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Abstract—This paper shows how to control a chain of integra- Il. CONTROLLING A CHAIN OF INTEGRATORS

tors with constrained actuation by using exponential actiation
functions. Specifically, it shows how the control law can be  Consider a 4th order chain of integrators as
decomposed into several parts that can be activated as theyea
required, resulting in a simple control law that is able to m&e

the states converge fast to zero. Ty =T (1)

Keywords—Chain of integrators, constrained actuation, expo- To =3 (2)
nential activation functions, disturbance rejection. .

T3 =T4 (3)

,f4 =u, (4)

I. INTRODUCTION where the objective is to design the control lame [—1,1]

suchthatk = [z1 22 3 xdT — 0. In the unconstrained

) ) ) _case, this can easily be achieved using a control law as
HE problem of controlling a chain of integrators with

limited actuation has received much attention the last
decades with many different results, such as nested saturat

functions, command-filtered backstepping, modified basgkst where k1, ks, ks, ks are four positive gains that must be

ping, and gain scheduling:f. [1]- [7] and references within. goiac1eq such that the higher level statg, converges before

With limited actuation, controlling a chain of mtegratorsxg and so on until all states have converged. Figure 1 shows

becomes a challenging problem_, as large errors in Iowe_n$t.alrhe convergence of the system whan= 2, ky — 20, ks — 40
tend to make the acFuator; go into saturations, resul_tlmg "™ndk, = 80. The top subfigure shows the unconstrained case
loss of control. Solving this problem allows many differenfhare 4l errors go to zero. The bottom subfigure shows the
systems to be controlled as actuator saturation is mhe@g&e when the actuator signal is bounded betwiebrwhere
in any system,e.g in [8] the first author shows how 10 is eyident that the control law (5) is unable to make the
cqntrol a quf’:\drotor by <_:ontroII|ng a_chaln of four mtegl_rato errors go to zero, such that more advanced control laws are
with const_ramed actuation by applying the command-flﬂerqequired to solve this problem.
backstepping approach. This can be addressed by several different methods. The
Schlanbusch and Kristiansen show in [9] how to use expRested saturation approach by Teel, is perhaps the most well
nential gains to apply large gains when errors are large aggown approach for controlling such a chain of integrators,
Igvy gains when the error is small for rotayona_ll c_ontrol of here the control signal can be written asi= —o(ys +
rigid body. That work has served as an inspiration for this(y. 1 (y,+0(y1)))), wheres(-) denotes saturation functions
paper, which uses exponential functions to activate parts &unding the output between two values. The first part stabi-
the controller as they are required to facilitate controlaof jizes thez, state through a coordinate transform, while the
chain of integrators with constrained actuation. second part is a nested saturation function allowing thestow
The paper is structured as follows: Section Il describes thavel states to converge one at a time. The first observafion o
problem statement and how to control a chain of integraters uhis structure is that the available control signal is ddddnto
ing exponential activation functions. Specifically, it stters two objectives, one is to make go to zero and one is to make
standard exponential activation functions, and also ancgmh  the other states go to zero. In a double integrator caseeif th
where a high-gain feedback is used close to the origin tolenaposition converges before the velocity error, the posigamr
disturbance rejection. Section Il shows the performanice must diverge to make the velocity error go to zero, such that i
the control solution and compares it with nested saturati®counter-productive to focus on the lower level state®ieef
functions, while Section IV wraps up the paper. the higher order states have converged. One possible agpiproa

u=—kixy — kawo — k3x3z — kswy 5)
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Figure 1. Controlling a chain of integrators with and witheaturation. Notice how the states blow up when imposingrstaint on the actuator signal.

to stabilize such a system is through switching, where arobntto one problem at a time such that it is easy to obtain fast
law can be defined as convergence time. The control law can also be extended to

—hazs — kaws — kowy — kyan if o, 18,74 € W Iﬁgllgsﬁﬁrg:slgjvrvb:gce rejection by adding an additioeairt to
. —kyxy — k3xg — koxo if T3, x4 €W
“= —kaxg — k3x3 if xe €W
—kyxy otherwise u=—kyexp(—ci(|z2| + |z3| + |24|))z1
where W is a bounded set close to the origin. This ap- ko exp(=ea(fzs] + |za]))z
proach will tackle one problem at a time allowing the — kg exp(—ca|za|)xs
states to converge in a successive manner. When = — kaxg — ks exp(—ca(|za| + |x3| + |22| + |21])24. (7)

— kyxs— kaws— koxo— kix1, the statess, x3 andx, will be . .
close to zero, such that it is mainly the error that governs the _ H€re, ks can be chosen sufficiently large to reject the
control signal. This basic idea can also be made continupus#sturbances, and, can be chosen such that it is not activated

employing exponential activation functions. Consider atoa until the other states have entered the I§étto maintain the
law as fast convergence time.

u=—kyexp(—cy(|x2| + |z3| + |z4|)) 21 [1l. SIMULATIONS

— ko exp(—ca(|@s| + |z4])) 22 A. 3rd Order Integrator

— k3 exp(—ca|al)as To benchmark the approach against the nested saturation

— kx4 (6) function, consider the third order integrator

where cy, ¢z, c3 are coefficients that dictate when the lower &y =29 (8)
level stabilizing terms are activated. There are two main i )
advantages with such a control law. Firstly, it is very sienpl 2

to implement, and secondly, it applies all its control effor T3 =u (10)
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Figure 2. Comparison between the exponential activatiartrotter and the nested saturation controller.

with the initial conditionsz,(0) = 0.1, 22(0) = 0.5,23(0) = is to highlight the simplicity of this control structure aritd
1 and|u| < 1. Using nested saturation function, the contrapplicability to chains of integrators.

law can be designed as B. 4th Order Integrator with Disturbance Rejection

u=—03(y3 + o2(y2 + 01(11))) (11) Now consider the case of a 4th order integrator with a time-
varying disturbance similar to (1)-(4), but wheig = u +
where the transformed coordinates are found 1as = q(t) with d(t) = 0.8sin(Z¢) and with the initial conditions
arazazz1+(a1+az)azra+azrs, y2 = araszre andys = a1z3  asz,(0) = 0.8, 22(0) = —0.6, 23(0) = 0.5 andz4(0) = 1.

with {a1,a2,a3} = {1,3,2} [10]. The saturation functions Consider the controller (6) with the gaifis = 0.1, ky = 2,
are bounded afr3(-)| < 1, |oz()] < 0.4990 and [o1(-)] < k3 = 20 andky = 40, andc; = ¢z = ¢5 = 0.1, and |u| <
0.2485, which can be found using the procedure defined in [1] For the disturbance rejection controller (7), the addiio

or [10]. parameters are chosen As = 2000 and ¢, = 2. Figure 3
Using exponential activation functions, a control law can bshows the convergence of the 4th order integrator with an
designed as unknown time-varying disturbance. Both controllers aréeab
to make the errors converge to a bounded set close to the
u=—ksxsz — ka2 exp(—ca|as|)xo

origin, but it is evident that by using a high gain close to the
— k1 exp(—ci(|zz| + |22|)z1. (12) origin reduces the error by about 50%. Note that by selecting
ks = 2000 when not using disturbance rejection results in
slower convergence time, such that this represents a method

.4’.k3 :.8’01 - = 0.1. Figure 2 shoyvs the result_s,_wherc—bf achieving both fast convergence and disturbance rejecti
it is evident that with the selected gains and coefficients th

new approach is able to obtain faster convergence than the IV. CONCLUSION
results presented [10]. Note that is possible to improve theThis paper has presented a simple control solution for
performance of both controllers, but the aim of this papeontrolling a chain of integrators with constrained adtrat

where the gains and coefficients can be chosén as 2, ky =
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Figure 3. Controller with and without high-gain disturbanejection.
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