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Abstract. Temperature is one important factor that affects the leaching of contaminants from 

tailings deposit. However, randomness issue due to the precision of the instrument, the 

variation of ambient temperature, the individual skill of the lab technician etc., is inevitable and 

will affect the results when we evaluate the dependence of two parameters. In this study, a 

statistical method was developed to analyze the experimental data to reduce randomness. The 

experiment data from a laboratory batch leaching experiment on the tailings at Ballangen 

deposit, Northern Norway were used to analyze the dependency of concentrations of Cr, Cu, Ni 

and Zn in the leachate on temperature. The dependency of concentrations of Cr, Cu, Ni and Zn 

in the leachate is determined by testing the significance of the slope coefficient of regression 

analysis. The results show that the concentrations of Cr and Zn do not show dependency on the 

temperature. However, the temperature shows evident impact on the concentrations of Cu and 

Ni. High temperature will produce higher Cu and Ni concentration in the leachate. 

1. Introduction 

The extraction of metals and minerals can affect the natural environment to a significant extent both 

while active and after operations have ceased. Large amounts of waste rock and tailings are produced 

during mining operation. Proper handling of mine wastes is the most significant environmental issue 

associated with mining.  

The leaching of contaminants from waste deposit will last for hundreds or even thousands of years, 

and degrade the environment significantly [1]. The contaminants will further transport through the 

environmental medium to the ecosystem and the human beings living in the area in the long-term 

[2,3]. Leaching of contaminants from waste deposit is affected by many factors, of which temperature 

is an important parameter [4].   

Laboratory batch leaching experiment can be conducted to assess the effect of temperature on the 

leaching of contaminants. However, due to the precision of the instrument, the variation of ambient 

temperature, the individual skill of the lab technician etc., the resultant metal concentration shows 

variance from each other, even the values from the same sample. Randomness issue is inevitable. In 

the analysis, the randomness should be considered to avoid wrong decision-making. As randomness is 

not possible to eradicate, it is eminent to control the randomness to some acceptable levels. Statistical 

method should be introduced to measure and reduce the randomness.  

In this study, a statistical method was developed to analyze the experimental data to reduce 

randomness. The experimental data were from a laboratory batch leaching experiment on the tailings 



at Ballangen deposit, Northern Norway [4]. The experiment was run at four different leaching 

temperatures and aimed at assessing the impact of temperature on the leaching of contaminants from 

waste deposit. The dependency of concentrations of Cr, Cu, Ni and Zn in the leachate on the leaching 

temperatures is analyzed by the developed statistical method. 

2. Experiment design 

In the experiment, the leaching test is carried out at four different temperature levels: 5℃, 10℃, 15℃, 

20℃. 10 g of tailings was put into a 50ml centrifuge tube and added 20ml of deionized water. The 

mixture was set into four incubators that were set at 5 ℃ , 10℃ , 15℃ , 20℃  respectively. The 

supernatant was collected from the top after 48 hours of mixing. A new identical 20 ml of deionized 

water were added again to the centrifuge tube. The procedure is repeated for six leaching cycles. The 

collected leachate were tested the concentrations of Cr, Cu, Ni and Zn. The detailed experiment 

procedure can be found in our another publication [4]. The four temperature levels are selected to test 

the dependency of the heavy metal concentrations on the temperature. 

3. Analyzing method 

Correlation analysis can assess the dependencies between two factors [5,6]. Correlation coefficient can 

be an indicator of the dependency. However, it cannot elaborate the dependency in detail. Regression 

analysis is an alternative to evaluate the dependency of two factors. One factor is designated as 

response variable. The other is as predictive variable. Regression can tell the numerical dependency 

among factors. The regression coefficient of predictive variable in the regression function is an 

indicator of the dependency. For given observed data, big coefficient value implies dependency that is 

more significant. However, it is not comparable among coefficients estimated for different predictive 

variable. High magnitude of coefficient could correspond to situations of little dependence or no 

dependence. Approach should be developed to address the significance of the dependence. The 

regression analysis is a basic data analysis method. This paper omits the discussion on regular 

regression issues, but only addresses on issues special for this paper. 

3.1. Experimental data fusion 

The experiment contains 4 unique temperature levels. For each temperature level, if analyzing the data 

using regression analysis, the regression coefficient is evaluated from 4 data sets. High uncertainty 

contains in the coefficient. As increasing the data size is costly, we can fuse test data of each leaching 

cycle to increase data size.    

Most heavy metals’ concentration depends on the leaching test cycles. But the explicit dependency 

expression is unknown. Let the metal concentration denoted by 𝑦, the leaching cycles denoted by 𝑠, 

temperature denoted by 𝑥. It assumes the concentration 𝑦 depends on the leaching cycles as in formula 

(1). 

𝑦 = 𝑏𝑓(𝑥) + 𝑓(𝑠) (1) 

The concentration depends on the temperature in a function of 𝑏𝑓(𝑥) and depends on the leaching 

cycles in a way as 𝑓(𝑠). The leaching cycles contribute to the concentration additively. 

 

Table 1. Statistical model of each observation. 
i                  j j=1 …  j=j … j=m 

i=1 𝑏𝑓(𝑥1) + 𝑓(𝑠1)+𝜖11 …  𝑏𝑓(𝑥1) + 𝑓(𝑠𝑗)+𝜖12 … 𝑏𝑓(𝑥1) + 𝑓(𝑠𝑚)+𝜖1𝑚 

i=2 𝑏𝑓(𝑥2) + 𝑓(𝑠1)+𝜖21 …  𝑏𝑓(𝑥2) + 𝑓(𝑠𝑗)+𝜖22 … 𝑏𝑓(𝑥2) + 𝑓(𝑠𝑚)+𝜖2𝑚 

… … …  … … … 

i=n 𝑏𝑓(𝑥𝑛) + 𝑓(𝑠1)+𝜖𝑛1 …  𝑏𝑓(𝑥𝑛) + 𝑓(𝑠𝑗)+𝜖𝑛2 … 𝑏𝑓(𝑥𝑛) + 𝑓(𝑠𝑚)+𝜖𝑛𝑚 

 

Suppose the observed concentration is 𝑦1𝑗 , 𝑦2𝑗 , … , 𝑦𝑖𝑗 , … 𝑦𝑛𝑗 at leaching cycle 𝑠𝑗. The 𝑛 is number 

of temperature level. The 𝑚 is number of leaching cycles. The statistical model for each observation is 



shown in table 1.  

The 𝜖𝑖𝑗 is residual follow same normal distribution with parameters (0, 𝜎2). As each experiment 

measurement is independent, the 𝜖𝑖𝑗 is independent from each other. To remove the effects of f(s), we 

can transform the data by letting 𝑦𝑖𝑗
′ = 𝑦𝑖𝑗 −

1

𝑛
∑ 𝑦𝑖𝑗

𝑖=𝑛
𝑖=1 . The dependency of 𝑦 on the temperature will 

not change after the transformation, i.e. the coefficient 𝑏 will not change. The mathematical proof of it 

can refer to Appendix A. The experimental data of each leaching cycles can thus be fused to enlarge 

the sample size. In the rest of paper, the 𝑦𝑖𝑗 refers to the transformed 𝑦𝑖𝑗
′ for simplicity. 

3.2. Test on the dependence significance  

The dependency of concentration on temperature is described as a regression formula (2). 

𝑦 = 𝑏𝑓(𝑥) + 𝑎 + 𝜀  (2) 

The null hypothesis and alternative hypothesis are 

𝐻0:  𝑏 = 0; 

𝐻1: 𝑏 ≠ 0; 
(3) 

A statistic can be established [7]. 

𝑆𝑆𝑏=0 − 𝑆𝑆𝑏≠0

𝑆𝑆𝑏≠0/𝑛 − 2
= 𝐹 (4) 

The F has an F-distribution with 1 and 𝑚𝑛 − 2 degree of freedom. The 𝑆𝑆𝑏≠0  is the squared 

residual of 𝐻1. The 𝑆𝑆𝑏=0 is the squared residual of 𝐻0. 

𝑆𝑆𝑏≠0 = ∑ ∑ (𝑦𝑖𝑗̂ − 𝑦𝑖𝑗)2
𝑖=𝑛

𝑖=1

𝑗=𝑚

𝑗=1

 (5) 

The 𝑦𝑖𝑗̂ is the predicted value of regression. Sufficient large F value will lead to the rejection of 𝐻0. 

In the regression analysis, when 𝑏 = 0 , there is no predictive variable. The unknown regression 

parameter is the constant. Applying the least square method, the corresponding mean square error is 

𝑀𝑆𝐸 = ∑ ∑ (𝑎 − 𝑦𝑖𝑗)2
𝑖=𝑛

𝑖=1

𝑗=𝑚

𝑗=1

 (6) 

The minimal MSE is obtained at 

𝑎̂ =
∑ ∑ 𝑦𝑖𝑗

𝑖=𝑛
𝑖=1

𝑗=𝑚
𝑗=1

𝑚𝑛
 (7) 

The proof of equation (5) is straightforward. Therefore 

𝑆𝑆𝑏=0 = ∑ ∑ (𝑎̂ − 𝑦𝑖𝑗)2
𝑖=𝑛

𝑖=1

𝑗=𝑚

𝑗=1

 (8) 

The fusion of the data can improve the reliability of the hypothesis test. When no fused data 

considered, the test statistics 𝐹 is with freedom (1, n). When fusion considered, the freedom becomes 

(1, mn). The F distribution with freedom (1, mn)  is more concentrated than the (1, n), i.e. the statistics 

made on (1, mn) F distribution is higher reliable than the (1, n). The dependency relies on the 

coefficient 𝑏  in (2). The significance level implied the dependency of the concentration on the 

temperature. When 𝐻0 is accepted, the dependency is not significant. 



3.3. Model assumption validation 

The original experimental data has been converted to a regression with replications. The availability of 

the replication facilitates the model assumption validation, i.e, verifying the fitness of model (1) to the 

experimental data. The data representation with repeated data is shown in table 2. 

 

Table 2. Experiment data with replication. 

x                  y Rep 1 Rep 1 Rep 1 … Rep m 

x1 y11 y12 y13 … y1m 

x2 y21 y22 y23 … y2m 

… … … … … … 

xn yn1 yn2 yn3 … ynm 

 

A hypothesis test can be proposed to test the fitness of data in table 2 to model (1). The null 

hypothesis and alternative hypothesis are 

𝐻0:  𝑌 = 𝑏̂𝑋; 

𝐻1: 𝑌 ≠ 𝑏̂𝑋. 
(9) 

The fitness test is named lack of fit test in statistics [8-11]. A statistics based on the F-distribution 

is proposed [12]. 

𝐹𝐿𝑂𝐹 =
∑ ∑ (𝑦𝑖̅ − 𝑦𝑖̂)

2𝑗=𝑚
𝑗=1

𝑖=𝑛
𝑖=1

∑ ∑ (𝑦𝑖𝑗 − 𝑦𝑖̅)
2𝑗=𝑚

𝑗=1
𝑖=𝑛
𝑖=1

~𝐹(𝑛 − 2, 𝑛𝑚 − 𝑛) (10) 

The 𝑦𝑖̂ is the predicted value from regression. 𝑦𝑖̅ is the average value row vector in table 2. Higher 

value leads to accept 𝐻1 in equation (9), i.e. the model (1) does not fit the data properly.  

3.4. Variance reduction by data fusion 

The aim of fusing data is to increase the data size. As shown in Section 3.2, the performance of 

hypothesis test will be improved using fused data. This section proves the coefficient is unbiased and   

the variance of the regression coefficient reduced significantly. An unbiased estimate is the desired 

property for an estimation [13,14].  

For a situation without replication, an estimates of slop 𝑏 for least square estimation is [15,16]. 

𝑏̂ =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

 (11) 

When replication presents, the equation (11) can be rewritten as 

𝑏𝑟̂ =
∑ ((𝑥𝑖 − 𝑥̅) ∑ (𝑦𝑖𝑗 − 𝑦̅)𝑚

𝑗=1 )𝑛
𝑖=1

𝑚 ∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

 (12) 

where the 

𝑦̅ =
1

𝑛𝑚
∑ ∑ 𝑦

𝑗=𝑚

𝑗=1 𝑖𝑗

𝑖=𝑛

𝑖=1

 (13) 

Let 𝑦𝑖̅ =
1

𝑚
∑ 𝑦𝑖𝑗

𝑗=𝑚
𝑗=1  and 𝐷𝑖 =

(𝑥𝑖−𝑥̅)

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

. The 𝑏𝑟̂ can be rewritten as 

𝑏𝑟̂ = 𝐷1

∑ (𝑦𝑖𝑗 − 𝑦̅)𝑚
𝑗=1

𝑚
+ 𝐷2

∑ (𝑦𝑖𝑗 − 𝑦̅)𝑚
𝑗=1

𝑚
+ ⋯ + 𝐷𝑛

∑ (𝑦𝑛𝑗 − 𝑦̅)𝑚
𝑗=1

𝑚
 

= 𝐷1(𝑦1̅̅ ̅ − 𝑦̅) + 𝐷2(𝑦2̅̅ ̅ − 𝑦̅) + ⋯ + 𝐷𝑛(𝑦𝑛̅̅ ̅ − 𝑦̅ 

(14) 



Since ∑ 𝐷𝑖
𝑛
𝑖=1 = 0, the equation (14) can be rewritten as 

𝑏𝑟̂ = 𝐷1𝑦1̅̅ ̅ + 𝐷2𝑦2̅̅ ̅ + ⋯ + 𝐷𝑛𝑦𝑛̅̅ ̅ (15) 

As the observations are independent from each other, the 𝑦𝑖̅ for 𝑖 = 1,2, . . , 𝑛 is then independent 

from each other. It is straightforward to conclude  

𝑦𝑖̅~𝑁(𝑎 + 𝑏𝑓(𝑇𝑖),
 𝜎2

𝑚
) (16) 

where the expectation of 𝑦𝑖̅ is 𝐸(𝑦𝑖̅) = 𝑎 + 𝑏𝑓(𝑇𝑖).  

𝐸(𝑏𝑟̂) = ∑
(𝑥𝑖 − 𝑥̅)(𝑎 + 𝑏𝑥𝑖)

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

𝑖=𝑛

𝑖=1
 (17) 

It can be further rewritten as 

𝐸(𝑏𝑟̂) = 𝑎 ∑
(𝑥𝑖 − 𝑥̅)

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

𝑖=𝑛

𝑖=1
+ 𝑏 ∑

𝑥𝑖(𝑥𝑖 − 𝑥̅)

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

𝑖=𝑛

𝑖=1
 (18) 

It is straightforward to find ∑
𝑥𝑖(𝑥𝑖−𝑥̅)

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

𝑖=𝑛
𝑖=1 = 1 and 𝐸(𝑏𝑟̂) = 𝑏. The least square estimator for the 

𝑏 is unbiased. The variance of 𝑏𝑟̂ is  

𝑉𝑎𝑟(𝑏𝑟̂) = ∑ 𝐷𝑖
2𝑉𝑎𝑟(𝑦𝑖̅)

𝑖=𝑛

𝑖=1
=

1

𝑚
.

 𝜎2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

 (19) 

The variance of 𝑏̂ without replicated observation is  

𝑉𝑎𝑟(𝑏̂) =
 𝜎2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

 (20) 

Therefore,  

𝑉𝑎𝑟(𝑏𝑟̂) =
𝑉𝑎𝑟(𝑏̂)

𝑚
   (21) 

The introduction of replication can significantly reduce the randomness of the estimates. 

3.5. Simulation study 

The best way to test the performance of the dependency methods is to conduct more experiments. 

However, economically, more experiments are normally associated with the high cost and therefore 

are not practical in reality sometimes. A feasible way is to use simulation method. Experiment can be 

simulated using software such as Matlab. In this simulation, pseudo random values are drawn from the 

model 

𝑦 = 𝑎 + 𝑏𝑥 + 𝜀 (22) 

where 𝜀 following normal distribution with parameter (0,1). The intercepts are supposed to be 𝑎=0, 1, 

2, 3, 4, 5 respectively. The α corresponds to f(s) in (1). From model (22), for each intercept, four 

random values are drawn. The 𝑥 is selected as 5, 10, 15, 20, i.e. the m=6 and n= 4 corresponding to 

table 2. The intercepts are chosen as 𝑏=0, 0.01, 0.1, 0.5, 1. Total 5000 runs are conducted for each 𝑏. 

Applying the trend test approach proposed in Section 3.2, for replicated situation, the results are 

shown in table 3. 

 

Table 3. Accuracy of replicated case. 

                   b=0 b=0.01 b=0.1 b=0.5 b=1 

Accuracy 0.91 0.09 0.82 1 1 



When non-replication is considered, only four observations are present. The accuracy is shown in 

table 4. 

 

Table 4. Accuracy of non-replicated case. 

                   b=0 b=0.01 b=0.1 b=0.5 b=1 

Accuracy 0.95 0.10 0.70 0.79 0.997 

 

By comparing tables 3 and 4, it reveals the accuracy depends on the slope value b. When 

replications are present and the b is at a magnitude of 0.5 or above, the test method can achieve very 

high accuracy of almost 100%. When b is small at a magnitude of 0.1, for the replicated situation and 

non-replicated situation, it is only 0.82 and 0.7 respectively. When no trend presents, i.e. b=0, the 

accuracy is 0.91 for replicated situation. Surprisingly, the case with non-replication can even show 

higher accuracy than replicated situation when b=0. The improvement from the data fusion is obvious. 

Moreover, the simulation considers a situation with very few observations presented. The proposed 

method can have excellent performance when the slop b is very significant.  When the slop b in the 

regression is near zero, the test performance is relatively weak, but it is still at acceptable level of 

accuracy. In the experimental data analysis, it is necessary to fuse experimental data. 

4. Experimental data analysis 

The concentrations of Cr, Cu, Ni, Zn in the leachate are measured at each leaching cycle. In order to 

investigate the dependency, several functions f(T) are defined, considering both the linear and 

nonlinear situations. Figure 1 plot the concentrations of Cu and Zn against temperature separately. 

Each connected line corresponds a leaching test cycle in the figure. For both Cu and Zn, the original 

data doesn’t exhibit evident trend, neither increasing nor deceasing. The Zn concentration against 

temperature is evidently random. After fusing the six leaching cycle data, as shown in figure 2, the Zn 

is still evidently random. The Cu shows slightly increasing trend. The visual checking of the trend is 

subjective. The test method proposed in Section 3 is used to assess the dependency.    
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Figure 1. Concentration Cu (Left) and Zn (Right) concentration vs temperature. 
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Figure 2. Transformed Cu (Left) and Zn (Right) concentration. 

 

The number of sample m is 6 and the m is 4 in the example for the statistical model. As the explicit 

expression of the dependency of concentration on temperature is unclear, this paper tried the f(T) in a 

form of T, T0.5, T2 , T3, T4 and log(T). Tables 5 and 6 show the hypothesis test results for all the f(T). 

The “P values” for slope show the degree of the dependency. High P-value implies high dependency. 

“Slope” shows the regression coefficient b of (1). “LOF” describes the fitness of model to the data. 

The p value of “LOF” show the function can fit the data or not. Higher LOF p value implies higher 

possibility not fitting the data. “Dependency” describes if the concentration depends on the 

temperature in a form of f(T). The higher p value implies higher possibility of dependency. The 

classical statistics choose the confidence level at least 0.95. In this case, the p value should at least 

0.95 to claim the dependency is evident. 

 

Table 5. Test on the concentration of Cr and Cu. 

 Test on the concentration of Cr Test on the concentration of Cu 

f(T) P Value Slope LOF Dependency P Value Slope LOF Dependency 

T 0.4130 -0.0203 0.2483 No 0.7884 0.0992 0.1437 Yes 

T0.5 0.5186 -0.1758 0.9956 x 0.7318 0.5922 0.9999 x 

T2 0.21 -3.92e-4 0.2740 No 0.8577 0.0046 0.4227 Yes 

T3 0.060 -5.2e-6 0.2681 No 0.8891 0.000223 0.3974 Yes 

T4 0.0327 -1.4e-7 0.2678 No 0.9024 0.0000115 0.3698 Yes 

log(T) 0.6138 -0.3455 1 x 0.6596 0.8194 1 x 

 

Table 6. Test on the concentration of Ni and Zn and Ni. 

 Test on the concentration of Ni Test on the concentration of Zn 

f(T) P Value Slope LOF Dependency P value Slope LOF Dependency 

T 0.6955 5.8 0.0558 Yes 0.2720 -0.0131 0.1476 No 

T0.5 0.6576 36 0.9995 x 0.1905 -0.0603 0.5717 No 

T2 0.7405 0.2502 0.2522 Yes 0.3871 -7.47e-4 0.1822 No 

T3 0.7559 0.012 0.2254 Yes 0.4436 -4.0324 0.1810 No 

T4 0.7560 5.79e-4 0.2024 Yes 0.4637 -2.0e-6 0.1764 No 

log(T) 0.6092 52 1 x 0.0984 -0.0499 0.5077 No 

 

 



For Element Cr, the slope for all the dependency functions f(T) are negative. It implies Cr 

concentration decreases with the increasing temperature. However, the dependency is not significant. 

The p values for the function f(T) is small. In the LOF test, the T0.5 and log(T) are not able to fit the 

data, as the p values for the LOF is above 0.95 and is thus strongly significantly. However, for the 

fitted function f(T), the p-values of slope are very low. The data imply the Cr concentration is not 

dependent on the temperature. For element Cu, the slop or the dependency is positive. The 

concentration of Cu increases with temperature. The same as element Cr, in the LOF test, the T0.5 and 

log(T) are not able to fit the data. The other function fit the data. Among the fitted model, the linear 

dependency f(T)=T fit best, as it has the lowest p value. However, the p value for the f(T)=T is 0.7884. 

The dependence of concentration of Cu on the temperature is not significant.    

For element Ni, the slope is positive. The concentration of Ni increases with temperature. The same 

as element Cr and Cu, in the LOF test, the T0.5 and log(T) are not able to fit the data. The other models 

fit the data. The linear function f(T)=T is the best. The fitting is significant, as the p value is as small 

as 0.0558. The confident level of the fitting is near 0.95. The p value for the linear dependent is 

0.6955. The dependence is not significant. For element Zn, the slope is negative. Figure 2 shows the 

regression function (the red line). The concentration of Zn decreases with temperature. In the LOF 

test, all the models fit the data. For the significance of slope, the p values are all below 0.5. The 

dependence of concentration on the temperature is not significant.     

The dependency of heavy metal concentration on the temperature is evaluated by testing the 

significance of the slope in the two dimensional regression analyses. For all the four elements Cr, Cu, 

Ni and Zn, from statistical perspective, the individual element’s dependency on the temperature is not 

significant. However, it also cannot conclude the dependency is not significant. The decision based on 

the classical hypothesis test assuming a test is significant when it is with high probability such as 0.95 

or above. The threshold of the decision with this level is too high. The decision based this threshold is 

biased, as it favor the hypothesis of concentration not dependent on the temperature. For example, for 

the case of Cu, as shown in figure 2, the data exhibit the concentration depends on the temperature to 

some extent. If the confidence interval defined as 0.95, the concentration will be claimed not 

dependent on the temperature, as the p value is 0.7884<0.95. However, the 0.7884 essentially favors 

the concentration depends on temperature as the p value is over 0.5.   

If we define the threshold as 0.5 so as the two hypotheses are equal. P value of slope below 0.5 is 

considered as concentration not dependent on the temperature; otherwise, dependent. For element Cr, 

as shown in table 5, all the order of nonlinear regression is below 0.5. The logarithm dependency is 

out of consideration as it failed in the fitness test. The concentration of Cr is not dependent on the 

temperature. For element Cu, as shown in table 6, the P values are above 0.5. The Cu is dependent on 

the temperature. For element Ni, as shown in 6, the P value is also above 0.5, the concentration is thus 

considered dependent on the temperature. The Ni concentration tends to increase with the temperature. 

For the element Zn, as shown in table 6, the P values are below 0.5. The concentration of Zn is not 

considered dependent on the temperature. 

5. Conclusions 

The dependency of the heavy metal concentration on temperature is essentially not random from 

physical and chemical perspective. However, the observed data is random due to the measurement 

error, the dissimilarity of the sample etc. This paper fuses the experimental data from several leaching 

test cycles to reduce the randomness to lower the possibility of wrong conclusion making. The 

dependency of concentrations of Cr, Cu, Ni and Zn in the leachate is determined by testing the 

significance of the slope coefficient of regression analysis. By analyzing the data, the concentration of 

Cr and Zn do not show dependency on the temperature. However, the temperature shows evident 

impact on the concentrations of Cu and Ni. High temperature will produce higher Cu and Ni 

concentration in the leachate. The dependency implies further that the Cu and Ni that are leached out 

from the waste would vary in a year, as the temperature varies in a year in the area of the sample 

collection. Especially under the global climate change context, the effect of temperature on the 



leaching of contaminants should be investigated further. Analyzing the data from a statistical 

perspective can reduce the risk of wrong decision making. Other than using the subjective and rough 

visual checking approach, the using of hypothesis test and data fusion is more objective and more 

convincing than methods used in some of the literature papers. 

Appendix A 

The concentration y depends on the leaching cycles in a form as 𝑦𝑖𝑗 = 𝑏𝑓(𝑥𝑖) + 𝑓(𝑠𝑗)+𝜖𝑖𝑗, as shown 

in table 1. Suppose the 𝜖𝑖𝑗 ∈ 𝑁(0, 𝜎2) , i.e. all the residual follows a same Normal distribution 

𝑁(0, 𝜎2). For leaching test j, taking the average of all the temperature 𝑖 = 1,2, … , 𝑛, we transform the 

𝑦𝑖𝑗  into 

𝑦𝑖𝑗
′ = 𝑦𝑖𝑗 −

∑ 𝑦𝑖𝑗
𝑛
𝑖=1

𝑛
 (A.1) 

Substituting the full expression of 𝑦𝑖𝑗  into the (A.1), 

𝑦𝑖𝑗
′ = 𝑏𝑓(𝑥𝑖) + 𝑓(𝑠𝑗) + 𝜖𝑖𝑗 −

𝑏 ∑ 𝑓(𝑥𝑖) + 𝑛𝑓(𝑠𝑗) + ∑ 𝜀𝑖𝑗
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
 (A.2) 

It can be reduced to 

𝑦𝑖𝑗
′ = 𝑏 [𝑓(𝑥𝑖) −

∑ 𝑓(𝑥𝑖)𝑛
𝑖=1

𝑛
] + 𝜖𝑖𝑗 −

∑ 𝜀𝑖𝑗
𝑛
𝑖=1

𝑛
 (A.3) 

The b is the desired parameter. Obviously, the b in (A.3) is the same as b in the (1). The 

transformation of the data does not change the b, but it can remove the unexpected influence of 𝑓(𝑠𝑗). 

The entry 𝜖𝑖𝑗 −
∑ 𝜀𝑖𝑗

𝑛
𝑖=1

𝑛
 is a linear combination of random variable 𝜖𝑖𝑗. Each variable follows Normal 

distribution (0, 𝜎2). The linear combination of Normal distribution variable is still Normal distribution 

[17]. The parameter of the new Normal distribution is 𝜖𝑖𝑗
′~(0, (1 −

1

𝑛
)𝜎2). The derivation of the 

variance (1 −
1

𝑛
)𝜎2 is omitted. Conclusively, after transformation, the regression is in a form of 𝑦 =

𝑏𝑓(𝑥) + 𝜀′. As desired, the b retains in the new transformed data. We can test the significance of the b 

in the transformed data to test the dependency of concentration on temperature. 
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