulated with absorption enhancer 

pKa1 Unionized (salt or ester form) preferred 

Solubility1 
Extracellularly: hydrophilic preferred 

Intracellularly: lipophilic preferred 

Formulation-

related 

Absorption 

enhancers1,2 

Surfactants (e.g. phospholipids), cationic polymers (e.g. 

chitosan), enzyme inhibitors, nanotechnology (e.g. liposomes), 

tight junction modulators, cell-penetrating peptides 

Absorption time1 Within 20 min 

Dosage volume1 Maximum 200 µL per nostril 

Dosage form1,3 Semi-solid > liquid 

pH4,5 
pH 4.6-6.5: favoured 

pH 3-10: minimal cellular and ciliary damage in situ in rats 

Tonicity5,6 
Isotonic and hypertonic (300-600 mOsm/kg): minimal cell and 

ciliary abnormalities 

Information summarized from 1Khan et al., 2017, 2Ghadiri et al., 2019, 3Gänger and Schindowski, 2018, 

4Ohwaki et al., 1987, 5Pujara et al., 1995, 6Homer et al., 2000. 

 

As indicated in Table 1.1, not all drugs are chemically suited for nasal administration, as the 

transport across the nasal epithelium is highly restricted to drugs with certain molecular sizes 

and solubility profiles (Khan et al., 2017). The main barrier regarding drug absorption through 

the nasal epithelium is the nasal mucus (Murgia et al., 2018, Taherali et al., 2018). The ciliary 

action beats 1000 strokes per minute moving the mucus from the anterior to the posterior part 

of the nasal cavity and clears the nose from particles (Gänger and Schindowski, 2018, Illum, 

2003, Murgia et al., 2018, Taherali et al., 2018). The fraction of drug absorbed through the 
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nasal epithelium is thus highly dependent on the compound’s solubility and metabolic stability 

in the mucus, and the drug should be absorbed through the epithelium within 20 min to avoid 

for elimination due to ciliary movements (Ghadiri et al., 2019). 

 

Nasal formulations with the ability to slow down the ciliary action, and protect the drug from 

early degradation and elimination would be attractive when it comes to designing intranasal 

formulations. This can be achieved by the use of absorption enhancers in the drug formulation 

(Ghadiri et al., 2019, Gänger and Schindowski, 2018, Sonvico et al., 2018). Some of the 

promising absorption enhancers include surfactants and cationic polymers (Ghadiri et al., 

2019, Illum, 2003). Surfactants (i.e. fatty acids, phospholipids, and non-ionic surfactants) have 

shown to be promising in improving the paracellular drug transport across nasal epithelium 

with minimal nasal epithelium and mucosa damage in vitro and in vivo (Ghadiri et al., 2019). 

Among the cationic polymers, the chitosan-based ones have shown good mucoadhesive 

properties, increasing residence time on the nasal mucosa, and thereby allowing more drug 

transport through the nasal epithelium. Additionally, chitosan has shown good biocompatibility, 

biodegradability, and low toxicity profiles, making it currently attractive for use in nasal 

formulations (Ghadiri et al., 2019). 

 

In recent years, it has also been proposed that to optimize the brain drug delivery, combining 

nasal administration with nanotechnology-based drug formulation might be an advantage 

(Bourganis et al., 2018, Gänger and Schindowski, 2018, Khan et al., 2017, Patel and Patel, 

2017, Sonvico et al., 2018). 

 

 

1.5 Nanotechnology for nose-to-brain drug delivery 

Nano size is 10-9 of a meter. Applying nanotechnology for biomedical and pharmaceutical 

purposes is a field that is currently rapidly evolving. The first nanoparticulate drug delivery 

system was approved by the FDA in 1996 and since then, a total of 50 nanopharmaceuticals 

are available for use in the clinical practice (Kapoor et al., 2017, Ventola, 2017). The interest 

in using nanotechnology-based delivery systems (called nanocarriers) to deliver drugs to the 

CNS has gained momentum in the recent years (Bourganis et al., 2018, Khan et al., 2017, Li 

et al., 2017). Various animal studies have shown that drugs formulated within nanocarriers can 

enhance drug distribution into the brain, improve drug efficacy, and reduce drug-related side 

effects (Bourganis et al., 2018, Khan et al., 2017, Li et al., 2017, Patel and Patel, 2017). 
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Nanocarriers are attractive for their ability to enhance the solubility and potency of potential 

drugs, which are often required for the dosage volumes that are applicable for nasal 

administration (Erdő et al., 2018). Depending on the preparation method, the potential drug 

can be adsorbed to, covalently attached to, or entrapped within the carrier (Li et al., 2017). 

Drug formulated with a nanocarrier can, therefore, be protected from early degradation, thus 

increasing the drug retention time in the nose (Li et al., 2017). In addition, an increase in the 

absorption of compounds through the nasal olfactory or trigeminal nerves might be expected 

(Khan et al., 2017, Patel and Patel, 2017). 

 

The nanocarriers are promising drug delivery systems that can be re-engineered and tailored 

to express certain physiochemical properties with minimal alterations of the potential drug 

(Bourganis et al., 2018, Li et al., 2017). Yet, maximal therapeutic benefits are only achieved if 

the nanocarrier design can ensure optimal available dose at the target site at the right time 

(Bourganis et al., 2018). An overview of the advantages and disadvantages of some of the 

major nanocarrier systems considering nose-to-brain targeting purposes are shown in 

Table 1.2. 
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Table 1.2: Some advantages and disadvantages of lipid- and polymer-based nanocarriers for nose-to-

brain drug delivery. 

Nanosystems Nanocarriers Advantages Disadvantages 

Lipid-based 

Exosomes1 
Good stability, minimal immune 

responses, natural and non-toxic 

Limited knowledge of 

optimal composition and 

loading procedure 

Liposomes 
1,2,4,5 

Biocompatible, biodegradable, increase 

BBB transport, low toxic, drug 

protective, provide controlled release, 

suitable for surface modifications and 

various molecules 

(Conventional liposomes) 

Low stability, 

immunogenic and 

passive delivery. 

Nanoemulsions 
1,2,4,5 

Biocompatible, increase BBB transport, 

suitable for surface modifications, 

promote the delivery of small 

molecules, suitable for various 

molecules 

Thermodynamically 

unstable and surfactant 

concentration-dependent 

toxicity 

Nanostructured 

lipid carriers3,4 

(liquid core) 

Low toxicity, high drug loading and 

stability, provide controlled release, 

enhance biodistribution 

Absorption through the 

respiratory epithelium 

Solid lipid 

nanoparticles 
1-5 

Biocompatible, biodegradable, increase 

stability and BBB transport, non-toxic, 

provide controlled release, suitable for 

surface modifications and 

macromolecules 

Hydrophobic, low 

entrapment efficiency, 

immunogenic, storage-

related problems and 

limited knowledge on 

neurotoxicity 

Polymer-

based 

Dendrimers1,4 
Increase BBB transport, suitable for 

surface modifications and tailorable 

Limited knowledge of 

biocompatibility and 

toxicity 

Micelles1,2,4,5 
Good stability, increase BBB transport 

and suitable for various molecules 

Limited knowledge of 

biocompatibility 

Microcarriers2 
Compatible with other drug delivery 

systems and mucoadhesive 

Dependent on head 

position during 

administration 

Nanogels1,2,4,5 

Compatible with other drug delivery 

systems, enhance deposition in the 

nasal cavity, increase BBB transport, 

provide controlled release and suitable 

for various molecules 

Not suited for 

hydrophobic drugs 

Polymeric 

nanoparticles 
1,2,4,5 

Increase mucus permeation, nasal 

residence time and BBB transport. 

Suitable for surface modifications and 

tailorable. Natural polymers are cost-

effective, low toxicity and biodegradable 

Limited knowledge of 

catabolites and 

immunologic responses. 

Issues regarding nasal 

irritation and toxicity 

Polymersomes1 
Good stability, suitable for surface 

modifications and various molecules 
Limited knowledge 

Information summarized from 1Li et al., 2017, 2Khan et al., 2017, 3Selvaraj et al., 2018, 4Wong et al., 2012, 

5Bourganis et al., 2018.  
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As shown in Table 1.2, both the lipid- and polymer-based nanocarrier systems offer 

advantages related to increased BBB transport (Li et al., 2017, Patel and Patel, 2017). On the 

other hand, limited knowledge on the biocompatibility, immunogenicity, and toxicity are 

disadvantages seen for several polymer-based nanosystems. 

 

Natural polymers (e.g. alginate, chitosan) are currently preferred in nasal dosage forms due to 

their relatively low cost, low toxicity and good biodegradability compared to the synthetic 

polymers (Bourganis et al., 2018, Ghadiri et al., 2019, Sonvico et al., 2018). However, due to 

their natural origin, batch-to-batch variation may occur. Several synthetic biodegradable 

polymers are approved by the FDA for human use, and they include poly(lactic-co-glycolic 

acid) (PLGA), poly(lactic acid) (PLA), poly(ethylene glycol) (PEG), and poly(ε-caprolactone) 

(PCL) (Marin et al., 2013). To our knowledge, the most studied polymer-based nanosystems 

for nose-to-brain delivery purposes appears to be dominated by the above mentioned synthetic 

polymers (Bourganis et al., 2018, Gänger and Schindowski, 2018, Li et al., 2017, Sonvico et 

al., 2018). Although polymer-based nanocarriers show promising properties, no more focus 

will be given to this topic in this thesis as we have chosen to focus on the liposomes. Liposomes 

provide advantages over many other nanoparticulate drug delivery systems because of their 

low batch-to-batch variation, simple manufacturing, scalable manufacturing possibilities and 

good biocompatibility (Daraee et al., 2016, Sharma et al., 2018). 

 

1.5.1 General introduction to liposomes 

Liposomes are lipid-based vesicles in the nanometric range, consisting of unilamellar or 

multilamellar phospholipid bilayers surrounding an aqueous core. They were first described in 

the 1960s (Bangham and Horne, 1964) and originally, liposomes were used as simple models 

to study biological membranes. For these reasons, the first liposomal formulations were 

extremely simple, consisting of only phospholipids, before eventually adding cholesterol and 

drugs, as demonstrated in Figure 1.6 (de Gier et al., 1968, Immordino et al., 2006). 
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Figure 1.6: Schematic representation of one unilamellar vesicle comprising drugs and cholesterol. 

 

The first liposome-based drug reached the market in 1996, and liposomes have since then 

been extensively studied for drug delivery purposes. In fact, liposomes are currently 

representing 60% of all the nanosystems in clinical use, and are the most investigated 

nanocarrier for drug delivery purposes (Ventola, 2017). The current focus of liposomes 

development is towards design and creation of sophisticated liposomes for active drug delivery 

purposes (Nisini et al., 2018, Noble et al., 2014, Riaz et al., 2018, Ross et al., 2018). In the 

last decade, liposomes have been expanding into the field of nose-to-brain drug delivery due 

to their promising carrier properties involving good biocompatibility, and tailorable possibilities 

(Bourganis et al., 2018, Li et al., 2017). 

 

1.5.2 Liposomes for nose-to-brain drug delivery 

Liposomes for nose-to-brain drug delivery is a relatively new field, where the first experiments 

carried out in vivo appeared in 2007 (Wattanathorn et al., 2007). Since then, several pre-

clinical studies have shown that drug-loaded liposomal formulations administered via the nose 

increase drug transport into the brain, reduce drug-related systemic side effects and improved 

the drug’s therapeutic efficacy in vivo (Bourganis et al., 2018, Erdő et al., 2018, Vieira and 

Gamarra, 2016). A summary of some nasally administered liposomal drug formulations for 

brain delivery (focused on in vivo rat studies) is represented in Table 1.3. 
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Table 1.3: Short summary of some nasally administered liposomal drug formulations for brain delivery performed on rats. 

Disease 
Study 

period 

Liposome 

composition 

(ratio) 

Active ingredient 

(hydro-/lipophilic 

character) 

Liposomes 

characteristics 
Major findings Reference 

Alzheimer’s 

8 

hours 

DSPC:CHOL:PEG 

(1:2:0.5 w/w/w) 

Donepezil 

(hydrophilic) 

Size: 102 nm 

ZP: -28 mV 

EE: 85% 

Unilamellarity: yes 

Liposomes protected drug from early degradation, safe to 

nasal epithelium, reduced systemic and GI side effects. IN 

increased CNS distribution in comparison to PO. 

Al Asmari et 

al., 2016 

12 

hours 

SL:CHOL 

(4:1 mol/mol) 

Rivastigmine 

(hydrophilic) 

Size: 10 000 nm 

ZP: ND 

EE: 80% 

Unilamellarity: no 

Liposomes provided good stability (up to 3 months) and 

prolonged drug release. IN increased drug concentration in 

plasma and CNS in comparison to PO. 

Arumugam 

et al., 2008 

10 

days 

SPC:CHOL 

(3:0.02 w/w) 

Galanthamine 

(hydrophilic) 

Size: 112 nm 

ZP: -49 mV 

EE: 84% 

Unilamellarity: no 

Liposomes improved therapeutic efficacy, did not exhibit 

cytotoxic profiles and reduced systemic and GI side 

effects. IN and liposomes increased BBB transport in 

comparison to PO and drug solution. 

Li et al., 

2012 

3 

weeks 

EPC:CHOL 

(not specified) 

Quercetin 

(lipophilic) 

Size: ND 

ZP: ND 

EE: ND 

Unilamellarity: ND 

IN of liposomes with drug showed neuroprotective and 

neurotropic effects. Liposomes enhanced the antioxidant 

properties of drug when entrapped within liposomes. 

Phachonpai 

et al., 2010 

4-7 

days 

EPC:CHOL 

(1:1 mol/mol) 

 

EPC:CHOL:DSPE-

PEG-CPP 

(1:1:0.06 

mol/mol/mol) 

Rivastigmine 

(hydrophilic) 

Size: 166 nm 

ZP: -10.5 mV 

EE: 33% 

Unilamellarity: ND  

 

Size: 179 nm 

ZP: -9 mV 

EE: 31% 

Unilamellarity: ND 

Surface-modified liposomes increased BBB transport. 

Liposomes provided good stability (up to 4 weeks), 

prolonged drug release and no alterations in ciliary 

movement/nasal epithelium. Surface modified liposomes 

might be cleared out faster than conventional liposomes. 

Yang et al., 

2013 

7-11 

days 

EPC:DSPE-

PEG2000:CHOL 

(20:1:5 

mol/mol/mol) 

H102 peptide 

(hydrophilic) 

Size: 112 nm 

ZP: -3 mV 

EE: 71% 

Unilamellarity: yes 

Liposomes protected the peptide from early degradation 

and provided prolonged peptide release. IN compared to 

IV increased peptide concentration in CNS and therapeutic 

efficacy. 

Zheng et al., 

2015 
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Table 1.3: (continued). 

Disease 
Study 

period 

Liposome 

composition 

(ratio) 

Active ingredient 

(hydro-/lipophilic 

character) 

Liposomes 

characteristics 
Major findings Reference 

Anxiety 
4 

weeks 

EPC:CHOL 

(not specified) 

Quercetin 

(lipophilic) 

Size: ND 

ZP: ND 

EE: ND 

Unilamellarity: ND 

IN of liposomes with drug showed decreased anxiolytic-

like activity and enhanced cognitive effects in comparison 

to liposomes without drug. 

Wattanathorn 

et al., 2007 

CNS iron 

deficiency 

7 

days 

SL:CHOL 

(5:1 w/w) 

Ferric ammonium 

citrate 

(hydrophilic) 

Size: 40 nm 

ZP: -48 mV 

EE: 97% 

Unilamellarity: yes 

Liposomes increased iron concentration in CNS. 

Liposomes did not alter nasal epithelium, brain cell, and 

lung epithelial cell morphology. 

Guo et al., 

2017 

Ischemic 

stroke 

3 

days 

HSPC:CHOL 

(4:1 w/w) 

bFGF 

(hydrophilic) 

Size: 128 nm 

ZP: -15 mV 

EE: 84% 

Unilamellarity: yes 

Liposomes increased therapeutic efficacy. Growth factor 

was transported to CNS with similar efficacy as from 

liposomal formulation and solution, whereas IN had higher 

CNS distribution in comparison to IV. 

Zhao et al., 

2016 

Pain 
5 

days 

DMPC:DMPG:RGD 

(1:1:0.01 

mol/mol/mol) 

Fentanyl 

(lipophilic) 

Size: 96 nm 

ZP: assumed 

negative at pH 7 

EE: 80% 

Unilamellarity: ND 

Surface modified liposomes expressed higher binding to 

nasal epithelial cells. Liposomes provided prolonged drug 

release and improved therapeutic efficacy. IN decreased 

drug concentration in plasma (assuming drug 

accumulation in the CNS). 

Hoekman et 

al., 2014 

Parkinson’s 
3-4 

weeks 

DOPC:CHOL:SA 

(50:30:5 

mol/mol/mol) 

GDNF 

(hydrophilic) 

Size: 149 nm 

ZP: 30 mV 

EE: 95% 

Unilamellarity: ND 

IN of liposomes increased CNS distribution, improved 

therapeutic efficacy and decreased side effects. However, 

the liposomal formulation was therapeutically not better in 

comparison to the solution. 

Migliore et 

al., 2014 

 
8 

weeks 

SL:CHOL:ODA 

(20:5:1 w/w/w) 

bFGF 

(hydrophilic) 

Size: ND 

ZP: ND 

EE: >82% 

Unilamellarity: ND 

Liposomes increased the amount of growth factor into 

CNS in comparison to the solution. Liposomes increased 

therapeutic efficacy. Liposomes did not alter cell viability. 

Yang et al., 

2016 
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Table 1.3: (continued). 

Disease 
Study 

period 

Liposome 

composition 

(ratio) 

Active ingredient 

(hydro-/lipophilic 

character) 

Liposomes 

characteristics 
Major findings Reference 

Schizophrenia 2 days 

SPC:CHOL 

(2:1, 4:1, 8:1 

mol/mol) 

 

SPC:CHOL:SA 

(8:1:0.25, 8:1:0.5, 

8:1:1, 8:1:2 

mol/mol/mol) 

 

SPC:CHOL:DSPE-

MPEG 

(8:1:0.05, 8:1:0.10, 

8:1:0.20 

mol/mol/mol) 

Risperidone 

(lipophilic) 

Size: 91-106 nm 

ZP: -50 to -54 mV 

EE: 30-50% 

Unilamellarity: yes 

 

Size: 99-209 nm 

ZP: 16-22 mV 

EE: 44-51% 

Unilamellarity: yes 

 

Size: 99-116 nm 

ZP: -29 to -37 mV 

EE: 54-59% 

Unilamellarity: yes 

Liposomes increased biodistribution of the drug into the 

CNS in comparison to the solution. Amount of drug that 

reached the brain was highest for surface-modified 

liposomes, middle for cationic liposomes and lowest for 

conventional liposomes. IN provided sustained release 

profile in comparison to IV. 

Narayan et 

al., 2016 

bFGF, basic fibroblast growth factor; CHOL, cholesterol; CPP, cell-penetrating peptide; DMPC, dimyristoylphosphatidylcholine; DMPG, dimyristoylphosphatidylglycerol; 

DOPC, dioleoylphosphatidylcholine; DSPC, distearoylphosphocholine; DSPE, distearoylphosphatidylethanolamine; EPC, egg-phosphatidylcholine; GDNF, glial cell line-

derived neurotrophic factor; GI, gastrointestinal; HSPC, hydrogenated soy-phosphatidylcholine; IN, intranasal administration; IV, intravenous administration; MPEG, 

methoxypoly(ethylene glycol); ND, not detected; ODA, octadecylamine; PEG, poly(ethylene glycol); PO, peroral administration; RGD, integrin binding peptide; SA, 

stearylamine; SL, soy-lecithin; SPC, soy-phosphatidylcholine. 
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The human nose consists of approx. 60 µm thick mucus layer, respiratory epithelium and 

olfactory epithelium covering the surface area of 160 and 10 cm2, respectively (Bourganis et 

al., 2018, Crowe et al., 2018, Erdő et al., 2018). The animal models commonly used for 

intranasal drug administration have been dogs, pigs, mice, monkeys, rabbits, rats, and sheep 

(Erdő et al., 2018). The rat’s nasal anatomy is the most different from humans in terms of 

shorter nasal length (2 vs 8 cm), and smaller nasal epithelium surface area (14 vs 160 cm2) 

(Erdő et al., 2018). However, the rat’s olfactory epithelium surface area is approx. 7 cm2, 

relatively comparable to the humans of 10 cm2 (Bourganis et al., 2018). Perhaps that is why 

most pre-clinical in vivo studies on liposomal nose-to-brain drug delivery have been performed 

on rats. 

 

As pointed out in Table 1.3, liposomal sizes in the range from 40 nm (Guo et al., 2017) up to 

10 000 nm (Arumugam et al., 2008) have been studied for nose-to-brain drug delivery, but a 

significant portion was restricted to sizes between 100-200 nm. The most common lipid used 

in the listed liposomal formulations appeared to be the uncharged phosphatidylcholine, often 

in combination with the stabilizing agent, cholesterol. Almost half of the listed studies were of 

more “sophisticated” liposomes, where the surfaces of the nanocarriers were modified (Al 

Asmari et al., 2016, Hoekman et al. 2014, Narayan et al., 2016, Yang et al., 2013, Zheng et 

al., 2015). Surprisingly, these complex liposomes did not necessarily show extraordinary 

improvement in brain transport, side effect profiles or neurological functions in comparison to 

the conventional liposomes or drug solution (Migliore et al., 2014, Yang et al., 2013). One 

reason might be the slow drug release kinetics from these liposomal carriers for both 

hydrophilic and lipophilic compounds (Arumugam et al., 2008, Hoekman et al., 2014, Narayan 

et al., 2016, Yang et al., 2013, Zheng et al., 2015). Another important variable might be the 

physiological aspects using the nose as the administration site. 

 

1.5.3 Challenges for nose-to-brain drug delivery 

The mucociliary clearance rate influences the contact time between the drug formulation and 

the nasal epithelium, which have a direct influence on the distribution into the brain. Many of 

the studies reported in Table 1.3 were conducted under general anaesthesia and/or drug 

administered in a determined position (Arumugam et al., 2008, Guo et al., 2017, Hoekman et 

al., 2014, Li et al., 2012, Phachonpai et al. 2010, Yang et al., 2013, Yang et al., 2016, Zhao et 

al., 2016). It has been emphasized that both of these variables might influence the mucociliary 

function, making it hard to draw comparisons between the therapeutic effects between studies 

(Djupesland et al., 2014, Wu et al., 2008). Moreover, since the mucociliary clearance rate is 
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up to four times faster in rats, the rat animal model might underestimate the efficiency of the 

nose-to-brain pathway (Djupesland et al., 2014, Wu et al., 2008). 

 

Importantly, liposomes administered via the nasal route will be directly exposed to the nasal 

mucus. Under normal physiological conditions, the human nasal mucus tonicity is approx. 

300 mOsm/kg (Pedersen et al., 2007). This value can change considerably as the nasal mucus 

is rather sensitive to the surrounding environment (e.g. air humidity, temperature) (Quraishi et 

al., 1998). It has been reported that hyperventilation in dry air can increase the nasal tonicity 

up to 450 mOsm/kg (Pedersen et al., 2007). These changes are highly relevant for liposomal 

drug formulations as they are colloidal systems. Changes in the dispersing media can cause 

changes at the liposome level, and therefore their release properties. We have focused on 

utilizing the changes in tonicity as a mean to control the drug delivery from nasally administered 

liposomes. To fully understand the consequences of the changes in tonicity on drug release 

from liposomes, the next section will discuss some of the important features relevant to the 

drug release. 

 

 

1.6 Colligative properties 

Physical phenomena that are mainly influenced by the number of solute molecules in a solution 

are called colligative properties (Sinko and Singh, 2011). The most important colligative 

properties are vapour pressure depression, boiling point elevation, freezing point depression, 

and osmotic pressure (Sinko and Singh, 2011). 

 

The term colligative comes from the Latin word “colligatus” that means connected. In fact, the 

characterization of one of these parameters allows the immediate determination of all the 

others. For instance, the normal freezing, or melting point of a pure compound is the 

temperature at which the solid and liquid phases are in equilibrium under a pressure of 1 atm. 

In this equilibrium, the tendency for a solid to pass into the liquid state, or vice versa, is the 

same. If a solute is added into the liquid at normal freezing point, the temperature lowering 

(namely, freezing point depression) is required to re-establish the equilibrium between solid 

and liquid. In other words, the freezing point depression (or melting point elevation) is colligatus 

with the solute concentration in solution (Sinko and Singh, 2011). The new freezing point (∆Tf) 

can be calculated using Equation 1.1; 

∆𝑇𝑓 = 𝑚𝐾𝑓 
 

Equation 1.1 

where m describes the molality of solute, and Kf the cryoscopic constant. 
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It is known that the liposomal membranes are semi-permeable, and allow neutral, poorly 

polarized, and small molecules to passively diffuse through, whereas ions, highly polarized 

small molecules, and large molecules will not, as shown in Figure 1.7 (Bangham et al., 1967, 

Paula et al., 1996). 

 

 

Figure 1.7: Simplified representation of the semi-permeable nature of the liposomal membrane. 

 

As illustrated in Figure 1.7, the passive migration of solvent molecules through the semi-

permeable membrane is generally called osmosis, and it is initiated by the different chemical 

potential between the two sides of the membrane (Sinko and Singh, 2011). Specifically, solvent 

molecules will diffuse from the side with higher chemical potential (i.e. low solute 

concentration) to the regions with lower chemical potential (i.e. high solute concentration) until 

equilibrium is reached (Sinko and Singh, 2011). Due to osmosis, a pressure (namely, osmotic 

pressure) is created on the liposomal membrane (Sinko and Singh, 2011). 

 

1.6.1 Osmotic pressure 

The osmotic pressure (π) describes the excess pressure applied to a solution to prevent the 

solvents from passing through the membrane (Sinko and Singh, 2011). The first equation 

describing osmotic pressure was proposed by Jacobus van’t Hoff (Equation 1.2). In this 

equation, the osmotic pressure is related to the ideal gas constant (R0), the absolute 

temperature (T), and solute concentration in a system (n/V) (Sinko and Singh, 2011); 

𝜋 =
𝑛

𝑉
𝑅0𝑇 

 

Equation 1.2 

As it can be seen from Equation 1.2, changes in the solute concentration can proportionally 

change the π.  
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It was later found out by Morse and others that if the solute concentration was expressed in 

molality (m) rather than molarity, the calculated theoretical osmotic pressure fitted better to 

experimental findings (Equation 1.3, (Sinko and Singh, 2011)); 

𝜋 = 𝑚𝑅0𝑇 

 

Equation 1.3 

When solutes dissolving in a determined solvent are the electrolytes, the Morse equation 

becomes; 

𝜋 = 𝑖𝑚𝑅0𝑇 

 

Equation 1.4 

In Equation 1.4, i represents the number of dissociating ions (namely, the van’t Hoff factor). 

For non-electrolytes, such as glucose, i remains to be 1, whereas sodium chloride which can 

dissociate into sodium and chloride ions in solution has i=2. It has to be kept in mind that i is a 

value for ideal conditions that do not take into account some not totally dissociating 

compounds, and possibly ion pairings in solution. The measured i, and i for ideal conditions 

might for these reasons deviate for some compounds. However, for strong electrolytes such 

as sodium chloride, i can be considered to be equal to 2 (Sinko and Singh, 2011). 

 

The osmotic pressure created on the liposomal membrane is relevant when it comes to the 

development of liposomal drug delivery systems since the osmotic pressure can cause the 

liposomes to shrink, or swell due to their close vesicle structures (see Figure 1.8) (Alam Shibly 

et al., 2016, Fujiwara and Yanagisawa, 2014, Mui et al., 1993, Ohno et al., 2009). 

 

 

Figure 1.8: Simplified representation of the solvent diffusion process across the liposomal membrane 

under the influence of different environment. 
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As schematically presented in Figure 1.8, due to the migration of the solvent, the liposomes 

swell in a hypotonic environment and shrink in a hypertonic environment. Because of the 

liposomal size changes, and consequently the changes in the liposomal membrane rigidity, 

the drug release kinetics from the liposomes might be affected (Ahumada et al., 2015, 

Chabanon et al., 2017).  

 

In order to achieve controlled drug diffusion across any barrier, it is necessary to understand 

the release mechanism from liposomes. To study the release from liposomes, drug diffusion 

studies can be applied (Solomon et al., 2017). 

 

 

1.7 Drug diffusion study 

Passive diffusion is the movement of molecules due to chemical potential (i.e. concentration) 

gradient. Let us consider the movement of drug molecules dissolved in water that are all 

located on one side of a compartment divided by the physical permeable barrier (Figure 1.9). 

Solute molecules will move from the compartment from areas with high drug concentration 

(with higher chemical potential, donor compartment) to low drug concentration (namely, 

acceptor compartment) (Sinko and Singh, 2011). In this situation, the drug diffusion can be 

assumed to be in just one direction, and the degree of drug diffusion across the barrier can be 

affected by the barrier properties (e.g. barrier structure, interaction) (Brandl et al., 2007, Brodin 

et al., 2010). 

 

 

Figure 1.9: Simplified representation of the one-directional movement of molecules across a physical 

permeable barrier. 
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One common way to describe drug diffusion across a barrier is by using the concept of flux. 

Mass flux (j) is defined as the mass variation over time (dm/dt) across a defined surface area 

(A) as shown in Equation 1.5; 

𝑗 =  
𝑑𝑚

𝑑𝑡
 ∙  

1

𝐴
 

 

Equation 1.5 

The net drug diffusion across a barrier can be categorized into the steady, and non-steady 

state conditions. The steady state condition, in which the flux is considered to be constant over 

the experimental time interval, is preferential. In this case, the simplified version of Fick’s first 

law (Equation 1.6) is considered acceptable (Brodin et al., 2010); 

𝑗 =  𝐷
(𝐶𝑑

0 − 𝐶𝑎)

𝑥
 

 

Equation 1.6 

In this equation, D represents the diffusion coefficient, (C0
d-Ca) the drug concentration 

difference between the two sides of a barrier with thickness = x. From Equation 1.6, the flux is 

proportional to the concentration gradient. If (C0
d-Ca)/x = constant, a zero order diffusion kinetic 

is established, and the experimental data can be therefore fitted by the linear regression 

models (see Figure 1.10) (Brodin et al., 2010, Nothnagel and Wacker, 2018). 

 

 

Figure 1.10: Example of a drug diffusion profile representing steady state and non-steady state 

conditions. 

 

Apparent permeability coefficient (Papp) is commonly used to quantify the ability of molecules 

in crossing barriers (Brodin et al., 2010). The constant flux in in vitro diffusion studies can be 

achieved by creating a large enough and constant concentration gradient between the donor 
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and acceptor compartment. This is usually achieved by working under sink conditions, 

therefore by constant removal of accumulated material in the acceptor compartment. It is 

generally considered sink condition when the concentration in the acceptor compartment is 

kept <10% of the donor drug concentration under the whole study period (Brodin et al., 2010). 

Under these premises, the amount of drug applied in donor compartment is assumed to be 

constant over the whole experiment, and the concentration difference (C0
d-Ca) can be assumed 

to be equal to the initial drug concentration of the formulation (C0
d) (Brodin et al., 2010). 

Apparent permeability is then calculated according to Equation 1.7; 

𝑃𝑎𝑝𝑝 =
𝑑𝑚

𝑑𝑡
∙

1

𝐴
∙

1

𝐶𝑑
0 

 

Equation 1.7 

It is sometimes convenient to highlight the barrier’s resistance (R) to drug permeation. R is the 

inverse of the permeability, as shown in Equation 1.8; 

𝑅 =  
1

𝑃𝑎𝑝𝑝
 

 

Equation 1.8 

For studying the release from nanocarriers, the standard way to treat diffusion data is based 

on semi-empirical approaches, where experimental data (e.g. obtained from in vitro drug 

diffusion study) are fitted to mathematical models (Jain and Jain, 2016). By quantifying the 

amount of drug that permeates the diffusion barrier, the diffusion data can be fitted to linear, 

and non-linear regression models to predict drug release from the nanocarrier (Jain and Jain, 

2016, Nothnagel and Wacker, 2018). 

 

1.7.1 Drug release from liposomes 

In the case of drug-loaded liposomal dispersions, drug molecules need to cross two physical 

barriers (first the liposomal bilayer, and thereafter the diffusion barrier) in order to accumulate 

into the acceptor compartment. In this case, the net drug transport across the diffusion barrier 

is considered to be dependent on two diffusion mechanisms (see Figure 1.11, (Wacker, 

2017)). 
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Figure 1.11: Simplified representation of the currently used semi-empirical approach where drug 

permeation across a diffusion barrier is used to predict the drug release mechanism from the liposome. 

 

Three possible outcomes can be expected when discussing drug release from liposomes (Jain 

and Jain, 2016); 

i) Release rate ≈ flux: constant concentration gradient across the diffusion barrier 

giving a (close to) perfect zero order diffusional curve. In this situation, linear 

regression models could be used. 

ii) Release rate < flux: reduced concentration gradient across the diffusion barrier 

giving a first, or pseudo order diffusional curve. The nanocarrier is contributing to a 

sustained drug release. In this situation, non-linear regression models should be 

used. 

iii) Release rate > flux: increased concentration gradient across the diffusion barrier 

giving a positive deviation from the linear diffusional curve. The nanocarrier is 

enhancing the net transport of the drug across the diffusion barrier. In this situation, 

non-linear regression models should be used. 

 

1.7.1.1 Linear approximation 

Based on the assumption that the total resistance to drug transport of drug-loaded liposomes 

is caused by the sum of single resistances (caused by each of the physical barriers involved), 

the liposomal bilayer’s contribution to drug transport can be calculated using Equation 1.9; 

𝑅𝐿 =  𝑅𝑇 − 𝑅𝐵 

 

Equation 1.9 

where the total resistance to drug transport (RT, calculated from 1/Papp of drug-loaded 

liposomes), and the resistance to drug transport through permeable barrier (RB, measured 
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from 1/Papp of drug reference solutions) can be predetermined to calculate the resistance to 

drug transport through liposomal bilayer (RL). 

 

This linear approximation of the drug diffusion data might lead to wrong interpretations as the 

concentration gradient across the diffusion barrier might not be constant under the whole study 

period when the drug is formulated with liposomes (non-steady state). This can be due to the 

presence of the unentrapped drug in the liposomal formulation, reversible drug binding to the 

carrier, and interaction between drug and the barrier (Modi and Anderson, 2013, Nothnagel 

and Wacker, 2018). The presence of unentrapped drug can be solved by the removal of freely 

unentrapped drug from a liposomal drug formulation so the drug diffusion across the diffusion 

barrier represents the direct release from the nanocarrier. However, it should also be taken 

into consideration that the most common methods to remove freely unentrapped drug are 

based on passive diffusion principles. The removal of the freely unentrapped drug might 

introduce the system to a new shift in drug concentration equilibrium across the liposomal 

barrier which can complicate the interpretation of the drug release from the nanocarrier 

(Nothnagel and Wacker, 2018). For these reasons, it has become more common to fit the in 

vitro diffusion data to non-linear regression models (Jain and Jain, 2016). 

 

1.7.1.2 Non-linear approximation 

Some of the most common non-linear mathematical models to describe drug release 

phenomena from semi-solid dosage forms are the Higuchi and the Korsmeyer-Peppas model 

(Costa and Sousa Lobo, 2001, Jain and Jain, 2016). Experimental data are fitted to any of the 

above-mentioned models taking into account different variables such as the surface area of 

dosage form, or the solubility of the drug (Higuchi) (Costa and Sousa Lobo, 2001, Jain and 

Jain, 2016). 

 

The Korsmeyer-Peppas model is commonly used to analyse the release mechanism from 

nanocarriers which is unknown, or when more than one type of release phenomena might be 

involved (e.g. drug release affected by geometry, swelling, or shrinkage of the nanocarrier) 

(Costa and Sousa Lobo, 2001). The in vitro diffusion data are plotted as the fractional 

permeated drug (Mt/M∞ up to 60%) over time (t) and fitted to the Korsmeyer-Peppas equation 

(Equation 1.10, (Korsmeyer et al., 1983)); 

𝑀𝑡

𝑀∞
= 𝐾 ∙ 𝑡𝑛 

 

Equation 1.10 
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From the fitted curve to Korsmeyer-Peppas equation, the transport constant (K), and transport 

exponent (n) provide information related to the drug formulation such as drug properties, 

structural characteristics of the nanocarriers, and drug release mechanism. The most 

interesting variable is the exponent value, n, that can be used to indicate how far the migration 

process is from Fickian diffusion (Korsmeyer et al., 1983). 

 

When the exponent n=1, it is evident from Equation 1.10 that the drug release rate is directly 

dependent on time. In this situation, the release kinetics correspond to zero order, and the 

diffusion is non-Fickian (see also Figure 1.12). 

 

  

Figure 1.12: Simplified representation of the diffusion curves that can be expected when discussing 

drug release from liposomes. 

 

On the contrary, if the exponent n=0.5, the drug release rate is dependent on the square root 

of the time. In this situation, the release kinetics correspond more to the first order, and the 

diffusion is approximated to exhibit Fickian behaviour (Ritger and Peppas, 1987). The 

interpretation of the exponent n is a bit more complicated when it falls in between 0.5 and 1. 

When 0.5<n<1, the release kinetics correspond to pseudo-first order and can describe both 

phenomena of Fickian- and non-Fickian-controlled drug release. 

 

We have selected markers and drugs to cover a wide range of relevant physiochemical 

properties to challenge the liposomes suitability to be used as osmotically active liposomes for 

nose-to-brain drug delivery. This to prove that controlled release from liposomes can be 

achieved by controlling the environment surrounding the liposomes. 
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1.8 Fluorescent markers and drugs used in this study 

1.8.1 Fluorescent markers 

In the development of a drug formulation, it is common to start formulation development 

applying markers to verify a concept before using drugs. The fluorescent markers (Figure 1.13) 

were chosen because of their physiochemical properties and known applicability when 

studying lipid membrane properties (Ahumada et al., 2015, Chabanon et al., 2017, Maherani 

et al., 2013, Oglecka et al., 2014). Both calcein and rhodamine are reported to be successfully 

entrapped into liposomes and give bright fluorescent signals (Chabanon et al., 2017, Maherani 

et al., 2013). 

 

 

Figure 1.13: Molecular structures and general physiochemical properties of the fluorescent markers 

used in this thesis. Information summarized from aMaherani et al., 2013, bFlaten et al. 2006, cToropainen 

et al., 2001, dPittman et al., 2001. 

 

Calcein is a hydrophilic marker, which upon entrapment, is localized in the liposomal aqueous 

core (Flaten et al., 2006, Maherani et al., 2013). The other fluorescent marker of choice was 

rhodamine, a lipophilic marker which can be incorporated in the phospholipid bilayer of 

liposomes (Pittman et al., 2001, Toropainen et al., 2001). As a result of the different osmotic 

gradient across a liposomal membrane, an increase or decrease of the fluorescence intensity 

can be promoted by the changes in the liposomal inner volume due to osmosis (Ahumada et 

al., 2015, Chabanon et al., 2017, Maherani et al., 2013). This provides important information 

on the mechanism of release from liposomes and is the first step that needs to be validated 

before proceeding with the development of drug-loaded liposomal formulations. 
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1.8.2 Drugs 

As a recap to the previous section (Section 1.2), the controlled microenvironment is essential 

to maintain optimal neuronal functions in the brain. Alterations of the BBB structure and/or 

duration of an imbalance in the microenvironment might contribute to the development of CNS 

disorders (Abbott et al., 2010, Daneman and Prat, 2015). It has been proposed that BBB 

alterations might be due to elevated oxidative stress levels, or inflammation in the brain (Patel, 

2016, Stephenson et al., 2018). Epidemiological observation indicates that long-term 

administration of anti-inflammatory drugs (>1 year) showed delayed or lower risk of CNS 

disorder development such as Alzheimer’s disease, Parkinson’s disease, and multiple 

sclerosis (Aisen, 2002, Onatibia-Astibia et al., 2017). Therefore, anti-inflammatory drugs have 

been proposed to be potential candidates to prevent and/or treat several CNS disorders 

(McCaulley and Grush, 2015, Onatibia-Astibia et al., 2017). 

 

Despite promising pre-clinical results, the statistical evidence that anti-inflammatory drugs can 

prevent and/or treat any CNS disorders are still clinically unproven (McCaulley and Grush, 

2015, Onatibia-Astibia et al., 2017). It has been suggested that these failures might be related 

to patient selection, drug selection, drug dosage, therapy duration, but more importantly the 

low drug delivery across the BBB when utilizing the conventional administration routes (Lehrer, 

2014, McCaulley and Grush, 2015, Onatibia-Astibia et al., 2017). 

 

The therapeutic effect of anti-inflammatory drugs might be enhanced by utilizing liposomes 

and the nasal administration route. Even though it was beyond the scope of this thesis to 

investigate the therapeutic effects associated with nose-to-brain drug delivery, it was important 

to select the relevant drugs to be formulated into liposomes that might have great potential for 

the treatment and/or prevention of a wide range of CNS disorders. For this reason, six already 

marketed drugs with anti-inflammatory properties were chosen (see Figure 1.14) (McCaulley 

and Grush, 2015, Onatibia-Astibia et al., 2017). 
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Figure 1.14: Molecular structures and general physiochemical properties of the drugs used in this 

thesis. Information summarized from aZhu et al., 2002, bPubChem, 2019a, cPubChem, 2019d, dStein et 

al., 2011, ePubChem, 2019c, fPubChem, 2019b. 

 

As presented in Figure 1.14, the different drugs selected for this study expressed different 

physiochemical properties such as partition coefficient (logD7.4) and ionization constant (pKa). 

Two of the parameters that can be used to predict the bioavailability of a drug are the 

permeability (can be expressed as logD7.4) and solubility (can be expressed as pKa) (Ashford, 

2013). 

 

The partition coefficient describes the concentration ratio of a chemical entity between two 

immiscible solvents at equilibrium. The most common solvent system is octan-1-ol/water. The 

octan-1-ol phase mimics the short hydrocarbon chains that make up in many biological 

barriers, whereas the water phase mimics the aqueous environment. Therefore, the partition 

coefficient of a drug can be used to estimate the permeability of a drug (Gaisford, 2013). 
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The degree of the partitioning of partially ionizable solutes is better described by logD which 

take into account the pH of the aqueous phase (Gaisford, 2013). Since we aimed to perform 

all the experiments in this study at physiological pH, the logD at pH 7.4 (logD7.4) of each of the 

selected drugs are represented in Figure 1.14. 

 

The logD7.4 is not only providing information related to the permeability across biological 

barriers, but it can also be used to predict the drugs’ localization inside liposomes. A logD7.4 

above 1 indicates that more drug is favourably distributed in the octan-1-ol in comparison to 

the aqueous phase, and these drugs will most likely incorporate in the liposomal bilayer (Nii 

and Ishii, 2005). On the contrary, logD7.4 below 1 indicates that more drug is distributed in the 

aqueous phase, and will most likely be entrapped in the inner core of liposomes (Xu et al., 

2012). 

 

The ionization constant (pKa) describes the number of dissociated (i.e. ions) and undissociated 

molecules in a solution, a collective term used for both weakly acidic and basic drugs. Whether 

a drug molecule is dissociated or not in a solution is highly dependent on the pH of the solution. 

The relationship between pH and pKa can be described using the Henderson-Hasselbach 

equations. The equation for a weak acid is shown in Equation 1.11; 

p𝐻 = p𝐾𝑎 + log
[𝐴−]

[𝐻𝐴]
 

 

Equation 1.11 

From Equation 1.11, the experimental pH and the pKa of a drug molecule can be used to find 

the ratio between the weak acid (HA) and the conjugate base (A-). When pH is greater than 

pKa of a drug molecule (pH>pKa), the drug will be dissociated, yielding the charged conjugate 

base. On the other hand, when pH is less than pKa (pH<pKa), most of the drug will be in the 

uncharged weak acid form in a solution. The Henderson-Hasselbach equation for a weak base 

is shown in Equation 1.12; 

p𝐻 = p𝐾𝑎 + log
[𝐵]

[𝐵𝐻+]
 

 

Equation 1.12 

From Equation 1.12, pH>pKa yields the uncharged weak base (B) form in solution, and 

pH<pKa yields the charged conjugate acid (BH+). The relationship between dissociated and 

undissociated molecules in a solution is relevant as it is directly linked to the drug’s aqueous 

solubility (Aulton, 2013). 
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The relationship between bioavailability, permeability, and solubility can be explained by the 

biopharmaceutics classification system (BCS) (Wu and Benet, 2005). For the oral route of drug 

administration, the drug has to be dissolved in order to be absorbed. For this reason, the BCS 

classifies drugs according to their aqueous solubility at gastric pH range, and permeability 

across the gut wall (Ashford, 2013). 

 

The four BCS classes are; 

1) high solubility and high permeability 

2) low solubility and high permeability 

3) high solubility and low permeability 

4) low solubility and low permeability. 

 

The main purpose of the BCS was to replace in vivo bioavailability study with in vitro data. 

Even though the BCS original purpose was focused on oral dosage forms, BCS is currently 

used by regulatory authorities as a guide to approve generics and is used by scientists as a 

guide to design drug delivery systems for any route of administration (Ashford, 2013). 

 

Generally, BCS class 1 drugs are the most preferable. In this category, the drugs have high 

solubility and high permeability. Unless the drugs form insoluble complexes with biological 

fluids or undergo rapid clearance in vivo, these drugs will be rapidly absorbed and show good 

bioavailability. The BCS class 1 drugs selected for this study were the caffeine, theophylline, 

hydrocortisone and methylprednisolone (Ashford, 2013, Benet et al., 2011). The second most 

preferable is BCS class 2 drugs. In this category, the drugs have low solubility but high 

permeability. These drugs are strictly limited by the drug’s dissolution rate and will likely not 

show good bioavailability unless assisted by the right formulation that enhance the drugs’ 

solubility profile (Ashford, 2013). The BCS class 2 drugs selected for this study were the 

ketoprofen and ibuprofen (Benet et al., 2011). BCS class 3 and 4 drugs have limitation 

regarding low permeability and can be problematic to achieve good bioavailability (Ashford, 

2013, Benet et al., 2011). None of the selected drugs for this study were in these two classes. 

 

To summarize, all the drugs included in this study were mainly chosen due to their reported 

anti-inflammatory properties and potentials in the prevention and/or treatment of CNS 

disorders. All have not been, up to now, proven clinically relevant which might be contributed 

to non-ideal study design, or sub-optimal administration route. It was also important to choose 

the drugs with different physiochemical properties to be entrapped within liposomes. The 

selected six different drugs exhibited logD7.4 ranging from ~0 to 2, and pKa ranging from 4.5 

to 10.4, considered to be relevant for this study. 
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2 Aims of the study 

The general aim of this project was to develop osmotically active liposomes suitable for nose-

to-brain drug delivery. 

 

For these reasons, the specific aims during the project have been to; 

i) Investigate if large unilamellar vesicles (LUVs) made from soy-phosphatidylcholine are 

osmotically active in terms of size and release when formulated with; 

o Fluorescent markers (calcein and rhodamine) 

o Drugs (caffeine, theophylline, ketoprofen, ibuprofen, hydrocortisone, and 

methylprednisolone) 

ii) Evaluate the drug release from LUVs using; 

o Low retention diffusion barrier (regenerated cellulose) 

o High retention diffusion barrier (biomimetic Permeapad®) 

iii) Analyse the in vitro diffusion data using; 

o Linear regression (zero order model) 

o Non-linear regression (Korsmeyer-Peppas model) 

iv) Evaluate the effect of cholesterol incorporation in the liposomal bilayer on the drug 

release from LUVs  

v) Evaluate the effect of mucin on the drug release from LUVs 

vi) Evaluate the stability of the liposomal formulations upon storage. 
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3 Summary of papers 

3.1 Paper I 

The aim of Paper I was to investigate the underlying mechanisms on how changes in the 

environmental tonicity could influence the liposomal size and release. The graphical abstract 

of this paper is represented in Figure 3.1. 

 

 

Figure 3.1: Graphical abstract for Paper I. Reproduced from Wu et al., 2017, with permission from 

Elsevier. 

 

In Paper I, liposomes were prepared in phosphate buffer saline (PBS, pH 7.4) with an 

osmolality of 65 and 300 mOsm/kg, respectively. Giant unilamellar vesicles (GUVs) were 

prepared using a swelling method modified from Mocho et al. (1996) followed with extrusion 

to obtain large unilamellar vesicles (LUVs) within acceptable sizes for nasal administration 

(around 400 nm). To ensure the lamellarity of the LUVs, phase contrast microscopy was 

employed and confirmed the liposomal integrity (unpublished results). Entrapped within the 

LUVs were two fluorescent markers of different physiochemical properties, namely calcein 

(hydrophilic) and rhodamine (lipophilic). 

 

The LUVs were exposed to PBS of different tonicity to generate a different gradient of salt 

concentration within the internal and external environment of the liposomes. This was based 

on the assumption that the measured osmolality of the PBS used to prepare the LUVs would 

represent the inner core tonicity, whereas the osmolality of the PBS that LUVs were exposed 



 Summary of papers  

38 

to would represent the external environment tonicity. The relative osmotic pressure (πrel), 

generated on the liposomal surfaces was expressed as negative or positive πrel to describe 

the water influx or efflux into/from liposomes, respectively. 

 

Liposomal sizes were monitored after LUVs were exposed to different environment. The LUVs 

seemed to be more susceptible to osmotic swelling than shrinking, and size changes were 

more evident for empty and calcein-LUVs in comparison to rhodamine-LUVs. These findings 

were in agreement with the marker’s different physiochemical characteristics; the lipophilic 

compound (rhodamine) contributes to more rigid liposomal bilayer and reduces liposomes 

sensitivity to osmotic stress. On the other hand, calcein (hydrophilic) have no such effect as it 

is localized in the aqueous core. 

 

The flux of marker through the regenerated cellulose barrier (using Franz diffusion cell set-up) 

was monitored to describe the release from the liposomes. The marker flux across the diffusion 

barrier seemed to correlate with changes in the πrel. Decreased amount of calcein diffused 

through the diffusion barrier when LUVs were exposed to hypotonic environment, whereas the 

enhanced amount of calcein diffused in a hypertonic environment (when compared to isotonic 

condition). These results indicated that the release from LUVs was dependent on the interplay 

between the water flux and marker release direction (probably due to the hydrophilic nature of 

calcein). Rhodamine-LUVs, on the other hand, were generally less affected by the changes in 

πrel. 

 

The LUVs seemed to be suitable to entrap various compounds and showed promising carrier 

properties in terms of their osmotic activity. It would be, therefore, interesting to explore this 

phenomenon further by entrapping the LUVs with various drugs and investigate more 

thoroughly how the different degrees of environmental tonicity perturbations change the drug 

release from liposomes. 

  



 Summary of papers  

39 

3.2 Paper II 

The aim of Paper II was to focus on detailed hypotonic exposures of LUVs entrapping six drugs 

of different physiochemical properties (caffeine, hydrocortisone, ibuprofen, ketoprofen, 

methylprednisolone, and theophylline). The graphical abstract of this paper is represented in 

Figure 3.2. 

 

 

Figure 3.2: Graphical abstract for Paper II. Reproduced from Wu et al., 2019b, with permission from 

Elsevier. 

 

The nasal mucus is in direct contact with the surrounding environment and the tonicity of the 

nasal mucus is relatively inconsistent and highly alterable. For these reasons, the physiological 

condition of the nose such as tonicity is an important parameter to consider if liposomal drug 

formulations are intended for nasal administration. 

 

A similar methodology was applied for the investigation of drug release as described in Wu et 

al. (2017) by using the Franz diffusion cell set-up. Unlike the previous paper, the tonicity of the 

prepared LUVs formulations were measured instead of being calculated. To our surprise, 

liposomes itself acted as strong tonicity enhancers increasing the total tonicity of the whole 

formulation with 350-400 mOsm/kg. From these observations, the measured osmolality of the 

whole LUVs dispersion was assumed to represent the tonicity of the inner core of the 

liposomes. 

 

The PBS used to create different external environment was adjusted according to the 

measured osmolality of LUVs, and in total, seven different degrees of hypotonic environment 
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ranging from 0 up to 650 mOsm/kg in differences between the LUVs and the external 

environment were created (∆mOsm/kg). After the exposure of LUVs to hypotonic environment, 

the size distribution was monitored and vesicle populations of bigger sizes could be detected 

for the most hypotonic environment, indicating swelling of the LUVs. 

 

Similarly to findings in Paper I, the changes in drug diffusion across the regenerated cellulose 

barrier were most apparent for the hydrophilic drugs in comparison to the 

lipophilic/hydrophobic drugs. More importantly, all drug-loaded LUVs exposed to hypotonic 

environment (∆mOsm/kg approx. 300) exhibited a significant increase in the apparent 

permeability (Papp) across the diffusion barrier, indicating that the tonicity perturbations played 

an essential role in the drug release from liposomes. To better describe the changes in the 

drug release, the Papp was expressed as the resistance to drug transport through liposomal 

bilayer (RL) to better highlight the contribution given by the liposomal carrier. 

 

The further research scope was to optimize the liposomal formulation and investigate if similar 

behaviour could be found when a more biomimetic diffusion barrier was used. We also wanted 

to investigate the LUVs’ response to both hypotonic and hypertonic environment. 
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3.3 Paper III 

The aim of Paper III was to clarify the dynamics behind the influence of tonicity perturbations 

on the changes in drug release from liposomes. The graphical abstract of this paper is 

represented in Figure 3.3. 

 

 

Figure 3.3: Graphical abstract for Paper III. Reproduced from Wu et al., 2019a, with permission from 

Elsevier. 

 

For this study, LUVs were prepared to entrap individually either caffeine or hydrocortisone, 

and with various amounts of cholesterol incorporated in the lipid bilayer (11 and 25% w/w). 

The in vitro diffusion study was carried out utilizing both the standard regenerated cellulose 

and the innovative biomimetic Permeapad® barrier to achieve better in vitro/in vivo correlation 

for the nasal environment. The LUVs were exposed to 300 mOsm/kg differences between 

initial LUVs and external environment (the optimal tonicity difference according to Paper II). 

Both linear regression (zero order) and non-linear regression (Korsmeyer-Peppas) models 

were used to treat the experimentally determined diffusion data to predict the release from 

liposomes. 

 

Similar to Papers I and II, the amount of diffused drug through the diffusion barrier changed 

according to the tonicity perturbations of the external environment surrounding the LUVs. For 

instance, an increased amount of drug diffused through the diffusion barriers when LUVs were 

exposed to a hypotonic environment. On the other hand, decreased drug diffusion was 

detected in the hypertonic environment. 
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The drug diffusion rate through the regenerated cellulose barrier was higher when compared 

to Permeapad® barrier, which can be explained by the different structures of the diffusion 

barriers. The regenerated cellulose exhibits low retention to drug diffusion (controlled by drug 

concentration gradient). On the other hand, Permeapad® barrier is a thicker barrier containing 

lipids that exhibit higher retention to drug diffusion. 

 

The structural changes of the liposomes (incorporation of cholesterol) and its direct effect on 

the drug diffusion rate across the diffusion barrier were strongly correlated. The incorporation 

of cholesterol in liposomal bilayer seemed to limit the LUVs’ sensitivity to osmotic stress. 

 

The in vitro diffusion data interpreted using the zero order and Korsmeyer-Peppas model were 

in good agreement. Both models provided important information related to the release from 

liposomes. Korsmeyer-Peppas model offered additional advantages as being less time-

consuming due to avoidance of the need for reference experiments including drug solutions, 

which the zero order model required. 

 

This paper confirmed the necessity to use both linear and non-linear regression models during 

the assessment of drug release phenomena from liposomes. The Korsmeyer-Peppas model 

was found to be suitable for this study to improve the interpretation of drug release from LUVs 

under osmotic stress. In terms of stability upon storage, LUVs with 11% w/w cholesterol were 

found to be superior in comparison to 0 and 25% w/w, respectively. These findings can be 

utilized in the development of liposomal formulations intended for nose-to-brain drug delivery. 
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4 Experimental section 

Materials and Methods employed in this thesis are described in Papers I-III. The first part of 

this section describes the calculation used to determine the relative osmotic pressure (πrel) 

generated on the liposomal membrane, used in Paper I. The latter part of this section provides 

information on the preliminary experiments with mucin that are not included in the Papers I-III. 

 

 

4.1 Osmotic pressure calculations 

As previously described in Section 1.6, the osmotic pressure can be calculated using the van’t 

Hoff and the Morse equation. The equations propose that the difference in salt concentration 

on both sides of a semi-permeable membrane will generate an osmotic pressure on the 

membrane. As the internal and external environment of liposomes can have different salt 

concentrations, this assumption may apply to liposomal membranes as well. 

 

In this study, the measured salt concentration of the PBS used to prepare the liposomes, and 

the PBS used to expose the liposomes were represented as the internal and external 

osmolality of LUVs. Based on this assumption, an adaptation of the van’t Hoff and Morse 

equation could be expressed as followed (Equation 4.1); 

𝜋𝑟𝑒𝑙 = (𝑂𝑠𝑚(𝑜𝑢𝑡) − 𝑂𝑠𝑚(𝑖𝑛))𝑅0𝑇 
 

Equation 4.1 

In Equation 4.1, the R0 represents the ideal gas constant, T the absolute temperature, and 

Osm(out)-Osm(in) represents the osmolality difference between the external and internal 

environment of LUVs. A positive πrel indicates that the LUVs are exposed to a hypertonic 

environment, causing solvent molecules to migrate from the inner core to the external 

environment of the liposome. On the contrary, a negative πrel indicates that the LUVs are 

exposed to a hypotonic environment, causing solvent molecules to migrate from an external 

environment to the internal core of liposomes. 

 

 

4.2 Experiments involving mucin 

When performing in vitro diffusion study, it is important to tailor the experimental conditions as 

close as possible to the real biological conditions to obtain good in vitro/in vivo correlation. We 

have already described in Paper III the use of the Permeapad® barrier for the purpose to mimic 



 Experimental section  

44 

the nasal epithelium. Furthermore, we also wanted to include mucin in our experiments to 

mimic nasal mucus. 

 

One of the main constituents of nasal mucus is mucin (Bansil and Turner, 2018, Quraishi et 

al., 1998). The purified porcine stomach mucin type III is commonly used for in vitro studies 

due to the resemblance to human mucins in terms of structure and molecular weight (Groo 

and Lagarce, 2014, Lock et al., 2018). Within the range of mucin concentration used in this 

study, the purified mucins were considered suitable for the determination of drug diffusion 

hindrances caused by the electrostatic and hydrophobic interactions (Lock et al., 2018, Murgia 

et al., 2018). 

 

4.2.1 Preparation of mucin dispersions 

Mucin from porcine stomach type III (bound sialic acid 0.5-1.5%, partially purified, Sigma-

Aldrich Chemie GmbH, Steinheim, Nordrhein-Westfalen, Germany) was dispersed in PBS at 

a concentration of 1 mg/mL, following previous reports (Chen et al., 2013, Qiang et al., 2012). 

At this mucin concentration, the mucin was homogeneously dispersed in the PBS. The 

osmolality and pH of PBS before and after the addition of mucin were measured using a Semi-

Micro Osmometer Model 4602 (Knauer, Berlin, Germany) and SensION™ +PH31 pH meter 

(Hach Company, Barcelona, Spain), respectively. To avoid mucin degradation when dispersed 

in PBS, mucin dispersions were stored at 4°C and protected from direct sunlight and used 

within 7 days after preparation. 

 

4.2.2 In vitro diffusion study in the presence of mucin 

The diffusion study was performed as previously described by Wu et al. (2019a). For the in 

vitro diffusion studies involving mucin, mucin dispersion (0.3 mL, concentration of 1 mg/mL) 

was added on top of the different diffusion barriers (regenerated cellulose or Permeapad® 

barrier) instead of PBS before LUVs dispersion was added (0.5 mL). The total concentration 

of mucin was approx. 0.4 mg/mL in the donor compartment at the start of the experiment (t=0) 

in agreement with previously reported conditions (Khatri et al., 2008). The diffusion study was 

conducted under the same conditions as in the experiments where mucin was not included. 
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5 Results and discussions 

This thesis aimed to develop osmotically active liposomes for nose-to-brain drug delivery. The 

rationale for using liposomes as a drug delivery system is already described in Section 1.5. 

 

As previously discussed, a sufficient amount of drug needs to be efficiently absorbed through 

the nasal epithelium to obtain therapeutic levels of a drug in the brain (Bourganis et al., 2018, 

Khan et al., 2017). To achieve controllable permeation across any biological barriers, it is of 

great importance to first understand the drug release from the nanocarrier when drug is 

delivered via nanocarrier. One of the major challenges considering the development of nasally 

administered liposomal drug formulations is the nasal mucus. Nasal mucus tonicity is known 

to fluctuate greatly due to its sensitivity to the environmental and physiological factors (Quraishi 

et al., 1998). The liposomal membrane has a semi-permeable nature (Bangham et al., 1967, 

Paula et al., 1996), and liposomes that come in direct contact with mucus might undergo 

unpredictable behaviour due to the tonicity differences that can take place. 

 

Therefore, the work was carried out by firstly validating the liposomes’ susceptibility to osmotic 

stress. Once validated, a wider range of liposomal formulations and the tonicity differences 

between the formulation and external tonicity were screened, which assisted us to choose the 

relevant drugs and tonicity differences to investigate. We then tried to optimize the 

experimental condition to better mimic the nasal environment by using the newly developed 

Permeapad® barrier and mucin. Simultaneously, more advanced liposomal formulations were 

prepared by incorporating various amounts of cholesterol, and their drug release and stability 

upon storage were evaluated. All these variables were considered important for the 

development of osmotically active liposomes for nose-to-brain drug delivery. 

 

On those grounds, in the first part of Results and discussions, the focus is put on the general 

characteristics of all LUVs dispersions prepared throughout this project. 

 

 

5.1 Characterization of liposomes (Papers I-III) 

Among the different nanoparticulate drug delivery systems proposed for nose-to-brain drug 

delivery, liposomes exhibit low toxicity to the nasal mucosa and epithelium (Li et al., 2017, 

Patel and Patel, 2017). Liposomes are promising drug carriers for brain targeting as they can 

be tailored in composition (e.g. type of lipid, dispersing medium and stabilizing agent) to 

achieve preferable characteristics (Daraee et al., 2016). The LUVs characteristics are 

important in-process controls considering the development of liposomal formulations and 
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should be determined before the formulation testing stage. In this section, LUVs characteristics 

such as the formulation tonicity, size, lamellarity, surface charge, and drug entrapment are 

discussed in the respective order. 

 

Liposomes were prepared in PBS of different tonicity (0, 65 and 300 mOsm/kg, respectively) 

to obtain LUVs with different inner core tonicity. In Paper I, we assumed that the inner core 

tonicity of LUVs would be equivalent to the tonicity of the hydrating medium used to prepare 

the LUVs. This is an iterative assumption found in the literature (Ahumada et al., 2015, Boroske 

et al., 1981, Fujiwara and Yanagisawa, 2014, Mui et al., 1993, Ohno et al., 2009, Sabin et al., 

2006). Two of the most common tonicity enhancing agents are sucrose and salt (e.g. KCl, 

NaCl). Sucrose and NaCl are suggested to slowly permeate through liposomal membranes, 

and can, therefore, create a tonicity imbalance across the liposomal bilayer (Paula et al., 1996). 

Exposing liposomes to different environmental tonicity after reconstruction generates a relative 

osmotic pressure (πrel) on the liposomal membrane. We decided to calculate the πrel following 

Equation 4.1, in agreement with a similar approach suggested by Jackman et al. (2013). As 

described by Jackman and colleagues, the sign of the osmotic pressure can be arbitrary 

(Jackman et al., 2013). In Paper I, we decided to present πrel as either positive or negative if 

the salt concentration outside the liposomes was higher or lower than the inner core salt 

concentration, respectively. 

 

To our later knowledge and rather surprisingly, liposomes acted as strong tonicity agents. The 

presence of liposomes in the formulation increased the formulation tonicity up to 400 mOsm/kg 

in comparison to the plain PBS. For instance, empty liposomes prepared in PBS65 expressed 

tonicity of approx. 410 mOsm/kg, whereas liposomes prepared with PBS300 expressed 

formulation tonicity around 700 mOsm/kg. The present findings emphasize that the buffer 

tonicity used to prepare the liposomes is not necessarily equivalent to the inner core tonicity 

of the vesicles, which should be taken into consideration when comparing studies. The 

implications of these findings concerning size and release will be later addressed in 

Sections 5.2 and 5.4. 

 

Early work in liposomes field has reported that liposomes are susceptible to osmosis 

(Bangham et al., 1965, Bangham et al., 1967) and that for liposomes smaller than 1000 nm, 

vesicles keep their spherical shape upon swelling and shrinkage (Boroske et al., 1981). To 

study the direct influence the tonicity perturbations have on the liposomal bilayer, unilamellar 

vesicles have been suggested as more suitable due to their simple membrane construction in 

comparison to multilamellar vesicles (Mui et al., 1993, Sun et al., 1986). For these reasons, 

this thesis aimed to utilize large unilamellar vesicles; therefore a modified swelling method for 
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the rapid preparation of giant unilamellar vesicles was used (Moscho et al., 1996). To confirm 

the vesicles spheroid structure, phase contrast microscopy was employed. 

 

 

Figure 5.1: Phase contrast image of empty GUVs before extrusion. The bar shows 100 µm 

(unpublished results). 

 

In Figure 5.1, the phase contrast image of empty giant unilamellar vesicles right after 

reconstruction is shown. Images of the higher resolution were unachievable with the available 

microscope in the laboratory. However, the image illustrates that the liposomes were spherical. 

 

The extrusion method was chosen to optimize the distribution and size of liposomes. The 

extrusion method was found to be a convenient and well-suited method to achieve desired 

vesicle sizes and acceptably narrow PI (<0.5) for our purposes. Photon correlation 

spectroscopy (PCS) is a commonly used technique to quantify liposomal sizes and PI in a 

dispersion. The general rule of thumb is that the PI value below 0.7 is considered acceptable, 

and PI of 0.3 for a liposomal dispersion suggests rather homogeneous size distribution (Danaei 

et al., 2018). 

 

Some of the liposomal formulations exhibited large size variations and PI, especially for the 

marker-loaded LUVs (Paper I). This illuminates some of the PCS technique’s limitations, 

including its shortage to provide information regarding the morphology and shape of the 

particles (e.g. elongated, spherical, etc.). Moreover, the aggregation of particles during the 

measurement tends to be measured as one single particle. Upon realizing that LUVs acted as 

tonicity enhancing agents, diluting the LUVs to the correct intensity before size measurements 
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might have induced small scale of liposomal swelling which might influence the size 

measurements. 

 

The determination of ζ-potential (ZP) of nanocarriers has become a standard measurement of 

liposomal characteristics. Small changes in temperature, pH, ionic strength and solvent might 

all contribute to a dramatic change in ZP (Smith et al., 2017), and therefore the same medium 

used to prepare the LUVs was used to dilute the sample before measurement. The most 

negative ZP values were observed for LUVs prepared in distilled water, and a linear 

relationship between the osmolality of the different PBS used and measured ZP could be 

observed (Papers I-II). The presence of cholesterol in the LUVs dispersions had minimal 

effects on the ZP as expected since all formulations retained neutral ZP values (Paper III). 

These results are the result of the zero net charge of phosphatidylcholine, and cholesterol 

being uncharged (Aniket et al., 2014, Li et al., 2015). 

 

The entrapment efficiency (EE) is a very important parameter during the development of 

liposomal drug delivery systems, as it can influence the available dose at the administration 

site (Bourganis et al., 2018, Khan et al., 2017). It was beyond the scope of this thesis to 

optimize the EE of the loaded liposomes, but for better comparisons, different drugs with 

different physiochemical properties were chosen to be entrapped individually into LUVs. This 

resulted in drug-loaded LUVs with a range of EE but a constant total marker/drug concentration 

of 2 mM. As expected, the EE of the LUVs dispersions were the lowest for the hydrophilic 

(caffeine and theophylline), middle for lipophilic (ibuprofen and ketoprofen) and highest for 

hydrophobic drugs (hydrocortisone and methylprednisolone) (Akbarzadeh et al., 2013, Nii and 

Ishii, 2005, Xu et al., 2012). 

 

We prepared LUVs with cholesterol to investigate its effects on drug release and stability upon 

storage. Cholesterol can be used as a stabilizing agent in liposomal formulations due to its 

steroid structure forming hydrophobic interactions with the hydrocarbon chains of the 

phospholipids (McIntosh, 1978, Milon et al., 1986). As a result, cholesterol contributes to a 

more densely packed liposomal membrane which can influence the liposomes as a carrier 

(Briuglia et al., 2015, de Gier et al., 1968). Lipophilic compounds might compete with 

cholesterol to be embedded within the lipid membrane. In this situation, the compound with 

the strongest affinity to the liposomal membrane will remain highly incorporated, thus 

influencing the EE (Ali et al., 2010). In terms of developing osmotically active liposomes, 

cholesterol might hinder the free solvent movement across the liposomal membrane (Allen 

and Cleland, 1980). Consequently, cholesterol can alter the sensitivity of liposomes to osmotic 

stress. 
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Based on these results, we managed to successfully prepare different LUVs formulations for 

different purposes throughout this study. Liposomes were prepared to exhibit various 

formulation tonicity (i.e. 410 or 700 mOsm/kg) to generate different salt concentration 

gradients with the external environment of LUVs. We prepared different LUVs comprising 

various markers, drugs, and cholesterol for a thorough screening, and comparison. In the 

following section, the results obtained to prove the LUVs osmotic activity are discussed. 

 

 

5.2 Effect of tonicity perturbations on liposomal size (Papers I-II) 

The first papers mentioning osmotic properties of liposomes were published in the 1960s by 

Bangham and colleagues, where they proved that liposomes prepared of egg-

phosphatidylcholine could retain different concentrations of univalent (e.g. K-, Na-, Cl-, I-, F-, 

NO3
-) and divalent (e.g. SO2-, HPO4

2-) ions. They also described the relationship between the 

rate of ion diffusion across liposomal bilayer as a function of the ion size and charge (Bangham 

et al., 1965, Bangham et al., 1967). Due to the slower ion diffusion rate across the liposomal 

bilayer in comparison to water molecules, water could influx or efflux the liposomes and cause 

the liposomes to shrink or swell (Bangham et al., 1967). 

 

Since then, a considerable amount of research has been carried out to investigate the 

influencing factors related to the swelling or shrinking of liposomes. Findings support that 

osmotic stress influences larger unilamellar vesicles (>100 nm) to a greater extent than smaller 

unilamellar vesicles (<100 nm) (Hallett et al., 1993, Mui et al., 1993). It has been suggested 

that unilamellar vesicles remain spherical shapes upon swelling or shrinking (Boroske et al., 

1981, Reeves and Dowben, 1970). 

 

As the liposomal composition, shape and original size can all influence the liposome sensitivity 

to tonicity perturbations, the first set of experiments focused on verifying the osmotic activity 

of the LUVs. If size changes could be detected, it would indicate the liposome susceptibility to 

solvent permeation, therefore liposomes being osmotically active. In the following section, the 

first sets of results indicating that marker-loaded LUVs are osmotically active are discussed 

(Figure 5.2). As a continuation of Paper I, the results obtained for the drug-loaded LUVs are 

presented (Figure 5.3). 

 

Exposure of unilamellar vesicles to the hypotonic environment has been reported to induce 

liposomal swelling (Mui et al., 1993, Oglecka et al., 2014), whereas exposure to hypertonic 

environment induces liposomal shrinkage (Boroske et al., 1981, Ohno et al., 2009). The 
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apparent size changes are directly dependent on the exposure time, and unilamellar vesicles 

exposed to small concentration differences (∆mOsm/kg up to 400) have shown size change 

saturation after approx. 1 hour (Fujiwara and Yanagisawa, 2014, Sun et al., 1986). For these 

reasons, we decided to monitor the LUVs for at least 70 min and the average sizes of the LUVs 

at different environment were plotted as a function of time as shown in Figure 5.2. 

 

 

Figure 5.2: Average liposomal sizes before and after exposure to the hypotonic and hypertonic 

environment. LUVs prepared in a) PBS300 and b) PBS65 were exposed to PBS65 and PBS300, 

respectively. Results represent mean ± SD (n=2). Adapted from Wu et al., 2017, with permission from 

Elsevier. 

 

In Figure 5.2, larger liposomal sizes could be detected when LUVs were exposed to a 

hypotonic environment in comparison to the isotonic environment, and the size enlargement 

became more apparent with time, reaching a plateau after 45 min. These results were in a 

good agreement with the literature (Mui et al., 1993, Oglecka et al., 2014). On the contrary to 

our presumption and literature (Boroske et al., 1981, Ohno et al., 2009), the shrinking 

behaviour of marker-LUVs after their exposure to the hypertonic environment could not be 

observed, and calcein-LUVs showed even larger sizes. 
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Deviations between our results and the literature can arise from several factors. Sabin et al. 

(2006) proposed that liposomal aggregation often affects liposomes exhibiting neutral surface. 

Furthermore, the LUVs were exposed to PBS of different osmolality, thus different amounts of 

ions that can neutralize the liposomal surfaces. The shrinking behaviour of liposomes might 

be masked by aggregated liposomes, disturbing the size detection measurements when the 

PCS technique was used. We could notice that the PI of each size measurement increased 

with time, especially for those LUVs exposed to the hypotonic environment, and, in some 

cases, the PI rose from 0.3 up to 1. This indicated that presenting the distributional results 

rather than the mean size might provide a better interpretation of the vesicle size, which was 

later implemented in Paper II. 

 

For Paper I, we calculated the πrel based on the assumption that the liposomal inner core 

tonicity was equivalent to the tonicity of the PBS used to prepare the liposomes. However, we 

later realized that the LUVs acted as the tonicity agent when in a dispersion. To the best of our 

knowledge, this phenomenon has never been reported in the literature before. If the tonicity of 

the formulation is representing the liposomal inner core tonicity, Figure 5.2 can be 

reinterpreted. What was earlier assumed to be a hypertonic environment in Figure 5.2b will, in 

fact, be a low-hypotonic environment (∆mOsm/kg assumed to be approx. 100). This better 

explains the size enlargements observed for calcein-LUVs and the lack of size decrements of 

empty- and rhodamine-LUVs. Rhodamine is a lipophilic marker (logD7.4 of 2.3 (Toropainen et 

al., 2001)) that incorporates itself in the liposomal bilayer, contributing to the stabilization of 

the vesicle membrane. Consequently, rhodamine-LUVs might be less sensitive to osmotic 

stress. Calcein is a hydrophilic marker (logD7.4 of -3.3 (Maherani et al., 2013)) which is localized 

in the aqueous inner core. As seen in Table 3 (Paper I), the calcein-LUVs expressed a more 

neutral ZP (-2.8 mV) than empty-LUVs (-12 mV) indicating that calcein can be adsorbed onto 

the vesicle surfaces. As this might contribute to a relatively neutral liposomal membrane, this 

might enhance the liposomal osmotic sensitivity. Water permeation across liposomal 

membranes has been reported to be the highest for the positively charged membranes, middle 

for the uncharged, and the lowest for the negatively charged (Allen and Cleland, 1980, 

Bangham et al., 1967, Biondi et al., 1991). 

 

To provide deeper insight into the findings in Paper I, we decided to proceed with a more 

detailed screening of six drug-loaded LUVs formulations. Instead of using the πrel as in Paper I, 

we used the ∆mOsm/kg. The ∆mOsm/kg was determined as the difference between the 

measured osmolality of LUVs formulation and the exposing PBS. In Figure 5.3, the size 

distributions of all drug-loaded LUVs taken at different time points and environment are 

represented. 
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Figure 5.3: Size distributions of drug-loaded LUVs in a) isotonic, b) low-hypotonic, and c) hypotonic 

environment (∆mOsm/kg of 3±2, 419±19, and 648±19, respectively). Each line represents the mean 

size distribution (n=2) measured at five different time points within 90 min. Adapted from Wu et al., 

2019b, with permission from Elsevier. 

 

In agreement with the findings in Paper I, the drug-loaded LUVs exhibited size enlargement 

when exposed to hypotonic environment. Based on the distributional curves, no lysis of LUVs 

could be observed, even up to the maximum osmolality difference between the LUVs 

formulation and external tonicity (∆mOsm/kg around 650). Earlier reports have indicated that 

the maximum difference in the concentration LUVs can withstand before lysis strongly depends 

on the phospholipid used to prepare the liposomes. For instance, LUVs of egg-
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phosphatidylcholine and cholesterol (approx. 50% mol/mol) rupture at ∆mOsm/kg greater than 

650 (Mui et al., 1993) while LUVs of dioleoylphosphatidylcholine rupture at ∆mOsm/kg of 2000 

(Alam Shibly et al., 2016). The obtained data verified that the increment in liposomal size 

correlated with the degree of difference between the inner and external environment of LUVs. 

It was, therefore, interesting to see if tonicity perturbations could alter the release kinetics from 

the liposomes. 

 

Before discussing the drug release from liposomes, it is important to point out that currently 

there is no standard method to determine the release from liposomes (Nothnagel and Wacker, 

2018, Wacker, 2017). The common methods utilize techniques such as filtration, 

ultracentrifugation, or solid phase extraction to separate the free unentrapped drug from 

liposomal drug (Nothnagel and Wacker, 2018). The common limitation associated with these 

techniques is the risk of disrupting the nanocarrier due to exposure to mechanical forces during 

the separation procedure (Solomon et al., 2017). 

 

In the present study, we used the Franz diffusion cell set-up to study release from the 

liposomes. This method relies on the drug’s ability to diffuse across a barrier that separates 

the donor and acceptor compartment. Due to lower risk of exposure to mechanical forces, this 

method is considered to be more gentle and is currently one of the preferred methods to study 

drug release from liposomes (Solomon et al., 2017). The downside of the method is that drug 

needs to diffuse through several physical barriers before reaching the acceptor compartment. 

One way to adjust for this is to compare the release profile of a liposomal formulation with a 

reference diffusion of free drug solution (Nothnagel and Wacker, 2018, Wacker, 2017). For 

this reason, before going deeper into the release from liposomes, a short discussion on the 

experimentally collected diffusion data for marker and drug solutions is presented. 
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5.3 Diffusion study with solutions (Papers I-III) 

The markers and drugs were prepared individually in a buffer solution of 65 or 300 mOsm/kg 

tonicity (PBS65 or PBS300, respectively) as represented in Table 5.1. 

 
Table 5.1. Apparent permeability coefficient (Papp) and total permeated marker/drug from free solution 

through regenerated cellulose barrier. Results represent mean ± SD (n≥3). Adapted from Wu et al. 

2017, Wu et al. 2019a and Wu et al. 2019b, with permission from Elsevier. 

Reproduced from Marker/drug PBS 
Papp 

(10-5 cm/sec) 
Total permeated after 

4 hours (%) 

Paper I 

Calcein 
65 0.68 ± 0.06 37.10 ± 7.80 

300 0.90 ± 0.07 46.97 ± 4.17 

Rhodamine 
65 1.55 ± 0.06 83.06 ± 2.61 

300 1.61 ± 0.11 86.22 ± 3.68 

Paper II 

Caffeine 
65 6.18 ± 0.13 63.08 ± 0.94 

300 6.10 ± 0.20 63.90 ± 1.58 

Theophylline 
65 6.34 ± 0.19 65.96 ± 2.59 

300 6.25 ± 0.27 64.66 ± 1.39 

Ketoprofen 
65 4.43 ± 0.16 46.75 ± 1.30 

300 4.82 ± 0.27 51.37 ± 2.68 

Ibuprofen 
65 4.69 ± 0.29 49.25 ± 3.33 

300 4.60 ± 0.34 48.56 ± 3.50 

Hydrocortisone 
65 5.25 ± 0.59 59.24 ± 4.28 

300 4.53 ± 0.33 51.79 ± 3.93 

Methylprednisolone 
65 4.96 ± 0.41 62.39 ± 7.19 

300 4.48 ± 0.67 54.15 ± 7.39 

Paper IIIa 
Caffeine 65 2.79 ± 0.14 32.09 ± 1.61 

Hydrocortisone 65 1.12 ± 0.09 15.23 ± 2.18 
aPermeapad® barrier. 

 

As highlighted in Table 5.1, we used the regenerated cellulose barrier in the first two papers 

(Papers I-II), whereas in Paper III we additionally used the innovative biomimetic Permeapad® 

barrier as a diffusion barrier. If we first look at the findings reported in Paper I, we can see that 

the Papp values for marker solutions were greater in PBS300 in comparison to PBS65, whereas 

opposite trends were found for the drug solutions in Paper II. This might be related to the Franz 

diffusion cell set-up where marker or drug in the donor compartment diffuse one-sidedly across 

a diffusion barrier before being collected in the acceptor compartment. Diffusion data obtained 

using this experimental set-up are sensitive to barrier-related influences (Brandl et al., 2007, 

Brodin et al., 2010). For instance, ions and charged molecules can interact with the barrier, 

and influence the barrier’s susceptibility to permeation (Benavente, 1984). It has been reported 

that regenerated cellulose exhibits slightly negative surface charge, and allows neutral 

molecules rather than charged molecules to permeate (Benavente, 1984, Coday et al., 2015). 

Both markers used in this study are strongly ionized at pH 7.4 (pKa of 1.8 and 3.1 for calcein 
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and rhodamine, respectively) (Flaten et al., 2006, Pittman et al., 2001), whereas ketoprofen 

and ibuprofen ionize at pH>4.5 and 4.9, respectively (PubChem, 2019c, PubChem, 2019b). 

We believe that the greater fluctuations in Papp values of marker solutions correlate with the 

considerably greater number of dissociated ions at experimental pH, thus influencing the 

permeation through regenerated cellulose barrier in comparison to the drugs. 

 

In Table 5.1 it can be observed that the Permeapad® was a more restrictive barrier allowing 

less drug to diffuse in comparison to the regenerated cellulose barrier. The regenerated 

cellulose barrier is a low retention barrier allowing molecules to diffuse across as long as a 

concentration gradient is retained (Bartels et al., 2005, Benavente, 1984, Nothnagel and 

Wacker, 2018). On the other hand, the biomimetic Permeapad® barrier consists of a lipid layer 

in between two support sheets (di Cagno and Bauer-Brandl, 2014). When the barrier comes 

in contact with an aqueous solution, the lipid layer is assumed to create tightly packed vesicles 

mimicking the structure of biological membranes (di Cagno et al., 2015), thus the Permeapad® 

barrier represents a thicker barrier that can provide higher retention to drug permeation. 

 

These data indicate that the PBS (e.g. pH, tonicity) plays a major role in the diffusion across 

barriers, as well as the type of the diffusion barrier used. It emphasizes the importance of 

selecting the correct conditions as a reference to interpret release from liposomes, as small 

variations in the experimental set-up can have a considerable effect on the Papp. For this 

reason, we ensured that the reference experiment was performed in the respective PBS used 

in the formulation. In the following section, a relationship between the tonicity perturbation and 

changes in release kinetics from liposomes are discussed in more details (Papers I-II). 

 

 

5.4 Tonicity perturbation and liposomal release (Papers I-III) 

As shown and discussed in the previous section (Section 5.2), we verified that the LUVs were 

osmotically active, and we suspected that tonicity perturbations might as well influence the 

drug release from liposomes (Ahumada et al., 2015, Ohno et al., 2009, Wolfram et al., 2014). 

 

In the earliest reports, water or ion permeation changes across the liposomal membrane for 

shrunken or swollen liposomes consisting of synthetic or natural origin phosphatidylcholine 

have been extensively described (Abuin et al., 1995, Bangham et al., 1967, Biondi et al., 1991, 

Paula et al., 1996, Polozov et al., 2001). Attempts in controlling the liposomal leakage under 

their exposure to osmotic stress have also been tried using cholesterol, PEGylation, and 

surfactants (Allen and Cleland, 1980, Cipolla et al., 2014, Leite et al., 2018, Milon et al., 1986, 
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Wolfram et al., 2014). In more recent years, the burst and pulsating leakage from giant 

unilamellar vesicles have been observed when liposomes were exposed to the extreme 

hypotonic environment (∆mOsm/kg >2000) (Alam Shibly et al., 2016, Chabanon et al., 2017, 

Oglecka et al., 2014). In spite of the efforts put in preventing leakage from liposomes upon 

osmotic stress, rather few studies have tried to investigate if osmotic stress can be used to 

control the release from liposomes. An explanation might be that the currently marketed 

liposomal products are developed for parenteral routes (Bulbake et al., 2017, Choi and Han, 

2018). We agree that for parenteral routes, the tonicity perturbations will be rather irrelevant 

due to the body homeostasis. Moreover, immunogenicity, opsonisation and reticuloendothelial 

system are more common challenges the liposomes are facing when administered parenterally 

(Sercombe et al., 2015). 

 

As previously discussed in Section 1.3, the nasal epithelium provides a great platform for drug 

absorption to the brain overcoming the BBB and systemic side effects (Erdő et al., 2018, Khan 

et al., 2017, Patel and Patel, 2017). However, most of the nasal epithelium is covered with 

nasal mucus, which creates a large obstacle to efficient drug absorption. The nasal mucus 

directly captures inhaled drugs, which can challenge the drug’s stability and permeability 

across the mucus layer (Ghadiri et al., 2019). It becomes even more complex when the nasal 

mucus is exposed to constant change due to direct contact with the peripheral environment. 

The changes in either humidity, temperature, lifestyle (e.g. cigarette smoking) and nasal 

condition (e.g. inflammation, rhinitis, sinusitis) are all associated with changed mucociliary 

clearance rate, nasal mucus rheology as well as tonicity exploited in the nasal cavity (Pedersen 

et al., 2007, Quraishi et al., 1998, Taherali et al., 2018). For these reasons, it is necessary to 

take into account the possibility of osmotic influences when developing liposomes for nose-to-

brain drug delivery. It would be even greater if osmotic stress can be utilized to direct the 

release from liposomes. 

 

In this project, the mass transport across the diffusion barrier was monitored over time, and 

the accumulated diffused amount was analysed to predict the release kinetics from liposomes. 

In Paper I, the changes of fluorescent marker release from liposomes were determined by 

monitoring the marker flux across the regenerated cellulose barrier as a function of change in 

πrel (see Figure 3 in Paper I). From the data, it was evident that the release was changing more 

drastically for calcein-LUVs than for rhodamine-LUVs, presumably due to the marker’s 

localization inside the LUVs and its solubility. 

 

To our later knowledge, the presence of LUVs changed the formulation tonicity with an 

increase of approx. 350-400 mOsm/kg. Even though we did not exactly measure the marker-
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loaded LUVs formulations used for the diffusion study, measurement of empty liposome 

formulations in PBS65 and PBS300 suggests that the initial tonicity should have been approx. 

410 or 700 mOsm/kg, respectively. If reanalysing the marker-loaded LUVs release data, 

assuming that the tonicity of the LUVs formulation was representing the liposomal inner core 

tonicity, all the LUVs formulations were probably exposed to different degrees of hypotonicity. 

In Figure 5.4, the flux in a different environment as a function of ∆mOsm/kg is displayed. With 

a new representation of the diffusion data, the conclusions made in Paper I remain the same, 

however, we could postulate more on the findings. 

 

 

Figure 5.4: Flux (j) under the influence of hypotonic environmental changes. Results represent 

mean ± SD (n=3), and a statistically significant difference in j (*p≤0.050, **p≤0.010, ***p≤0.001) between 

the highlighted bars. Adapted from Wu et al., 2017, with permission from Elsevier. 

 

As already mentioned, calcein is a hydrophilic marker (Maherani et al., 2013). It is by now 

generally accepted that solvent influx into the LUVs can cause the liposomes to swell, thus 

stretching the liposomal membrane, and allowing more of the entrapped content to be released 

(Ahumada et al., 2015, Alam Shibly et al., 2016, Allen and Cleland, 1980, Ertel et al., 1993). 



 Results and discussions  

58 

As it can be seen from Figure 5.4a-b, we repeatedly saw that the flux of calcein is decreasing 

with an increasing degree of hypotonic exposure. These findings might be related to the 

direction of solvent migration. As the marker concentration gradient across the liposomal 

bilayer can be disturbed due to the solvent influx, it seems possible that a decrease in the 

release can occur, especially for hydrophilic compounds. On the contrary, rhodamine is a 

lipophilic drug that is highly incorporated within the liposomal bilayer. The rhodamine-LUVs 

were somehow less sensitive to environmental changes since smaller variations in flux were 

found in comparison to calcein-LUVs. These results correspond well with previous studies, 

where compounds incorporated into the liposomal bilayer increase the membrane rigidity, thus 

decreasing sensitivity to osmotic influences (Ali et al., 2010, Leite et al., 2018). 

 

We also observed that the calcein flux across the diffusion barrier for the LUVs formulation 

prepared in PBS300 was higher than for LUVs prepared in PBS65. Again, the diffusion seemed 

to be highly influenced by the presence of ions, similarly to the data obtained from solutions 

that have already been discussed in Section 5.3. 

 

A more insightful way to report in vitro diffusion data is using the permeability across a barrier 

(namely, Papp), or R (inverse of Papp) instead of the mass flux (j) (Baker et al., 2010). In Paper II, 

the focus was to achieve a more detailed screening of the influences the hypotonic 

environment had on the drug release from liposomes. Since we could see in Paper I that the 

hydrophilic marker was more susceptible to tonicity changes in comparison to lipophilic marker, 

six different drugs with different logD7.4 were chosen to be entrapped individually into LUVs. 

The tonicity difference between the LUVs and external environment was reported as 

∆mOsm/kg instead of the πrel for simplicity. Moreover, the RL calculations were implemented, 

and the obtained results are represented in Figure 5.5. 
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Figure 5.5: Resistance to drug transport through liposomal bilayer (RL) under the influence of hypotonic 

environmental changes. Results represent mean ± SD (n=4), and a statistically significant difference in 

RL (*p≤0.050, **p≤0.010 and ***p≤0.001) when compared to the isotonic environment. Adapted from Wu 

et al., 2019b, with permission from Elsevier. 

 

As highlighted by Figure 5.5, the RL obtained for the different LUVs formulations in an isotonic 

environment (∆mOsm/kg approx. 0) expressed the lowest values for the hydrophilic drugs 

(caffeine and theophylline) and the highest for the hydrophobic drugs (hydrocortisone and 

methylprednisolone). The higher RL for hydrophobic compounds in comparison to hydrophilic 

compounds is not surprising since the hydrophobic compounds are tightly incorporated within 

the liposomal bilayer and will experience more difficulties to become released. A linear 



 Results and discussions  

60 

correlation could be found between the RL and the different degrees of hypotonic environment, 

and a significant drop in RL (p<0.05) could be observed for all of the formulations at ∆mOsm/kg 

around 300 mOsm/kg. Decreasing RL values indicate that more drug permeates the liposomal 

bilayer when the vesicles swell. Interestingly, an increase in RL could be observed at 

differences lesser than 300 mOsm/kg for caffeine and theophylline. These results demonstrate 

two things. First, hydrophilic compounds are highly influenced by solvent flux direction probably 

due to their hydrophilic nature. These findings are directly in line with our previous findings 

(Paper I). Second, when large enough difference is created between the LUVs and the external 

environment (∆mOsm/kg around 300), the release from liposomes for both hydrophilic and 

hydrophobic compounds will overrule the effect of solvent influx. 

 

The present findings confirmed that changes in tonicity (within nasal environment) can be used 

to alter the release from LUVs. However, both Papers I and II have been casting more light on 

LUVs exposed to a hypotonic environment, and not addressing hypertonic environmental 

influences as thoroughly. Sun et al. (1986) suggested that tonicity induced liposomal shrinking 

is often more complexed than liposomal swelling. To get a deeper understanding of the release 

from swollen and shrunken liposomes, we decided to test all formulations in both hypotonic 

and hypertonic environment. We also decided to focus on the development at: i) formulation 

level, ii) experimental set-up level, and iii) data interpretation level, which will be more closely 

discussed in the next sections. 

 

 

5.5 The effect of liposomal composition on drug release (Paper III) 

Based on the findings so far, the LUVs seemed to be responsive to osmotic stress when the 

difference between LUVs and external environment showed a ∆mOsm/kg of 300. For 

simplicity, we prepared all LUVs formulations in PBS65 to obtain dispersions with tonicity 

around 400 mOsm/kg to be used in both environment. We chose to focus on one hydrophilic 

(caffeine) and one lipophilic (hydrocortisone) drug to be entrapped into LUVs with various 

amounts of cholesterol incorporated in the liposomal bilayer (up to 25% w/w). 

 

Cholesterol is a component in most of the currently available marketed liposomal products 

(Bulbake et al., 2017), and also within the liposomal formulations designed for nose-to-brain 

drug delivery (see Table 1.3). Early liposomal research showed that the increase of cholesterol 

content within the liposomal bilayer was correlated with a decrease in membrane elastic 

properties, thus influencing the permeability of water and small molecules through the 

liposomal bilayer (Allen and Cleland, 1980, McIntosh, 1978). The incorporation of cholesterol 
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into liposomal bilayers has shown to delay the release of both hydrophilic and lipophilic 

compounds from liposomes (Ali et al., 2010, Briuglia et al., 2015, Grit and Crommelin, 1993). 

With the manipulation of the phospholipid and cholesterol content, liposomes can be altered 

to exhibit favourable drug release profiles (Briuglia et al., 2015). It has been estimated that 

liposomes consisting of phosphatidylcholine can incorporate up to 50% w/w cholesterol 

(Sułkowski et al., 2005). Therefore, the release of the liposomal drug (localized either in the 

aqueous core or in liposomal bilayer) was examined by preparing LUVs with various amounts 

of incorporated cholesterol (up to 25% w/w). 

 

All the results for cholesterol-containing liposomes experiments are summarized in 

Figures 5.6-5.8. The in vitro diffusion studies were performed employing different diffusion 

barriers; a synthetic (regenerated cellulose) and a biomimetic (Permeapad®). Synthetic 

barriers (e.g. regenerated cellulose) are convenient and cost-effective and are often preferred 

in the early stage of drug development. However, the synthetic barriers do not include/consider 

the lipid effect which plays a major role in all biological tissues, including the nasal epithelium. 

For this reason, we decided to use the newly developed biomimetic Permeapad® barrier due 

to its higher similarity to the nasal epithelium (di Cagno et al., 2015). Moreover, Permeapad® 

barriers have shown good reproducibility, stability at a wide range of pH, and tolerance to 

different surfactants and co-solvents (Bibi et al., 2015, Bibi et al., 2016). With a relatively long 

shelf life (1 year), the Permeapad® barriers are handy, requiring no hydration or cutting before 

use, which is often required for the synthetic diffusion barriers. 

 

As a continuation of Paper II, we calculated the RL values for the various formulations, diffusion 

barriers, and external environment as it can be seen in Figure 5.6. The RL values were 

calculated by normalizing with the reference experiment involving free drug solution using the 

method established in Paper II. 
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Figure 5.6: Resistance to drug transport through liposomal bilayer (RL) of LUVs comprising a) caffeine, 

b) hydrocortisone, and various amounts of cholesterol (0-25% w/w). The regenerated cellulose and 

Permeapad® barriers were used as diffusion barriers. LUVs were exposed to isotonic, hypotonic, and 

hypertonic environment (∆mOsm/kg of 0, -300, and 300 between LUVs formulation and external 

environment, respectively). Results represent the mean ± SD (n=3), and a statistically significant 

difference in RL (*p≤0.050, **p≤0.010, ***p≤0.001) between the highlighted bars. Adapted from Wu et 

al., 2019a, with permission from Elsevier. 

 

As illustrated in Figure 5.6, the external environment plays an essential role in RL. The lowest 

RL values were found in a hypotonic and the highest values for the hypertonic environment. 

Lower RL indicates a higher release from the liposomes. Even though the liposomal size 

changes in the different environment were not carried out for these formulations, a clear 

indication of the relation between the release changes and the liposomal swelling and shrinking 



 Results and discussions  

63 

in the hypotonic or hypertonic environment, respectively, can be seen. These findings are in 

great accordance with our earlier reports (Papers I-II), and important for the understanding of 

the release kinetics from liposomes. Interestingly, the RL trends could be observed 

independently of the amount of incorporated cholesterol and the diffusion barrier used. 

However, the RL with respect to the different environment fluctuated less for the formulations 

with 25% w/w cholesterol, or if the Permeapad® barrier was used. Other reports also confirm 

the negative effect the increasing levels of cholesterol have on the release from liposomes (Ali 

et al., 2010, Allen and Cleland, 1980, Briuglia et al., 2015). The differences between 

regenerated cellulose and Permeapad® barriers might be related to the different ion transport 

rate through the diffusion barriers. Previous observations of filling the acceptor compartment 

to a Franz cell with distilled water, and the donor compartment with PBS300 has shown ion 

diffusing across the regenerated cellulose barrier with almost twice as fast rate as compared 

to the rate across the Permeapad® barrier (43 vs 26 mOsm/kg hour, unpublished results). 

 

We noticed in Paper II that the drug diffusion profiles showed deviation from linearity over time, 

especially for the LUVs exposed to osmotic stress. Ali et al. (2010) have also reported similar 

observations, where the drug release profile of several lipophilic drugs changed from zero 

order to first order profile for cholesterol-containing liposomes. In Paper II, we only used the 

linear part of the curve to calculate the RL (the first 2.5 hours). This is a rather precarious 

assumption as relatively few data points are proving its linearity. Hence, a non-linear 

regression approximation was introduced in Paper III to elaborate on the collected diffusion 

data. The Korsmeyer-Peppas model was chosen as it could fit a larger portion of the collected 

experimental data (Mt/M∞ up to 60%). Moreover, it can provide information related to the 

structural characteristics of the nanocarrier (transport constant, K), and the release mechanism 

from the nanocarrier (transport exponent, n). 

 

The experimentally obtained diffusion data were fitted to the Korsmeyer-Peppas equation 

(Equation 1.10), and the predicted curve showed a good fit with the experimental data (R2 

≥0.96). The slope of the fitted curve represents the K and describes the constant drug diffusion 

across a barrier. The higher K the higher release from liposomes can be assumed. In 

Figure 5.7, all the K obtained for the various LUVs formulations are represented. 
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Figure 5.7: Transport constant (K) of LUVs comprising a) caffeine, b) hydrocortisone, and various 

amounts of cholesterol (0-25% w/w). The regenerated cellulose and Permeapad® barriers were used as 

diffusion barriers. LUVs were exposed to isotonic, hypotonic, and hypertonic environment (∆mOsm/kg 

of 0, -300, and 300 between LUVs formulation and external environment, respectively). Results 

represent the mean ± SD (n=3), and a statistically significant difference in K (*p≤0.050, **p≤0.010, 

***p≤0.001) between the highlighted bars. Adapted from Wu et al., 2019a, with permission from Elsevier. 

 

As seen in Figure 5.7, a trend starting from the highest K for hypotonic, middle for isotonic, 

and lowest for hypertonic environment could be observed. As higher K indicates a higher 

release, the trend of K should exhibit the opposite trend of RL (Figure 5.6) if zero order data 

treatment was the optimal approach. As implied, differences were observed especially for the 

LUVs formulations containing cholesterol and when using Permeapad® as a diffusion barrier. 
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This indicates that the cumulative released drug was elapsing with time, and confirms the 

necessity of a non-linear regression model. Further, changes in K were generally smaller for 

Permeapad® in comparison to regenerated cellulose as a diffusion barrier. Regenerated 

cellulose barrier (due to its low retention to drug diffusion) might therewith be excellent in 

detecting formulation-related diffusional changes. On the other hand, it might not provide the 

best in vitro/in vivo correlations as the diffusion trends obtained using the regenerated cellulose 

barrier were rather different from results obtained using a more biomimetic barrier. 

 

In regards to transport exponent n, the order of the curve describes the release mechanism 

from the liposomes. As a recap to the previous section (Section 1.7), if the drug release is only 

controlled by Fickian diffusion, a graph of cumulative percentage of released drug vs square 

root of time will originate a straight line (n≤0.5). On the other hand, no linear relationship gives 

n>0.5 and indicates a non-Fickian-controlled diffusion mechanism (Costa and Sousa Lobo, 

2001, Jain and Jain, 2016). In Figure 5.8, all the obtained n are represented. Generally, lower 

n values could be observed for the caffeine experiments (Figure 5.8a) in comparison to the 

hydrocortisone experiments (Figure 5.8b). This indicates that the release of caffeine was more 

indicating a Fickian-controlled diffusion mechanism in comparison to hydrocortisone, which 

might be explainable by different lipophilicity and solubility. 
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Figure 5.8: Transport exponent (n) of LUVs comprising a) caffeine, b) hydrocortisone, and various 

amounts of cholesterol (0-25% w/w). The regenerated cellulose and Permeapad® barriers were used as 

diffusion barriers. LUVs were exposed to isotonic, hypotonic, and hypertonic environment (∆mOsm/kg 

of 0, -300, and 300 between LUVs formulation and external environment, respectively). Results 

represent the mean ± SD (n=3), and a statistically significant difference in n (*p≤0.050, **p≤0.010, 

***p≤0.001) between the highlighted bars. Adapted from Wu et al., 2019a, with permission from Elsevier. 

 

For the experiments carried out utilizing regenerated cellulose barrier, most of the obtained n 

was between 0.5 and 1, which describes both Fickian- and non-Fickian-controlled diffusion 

mechanisms (Figure 5.8). This was expected as the liposomal barrier (a boundary layer) may 

influence the passive diffusion across a diffusion barrier. The caffeine experiments involving 

liposomes incorporating various amounts of cholesterol showed the lowest n in hypotonic and 

higher n in isotonic/hypertonic environment. Lower n indicates a more Fickian-controlled drug 
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release. In other words, the boundary layer which the liposomal carrier originally represented 

was affecting less the liposomal release when liposomes became more stretched in a 

hypotonic environment. The n values for hydrocortisone-LUVs were generally higher than for 

the caffeine-LUVs, and the n varied less according to environmental changes. These results 

are in agreement with the drug’s lipophilicity, and the findings in Papers I and II, as previously 

discussed. Another important finding was that n was the closest to 1 for the experiments 

carried out using Permeapad® barrier. Hydrocortisone-LUVs with 11 and 25% w/w cholesterol 

showed n greater than 1, indicating that the liposomes enhanced the drug transport across the 

diffusion barrier. The possible explanations could be the liposomes affinity for the Permeapad® 

barrier or the presence of cholesterol (Leite et al., 2018). Compared to the LUVs formulations 

without cholesterol, the presence of cholesterol in liposomal bilayer seems to provide superior 

diffusion across the Permeapad® barrier. 

 

In summary, these data demonstrate how the release from liposomes can be manipulated by 

careful tailoring of the lipid and cholesterol content of liposomes. Both linear and non-linear 

regression models should be used to achieve a more accurate interpretation of the diffusion 

data. The Korsmeyer-Peppas model was, in comparison to the zero order approach, more 

timesaving since it did not require reference experiments using drug solutions to normalize the 

data. Diffusion data for LUVs under osmotic stress fitted well with the Korsmeyer-Peppas 

model and gave equal to or better results than the currently accepted for the linear regression 

approximation. Different diffusion profiles could be observed when utilizing the regenerated 

cellulose and Permeapad® barriers. While the low retention diffusion barrier allows monitoring 

of release changes on the formulation level, the Permeapad® barrier recognized the lipid and 

retention effect, which are highly relevant considering the net transport across biological 

barriers. Due to the great differences in drug diffusion between the synthetic and biomimetic 

barrier, we wanted to introduce mucin to our experiments to further mimic the nasal 

environment and determine the influence of the mucin presence on the release from 

liposomes. 

 

 

5.6 The effect of mucin on drug permeation (preliminary results) 

In the first part of experiments involving mucin, we needed to select the mucin concentration 

to use in our experiments. In the literature, 1 mg/mL mucin dispersions have been used to 

study the binding of liposomes to mucin (porcine stomach type III) intended for nasal 

administration (Chen et al., 2013, Qiang et al., 2012). Using this as a reference, we screened 

mucin dispersions at concentrations ranging from 0.1 to 1.9 mg/mL. We found out that 
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1 mg/mL was the highest mucin concentration achievable without altering the original PBS 

tonicity. A representation of the measured osmolality and pH of PBS before and after the 

addition of mucin are shown in Table 5.2. 

 

Table 5.2: Experimentally determined osmolality and pH of the prepared PBS and mucin dispersions 

used for the in vitro diffusion study with mucin present. Results represent mean ± SD (n≥2). 

 
 

  PBS 
Mucin dispersion 

(1 mg/mL) 

LUVs 

Cholesterol 

(% of lipid 

weight) 

Osmolality 

of LUVs 

(mOsm/kg)a 

PBS 

type 

Osmolality 

(mOsm/kg)a 
pHa 

Osmolality 

(mOsm/kg) 
pH 

Caffeine 

0 420 ± 11 

Hypo 119 ± 10 7.5 ± 0.1 123 ± 19 7.5 ± 0.0 

Iso 418 ± 10 7.3 ± 0.0 422 ± 24 7.3 ± 0.0 

Hyper 718 ± 12 7.2 ± 0.0 727 ± 19 7.2 ± 0.0 

11 392 ± 12 

Hypo 95 ± 16 7.6 ± 0.0 73 ± 3* 7.6 ± 0.0 

Iso 386 ± 5 7.3 ± 0.0 363 ± 3*** 7.3 ± 0.0 

Hyper 693 ± 23 7.2 ± 0.0 663 ± 6* 7.2 ± 0.0 

25 388 ± 4 

Hypo 88 ± 8 7.5 ± 0.0 90 ± 5 7.5 ± 0.0 

Iso 393 ± 4 7.3 ± 0.0 380 ± 5** 7.3 ± 0.0 

Hyper 692 ± 8 7.2 ± 0.0 650 ± 10*** 7.2 ± 0.0 

Ketoprofen 0 394 ± 7 

Hypo 95 ± 5 7.6 ± 0.0 91 ± 5 7.5 ± 0.0 

Iso 394 ± 7 7.4 ± 0.0 390 ± 13 7.3 ± 0.0 

Hyper 695 ± 5 7.2 ± 0.0 675 ± 14* 7.1 ± 0.0 

Hydro-

cortisone 

0 383 ± 5 

Hypo 85 ± 5 7.6 ± 0.0 83 ± 8 7.6 ±  0.0 

Iso 385 ± 5 7.3 ± 0.0 359 ± 9*** 7.3 ± 0.0 

Hyper 685 ± 5 7.2 ± 0.0 667 ± 17 7.2 ± 0.0 

11 405 ± 5 

Hypo 105 ± 5 7.6 ± 0.0 105 ± 16 7.6 ± 0.0 

Iso 405 ± 5 7.3 ± 0.0 402 ± 13 7.4 ± 0.0 

Hyper 705 ± 5 7.2 ± 0.0 703 ± 15 7.2 ± 0.0 

25 383 ± 19 

Hypo 86 ± 16 7.6 ± 0.0 85 ± 5 7.6 ± 0.0 

Iso 385 ± 16 7.3 ± 0.0 380 ± 11 7.4 ± 0.0 

Hyper 687 ± 15 7.2 ± 0.0 685 ± 5 7.2 ± 0.0 

A statistically significant difference in osmolality (*p≤0.050, **p≤0.010, ***p≤0.001) between PBS before and 

after addition of mucin. 

aAdapted from Wu et al. 2019a, with permission from Elsevier. 

 

As demonstrated in Table 5.2, the osmolality of the PBS after the addition of mucin varied 

more, and, in some cases, caused a significant alteration of the PBS tonicity. These changes 

are rather hard to explain as the same batch of mucin was used during the whole study. The 

changes might be related to the biological origin of mucin, or possibility that mucin influence 

the readings of the osmometer. To limit mucin degradation upon storage, the mucin 

dispersions were always used within 7 days after original preparation. 
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To understand the influence of mucin on drug diffusion across diffusion barriers, reference 

experiments were carried out similarly to those established in Papers II and III. The Papp of 

marker/drug solutions determined without the presence of mucin are already discussed in 

Section 5.3. To investigate mucin’s effect on drug diffusion across the different diffusion 

barriers, we carried the diffusion study of drug solutions in the presence of mucin, and the 

results are summarized in Table 5.3. 

 

Table 5.3: Apparent permeability coefficient of drug solutions in the presence of mucin (Papp
m). Results 

represent mean ± SD (n≥2). 

  Absence of mucin Presence of 0.4 mg/mL mucin  

Drug PBS 
Papp 

(10-5 cm/sec) 
Papp

m
 

(10-5 cm/sec) 
Total permeated 
after 4 hours (%) 

Papp-Papp
m 

(10-5 cm/sec) 

Caffeine 
65 a 6.18 ± 0.13c 5.78 ± 0.89 85.70 ± 18.78 -0.4 

65b 2.79 ± 0.14c 3.49 ± 0.11 35.79 ± 0.95 0.7 

Ketoprofen 
65 a 4.82 ± 2.48 4.43 ± 0.33 70.77 ± 17.88 -0.4 

65b 1.18 ± 1.98 1.32 ± 0.02 13.80 ± 0.81 0.1 

Hydrocortisone 
65 a 5.25 ± 0.59c 3.34 ± 0.80 52.03 ± 6.08 -1.9 

65b 1.12 ± 0.09c 1.18 ± 0.36 14.24 ± 3.23 0.1 
aRegenerated cellulose barrier. 

bPermeapad® barrier. 

cPapp replotted from Table 5.1. 

 

As highlighted in Table 5.3, the Papp
m values determined in the presence of mucin were lower 

than the Papp values in the experiments utilizing the regenerated cellulose barrier as a diffusion 

barrier (Papp
m<Papp). The opposite trend was found when the Permeapad® barrier was used 

(Papp
m>Papp). These findings indicate that mucin plays a major role in the drug diffusion across 

barriers, and different diffusion trends can be observed based on the type of the diffusion 

barrier used. These data emphasize the importance of selecting the correct reference 

experiment, as small changes in the experimental set-up can result in large variations in Papp 

or Papp
m, and lead to misleading interpretations of the release from liposomes (Jain and Jain, 

2016, Modi and Anderson, 2013). We decided to use the reciprocal function of Papp
m to 

calculate the RL for experiments performed in the presence of mucin. The obtained RL values 

for caffeine- and hydrocortisone-LUVs are represented in Figure 5.9. 
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Figure 5.9: Resistance to drug transport through liposomal bilayer (RL) of LUVs comprising a) caffeine, 

b) hydrocortisone, and various amounts of cholesterol (0-25% w/w). A total of 0.12 mg mucin was added 

on top of the regenerated cellulose and Permeapad® barriers. LUVs were exposed to isotonic, 

hypotonic, and hypertonic environment (∆mOsm/kg of 0, -300, and 300 between LUVs formulation and 

external environment, respectively). Results represent the mean ± SD (n=3), and a statistically 

significant difference in RL (*p≤0.050, **p≤0.010, ***p≤0.001) between the highlighted bars. 

 

The RL showed a similar trend to one observed for the experiments without mucin (Figure 5.6), 

indicating that the LUVs remained osmotically active even in the presence of mucin. The LUVs 

formulations without cholesterol showed the greatest differences in RL values between the 

results obtained using regenerated cellulose and Permeapad® barriers, whereas the presence 

of cholesterol in liposomal bilayers reduced these differences. To ensure that the zero order 

approximation is applicable, we also applied the Korsmeyer-Peppas model to fit our 
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experimental data. The obtained K and n are represented in Figures 5.10 and 5.11, 

respectively. 

 

 

Figure 5.10: Transport constant (K) of LUVs comprising a) caffeine, b) hydrocortisone, and various 

amounts of cholesterol (0-25% w/w). A total of 0.12 mg mucin was added on top of the regenerated 

cellulose and Permeapad® barriers. LUVs were exposed to isotonic, hypotonic, and hypertonic 

environment (∆mOsm/kg of 0, -300, and 300 between LUVs formulation and external environment, 

respectively). Results represent the mean ± SD (n=3), and a statistically significant difference in K 

(*p≤0.050, **p≤0.010, ***p≤0.001) between the highlighted bars. 
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Figure 5.11: Transport exponent (n) of LUVs comprising a) caffeine, b) hydrocortisone, and various 

amounts of cholesterol (0-25% w/w). A total of 0.12 mg mucin was added on top of the regenerated 

cellulose and Permeapad® barriers. LUVs were exposed to isotonic, hypotonic, and hypertonic 

environment (∆mOsm/kg of 0, -300, and 300 between LUVs formulation and external environment, 

respectively). Results represent the mean ± SD (n=3), and a statistically significant difference in n 

(*p≤0.050, **p≤0.010, ***p≤0.001) between the highlighted bars. 

 

Again, the experimental data showed a good fit with the predicted curve (R2 of 0.97-1.00). The 

K and n values obtained in the caffeine experiments were close to identical to the experiments 

carried out without the mucin (Figures 5.7-5.8). Hydrocortisone experiments showed 

decreasing K values starting from the hypotonic to hypertonic environment for experiments 

using the regenerated cellulose as a barrier. This trend was not as apparent for the 

experiments conducted in the absence of mucin. The results suggest that mucin might 
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enhance the LUVs’ osmotic activity even when cholesterol was incorporated within liposomal 

bilayers. Permeapad® experiments indicated a relatively stable K for all environment 

highlighting that even though the release from liposomes alters due to tonicity perturbations, 

the net transport across a biomimetic barrier (and possibly biological barrier) are not much 

different. In retrospect, we should have carried the experiments with Permeapad®
 for a longer 

time (more than 4 hours) due to the barrier’s inherent nature of expressing high retention to 

drug diffusion. The longer study would probably provide more apparent differences in the 

diffusion across the Permeapad® barrier over time. However, due to the awareness that nasal 

mucus renews every 20 min (Illum, 2003, Taherali et al., 2018), we believed that experiments 

over a total of 4 hours were sufficient at this point in the project. 

 

Considering the mucin concentrations used in this study, the mucin content was sufficient to 

cause drug diffusion hindrances because of electrostatic and hydrophobic interactions (Lock 

et al., 2018, Murgia et al., 2018). Mucin had generally little effect on the n of caffeine which 

seems to be explainable by caffeine’s good permeability across cellulose and lipid barriers (di 

Cagno et al., 2015, Flaten et al., 2006). Due to caffeine’s small molecular size (MW of 

194.2 g/mol), the mucin was not an obstacle to diffusion. On the other hand, due to the larger 

molecular size and more lipophilic nature of hydrocortisone (MW of 362.5 g/mol), it was not 

surprising that the n of hydrocortisone was more affected. An increase in n can be explained 

by increased interaction between drug and mucin resulting in a stronger boundary layer, 

shifting the release mechanism away from a Fickian-controlled diffusion mechanism. 

 

As both investigated drugs are neutral at pH 7.4, we also performed some preliminary study 

with ketoprofen. Ketoprofen is ionized at pH>4.5 (PubChem, 2019c), conferring to a negatively 

charged ketoprofen molecule at high pH. Due to the demanding manual work required to obtain 

these data, we have only been able to screen the ketoprofen-LUVs free of cholesterol. The RL, 

K, and n are all summarized in Figure 1.12. 
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Figure 5.12: Resistance to drug transport through liposomal bilayer (RL), transport constant (K), and 

transport exponent (n) of ketoprofen-LUVs (0% w/w cholesterol). Experiments were conducted with the 

a) absence and b) presence of mucin (a total of 0.12 mg mucin was added) on top of the regenerated 

cellulose and Permeapad® barriers. LUVs were exposed to isotonic, hypotonic, and hypertonic 

environment (∆mOsm/kg of 0, -300, and 300 between LUVs formulation and external environment, 

respectively). Results represent the mean ± SD (n=3), and a statistically significant difference in n 

(*p≤0.050, **p≤0.010, ***p≤0.001) between the highlighted bars. 

 

Considering Figure 1.12, if we first focus on the results obtained using regenerated cellulose 

as a diffusion barrier and starting from the hypotonic to the hypertonic environment, we can 

see that; 

1) RL increased (liposomal bilayer resists more to drug transport) which correlates with 

2) K decreased (less drug diffuses across diffusion barrier), and  

3) n increased (release mechanism from liposomes shifts towards non-Fickian diffusion). 
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This trend remained independently of the mucin absence (Figure 1.12a) or presence 

(Figure 1.12b) and indicated that both linear and non-linear regression can be used to interpret 

the diffusion data obtained using regenerated cellulose as a diffusion barrier. 

 

On the other hand, the Permeapad® experiments were more complex. First, the highest RL 

values were found in the hypotonic environment, in disagreement with the findings for caffeine- 

and hydrocortisone-LUVs (previously shown the lowest RL values, Paper III). The difference in 

RL between the isotonic and hypotonic environment could be as great as 37000 sec/cm. 

Second, the K showed a trend with increasing values going from the hypotonic to hypertonic 

environment, indicating that upon liposomal shrinkage, the release was enhanced (correlate 

with decreasing trend of n). The large deviations between the caffeine/hydrocortisone and 

ketoprofen results might be due to the drugs’ charge. As previously described, caffeine and 

hydrocortisone are both neutral at experimental pH, whereas ketoprofen is negatively charged. 

Charge-related corruptions of the Brownian movement of drug molecules might play an 

essential role in the net drug transport across the different diffusion barriers (Newby et al., 

2018). To our surprise, the ketoprofen results did not differ regardless of the mucin presence. 

This might be due to the negative charge of both ketoprofen and mucin at experimental pH 

resulting in little mucin influence on the ketoprofen drug diffusion (Newby et al., 2018, Taherali 

et al., 2018). It is too preliminary to draw any conclusions, but it seemed that using the non-

linear regression model to interpret the diffusion data might be a more appropriate model to 

use, whereas the linear regression model provided the worst fit when investigating release 

from swollen or shrunken ketoprofen-LUVs. 

 

To summarize, the presence of mucin in the diffusion study did not change the osmotic activity 

of LUVs, and in some cases, it seemed to even contribute to the higher osmotic activity. In 

agreement with our previous reports (Paper III), the obtained RL and K values showed that the 

drug release was enhanced when LUVs were exposed to a hypotonic environment, and the 

release decreased in the hypertonic environment for LUVs containing uncharged drugs. The 

presence of cholesterol in LUVs hampered their sensitivity to osmotic stress. For the negatively 

charged drug, ketoprofen, diffusion across the regenerated cellulose and Permeapad® barrier 

differed and showed different trends. When the net transport of ketoprofen changed in the 

different environment using the regenerated cellulose barrier, the net transport across 

Permeapad® barrier remained similar. The ketoprofen results might indicate that the 

osmotically active LUVs contribute to rather small diffusional changes across real biological 

barriers and that the drugs’ lipophilicity and charge might be larger contributors to the net 

transport across lipid-containing barriers, especially in the presence of mucin. It would be, 
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therefore, highly relevant to verify the diffusion across Permeapad® barrier with more drugs 

before any conclusions can be made. 

 

Furthermore, liposomal physical stability is a crucial factor that needs to be addressed during 

the liposomal drug formulation development. For this reason, we followed the formulation’s 

stability upon storage. 

 

 

5.7 Stability study (Paper III and preliminary results) 

Liposomes developed to enter the market as pharmaceutical products must be stable during 

the storage period. The stability issue was beyond the scope of Papers I and II, but we started 

to follow the stability for caffeine- and hydrocortisone-LUVs in Paper III. In this section, the 

focus will also be given to our preliminary stability results obtained for the ketoprofen-LUVs 

(0% w/w cholesterol, Table 5.4) which was used in the experiments involving mucin. 

 

Table 5.4: Characterization of LUVs dispersions during storage at 6 and 22°C over 65 days, 

respectively. Results represent mean ± SD (n=2). 

Storage 
temperature 

Day 
Osmolality 
(mOsm/kg) 

Size (nm) PI ZP (mV) EE (%) 

6°C 3 398 ± 15 291 ± 49 0.26 ± 0.03 -7.2 ± 0.5 33 ± 2 

6°C 

14 395 ± 17 266 ± 41 0.24 ± 0.02 -6.8 ± 0.4* 42 ± 2*** 

35 385 ± 17 267 ± 40 0.23 ± 0.02 -7.0 ± 0.5 36 ± 1 

65 383 ± 21 253 ± 38 0.24 ± 0.02 -8.2 ± 0.7*** 46 ± 3*** 

22°C 

14 400 ± 12 258 ± 38 0.20 ± 0.02* -9.1 ± 0.7*** 39 ± 3** 

35 398 ± 15 288 ± 46 0.25 ± 0.03 -10.5 ± 1.3*** 41 ± 2** 

65 390 ± 18 250 ± 34 0.20 ± 0.02* -26.3 ± 13.4*** 57 ± 9*** 

A statistically significant difference in means (* p≤0.050, **p≤0.010, ***p≤0.001) when compared to day 3 

measurements. 

 

For the development of osmosis-controlled liposomes, it is crucial that the formulations 

maintain constant tonicity upon storage. Caffeine- and hydrocortisone-LUVs prepared in this 

study with various amounts of cholesterol incorporated (0-25% w/w, Paper III, results not 

shown), and ketoprofen-LUVs (0% w/w cholesterol, Table 5.4) all indicated stable osmolality 

upon storage at both conditions up to 65 days. This finding is highly relevant for further 

formulation development. 

 

In terms of size, PI and EE, LUVs stored at 6°C were more stable than those stored at 22°C, 

as expected (Grit and Crommelin, 1993). Upon storage at lower temperatures, the lipid bilayer 

elasticity is suggested to decrease and contribute to more stable colloidal dispersions (Tayebi 
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et al., 2012). The addition of cholesterol within liposomes has also been suggested to reduce 

liposomal leakage due to an increase in the dense packing of the phospholipids (de Gier et al., 

1968). The stabilizing effect of cholesterol on ketoprofen-LUVs has not been confirmed yet, 

but as indicated in Table 5.4, the EE of ketoprofen-LUVs (free of cholesterol) varied 

significantly upon storage (p<0.01). Introducing cholesterol into the ketoprofen-LUVs might be 

beneficial to achieve more stable dispersions as suggested by the literature (Briuglia et al., 

2015, Grit and Crommelin, 1993). 

 

Alterations in ZP values measured for ketoprofen-LUVs upon storage (Table 5.4) matched the 

results obtained for caffeine- and hydrocortisone-LUVs (Paper III). The more negative ZP 

obtained after storage might indicate liposomal membrane degradation which is commonly 

observed for the liposomes composed of phospholipids of natural origin (Li et al., 2015). If the 

liposomal membrane is degraded, the visual perception of the liposomal dispersion might 

change. For this reason, pictures were taken of the different LUVs formulations after 65 days 

of storage. The pictures of caffeine- and hydrocortisone-LUVs are not included in this section 

as they have been extensively discussed in Paper III. Instead, the focus was on the preliminary 

formulations of ketoprofen-LUVs (see Figure 5.13). 

 

 

Figure 5.13: Photographs of ketoprofen-LUVs (0% w/w cholesterol) after 65 days of storage at 6 and 

22°C. Each tube represents one replicate out of a total of two replicates (n=2). 

 

As illustrated in Figure 5.13, all the dispersions appeared bright and white in colour. However, 

for one of the ketoprofen-LUVs stored at 22°C (left tube) were slightly more translucent 

indicating a possible change in liposomal integrity. Better pictures were not achievable with 

the camera available in the laboratory. However, these pictures might be of assistance to 

understand the stability issues regarding liposomal dispersions. It also suggests that with the 

use of better camera and more frequent monitoring might provide more extensive information 

about the liposomal integrity in the dispersion upon storage. 

 

Considering all the variables measured, caffeine- and hydrocortisone-LUVs with 11% w/w 

cholesterol were found to be the most stable formulations in comparison to 0 and 25% w/w 

cholesterol. Even though the stabilizing effect of cholesterol was not investigated for 
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ketoprofen-LUVs, preliminary results suggest that cholesterol might be beneficial to reduce 

leakage from these LUVs. Collectively, the stability results obtained so far might be important 

for the further development of drug-loaded LUVs. More importantly, all the formulations 

exhibited stable tonicity at all storage conditions making them suitable for the development of 

osmotically active LUVs for nose-to-brain targeted drug delivery. 
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6 Conclusions 

We have proven that liposomal release can be manipulated by tonicity environment and can 

be used for the development of nose-to-brain drug delivery systems. In detail, the following 

conclusions can be drawn: 

 

Large unilamellar vesicles (LUVs) consisting of soy-phosphatidylcholine and cholesterol 

swelled and shrank when exposed to the hypotonic and hypertonic environment, respectively, 

proving their osmotic activity. The liposomal release of both hydrophilic and lipophilic 

compounds changed due to tonicity perturbations, particularly at tonicity difference greater 

than 300 mOsm/kg. The presence of cholesterol in the LUVs formulations reduced the LUVs’ 

osmotic sensitivity, however, liposomes with 11% w/w cholesterol maintained a relatively good 

osmotic activity in addition to being the most stable formulations upon storage. 

 

For better mimicking the nasal epithelium, the biomimetic Permeapad® was used as a diffusion 

barrier and compared to the standard regenerated cellulose barrier. The drug diffusion profiles 

were different through the two barrier types. We suggest that regenerated cellulose is sensitive 

to detect small diffusional changes on the liposome level, whereas the Permeapad® is superior 

in detecting the net transport across lipid-containing barriers. To additionally improve the 

experimental set-up, studies involving mucin were carried out to mimic the nasal environment. 

Mucin maintained the LUVs’ osmotic activity and expressed low hindrance to drug diffusion. 

 

Both zero order and Korsmeyer-Peppas models can be used to interpret the in vitro diffusion 

data of LUVs. Korsmeyer-Peppas model offered additional advantages, by being less time-

consuming since reference experiments using drug solutions are omitted, which are 

compulsory for the zero order model. The Korsmeyer-Peppas model was found to be suitable 

to improve the diffusion data interpretation of LUVs experiencing osmotic stress. 

 

In summary, these results provide a fundament and can be utilized for the further development 

of liposomal formulations for nose-to-brain drug delivery. 
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7 Future perspectives 

We have carried out studies to prove that LUVs are osmotically active within tonicity that 

resemble nasal environment. In the future, it would be valuable to determine the liposomal lipid 

content and tailor the liposomal lipid composition. 

 

Furthermore, more drugs with a wider range of physiochemical properties should be tested to 

validate our hypothesis. The use of Permeapad® barrier as a diffusion barrier and mucin to 

simulate the nasal environment are worth investigating in more detail. In particular, substituting 

the porcine mucin type III with more gel-forming mucin (e.g. MUC5B, MUC5AC, MUC2 found 

in the nasal cavity) and the use of different mucin concentrations should be thoroughly 

screened. 

 

In this thesis, the stability of the formulations upon storage were evaluated in PBS at two 

different temperature conditions. The stability of the liposomes in nasal enzymes, plasma, and 

brain homogenate will be of equivalent importance to verify if the liposomes are susceptible 

for nose-to-brain drug administration. 

 

We have only focused on LUVs of sizes between 200-400 nm, but the confirmation of the 

osmotic activity of smaller or larger liposomes might be of value as well. It would be also 

beneficial to investigate different surface modifications to increase the mucoadhesion and 

absorption through the nasal epithelium. 

 

The ideal nasal formulation should not affect mucus secretion or cause morphologic changes 

on the nasal epithelium while serving its purpose of improving the mucoadhesion and 

absorption through the nasal epithelium. Further cell experiments, in vivo and clinical studies, 

are required to confirm the lack of formulation toxicity as a nasal irritant or inhibition of mucin 

secretion. 
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a  b  s t r a  c t

In  this  work,  the  influence  of environmental  tonicity  perturbations  on the  size  and  release kinetics  of
model  markers  from  liposomes  (calcein  and  rhodamine)  was investigated. Large unilamellar  vesicles
(LUVs)  were  prepared  from  a  mixture  composed of organic solvents  containing  dissolved  phosphatidyl-
choline  and phosphate buffered  saline (PBS,  pH 7.4). Organic  phase was removed  by  rotary  evaporation
and the  obtained  liposomal dispersions were  extruded to reduce  the  liposomal  sizes to  approx. 400  nm.
The LUVs  were  exposed  to PBS of different  tonicity  to induce water migration,  and  consequently,  gen-
erate  an osmotic  pressure  on the  vesicle membranes.  The markers  release kinetics  were  studied  by  the
dialysis  method employing  Franz  diffusion  cells. LUVs  appeared  to  be  more susceptible to the  osmotic
swelling  than  the  shrinking  and the  size  changes were  significantly  more  pronounced for  calcein-loaded
LUVs  in comparison to  rhodamine-loaded LUVs. The calcein  release from  LUVs  was  highly affected  by  the
water influx/efflux,  whereas rhodamine  release  was less affected by  the  tonicity perturbations.  Mech-
anistically,  it appeared  that  hydrophilic  molecules  (calcein)  followed  the  water  flux,  whereas lipophilic

molecules (rhodamine) seemed to be  more affected by  the changes  in LUVs  size  and  consequent  alteration
of  the  tightness  of the  phospholipid  bilayer (where the  lipophilic  marker  was  imbedded  in).  These results
demonstrate that  the  different tonicity  (within  the  inner  core  and external  environment of vesicles) can
enhance/hamper  the  diffusion  of a marker from LUVs  and  that  osmotically active liposomes  could  be
used as  a novel  controlled  drug  delivery system.

©  2017  Elsevier B.V.  All  rights  reserved.
. Introduction

Since their first description [1], several applications of liposomes
ave been proposed, among which their use as drug carrier remains
he most studied [2,3].  Currently, liposomes account for a signifi-
ant portion of the market share in  nanomedicine [4].

Liposomes are spherical vesicles consisting of single or multi-
le phospholipid bilayers surrounding an aqueous core. Due to the
mphiphilic nature of the phospholipids, liposomes have the abil-
ty to entrap both hydrophilic and lipophilic compounds [5].  The
iposomal membranes are semipermeable, allowing neutral, poorly

olarized and small molecules to  diffuse through it, whereas ions,
ighly polarized small molecules and large molecules will not [6,7].

∗ Corresponding author.
E-mail address: massimiliano.p.cagno@uit.no (M.P. di Cagno).

ttp://dx.doi.org/10.1016/j.colsurfb.2017.05.062
927-7765/© 2017 Elsevier B.V. All  rights reserved.
Liposomes are appealing for drug delivery because of their abil-
ity to solubilize poorly water-soluble compounds [8,9]. Chemical
entities confined into liposomes are less subjected to  early degrada-
tion and elimination, and an improved drug distribution compared
to non-entrapped drugs can be achieved [10]. The shape and prop-
erties of liposomes are similar to human cells, which provide good
compatibility and low toxicity [10].

As all systems composed by semipermeable membranes, lipo-
somes shape and size can be subjected to osmosis. Osmotic pressure
(�) is defined as the force that applies on the surface of a  semiper-
meable membrane when water diffuses through it due to the
different tonicity between the solutions on the two  side of  the
membrane. In these conditions, water diffuses from the side with
lowest solute concentration (higher chemical potential) to the
regions of highest solute concentration (lower chemical potential)

until the equilibrium is  reached [11]. If liposomes are  exposed to
a hypertonic environment, water effluxes through the phospho-
lipid bilayer to the external environment, generating a  positive

dx.doi.org/10.1016/j.colsurfb.2017.05.062
http://www.sciencedirect.com/science/journal/09277765
http://www.elsevier.com/locate/colsurfb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.colsurfb.2017.05.062&domain=pdf
mailto:massimiliano.p.cagno@uit.no
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cient (Log P) and dissociation constant (pKa) of calcein and rhodamine B.
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Table 1
Measured tonicity, pH (mean ± SD, n =  3)  and calculated concentrations of the dif-
ferent types of PBS used.

PBS type Tonicity (mOsm) pH Concentration (mM)

300 300 ± 4 7.40 ± 0.02 74
190 187 ± 3 7.46 ± 0.02 44
Fig. 1. Molecular structure, molecular weight (MW),  partition coeffi

smotic pressure and induces size reduction [12]. On the con-
rary, when liposomes are exposed to a  hypotonic environment,
ater influxes from the external environment, generating a  nega-

ive osmotic pressure and size enlargement [12].
The influence of osmotic stress on lipid bilayers has been inves-

igated on different vesicle models such as multilamellar vesicles
6,13] and large unilamellar vesicles (LUVs) [14–16].  Unilamellar
esicles are reported to be an appropriate model system to study
he permeability properties associated with osmotic swelling or
hrinking [6,13,15]. However, to the best of our  knowledge, the
nfluence that the environmental tonicity perturbations have on the
elease of chemical entities from liposomes has not been clarified
et.

The aim of this study was to verify if, and to which extent, the
nvironmental tonicity perturbations affect the release kinetic of
odel substances from LUVs.
For this reason, two chemically different fluorescent markers

calcein and rhodamine) were used to study their release kinetics
orm LUVs. Fluorescent markers of different solubility were chosen
o  simplify the mechanistic study [17–20]. Calcein is a hydrophilic

arker that can be entrapped in  the inner aqueous core of LUVs
19], whereas rhodamine is  a  lipophilic marker (Log P  of 2 [21])
hat is expected to  be incorporated in the phospholipid bilayer of
UVs.

. Materials and methods

.1. Materials

Calcein and rhodamine B (Fig. 1 reports the chemical
tructure of both markers together with meaningful physicochem-
cal characteristics [19,21–23]), disodium hydrogen phosphate
ihydrate (Na2HPO4·2H2O), sodium chloride (NaCl), sodium
ydroxide (NaOH), sodium dihydrogen phosphate monohydrate
NaH2PO4·H2O), chloroform, ethanol (96%, v/v), methanol and non-
onic surfactant Triton X-100 were purchased from Sigma-Aldrich
hemie GmbH (Steinheim, Germany). Soy  phosphatidylcholine
100 (SPC) was a  gift from Lipoid GmbH (Ludwigshafen, Germany).

.2. Phosphate buffer saline (PBS) preparation

A 74 mM phosphate buffer saline (PBS) solution (buffer 300) was
repared dissolving 22.5 g NaH2PO4·H2O  and 36.8 g Na2HPO4·2H2O

n 5 L distilled water. The pH was adjusted to 7.4 with NaOH,

hereas NaCl was employed to fix tonicity at 300 mOsm (Semi-
icro Osmometer K-7400, Knauer, Berlin, Germany). Buffer 300
as diluted with distilled water in  order to  obtain two  other solu-

ions (buffer 190 and 65 respectively, Table 1)  with lower tonicity.
65 65 ± 1 7.56 ± 0.01 15

2.3. Liposomes preparation

LUV dispersions were prepared following a  method pre-
viously described [24,25] with some modifications. In brief,
0.2 mL  methanol was mixed with 1 mL  SPC/chloroform solution
(200 mg/mL) in  a  50 mL  round bottom flask. PBS (10.5 mL)  was  gen-
tly added, and the organic phase was subsequently removed by
rotary evaporation (40 ◦C, 40 rpm and 0.1 bar for 90 min) (Büchi R-
124 rotavapor equipped with Büchi vacuum pump V-500 and Büchi
B-480 water bath, Büchi Labortechnik AG, Flawil, Switzerland).
All liposomal dispersions were prepared employing buffer 300
(74 mM,  Table 1) or, alternatively, buffer 65  (15 mM,  Table 1).
LUV dispersions were spontaneously formed after the removal of
organic phase. In  order to reduce liposomal sizes, the dispersions
were extruded at room temperature (23–25 ◦C) through polycar-
bonate membrane filters (lowest pore-size of 400 nm, Nuclepore
Track-Etched Membranes, Whatman International Ltd., Bucking-
hamshire, UK). To load the fluorescent markers in  liposomes,
calcein was  dissolved in PBS (obtaining a  calcein solution with a
concentration of 2 mM)  prior to  the lipid film reconstitution. Dif-
ferently, for the preparation of rhodamine-LUVs, the marker was
dissolved in chloroform together with lipid (rhodamine-lipid molar
ratio approx. 1:1).

2.4. Size and surface potential analysis

Photon correlation spectroscopy (PCS) (Nicomp Submicron Par-
ticle Sizer 370, PSS Nicomp Particle Sizing Systems, California, USA)
was employed for the determination of LUV size distributions after
the extrusion. Samples were diluted to a count rate of  250–350 kHz
at room temperature (23–25 ◦C), and each sample was measured
in  three parallels. Size changes of LUVs induced by  tonicity pertur-
bations were measured on the Zetasizer Nano Zen 2600 (Malvern,
Worcestershire, UK). Samples were diluted 1/100 (v/v) with PBS
300 (or alternatively PBS 65) previous analysis and LUV dispersions
were filtered to remove eventual impurities. Experiments were
performed over a  period of 70 min  at 25 ◦C in duplicates (n =  2), and

each sample was  measured in three parallels. The �-potential (ZP)
of  LUVs was measured on the Zetasizer Nano Zen 2600 (Malvern).
The respective dispersions were diluted 1/20 (v/v) with filtrated
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Table 2
Types of PBS inside (inner core) and outside (external environment) LUVs and rela-
tive  osmotic pressures generated. Relative osmotic pressures (�rel)  were calculated
employing Eq. (1).

PBS type �rel

Inner core LUVs External environment LUVs (bar)

300 300 0
300  190 −3
300  65 −6
I.Y. Wu et al. / Colloids and Surfa

eionized water. All analyses were performed at 25 ◦C in duplicates
n = 2), and each of the samples was measured in three parallels.

.5. Entrapment efficiency determination

Entrapment efficiency of liposome dispersions was  estimated
ombining a dialysis method to quantify the unentrapped marker
oncentration (Cfree) with a  sedimentation method for estimating
he volume occupied and unoccupied by  LUVs. For quantification
f the unentrapped marker concentration (Cfree), the method pre-
iously described by di Cagno and Luppi [9] was  employed. In
rief, lower compartment (donor) of a  Franz diffusion cell (dif-
usional area of 0.64 cm2,  jacketed flat ground joint, PermeGear
nk, Hellertown, USA) was filled with liposomal dispersion (5 mL)

hereas the upper compartment (acceptor) was filled with the
orresponding PBS (1 mL). A  cellulose hydrate membrane (Visk-
ng dialysis tubing MWCO  12–14 kDa, Medicell International Ltd.,
ondon, UK) was placed between the donor and acceptor compart-
ent and used as dialysis barrier. The system was  let to  equilibrium

t room temperature (23–25 ◦C) over a  period of 48 h. The con-
entration of the marker in  the acceptor compartment (Cfree)
as quantified by  fluorescence spectroscopy (FLUOstar/POLARstar
alaxy fluorometer, BMG  Technologies, Offenburg, Germany). Exci-

ation and emission wavelengths were 485 nm and 520 nm for
alcein, and 544 nm and 590 nm for rhodamine, respectively.
n order to  evaluate the ratio between liposome-occupied and
iposome-unoccupied volume, non-dialyzed liposomal dispersions

ere centrifuged (30 min, 10 ◦C, 200 000g, Beckman model L8–70 M
ith SW 60 Ti rotor, Beckman Instruments, California, USA) in

rder to precipitate the vesicles. The liposome-unoccupied volume
as used together with the unentrapped marker concentration

Cfree)  to quantify the total amount of unentrapped marker (i.e.
ot entrapped in liposomes, Mfree). In order to  determine the ini-
ial amount of marker in  original dispersions (Mtot), LUVs were
estroyed by adding 5% (v/v) triton/PBS solution for calcein-loaded

iposomes or, alternatively, a  50% (v/v) methanol/PBS solution for
he rhodamine-loaded LUVs, and the total concentration of marker
n the liposomal dispersion (Ctot) was quantified by the fluores-
ence spectroscopy. The entrapment efficiency (EE) was calculated
y using the following equation:

E (%) = Mtot − Mfree

Mtot
∗ 100 (1)

here Mtot represents the total amount of marker in  the original
ispersion and Mfree is  the amount of unentrapped marker. Exper-

ments were performed in duplicates (n = 2) and each sample was
easured in  four parallels.

.6. In vitro release of fluorescent markers from LUVs

Release studies of fluorescent markers were performed by
ranz diffusion cells (Standard 1.77 cm2 diffusional area jack-
ted flat ground joint, PermeGear Ink, Hellertown, USA) equipped
ith cellulose hydrate membrane (Visking dialysis tubing MWCO

2–14 kDa, Medicell) in  between donor and acceptor (12 mL)  com-
artment. Experiments were performed at 35 ◦C (Julabo F12-ED,

ulabo Laboratechnik, Seelback, Germany) in  triplicates (n  =  3) and
ach sample was analysed in two parallels. At time zero (t = 0 h,
tarting of the experiment) dialyzed liposomal dispersion (0.8 mL)
as added to  the donor compartment. As control experiments,

olutions of calcein (2 mM)  or  rhodamine (1 mM) prepared in  both
uffer 300 and 65 were employed. Samplings (0.5 mL)  were carried

ut at intervals of 1 h over a period of 8 h.  Equal volumes of PBS were
eintroduced into the acceptor compartment after withdrawal of
amples in order to maintain sink condition. The concentration of
he markers in the acceptor compartment was detected by fluores-
65 65 0
65 190 3
65 300 6

cence spectroscopy (see Section 2.5) and the cumulative amount of
diffused marker over time calculated. The flux of  each of the marker
through the cellulose hydrate membrane (J) was determined by Eq.
(2) [26]:

J  = dm

dt
∗ 1

A
(2)

where dm/dt represents the variation of mass over time and A  is
the diffusional area. For each marker, the apparent permeability
coefficient (Papp)  was calculated using Eq.  (3):

Papp = J

C
(3)

where C represents the initial marker concentration. Papp was cal-
culated with either the total initial marker concentration in  the
dispersion (Ctot) or, alternatively, the initial concentration of the
unentrapped marker (Cfree, named Pø

app)  [9]. As control, the appar-
ent permeability coefficient of the markers from solutions (P0app)
were measured.

2.7. Osmotic pressure calculation

In this work, the relative osmotic pressure (�rel)  was  estimated
by  Eq. (4) as:

�rel = R  ∗ T  ∗
(

Osm(out) −  Osm(in)

)
(4)

where R represents the gas constant, T is  the absolute temperature
and Osm(out) − Osm(in) is  the difference between the external and
internal osmolality (units of mOsm)  of LUVs. Based on Eq. (4),  a  posi-
tive relative osmotic pressure (Table 2) is produced when the water
diffuses from the internal core of liposomes to the external environ-
ment (Osm(in) < Osm(out)) and negative relative osmotic pressure
(Table 2) when the water diffuses from the external environment
to the internal core (Osm(in) >  Osm(out))  [12].

2.8. Statistical evaluation

Student’s t-test was performed to evaluate a  significance in the
collected data. A p value ≤ 0.05 was  considered as significantly dif-
ferent.

3. Results

3.1. LUV dispersions characterization

The relevant characteristics of the different LUV dispersions
prepared are summarized in Table 3. Liposomal size distributions
varied between the different types of dispersions prepared. Empty
LUVs show similar size distributions when prepared in  different

PBS, whereas calcein and rhodamine-LUVs expressed differences
in  size distributions. For both calcein- and rhodamine-loaded LUVs,
tonicity of the PBS seemed to have a  significant effect (p <  0.05) on
liposome sizes. Moreover, the PBS composition appeared to have a
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Table 3
Size, polydispersity index (PI), �-potential (ZP) and entrapment efficiency (EE) of
LUVs  prepared in different types of PBS. Results are reported as mean ± SD.

Marker Dispersing PBS
type

Size (nm) PI  ZP (mV) EE (%)

0 309 ± 20 0.10 ± 0.01 −20.4 ± 0.8 –
65 327 ± 52 0.32 ± 0.09 – –
300 393 ± 92 0.33 ± 0.04 −12.0 ± 1.6 –

Calcein 65 649 ± 8 0.44 ± 0.04 −2.8 ± 0.4 41 ± 5.3
300 449 ± 20 0.30 ± 0.02 −0.5 ± 0.2 43 ± 0.6

Rhodamine 65  386 ± 8 0.15 ± 0.00 −16.7 ± 0.4 85 ± 0.6
300 762 ± 104 0.42 ± 0.06 −8.6 ± 0.3 89 ± 0.7

Table 4
Apparent permeability coefficients (P0

app) through cellulose hydrate membrane of
calcein and rhodamine measured from two different PBS type  solutions. Experi-
ments were conducted at neutral pH  and the results are reported as mean ± SD
(n  = 3).

P0
app (10−5 cm/sec)

PBS type Calcein Rhodamine
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300 0.90 ± 0.07 1.61  ± 0.11
65  0.68 ± 0.06 1.55  ± 0.06

reat impact on the repulsive electrokinetic potential (ZP) in all dis-
ersions. Specifically, empty LUVs and rhodamine-LUVs appeared
o preserve the partial negative potentials at tested tonicity (buffer
5 and 300), whereas calcein-LUVs surface potentials remained
lmost neutral. The overall entrapment efficiency were approx.
-fold higher for rhodamine in comparison to calcein (Table 3).

.2. Effect of the dispersing media tonicity on liposomal size
istributions

The changes in size  distributions of LUV dispersions after their
xposure to PBS with varied tonicity are reported in Fig. 2.  As a
ontrol, LUV size distributions in  the isotonic environment are also
eported (white symbols). For empty LUVs prepared in  buffer 300
Fig. 2A, upper line), a significant increase in  size over time was
bserved when LUVs were exposed to  the hypotonic environment
buffer 65) in comparison to  the isotonic environment. In hyper-
onic environment (Fig. 2A, lower line), no significant differences
ere detected. For calcein-loaded LUVs, size enlargement was mea-

ured for both LUV dispersions (buffer 300 and 65 respectively)
fter the exposure to a dispersing medium of different tonicity
buffer 65 and 300 respectively, Fig. 2B). For rhodamine-LUVs (both
uffer 300 and 65), no significant changes in vesicle sizes were
bserved after exposure to the hypertonic or hypotonic environ-
ent (buffer 65 and 300 respectively, Fig. 2C)  in comparison to the

espective isotonic environment (white symbols).

.3. In vitro release study

As it  can be seen in  Table 4,  rhodamine (in solution) exhibited
 higher apparent permeability coefficient in comparison to cal-
ein (in solution). Interestingly, the tonicity of the PBS had a  strong
nfluence on the calcein permeability. In buffer 300, the apparent
ermeability of calcein was approx. 24% higher than in  buffer 65
level of significance). For rhodamine, a  similar trend was observed.
ialysis method is  a common method used to estimate the kinet-

cs of drug release from nanocarriers [27].  This method is  based
n the assumptions that the accumulation of the drug in the sink
eceiver (i.e. acceptor chamber of Franz cell) is directly proportional

o the kinetics of drug release from the carrier. The relationship
etween the flux of markers through cellulose hydrate membrane
nd the calculated relative osmotic pressure is shown in  Fig. 3.
s it can be  seen, calcein flux through cellulose membrane was
 Biointerfaces 157 (2017) 65–71

highly influenced by the PBS in which the calcein-LUV dispersions
were prepared (same trend as for the calcein in solutions) and by
the relative osmotic pressure that was generated when LUVs were
dispersed in non-isotonic dispersing medium. When calcein-LUVs
were prepared in buffer 300, the flux of calcein through semiper-
meable membrane was  significantly (p <  0.05) higher (approx. 44%)
in comparison to buffer 65 (Fig. 3A). Interestingly, the flux of cal-
cein through the cellulose membrane decreased (Fig. 3A, light-grey
columns) when influx of water molecules increased (i.e. nega-
tive osmotic pressures). On the contrary, when a  positive osmotic
pressure was  applied (i.e. efflux of water molecules from LUVs),
a significant increase in  the calcein flux was observed (Fig. 3A,
dark-grey columns). Interestingly, the flux  of lipophilic marker
(rhodamine) through the cellulose hydrate membrane seemed to
be less affected by the differences in  the PBS tonicity and osmotic
pressures generated on the LUV membranes (Fig. 3B). A signifi-
cant (p < 0.05) decrease in rhodamine flux through cellulose hydrate
membrane was  observed only when a positive osmotic pressure
(i.e. efflux of water molecules) applied. These changes were how-
ever minimal in comparison to the changes found for calcein. The
normalized fluxes over the initial concentration of the markers in
the LUV dispersions (i.e. apparent permeability coefficients) are
reported in  Table 5. For  calcein, both estimated values of  perme-
ability coefficients (Papp and Pø

app)  were quite comparable to the
P0

app (calcein in solution, Table 4). For rhodamine, Pø
app (i.e. calcu-

lated using the unentrapped marker concentration) was in  the same
order of magnitude as reference values (P0app, Table 4) whereas,
the Papp values (i.e. calculated using the total initial concentration
of rhodamine) were 5-fold lower in comparison to P0

app (Table 4).

4. Discussion

Photon correlation spectroscopy is  a  common method employed
for analysing liposomal size [28,29].  Some of the LUV dispersions
loaded with marker remain unexpectedly large after the extrusion
through 400 nm pore size filter (Table 3). This could be due to the
aggregation that often affects the colloidal dispersions, and even
more when the dispersed particles own neutral surface potentials
[30].  Liposomal aggregation is the result of an interplay between
the van der Waals forces (attractive) and repulsive electrokinetic
potential [16,31,32].  With increasing electrolyte concentration, the
changes in the electrostatic repulsion of liposomes can be estimated
by the direct determination of �-potential (ZP) of liposomes [16,33].
In this study, a  decreased ZP seemed to  induce aggregation for
rhodamine-LUVs, whereas calcein-LUVs exhibited a  different trend
(Table 3), probably due to the different physicochemical character-
istics of the markers (Fig. 1).

An  expected lower ZP (Table 3)  was  observed for LUV disper-
sions prepared in  buffer 300 in comparison to  buffer 65, probably
due to  the ion shell formation [16,33]. Rhodamine-loaded and
empty LUVs expressed a negative ZP  at investigated tonicities
(Table 3). Since rhodamine is  lipophilic (Log P of 2) [21] and
zwitterionic at neutral pH [34],  it is reasonable to  think that
this compound is  imbedded into the lipid-bilayer, producing lim-
ited effects on the surface potential of liposomes. Differently, the
ZP of calcein-LUVs was almost neutral at investigated tonicities,
implicating that highly hydrophilic (Log P  of  −4 [19])  and highly
polarized marker (negatively charged at neutral pH,  pKa of 1.8)
[22] might contribute somehow to  strengthening of the ion shell
surrounding LUVs.

The entrapment efficiency (EE)  of the markers into LUVs was

determined by standard centrifugation method and was  13% for
calcein and 79% for rhodamine, respectively. These results were
in accordance with the literature for rhodamine (and lipophilic
compounds in general) [35],  whereas, for calcein they were rather
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Fig. 2. Size distributional changes of LUVs (empty, calcein-loaded and rhodamine-loaded) prepared in buffer 300 (upper line) and buffer 65 (lower line) after exposure to
hypotonic and hypertonic environment (buffer 65 and 300 respectively). Results are reported as mean ± SD (n  =  2).

Table 5
Apparent permeability coefficients of calcein and rhodamine through cellulose hydrate membrane measured under tonicity imbalance condition between internal and
external  environment of LUVs. For the calculations, the total marker concentration in the LUV dispersion (Papp)  and,  alternatively, the unentrapped marker concentration
(i.e.  molecular dissolved marker concentration (Pø

app)) were employed. Results are reported as mean ± SD (n  = 3).

Calcein Rhodamine

Dispersing PBS type �rel(bar) Papp(10−5 cm/sec) Pø
app(10−5 cm/sec) Papp(10−5 cm/sec) Pø

app(10−5 cm/sec)

300 0 0.86 ± 0.05 1.34 ± 0.08 0.33 ± 0.02 2.22 ± 0.14
−3  0.76 ± 0.00 1.20 ± 0.00 0.35 ± 0.03 2.29 ± 0.17
−6  0.65 ± 0.06 1.01 ± 0.09 0.31 ± 0.00 2.05 ± 0.02

–
65 0  0.47 ± 0.06 0.75 ± 0.10 0.36 ± 0.02 2.48 ± 0.17

3  0.65 ± 0.01 1.06 ± 0.02 0.30 ± 0.01 2.06 ± 0.10
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6  0.70 ± 0.05 

sotonic conditions are reported in bold.

ow in  comparison to previous reports [35].  Applying the dial-
sis/centrifugation method, an entrapment of approx. 40% was
ound for calcein and approx. 85% for rhodamine, respectively.
nterestingly, the different methods gave relatively similar EE of
hodamine, while they differed a  lot for calcein-LUVs. This find-
ng could be explained by the different chemical nature of the
wo markers (Fig. 1). Rhodamine is a quite lipophilic marker (Log

 of 2 [21]) and expected to be incorporated in the lipid bilayer.
n the other hand, calcein is  extremely hydrophilic at neutral pH

Log P of −4  [19])  and is  expected to be entrapped in  the liposo-
al  inner aqueous core. It  is  reasonable that liposomes rupture

ould influence EE of calcein during ultracentrifugation, whereas
hodamine-LUVs could be more resistant to damage.

Swelling and shrinking are standard responses of liposomes to
he environmental tonicity changes. They reflect the ability of phos-
holipid bilayers to  exchange water molecules within internal and

xternal environment, inducing volume changes [6,7,13,15].  In this
tudy, a significant size increase over time was observed when
mpty and calcein-loaded LUVs were exposed to the hypotonic
nvironment (Fig.  2A, B,  upper line) as a  result of water influx into
.13 ± 0.08 0.29 ± 0.01 2.00 ± 0.09

the LUVs in comparison to isotonic environment. These findings are
in agreement with reported literature on other unilamellar vesicle
systems composed of either same phospholipid [15,28] or other
phospholipids [36].  The fact that no significant size  decrement
was measurable when liposomes were exposed to the hypertonic
environment might be related to  the physical limitation associ-
ated to shrinking of liposomes (Fig. 2A, B,  lower line) [37].  The
increased size  of calcein-LUVs in  comparison to  their size in  the
isotonic environment might be due to  liposomal aggregation that
occurs due to  neutral surface charge of LUVs and that hampered the
detection of size decrement (Fig. 2B,  lower line). Rhodamine-LUVs
showed no significant size changes before and after the alteration
of the environmental tonicity in comparison to isotonic environ-
ments (Fig. 2C). This could be explained by the lipophilic nature of
rhodamine in comparison to the hydrophilic calcein. Similarly to
cholesterol, rhodamine might also contribute to a more rigid and

impermeable membrane retaining the incorporated marker [38].

Regarding the marker release studies, the control permeabil-
ity of both markers through the cellulose hydrate membrane
(P0

app)  was  surprisingly higher in the PBS with the highest tonicity
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ig. 3. Correlation between the relative osmotic pressures (�rel) (generated by  the di
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Table 4). The same trend was observed when the markers were
oaded into LUVs (Fig. 3,  central bars). This phenomenon could be
elated to the nature of the barrier utilized for the release study.
he cellulose hydrate membranes are reported to express a  slightly
egative charge [39,40]. This could reduce the flux of calcein and
hodamine (to a  minor extent, Table 4) due to  the electrostatic
epulsion; more evident for calcein (negatively charged at this pH).
t is plausible that in  high tonicity (PBS 300), the negative potential
f the barrier is neutralized by  the ion deposition, improving the
ux of the markers [41].

When liposomal dispersions were studied, the flux of cal-
ein through cellulose hydrate membrane was highly affected
y the induced osmotic changes (Fig. 3A). At  positive osmotic
ressures (i.e. efflux of water molecules), the flux of calcein

ncreased, whereas at negative osmotic pressure (i.e. influx of water
olecule) it decreased. This phenomenon could be  explained by the
arker/water flux interplay through the lipid bilayer. When pos-

tive osmotic pressure was  applied, the flux of water and calcein
ere both directed outwards (synergistic effect), in agreement with

eported literature, even though the lipid composition in  the com-
aring studies differed [36,42]. On  the other hand, when negative
smotic pressure applied, the marker still followed the concen-
ration gradient (directed outwards) but the flux of water was

irected inwards (antagonistic effect). While the flux of calcein was
irectly correlated to the osmotic pressure, the rhodamine flux was
elatively stable and only slightly influenced by positive osmotic
ressures (Fig. 3B). This phenomenon could be  due to the fact that
ce in tonicity between internal and external environment of LUVs) and the observed
tion). Results are reported as mean ± SD (n =  3,  *p ≤  0.05, **p ≤ 0.01).

rhodamine is  a lipophilic compound that is primarily incorporated
in the phospholipid bilayer of LUVs. When positive osmotic pres-
sure was applied (i.e. efflux water), liposomal membrane could
become tightly packed hampering/reducing the marker release.

Table 5 reports the normalization of all fluxes according to the
initial concentration of the markers in the liposomal dispersions. To
have a  better understanding of the mechanism involved, all fluxes
were normalized according to  the initial concentration of  markers
(total and unentrapped marker concentration) in  the dispersion.
For calcein, the permeability coefficients normalized over the total
(Papp) or unentrapped marker concentration (Pø

app) were similar
and comparable to the reference value (P0

app,  Table 4). On  the other
hand, for rhodamine, only Pø

app (Table 5) were in  the same order
of magnitude as the control permeability (P0

app,  Table 4). These
results are in agreement with previous finding [9] supporting the
theory that for the lipophilic substances, the freely molecularly
dissolved fraction of the drug is the primary contributor to the
permeability.

5. Conclusion

This study shows that tonicity perturbations affect the release
of hydrophilic and, to a  minor extent, lipophilic markers from LUVs.

The sizes, as well as the release kinetics of the two  different mark-
ers loaded inside LUVs were altered by the tonicity differences.
LUV dispersions seemed to  be more susceptible to  the osmotic
swelling than shrinking. Size changes were more evident for empty
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nd calcein-LUVs in comparison to rhodamine-LUVs. The release
f calcein from LUVs was highly influenced by the environmen-
al tonicity changes, whereas the release of rhodamine was  less
ffected. In conclusion, these results demonstrate that different
onicity (within inner core and external environment of LUVs) can
nhance/hamper the release of markers from LUVs and that osmot-
cally active liposomes could be  used as a  new controlled drug
elivery system.
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Systemic administration of drugs is ineffective in the treatment of central nervous system disorders
because of the blood-brain barrier. Nasal administration has been suggested as an alternative adminis-
tration route as drugs absorbed in the olfactory epithelium bypass the blood-brain barrier and reach the
brain within minutes. However, the nasal mucosa properties (e.g., tonicity, pH) are not constant because
of physiological and environmental factors, and this might limit the therapeutic outcome of nanocarrier-
based formulations. To shine light on the impact of environmental ionic strength on nanocarrier-based
formulations, we have studied how liposomal formulations respond to the change of tonicity of the
external environment. Large unilamellar vesicles loaded with 6 different drugs were exposed to different
hypotonic environments, creating an osmotic gradient within the inner core and external environment of
the liposomes up to 650 mOsm/kg. Both size and polydispersity of liposomes were significantly affected
by tonicity changes. Moreover, the release kinetics of hydrophilic and lipophilic drugs were largely
enhanced by hypotonic environments. These results clearly demonstrate that the environmental ionic
strength has an impact on liposomal formulation stability and drug release kinetics and it should be
considered when liposomal formulations for nose-to-brain targeted drug delivery are designed.

© 2019 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Introduction

Standard therapies for the treatment of the majority of central
nervous system (CNS) disorders (i.e., Alzheimer’s disease, multiple
sclerosis, Parkinson’s disease, etc.) are based on daily systemic
administration of drugs. The most serious limitation of systemic
administration of drugs is that the blood-brain barrier (BBB) pre-
vents drugs from reaching the CNS.1-3 The BBB consists of tightly
packed endothelial cells separating the systemic circulation from
the neuronal cells. It is estimated that the BBB limits the access to
; EE, entrapment efficiency;
red saline; PI, polydispersity
nerated cellulose barrier; RL,
r; RT, total resistance to drug
tidylcholine; ZP, z-potential;
and external environment of
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®. Published by Elsevier Inc. All ri
the brain for 98% of small molecules and 100% of large ones.4 To
overcome these limitations, alternative routes of drug administra-
tion to the brain have lately emerged. One of the most promising
routes of administration appears to be the nose-to-brain targeted
drug administration.5,6 The nasal epithelium is divided into the
olfactory and respiratory region.5-7 Drugs that are absorbed
through the olfactory region have the potential to avoid systemic
elimination (i.e., first-pass metabolism, renal clearance etc.), reach
the cerebrospinal fluid, and accumulate in the brain bypassing the
BBB.5-8 This route of drug administration is unfortunately limited
by low absorption through the olfactory epithelium because of the
limited surface area, early enzymatic degradation, and rapid ciliary
clearance.9 However, new research has shown that liposomes can
optimize nose-to-brain targeted drug delivery.10 Liposomes are
spherical vesicles consisting of single or multiple phospholipid bi-
layers surrounding an aqueous core.11,12 Liposomes for nose-to-
brain targeted delivery have shown to protect drugs from early
degradation and elimination because of their ability to entrap both
hydrophilic and lipophilic compounds.13,14 Recent in vivo studies in
rats have shown that liposomal formulations administered via the
nose reduce systemic side effects, improve apparent neurological
ghts reserved.

mailto:m.p.d.cagno@farmasi.uio.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xphs.2019.03.006&domain=pdf
www.sciencedirect.com/science/journal/00223549
http://www.jpharmsci.org
https://doi.org/10.1016/j.xphs.2019.03.006
https://doi.org/10.1016/j.xphs.2019.03.006


Table 2
Experimentally Determined Osmolality, pH, and Calculated Phosphate Concentra-
tion for Each of the PBS Solutions Employed

Buffer Solution Osmolality (mOsm/kg) pH Phosphate (mM)

PBS700 707 ± 6 7.21 ± 0.01 74 ± 0
PBS300 298 ± 12 7.39 ± 0.03 74 ± 0
PBS190 183 ± 2 7.49 ± 0.04 44 ± 0
PBS65 64 ± 3 7.60 ± 0.04 15 ± 0

Results represent mean ± SD (n ¼ 5).
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functions, and enhance cognitive functions for the treatment of
Alzheimer’s and Parkinson’s disease.10,15 Despite the promising
results, liposome-based formulations intended for nose-to-brain
targeted drug delivery seem to show inconsistent improvement
in the therapeutic effects when compared with other nano-
particulate systems.16,17 It has been suggested that one of the rea-
sons might be the slow drug release kinetics (for both hydrophilic
and lipophilic compounds) from the liposomal carrier.18-20 Another
important variable is related to physiological changes at the nasal
mucosal level. In fact, as the mucus is directly open to the external
milieu, environmental factors such as air humidity or temperature
can perturb the mucus properties such as viscosity, pH, and most
importantly, tonicity.21,22 These alterations might also occur during
the inflammation state.23 It is well accepted that liposomal phos-
pholipid bilayer allows small neutralmolecules to pass through it to
equalize the chemical activity gradient.24-26 For instance, when the
ionic strength of the liposomal core is higher than the outside
environment, water molecules will diffuse through the lipid bilayer
from the outside to the inside of the liposomes (following the
chemical activity gradient). As a result of solvent movement, an
osmotic pressure is generated on the liposomal surfaces and lipo-
somes swell (water influx).27-29 We have recently proved that the
release of a medium-sized hydrophilic marker (calcein) and lipo-
philic marker (rhodamine) from large unilamellar vesicles (LUVs) is
influenced by osmotic stress.30 Specifically, we proved that the
release of a hydrophilic marker from LUVs was significantly more
affected by the tonicity perturbations in comparison with a lipo-
philic marker. This suggests that the magnitude of these changes
could be related to the interplay between the changes in liposomal
size and the direction of water flux through the liposomal mem-
brane (water influx or efflux). The aim of this study was therefore to
verify how the changes in environmental ionic strength might in-
fluence liposomal formulations designed for nasal administration.
Specifically, we investigated how the exposure of LUVs to hypotonic
environment affects the drug release kinetics of 6 active pharma-
ceutical ingredients (caffeine, hydrocortisone, ibuprofen, ketopro-
fen, methylprednisolone, and theophylline). The drugs were chosen
to cover a range of relevant physiochemical properties (different
partition coefficients and ionization constants, see Table 1) within
potential candidates in the treatment or prevention of the Alz-
heimer’s disease.37,38 The liposomal dispersions were characterized
in terms of size, z-potential (ZP), and entrapment efficiency (EE),
whereas drug release kinetics in uneven tonicities were studied by
the classic Franz cell diffusion system equipped with regenerated
cellulose barriers.
Materials and Methods

Materials

Caffeine, hydrocortisone, ibuprofen, ketoprofen, methylpred-
nisolone, theophylline, disodium hydrogen phosphate dihydrate
Table 1
Molecular Weight (MW), Dissociation Constant (pKa), Distribution Coefficient at pH
7.4 (logD7.4) and Wavelength of Maximum Absorbance (lmax) of the Investigated
Drugs

Drug MW (g/mole) pKa logD7.4 lmax (nm)

Caffeine 194.2 10.431 0.032 273
Theophylline 180.2 8.833 �0.132 272
Ketoprofen 254.3 4.534 0.235 261
Ibuprofen 206.3 4.936 1.035 222
Hydrocortisone 362.5 Not relevant 1.532 247
Methylprednisolone 374.5 Not relevant 2.132 248
(Na2HPO4$2H2O), sodium chloride (NaCl), sodium hydroxide
(NaOH), sodium dihydrogen phosphate monohydrate (NaH2-
PO4$H2O), chloroform, and methanol were purchased from Sigma-
Aldrich Chemie GmbH (Steinheim, Nordrhein-Westfalen, Ger-
many). Lipoid S100 (soy-phosphatidylcholine [SPC] >94%) was
kindly provided by Lipoid GmbH (Ludwigshafen, Rheinland-Pfalz,
Germany).

Preparation of Phosphate Buffered Saline

Phosphate buffered saline (PBS) solutions were prepared
following a method previously described.30 In brief, a 300 mOsm/
kg neutral (pH 7.4) buffer (PBS300) was obtained by dissolving
NaH2PO4$H2O, Na2HPO4$2H2O, NaOH, and NaCl (4.5 g/L, 7.4 g/L, 0.8
g/L, and 4.4 g/L, respectively) in distilled water. PBS300 was diluted
3:5 or 1:5 (v/v) with distilled water to achieve buffer solutions with
reduced ionic strength (approx. 190 and 65 mOsm/kg, see Table 2).
The ionic strength of PBS300 was increased by adding droplets of a
200 g/L NaCl solution (dissolved in PBS300) until a tonicity of 700
mOsm/kg tonicity was reached (PBS700). The measured osmolality
(Semi-Micro Osmometer K-7400; Knauer, Berlin, Germany) and pH
(sensION™ þ PH31 pH meter; Hach, Barcelona, Spain) of the
different PBS solutions used in this study are represented in Table 2.

Preparation of LUVs

LUV dispersions were prepared following a method previously
described.30 A buffer solution (10 mL, PBS300 or PBS65) was gently
added on top of an organic phase containingmethanol (0.2 mL) and
SPC/chloroform solution (200 mg/mL, 1 mL) in a 50-mL round
bottom flask. LUV formulations containing caffeine, ibuprofen,
ketoprofen, or theophylline were prepared by dissolving the drug
(2 mM concentration) in the aqueous phase (PBS300 or PBS65,
respectively), whereas LUVs with hydrocortisone or methylpred-
nisolone were prepared by dissolving the drug in the SPC/chloro-
form solution (drug-lipid ratio approx. 0.035 w/w). Unilamellar
vesicles (containing 20 mg/mL lipid and 2 mM drug) were spon-
taneously formed after the removal of the organic phase by rotary
evaporation (40�C, 40 rpm, 0.1 bar, 90 min, Büchi R-124 rotavapor
equipped with Büchi vacuum pump V-700 and Büchi B-480 water
bath; Büchi Labortechnik AG, Flawil, Switzerland). Liposomal dis-
persions were subsequently extruded through polycarbonate
membrane filters (5 � 800 nm and 10 � 400 nm, Nuclepore Track-
Etched Membranes; Whatman International Ltd., Maidstone, Kent,
UK) at room temperature (23�C-25�C) to obtain vesicles of homo-
geneous sizes.

Size Characterization

LUVs' size distribution was measured by photon correlation
spectroscopy (angle of 173�, 25�C, Zetasizer Nano Zen 2600; Mal-
vern Panalytical, Malvern, Worcestershire, UK). Before analysis,
each LUV dispersion was diluted 1:100 (v/v) with the same buffer
used to prepare LUVs and filtered through polyethersulfone



Figure 1. Schematic representation of the passive diffusion setup. RB represents the
resistance to drug transport through the regenerated cellulose barrier (measured for
drug in solution), whereas RT represents the total resistance to drug transport
(measured for liposome dispersion) and RL represents the resistance to drug transport
through the liposomal bilayer (calculated with Eq. 4).
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membrane filters (0.2 mm pore size; VWR International, Radnor,
PA). Analysis were performed in 4 replicates (n ¼ 4), where each
sample was measured thrice. For the investigation of LUV sizes in
non-isotonic conditions, LUV dispersions (prepared from PBS300
with measured tonicity of approx. 710 mOsm/kg) were diluted
1:100 (v/v) with hypotonic buffers (PBS300 or PBS65, Table 2) and
sizes were detected at intervals (approx. every 15 min) over a
period of 90 min. Each experiment was repeated twice (n ¼ 2), and
each sample was measured 3 times.

z-Potential Characterization

The electrokinetic potential (z-potential [ZP]) of LUVs was
measured by a Zetasizer Nano Zen 2600 (Malvern Panalytical)
following a procedure previously described.30 LUV dispersions
were diluted 1:20 (v/v) with filtrated deionized water (0.2 mm pore
size; VWR International, Radnor, PA) prior measurements, and
analysis were conducted at room temperature (23�C-25�C). Mea-
surements were performed in 4 replicates (n ¼ 4), where each
sample was measured thrice.

Entrapment Efficiency of Drugs

LUVs were separated from the supernatant (containing freely
unentrapped drug) by ultracentrifugation (200,000 �g, 10�C,
30 min, Beckman model L8-70M with SW 60 Ti rotor; Beckman
Instruments, Brea, CA). The pellet obtained after ultracentrifugation
was dissolved in 1 mL methanol, and drug concentration was
quantified in the supernatant as well as in the pellet solutions by
UV-visible spectroscopy using a Microtiter plate reader (Spectra
Max 190 Microplate Spectrophotometer; Molecular Devices, Sun-
nyvale, CA) (see Table 1 for the specific detection wavelengths of
each drug). EE was calculated using Equation 1:

EE ð%Þ ¼ MLUVs

MLUVs þMfree
,100 (1)

where MLUVs represents the amount of liposomal entrapped drug
(i.e., recovered in the pellet) and Mfree represents the amount of
freely unentrapped drug (i.e., detected in the supernatant). The
drug recovery was determined from the total amount of drug
(entrapped and unentrapped drug in LUVs) after centrifugation in
comparison to the nominal amount of drug in the LUVs (i.e., initial
total drug content before centrifugation). Analyses were performed
in minimum duplicates (n � 2), whereas 3 samples of each batch
were measured 4 times.

In Vitro Drug Transport Study

Drug transport studies were conducted using the Franz diffusion
cell system (0.64 cm2 diffusional area jacketed flat ground joint;
PermeGear, Hellertown, PA) following a method previously used.30

In brief, the acceptor chamber was filled with 5 mL PBS (see
Table 2). Regenerated cellulose barriers (VISKING dialysis tubing
MWCO 12-14 kDa; Medicell Membranes Ltd., London, UK) were
placed between acceptor and donor chambers. The experiment
started by adding 0.8 mL of a liposomal dispersion (containing 20
mg/mL lipid, 2 mM total drug concentration) or, alternatively, drug
solution (a.k.a. reference) to the donor chamber. In the case of
soluble or poorly soluble compounds (caffeine, ibuprofen, keto-
profen, theophylline), 2 mM reference aqueous solution was used,
whereas for very poorly soluble drug (hydrocortisone and meth-
ylprednisolone), saturated suspension (1 mg/mL) was used to
maintain a consistent concentration gradient between donor and
acceptor compartments. The thermodynamic solubility was
predetermined to be 1 mM and 0.3 mM for hydrocortisone and
methylprednisolone in PBS (both PBS65 and PBS300), respectively.
Samplings (0.5 mL) from the acceptor chamber were carried out at
intervals of 30 min over a period of 4 h. After withdrawal of sam-
ples, equal volumes of the respective PBS (with same tonicity) were
reintroduced into the acceptor chamber to maintain sink condition.
At the end of the experiment, drug concentrations in the acceptor
and donor chambers were quantified by UV-visible spectroscopy
(see Entrapment Efficiency of Drugs). The cumulative amount of
diffused drug over time was calculated, and the linear part of the
slope (representing steady state condition) was used to determine
the apparent permeability coefficient (P, cm/s) as shown in
Equation 2 rearranged from Brodin et al.39:

P ¼ dm
dt

� 1
A
� 1

cd
(2)

where dm/dt represents the rate of mass transfer of free drug
molecules over time, A is the diffusional area, and cd represents the
initial total drug concentration in the formulation.
Resistance to Drug Transport Through Phospholipid Bilayer
Calculation (RL)

The resistance to drug transport of a compound through a bar-
rier can be defined as the reciprocal function of P as shown in
Equation 3.40,41

R ¼ 1
P

(3)

In a permeation process where different layers need to be
crossed, the total resistance to drug transport (RT) can be calculated
from the sum of the single resistances (of each of the barriers
involved) to transport. In the case of LUV dispersion studies, drug
molecules need to first cross the liposomal bilayer, representing the
first resistance to drug transport (RL, Fig. 1). Second, drug molecules
need to cross the regenerated cellulose (dialysis) barrier encoun-
tering a second resistance to drug transport, namely RB (Fig. 1).
Based on this assumption, measuring the total resistance to drug
transport (RT) and RB (measured in the reference experiment with
drug solutions), RL can be calculated by Equation 4:

RL ¼ RT � RB (4)



Table 3
Measured Tonicity, Size, Polydispersity Index (PI), z-potential (ZP), Entrapment Efficiency (EE), and Drug Recovery for All Formulations Investigated

Drug Buffer Solution Tonicity (mOsm/kg) Size (nm) PI ZP (mV) EE (%) Drug Recovery (%)

Caffeine PBS65 430 ± 17 288 ± 53 0.34 ± 0.03 �2.99 ± 0.85 22 ± 4 97 ± 3
PBS300 719 ± 18 262 ± 42 0.27 ± 0.03* �0.87 ± 0.95*** 18 ± 3* 99 ± 1

Theophylline PBS65 455 ± 6 341 ± 72 0.37 ± 0.04 �1.99 ± 0.93 30 ± 0 100 ± 3
PBS300 719 ± 22 327 ± 62 0.31 ± 0.04 �0.08 ± 1.28*** 23 ± 6* 103 ± 3

Ketoprofen PBS65 429 ± 4 368 ± 68 0.34 ± 0.03 �5.40 ± 0.98 42 ± 1 97 ± 2
PBS300 718 ± 28 249 ± 36*** 0.22 ± 0.02** �3.97 ± 0.98 41 ± 4 98 ± 1

Ibuprofen PBS65 429 ± 1 252 ± 36 0.22 ± 0.02 �8.68 ± 1.05 56 ± 4 99 ± 3
PBS300 686 ± 23 246 ± 33 0.20 ± 0.02* �6.26 ± 1.01** 46 ± 9* 101 ± 1

Hydrocortisone PBS65 437 ± 6 332 ± 60 0.31 ± 0.03 �5.86 ± 1.10 77 ± 3 94 ± 5
PBS300 718 ± 14 314 ± 58 0.32 ± 0.03 �2.49 ± 0.95* 74 ± 7 97 ± 4

Methylprednisolone PBS65 425 ± 7 285 ± 46 0.29 ± 0.03 �3.12 ± 0.91 85 ± 3 97 ± 3
PBS300 701 ± 9 256 ± 35*** 0.20 ± 0.02*** �0.75 ± 0.94*** 84 ± 5 97 ± 3

Results represent mean ± SD (n � 2).
Significant difference (*p � 0.050, **p � 0.010, ***p � 0.001) between the LUVs prepared in PBS300 in comparison with PBS65.
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Statistical Data Evaluation

Two-sample Student’s t-test assuming unequal variances was
used to determine the significant differences between the mean of
2 data sets. A value of p below or equal to 0.050 was considered as
statistically significant.
Results

LUVs Characterization

The most relevant physical characteristics of the different lipo-
somal dispersions studied are summarized in Table 3.

LUV dispersions prepared in PBS300 exhibited a tonicity of
approximately 710mOsm/kg, whereas in PBS65, the tonicity of LUV
dispersions was found to be between 425 and 455 mOsm/kg. In all
dispersions, the liposome average sizes and polydispersity index
(PI) were higher when prepared in PBS with lower ionic strength
(65 mOsm/kg in respect to 300 mOsm/kg). The size differences
were found significant for ketoprofen- (p ¼ 0.001) and
methylprednisolone-LUVs (p ¼ 0.000). The same trend could be
found for PI in addition to significant difference for caffeine- (p ¼
0.042) and ibuprofen-LUVs (p ¼ 0.020). The ZP of all LUV disper-
sions prepared was close to neutral and significantly more negative
(p � 0.026) for the dispersion prepared in PBS65 in comparison
with PBS300. EE was rather low for caffeine and theophylline (18%-
30%) with significant enhanced entrapment for the LUVs prepared
in PBS65 in comparison with PBS300 (p ¼ 0.040 and 0.014,
respectively). We determined medium-high entrapment for keto-
profen and ibuprofen (41%-56%) and considerably higher entrap-
ment for hydrocortisone and methylprednisolone (above 74%).
Effect of the Ionic Strength on LUV Sizes

The changes in LUV size distributions after the exposure to
isotonic (a) and hypotonic environments (b and c) are reported in
Figures 2 and 3. As it can be seen, LUVs were quite homogeneous in
isotonic and low-hypotonic conditions (up to approx. 410 mOsm/kg
differences, Figs. 2a and 2b). When exposed to a higher tonicity
gradient (approx. 650 mOsm/kg difference between initial LUV
dispersion and external environment tonicity), the liposomal dis-
persions clearly indicated enlargement of the size. Similarly, the PI
was relatively constant over time for LUVs in the isotonic and low-
hypotonic conditions (Figs. 3a and 3b). When the tonicity gradient
between initial LUV dispersion and external environment of LUVs
increased to approximately 650mOsm/kg (Fig. 3c), an increase in PI
(as well as standard deviation) was observed over time for all for-
mulations tested.

In Vitro Transport Study

Drug Solutions
The initial drug concentration, tonicity, and the resistance to

drug transport through the regenerated cellulose barrier (RB) are
presented in Table 4. As shown in Table 4, RB was not significantly
affected by the tonicity of the PBS used to prepare the solutions. The
lowest RB were found for caffeine and theophylline (around 1.6 �
104 s/cm), whereas for all other drugs (hydrocortisone, ibuprofen,
ketoprofen, and methylprednisolone), RB was slightly higher and
between 1.9 � 104 and 2.3 � 104 s/cm (Table 4).

LUV Dispersions
The phospholipid bilayer's resistance to drug transport (RL) over

the tonicity gradient is reported in Figure 4. As the tonicity gradient
between initial LUV dispersion and external environment of lipo-
somes increases (DmOsm/kg), a decrease in the RL was observed for
all drugs to a different extent (Fig. 4). For caffeine and theophylline,
a drastic shift in resistance was detected at a tonicity gradient of
approximately 400 mOsm/kg, whereas for the other drugs, the
decrement in RL seemed to be more gradual. A significant decrease
in RL (p � 0.026) could be found for all the LUV dispersions pre-
pared at tonicity differences around 300 and 400 mOsm/kg with
the exceptions of caffeine andmethylprednisolone. Only in the case
of caffeine, the liposomal bilayer produced significantly higher
resistance (p � 0.009) at low-hypotonic conditions (Fig. 4, upper-
left) but not in isotonic conditions. For methylprednisolone, a sig-
nificant decrease in RL (p ¼ 0.026) was already apparent at tonicity
differences around 100mOsm/kg. For all LUV dispersions prepared,
the reduction in RL at the highest concentration gradient (approx.
650 mOsm/kg) was found significantly different (p-value between
0.000 and 0.037) compared with the lowest concentration gradient
(0 mOsm/kg, isotonic condition). The overall reduction in RL was
found to be between 75% and 114% for the hydrophilic drugs
(caffeine and theophylline), between 49% and 65% for the lipophilic
drugs (ibuprofen and ketoprofen), and approximately 27% for the
hydrophobic drugs (methylprednisolone and hydrocortisone).

Discussion

LUVs Characterization

The LUVs were prepared using natural lipid (SPC) and PBS
(adjusted to physiological pH and tonicities) to achieve LUV



Figure 2. Size distributional changes for drug-loaded LUVs in (a) isotonic condition (DmOsm/kg of 3 ± 2 mOsm/kg), (b) low-hypotonic condition (DmOsm/kg of 414 ± 19 mOsm/kg),
and (c) hypotonic condition (DmOsm/kg of 648 ± 19 mOsm/kg). Each line represents the mean size distribution (n ¼ 2) measured at 5 different time points within 90 min.

I.Y. Wu et al. / Journal of Pharmaceutical Sciences 108 (2019) 2570-25792574
dispersions suitable for nasal administration.21,22 In relation to
liposomal sizes, PI and ZP, the prepared LUV formulations
exhibited suitable profiles when compared with other liposomal
formulations intended for nasal administration.13,14,42,43 In
agreement with our previous findings,30 the ZP was found to be
slightly more negative for the LUVs prepared in PBS65 compared
with PBS300 (Table 3). Although the neutral ZP at higher ionic
strength can be expected because of the formation of a thicker
ion shell surrounding the liposomes,44 the larger sizes of LUVs
prepared in PBS65 in comparison with PBS300 are difficult to
explain. It could be argued that this discrepancy is related to
small changes in elasticity of the phospholipid bilayers in envi-
ronments of different ionic strengths. The prepared LUVs were
also found to be suitable carriers to entrap all the drugs with
different magnitude of loading. In accordance with their distri-
bution coefficients at pH 7.4 (logD7.4, Table 1) and the literature,
hydrophobic drugs (hydrocortisone and methylprednisolone)
reached the highest EE into liposomes (between 74% and 85%,
respectively), whereas the entrapment was much lower for hy-
drophilic drugs (close to 25% for caffeine and theophylline).45

The lipophilic drugs (ibuprofen and ketoprofen) showed a
medium-high EE ranging between 41% and 56% (similarly to
what has been reported previously by Nii and Ishii).46 The
entrapment was significantly enhanced for LUVs with hydro-
philic drugs prepared in PBS65 when compared with PBS300
(caffeine p ¼ 0.040, theophylline p ¼ 0.014, respectively). This
might be related to the increased size of liposomal carriers when
prepared in different PBS (Table 3). In our previous study, we



Figure 3. Polydispersity index (PI) changes for drug-loaded LUVs in (a) isotonic condition (DmOsm/kg of 3 ± 2 mOsm/kg), (b) low-hypotonic condition (DmOsm/kg of 414 ± 19
mOsm/kg), and (c) hypotonic condition (DmOsm/kg of 648 ± 19 mOsm/kg). Results represent mean ± SD (n ¼ 2).
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assumed, due to the lack of available literature on the topic, that
the total tonicity of the liposomal formulation should have been
primarily influenced by the ionic strength of the solution.30 In
the present work, we measured the tonicity of each of the LUV
dispersions (Table 3), and surprisingly, a significant discrepancy
in tonicity for LUV dispersions in comparison to plain buffer
(Table 2) was found for all formulation tested. As the drug alone
did not affect the buffer’s tonicity at the experimental condition
(Table 4), assuming that at the equilibrium, the tonicity of the
inner core of liposomes is equal to the measured tonicity of the
LUV dispersion (i.e., external environment), it appears that li-
posomes themselves acted as strong tonicity agents (the influ-
ence on total tonicity accounts for more than 300 mOsm/kg). A
very similar trend was observed for empty liposomes (measured
tonicity of 718 ± 34 mOsm/kg and 448 ± 22 mOsm/kg when
prepared in PBS300 or PBS65, respectively). To the best of our
knowledge, this phenomenon has not been described earlier and
it might be of extreme importance in liposomal drug research.



Table 4
Regenerated Cellulose Barrier's Resistance to Drug Transport (RB) of Drug Solutions in Phosphate Buffered Saline

Drugs Buffer Solution Drug Concentration (mM) Tonicity (mOsm/kg) RB (104 s/cm)

Caffeine PBS65 2.04 ± 0.03 65 ± 1 1.64 ± 0.03
PBS300 2.00 ± 0.00 300 ± 2 1.64 ± 0.05

Theophylline PBS65 1.92 ± 0.03 65 ± 1 1.58 ± 0.05
PBS300 1.99 ± 0.02 297 ± 1 1.60 ± 0.07

Ketoprofen PBS65 2.00 ± 0.04 66 ± 2 2.26 ± 0.08
PBS300 2.00 ± 0.00 298 ± 0 2.08 ± 0.11

Ibuprofen PBS65 2.03 ± 0.00 68 ± 4 2.14 ± 0.14
PBS300 2.01 ± 0.00 308 ± 10 2.18 ± 0.15

Hydrocortisone PBS65 1.02 ± 0.01 66 ± 1 1.92 ± 0.23
PBS300 1.03 ± 0.02 298 ± 0 2.22 ± 0.17

Methylprednisolone PBS65 0.26 ± 0.00 64 ± 0 2.03 ± 0.18
PBS300 0.25 ± 0.00 301 ± 5 2.27 ± 0.34

Results represent mean ± SD (n ¼ 4).
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Effect of the Ionic Strength on LUVs Sizes

It has been reported previously that LUV sizes can be affected
by changes in tonicity of the surrounding environment.30,47 If the
environment surrounding liposomes is hypotonic in comparison
Figure 4. Liposomal bilayer resistance (RL) to drug transport under the influence of hypoton
environment of liposomes are shown as DmOsm/kg. Results represent mean ± SD (n ¼ 4)
between the hypotonic compared with isotonic condition.
to the liposomal core, liposomes have a tendency to increase in
size as a result of water influx into the liposomes.27-29 Photon
correlation spectroscopy is a powerful technique applied to
quantify liposomal sizes and PI in a dispersion. However, in these
experiments, it was difficult to determine an accurate size of the
ic environmental changes. The tonicity difference between the inner core and external
, and significant difference (*p � 0.050, **p � 0.010, ***p � 0.001) in RL is determined
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LUVs under the influence of tonicity perturbations. To have a
better and clear picture of the effect that hypotonic surrounding
environments had on the formulations, LUV dispersions (approx.
710 mOsm/kg) were exposed to 2 buffers of different ionic
strengths (300 mOsm/kg and 65 mOsm/kg) and sizes of the li-
posomes were measured at approximately 15-min intervals for a
total period of 90min. The size distribution of all formulations was
rather homogenous (Fig. 2). Interestingly, the dispersions were
more homogeneous in the low-hypotonic conditions rather than
isotonic conditions (Figs. 2a and 2b). Because ions are capable of
neutralizing liposomal surface charges due to ion-shell forma-
tion,44,48-51 it is reasonable to assume that liposomal aggregation
is more significant in isotonic conditions than in low-hypotonic
conditions because of the surface charge neutralization of lipo-
somes (see also Table 3). When the surrounding liposomal envi-
ronment was highly hypotonic (DmOsm/kg of 648 ± 19 mOsm/kg,
Fig. 2c), the size distribution became very heterogeneous. The
same trend could be observed for the PI that was significantly
increased over time just at the high tonicity gradient (Fig. 3c). The
combination of these results clearly indicates that LUVs grew in
sizes when exposed to hypotonic environments at the difference
of approximately 648mOsm/kg, whereas smaller differences were
not apparent because of the disturbances on the liposomal sur-
faces, which might have affected the LUVs behavior and the size
measurements.

Resistance to Drug Transport Through Regenerated Cellulose Barrier
(RB)

In this work, the kinetics of transport for the investigated drugs
through barrier(s) were described by calculating the resistance of
each single barrier involved. This was done to better differentiate
the role of each barrier involved in the total net transport of drug
(Eq. 3) and is essential for a correct interpretation of transport
studies that involve liposomes. The RB was determined by
measuring the drug's permeability (Eq. 2) from drug solutions, or in
the case of very poorly soluble drugs (hydrocortisone and meth-
ylprednisolone), employing aqueous drug suspensions (no lipo-
somes present). As can be seen in Table 4, the lowest RB was found
for caffeine and theophylline, whereas the highest was found for
hydrocortisone and methylprednisolone. The reason for the sig-
nificant discrepancy could to be attributed to the different size (i.e.,
molecular weight, Table 1) of the molecules. In fact, Equation 5
(adaptation of Fick's first law) can describe the permeability of a
drug through a regenerated cellulose barrier as

P ¼ D
Cd

,
dc
dx

(5)

where D represents the diffusion coefficient and dc/dx is the
gradient of concentration between donor and acceptor compart-
ments. From this equation, it is evident that, normalizing the con-
centration and assuming same thickness of the barrier in all
experiments, the differences in permeability (and therefore in
resistance to transport) within different drugs through cellulose
barriers are solely given by the different diffusion coefficients of
each drug. Indeed, D is higher for small compounds such as caffeine
(measured diffusivity in similar conditions, 9 � 10�6 cm2/s52) and
lower for larger compounds such as ketoprofen (measured diffu-
sivity in similar conditions, 6 � 10�6 cm2/s52).

Resistance to Passive Transport Through Liposomal Barrier (RL)

The liposomal bilayer of LUVs represents an additive barrier
that drug molecules need to cross to reach the acceptor
compartment (Fig. 1). To calculate the resistance to drug trans-
port through the phospholipid bilayer (RL), the permeability of
drugs through the regenerated cellulose barrier of LUVs loaded
with drug (RT) needed to be measured and subtracted from RB
(Eq. 4). In isotonic conditions (Fig. 4, DmOsm/kg of approx.
0 mOsm/kg), hydrophilic compounds (caffeine and theophylline)
exhibit a RL of approximately 0.4 to 0.7 � 104 s/cm and this
resistance rises with the lipophilicity of the compounds (Table 1)
up to 14.6 � 104 s/cm for a very hydrophobic compound, meth-
ylprednisolone. The higher resistance to transport through the
lipid bilayer expressed by hydrophobic compounds in compari-
son with hydrophilic is not surprising and is due to the fact that
the lipophilic compounds are tightly embedded in the lipid bi-
layers and cannot escape (be released) easily. These results are in
agreement with previous findings.18 Interestingly, for the hy-
drophilic compounds (caffeine and theophylline) and to a minor
but substantial extent, lipophilic acidic drugs (ketoprofen and
ibuprofen), a strong reduction in RL was measured with reduced
external ionic strength (increased DmOsm/kg, Fig. 4). This is a
clear evidence that exposure of drug-loaded LUVs to hypotonic
environment is a powerful trigger of drug release. This can be
attributed to the stretching of the phospholipid bilayers induced
by LUV size enlargements that makes the barrier leakier and
drugs can permeate more easily.29,53 This phenomenon is in
agreement with previous findings.54-56 An alternative hypothesis
to explain the increased drug release in hypotonic conditions is
the pore formation during liposomes swelling, which can cause a
pulsating release of entrapped content.47,57-59 For caffeine and
theophylline, the RL becomes practically zero (i.e., no resistance
to drug transport caused by phospholipid bilayers) when the
tonicity differences between the inner core and external envi-
ronment of LUVs reached around 350 mOsm/kg. Interestingly, RL
increases at the lowest tonicity gradient for caffeine (below 300
mOsm/kg, Fig. 4 upper-left). It can be argued that at low tonicity
gradients, the stretching of phospholipid bilayers might be
compensated (if not overdriven in the case of caffeine) by the
water flux directed inward (i.e., against drug flux), causing
therefore an increasing in RL. For ibuprofen and ketoprofen, the
reduction in RL seemed to be more proportional and reaching a
minimum of approximately half of the initial RL at the highest
tonicity gradient (DmOsm/kg above 600mOsm/kg). Interestingly,
the release of hydrophobic compounds (hydrocortisone and
methylprednisolone) was also positively affected by the hypo-
tonic surrounding environment, however, to a minor extent in
comparison with the other compounds tested. At a tonicity
gradient above 600 mOsm/kg, the RL for hydrophobic hydrocor-
tisone and methylprednisolone is reduced by approximately 27%
in comparison with isotonic condition. These results are in
agreement with our previous findings where we demonstrated
that the kinetic of calcein release (hydrophilic marker) from LUVs
was more affected by tonicity perturbation in comparison with
the lipophilic marker (rhodamine).30 It is clear that the effect of
the environmental tonicity on the release of liposomal drugs
needs to be studied to assist in optimization of liposomal for-
mulations destined for nasal administration.

Conclusions

In this work, we have proven that the tonicity of the envi-
ronment surrounding liposomes plays a crucial role in LUVs'
physical characteristics (i.e., size, polydispersity, and surface
charge) and drug release profiles. First, we have showed that li-
posomes themselves significantly affect the total tonicity of the
dispersions. Second, we have demonstrated that LUV size and
polydispersity increase after exposing liposomes to hypotonic



I.Y. Wu et al. / Journal of Pharmaceutical Sciences 108 (2019) 2570-25792578
environment proven them osmotically active. Finally, we have
proven that the exposure of drug-loaded LUVs to hypotonic en-
vironments reduces RL and therefore enhances drug release ki-
netics of both hydrophilic and lipophilic/hydrophobic drugs. The
findings have clear implications in the development and opti-
mization of liposomal formulations targeting nasal administra-
tion. Moreover, the observed effects can be utilized to tailor the
release of liposomal drugs within nasal environment.
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A B S T R A C T

The aim of this work was to clarify the dynamics behind the influence of ionic strength on the changes in drug
release from large unilamellar vesicles (LUVs). For this purpose, we have investigated the transport of two
different model drugs (caffeine and hydrocortisone) formulated into liposomes through different types of bar-
riers with different retention properties (regenerated cellulose and the newly introduced biomimetic barrier,
Permeapad®). Drug release from liposomes was studied utilizing the standard Franz diffusion cells. LUV dis-
persions were exposed to the isotonic, hypotonic and hypertonic environment (difference of 300mOsm/kg
between the initial LUVs and the environment) and experimental data treated with both linear and non-linear
(Korsmeyer-Peppas) regression models. To alter the rigidity of the liposomal membranes, cholesterol was in-
troduced in the liposomal barriers (up to 25% w/w). Korsmeyer-Peppas model was proven to be suited to analyse
experimental data throughout the experimental time frame, providing important additive information in com-
parison to standard linear approximation. The obtained results are highly relevant as they improve the inter-
pretation of drug release kinetics from LUVs under osmotic stress. Moreover, the findings can be utilized in the
development of liposomal formulations intended for nose-to-brain targeted drug delivery.

1. Introduction

Liposomes are lipid-based vesicles with a nanometric size range
(Bangham and Horne, 1964; New, 1990). Since liposomes were first
described in the 1960s (Bangham and Horne, 1964), they have been
extensively studied as drug delivery systems for both hydrophilic and
lipophilic drugs (Allen and Cullis, 2013; Li et al., 2019). Nasally ad-
ministered liposomal drug formulations have shown promising poten-
tials for the treatment of some brain diseases such as Alzheimer's and
Parkinson's disease (Lai et al., 2013; Vieira and Gamarra, 2016).
However, to achieve maximal therapeutic benefits, controlled release
from the liposomes in the nasal cavity is required to obtain optimal
available dose at the target site in vivo (Bourganis et al., 2018; Lai et al.,
2013).

One important parameter that is often underestimated in the

development of formulations for nasal drug delivery is the variability of
physiological conditions at the administration site. For example, under
normal physiological conditions, the nasal mucus tonicity is approxi-
mately 300mOsm/kg (Pedersen et al., 2007). However, this value can
change considerably as the nasal mucosa is rather sensitive to the ex-
ternal environment such as air humidity and temperature (Quraishi
et al., 1998). For instance, hyperventilation in dry air can increase the
human nasal tonicity up to 450mOsm/kg (Pedersen et al., 2007).
Variation in the ionic strength at the administration site is highly re-
levant for liposomes since they consist of semi-permeable membrane,
and are therefore, highly sensitive to osmosis (Bangham et al., 1967;
Paula et al., 1996; Pencer et al., 2001). To predict performance of li-
posomes in vivo, good in vitro models that can determine the release
kinetics from liposomes at the early stage of the liposomal drug de-
velopment process are necessary (Solomon et al., 2017; Wacker, 2017).
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Currently, there are no standard methods for studying drug release
from liposomes in vitro (Nothnagel and Wacker, 2018; Solomon et al.,
2017; Wacker, 2017). The proposed methods are based on separating
the dissolved fraction (released drug) from the undissolved fraction
(liposomal drug) (Nothnagel and Wacker, 2018). Some of the most
common methods applied to liposomes are filtration, ultracentrifuga-
tion, solid phase extraction, and dialysis-based methods (Nothnagel and
Wacker, 2018). The dialysis-based methods utilize the drug's diffusion
across barriers to separate liposomal drug from released drug (Solomon
et al., 2017). The liposomal formulation is placed in the donor com-
partment which is separated from the acceptor compartment by a
barrier that can exhibit low retention (e.g. dialysis barrier) or high re-
tention (e.g. biomimetic, biologic barrier) to drug permeation
(Nothnagel and Wacker, 2018). Disadvantages regarding the dialysis-
based methods are related to violation of sink condition (Solomon et al.,
2017), and the fact that drug released from liposomes needs to cross an
additional barrier before being quantified (Fig. 1) (Nothnagel and
Wacker, 2018; Wacker, 2017). On the other hand, dialysis-based
methods are convenient, cost-effective and simple. Consequently, the
dialysis-based devices have been implemented into USP dissolution
apparatuses (e.g. glass basket, dispersion releaser, flow-through), and
used in the development of in situ methods (Nothnagel and Wacker,
2018; Solomon et al., 2017; Tang et al., 2019; Yuan et al., 2017). It has
to be mentioned that the improved dialysis-based methods are still
limited by the barrier properties that separates the liposomal drug from
released drug. Therefore, more processing of the diffusion data is still
required for correct interpretation of the release mechanism from li-
posomes (Jain and Jain, 2016; Wacker, 2017).

The most common way to treat diffusion data is by simple zero
order mass transport kinetic (Brandl et al., 2007; Brodin et al., 2010;
Nothnagel and Wacker, 2018). In both previous studies (Wu et al.,
2017; Wu et al., 2019), we applied a zero order model to interpret the
mass transport data. The release from liposomes was calculated by
using a reference experiment of free drug solution (Wu et al., 2019). We
observed that the release kinetics from liposomes were altered due to
tonicity perturbations in the external environments (i.e. uneven ionic
strength within inner core and external environment of liposomes).
Moreover, we noticed that when the osmotic stress was applied, the
drug transport profiles through regenerated cellulose barrier showed
deviations from linearity, indicating possible modifications of the drug
release kinetics from the liposomes over time. In such situations, the
non-linear regression models for data fitting could have been applied to
analyse the diffusion data (Jain and Jain, 2016).

The non-linear regression models such as Higuchi and Korsmeyer-
Peppas are the two most applied mathematical models to interpret non-
linear diffusion profiles (Costa and Sousa Lobo, 2001; Jain and Jain,
2016). The Korsmeyer-Peppas model has previously been successfully
used to describe the drug release kinetics from liposomes
(Haghiralsadat et al., 2018; Jain and Jain, 2016). In this study, ex-
perimental data from the dynamic dialysis studies are fitted to Eq. (1)
(named the Korsmeyer-Peppas equation);

=M
M

K tt n
(1)

In this equation, Mt/M∞ represents the fractional permeated drug, t
is the time, K is the transport constant (dimension of time−1), and n is
the transport exponent (dimensionless). The release constant K provides
mostly information on the drug formulation such as structural char-
acteristics of the nanocarriers, whereas n is important since it is related
to the drug release mechanism (i.e. Fickian diffusion or non-Fickian
diffusion). In the case of liposomes and assuming sink conditions, the
flux of the drug (j) through a low retention barrier (e.g. regenerated
cellulose) of constant thickness (x) can be described by Eq. (2) (sim-
plified Fick's first law);
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In this equation, c0d is the freely dissolved unentrapped drug con-
centration outside liposomes in the donor compartment, ca the acceptor
drug concentration and D is the diffusion coefficient. According to this
model, the net flux of drug through the barrier is the result of two
diffusion mechanisms (Fig. 1). One is the diffusion of drug molecules
from the donor compartment to the acceptor compartment (experi-
mentally measured K, Fig. 1). The second is the diffusion through the
phospholipid bilayer of liposomes that is dependent on the liposomal
release rate (KI, Fig. 1). In the case where K≈KI, the gradient of
concentration (driving force of the diffusion) should be constant, giving
as result of data fitting an n equal (or close) to 1 (zero-order transport
kinetic, non-Fickian diffusion). If n is lower than 1 (n < 1), this in-
dicates a reduced concentration gradient over time (first-order/pseudo
first-order kinetic, Fig. 1). In the last scenario possible, the gradient of
concentration ((c0d-ca)/x) is increasing over time, producing a positive
deviation from linearity of mass transport profiles. This anomalous
behaviour (associated to n > 1) is generally called “super case” (Costa
and Sousa Lobo, 2001; Jain and Jain, 2016).

Under these premises, in this work, caffeine and hydrocortisone
(hydrophilic and a lipophilic drug, respectively) were the chosen drugs
to be formulated into large unilamellar vesicle (LUV) dispersions of
controlled size and tonicity. Drug transport studies were performed
employing two different types of barriers; one with a low retention
(regenerated cellulose) and another with a high retention (Permeapad®
(Di Cagno et al., 2015)). Moreover, LUV compositions were altered by
the addition of different amount of cholesterol (from 0 up to 25% w/w)
to increase liposomal barrier rigidity. To evaluate the influence of os-
motic stress on drug release kinetics from liposomes, liposomal dis-
persions were exposed to environment of different ionic strengths. The
obtained experimental data were analysed by the means of linear and
non-linear (Korsmeyer-Peppas) regression models. The results obtained
from this study might provide a new insight into the drug release me-
chanism from liposomes, and might be relevant for the development of
liposomal drug formulations intended for nose-to-brain drug delivery.

2. Materials and methods

2.1. Materials

Caffeine, hydrocortisone, disodium hydrogen phosphate dihydrate
(Na2HPO4·2H2O), sodium chloride (NaCl), sodium hydroxide (NaOH),
sodium dihydrogen phosphate monohydrate (NaH2PO4·H2O), chloro-
form and methanol were purchased from Sigma-Aldrich Chemie GmbH
(Steinheim, Germany). Lipoid S100 (SPC, soy-phosphatidylcholine>
94%) was kindly provided from Lipoid GmbH (Ludwigshafen,
Germany) and Permeapad® barriers from InnoME GmbH (Espelkamp,
Germany).

2.2. Preparation of phosphate buffered saline (PBS)

PBS of pH 7.4 and 65mOsm/kg (namely PBS65) was prepared ac-
cording to Wu et al. (2017). The measured osmolality (Semi-Micro
Osmometer Model 4602, Knauer, Berlin, Germany) and pH (Sen-
sION™+PH31 pH meter, Hach, Barcelona, Spain) of the different PBS
used in this study are represented in Table 1. To create isotonic PBS
(namely PBSiso that exhibited same tonicity as the LUVs, approx.
400mOsm/kg), 0.05 g of NaCl was dissolved in1 L of PBS65. For the
preparation of hypertonic PBS (PBShyper), 0.10 g of NaCl was dissolved
into 1 L of PBS65 (tonicity of approx. 700mOsm/kg). Droplets of NaCl
dissolved in PBS65 (concentration of 200 g/L) were added to PBS65 in
order to adjust its tonicity to PBShypo's tonicity (approx. 100mOsm/
kg).

2.3. Preparation of LUVs

LUV dispersions were prepared following a method previously de-
scribed (Wu et al., 2017). In the case of cholesterol-LUVs (11 and 25%
w/w), solutions of SPC/cholesterol (ratio of 9:1 w/w or 4:1 w/w) in
chloroform were used as organic phase. LUV formulations containing
caffeine were prepared by dissolving the drug in the PBS65 (2mM),
whereas in the case of hydrocortisone, the drug was dissolved in the
organic phase together with lipids.

2.4. Size, zeta potential and entrapment efficiency characterization

LUV dispersions were diluted with PBS65 (same buffer used to
prepare the LUVs) 1:100 (v/v) and filtered through polyether sulfone
membranes (0.2 μm pore size, VWR International, Radnor, USA) prior
to size measurement. For the determination of the electrokinetic po-
tential (ZP) on liposomes surface, LUV dispersions were diluted 1:20 (v/
v) with freshly filtrated deionized water (0.2 μm pore size filter) and
analysis conducted at room temperature (23–25 °C) using the DTS1070
cell (Malvern, Worcestershire, UK). The liposomal size and ZP were
measured using a Zetasizer Nano Zen 2600 (25 °C, Malvern,
Worcestershire, UK) as previously described (Wu et al., 2019). To de-
termine the entrapment efficiency (EE), drug-loaded LUVs were sepa-
rated from the unentrapped drug by ultracentrifugation (200,000g,
10 °C, 30min, Beckman model L8-70M with SW 60 Ti rotor, Beckman
Instruments, California, USA) (Wu et al., 2019). The drug concentra-
tions in both LUVs and supernatant (representing unentrapped drug
concentration) were quantified spectroscopically (Spectra Max 190
Microplate, Spectrophotometer Molecular devices, Sunnyvale, USA)
using wavelengths at 273 and 247 nm for caffeine and hydrocortisone,
respectively. Two samples for each batch of formulations were mea-
sured minimum three times. Experiments were repeated in minimum
duplicates (n≥2).

2.5. In vitro diffusion study

The in vitro diffusion studies of caffeine and hydrocortisone were
performed using standard Franz diffusion cells (0.64 cm2 diffusion area
jacketed flat ground joint, PermeGear diffusion cells and systems,
Hellertown, USA) following a previously described method (Wu et al.,
2019). The acceptor compartment was filled with 5mL PBS following
Table 1. Regenerated cellulose (Visking dialysis tubing MWCO
12–14 kDa, Medicell Membranes Ltd., London, UK), or alternatively,
Permeapad® (InnoME GmbH, Espelkamp, Germany) was used as dif-
fusion barrier and experiments were conducted at 35 °C (Julabo 200F
heating circulator, Julabo Inc., Allentown, USA). At time zero (start of
the experiment), 0.3mL of PBS (same composition as acceptor buffer)
was topped with 0.5 mL of LUV dispersion (2mM total drug con-
centration) in the donor compartment. As reference experiments, drug
solution (caffeine, 2mM) or suspension (hydrocortisone, 1mM, ther-
modynamic solubility) in PBS65 were also analysed. Aliquots of 0.5mL
were withdrawn from the acceptor compartment and replaced with
equal volumes of the respective PBS (with same tonicity) every 30min
over a period of 4 h.

2.6. Data analysis

2.6.1. Resistance to drug transport determination (R)
The resistance to drug transport through liposomal bilayer (RL,) was

calculated according to Wu et al. (2019). In brief, the initial part of
diffusional curves (up to 2.5 h) was used to calculate the drug flux (j)
through the diffusion barrier, which was supposed to be constant
during the experiment since the sink conditions were kept. The ap-
parent permeability (P) was determined by normalizing the flux over
the total initial concentration (cd) (see Eq. (3)):
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=P j
cd (3)

The resistance to drug transport through liposomal bilayer (RL) (i.e.
the reciprocal function of permeability through the liposomal bilayer,
1/PL) was calculated from the total resistance to drug transport (RT,
measured in the liposomal dispersion experiments) and from the re-
sistance to drug transport through the barrier (RB, measured in drug
solution experiments) by Eq. (4):

=R R RL T B (4)

2.6.2. Non-linear regression analysis (Korsmeyer-Peppas model)
Drug transport constants (K) and transport exponents (n) of the

different liposomal formulations were determined by fitting of the in
vitro diffusion data to the Korsmeyer-Peppas equation (see Eq. (1))
using the add-in DDSolver program (China Pharmaceutical University,
Nanjing, China). Microsoft Office Excel (Microsoft Corporation, Red-
mond, USA) was used as built-in module of the DDSolver. The K and n
were determined in the range of Mt/M∞ 0–60% (Costa and Sousa Lobo,
2001).

2.7. Stability study

LUVs containing 0, 11 and 25% w/w cholesterol were prepared for
both model drugs (caffeine and hydrocortisone) in duplicates (n=2) as
described in Section 2.3. Each batch was divided into two aliquots and

stored in the fridge (at 6 °C) and at room temperature (at 22 °C) away
from light sources for 65 days in clear polypropylene tubes (VWR®
High-Performance centrifuge tubes, VWR International, Radnor, USA).
Samples were periodically withdrawn (72 h, 14, 35 and 65 days after
preparation) and analysed. The stability of liposomal dispersions was
evaluated in terms of tonicity, vesicle size distribution, ZP and EE
(analysis performed as described in Sections 2.2 and 2.4). Each sample
was measured minimum four times.

2.8. Statistical data evaluation

Student's t-test was used to determine the significance of difference
between means of different data sets. Differences were considered sig-
nificant for p≤0.050.

3. Results

3.1. Liposome characterization

The general characteristics of liposomes used in the in vitro study are
presented in Tables 1 and 2. The LUV dispersions exhibited total initial
tonicity of around 400mOsm/kg (Table 1). The mean sizes of liposomes
were between 236 and 374 nm (Table 2). Incorporation of cholesterol
into the LUVs increased the mean sizes and polydispersity for caffeine-
LUVs (p≤0.010 and 0.001, respectively), and similarly for hydro-
cortisone-LUVs with 25% w/w cholesterol (PI, p=0.000). All LUVs

Table 1
Experimentally determined osmolality and pH for all LUV dispersions and PBS solutions used in the in vitro study. Results represent mean ± standard deviation
(n=2).

LUVs Cholesterol (% of lipid weight) Initial LUVs osmolality (mOsm/kg) Buffer type PBS osmolality (mOsm) PBS
pH

Caffeine 0 420 ± 11 PBShypo 119 ± 10 7.5 ± 0.1
PBSiso 418 ± 10 7.3 ± 0.0

PBShyper 718 ± 12 7.2 ± 0.0
11 392 ± 12 PBShypo 95 ± 16 7.6 ± 0.0

PBSiso 386 ± 5 7.3 ± 0.0
PBShyper 693 ± 23 7.2 ± 0.0

25 388 ± 4 PBShypo 88 ± 8 7.5 ± 0.0
PBSiso 393 ± 4 7.3 ± 0.0

PBShyper 692 ± 8 7.2 ± 0.0
Hydrocortisone 0a 383 ± 5 PBShypo 83 ± 5 7.6 ± 0.0

PBSiso 384 ± 5 7.3 ± 0.0
PBShyper 683 ± 5 7.2 ± 0.0

11 405 ± 5 PBShypo 105 ± 5 7.6 ± 0.0
PBSiso 405 ± 5 7.3 ± 0.0

PBShyper 705 ± 5 7.2 ± 0.0
25 383 ± 19 PBShypo 86 ± 16 7.6 ± 0.0

PBSiso 385 ± 16 7.3 ± 0.0
PBShyper 687 ± 15 7.2 ± 0.0

a n=3.

Table 2
Measured size (average diameter), polydispersity index (PI), ζ-potential (ZP) and entrapment efficiency (EE) for LUV dispersions used in the in vitro release study.
Results represent mean ± standard deviation (n= 2).

LUVs Cholesterol (% of lipid weight) Size (nm) PI ZP (mV) EE (%)

Caffeine 0 236 ± 36 0.25 ± 0.02 −3.7 ± 1.0 12 ± 1
11 289 ± 55⁎ 0.34 ± 0.04⁎ −3.0 ± 1.0 11 ± 2
25 374 ± 80⁎⁎ 0.45 ± 0.05⁎⁎ −3.5 ± 1.1 10 ± 1⁎⁎

Hydrocortisone 0a 246 ± 30 0.25 ± 0.01 −3.5 ± 1.0 68 ± 5
11 248 ± 38 0.24 ± 0.02 −4.1 ± 1.1 60 ± 3⁎⁎

25 261 ± 47 0.35 ± 0.03⁎⁎ −5.2 ± 1.1 51 ± 3⁎⁎

⁎ p≤0.050.
p≤0.001 when compared to the respective formulation without cholesterol.

a n=3.
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exhibited almost neutral surface charges. The EE was approximately
11% for caffeine-LUVs and considerably higher for hydrocortisone-
LUVs (51–68%). The EE decreased significantly with increased amount
of incorporated cholesterol especially for hydrocortisone-LUVs
(p≤0.001).

3.2. In vitro diffusion study

3.2.1. Drug diffusion studies
In Fig. 2, the diffusion profiles of caffeine and hydrocortisone in

aqueous solution as well as in liposomal dispersions (0% w/w choles-
terol) are reported for both regenerated cellulose and Permeapad®
barriers. As it can be seen, the drug diffusion profiles through the dif-
ferent barriers varied accordingly to the drug used; the formulation
(aqueous solution or liposomal dispersion) and the barrier (regenerated
cellulose or Permeapad®). Specifically, the amount of diffused drug was
significantly higher for caffeine than for hydrocortisone for both bar-
riers. For both drugs, the total amount of diffused drug after 2.5 h was

significantly higher (p < 0.000) from solution in comparison to LUV
dispersion when regenerated cellulose was employed as the barrier
(Fig. 2a, 49 ± 1 vs 35 ± 2% for caffeine and 40 ± 3 vs 16 ± 3% for
hydrocortisone, respectively). Similarly, the total amount of accumu-
lated hydrocortisone in the acceptor medium was significantly higher
for drug solutions in comparison to the liposomal formulations (cu-
mulative diffused after 2.5 h, 9 ± 2 vs 6%, p=0.004) when Per-
meapad® was employed as barrier (Fig. 2b right). Interestingly, when
Permeapad® was employed (Fig. 2b, lower-left), the amount of caffeine
accumulated in the acceptor medium from solution and liposomal dis-
persion was the same.

3.2.2. RL under the influence of changed external environments
In Fig. 3, the resistances to drug transport through liposomal bilayer

(RL) are reported for all the formulations prepared, for both drugs
(caffeine in Fig. 3a and hydrocortisone in Fig. 3b, respectively) and two
different types of barriers (regenerated cellulose and Permeapad®).
From these data, it appeared that the ionic strength of external
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environment had a remarkable impact on RL. Specifically, RL was
lowest when caffeine-LUVs were exposed to hypotonic environments,
medium in isotonic and significantly higher level for hypertonic en-
vironment (Fig. 3a). For hydrocortisone-LUVs (Fig. 3b), the RL values
were considerably higher in comparison to the caffeine-LUVs in all
circumstances. Similarly to caffeine-LUVs, the RL was found to be lower
for hypotonic/isotonic environment and significantly (p < 0.050)
higher in hypertonic environment. The incorporation of cholesterol into
the liposomal membrane seemed not to significantly affect RL of hy-
drocortisone, whereas, for caffeine, a trend indicating reduction of RL
with growing concentration of cholesterol was observed (white bars).
The employment of a biomimetic barrier such as Permeapad® (grey
bars) resulted in a slight reduction in RL absolute values for caffeine in
comparison to regenerated cellulose even though the trend at different
external environmental tonicity was respected. The same was observed
for hydrocortisone, but in this case, a significant reduction of RL was
observed with increasing concentration of cholesterol (Fig. 3a–b).

3.2.3. Non-linear data fitting using Korsmeyer-Peppas model
The in vitro diffusion data obtained in this study were fitted ac-

cording to the Korsmeyer-Peppas equation, Eq. (1). For all data sets, the
correlation coefficient (R2) was rather high (min. 0.96 up to 1.00, data
are shown in Supplementary material, Figs. A.1–2) indicating a good
correlation within experimental data and Eq. (1). From the data fitting,
the transport constants (K, Fig. 4) and transport exponents (n, Fig. 5)
were determined. The K values were much higher for caffeine (ranged
between 8 and 25, Fig. 4a) in comparison to hydrocortisone (from 1 to
8, Fig. 4b). It is worth mentioning that K values were significantly
different for regenerated cellulose (white bars) and Permeapad® (grey
bars) and these differences were higher for hydrocortisone than for
caffeine.

As already observed for RL, a clear correlation between K and en-
vironmental ionic strength was found. Specifically, the higher ionic
strength in the external environment, the lower were the K value
(Fig. 4, 0% w/w cholesterol). This phenomenon was more evident when
using regenerated cellulose (white bars) as a barrier rather than Per-
meapad® (grey bars). In fact, no significant difference was determined
in K values between the hypotonic and isotonic environments em-
ploying Permeapad® as barrier for both drugs. Interestingly, the ex-
periments carried out on the regenerated cellulose barrier maintained a
similar trend for caffeine-LUVs, even though increasing amounts of
cholesterol were incorporated into LUV's lipid bilayer (Fig. 4a, 0–25%
w/w cholesterol). Differently, hydrocortisone seemed to somehow be
less affected to the environmental ionic strength by the presence of
cholesterol in the liposome's membrane (Fig. 4b, 0–25% w/w choles-
terol).

The n values determined for caffeine-LUVs using regenerated cel-
lulose as barrier at all tonicity conditions (Fig. 5a, white bars) ranged
between 0.74 and 0.92. The n in hypotonic environment was sig-
nificantly (p≤0.001) and consistently lowest in comparison to both
isotonic and hypertonic values (Fig. 5a). For the caffeine-LUV experi-
ments carried out with biomimetic Permeapad® barrier (Fig. 5a, grey
bars), n values were closer to 1, ranging between 0.83 and 0.97. For
hydrocortisone-LUVs (Fig. 5b), n values were generally higher than
caffeine-LUVs and in case of Permeapad®, they were even superior than
1. Moreover, an increasing trend in n values with increased cholesterol
amount was detected employing regenerated cellulose. This trend was
not evident for Permeapad® where the highest n values were detected at
11% w/w cholesterol.

3.3. Liposomal stability

The stability data obtained for the different liposomal dispersions
stored at two different temperatures (6 °C and 22 °C) are reported in
Table 3. As it can be seen, the tonicity of all the LUV dispersions was
relatively stable over the 65 days period. The mean sizes and PI of
caffeine-LUVs were relatively stable when stored up to 65 days at 6 °C.
The caffeine-LUVs formulations stored at room temperature (22 °C)
exhibited significant shifts in size distribution to smaller sizes
(p≤0.016) and narrower PI (p≤0.031) after approx. 14 days for the
formulations with 0 and 11% w/w cholesterol. For the hydrocortisone-
LUVs, the mean sizes and PI varied quite remarkably at both storage
temperatures.

All LUV dispersions exhibited rather neutral zeta potentials right
after formation, but became significantly more negative (p < 0.05)
after storage. For the caffeine-LUVs, the increase in ZP was more sig-
nificant for the samples stored at 22 °C, especially for the LUVs with no
cholesterol (change up to 40mV). For the hydrocortisone-LUVs, the
samples stored in the fridge (6 °C) exhibited significant variation in ZP
as well as those stored at room temperature (p≤0.050). However, in
this case, the ZP changes were rather small in magnitude (maximum
variation of 5mV).

The EE of caffeine-LUVs with various amount of cholesterol in-
corporated in the phospholipid bilayer (0, 11 and 25% w/w) showed a
mean EE of 13% and maximum variation of 6% during a period of
65 days of storage at 6 °C. Surprisingly, when the same formulations
were stored at 22 °C, increase of EE up to 40, 30 and 19% could be
found for caffeine-LUVs with 0, 11 and 25% w/w cholesterol, respec-
tively. Those results indicated that the liposomal integrity probably
changed during storage and for these reasons, as an additive informa-
tion, pictures of all the different LUV dispersions prepared for the sta-
bility study were taken at 65 days to better discriminate differences in
the sample appearance (see Supplementary material, Fig. B.1). As it can
be seen, the visual perception of caffeine-LUVs dispersions with 0% w/
w cholesterol stored at 22 °C had a more transparent/opaque colour
than those stored at 6 °C with a more white colour (Fig. B.1a, upper-
right compared to upper-left). On the contrary, the hydrocortisone-
LUVs (0–25% w/w cholesterol) showed more stable EE with a max-
imum variation of 4% (Table 3). These results emphasize the relevance
of investigating LUV dispersion's stability as changes in size, surface
charge and drug entrapment might have an impact on the drug release
kinetics from the liposomes.

4. Discussion

4.1. Liposome characterization

LUV dispersions used in this work were prepared aiming to be suited
for nasal delivery. For optimal transport through the nasal epithelium,
the vesicles should exhibit a size of 10–400 nm, neutral ZP and tonicity
around 300mOsm (Bourganis et al., 2018; Homer et al., 2000; Illum,
2007; Ohwaki et al., 1987). LUVs' tonicity, sizes, PI, ZP and EE were
found to be in the same order of magnitude as those employed in
previous studies (Wu et al., 2019).

As expected, the incorporation of the neutrally charged cholesterol
into the lipid bilayer (consisting of neutrally charged SPC) did not in-
duce any significant change in the surface charge of the liposomes.

In comparison to hydrocortisone-LUVs, the sizes and PI of caffeine-
LUVs, were more affected by the cholesterol incorporation in the
phospholipid bilayer, which might be related to the drugs localization
inside the LUVs (Briuglia et al., 2015; Leite et al., 2018).

Fig. 3. Resistance to drug transport through liposomal bilayers (RL) containing various amount of cholesterol (0, 11 and 25% w/w) for caffeine (a) or hydrocortisone
(b). Diffusion experiments were carried out employing regenerated cellulose (white bars) or, alternatively, Permeapad® (grey bars) barriers and exposing the LUV
dispersions to isotonic, hypotonic and hypertonic environments (tonicity difference of 0 and ± 300mOsm/kg within inner core of liposomes and external en-
vironment), respectively. Results represent the mean ± standard deviation (n=3, *p≤0.050, **p≤0.010, ***p≤0.001).
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The incorporation of cholesterol into liposomal membranes sig-
nificantly affected the EE of hydrocortisone, whereas the caffeine-LUVs
were not affected. This might be explained by the different affinity of
drugs for the liposomal bilayer (Di Cagno and Stein, 2019) and cho-
lesterol's affinity for the lipid bilayer. In fact, the negative effect of
cholesterol on EE for lipophilic compounds is well-documented (Ali
et al., 2010; Mohammed et al., 2004). From the obtained results, it was
evident that cholesterol prevented, to a certain degree, hydrocortisone
embedding into the liposomal bilayers by reducing the space available

for hydrocortisone (Table 2).

4.2. In vitro diffusion study

The current methods used to determine the release from liposomes
are the filtration, ultracentrifugation, solid phase extraction and dia-
lysis-based methods. The filtration and ultracentrifugation are two
methods that with the help of mechanical forces separate the nano-
carriers from the released drug. However, these methods are not
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suitable for easily deformable nanocarriers such as liposomes, as the
separation procedure might disrupt the nanocarrier leading to over-
rated release (Solomon et al., 2017). For this reason, solid phase ex-
traction is considered to be a more gentle method, and has been suc-
cessfully applied to separate free drug from liposomes (Xie et al., 2018).
However, some of the limitations with this method are that it is not
suitable for all types of release medium, and is dependent on the
medium composition (i.e. bile salts, ions, proteins), therefore the effi-
ciency of separation can be influenced (Nothnagel and Wacker, 2018).

Probably that is why the dialysis-based methods are more favoured, and
in this study, we used the classical Franz diffusion cell set up to monitor
the release from liposomes because of its convenience, cost-effective-
ness and simplicity.

4.2.1. Drug diffusion from drug solution and drug-loaded LUVs
The dialysis-based method used in this study allowed us to quantify

the amount of drug that diffused through a diffusion barrier. However,
this method does not measure the direct release from the liposomal
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carrier. For correct interpretation, it has been proposed to use reference
experiment of free drug solution (Wacker, 2017). For this reason, we
have presented here the drug diffusion profiles from solution and LUVs
through two different diffusion barriers.

The regenerated cellulose barrier is highly permeable to small and
neutrally charged molecules and the drug diffusion rate through the
barrier is highly controlled by the drug concentration gradient between
the both sides of the barrier (Bartels et al., 2005; Benavente, 1984;
Nothnagel and Wacker, 2018). On the other hand, the biomimetic
Permeapad® barrier consists of a lipid layer in between two support
sheets (Di Cagno and Bauer-Brandl, 2014). In contact with aqueous
solution, the lipid layer is assumed to create tightly packed vesicles
mimicking the structure of biological membranes (Di Cagno et al.,
2015). In other words, the Permeapad® barrier represents a biomimetic
barrier capable of discriminating drug permeability according to the
physicochemical property of drug molecules. Consequently, the drug
distribution coefficient at neutral pH (LogD7.4) plays a key role in the
net drug mass transport through the barrier (Brandl et al., 2007;
Nothnagel and Wacker, 2018).

As represented in Fig. 2, the total amount of diffused drug from
caffeine formulations was much lower (37–57% according to the for-
mulation tested) when studied with Permeapad® in comparison to re-
generated cellulose barriers (Fig. 2a–b). On the other hand, for hy-
drocortisone formulations, a reduction of 63–78% could be observed.
As expected, hydrocortisone was more retained by Permeapad® in
comparison to caffeine, due to its higher lipophilicity (logD7.4 of 1.6 for
hydrocortisone in comparison to 0.0 for caffeine) (Zhu et al., 2002).

As reported in previous studies (Di Cagno et al., 2015; Fadda et al.,
1998; Wu et al., 2017; Wu et al., 2019), the drug diffusion rate was
lower for liposomal dispersions in comparison to drug solutions when
analysed on regenerated cellulose barrier (Fig. 2). Surprisingly, this
difference was not evident when Permeapad® was employed. This in-
teresting finding indicates that, when biomimetic barrier was em-
ployed, the differences in drug transport properties within different
formulations were reduced if not annulled. This can be by reason of the
biomimetic barrier is the limiting step of the permeation in this case,
reducing the impact of the formulation on the total drug transport ki-
netic. However, for hydrocortisone, a small difference between diffu-
sion from drug solution or liposomal formulation was detectable, in-
dicating that this phenomena is highly drug dependent.

To evaluate better the liposomal bilayer's contribution to changed
drug diffusion profiles across the different barriers, we decided to re-
port the RL as shown in the next sections. We also incorporated various
amount of cholesterol into the liposomal bilayer (0–25% w/w) to study
the relationship between liposomal rigidity and drug release. Moreover,
we exposed the LUVs to different environmental tonicity to see if this
could affect the drug release.

4.2.2. Influence of cholesterol on RL
Liposomes containing hydrophilic molecules might experience

leakage due to cholesterol induced lipid bilayer reconstruction (Briuglia
et al., 2015; Schullery, 1977). The effect cholesterol has on the SPC
liposomes and the release properties from them can be translated from
the calculated RL values. The decreasing RL values indicated that more
drug was diffusing out of the nanocarrier. In agreement with the lit-
erature, the RL was found decreasing for both caffeine- (Fig. 3a) and
hydrocortisone-LUVs (Fig. 3b) when the amount of incorporated cho-
lesterol increased from 0 to 25% w/w.

On the other hand, it has also been argued that liposomes con-
taining cholesterol should exhibit higher liposomal bilayer rigidity and
the resistance to drug transport (RL) should increase as compared to
liposomes made of plain SPC (Leite et al., 2018; Milon et al., 1986).
Surprisingly, the findings from this study seem to deviate from the re-
ported literature. This fact can be explained by the variations of un-
entrapped drug concentration in the different formulations. As shown
in Table 2, the hydrocortisone entrapment was strongly affected by the

presence of cholesterol, whereas this was not found for the caffeine-
LUVs. Specifically, only minimal changes in the unentrapped drug
concentration for caffeine-LUVs with various amount of cholesterol
could be measured (ranged between 1758 and 1773 μM), whereas hy-
drocortisone-LUVs showed unentrapped drug concentrations of 798,
838 and 992 μM for 0, 11 and 25% w/w cholesterol, respectively. The
higher the unentrapped drug concentration, the higher the concentra-
tion gradient (Eq. (2)) and therefore the flux through the membrane. It
should be underlined that these data are in agreement with previous
reports of supersaturation induced by liposomal formulations (Di Cagno
and Luppi, 2013).

4.2.3. Influence of ionic strength on RL
Early works have shown that large unilamellar vesicles are sus-

ceptible to osmotic stress induced vesicle size changes (Mui et al., 1993;
Sun et al., 1986). Liposomes have the tendency to swell when exposed
to hypotonic environments. As a result of the swelling, the liposomal
membrane becomes thinner and this can contribute to increased release
from liposomes (i.e. reduced RL) (Ahumada et al., 2015; Alam et al.,
2016; Polozov et al., 2001). On the contrary, when liposomes are ex-
posed to hypertonic environments, liposomes shrink and the liposomal
membrane might become less permeable to drug permeation (i.e. higher
RL) (Ahumada et al., 2015; Fujiwara and Yanagisawa, 2014; Ohno
et al., 2009). Our results were in agreement with the literature
(Ahumada et al., 2015; Alam et al., 2016; Fujiwara and Yanagisawa,
2014; Ohno et al., 2009; Polozov et al., 2001). For almost all caffeine-
LUV formulations, the RL was significantly lower in hypotonic en-
vironment and highest for the hypertonic environment (Fig. 3a). Si-
milar trend was also observed for hydrocortisone to a lower extent
(Fig. 3b).

As it can be seen in Fig. 3a, the RL values were negative for the
caffeine-LUVs when experiments were conducted using Permeapad®
barriers. This result indicates that, in some cases, linear regression
applied for data treatment and RL calculation, even though feasible,
might lead to incomplete- or miss-interpretation of the data. This might
be due to the experimental set up conditions where the drug release is
highly influenced by the equilibrium across the diffusion barrier.

One upcoming apparatus for drug release study from liposomes is
the flow-through USP 4 (Tang et al., 2019; Yuan et al., 2017). This
apparatus provides continuous flow of the release medium into a cell
containing the drug formulation. The release medium with instant re-
leased drug is then pumped through a separation device (e.g. dialysis-
based device) to remove liposomal drug, and the collected sample can
be measured in situ at predetermined time points. The advantages with
this method include its continuous renewal of the release medium, and
the easily varied medium composition according to the solubility of the
drug. Moreover, the apparatus can easily adjust variables such as
temperature, flow rate, and detection wavelength. Sample measure-
ments can be automatic, and relatively little manual work is required.
However, due to the fact that relatively few companies develop the
flow-through cells, and the complexity of the apparatus, this method is
still not mainstream (Solomon et al., 2017).

The main purpose of this study was not to improve the experimental
set up conditions, but to better interpret the obtained diffusion data
collected from available equipment in our laboratory. It has to be
mentioned that even though the flow-through USP 4 drug release assay
might be a superior method, and has shown some promising results for
studying release from liposomes (Tang et al., 2019; Yuan et al., 2017),
this method is still limited by the barrier properties that separates the
liposomal drug from released drug. Therefore, more processing of the
diffusion data is still required for correct interpretation of the release
mechanism from liposomes (Jain and Jain, 2016; Solomon et al., 2017;
Wacker, 2017).

Two of the most common mathematical methods used to study non-
linear diffusion profiles are the Higuchi and Korsmeyer-Peppas model.
In this study, we investigated the diffusion data employing the
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Korsmeyer-Peppas model.

4.2.4. Data fitting to the Korsmeyer-Peppas model
Since the aim of this study was to investigate the contributing al-

terations in liposomal bilayer properties relevant for drug release, the
Korsmeyer-Peppas model was chosen due to its ability to provide the
descriptive information on both release kinetics and mechanism of drug
release. It should be underlined that the data we have been fitting to the
model refer to the diffusion through low retention/high retention bar-
riers, however, the data also reflect (as described in Fig. 1) the release
kinetics from the nanocarriers.

The parameter K indicated the constant drug transport that can be
seen intuitively as directly proportional to the drug release kinetics
from LUVs. In fact, higher K indicated faster drug release. On a con-
trary, lower value of K indicated a low transport kinetic and therefore
poor drug release from nanocarriers. Interestingly, caffeine-LUVs gen-
erally expressed higher K values in comparison to hydrocortisone-LUVs
(Fig. 4a and b). This was expected, since caffeine is known for its high
permeability through phospholipid barriers (Di Cagno et al., 2015;
Flaten et al., 2006). It should be underlined that K and RL were in rather
good agreement; the higher the RL, the lower value of K, and vice versa.
As seen before for RL, K also seemed to be highly influenced by changes
in the ionic strengths of external environments. Specifically, the higher
the increase in the external ionic strength (consequently shrinkage of
liposomes) the K became lower, indicating a clear reduction of drug
release from liposomes.

The K changed more drastically in response to the environment
when the regenerated cellulose barriers were employed in comparison
to the Permeapad® barriers. This implies that, when biomimetic bar-
riers were employed (i.e. higher retention barrier), the drug formulation
plays a minor role in the net final drug transported through the barrier.
This was also an interesting finding, highlighting the fact that dialysis
barriers were extremely efficient to measure formulation kinetics but
not necessarily predictive for in vitro-in vivo correlations.

The advantage with the non-linear fitting approach was that a larger
part of the experimental data was efficiently fitted (Mt/M∞ up to 60%)
and seemed to better represent the drug diffusion kinetics from lipo-
somes. Moreover, using this data treatment approach, there was no
need to measure reference sample (i.e. drug solution). The application
of Korsmeyer-Peppas model resulted in the time-efficient and precise
method for interpreting diffusion data from nanocarriers.

Under the influence of osmotic stress, the drug release kinetics of
both caffeine (Fig. 4a) and hydrocortisone (Fig. 4b) from liposomes
exhibited less variations in K when cholesterol was incorporated in the
bilayers (0 vs 25% w/w). The more stable K values in different en-
vironmental ionic strengths indicated that the liposomal sensitivity to
osmotic influences decreased. Possible explanation could be that cho-
lesterol embedment into the liposomal bilayer decreases its flexibility
(Leite et al., 2018).

The advantage with the Korsmeyer-Peppas model was the me-
chanistic considerations this model permitted, describing the drug re-
lease mechanism from liposomes by providing the transport exponent,
n. In order to have a Fickian diffusion process, when no boundaries are
present, n should be equal to 0.5, whereas values of n between 0.5 and 1
indicates non-Fickian diffusion and are indications of boundary region
affecting the passive drug diffusion (Costa and Sousa Lobo, 2001). For
the regenerated cellulose experiments (Fig. 5), n values for caffeine
were always lower than 1. The lowest value of n measured for the
diffusion of caffeine was in hypotonic environment (0.75–0.78) when
the lipid bilayers should be the most stretched and therefore with the
lowest resistance (Fig. 3) (Ahumada et al., 2015; Alam et al., 2016;
Polozov et al., 2001). Interestingly, when liposomes were exposed to
isotonic and hypertonic environments, the n value increased re-
markably (between 0.83 and 0.92). This variation in n indicated that
the diffusion of caffeine was moving even further from a Fickian be-
haviour. This can be very well explained by the increasing resistance of

caffeine transport through liposomal bilayers induced by vesicles'
shrinkage (Ahumada et al., 2015; Fujiwara and Yanagisawa, 2014;
Ohno et al., 2009). Considering the experiments with regenerated cel-
lulose barrier, in the case of hydrocortisone, n values were higher than
for caffeine ranging between 0.86 and 0.98. This finding suggests that
hydrocortisone was from the start diffusing in a more controlled
manner from the liposomal bilayer. The release profile of hydro-
cortisone seemed to be less affected by the changes in ionic strengths of
liposomal surrounding environment (as observed in previous studies
(Wu et al., 2017, 2019)).

For the Permeapad® experiments, the n were found relatively more
stable and were less affected by changes in the external environment of
LUVs. As mentioned previously, it was plausible that the higher re-
tention of Permeapad® in comparison to regenerated cellulose overrules
the liposomal effect (K≪ KI).

4.3. Formulation stability

All LUV formulations prepared in this study retained a stable toni-
city upon storage at both 6 and 22 °C (Table 3). Stable tonicity is an
important parameter considering the overall stability of liposomal
suspensions (Grit and Crommelin, 1993).

The more stable LUV dispersions in terms of size, PI and EE were the
ones stored at 6 rather than at 22 °C, as expected. Moreover, low tem-
peratures (4–6 °C) are the recommendable storage conditions for lipo-
somes (Grit and Crommelin, 1993).

Instability of LUV dispersions in terms of drug loading can be de-
scribed as the leakage of originally-associated liposomal content during
storage. As expected, the hydrocortisone-LUVs exhibited stable EE up to
65 days at both 6 and 22 °C independently of the amount of in-
corporated cholesterol. Surprisingly, the EE of caffeine-LUVs stored at
22 °C seemed to increase over time. Similar increase in drug loading
upon storage has been reported for other small hydrophilic compound
such as rivastigmine (MW of 250 g/mol (Pubchem, 2019b)). Caffeine
has MW of 194 g/mol (Pubchem, 2019a). In the study carried out by
Arumugam et al., an increase in EE of rivastigmine in liposomes was
measured after 3months of storage in comparison to freshly prepared
drug-loaded liposomes (Arumugam et al., 2008). This might be an in-
dication that the liposomal bilayer structure is permitting drug to pass
through the liposomal membrane considering that we did not remove
the unentrapped drug from the formulation. Analysing the samples
visually, the caffeine-LUV dispersions without cholesterol had a more
transparent/opaque colour in comparison to the formulations with
cholesterol (11–25% w/w). The increase in the EE for those formula-
tions was probably due to drug migration to equilibrium in the samples
as if the liposomal bilayers were no longer present. However, it could be
observed that the changes in caffeine entrapment were not evident
when cholesterol was in the lipid bilayer; it is well known that cho-
lesterol stabilizes phospholipid bilayers (Briuglia et al., 2015; Grit and
Crommelin, 1993).

Taking into account all the variables measured, LUVs with 11% w/
w cholesterol seemed to be the most stable formulation and exhibited
suitable storage profiles in terms of size distribution, ZP and EE for the
development of drug-loaded LUVs intended for nose-to-brain targeted
drug delivery.

We are currently testing several drugs with different lipophilicity as
well as charge to confirm the applicability of proposed approach.

5. Conclusions

Drug release from LUVs was significantly affected by the ionic
strengths of the external environment confirmed by both linear (zero
order) and non-linear (Korsmeyer-Peppas) regression models.
Korsmeyer-Peppas model was proven to be suitable to analyse all drug
transport data obtained in this study, providing important information
on the release mechanism from the carrier in addition to being time
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efficient (less controls needed) unlike the zero order approximation.
The drug release from LUVs could be tailored by the incorporation of
cholesterol, and LUVs with 11% w/w cholesterol seemed to be the
optimal liposomal composition in terms of stability and responsiveness
to osmotic stress. In spite of the fact that regenerated cellulose is con-
sidered to be a standard, simpler and cheaper barrier used for the
transport study, the Permeapad® appeared a more reliable when it
comes to in vitro-in vivo correlation due to closer similarities to biolo-
gical membranes. The results obtained in this work are rather relevant
as the data can be utilized for the development of liposomal formula-
tions intended for nose-to-brain targeted drug delivery.
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1. Fitting the in vitro diffusion data to the Korsmeyer-Peppas model for caffeine-

LUVs (Fig.A.1) and hydrocortisone-LUVs (Fig.A.2). 

2. Picture of drug-loaded LUVs after 65 days of storage at 6 and 22°C (Fig.B.1). 
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Fig.A.1: Fitting of caffeine diffusion experimental results to the Korsmeyer-Peppas 

model. Diffusion experiments were carried out employing regenerated cellulose (a) or 

alternatively, Permeapad® (b) as the barriers. The drugs were formulated in LUV 

dispersions with various amount of cholesterol incorporated in the phospholipid 

bilayers (0, 11 and 25% w/w) and the LUV dispersions were exposed to isotonic, 

hypotonic and hypertonic environments (tonicity difference of 0 and ±300 mOsm/kg 

within inner core of liposomes and external environment). Results represent the 

mean ± standard deviation of three parallel experiments (n=3, *p≤0.050, **p≤0.010, 

***p≤0.001). 



 

Fig.A.2: Fitting of hydrocortisone diffusion experiment results to the Korsmeyer-

Peppas model. Diffusion experiments were carried out employing regenerated 

cellulose (a) or alternatively, Permeapad® (b) as barriers. The drugs were formulated 

in LUV dispersions with various amount of cholesterol incorporated in the 

phospholipid bilayers (0, 11 and 25% w/w) and the LUV dispersions were exposed to 

isotonic, hypotonic and hypertonic environments (tonicity difference of 0 and ±300 

mOsm/kg within inner core of liposomes and external environment). Results 

represent the mean ± standard deviation of three parallel experiments (n=3, 

*p≤0.050, **p≤0.010, ***p≤0.001).  



 

 

Fig.B.1: Photographs of LUV-dispersions with caffeine (a) or hydrocortisone (b) and 

various amount of cholesterol incorporated in the phospholipid bilayers (0, 11 and 

25% w/w) after 65 days storage at 6 and 22°C. Each tube represents one replicate 

out of total two replicates (n=2). 



 

  



 


