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Abstract—This paper shows how to control a chain of integra-
tors with constrained actuation by using exponential activation
functions. Specifically, it shows how the control law can be
decomposed into several parts that can be activated as they are
required, resulting in a simple control law that is able to make
the states converge fast to zero.
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I. I NTRODUCTION

T HE problem of controlling a chain of integrators with
limited actuation has received much attention the last

decades with many different results, such as nested saturation
functions, command-filtered backstepping, modified backstep-
ping, and gain scheduling;c.f. [1]- [7] and references within.
With limited actuation, controlling a chain of integrators
becomes a challenging problem, as large errors in lower states
tend to make the actuators go into saturations, resulting ina
loss of control. Solving this problem allows many different
systems to be controlled as actuator saturation is inherent
in any system,e.g. in [8] the first author shows how to
control a quadrotor by controlling a chain of four integrators
with constrained actuation by applying the command-filtered
backstepping approach.

Schlanbusch and Kristiansen show in [9] how to use expo-
nential gains to apply large gains when errors are large and
low gains when the error is small for rotational control of a
rigid body. That work has served as an inspiration for this
paper, which uses exponential functions to activate parts of
the controller as they are required to facilitate control ofa
chain of integrators with constrained actuation.

The paper is structured as follows: Section II describes the
problem statement and how to control a chain of integrators us-
ing exponential activation functions. Specifically, it considers
standard exponential activation functions, and also an approach
where a high-gain feedback is used close to the origin to enable
disturbance rejection. Section III shows the performance of
the control solution and compares it with nested saturation
functions, while Section IV wraps up the paper.

II. CONTROLLING A CHAIN OF INTEGRATORS

Consider a 4th order chain of integrators as

ẋ1 =x2 (1)

ẋ2 =x3 (2)

ẋ3 =x4 (3)

ẋ4 =u, (4)

where the objective is to design the control lawu ∈ [−1, 1]

such thatx =
[

x1 x2 x3 x4

]⊤

→ 0. In the unconstrained
case, this can easily be achieved using a control law as

u =− k1x1 − k2x2 − k3x3 − k4x4 (5)

where k1, k2, k3, k4 are four positive gains that must be
selected such that the higher level state,x4, converges before
x3 and so on until all states have converged. Figure 1 shows
the convergence of the system whenk1 = 2, k2 = 20, k3 = 40
andk4 = 80. The top subfigure shows the unconstrained case
where all errors go to zero. The bottom subfigure shows the
case when the actuator signal is bounded between±1, where
it is evident that the control law (5) is unable to make the
errors go to zero, such that more advanced control laws are
required to solve this problem.

This can be addressed by several different methods. The
nested saturation approach by Teel, is perhaps the most well-
known approach for controlling such a chain of integrators,
where the control signal can be written as:u = −σ(y4 +
σ(y3+σ(y2+σ(y1)))), whereσ(·) denotes saturation functions
bounding the output between two values. The first part stabi-
lizes thex4 state through a coordinate transform, while the
second part is a nested saturation function allowing the lower
level states to converge one at a time. The first observation of
this structure is that the available control signal is divided into
two objectives, one is to makex4 go to zero and one is to make
the other states go to zero. In a double integrator case, if the
position converges before the velocity error, the positionerror
must diverge to make the velocity error go to zero, such that it
is counter-productive to focus on the lower level states before
the higher order states have converged. One possible approach
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Figure 1. Controlling a chain of integrators with and without saturation. Notice how the states blow up when imposing a constaint on the actuator signal.

to stabilize such a system is through switching, where a control
law can be defined as

u =



















−k4x4 − k3x3 − k2x2 − k1x1 if x2, x3, x4 ∈ W

−k4x4 − k3x3 − k2x2 if x3, x4 ∈ W

−k4x4 − k3x3 if x4 ∈ W

−k4x4 otherwise

where W is a bounded set close to the origin. This ap-
proach will tackle one problem at a time allowing the
states to converge in a successive manner. Whenu =
− k4x4− k3x3− k2x2− k1x1, the statesx2, x3 andx4 will be
close to zero, such that it is mainly thex1 error that governs the
control signal. This basic idea can also be made continuous by
employing exponential activation functions. Consider a control
law as

u =− k1 exp(−c1(|x2|+ |x3|+ |x4|))x1

− k2 exp(−c2(|x3|+ |x4|))x2

− k3 exp(−c3|x4|)x3

− k4x4 (6)

where c1, c2, c3 are coefficients that dictate when the lower
level stabilizing terms are activated. There are two main
advantages with such a control law. Firstly, it is very simple
to implement, and secondly, it applies all its control effort

to one problem at a time such that it is easy to obtain fast
convergence time. The control law can also be extended to
facilitate disturbance rejection by adding an additional term to
the control law as

u =− k1 exp(−c1(|x2|+ |x3|+ |x4|))x1

− k2 exp(−c2(|x3|+ |x4|))x2

− k3 exp(−c3|x4|)x3

− k4x4 − k5 exp(−c4(|x4|+ |x3|+ |x2|+ |x1|)x4. (7)

Here, k5 can be chosen sufficiently large to reject the
disturbances, andc4 can be chosen such that it is not activated
until the other states have entered the setW to maintain the
fast convergence time.

III. S IMULATIONS

A. 3rd Order Integrator

To benchmark the approach against the nested saturation
function, consider the third order integrator

ẋ1 =x2 (8)

ẋ2 =x3 (9)

ẋ3 =u (10)
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Figure 2. Comparison between the exponential activation controller and the nested saturation controller.

with the initial conditionsx1(0) = 0.1, x2(0) = 0.5, x3(0) =
1 and |u| ≤ 1. Using nested saturation function, the control
law can be designed as

u = −σ3(y3 + σ2(y2 + σ1(y1))) (11)

where the transformed coordinates are found asy1 =
a1a2a3x1+(a1+a2)a3x2+a3x3, y2 = a1a2x2 andy3 = a1x3

with {a1, a2, a3} = {1, 3, 2} [10]. The saturation functions
are bounded as|σ3(·)| ≤ 1, |σ2(·)| ≤ 0.4990 and |σ1(·)| ≤
0.2485, which can be found using the procedure defined in [1]
or [10].

Using exponential activation functions, a control law can be
designed as

u =− k3x3 − k2 exp(−c2|x3|)x2

− k1 exp(−c1(|x3|+ |x2|)x1. (12)

where the gains and coefficients can be chosen ask1 = 2, k2 =
4, k3 = 8, c1 = c2 = 0.1. Figure 2 shows the results, where
it is evident that with the selected gains and coefficients the
new approach is able to obtain faster convergence than the
results presented [10]. Note that is possible to improve the
performance of both controllers, but the aim of this paper

is to highlight the simplicity of this control structure andits
applicability to chains of integrators.

B. 4th Order Integrator with Disturbance Rejection

Now consider the case of a 4th order integrator with a time-
varying disturbance similar to (1)-(4), but whereẋ4 = u +
d(t) with d(t) = 0.8 sin(π

2
t) and with the initial conditions

asx1(0) = 0.8, x2(0) = −0.6, x3(0) = 0.5 andx4(0) = 1.
Consider the controller (6) with the gainsk1 = 0.1, k2 = 2,
k3 = 20 and k4 = 40, and c1 = c2 = c3 = 0.1, and |u| ≤
1. For the disturbance rejection controller (7), the additional
parameters are chosen ask5 = 2000 and c4 = 2. Figure 3
shows the convergence of the 4th order integrator with an
unknown time-varying disturbance. Both controllers are able
to make the errors converge to a bounded set close to the
origin, but it is evident that by using a high gain close to the
origin reduces the error by about 50%. Note that by selecting
k4 = 2000 when not using disturbance rejection results in
slower convergence time, such that this represents a method
of achieving both fast convergence and disturbance rejection.

IV. CONCLUSION

This paper has presented a simple control solution for
controlling a chain of integrators with constrained actuation.
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Figure 3. Controller with and without high-gain disturbance rejection.

By using exponential activation functions, it allows for quick
convergence of the states in a successive manner performing
better than the nested saturation method (at least for this set of
gains). Additionally, the method can be extended to facilitate
disturbance rejection through high gain feedback that can be
activated once the states have converged to a bounded set
close to the origin, thereby improving the performance of the
proposed approach.

The objective of this paper has been to share the main idea
of how to control a chain of integrators with limited actuation
using exponential activation functions, and it can be considered
future work to show the stability of the approach. Another item
that can be considered future work, is to test the performance
of the approach for controlling quadrotors (or another plant
that can be described as a fourth order system) where the
control law in [8] can be replaced with a new control law
based on the results from this paper.
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