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Abstract

In this paper we solve an eigenvalue problem on a circular membrane
with fixed outer boundary by using a finite element method, where an
element is represented as an expo-rational blending triangle.

ERBS triangles combine properties of B-spline finite elements and
standard polynomial triangular elements. The overlapping of local
triangles allows us to provide a flexible handling of the surface while
preserving the smoothness of the initial domain, also over the nodes
and edges. Blending splines accurately approximate the outer boundary,
while keeping a coarse discretization of the domain.

We consider a mesh construction for such type of elements, evaluating
of basis functions and their directional derivatives, local-to-global
mapping, assembling of element matrices.

This paper was presented at the NIK-2019 conference; see http://www.nik.no/.



1 Introduction

Isogeometric analysis invokes a methodology that represents the solution space for
dependent variables in terms of the same functions which represent the geometry [1].

Triangulation is a common approach to the domain discretization. Triangulation
is more general than the tensor product surfaces, due to less geometrical constraints.
When approximating solutions by the finite element method, we should choose the
finite element mesh in such a way that it must not only get an accurate approximate
solution but also the edges of the outer elements must approximate the boundary
well. Triangular elements are particularly suited to the task of filling domains with
smooth boundaries, thus minimizing the difference between the initial domain and
the finite element domain [2].

One way to increase the accuracy of the solution is to provide mesh refinement,
i.e. increase the number of elements, especially along the smooth boundary. Another
way is to refine the elements. It implies higher-degree polynomials in the basis
functions, and a mapping between local and global coordinate systems.

In this paper we introduce ERBS triangles as an alternative type of elements.
These elements are based on expo-rational blending splines, which have been
introduced in [3]. ERBS triangles are defined in [4]. The main distinction between B-
splines and expo-rational blending surfaces is that the second ones can be relatively
easy evaluated on a triangular mesh. The reason for this is that the expo-rational
basis possesses an interpolatory property and it is strictly local under the support
of the local geometry. In the presented research we show that the mesh constructed
by ERBS triangles gives a very good approximation of the PDE solution with very
coarse domain discretization, but geometrically exact at the boundary.

The following related works demonstrate an utilization of blending spline surfaces
on triangulations. An implementation of the spline blending surface approximation
over a triangulated irregular network is shown in [5]. The first instances of expo-
rational finite elements on triangulations was presented in [6] and their application
can be found in [7].

This paper is organized as follows: Section 2 focuses on basis functions, which
combine ERBS basis and Bernstein polynomial basis of local triangles. In Section 3
we define a model problem and derive the finite element method applied to the
considered problem, utilizing the ERBS triangles as elements. In Section 4 we show
the results of the described method, implemented in MatLab, and compare them to
the exact solution. The conclusions are given in Section 5.

2 ERBS triangles

In this section we collect previous results from [3], [4] and consider a construction
of ERBS triangles, a combination of barycentric representation of Bernstein basis
polynomials and expo-rational basis, and its directional derivatives.

An ERBS triangle is a surface that blends three Bézier triangles of the degree d
via expo-rational basis functions. A comprehensive study of barycentric coordinates
and Bézier triangles can be found in [8]. We define a simple version of the underlying
basic expo-rational basis function over the formal parameter u.

Definition 2.1. The underlying basic expo-rational basis function in barycentric
coordinates is defined by B(u), u € (0, 1], as follows
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A set of such expo-rational functions forms a basis for the blending type surface
construction.

Definition 2.2. For any point v = (uy, ug, u3), u;+us+ug = 1, a set of expo-rational
basis functions in barycentric coordinates is defined as follows

B(ui)
i\V) =
where B(u;) are as defined by Definition 2.1.

fori=1,2,3, (1)

A set of expo-rational basis functions on a triangle is shown in Figure 1(a).

A construction of an ERBS triangle is based on a linear combination of three
Bézier triangles of degree d and the set of expo-rational basis functions in barycentric
coordinates.

Definition 2.3. For a set of local Bézier triangles ¢;(uy,us,u3), ¢ = 1,2,3, and
corresponding expo-rational basis functions f;(uy,us,us), the general formula for
the ERBS triangle is

3
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where w1 + us + uz = 1 and wuq, us, ug > 0.

So far we have collected results from previous work on ERBS on triangular
domains.

To use the ERBS triangles in a finite element context, we need to introduce a
basis for ERBS triangle that combines both Bernstein basis and expo-rational basis.
Locally, i.e. on the one ERBS triangle, the number of combined basis functions is
d+2

2

The Bernstein polynomial basis, defined on the triangle K, can be written as a

matrix W with ordered elements

equal to g =3
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(a) ERBS basis in barycentric coordinates (b) Combined expo-rational basis
in barycentric coordinates,
constructed along parameter u,

Figure 1: Basis functions in barycentric coordinates.
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Then the combined basis G¥ = G (uy, us, u3) on the same triangle is formulated
as

G = [ BWE BWE]. (3)

Thus, the formula (2) can be rewritten in a compact matrix form as

S(Ul, Ua, Ug) = (PK)T GK, (4)

where PX is a set of corresponding coefficients of three local triangles.
Figure 1(b) demonstrates a set of combined expo-rational basis functions G¥|
evaluated along one of parameters, the degree of local triangles is equal to 1.
Figure 2 shows an example of ERBS triangle with local Bézier triangles of de-
gree 1. This construction is very flexible and can be fitted to a geometry of relatively
high degree of smoothness.

We now construct a set of partial derivatives of the combined expo-rational basis.

Definition 2.4. Let D,, WdK be a set of directional derivatives in the direction u,
of Bernstein basis functions of degree d. Then, from (3), it follows that the partial
derivatives of the combined expo-rational basis in barycentric coordinates can be
found as

DuLﬂle{"f’BlDuL WdK DuLBI 61 WK
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for each + =1, 2, 3.



Figure 2: An example of the ERBS triangle with local Bézier triangles of the first
degree.

3 Model problem

In this section we demonstrate an exact solution of the eigenvalue problem on a
circular membrane and its approximation using the finite element method.

A detailed description of obtaining an analytical solution of the problem of
membrane vibrations can be found in [9]. Consider a circular membrane 2 having
a radius r = a and a fixed outer boundary 0f). Introduce a given material constant
¢ and a circular frequency w.

Define the eigenvalue problem in the following form

w2
AD+ 50 =0, inQ (5)

¥ =0, on . (6)

An analytical solution of the problem (5) with boundary condition (6) is
represented by two independent orthogonal eigenfunctions, referred to as the cosine
and the sine modes, respectively

ﬁ(cm'n) = Jn(Winmyr/c) cosme and ﬁ(gm'n) = Jin(Wimmy7/C) Sin MO, (7)

where J,, is a Bessel function.
The circular eigenfrequencies wy, »y of the (m,n) mode can be found from the
formula

v =uw/ec.

The eigenvalues a7y(mnn)y denote from the boundary condition (6), which yields
the characteristic equation

Im(ya) = 0.

Now, we consider a discrete solution for the eigenvalue problem. A detailed finite
element approach is described in [10].

By replacing ‘;’—22 = )\, we formulate the finite element method for the problem
(5)-(6) as follows
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Figure 3: A mapping between triangular mesh and circular domain. A contour
plot of seventh combined expo-rational basis function is shown on the left figure.
Parameter lines of the circular domain are show on the right figure.

/ VGTVG dQ + / KGTGd(0Q) | ¢ = A / GTGdQ¢, (8)
Q o0 Q

where G is a set of all basis functions G¥, defined on the triangulated domain €.
In a compact matrix representation (8) is written as

(A+ R)( = AMC, 9)

where A is the stiffness matrix, M is the mass matrix and R is the boundary matrix.

The eigenvectors ¢ and eigenvalues A come in pairs (¢, A), and there are as many
pairs ((;, A;)I, as there are coefficients P. Then the solution ¢; substitutes the z-
coordinate of the coefficients P and thus the approximation of the eigenfunction 1,
can be obtained by the linear combination of coefficients and basis functions.

Domain construction

The main interest of the considered implementation is to explore how the very coarse
mesh and low-degree local triangles handle a complex shape of the solution.

A set of combined expo-rational basis functions for one element is defined in
Section 2. Each basis function G;, i = 1, ..., n, is continuous, piecewise, and has its
support on a set of corresponding elements.

Let P = {P}",, P, € R? be a set of coefficients and a set of combined
expo-rational basis functions be G = {G;}?,. We divide the entire domain
symmetrically into four elements €2¢, e = 1, ..., 4. One element will be represented as
a fixed triangle, with respect to which we will construct an ERBS triangulate surface
to approximate a solution of the problem. A set of four elements represents a mesh.
A mapping obtained by a linear combination of expo-rational basis functions and
local triangles yields an approximation of the real domain. This mapping is shown
in Figure 3. The set of coefficients of local triangles is called a control net.

A control net based on ERBS triangles has a layered structure in our example.
An upper layer consists of four local triangles, which are connected by a central
point. A bottom layer consists of triangles, connected by two, which construct the
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(a)d=1 (byd=2

Figure 4: Local triangles and their coefficients of a circular domain, constructed by
four ERBS triangles. (a) First degree of local triangles. (b) Second degree of local
triangles.

outer boundary. To avoid discontinuity in the domain, we merge together matching
points. The number of coefficients n varies depending on the point configuration.
A number of basis functions on the entire domain corresponds to the number of
control points.

Figure 4 shows two examples of a control net for a mesh, which approximate a
circular domain ) with radius a. Figure 4(a) demonstrates local triangles of degree 1,
Figure 4(b) shows local triangles of degree 2. The outer boundary for both cases is
approximated by the L2-projection and blending splines.

Coordinate transformation

Since the elements that we consider are curvilinear, we need to define coordinate
transformations for them to compute the integrals constituting formula (8).
Construction of two- and three-dimensional triangular and rectangular isoparametric
elements, coordinate transformations and numerical integrations are detailed in [11],
and an application of this to a problem of membrane vibration is exploited in [2].

To define correspondence between curvilinear and Cartesian coordinates we
first focus on one triangular element Q°. The mapping between coordinates was
introduced earlier, see formula (4), as a linear combination of control points P =
d+2

2

This relation is valid for any local coordinate system. A slight complication with
the barycentric coordinates is that they are not independent and the number of them
is one more than in Cartesian coordinate system. To avoid this issue, we introduce
new dependent formal variables

{(p? p!)}L, and basis functions G = {G;(u1, us,u3)}’,, where ¢ = 3

€:u17
= ug, (].0)
1=&—n=us.



For computation of the matrices A, M and R we need to provide two
transformations. First, we express global derivatives through local derivatives.
Secondly, a differential element of area has to be represented in local coordinates
and the integration limits should be correspondingly changed.

We can write partial derivatives with respect to new variables of the basis
functions as

0G,; _ 0G; 0wy N 0G; Ous n 0G; Ous (11)
06 Oup 98 Ouy 06 Ous Of
0G; _ 0G; Ouy N O0G; Ous N 0G; 8u3.
an Ou; dn  Oug On  Oug On
Using (10) and (11), we get

0G; 0G; 0G;
o6 Ou;  Oug’
oG, 0G; 0G;
on " Ous  Oug’
Partial derivatives is evaluated by the formula defined in Definition 2.4. At once,

the transformation between local coordinates &, 1 and the corresponding global
coordinates x, y can be written in matrix form as

(12)

0G  [or 041 [0GT  [0G
0 o0& 0
on on On oy dy

where J is the Jacobi matrix, which depends on the local coordinates. The
differential element of area, according to [2], is

drdy = |.7| dédn, (13)

in which |J| is the Jacobi determinant, or Jacobian of transformation.
By using (12) we find the global derivatives as

0G; 0G;  0G;
S| =77 g& ggzi . (14)
ay (9UQ B 8U3

Deriving J from the basis functions G;, i = 1, ..., ¢, which define the coordinate
mapping (4), we obtain

0G; . L 0G; 1 T[9G, G, 9Gs G
J = 2 35 LapY oc | | ou,  Ous Ow  Ous P (15)
—Z@iwzaiy—adl_acﬁ 0,  0Gs -
on pi on Ps Ous  Ous Ouy Ous

Global matrices A, M and R are filled in by the local-to-global mapping. A
concept of element matrices is fully described in [12]. The global matrix breaks up
into sums of elemental contributions A€, e = 1,...,m, where m is the number of
elements.



Integration limits are changed to limits corresponding to a triangle. Finally,
using formulas (13)-(15), the element stiffness and mass matrices are computed as
follows

1 1-
v/
0 0

A transformed integral in the boundary matrix R should be computed along a
curve, which represents the boundary 0€2¢ of the triangular element 2¢. According
to the formula for computing curvilinear integrals, we write the element boundary
matrix as
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R° = //{(Ge)TGeH(E)Qe);Hda. (17)
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4 Results

We solve the model problem (5) with Dirichlet boundary conditions (6). A few
mode shapes are found on the circular domain €2, which is constructed by using
ERBS triangles, as shown in Figure 4. Approximations are found by formulas (9),
(16)-(17) and compared with the exact solution (7).

The errors are presented in Figure 5 and computed as functions of the
approximation for each of the considered mode. The error is approximated in L?-

norm
9=l = \// 9~ 0.
Q

Figure 4 shows the construction of the circular domain formed by ERBS triangles
and two types of local Bézier triangles: of degree 1 and 2, respectively. One of the
resulting elements ¢ is shown for both cases as a circle sector. Points on the
element represent local parameters. One can see that on Figure 4(b) parameters
are distributed more uniformly compared to Figure 4(a). By flexibility of ERBS
triangle construction, we can construct specific parameter distribution, taking into
account derivatives of the target surface.

Figure 6 demonstrates the results of the algorithm implementation. Simple
shapes of the solution can be handled by the first degree of local triangles at the same
accuracy level as for the second degree local triangles, for example for modes (0, 1),
(0,2), (2,1). On the other hand, the appearance of the nodal circles together with
nodal diameters immediately implies incrementation of the degree of local triangles.
For example, the mode (1,2) has some irregularities on the local degree d = 1,
comparing with degree 2. It can be explained such as the shape of this mode is too
complex for such low degree of local triangles.
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Figure 5: Comparison of L2-error for different mode-shapes and their FEM
approximation by using two types of local triangles: of the first (d = 1) and second
(d = 2) degree.

5 Conclusion

We have successfully implemented the finite element method that solve the
eigenvalue problem on a circular membrane with fixed outer boundary, where
elements are represented as ERBS triangles.

Increasing the degree of local triangles, one can provide many different
approximations of the initial surface, which satisfy the required intrinsic properties
of its geometry. Blending splines allow for accurately approximation of the boundary
while keeping a coarse discretization of the domain. Even complex smooth domains
can be constructed on a base of a few triangular elements. The overlapping of local
triangles allows us to provide a flexible handling of the surface while preserving the
smoothness of the initial domain, also over the nodes and edges.

The use of finite elements based on ERBS-triangles improves the computational
efficiency. The structure of local triangles and a symmetric basis allow for the
preliminary computation of integrals constituting the stiffness and mass matrices.
Based on this, one can parallelize the computational process. Combining the above
with the fact that the computations are performed on a very coarse mesh, we
conclude that the proposed algorithm can be effectively optimized.

As future work we consider the development of automatic mesh generation,
optimization of computations and a more thorough mathematical analysis of the
presented basis functions.
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Figure 6: First few mode shapes, obtained by FEM utilizing ERBS triangles as
elements. Two types of local triangles are presented: Bézier triangles of the first
degree (left hand side), and of the second degree (right hand side). Local triangles
are shown by points and dotted lines.



References

1]

[10]

[11]

[12]

T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement. Computer
Methods in Applied Mechanics and Engineering, 194:4135-4195, 2005.

L. Meirovitch. Principles and Techniques of Vibrations. Prentice-Hall, Inc.,
Upper Saddle River, New Jersey, 1997.

L.T. Dechevsky, A. Laksa, and B. Bang. Expo-Rational B-Splines. International
Journal of Pure and Applied Mathematics, 27(3):319-367, 2006.

A. Laksa. Blending technics for curve and surface constructions. Narvik
University College, Narvik, Norway, 2006.

R. Dalmo, J. Bratlie, B. Bang, and A. Laksa. Smooth spline blending surface
approximation over a triangulated irregular network. International Journal of
Applied Mathematics, 27(1):109-119, 2014.

L.T. Dechevsky, P. Zanaty, A. Laksa, and B. Bang. First instances of
generalized expo-rational finite elements on triangulations. In: Applications
of Mathematics and Engineering and Economics 2011, 1410:49-61, 2011.

P. Zanaty. Finite element methods based on a generalized expo-rational B-
splines with harmonic polynomial coefficients. International Journal of Applied
Mathematics, 26(3):379-390, 2013.

M.-J. Lai and L.L. Schumaker. Spline Functions on Triangulations. Cambrige
University Press, Cambridge, UK, 2007.

P. Hagedorn and A. DasGupta.  Vibrations and Waves in Continuous
Mechanical Systems. Wiley, 1st edition, 2007.

M.G. Larson and F. Bengzon. The Finite FElement Method: Theory,
Implementation, and Practice. Springer, 2010.

0.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The Finite Element Method:
Its Basis and Fundamentals. Elsevier Butterworth-Heinemann Linacre House,
Jordan Hill, Oxford, 6th edition, 2005.

T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic
Finite Element Analysis. Computer-aided civil and infrastructure engineering,
4(3):245-246, 1989.



