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Abstract

The fragment-based polarizable embedding (PE) model combined with an appro-

priate electronic-structure method constitutes a highly efficient and accurate multi-

scale approach for computing spectroscopic properties of a central moiety including

effects from its molecular environment through an embedding potential. There is,

however, a comparatively high computational overhead associated with the computa-

tion of the embedding potential which is derived from first principles calculations on

individual fragments of the environment. To reduce the computational cost associ-

ated with the calculation of embedding-potential parameters, we developed a set of

amino-acid-specific transferable parameters tailored for large-scale PE-based calcula-

tions that include proteins. The amino-acid-based parameters are obtained by simul-

taneously fitting to a set of reference electric potentials based on structures derived
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from a backbone-dependent rotamer library. The developed cost-effective polarizable

protein potential (CP3) consists of atom-centered charges and isotropic dipole–dipole

polarizabilities of the standard amino acids. In terms of reproduction of electric po-

tentials, the CP3 is shown to perform consistently and with acceptable accuracy across

both small tripeptide test systems and larger proteins. We show, through applica-

tions on realistic protein systems, that acceptable accuracy can be obtained by using

a pure CP3 representation of the protein environment, thus altogether omitting the

cost associated with the calculation of embedding-potential parameters. High accu-

racy comparable to the full fragment-based approach can be achieved through a mixed

description where the CP3 is used only to describe amino acids beyond a threshold

distance from the central quantum part.

1 Introduction

The use of ab-initio quantum-mechanical methods allows for the calculation of a wide range

of molecular properties with high accuracy. A significant drawback of such methods is,

however, the steep scaling with respect to the size of the system. This is unfortunate con-

sidering that most chemical processes occur in solution or other matrices, such as a protein

or cell membrane. In response to this, numerous environment models have been developed.

The main difference between the models is their representation of the environment, which

ranges from a structure-less continuum,1 over a classical atomistic potential,2,3 to a quantum

description.4

The polarizable embedding (PE)5 model is an advanced fragment-based quantum–classical

embedding scheme where mutual polarization effects are taken explicitly into account in a

fully self-consistent manner. The environment is described in terms of distributed multi-

poles and polarizabilities, both of which are derived from quantum-mechanical calculations

on the individual fragments that make up the environment. Extensive analysis in previous

works6,7 have shown that such an approach gives high accuracy when using LoProp-based8
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atom-centered multipoles up to and including quadrupoles to describe the permanent charge

distribution of fragments in the environment, and atom-centered anisotropic dipole–dipole

polarizabilities to describe polarization effects.

The fragmentation approach is simple for solute-solvent systems. For example, a water

cluster can easily be fragmented into individual water molecules, and the parameters (i.e.,

multipoles and polarizabilities) are then derived for each molecule in isolation through a

quantum-mechanical calculation. In systems that contain molecules that are too large to

perform a single quantum-mechanical calculation for the derivation of the embedding pa-

rameters, the molecular fractionation with conjugate caps (MFCC) method9 is used to split

the complete system into several smaller fragments, which each has a much smaller compu-

tational cost. Using the MFCC approach for deriving atom-centered parameters of proteins

was introduced by Söderhjelm and Ryde.10 This approach has been shown to produce high-

quality embedding potentials for proteins6 as well as nucleic acids11 and lipids.12

Using such an approach, the computational cost is significantly reduced compared to

carrying out a full quantum-mechanical calculation, but even so, the calculation of the

embedding-potential parameters still carries a significant computational cost when there

is a large number of fragments in the environment. The large cost of computing embedding

parameters is particularly problematic when the fragments contain many atoms such as in

protein environments, where an average capped amino-acid fragment produced in the MFCC

approach contains about 30 atoms, with the number of atoms ranging from 19 atoms (in

glycine) to 36 atoms (in tryptophan). This becomes even more significant when taking

into account configurational sampling, which requires the embedding-potential parameters

to be calculated for many configurations of the system. To reduce the computational cost

associated with the calculation of embedding-potential parameters, we here present a set of

transferable amino-acid-specific parameters, consisting of atom-centered point charges and

isotropic dipole–dipole polarizabilities, tailored for use in large-scale PE-based calculations

that include proteins. We will denote our parameter set as the cost-effective polarizable
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protein potential (CP3). The CP3 parameters are validated by comparing electric potentials

(EPs) of a diverse set of structures, ranging in size from tripeptides to an insulin monomer

protein, to high-quality quantum-mechanical references. Moreover, we also evaluate the

performance of the CP3 in realistic PE-based calculations on chromophores embedded in

protein environments.

One of the critical aspects when developing transferable parameters is conformational

sampling. One approach is to sample structures from classical molecular dynamics (MD)

trajectories.7,11–13 Obtaining a sufficient sampling of the conformations of all the standard

amino acids through MD simulations is non-trivial. Moreover, the choice of force field and

simulation conditions may introduce some unwanted bias into the parameters. Instead, we

use an alternative approach based on conformations sampled from a rotamer library. Several

rotamer libraries14–18 have been developed, including backbone-dependent ones,15 facilitated

by the abundance of high-quality protein crystal structures. These effectively report the most

commonly occurring conformations of amino acids in typical protein environments and thus

represent a very focused and efficient way of selecting structures to include in the fitting

procedure. Similar approaches of sampling across a set of conformers have been applied

in other studies.19–21 The main difference being that we here use a comparatively large

set of conformations sampled from the smoothed backbone-dependent rotamer library by

Shapovalov and Dunbrack.15

After having selected the set of structures to be used in the parameter derivation, there

is still the matter of selecting the method with which to derive the parameters. Numerous

approaches have been reported in the literature (see e.g. Ref. 22 for an overview). Our aim

is to be able to reproduce the EP as accurately as possible using only atom-centered point

charges and isotropic polarizabilities. Based on preliminary testing, we found that EP fitting

gave the best performance, and, since it is also rather flexible, it is relatively easy to introduce

constraints, e.g. to ensure integer charge within groups of atoms and to equalize parameters

on chemically equivalent atoms. Such constraints are useful in the parameterization of

4



amino-acid residues, which are part of a larger protein structure, and thus require capping

groups (typically acetyl and N-methyl groups). Moreover, we can fit simultaneously to the

EP across all conformers, as has been explored previously.21 The reason for doing this is

two-fold. First, we expect an improved transferability of the parameters by including a large

set of structures that contains conformations representative of those commonly occurring in

native proteins. Second, we seek to combat the well-known problem of redundancy in EP

fitting.21,23 Addressing the latter point by including a large number of structures is most

likely not sufficient to resolve the problem of ill-conditioned EP fits, so we also reduce the

number of free parameters by employing non-redundant fitting and by imposing additional

constraints on the parameters.

2 Methodology

2.1 Conformational sampling

It is necessary to sample relevant conformations of each amino-acid residue to generate

transferable parameters. In previous works by some of us, conformational sampling was

obtained through classical MD simulations.7,11,12 Here, we employ a more focused strategy

instead, using the smoothed backbone-dependent rotamer library of Shapovalov and Dun-

brack.15 This library contains, for each amino acid, conditional probabilities of finding a

specific combination of backbone and side-chain dihedral angles based on entries from the

Protein Data Bank (PDB).24 We include rotamers for each amino acid in order of the most

commonly occurring. The total number of possible rotamers is rather large. Therefore, for

each amino acid, we only included rotamers (based on backbone/side-chain dihedral angle

combinations) until the cumulative fraction of covered structures from the database reached

80%. For glycine and alanine, which do not have any side-chain rotamers, the backbone

dihedrals from valine were used. For cysteine, lysine, aspartate, glutamate, and histidine,

alternative side-chain protonation states were also included, using the same dihedral angles
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as the parent amino acid. Specifically, we included the disulfide-bonded cysteine (CYX),

deprotonated cysteine (CYD) and lysine (LYD), and the protonated aspartate (ASH) and

glutamate (GLH), along with the δ (HID) and ε (HIE) protonated variants of neutral histi-

dine. Initial geometries of the amino acids were constructed with the dihedral angles as an

input using the FragBuilder tool.25 The main set of parameters used acetyl and N-methyl

capping groups in order to mimic the environment of a typical protein backbone (Fig. 1A).

The disulfide-bonded cysteine used in addition a thiomethyl capping group to represent a

disulfide-bonded cysteine neighbor. In order to also develop parameters for both charged and

neutral N- and C-terminals, a set of structures were also generated with only one capping

group being either acetyl and N-methyl, but having the other capping group being either a

protonated amine (Fig. 1C), carboxylate (Fig. 1D), amine (Fig. 1E), or carboxyl (Fig. 1F)

group. The geometries of the generated structures were optimized with the HF-3c method26

as implemented in the ORCA program,27 with the dihedral angles constrained to the values
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Figure 1: Structures of amino-acid fragments used in the optimization procedure. Dotted
lines delimit regions in which integer charges are enforced. Structure A models the en-
vironment found in the middle of a typical protein chain, whereas C and D are used to
model terminal charged residues, and E and F are used to model terminal neutral residues.
Structure B represents a single zwitterionic amino acid which is not covered by the present
parameter set.
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obtained from the rotamer library. The geometry optimizations include an implicit water en-

vironment, modeled with the C-PCM,28–31 in order to avoid any internal hydrogen transfers.

The final set of structures are available at https://doi.org/10.5281/zenodo.3250016.32

2.2 Fitting procedure

The point charges, q, and isotropic dipole–dipole polarizabilities, α, are derived by fitting to

static and induced EPs, respectively. The EP at a point r due to the electrons and nuclei of

a molecule is given as

V QM(r) =
∑
A

ZA
|r−RA|

−
∫

Ω

ρ(r′)

|r− r′|
dr′ (1)

where ZA is a nuclear charge, RA is a nuclear position, ρ(r′) is the electronic density, and Ω

denotes integration over all space.

Our goal is to find the set of atom-centered parameters that provides an optimal re-

production of the EP while at the same time being transferable across a wide range of

conformations. We apply two strategies to address both requirements. First, the parameters

are fitted to the EP of all conformers of the same molecule simultaneously. Second, we apply

a harmonic restraint towards a set of reference parameters to avoid large changes that only

marginally affect the quality of the fit (see Fig. S1 in the Supporting Information).

The cost function for the charge fitting can be written as a sum of two terms

χq = χqEP + χqrestraint (2)

Here, the first term on the right hand side, χqEP, is computed from the weighted mean

squared error (wMSE) of the approximate EP computed from the fitted charges relative to

the reference EP (eq (1)) evaluated on a set of grid points using all structures of a given
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molecule. The wMSE cost function is thus defined as

χqEP =
Ns∑
s=1

ws
Ng,s

Ng,s∑
i=1

(
V QM(ri)− Ṽ q(ri)

)2

(3)

where Ns is the number of structures included in the fit, Ng,s is the number of grid points in

the sth structure, and ws are the weighting factors obtained from the backbone-dependent

rotamer probabilities. The approximate EP from the fitted charges, Ṽ q, is computed as

Ṽ q(r) =
Natoms∑
n=1

qn
|r− rn|

(4)

where Natoms is the number of atoms in the molecule, qn is an atom-centered charge, and

rn is its position. The second term in eq (2), χqrestraint, is a function that restrains the fitted

charges towards a set of reference charges. The restraint cost function is given by

χqrestraint = kqrestraint

Natoms∑
n=1

(
qn − qref

n

)2
(5)

where kqrestraint controls the strength of the restraint and qref
n is a reference charge. In this work,

we used the LoProp procedure8 to produce reference charges based on the most probable

conformation of the given molecule. The restraint strength was chosen to be low enough to

allow a good fit while at the same time ensure that the fitted charges do not drift far away

from the reference charges. More details are provided in Sec. 3.1.

To fit the isotropic dipole–dipole polarizabilities, we apply the same strategy as for the

fitting of the charges, but targeting now the reproduction of the induced EP, obtained as

the difference between a perturbed and non-perturbed EP

V QM
ind (r,F) = V QM(r,F)− V QM(r, 0) (6)

where the perturbed EP is computed by applying a homogeneous finite electric field, F, on
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the molecule. The cost function for fitting polarizabilities is also here a sum of two terms

χα = χαEP + χαrestraint (7)

where the first term on the right-hand side, χαEP, is the wMSE between the induced EP com-

puted from a quantum-mechanical calculation and the approximate induced EP computed

using the fitted polarizabilities. The wMSE can thus be written as

χαEP =
∑
F

Ns∑
s=1

ws
Ng,s

Ng,s∑
i=1

(
V QM

ind (ri,F)− Ṽ α
ind(ri,F)

)2

(8)

where the sum over electric fields runs over the applied electric field, which here is ±x, ±y,

and ±z. The approximate induced EP, Ṽ α
ind(ri,F), is computed using the set of induced

dipoles that are created in response to the externally applied electric field via the fitted

polarizabilities

Ṽ α
ind(r,F) = −

Natoms∑
n=1

µn(F) · (r− rn)

|r− rn|3
(9)

where the induced dipoles are obtained as

µn(F) = αnF (10)

Implicit in this definition is the exclusion of mutual polarization between the fitted polar-

izabilities. In analogy to eq (5), we apply a harmonic restraint towards a set of reference

polarizabilities

χαrestraint = kαrestraint

Natoms∑
n=1

(
αn − αref

n

)2
(11)

where kαrestraint controls the strength of the restraint and αref
n is a reference polarizability. Here

we also used the LoProp procedure8 to produce reference polarizabilities based on the most

probable conformation of the given molecule, and the restraint strength was set sufficiently

low to allow a good fit while at the same time ensure that the fitted polarizabilities do not
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drift far away from the reference polarizabilities. More details are provided in Sec. 3.1.

The atom-centered charges and polarizabilities are derived for amino-acid residues, as

shown in Figure 1. The parameters of a given fragment thus intrinsically include, by virtue

of the wave-function optimization, polarization among sites that are present in the frag-

ment, i.e., the amino-acid residue itself and part of the backbone of the neighboring residues

through the capping groups. Thus, to avoid double-counting of polarization effects, when

two neighboring fragments interact, it is appropriate to exclude those interactions accord-

ingly. This interaction scheme is compatible (by design) with the one used for MFCC-based

potentials, thus allowing a mixed representation of protein systems.

We reduce the number of free fitting variables in two ways. First, fragments are con-

strained to carry integer charges, which reduces the number of free parameters by one for

the charge fits. For example, the total charge of the central amino acid is constrained to

the appropriate charge of the given amino acid, while the capping groups are constrained

to have a total charge of zero (see Figure 1). The constraint on the sum of charges can

be realized by freely fitting only N − 1 charges and assigning the final Nth charge to be

qN = qtotal−
∑N−1

i=1 qi. A similar constraint could, in principle, be introduced for the polariz-

abilities, but the molecular polarizability varies between conformations, unlike the molecular

charge, so such a constraint is less appropriate in that case. Second, chemically equivalent

atoms are constrained to have identical charge and polarizability. Both types of constraints

were enforced by only using non-redundant optimization parameters (rather than Lagrange

multipliers). With this, we significantly reduce the number of free parameters in the fit. For

example, for the capped valine amino-acid model, which contains 28 atoms, the number of

free parameters for the polarizabilities is reduced to 18, while the number of free parameters

for the charges is reduced to 15.
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3 Computational Details

3.1 Fitting

To compute the static EPs used in the fitting procedure, we first performed single-point

energy calculations on the optimized structures using the Gaussian09 program.33 For this,

the PBE0 exchange–correlation functional34 was used together with the aug-cc-pVDZ basis

set35 for heavy atoms and the cc-pVDZ basis set36 for hydrogen atoms. In the following, we

will denote this mixed basis set as augx-cc-pVDZ. These calculations formed the basis for the

static EP evaluations of the capped amino acids. A similar set of calculations were carried

out with a finite electric field to obtain induced EPs. Electric fields were applied along the

± {x, y, z} directions with a field strength of 5.0 × 10−3 au, resulting in a total of seven

different calculations for each structure (six applied fields and one field-free structure). The

EPs were subsequently evaluated on a set of discretized molecular surfaces, using Horton37 as

a backend. The surfaces were generated according to the algorithm of Saff and Kuijlaars,38

with the radii of the spheres scaled according to the van der Waals (vdW) radii of the atoms.

We used two shells in each structure, with scaling factors of 1.4 and 2.0. The construction of

the surfaces, as well as the fitting of charges and polarizabilities, has been implemented in the

PropertyFit Python package,39 freely available at https://github.com/peter-reinholdt/

propertyfit.

The charges and polarizabilities are obtained by minimizing the cost functions (eqs. (2)

and (7)) using the sequential least squares programming (SLSQP)40 optimization algorithm

available in SciPy.41 The reference charges and polarizabilities used for the restraints (see

eqs. (5) and (11)) were obtained using the LoProp approach8 based on the most probable

structure of each amino acid, employing the PBE0 functional and the augx-cc-pVDZ basis

set which has been recontracted to ANO-type as required by the LoProp procedure. The

reference charges and polarizabilities were computed using the Dalton program42,43 and the

LoProp for Dalton Python package.44 The charges and polarizabilities that are obtained
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from the LoProp procedure generally have different values for chemically equivalent atoms,

e.g., the charge of hydrogens in a methyl group will not be equal. Therefore we average the

reference parameters belonging to such groups of chemically equivalent atoms before they

are used in the fitting. The restraint strengths were set to kqrestraint = 1.0 × 10−6 au and

kαrestraint = 1.0× 10−9 au to avoid drift as discussed above. The final set of fitted parameters

as well as the structures and electric potentials used in the fitting procedure are available at

https://doi.org/10.5281/zenodo.3250016.32

3.2 Validation

In order to evaluate the quality of the CP3, its ability to reproduce a full quantum-mechanical

EP was investigated on a number of test systems. This was done with three sets of increas-

ingly complex test molecules starting with simple tripeptides, over a set of small proteins,

and ending with a larger insulin protein. The quality was measured by computing the root-

mean-square deviation (RMSD) between the quantum-mechanical EP and the CP3-based

EP. The EPs were evaluated on a set of points located on a surface defined by twice the

vdW atomic radii, which is a highly relevant distance for intermolecular interactions. The

quality is compared to potentials normally used in PE-based calculations, namely the MFCC-

based M2P2 potential, which includes structure-specific charges, dipoles, and quadrupoles

as well as anisotropic dipole–dipole polarizabilities, localized to atom centers using the Lo-

Prop procedure. The MFCC-based M2P2 potentials were computed using the PyFraME

package45 as detailed in the sections below. We also compare to the quality that would be

obtained by a typical force field, using AMBER ff9446 as a representative example of fixed

point charge force fields, and the more advanced AMOEBA polarizable force field,19,47–49

which includes multipoles up to quadrupoles and isotropic dipole–dipole polarizabilities. We

note that the embedding with AMOEBA model has been previously studied,50–52 but also

that this implementation is neither open-source nor publicly available. The EPs produced

using CP3, ff94, and MFCC-based M2P2 potentials were evaluated using in-house Python
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script while the EPs based on AMOEBA were computed with the Potential program from

the Tinker package.53

3.2.1 Tripeptides

The first test set consists of a series of zwitterionic tripeptides using charged glycine ter-

minals. However, this type of tripeptide cannot be used to test the parameters of the

disulfide-bonded cysteine (CYX). Instead, a dimer made from two tripeptide units was man-

ually constructed using the Maestro program.54 Following this, a conformational search was

carried out with the ConfGen module,55,56 keeping the 32 lowest energy conformers. On

each of these conformers, single point calculations were carried out at B3LYP57/6-31G**58

level of theory using the Jaguar program.59,60 The lowest energy conformer was retained

for use in the following calculations. Strictly speaking, this molecule consists of six amino

acid residues and is therefore not a tripeptide, but we include it in the tests below to be

able to address the performance of the CYX parameters. For the remaining tripeptides,

geometries were taken from FragBuilder. Geometry optimizations were carried out on all of

the tripeptides at PBE0/def2-TZVP61 level of theory using the ORCA program. The RIJ-

COSX62 approximation was employed with the def2/J63 auxiliary basis set. Water solvent

was included using the C-PCM28–31 in order to avoid internal hydrogen transfers.

Calculation of the EPs was based on the unrelaxed density from DLPNO-CCSD64/aug-

cc-pVTZ calculations using ORCA. The aug-cc-pVTZ/C basis set was used as an auxiliary

basis set for the correlation calculations and the def2/J basis set for Coulomb fitting. The

default truncation thresholds were used for the calculations on all tripeptides.

The MFCC-based M2P2 potentials were derived from PBE0/aug-cc-pVTZ calculations

on the amino-acid-based fragments using the LoProp procedure to distribute the parameters

to atom centers.

With this series, we get a measure of the quality of the parameters belonging to each

of the individual amino acids in the core set, though we should note that quality of the
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parameters for GLY will, of course, affect all of the tested structures. The zwitterionic state

ensures that the atoms of the central amino acid residue experience rather large electric

fields. As such, this serves as a test of both the charges and the polarizabilities.

3.2.2 Small proteins

The second series comprises a series of small proteins. The structures of the proteins were

obtained from the study of Kulik et al. 65 We used the structures optimized at ω-PBEh66–68/6-

31G level of theory. The structures were manually inspected for problems, and proteins with

proton transfers or other structural issues were excluded as this is outside of the applicable

domain of our CP3. After also considering computational limitations, a total of 13 small

proteins remained the PDB ids of which are: 1LVQ, 1V46, 1Y49, 1YJP, 2JTA, 2OL9, 2ONW,

2OQ9, 2PJV, 3FTK, 3FTR, 3FVA, and 3NVG. The selected proteins contain between 6 and

24 amino acids, which translates to between 70 and 312 atoms.

The EP of the selected proteins was evaluated using unrelaxed DLPNO-CCSD densities

calculated using the ORCA program. The cc-pVDZ basis set was employed, along with the

cc-pVDZ/C auxiliary basis set for correlation, and the def2/J basis set for Coulomb fitting.

The default truncation thresholds were used for the calculations on all of the 13 proteins.

The parameters of the MFCC-based M2P2 potentials were obtained from PBE0/cc-pVDZ

calculations on the amino-acid-based fragments using the LoProp procedure to distribute the

parameters to atom centers.

3.2.3 Insulin

The final test system is an insulin protein containing two chains with a total of 51 amino acids,

which amounts to 787 atoms. For this, we used the DEC-MP269/cc-pVDZ EP from Jakobsen

et al. 70 as the reference. The MFCC-based M2P2 potential was derived from PBE0/augx-

cc-pVDZ calculations on the amino-acid-based fragments using the LoProp procedure to

distribute the parameters to atom centers.
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3.3 Performance Benchmarks

To further benchmark the performance of the CP3 for practical applications, we com-

puted a series of optical properties using three different proteins as examples. For this,

we used the green fluorescent protein (GFP), a channelrhodopsin chimera (C1C2), and a

flavin-binding dodecin, where the chromophores are an anionic 4-hydroxybenzylidene-1,2-

dimethylimidazolinone (HBDI), a protonated retinylidene Schiff base (PRSB), and a lumi-

flavin (LF) dimer, respectively. The chromophore in GFP and C1C2 is covalently bonded

to the protein, whereas the LFs in dodecine are not.

The structure of the GFP system is a single configuration taken from a QM/MM-MD

trajectory.71 It consists of the GFP and a spherical solvent shell made up of 19793 water

molecules and five sodium ions.

The C1C2 structure is a QM/MM-optimized geometry from Ref. 72. It was originally

based on a crystal structure (PDB ID: 3UG9).73 The structure includes the protein and 43

crystal water molecules.

The dodecin structure is based on a snapshot from a QM/MM-MD simulation of the LF

dimer in dodecin, taken from a previous study.74 The system contains two π–π stacked LFs

embedded in the protein environment. Apart from the LFs and dodecin, the system also

contains 8265 water molecules, 44 sodium ions, 12 chloride ions, and two magnesium ions.

The quantum region of the GFP (HBDI including parts of the neighboring residues and

hydrogen link atoms), C1C2 (PRSB including most of the lysine side-chain and a hydrogen

link atom), and dodecin (two LFs) systems are shown in Figure 2.

Figure 2: Quantum regions in the GFP, C1C2, and dodecin systems.
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The effects of the environment on the chromophore were modeled using the PE model,

which we briefly described in the introduction. We investigate the ground-state dipole mo-

ment and the excitation energy of the lowest singlet transition together with the associated

one- and two-photon absorption strengths. These properties were computed using the CAM-

B3LYP75 exchange–correlation functional and the pcseg-2 basis set.76 Effective external field

(EEF) effects77 were included in the computation of absorption strengths. The properties

were calculated using the Dalton program42,43 employing PElib78 and Gen1Int.79,80

The reference properties are calculated using the MFCC-based M2P2 potential to describe

the protein surroundings which has been shown to be highly accurate.6 The M2P2 poten-

tial consists of atom-centered multipoles up to quadrupoles and atom-centered anisotropic

dipole–dipole polarizabilities. In this work, the multipoles and polarizabilities were com-

puted at PBE0/augx-cc-pVDZ level of theory using the LoProp approach8 to distribute the

multipoles and polarizabilities to atomic centers which thus matches the level of theory used

to derive the CP3 parameters. We benchmark properties obtained from calculations where

the whole protein is modeled by the CP3 as well as mixed intermediates where the residues

closest to the chromophore (according to a distance criterion) are described by the more

accurate M2P2 potential and the remainder by the CP3. For comparison we also computed

properties using the AMOEBA to model the protein surroundings. Here the multipoles and

polarizabilities were assigned from the OpenMM81 implementation of the AMOEBA force

field using the parameter set in amoeba2013.xml. The amino-acid residues in the GFP and

C1C2 systems that are covalently bonded to the quantum region are incomplete due to the

fact that parts have been included in the quantum region. The interfacial region between

the chromophore and protein was therefore described with an M2P2 potential for these two

systems because we were unable to assign parameters to those incomplete residues. More-

over, the protein model of the C1C2 contained a neutral N-terminal (−NH2), which is not

present in AMOEBA, and this was also modeled with the M2P2 potential. The exclusion

lists were extended to avoid issues with over-polarization. Thus, any atom that is included
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in the exclusion list of a protein atom described by an M2P2 potential had their exclusion

lists appended as if an M2P2 potential described them. In all cases, all water molecules and

all ions were described by the solvent embedding potential (SEP)7 which consist of charges

and isotropic polarizabilities. The PyFraME package45 was used to generate the potentials

employing the Dalton program42,43 and the LoProp for Dalton script44 for the individual

M2P2 fragment calculations.

In both GFP and C1C2 there are covalent bonds that were cut because they cross the

quantum-classical interface. The open valencies in the quantum region were closed using

hydrogen link-atoms. The charges on the classical carbon atoms closest to the hydrogen link-

atoms were redistributed to the nearest two classical sites while higher-order multipoles and

polarizabilities were removed. Thole’s exponential damping scheme was used for induced-

dipole–induced-dipole interactions in calculations involving CP3 and M2P2 while Tinker-

style Thole damping was used in calculations using AMOEBA.

4 Results and Discussion

4.1 Fitting

The optimized CP3 charges yield an order-of-magnitude improvement over the initial start

guess, while the optimized polarizabilities show more modest improvements (see Fig. S1

in the Supporting Information). Figure 3 compares the numerical values of charges and

polarizabilities from CP3, AMOEBA, and AMBER force fields (ff94 and the more recent

ff15ipq13).

The CP3 charges correlate most strongly to the ff15ipq charges (R2 = 0.94), followed by

the ff94 charges (R2 = 0.81), and with a much weaker correlation to the AMOEBA charges

(R2 = 0.68). The good agreement between CP3 and ff15ipq charges is somewhat surprising,

considering that the latter implicitly include effects of the polarization caused by the solvent.

The poor correlation to the AMOEBA charges is to be expected. The AMOEBA charges
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Figure 3: Parameters of CP3 are compared to those from AMOEBA and AMBER force
fields. Top panels compare charges (in au) and lower panels compare polarizabilities (in au).
N- and C-terminals refer to the charged terminal amino acid residues. Perfect agreement is
illustrated with the black line.

are balanced by the inclusion of higher-order multipoles, whereas the CP3 charges need to

compensate for the lack of higher-order multipoles.

Figure 4 shows the correlation between the magnitudes of the molecular dipoles com-

puted from CP3 charges and PBE0/augx-cc-pVDZ which is the method used in the fitting

procedure. Importantly, there is a very strong correlation (R2 = 0.998) despite the fact that

the dipoles were not used in the fitting procedure. This is important because, in a calculation

using CP3, the electric field from the charges is used to induce dipoles in all other fragments

via the polarizabilities.

The magnitude of the CP3 polarizabilities are in general between the AMOEBA and

AMBER polarizabilities, being larger than the AMBER polarizabilities, but smaller than
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the AMOEBA polarizabilities. A direct comparison of the polarizabilities is, however, com-

plicated by the fact that all three models use different interaction schemes for the polariz-

abilities. The choice of interaction model can have a large impact on the optimal numerical

values of the atomic polarizabilities.82 The AMOEBA and AMBER force fields have very

few polarizabilities, consistent with their interaction model, whereas the CP3 parameters

are residue-specific and thus have different polarizabilities for each atom in each amino-acid

residue.

Figure 4: Comparison between the magnitude of the molecular dipoles computed from CP3

charges and PBE0/augx-cc-pVDZ. Each point corresponds to a single structure used in the
fitting procedure. Different colors correspond to different amino acids. Perfect agreement is
illustrated with the black line.

4.2 Validation

4.2.1 Tripeptides

The RMSDs of the zwitterionic tripeptide EPs, evaluated on a molecular surface defined by

twice the vdW atomic radii, are presented in Figure 5. The average RMSD of the CP3-based

EPs is 13.5 kJ/mol. Most of the individual RMSDs are very close to the average, thus

showing that the accuracy is rather consistent. There are a few outliers, namely the HIS
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and CYS tripeptides, and the CYX tripeptide dimer, where the RMSD for CYS and HIS

tripeptides is somewhat larger, while it is substantially smaller for the CYX tripeptide dimer.

The latter deviation is at least partly explained by the fact that the CYX tripeptide dimer

is qualitatively different from the remaining tripeptide test systems, since it is a hexapeptide

(a dimer consisting of two tripeptides connected by a disulfide bond). Employing a Thole-

type damping of the induced-dipole–induced-dipole interactions had very little effect, which

means the larger RMSDs for the CYS and HIS tripeptides are not due to over-polarization.

Moreover, nothing unusual was observed for these amino acids in the fitting nor in the

comparisons presented in the previous section. It is therefore likely that the larger RMSDs

are related to the specific geometries of the HIS and CYS tripeptides used here. Here it is

important to note that the tripeptide test cases are artificial and extreme, and thus that

RMSDs of this magnitude are unlikely to be observed in production calculations.

Figure 5: RMSD in kJ/mol of tripeptide EPs modeled by CP3, AMOEBA, ff94, and M2P2
on a 2.0 × vdW surface relative to a DLPNO-CCSD/aug-cc-pVTZ reference. The tripeptides
are zwitterionic GLY-XXX -GLY, where XXX is the amino acid indicated in the plot, except
CYX which consists of two CYX tripeptides linked through a disulfide bond. Dotted lines
show the average RMSD of each potential. Dash-dotted lines for CP3 and M2P2 show the
RMSDs obtained when induced dipole interactions are damped.

The average RMSD is relatively large compared to the average RMSD of the M2P2-based

EPs (3.6 kJ/mol) which can be considered to be very close to an optimally parametrized
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potential. In a single case, the CYX tripeptide dimer, the M2P2 potential produced an EP

with a substantially larger RMSD of 9.0 kJ/mol. The larger error is because of very close

contact between the two CYX tripeptide monomers. In fact, the hydrogen bonds between

the charged terminals are only 1.6 Å which means that there are sites that are close to the

divergence sphere of the multipole expansion on other sites. By employing a standard Thole-

type exponential damping of the induced dipole–induced dipole interactions, the RMSD was

decreased by 2.5 kJ/mol. Note that damping in the remaining M2P2-based and all the CP3-

based calculations only has a negligible effect. Damping is part of the polarization model used

in, e.g., AMOEBA, to avoid so-called polarization catastrophe. However, it is not required

in MFCC-based potentials because the interactions between neighboring polarizable sites

are intrinsically included through the fragment calculations from which the parameters are

derived. Thus there are no polarizable sites close enough to trigger a polarization catastrophe.

It may be beneficial to include damping, however, when there are close contacts between

two fragments that are not covalently bonded (as is the case for the CYX tripeptide dimer),

though the overall improvement in most production calculations will be minor.

A comparison to EPs produced by the CP3 with only charges (CP3-q) reveals that the

isotropic polarizabilities yield a substantial improvement in all cases, reducing the RMSD by

roughly 10 kJ/mol on average. The importance of polarization is further emphasized by the

large RMSDs associated with the ff94 fixed point-charge potential, which averages at 33.8

kJ/mol. The polarizable AMOEBA potential performs better than the CP3, with an average

RMSD of only 7.8 kJ/mol. The main factor that allows AMOEBA to reach higher accuracy

is most likely related to the inclusion of higher-order multipoles. Indeed if the dipoles and

quadrupoles are removed from AMOEBA (AMOEBA-iso in Fig. 5) the RMSDs increase to

roughly the same range as CP3-q.

In order to further examine the accuracy that can be gained from higher-order multipole

moments, a calculation on the GLY tripeptide was performed using the MFCC-based M0P2

potential (i.e., using structure-specific charges and anisotropic polarizabilities). This resulted
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in an RMSD of 9.2 kJ/mol, which should be compared to 2.8 kJ/mol when using the M2P2

potential. It is thus clear that higher-order multipoles provide a substantial improvement.

Therefore it appears reasonable to assume that the poorer performance of the CP3 relative

to the AMOEBA potential is, to a large extent, due to the lack of higher-order multipoles.

4.2.2 Small proteins

Figure 6 presents the RMSDs of the small protein EPs evaluated on a discretized surface

defined by twice the vdW atomic radii. The average RMSD of the CP3-based EP remains

close to the one observed in the tripeptide test set (i.e., 11.1 kJ/mol compared to 13.5

kJ/mol). The individual RMSDs are also rather close to average, ranging from 7.6 (2PJV)

to 15.3 kJ/mol (3FTR). This shows that the CP3 parameters scale to larger systems with

consistent accuracy.

The importance of explicit polarization is also evident here; excluding the polarizabilities

(CP3-q) increases the average RMSD to 24.3 kJ/mol. The average RMSD of the ff94-based

EP is in the same range (28.5 kJ/mol). The spread of the individual RMSDs is rather large,

including a few relatively low RMSDs indicating that polarization does not have the same

Figure 6: RMSD in kJ/mol of small protein EPs modeled by CP3, AMOEBA, and M2P2 on
a 2.0 × vdW surface relative to a DLPNO-CCSD/cc-pVDZ reference. Dotted lines show the
average RMSD of each potential. Dash-dotted lines for CP3 and M2P2 show the RMSDs
obtained when induced dipole interactions are damped.
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importance in all cases. Even so, it is clear that polarization is required in order to obtain

consistent results.

The AMOEBA potential again performs very well with an average RMSD of only 5.7

kJ/mol, which is quite close to the average RMSD of the M2P2-based EPs (4.1 kJ/mol).

This is impressive, considering that the M2P2 parameters are structure-specific, while the

AMOEBA potential uses transferable parameters. Removing dipoles and quadrupoles from

the AMOEBA potential (AMOEBA-iso) yields substantially larger RMSDs that are in the

same range as CP3 without polarizabilities (i.e., CP3-q), as was the case for the tripeptide

test set, thus further emphasizing the role of higher-order multipoles.

4.2.3 Insulin

The final validation test is performed on the insulin protein, which is more than twice the

size of the largest of the smaller proteins. This system is challenging also for some Kohn-

Sham density functional approximations.70 It has been used previously in a study of the
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Figure 7: RMSDs in kJ/mol of the insulin EP modeled by CP3, AMOEBA, ff94, and M2P2
relative to a DEC-MP2/cc-pVDZ reference.70 The EP is computed on points sampled within
volumes defined by two vdW surfaces separated by ± 0.1 factors of the indicated vdW radius.
The markers indicate the midpoint between the surfaces.
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MFCC-based LoProp potentials where it was shown that a very good accuracy could be

reached as long as polarizable potentials are used.6 Here we use the same reference as in

those two studies (DEC-MP2/cc-pVDZ) to evaluate the performance of the CP3.

Figure 7 shows the RMSDs of the EPs based on CP3, AMOEBA, and M2P2, as a function

of the distance from the protein. All of the potentials yield comparable accuracy at twice the

vdW atomic radii where the RMSDs of the EPs based on CP3, AMOEBA, and M2P2 are

7.7, 8.3, and 7.2 kJ/mol, respectively. That said, if we go into detail, we find that the M2P2

potential generally has slightly better accuracy than both CP3 and AMOEBA especially at

distances below 2.0 × vdW atomic radii. The CP3 produces a marginally lower RMSD than

AMOEBA at distances longer than 1.8 × vdW atomic radii (roughly 1 kJ/mol) whereas it

is the opposite at distances shorter than 1.6 × vdW atomic radii.

4.3 Performance Benchmarks

The main goal of this work is to develop a transferable polarizable protein potential that

will reduce the computational cost associated with PE-based calculations of spectroscopic

properties of systems containing proteins. This reduction in cost involves a trade-off in terms

of a loss of accuracy. To investigate how the accuracy of the CP3 translates to relevant

molecular properties in practice, we computed the ground-state dipole moments and the

excitation energy of the lowest singlet transitions together with the associated one- and two-

photon absorption (1PA & 2PA) strengths of chromophores in GFP, C1C2, and dodecin.

In cases where high accuracy is essential, the CP3 may also be used to mitigate the high

computational cost of the MFCC-based M2P2 potential by using a layered model where

the structure-specific M2P2 potential is used only on the fragments closest to the quantum

region while the remainder is modeled by the CP3. The reduction of the computational cost

is proportional to the number of fragments described by CP3 instead of M2P2.

Here we investigate the accuracy of both the pure CP3 and the mixed M2P2/CP3 model

with varying cutoff distances using properties computed using a full MFCC-based M2P2
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Figure 8: Ground-state dipole moment, lowest singlet excitation energy and associated one-
and two-photon absorption strengths of the HBDI chromophore in GFP. The protein envi-
ronment is modeled using mixed M2P2/CP3 (blue) or mixed M2P2/CP3-q (red). The cutoff
defines the distance from the quantum region up to which the M2P2 potential is used. All
water molecules and ions are in all cases modeled by the SEP. The initial M2P2/CP3 point
at a cutoff distance of 0.0 Å corresponds to pure CP3. The purple line indicates the reference
M2P2 values while the green line indicates values obtained using the AMOEBA potential.

potential as the reference. The results are presented in Figures 8–10. The cutoff in case

of mixed M2P2/CP3 defines the distance from the quantum region up to which the M2P2

potential is used while the CP3 is used for the remaining amino-acid residues. Thus, a

distance of 0.0 Å corresponds to pure CP3. We also compare to a mixed M2P2/CP3-q

approach where the M2P2 potential is used up to the cutoff distance while the remainder

is described by charges only. This is an alternative approach that can be used to reduce

computational cost. Here we use the charges from CP3 but similar results are obtained if
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Figure 9: Ground-state dipole moment, lowest singlet excitation energy and associated one-
and two-photon absorption strengths of the PRSB chromophore in C1C2. The protein
environment is modeled using mixed M2P2/CP3 (blue) or mixed M2P2/CP3-q (red). The
cutoff defines the distance from the quantum region up to which the M2P2 potential is used.
All water molecules are in all cases modeled by the SEP. The initial M2P2/CP3 point at a
cutoff distance of 0.0 Å corresponds to pure CP3. The purple line indicates the reference
M2P2 values while the green line indicates values obtained using the AMOEBA potential.

one uses instead AMBER ff94 charges as can be seen in Figures S2–S4 in the Supporting

Information.

In general, we find that a mixed M2P2/CP3 representation of the protein with an ap-

propriately chosen cutoff can provide properties with essentially the same accuracy as a

full M2P2 treatment. However, using a pure CP3 description of the protein or a mixed

M2P2/CP3 description with a too short cutoff distance can lead to relatively large errors in

some cases, especially 2PA strengths. The convergence with respect to the cutoff distance is
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not always smooth (see, e.g., Figure 9) indicating that some key amino-acid residues require

a high-accuracy potential.
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Figure 10: Ground-state dipole moment, lowest singlet excitation energy and associated one-
and two-photon absorption strengths of the LF dimers in dodecin. The protein environment
is modeled using mixed M2P2/CP3 (blue) or mixed M2P2/CP3-q (red). The cutoff defines
the distance from the quantum region up to which the M2P2 potential is used. All water
molecules and ions are in all cases modeled by the SEP. The initial M2P2/CP3 point at a
cutoff distance of 0.0 Å corresponds to pure CP3. The purple line indicates the reference
M2P2 values while the green line indicates values obtained using the AMOEBA potential.

The maximum absolute error of the dipole moment reaches 0.6, 0.3, and 0.16 au for

the GFP, C1C2, and dodecin systems, respectively, which corresponds to a relative error

of 9 %, 3 %, and 10 % compared to results obtained using only the MFCC-based M2P2

potential. To get the relative error of the dipole moment below 5% for all systems, a cutoff

of 6 Å is needed, thus reducing the computational cost related to the construction of the
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embedding potential by more than 80 %. The excitation energies are rather unaffected in all

systems with maximum absolute errors that do not exceed 0.03 eV for the GFP and C1C2

systems and 0.01 eV for the dodecin system, which amounts to less than a 1.0 % error. The

absorption strengths, on the other hand, are more sensitive with maximum relative errors

between about 7–9 % for 1PA strengths and roughly 15–30 % for 2PA strengths. For 1PA

strengths, a rather small cutoff of 3.0 Å is enough to reduce the relative error to below

5 % for all systems. This corresponds to a reduction of the computational cost by more

than 90 %. Using a cutoff distance of about 12 Å ensures relative errors below 5 % across

all properties and systems, including the 2PA strengths. For the systems investigated here

this results in a 50 % reduction of the computational cost associated with the calculation

of the embedding-potential parameters.. The cutoff distance can be further lowered to 8

Å, if a lower accuracy (i.e. below 10 %) is acceptable, thus cutting the cost by roughly 70

%. It is also entirely viable to use a pure CP3 description which would altogether remove

the computational cost associated with the embedding potential. This can yield relatively

large errors for 2PA strengths, as noted above, but for the other properties, the relative error

remains at around 10 % or below.

The alternative approach to reduce computational cost, i.e., where the M2P2 potential

is used within a cutoff distance and the rest of the system is described by charges only

(M2P2/CP3-q), requires longer cutoffs to reach the same accuracy as the mixed M2P2/CP3

with short cutoffs. To obtain relative errors below 5 % for all properties and systems, a

cutoff of around 20 Å is required, while errors below 10 % can be obtained at roughly 16 Å.

If also the charges outside the cutoff are removed, i.e., the systems are described by M2P2

with in the cutoff and everything outside is removed, almost the entire protein needs to be

included (see Figures S2–S4 in the Supporting Information).

A third alternative is to use the AMOEBA potential. As can be seen from Figures 8–10,

overall it yields small errors compared to results obtained using full M2P2 description of

the proteins. The exceptions are 2PA strengths in the GFP and C1C2 systems where the
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Table 1: Deviation of properties computed using CP3 or AMOEBA relative to M2P2

GFPa C1C2a Dodecin
Property CP3 AMOEBA CP3 AMOEBA CP3 AMOEBA
µ [au] -0.29 0.09 -0.06 -0.16 0.06 0.01

Eexc [eV] 0.00 -0.01 -0.01 -0.02 -0.01 -0.00
δ1PA [au] -0.27 0.04 0.35 0.13 0.05 -0.02
δ2PA [au] -170 300 2300 3500 94.00 1.00

a amino-acid residues that are covalently bonded to the chromophore in the quantum
region are described by M2P2 in all cases

relative error is just above 20 %. The larger error here may be related to the ad-hoc coupling

of the M2P2 and AMOEBA potentials for these systems (as explained in the Computational

Details). On the other hand, a one-to-one comparison of the errors from using CP3 and

AMOEBA (see Table 1), shows that CP3 in most cases produces slightly larger errors, as

expected based on the validation results presented in the previous subsection. One-to-one

here means that M2P2 is used for the amino-acid residues that are covalently bonded to the

chromophore in the quantum region while the remainder of the protein is described by CP3

or AMOEBA. An advantage of CP3 compared to AMOEBA in this context is the seamless

coupling to the M2P2 potential that allows us to straightforwardly extend the cutoff and

thus increase the accuracy.

Our results thus show that it is possible to significantly reduce the number of frag-

ment calculations needed to derive the embedding potential for PE-based calculations when

targeting spectroscopic properties, while still also retaining very high accuracy. For some

applications, namely for the calculation of excitation energies and 1PA strengths, a pure

CP3 description is of acceptable quality. On the other hand, 2PA strengths are much more

sensitive to changes in the environment, and consequently, larger cutoff distances of about

8–12 Å are needed to reach better accuracy.
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5 Conclusion

We presented a newly developed set of transferable atom-centered charges and isotropic

dipole–dipole polarizabilities (CP3), suitable for use in PE-based spectroscopic property cal-

culations involving protein environments. The set of parameters covers all standard amino

acids, including alternate side-chain protonation states. The parameters are amino-acid

specific and were derived by simultaneously fitting to the static or induced EPs of a large

set of configurations sampled from a backbone-dependent rotamer library. The fitting was

performed by minimizing a cost function that contains a probability-weighted sum of con-

tributions from all of the included configurations. We showed that the CP3 yields consistent

accuracy across a wide set of structures, ranging from a series of tripeptides to a series

of small proteins, by comparing CP3-based EPs to references computed using a high-level

quantum-mechanical method. In terms of reproducing EPs, the CP3 outperforms the AM-

BER ff94 force field mainly due to the inclusion of explicit polarization but performs slightly

worse than the polarizable AMOEBA potential.

The CP3 is fully compatible with MFCC-based potentials, which thus allows straightfor-

ward use of a layered model that enables a better cost–accuracy trade-off. The accompanying

reduction in computational cost associated with the calculation of the embedding-potential

parameters when compared to a full MFCC-based M2P2 potential is proportional to the

number of amino-acid residues described by CP3. The performance of CP3 and mixed

M2P2/CP3 protein descriptions in practical applications was investigated. We found that

excitation energies are reproduced well even with a pure CP3 description thus completely

removing the computational cost associated with the calculation of the embedding-potential

parameters. For ground-state dipole moments and 1PA strengths, we observed larger errors

but could recover good accuracy with a layered model where the MFCC-based M2P2 poten-

tial is used for residues inside a small shell around the chromophore. This corresponds to less

than 20 % of the amino-acid residues and thus the computational cost is reduced by 80 % or

more. The 2PA strengths were found to be more sensitive to the quality of the potential and
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thus require larger shells in order to obtain good accuracy. Nevertheless, the computational

cost can be reduced by at least 50 % while still retaining high accuracy (relative error less

than 5 %) and the cost can be further reduced to 70 % if a larger error is acceptable (relative

error less than 10 %). This will thus make it affordable to perform accurate large-scale spec-

troscopic studies of molecular systems that include protein environments including a proper

configurational sampling.
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