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Abstract 
 

 

This thesis describes a study that was carried out in the Tertiary fold-and-thrust belt of 

Svalbard, in the mountain range of Mediumfjellet summer 2007 and 2008. The focuses were 

on: i) further describing the larger structures of the Mediumfjellet, ii) analyze the fracture 

distribution in the limestone beds associated with the major structures in the area. Available 

data sets are based on photo textured Lidar scan and extensive field observations.  

The Mediumfjellet thrust stack is situated in the so-called central zone of the 

Spitsbergen fault-and-thrust belt. The mountain range displays three in-sequence thrusts (M1, 

M2, and M3) and one out-of-sequence thrust (G), with associated hanging wall anticlines. The 

anticlines are in general upright and tight, locally with overturned forelimbs, and 

characterized by thickening of the hinge zone and thinning of the forelimb. Lateral variations 

caused by oblique ramps, fault segment linkage, and lateral changes in the fold geometry and 

the fold plunge make the thrust system a complex deformation zone. 

The fracture system has been divided into three populations, namely; i) Perpendicular 

fractures including conjugate shear fractures and extensional fractures, ii) conjugate hybrid 

shear fractures, and iii) thrust fractures. Based on the systematic relationships to the fold axis, 

the perpendicular and hybrid fractures, are interpreted as syn-folding fractures, whereas 

observations of folded thrust fractures support a pre-folding event. This study thereby 

suggests a 2 stage kinematic fracture model, where the pre-folding thrust fractures indicate a 

NW-SE to N-S contraction, and the syn-folding fractures reveal NW-SW to E-W contraction. 

Fractures that do not fit into this model are assumed to be a result of lateral local variations or 

reactivation of existing fractures. When comparing the fracture intensity to the fold domains, 

the highest intensity is situated in the hinge zone. This implies a fold mechanism with fixed 

hinge folding, most commonly ascribed to fault-propagation folding or transported fault-

propagation folding.  

Assuming good permeability for large throughgoing fractures and good porosity when 

there is a high intensity of short bed-terminating fractures, the study suggests a model with 

good fluid pathways in the forelimb near the major thrusts, and well developed short fractures 

in the major fold hinges, indicating the location of a possible reservoir.  
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Chapter 1 
General introduction and goal of work 

 

1.1 Preface 
Structural research has been numerous on Svalbard and the Spitsbergen fold-and thrust belt 

has been one of the areas where the studies have been concentrating on. However, the 

knowledge of this area is still limited. This study will contribute to this subject by looking 

into the fracture development. The thesis is built up by first introducing the study area and 

previous work in chapter 1. Only a limited overview from the geological periods and 

evolution are presented, because the focus should rather be on relevant stratigraphy and 

events for the thesis. Chapter 2 unravels relevant theory subjects to make the base and 

background for the following descriptions. Chapter 3 describes the stratigraphy of 

Mediumfjellet, made from own observations, whereas chapter 4 will give a detailed 

description of the area. First a general description the fold and thrust geometry, before getting 

more into the fracture distribution. The discussion in chapter 5 brings up current problems 

regarding the fracturing in a fold-and-thrust belt and comparison to other works. As a final, 

chapter 6 round the thesis of by presenting the conclusion. I would like to recommend 

important literature for the interested reader. Dalmann (1999) gives a good introduction to the 

stratigraphy in Svalbard, whereas Harland et al. (1997) present an overview of Svalbard’s 

geology. Bergh et al. (1999) summarizes the Spitsbergen fold-and thrust belt, and Bergh and 

Andresen (1990) present earlier studies at the Mediumfjellet. 

1.2 Introduction 
The Spitsbergen archipelago reveals a nearly consistent section of rocks ranging from 

Precambrian to Tertiary age (Dalmann, 1999). During dextral movements of the Greenland 

margin, caused by the opening of the Arctic and Atlantic Ocean in Eocene, the western 

Spitsbergen underwent a transpressional event resulting in a thick- and thin-skinned 

Spitsbergen fold-and-thrust-belt (Bergh and Andresen, 1990; Bergh et al., 1997b). The study 

area is centrally located in the fold-and-thrust belt, to the Mediumfjellet mountain range 

(figure 1.1). It is a thrust stack situated in the thin-skinned part of the fold-and-thrust belt, 

comprising fault-bend-fold and fault propagation fold structures in Permo-Triassic strata 

(Bergh and Andresen, 1990; Bergh et al., 1997b). 
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Macroscopic folds are common structures in fold-and-thrust belts. Both from scientific 

and resource point of view, there is an incentive to develop an understanding of the 

relationship between folding, faulting and fracture distribution. Outcrop analogues can be 

used as a guide to understand the subsurface, which is explored through seismics and core 

drilling. Fractures are important permeable paths for fluid flow and the porosity of low-

porosity protolith rock is highly depended on them. They can be studied easily in outcrops 

used as analogue models to understand their occurrence for gas and hydrocarbons, 

hydrothermal water and groundwater flow. The fracture development is dependent on the 

state of stress at any point of time, and the orientation of the structures. Similar the spacing 

and frequency is controlled by the properties of the deforming rock and bed thickness.  

The study at Mediumfjellet has been carried out to describe and interpret the fracture 

geometry in the folded and thrusted strata. Datasets are based on field measurements, airborne 

lidar scanning and aerial photographs. The aim was to evaluate the different fracture patterns 

along strike in the present thrust sheets, do comparison of the fractures between the different 

thrusts, and fracture intensity related to fold domains. The ultimate goal has been to develop 

3D spatial fracture model. The Thesis is part of a larger project;”Mediumfjellet thrust stack in 

the Tertiary fold and thrust belt of Spitsbergen – developing an analogue petroleum model”. 

The work has been undertaken as part of a collaborative project between the University of 

Tromsø and the University Centre in Svalbard which is lead by prof. Alvar Braathen (UNIS) 

and prof. Steffen G. Bergh (UiT). 

1.3 Geographic location and local topography 
Svalbard is the largest island of the Svalbard archipelago (figure 1.1), and is situated in the 

north-western, uplifted part of the Barents Shelf at 78º33’N, 14º6’Ø. The study area of this 

thesis is located on the north-western side of the Isfjorden within the Oscar II land about 

50km from Longyearbyen (figure 1.1). Mediumfjellet is a mountain ridge, bounded by two 

major glaciers; Sveabreen in the NE and Wahlenbergbreen in the SW. The Yoldia bay of 

Isfjorden, bound the mountain to the SE. The total areal of the study area is about 5,5km2, 

where the ridge is about 3km wide and 10km long. The landscape is alpine, with steep slopes 

and high peaks where the highest peak is about 855 m above sea level. The climate in 

Svalbard is dry and cold with no or little vegetation, provide excellent outcrop possibilities. 

However, the work in this study area requires glacier walks and climbs in steep 

mountainsides. And the accessibility may provide challenges with special equipment and 

logistics. The study area may be reached by helicopter or by boat. 
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Figure 1.1: Geographical location and local topography. A) Geographical map placing the location of Svalbard. 
B) Svalbard map giving the location of the study area. C) DEM of Mediumfjellet showing the local topography. 
The lowest point in the model is at the sea lever, whereas the highest point is 850meters above sea level. Note 
that the Y-axis marks the N-S line with the right side towards north.  

 

1.4 Geological framework 
Svalbard is situated at the north-western corner of the Barents shelf and is the elevated, but 

only a small part of the Barents shelf above sea level. The Barents shelf is a passive 

continental shelf, going from Norway and northwards to NW of Kongsfjorden. West of 

Svalbard, the shelf stops abruptly and changes into seafloor and active seafloor spreading 

(Dalmann, 1999). Rocks found at Svalbard may work as analogues to the stratigraphy on the 

Barents shelf, but can also be resulting from the local tectonics. Although the following 
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sections will concern the regional geological setting briefly, this study mainly focus the 

Tertiary deformation. 

 
Figure 1.2: Tectonic map showing the structural zones of Svalbard. Note the Western basement province 
indicating the area for Tertiary deformation in Western Svalbard. (From Norwegian Polarinstitute)  

 

1.4.1 Regional geological setting 
Although the present study is concerned with the Tertiary deformation, a brief setting of the 

stratigraphy and the structural outline will be given (figure 1.2; figure 1.3). This is relevant 

because the structural elements and stratigraphy through time may have controlled the 

structural style of the study area during the deformation events. 

Within the Svalbard Archipelago, there are several major NNW-SSE striking tectonic 

lineaments or fault zones (figure 1.2), that are assumed to have initially formed during the 
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Caledonian orogeny and later been re-activated during the Devonian/ Carboniferous and 

Tertiary tectonic events (Steel and Worsley, 1984). These fault zones probably had a major 

impact on the structural and sedimentological development of the region. For example in the 

Carboniferous they suffered extensional reactivation, while during the Early Cenozoic they 

experienced both compressional, extensional and strike-slip reactivation (McCann and 

Dalmann, 1995).  

Cambro-Silurian basement rocks (or Hekla Hoek) are found in three separate 

provinces, the SW province, the NW province and the NE parts of the island. These rocks are 

low- to middle grade metamorphic and the metamorphism grade can be related to several 

orogenic events including the Baikalian (600-650 Ma), Grenvillian (950-100 Ma) and 

Caledonian (475-420 Ma) orogenies (Harland, 1997). 

The Devonian rocks in Svalbard, were formed during an extensional phase, likely 

related to collapse of the Caledonian orogenic belt, producing several graben systems along 

the fault zones. The Devonian succession is extremely thick and has been measured to be as 

much as 8 km. These basins consist of red terrestrial alluvial fanglomerate and fluvial delta 

sandstone deposits changing upwards to grey lacustrine shales and marine mudstones, 

reflecting a change from semi-arid to humid climate (Steel and Worsley, 1984; Worsley 1986; 

Harland, 1997). During the Svalbardian event (late- Devon), deformed the sediments by 

folding and thrusting, resulting in uplift and erosion (Worsley, 1986; Nøttvedt, 1993; Harland, 

1997).  

During the Carboniferous the region experienced first, a local compressional phase 

(Birkenmajer, 1981) followed by a late mid-Carboniferous rift basin development along the 

N-S trending lineaments (Steel and Worsley, 1984). Carboniferous basin infill sedimentary 

rocks are characterized by continental alluvial fan and floodplain sediments transforming into 

shallow marine evaporites, dolomite and limestones.  

Permian to Cretaceous times was characterized by a stable marine platform conditions, 

outlined in the stratigraphy as several regressive and transgresive sequences of limestone, 

spiculite, shale and sandstone. These units were deposited on a shallow marine to deep marine 

platform. (Steel and Worsley, 1984) (See chapter 2 for detailed information about Permian 

and Triassic rocks). The top Cretaceous marks a major regressive event and is evidenced by a 

disconformity above slightly tilted substratum. This uplift of the Arctic Barents platform was 

Late- Cretaceous caused by initial opening of the Arctic Ocean (Gjelberg and Steel, 1995). 

The northern part of the Barents Sea has been uplifted about 3000 m (Harland, 1997). 
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Figure 1.3: Stratigraphic map of Svalbard and Bjørnøya (from Norwegian Polarinstitute).  

 

The opening of the North Atlantic and Arctic Ocean continued during the Tertiary as a 

result of dextral transform movements between Svalbard and Greenland. This created a 

complex pattern of structures including the Tertiary fold-and-thrust belt in regional zones 

across western and Central Spitsbergen, which includes zones of transpression and 

transtension (Harland 1969; Steel et al., 1985; Maher Jr. et al., 1997, Lowell 1972, Talwani 

and Eldholm, 1977). Sediments were shed into foreland basin as a result of the transpression-

driven crustal thickening, leaving an 1800m thick (inferred 3500m thick) horizontal oriented 

package of clastic sediments. 
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1.5 Previous work  

1.5.2 Tertiary deformation and Spitsbergen fold-and-thrust belt 
The Tertiary fold-and-thrust belt, extend from NW of Kongsfjorden to the south of Sørkapp, 

however local compression can be traced to north of Bjørnøya (Faleide et al., 2008). As 

previously mentioned, the Tertiary deformation is assumed to have formed by an intra-

continental dextral transformed movement between Greenland and Svalbard. The Eurasian 

plate and the North American plate started to drift apart and caused by a triple junction about 

a separate Greenland continent. This caused large shearing on both sides of Greenland 

(Talwani and Eldholm, 1977) and the opening of the Atlantic and Arctic Oceans (Harland, 

1969). The shearing contributed a deformation area from Ellesmere Island, the north tip of 

Greenland and the western side of Spitsbergen. Accordingly, the time and matter of this event 

has been largely controversial (see Maher et al., 1991). Harland (1969) was the first to 

describe the Spitsbergen fold and thrust belt and suggested an early Tertiary deformation, 

however, authors has argued that the deformation took place during the late Cretaceous time 

(e.g. Lyberis and Manby, 1993). Harland (1969) described both elements of compression and 

extension and suggested a dextral transpression and transtension between Greenland and 

Svalbard, followed by later works (e.g. Lowell, 1972; Harland and Horsefield, 1974; 

Birkenmajer, 1975; Talwani and Eldholm, 1977; Myhre and Eldholm, 1982; Maher et al., 

1995). Subsequently, later work has suggested numerous of models with several stages of 

deformation (e.g. Andresen et al., 1994; Bergh et al., 1997; Braathen and Bergh, 1995; 

MaherJr et al., 1997, Braathen et al., 1997, Welborn and Maher, 1992, Maher and Welborn, 

1992). Four distinct deformation zones can be distinguished (figure 1.4); a Hinterland zone of 

basement involved thrusting, a Western zone of thick-skinned folds and thrusts revealed in a 

major East-facing monocline, a Central zone of thin skinned folds and thrusts and an eastern 

foreland zone of horizontal strata, slightly deformed above decollements (Bergh et al., 1997; 

Braathen, 1999b). Recent work, suggests a five stage kinematic evolution of the fold-and-

thrust belt province (figure 1.5) (Bergh et al., 1997; Maher Jr. et al., 1997; Braathen et al., 

1997; Braathen et al., 1999b). An early transpressive event was characterized by a northwards 

compression which strongly folded the area of Brøggerhalvøya (stage 1) (Bergh et al. 2000). 

This became a zone of weakness for later fold-and-thrust belt evolution. The following major 

fold-and-thrust contractional event in Svalbard is recognized by WSW-ESE directed 

shortening (stage 2 and 3). This event was characterized by in-sequence thrusts formed in 

several decollement horizons towards the foreland,  
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Figure 1.4: a) Regional location map of Svalbard and the Barents Sea. b) Stratigraphic map of Western, central 
Spitsbergen. C) Schematic cross-section through the western deformation province illustrating the four 
deformation zones (modified from Braathen et al., 1999). HFZ-Hornsund fault zone; BFZ - Billefjorden fault 
zone; CTB - Central Tertiary basin; LFZ - Lomfjorden fault zone; FG - Forlandsundet graben; RB - 
Renardodden basin; LT - Lappdalen thrust front; NB - Nordfjorden block; NL - Nordenskiøld land; OL - Oscar 
II land; SEDL - Svartfjella-Eidembukta-Daudmannsodden lineament; SJ - St. Jonsfjorden; SK – Sørkapp; B-SFZ 
– Bjørnøya-Sørkapp fault zone; SFZ – Senja fracture zone; TFP – Tromsø Finnmark platform. 

 

consistent with imbrications and flat-ramp-flat migrating fault structures (Braathen et al., 

1999b).  This in-sequence contraction was followed by an event of out-of-sequence thrusts 

(stage 4), probably caused by a reactivation of, deeper seated thrust in the west. The last event 

(stage 5) was characterized by local extension and formation of normal faults, occurring in the 

uplifted western part, probably due to collapse or/and an overall transtensive setting in the 

west in Oligocene (Braathen and Bergh, 1995; Bergh et al., 1997; MaherJr. et al., 1997). 

Based on the timing and distribution of the structures, a critical fold-and-thrust wedge taper 

model was suggested (Braathen et al., 1999a). 

Oscar II land is located in the Western (thick skinned) and Central zone (thin skinned) 

(figure 1.4). Good exposures of the Permian- Mesozoic section, makes the area a key site of 

contractional Tertiary tectonic styles in Svalbard (Bergh et al., 1997). Bergh and Andresen 

(1990) subdivided Oscar II land into three deformation zones: 1) a western thick skinned fold-

thrust complex dominated by basement involved steep thrusts that are partly rotated in a 
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major fold complex, 2) a central zone of thin skinned fold-and-thrust structures above a 

decollement in the Gipshuken Formation (chapter 3), and 3) an eastern zone characterized by 

a frontal duplex system with a floor thrust in Permian evaporates and a  

 
Figure 1.5: A summary diagram showing the five kinematic stages of deformation in the four deformation 
provinces in Spitsbergen fold and thrust belt. Note that only stage 2 and 3+4 are represented in the Central zone 
(Modified from Braathen et al., 1999). 

 

 

roof thrust in Mesozoic shales. The so-called thrust front of the eastern zone is expected to be 

controlled by properties of the lithology and/or pre-existing faults, for example extensional 

faults, bounding Carboniferous basins below (Welbon and Maher, 1992). The stratigraphic 

step-up of the thrusts from a lower to higher decollement defines the boundary between the 

Central and Eastern structural zones. The kinematics is rather complex, including two 

transport directions (ENE and NNE), and thought to involve in-sequence and out-of-sequence 

thrust propagation (Braathen et al., 1999b; Wennberg et al., 1994). The folding and thrusting 
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of Oscar II land reveals a major thrust front with wider deformation zone than furthers south 

and north. The transition from low to high displacement is marked by the Isfjorden 

Ymerbukta fault zone. Braathen et al. (1999) and Karlsen (2000), showed that the Isfjorden-

Ymerbukta fault-zone is characterized by a complex strainpartioning or decoupling of strain 

regarding a NE-SW shortening due to a oblique ramp, where the stress direction are rotated 

clockwise to E-W, near the fault zone (figure 1.6). 

1.5.2 Mediumfjellet fold-and-thrust stack 
Mediumfjellet is situated in the structural eastern zone (figure 1.6) of Oscar II land and is part 

of the Lappdalen-Mediumfjellet thrust front. Mediumfjellet reveals four major thrusts; M1, 

M2, M3 and G (figure 1.6) (Bergh and Andresen, 1990). The thrust M1 is recognized where 

steeply dipping Triassic strata in the forelimb of a hanging wall is thrust over flat lying 

Triassic strata below. This thrust is interpreted to be a hanging wall and footwall flat, which 

splays out from a second thrust, M2. The M2-trhust is located within the Permian gypsum 

(chapter 2) and terminates with a tip line in the center of the anticline as a. The third thrust 

M3, is the structural uppermost thrust at Mediumfjellet, is confined to the Permian Gipshuken 

Formation before it cuts steeply up-section though the Permian Kapp Starostin Formation in 

the footwall, before flattening out in the Triassic shales. Small thrust imbricates merge up 

from the thrust into the Kapp Starostin Formation. Strata in the hanging wall are folded in a 

huge fault-propagation anticline. 

All these three major thrusts seem to define a flat-ramp fault propagating thrust 

system. The two major anticlines in the southern face of Mediumfjellet has previously been 

interpreted to be a fault propagation fold, which is changing into a major box/chevron-type, 

fault bend fold, further north. In particular, chevron and box-type folds characterize the 

central parts of the Mediumfjellet thrust stack. The displacement on thrust M3 is calculated 

from geometric re-constructions to be 700m at the southern side of Mediumfjellet, reducing to 

200m some 3km further north. The fourth thrust, the Gravltinden thrust, G, is an out-of 

sequence thrust which is found 3km northwards along strike form Yoldia bay, but is covered 

by ice north of Gavltinden. The displacement on Gravltinden thrust is approximate 1km. It is 

interpreted to be developed later than M1, M2 and M3 as a new or reactivated; westerly 

seated thrust and not related to the others. G cuts with low angle through the underlying,  
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Figure 1.6: A structural map over Oscar II land, showing the location of Mediumfjellet, with Bohemannsfløya to 
the south and Lappdalen to the north (Modified from Bergh et al., 1997). The cross-section underneath is marked 
as several lines at the map. Note that the location of Mediumfjellet is marked on the cross-section. 

 

earlier formed fold-and-thrust systems, and locally cuts stratigraphically down section (Bergh 

and Andresen, 1990). 
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The Mediumfjellet-Lappdalen thrust front is proposed to have evolved in a two stage 

kinematic manner (figure 1.5) (Bergh and Andresen, 1990): i) Formation of a fold-and-thrust 

system, developing in an eastward, piggyback sequence with a characteristic ramp-flat 

geometry of thrusts producing fault propagation folds and fold bend folds (stage 2 or 3). ii) In 

a later stage of contraction, out-of-sequence reverse faults formed, overriding earlier folds and 

thrusts, by truncation of earlier structures, resulting in a hinterland dipping duplex (stage 4). 

1.6 Methods, analogue and digital datasets, and applied software 

1.6.1 Fracture sampling 
Totally 1600 fracture orientations (right hand rule) were sampled in several stratigraphic 

layers of the Kapp Starostin Formation. The datasets covers several localities, both along and 

across strike, the latter also in different structural domains (e.g. forelimb, hinge etc.). The sites 

also cover domains of the three of thrusts; M1, M2 and G. Structural-element data collected 

records fracture orientation, spacing, fracture characteristics (e.g. hairline fracture, through 

going fracture, fracture fill, rugged or smooth fractures) and mode of deformation (opening or 

shearing). All data are measured and observed along bed linear scan-lines (1- 30 m) across 

bedding strike. Such observations were combined with recordings of bed thickness and bed 

orientation for each meter. Only beds with well developed fractures were chosen for 

measurement (see chapter 3).  

1.6.2 Fracture analysis 
Fractures were categorized into host beds, localities, structural domains, thrust domains, and 

high-angle versus low-angle orientation. The orientations were plotted as contoured poles to 

plain in stereo plots. Polar stereonets are used, with the lower hemisphere Schmidt net 

projection in a prototype stereo plot program developed at the Geology department of 

University of Tromsø. Fracture sets where determined recognizing common fracture 

orientations or attributes, in accordance with the main peaks in concentration of the contoured 

stereo plots. The fracture where then divided into population based on their occurrence; 

perpendicular-, conjugate- and thrust fractures. Additional, the non-systematic fractures are 

termed unknown fractures. 

Low-angle-to-bedding fractures (thrusts) where picked out and restored. The back 

rotations were made by removing regional fold axis plunge and thereafter unfolding the 

bedding to horizontal. For the folds with plunge less than 10 degrees, plunge removal would 

not make much difference.  In these cases, the fold plunges are therefore not taken into 
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account. The steep-angle-to-bedding conjugate fracture sets (later described as hybrid 

fractures), where observed and specially noted from field, and could therefore easily be 

recognized in the stereonets. 

Fractures on the bedding surface were also interpreted from photos taken in field and 

Lidar scans. Photo-based interpretations were conducted where outcrops allowed it. It was 

also possible to measure orientations for big through going fracture sets in the Lidar scan. In 

combination, remote sensing (Lidar) of moderate resolution could be compared to the higher 

resolution dataset on measured fractures in the area 

Fracture intensity where displayed in a diagram using the computer program Matlab. 

Number of fractures per meter scan-line where plot versus the bed thickness in order to find a 

linear trend. Also local example, where same bed and bed thickness was followed over the 

fold domains. 

1.6.3 Lidar scan and 3D modelling 
Laser scanning is a measuring apparatus sending out infrared light that measure the returning 

light bouncing back. This allows calculating the distance to the reflective surface. In this  

Mediumfjellet 
Laser scan equipment 
Riegel LMS Q240i-60 airborne laser scanner 

Hasselblad with 35 mm lens H1 22hp camera 

iMar iIMU-FSAS inertial measurement unit 

Dual frequency GPS 

Dataset 
Measurement rate 10 kHz 
Pointspacing 1.5m 
Accuracy 0.1-0.15m 
Number of datapoints used c. 8/m 
Number of triangles in top level c. 16/m 
Number of levels 9 
Number of images 500 
Size of area 7 km x 3km x 800m 
Field of view (vertical) 90º 

Table 1.1: Information table about  the Lidar scan data sets from Mediumfjellet. Note the high accuracy. 
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Figure 1.7: Figures illustrating the methods. A) Helicopter based oblique Lidar scan (Photo: Simon Buckley). B) 
Pointclud. C) Photo textured DEM model.. D) Bed boundary interpretation in Riscan and Lime. E) Creating 
surfaces in Petrel. 

 

study there we used a helicopter based Lidar-scanner. This scanner was used in parallel with a 

high resolution digital camera, inertial measurement unit and a Global position system. The 

Heliscan system (figure 1.7) (Skaloud et al., 2006), was mounted in a helicopter of type 

AS350B, which was used to carrying out the research in over eight hours flying time. 

 The scan-related images were taken parallel with the Lidar scan, overlapping with 

approximately 70%. During processing, they were draped on top of the laser-scanned DEM 

model. Riscan Pro was used for processing and partly geological interpretations, whereas the 

software LIME (Buckley et al., 2008) was used for interpretation, thereby outline coordinated 

data points along the top and bottom boundaries in three characteristic beds within the Kapp 

Starostin Formation and between the main formation boundaries (figure 1.7). The interpreted 

lines where again exported and imported into Petrel, where surfaces was applied between the 

14 



Chapter 1  General description and goal of work 
 

same bed boundaries. This resulted in a 3D model allowing us to study the fold-and-thrust 

geometry and the lateral variations along the actual beds.  (figure 1.7). Petrel also allowed 

taking out cross-sections along strike. Three cross-sections where chosen and later put into 

ColorDraw for improvements. All the figures in this thesis are all made by the author, drawn 

in ColorDraw by hand. 

1.7. Structural nomenclature 

1.7.1. Introduction 
This chapter will give a very short (in table format) introduction in to the terminology used to 

describe the structures in Mediumfjellet thrust stack. Relevant background theory will be 

described more detailed in chapter 2. 

 Terms Author 

Fold 

description 

Interlimb angle Fleuty (1964) 

 Vergence Compton (1985) 

 Fold description Fossen and 

Gabrielsen (2005) 

Thrust faults Thrust fault, blind thrust, flat, footwall flat,ramp, 

frontal ramp, hanging wall flat, lateral ramp, oblique 

ramp, sole thrust, splay, thrust vergence and tipline 

McClay (1992) 

Fault related 

folding 

Detachment fold, fault propagation fold and fault-bend 

fold 

Jamison (1987) 

 Fault propagation fold Suppe (1985) 

 Fault-bend fold Suppe (1983) 

 Transported fault propagation fold McClay (1992) 

Thrust 

systems 

Duplex, thrust system, imbricate trust system, imbricate 

fan, in sequence thrusting, out-of-sequence thrusting 

and piggy-back thrust sequence  

McClay (1992) 

 Overstep thrust system Butler (1982) 

Fold 

Mechanisms 

Migrating hinge; fixed limb 

Fixed hinge; rotating limb 

Storti and Talvini  

(2001) 

Fracture 

geometry 

Geometry of fracture sets (a,b,c axis) Turner and Weiss 

(1963); Hancock 
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(1985) 

 Throughgoing fractures, Gross and Eyal 

(2007) 

Fracture 

mechanics 

Dilational fractures, shear fractures and hybrid 

fractures 

Hancock (1985) 
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Chapter 2 
The nature of fracture development in light of 

fold-and-thrust belts 
 

2.1 Introduction 
This chapter is concerned with the background theory and previous work of the theory. The 

purpose of this chapter is to give a review of relevant literature in order to describe the 

sedimentological and structural elements (see chapter 3 and 4) and the discussion and 

structural analysis (chapter 5). 

 

This chapter is structured the in a similar way as the discussion. Firstly, it will start to give an 

introduction to fold and thrust systems explaining the different thrust geometries and their 

related thrust systems and folds. Secondly, the chapter will explain the fracture mechanics at 

its relation to fold events. Eventually, the chapter will end with addition fracturing. 

2.2 Fold and thrust geometry 

2.2.1 Thrust geometry 
Thin skinned fold-and-thrust systems are characterized by ramp-flat geometry, where the 

basal thrust run bedding parallel along a weak detachment horizon (flat), before cutting 

steeply up-section (ramp) and again may level out parallel to bedding in a higher weak 

horizon. The ramps can be frontal, oblique or lateral (figure 2.1) and are the basis for the 

geometry of thrust related folds (chapter 2.2.2). The oblique ramp has a characteristic rotation 

of the thrust sheet (Aptoria et al., 1992). Wilkerson et al. (2001) pointed out five evidences of 

an oblique ramp; i) Folds plunge steeply at the termination, ii) the cut-off line in the hanging 

wall trend at high angle to the fault, iii) the stratigraphic contact trend is at high angle to the 

fault iv) Stratigraphic separation diagram exhibit sudden changes near the terminations and v) 

the faults show change of orientation.  

A fold and thrust system consist of several faults along strike and across strike (Ray, 

2006). He showed that the thrust morphology is recognized by a flutelike pattern, with ached 

channels are separated by small ridges (figure 2.1). He pointed out that where the small ridges 
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or oblique ramps are located where the lateral thrusts link. These thrust patterns where 

accommodated by a curved thrust front, which also are supported by Marshak et al. (1992).  

 
Figure 2.1 Thrust geometry. A: represents the a thrust sheet pushed over a lateral-, frontal- and oblique ramp 
(modified from McClay, 1992). B: (modified from Ray, 2006). 

 

2.2.2 Thrust related folds 
Three fault-fold interaction structures are typically associated with forced folding in 

thin skinned fold-and-thrust belts: Fault-bend fold, fault propagation fold and detachment 

folds (Jamison, 1987).  

A detachment fold (figure 2.2) is a buckle fold of the hanging wall layers when a fault 

propagates along the bedding plane. This detachment horizon marks the lower termination of 

the fold and commonly consists of a weak and ductile layer. The weak strata usually deform 

and thicken into the hinge of the fold, while the folded, stronger layers above the horizon 

commonly remain their thickness (Shaw et al., 2005).  

A fault propagation fold (figure 2.2) initiate as a detachment fault and forms in the end 

of the thrust. A fault propagation fold is usually associated with fixed hinge and rotating limb 

folding. Shearing usually occur, which result in thinned forelimb and thickened hinge zone.  

When the thrust tip propagates up a ramp into undeformed strata, the fold becomes a fault 

propagation fold. The slip is decreasing to zero at the tip and the displacement is transferred 
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into a fold. Cut of syncline commonly occur in the footwall (Suppe and Medwedeff, 1984). 

The fold geometry is highly depending on the fault angle. At high fault angles, the fold 

becomes open and upright where the fold-limbs become identical deformed and folded once 

and the hinge zone is undeformed. Forelimb is steeping and hinge zone is progressively 

becoming narrower as the fault propagates, the forelimb will then be more deformed than the 

backlimb. At low fault angles the fold becomes tight, overturned and thinned. The hinge will 

be bending twice or ever three times as the fault propagates and is expected to be highly 

deformed. The forelimb is anticipated to be more deformed than the backlimb and is 

commonly rotated and overturned (Salvini and Storti, 2001).  

 
Figure 2.2: The three most common fault related folds associated with fold and thrust belt. A) Fault-bend fold, 
B) fault-propagation fold, and C) Detachment fold. 

 
 

A fault-bend fold (figure 2.2) is a forced fold associated with hinge migration, fixed 

limbs and flexure-slip folding (Suppe, 1983). The fold develops when a thrust is ramping up 

from one decollement surface to another, and is characterized by two anticline and syncline 

pairs, one is migrating and one pinned  in proportion to the footwall (Suppe 1983). Forelimb 

and Backlimb will develop at the initiation stage, both folded once. The width of these zones 
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will grow as the fold is moving up the ramp. When the backlimb reaches the top flat, a 

deformation zone of double folding will start to develop. The hinterland of the hinge will then 

be the area with the most expected deformation (Salvini & Storti, 2001). A fault-bend fold has 

large similarities to a transported fold-propagation fold, and may have developed as an end-

member of a double-edged transported fold-propagation fold (Tavani & Storti, 2006). A 

transported fault-propagation fold is a mixture of a fault-bend fold and a transported fault-

propagation fold (hybrid fold) 

2.1.3 Thrust systems 
A fold-and-thrust belt consists of several thrust systems. A thrust system is a zone of 

geometrically, kinematically and mechanically linked with closely related thrusts (McClay, 

1992). The following section will therefore deal with only the relevant topics for 

Mediumfjellet (see McClay (1992) for more information).  

The thrust system of the study area has earlier been interpreted to consist of two 

thrust-sequences (see previous work, chapter 1); in-sequence and out-of-sequence. In-

sequence thrusting is a thrust sequence which has formed in a order in one direction, whereas 

out-of-sequence thrusting are not formed in this order, and commonly truncates earlier thrust 

systems (McClay, 1992). Accordingly, in-sequence thrust sequences may be forward breaking 

(piggyback sequence), propagating in front of the thrust sequence or back breaking, 

propagating in the back of a thrust sequence. An imbricate fan is a forward breaking 

sequence, which consists of an array with stacked thrust sheets developed as fault-propagation 

folds or fault-bend folds (see chapter 2.2.2), where previous formed thrust sheets have been 

lifted and rotated towards the hinterland and carried by lower and younger thrusts  (Boyer and 

Elliott, 1982). When lifting the earlier formed thrust, it will bend the backlimb and tighten the 

syncline, compared to a single fault-propagation fold, this will cause more deformation to the 

backlimb (Boyer and Elliott, 1982). 

2.3 Fracture development 

2.3.1 Basic fracture types 
Fractures are referred to as a general term for sub fracture types such as joint, fault, fault zone, 

deformation band, compaction band and stylolite. Three fundamental fracture modes explain 

the basic fracture mechanics (figure 2.3) (Kulander et al., 1979). Mode I are extensional 

fractures or joints. Joints develop perpendicular to the axis of least tectonic stress. They may 

extend from centimeters to hundreds of meters in scale confined to one bed or throughgoing 
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fractures in several mechanical interfaces. Stylolites and compaction bands are anti mode I 

fractures or stress corrosion anti cracks and forms perpendicular to the axis of most tectonic 

stress. Shear fractures also termed faults are formed by shearing, parallel to the fracture (mode 

II) or with rotation (mode III). Shear fractures are the result of strong internal shear in a rock 

body or reactivated joints under compressional stress conditions. Shear fractures has the same 

length as joints and develop, depending on the rock, with relatively constant low angle to the 

direction of highest tectonic stress (25-40º). They often develop in pairs as conjugate sets, 

commonly with an approximate angle of 60º between them. The three fracture modes may 

also appear alone or in any combination. Hybrid shear fractures are a mixed mode where 

shear fractures may develop caused by extension (figure 2.3). 

2.3.3 Symmetrical fold and fracture relationship 
Several researchers have established conceptual models where they linked symmetrical 

fracture geometry in a fold, to be closely related to the folding event in a homogenous state of 

stress (e.g. Price, 1966; Stearns, 1968; Hancock, 1985). Based on the laboratory experiment 

(see above) they could say something about the expected fractures when inferring a certain 

state of stress (e.g. Jaeger and Cook, 1979). Shear fracturing, dilatational fracturing and 

hybrid fracturing where all interpreted to be present in folded sedimentary strata (figure 2.4; 

Hancock, 1985). Price (1966), presented four fracture orientations which are the most 

common in a fold where extensional fractures occurs parallel and perpendicular to the fold 

axis and conjugate shear fractures are present with the acute bisecting angle perpendicular to 

the fold axis. However Stearns (1968) proposed a model of 11 typical fracture orientations 

(figure 2.3) which where represented by five different fracture sets, whereas each set included 

one extensional fracture and two conjugate shear fractures. He assumed that the sedimentary 

strata were folded in an elastic way. A neutral surface divided by compression (under) and 

extension (above), whereas the axis of least principal stress changes across the surface. This 

means for example that conjugate sets may change the direction of the bisecting acute angle 

weather it occurs above or beneath the neutral surface. Similar studies where done by Price 

and Crosgrove (1990), where they distinguished between an orthogonal fracture set with 

extensional fractures parallel and perpendicular to the fold axis, and a shear fractures with the 

acute bisecting angle both perpendicular and parallel to the fold axis aswell as parallel to the 

bedding (figure 2.4) . Hancock (1985) explained fractures which did not fit into the suggested 

model, to be formed prior or after the folding, which where supported by Price and Crosgrove 

(1990). Most of these classification diagrams where only regarding cylindrical folds, anyhow  
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some studies have also been taken more complex fold geometry into account. Some authors  

 
Figure 2.3 Figures showing the fundamental of fracturing. A) Fracture modes (modified from Lacazette, 2001). 
B) Mohr columb circles for extensional, hybrid and shear fractures (modified from Ramsey and Chester, 2004). 
C) Stearns (1968) eleven fracture orientations classified in five fracture sets, where the two upper models 
represent fracturing above a neutral surface and  the two lower, beneath the neutral surface (modified from 
Bergbauer and Pollard, 2004). 
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Figure 2.4 Fold related fracture classification schemes. A: represents the (modified from Hancock, 1985). B: 
(modified from Price and Crosgrove, 1990) C: (Stearns and Friedmann, 1972; modified from Cooper et al., 
2006) 

 

 

explained that when the direction of the fold axis or greatest curve changes, the fractures will 

be rotated thereafter (Stearns,1968; Stearns and Friedman, 1972; figure 2.4). Also studies on 
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fold related fracturing do not consider the temporary fold evolution, how the initial folding 

differs from the main fold event on the fracturing. Bellhansen at al. (2006) looked at this 

problem and developed a 4D relationship between the fracturing and folding in the Sheep 

Mountain Anticline in Wyoming. He used the fracturing to determent the different stages of 

the fold event. Similar studies have later been established (e.g. Ahmadhadi, 2007; Mynatt and 

Pollard, 2008). 

The fractures in this study, will be explained after Hancock’s (1985) classification 

(Figure 2.4), which describes a model based on sedimentary layering and fold hinge 

geometry.  

2.3.4 Paleostress reconstruction 
Fractures can be used to reconstruct the stress regime from the time the fracture developed 

(Engelder and Geiser, 1980).Three different stress axis defines the state of stress (σ1, σ2 and 

σ3). σ1 defines the axis of maximum compressional stress, whereas σ3 defines the axis of 

least stress (figure 2.3). Extensional fractures and shear fractures are both thought to be end 

members of brittle fracture types. However, Ramsey and Chester (2004) showed that there 

occur hybrid fractures, which develops as a transition from compression to extension (figure 

2.3).  Conjugate sets consist of two fractures with a crossing relationship. They consist of a 

blunt and an acute angle, where the acute bisecting angle is parallel with the larges principal 

stress direction and the blunt angle is parallel to the least principal stress. Shear fractures 

commonly consist of slip data. These slickenside data will show the direction of transport. 

Similarly, extensional fractures can also be used as a stress indicator. Extensional fractures 

will develop parallel with the greatest principal stress and perpendicular to the least principal 

stress (Stearns, 1968). Hybrid fractures are caused by extension where the acute angle 

develops perpendicular to the greatest principal stress, similar to extension fractures. 

Although, the method can be used in the same way, as for the shear fractures. 

2.3.5 Fracture intensity 
Fracture intensity is the number of fractures occurring per meters along the measured scan-

line. Fracture spacing is the distance between each fracture. Spacing and connectivity is 

largely depending on 1) rock properties such as composition, grainsize and porosity, (e.g. 

Stearns & Friedman 1972) 2) bed thickness (e.g. Huang and Angelier 1989) and 3) structural 

position (Hancock, 1985). Within the stratigraphic column there occur many mechanical 

interfaces. Fine grained and thick beds will have grater spacing and lower fracture frequency, 
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but will have clear paths for fluid flow. Coarse grained and thin beds will have small spacing 

and high frequency, which terminates against overlying beds and reduce the fluid flow (Cook 

et al., 2006). Studies have shown that the ratio of fracture spacing to bed thickness is about 1 

(Price, 1966, Gross 1993). Horizons that behave ductile and deform internally will work as 

fracture counteract. 

2.3.6 Additional fracture types 
Natural hydro fractures develop when the pore pressure is exceeding the internal strength of 

the rock in the direction of least tectonic stress (mode I) (Engelder and Lacazette, 1990). The 

pore pressure will also weaken the rock in a compressive setting (mode II and III). When 

filling the pore space with water, the pressure on the grains will become larger. Pore pressure 

can build up in several ways; 1) Water expand more easily than the minerals around, when 

heated. 2) Compaction and weight from overlying sediments. 3) Impermeable layers can 

block the water to escape. 

Silica fractures develop when biogenic silica compaction react thermo chemically 

from opal A to opal CT. This and happens at temperatures from 2-55ºC. Also CaCO3 

increases the nucleation rate. The phase change reduces the volume and porosity at kilometer 

scale. These can ether lead to incidences of high subsidence, but also areas of intense 

fracturing (Davies, 2005). 
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Chapter 3 

Lithology description 
 

3.1. Introduction 
This chapter gives a detailed description of the Mediumfjellet stratigraphy. Four main 

stratigraphic units are present in Mediumfjellet; (i) the Gipsdalen Group, ii) the 

Tempelfjorden Group, iii) the Sassendalen Group and iv) intrusions (figure 4.1). The 

following section will be structured after these four groups; however the main focus will be 

on the Tempelfjorden Group and Kapp Starostin Formation. Each group with the formations 

will be introduced before the lithology is described.  

The descriptions are made after own observations and has been the foundation for the 

choice of characteristic beds which can be used laterally as structural marker horizons. A 

detailed description of the Kapp Starostin Formation is significant because the rock-properties 

highly influence the fracture development (see chapter 2 for more details). 

The upper part of Gipshuken Formation is described shortly and represents the 

lowermost unit of the logged section. The Kapp Starostin formation represents the upper part 

and the rest of the logged section. The Kapp Starostin lithology description is based on 22 

separate units (see appendix I for detailed unit descriptions). Eventually, the Vardebukta-, 

Tvillingodden- and Bravaisberget Formations are described shortly from field observations. 

Their occurrence of strongly tectonized and slopeforming properties made it hard to make a 

detailed lithology log description.  

3.2 Gipsdalen group 
The Gipsdalen Group is deposited between Serpukhovian to Artinskian age, overlaying the 

Billefjorden Group. To sum up the stratigraphy, the group consists of clastic graben 

sediments, marine shelf carbonates and evaporites in a total thickness up to 1800m (Dalmann, 

1999). The group is divided into at least three subgroups, each of them representing local 

areas or graben systems; e.g. the Dicksonland Subgroup Treskelen Subgroup and 

Cambellryggen Subgroup. These subgroups are regional overlaid by Wordiekammen 

Formation and Gipshuken Formation. Gipshuken Formation is the only formation which is 

represented at Mediumfjellet and exhibit the lowermost part of the logged section (figure 3.1). 
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Figure 3.1: Stratigraphic log of Gipshuken Formation and Kapp Starostin Formation. The log also displays the 
fracture studied strata, marked with yellow. Note that the log is not scaled after grain sizes, but after mechanical 
properties. W: weak, R: ridgid.  
   

3.2.1 Gipshuken Formation 
The Gipshuken Formation was first described by Nathorst (1910) and Cutbill and Challinor 

(1965). The type section is located in Dickson land and measured to be approximately 280m 

thick (Dalmann, 1999).  

The Gipshuken Formation is subdivided into Vengeberget, Zeipelodden, Kloten, 

Skansdalen, Tempelet and Sørfonna members. However, the outcrops at Mediumfjellet are 

very limited and make it impossible to subdivide into separate members. The Gipshuken 

Formation is found in several localities at Mediumfjellet and is associated with major thrust 

faults.  
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The formation was described from slopeforming sections, which where strongly 

tectonized, mainly at locality M2-5 (figure 3.2). The logged section was described just below 

the Kapp Starostin Formation and refers to figure 3.1. 

Lithology description 
The Gipshuken Formation at Mediumfjellet consists mainly of white and grey gypsum and 

anhydrite. The rock has white and grey colored layers, probably alternation of 

gypsum/anhydrite and carbonate rich layers of thin dolomite beds. The total thickness can not 

be measured because the lower boundary is not exposed in the outcrops.  This description is 

comparable to similar observations made in Spitsbergen (e.g. Laurizen, 1981). 

3.3 Tempelfjorden group 
The Tempelfjorden Group overlies the Gipsdalen Group and is thought to be deposited during 

a mid- to late Permian age. The group consists in general of silicified shales, cherts, 

sandstones and limestones. The change from gypsum in the Gipshuken Formation to silicified 

limestones is thought to be a shift from warm to cooler conditions (Dalmann, 1999). The 

Tempelfjorden Group is subdivided into several laterally correlative formations; Tokrossøya 

Formation in Sørkapp, Misery Formation at Bjønøya and Kapp Starostin Formation in 

Spitsbergen. Similar documentations have also been done at the Barents Sea (Ehrenberg, 

2001). In the present study, the Kapp Starostin Formation represents the main part of the 

logged section, which also has been the main target of the fracture analysis. 

3.3.1Kapp Starostin Formation 
The Kapp Starostin Formation and was  first described by Cutbill and Challinor (1965) and 

has later been described  by numerous of authors (e.g. Gee et al., 1953; Siedlecka, 1970; 

Ezaki, 1994; Ehrenberg et al., 2001; Grundvåg, 2008). The type section is located at 

Festningen and is 380 m thick (Dalmann, 1999). Kapp Starostin has also been measured to be 

up to 460 m at St. Jonsfjorden (Dalmann 1999), 330m at Vindodden (Grundvåg, 2008) and 

totally pinches out southwards east of Sørkapp-Hornsund high (Dalmann, 1999). The 

thickness of the Kapp Starostin Formation at Mediumfjellet is measured to be only about 155 

meters (figure 3.1). 

 The Kapp Starostin Formation in the Isfjorden area is further subdivided into three 

members; Vøringen Member, Svenskegga Member and Hovtinden member. Vøringen 

member is characterized by fossiliferous limestones, Svenskegga Member consists mainly of 

spiculites and some limestone beds and Hovtinden Member consist of silicified shales, 
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siltstones, sandstones and limestones. The observations made in field, show similarities to the 

type section, subsequently a boundary between the members was tried to be established. 

The succession was in Mediumfjellet described from cliff forming sections at locality 

M3-2 (figure 3.2). Our log was described from bottom to top in several outcrop sections by 

correlating the beds laterally. The contact to Gipshuken and Vardebukta Formation was not 

exposed at this locality, but has been investigated at locality M3-4 (Gipshuken Formation) 

and M3-3 (Vardebukta Formation). The following lithology description is based on the unit 

descriptions in appendix 1 and refers to figure 3.1. Six different lithologies where found, the 

following description will accordingly refer to the units representing each lithology. 

Lithology description 
The lowermost part of the Kapp Starostin Formation is represented by Vøringen Member. The 

uppermost unit of the member is characterized by a grey colored, cliff-forming brachiopod 

limestone with widely variable grain sizes. The grain sizes range from grainstone to 

wackestone, and contains abundant whole macrofossils; brachiopods, bryozoans and 

echinoderms, whereas the matrix is sandy (Unit 3; figure 3.1; figure 3.2). The brachiopod 

limestone is a lateral marker horizon for the bed boundary between the Gipshuken Formation 

and Kapp Starostin Formation and can be compared to similar descriptions made by other 

authors (e.g. Malkowski and Hoffman, 1979; Ehrenberg et al., 2001) 

Bryozoan limestones are common in the lower part of the Kapp Starostin Formation 

(units 1, 2, 6, 9 and partly 20; figure 3.1; figure 3.2). They are light yellow to grey colored 

where the individual beds show an upwards coarsening and thickening. They have a high 

content of brachiopods, echinoderms, crinoids, sponge spicules, bryozoans and burrows, 

whereas the two latter are dominant. According to grain size and clast content, the rock can be 

classified as packstone and wackestone, with silicified chert or shale as matrix. Ehrenberg 

(2001) described similar rocks in her classification of facies and facies association. 

The light-colored spiculite is found in the middle of the Kapp Starostin Formation 

(unit 14; figure 3.1; figure 3.2). The unit consists of thick beds of grey mudstone with a 

yellowish weathering color. The beds are coarsening upwards into sandy layers modified with 

heavy  
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Figure 3.2: Photos from the litho stratigraphic section described at Mediumfjellet. A: Slopeforming Triassic 
shales; B: Gipshuken Formation; C: An overview photo of the logged section, D: Brachiopod limestone of the 
Vøringen member; E: Bryozoan limestone; F: Dark spiculite with calcite filled hairline fractures; G: Light 
colored spiculite with sand slingers; H: Uppermost part of the logged section; I: Silicified shale. 
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bioturbation and vary from sand lenses to green and gray irregular shales. Common fossils are 

brachiopods and sponge spicules. These lithological characteristics are similar to observations 

made elsewhere of the Kapp Starostin Formation. Examples of this are, in Spitsbergen 

(Grundvåg, 2008) and on the Finnmark platform (Ehrenberg, 2001). 

Dark spiculite makes up significant parts of the Kapp Starostin Formation (units 4, 5, 

7, 8, 10, 12, 13, 15, 16, 17, 19, 21 and 22; figure 3.1). The main characteristics are dark grey 

colored, silica rich and silty beds. The beds are thin, nodular and highly bioturbated with lots 

of spicules. Ehrenberg (2001) has described similar beds offshore on the Finnmark platform. 

The siliceous shales are found in the upper part of the Kapp Starostin Formation (unit 

18 and 20; figure 3.1; figure 3.2) and consist of dark colored, thin beds and fine grained 

mudstone. The beds are undulating and highly bioturbated revealing some bioclasts and silica 

spicules. Brachiopod limestone beds are found within the units at several localities, but they 

seem to pinch out laterally. Similar beds have been found on the Finnmark platform by 

(Ehrenberg 2001). 

Thin bedded paper or plate like, slopeforming, dark shale is found in the lower 

Hovtinden Member of the Kapp Starostin Formation (unit 11; figure 3.1). The succession is 

about 20 m thick, and has a high content of bryozoan fossils.  Thin, similar beds can be found 

within the bryozoan limestone beds (unit 6 and 9; figure 3.1). Similar beds have been 

described by Ehrenberg (2001) and Grundvåg (2008).  

3.4 Sassendalen Group 
The Sassendalen Group is deposited in early to middle Triassic and was first described by 

Buchan et al. (1965) in the central Spitsbergen. The Group overlies the Tempelfjorden Group 

and consists mainly of marine shale, to silt and sandstone (figure 3.2). The succession is 

interpreted to consist of several transgresive-regressive sequences with a concordant and 

possibly erosive boundary to the underlying Kapp Starostin Formation (Mørk et al. 1989; 

Mørk and Borøy, 1984). This contact is recognized globally by its massive extinction of 

marine species, as discussed in (Dalmann, 1999). 

The Group is subdivided into three formations comprised by the Vardebukta, 

Tvillingodden and Bravaisberget Formation. The formations can be correlated extensively 

lateral to the Barents Sea, Sverdrupsbasin, the Norwegian shelf, and are a potential source 

rocks for hydrocarbons (Mørk, 1984). The Triassic shales are slopeforming rocks and are 

commonly associated with the major thrust at Mediumfjellet. The shales are commonly 

strongly tectonized and often cut by dolerite intrusions. As the formations have not been the 
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target for the study, it has only been described briefly from locality M3-3 and is not part of 

the logged section. 

3.4.1 Vardebukta-, Tvillingodden- and Bravaisberget Formation 

Lithology description 
The lowermost Formation of the Triassic succession in Mediumfjellet, is the Vardebukta 

Formation, and marks the boundary from cliff forming silica-rich rocks to Slopeforming 

shales. The outcrop consists of an upwards coarsening succession from shale intercalated with 

thin yellowish sandstones to grey fine grained sandstone. Then the succession is again fining 

upwards to shale interbedded with thin yellow sandstone beds.  

The boundary to the Tvillingodden Formation can not be precisely determined from 

the outcrop, but is thought to be where the shale becomes darker.  The succession consists of 

dark organic rich shale and seems to conformable overlying the Vardebukta Formation. Thin 

yellowish sandstone beds occur in the slope scree, but can not bee seen in the outcrop. 

  The Bravaisberget Formation is most likely not exposed at Mediumfjellet as there are 

no outcrops of sandstone overlying the Tvillingodden Formation.  

 

3.5 Intrusives 
In the Mediumfjellet mountain range, diabase sills and a number of dikes has intruded into 

and affected individual stratigraphic horizons. Weak layers such as gypsum in the Gipshuken 

formation and shales (Triassic shales) are often hosting diabase sills, while diabase dikes 

crosscut and split stiffer units, such as the Kapp Starostin Formation.  

The diabase consists of mainly plagioclase and pyroxenes and has a phaneritic 

hypidiomorphic granular texture. The intrusions have been ascribed to a large igneous 

province and associated rifting in the arctic basin (Harland, 1997). Although poorly 

constrained, the intrusives are of age about 140 Ma, near the Jurassic-Cretaceous boundary. 

 

3.6 The stratigraphic importance of deformation 

3.6.1 Macro-scale structures 
The macro-scale structures seem to be highly influenced by the lithology. The major thrusts 

cut along the week beds, such as the gypsum/ anhydrite in the Gipshuken Formation and the 

Triassic shales. The Mediumfjellet-Lappdalen thrust front has earlier been interpreted to be a 

result of step-up (flat-ramp geometry) thrusting between two weak detachment horizons, 

cutting steep through the Kapp Starostin Formation (see chapter 1, for previous work). 
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3.6.2 Fracturing 
To study the fractures it is firstly important to get familiar with the stratigraphy, secondly it is 

important to recognize the same bed laterally, third and last, it is important that the fractures 

are well developed and easy to distinguish. 

In the studied Kapp Starostin Formation, there where found six separate units which 

consist of well developed fracture sets (figure 3.1). These are units 1, 2, 3, 6, 9 and 21 

(appendix 1) where units 1, 2, 6, 9 and partly 20, belongs to the bryozoan limestone and unit 3 

to the brachiopod limestone. These rocks stand out as more massive and rigid than the other 

units. Since the light colored spiculite, the dark spiculite and the siliceous shale consist of 

very thin and undulating beds, these beds have developed an extremely chaotic and varied 

fracture pattern. Hairline fractures are common, often filled with calcite (figure 3.1) and are 

not easy to follow. However, a few fractures in unit 5 were yet collected for comparison with 

the other beds. 

The Triassic shales are commonly strongly deformed because of associated thrusts. 

However several observations have been made on well developed fractures in the sandstone 

beds. Those fractures have not been the focus of this study and may be an alternative for 

residual work. The Gipshuken formation is similarly strongly tectonized but is more ductile, 

and internal plastic deformation have occurred with poor developed fracture systems. 

The diabase intrusions stand out as a ridgid and cliff forming rocks and are seen to 

have acted very ridgid with respect to the deformation, and host very high frequencies of 

fractures, often coated with slickensides may be used as indication for kinematic transport 

directions. 

3.7 Summary and interpretation 
The stratigraphy of the Kapp Starostin Formation at Mediumfjellet is described with six 

different lithologies: 1) siliceous shale, 2) dark paper shale, 3) brachiopod limestone, 4) 

bryozoan limestone, 5) light-colored spiculite and 6) dark spiculite.   

 The stratigraphic lithologies have a major influence on both large macro-scale and 

micro-scale structures. The macro-scale structures are dependent on the weakness of the 

layers and are represented by the Gipshuken Formation and the Triassic shales, developing 

flat-ramp geometries. Similarly, the micro structures are largely influenced by the rock 

mechanics. The brachiopod- and bryozoan limestones have seemingly clear, planar and often 

throughgoing fractures developed. These beds are represent by unit 1, 2, 3, 6, 9 and 20 (figure 

34 



Chapter 3  Lithology descriptions 

3.1; appendix 1) and are excellent for studying laterally. The dark spiculite consist of more 

irregular fractures and unit 5 is also studied for comparison the limestones. 
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Chapter 4 

Structural descriptions 
 

4.1. Introduction 
This chapter starts with introducing and describing the macro-scopic structural elements in the 

study area. Thereafter the fracture system of Mediumfjellet will be described (see appendix 2 

for all data collected), which is the main focus of this thesis.  In the end of the fracture 

intensities are described, before finishing with a summary. The combination of presented 

datasets forms the basis for the discussion in chapter 5. 

The structural description of the Mediumfjellet thrust stack is divided into four major 

thrust systems; M1, M2, M3 and G (figure 4.1). These main provinces have previously been 

described by Bergh and Andresen (1990) and Bergh et al., 1997. The thrusts were interpreted 

to be an imbricate thrust stack of in-sequence thrusting (M1, M2 and M3), were the oldest 

thrust is thought to be the M3-thrust and the youngest the M1-thrust. The Gavltinden thrust 

(G) is considered an earlier thrust system that is truncated by an out-of-sequence thrust (Bergh 

and Andresen, 1990).  

The chapter will first describe the four thrust-domains. The Gavltinden thrust domain 

is here described as one separate subarea. The M2- and M3- thrust systems are each split into 

three subareas (a, b and c), where subarea a is placed farthest north (figure 4.1). The three 

subareas of the M2- and M3- thrust system at the Mediumfjellet ridge naturally splits into 

three main subareas divided by glaciated areas. The modern glacial erosion naturally provides 

excellent outcrop possibilities for along-strike variations, and hence correlations between the 

subareas can easily be established. The chapter will then describe the structural elements in 

each subarea, including and important localities. Localities where chosen based on their 

position in the thrust-systems. Where the outcrop allowed, fractures and bed orientation 

datasets where collected at the same stratigraphic beds along-strike and in all the structural 

domains (M2, M3 and G).  

The fracture descriptions are systematized in the same way as the description of the 

fold-and-thrust system. The fractures are described for each subarea and fold domains 

(backlimb, hinge and forelimb). The fracture sets are split into three main populations and 
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described separately: 1) Perpendicular fractures that cut through the strata normal to the 

bedding, 2) Conjugate fractures are here in a population that cuts through the strata with a  

 

Sub-domain Subarea Locality Scan-line number Scan-line trend Bedorientation data 
M2           
  M2-a M2-1 None   Yes 
  M2-b M2-2 4b-1-07 130º-310º Yes 
      4b-2-07 130º-310º Yes 
      4b-3-07 175º-355º Yes 
      4b-4-07 120º-300º Yes 
    M2-3 4c-4-08 130º-310º Yes 
      4c-5-08 130º-310º Yes 
      4c-6-08 117º-297º Yes 
      4c-7-08 025º-205º Yes 
      4c-7b-08 177º-357º Yes 
      4c-8-08 025º-205º Yes 
    M2-4 4R-07 110º-290º Yes 
    M2-5 4d-1-07 085º-265º Yes 
      4d-2-07 095º-275º Yes 
      4d-3-07 015º-195º Yes 
      4d-4-07 015º-195º Yes 
      4d-5-07 090º-270º Yes 
  M2-c M2-6 None   Yes 
    M2-7 None   Yes 
M3           
  M3-a M3-1 3i-1-07 030º-210º Yes 
    M3-2 3g-1-07 025º-205º Yes 
      3g-2-07 125º-305º Yes 
      3g-3-07 170º-350º Yes 
  M3-b M3-3 3b-1-07 150º-330º Yes 
      3b-2-07 168º-348º Yes 
   M3-4 3c-1-07 030º-210º Yes 
      3c-2-07 030º-210º Yes 
      3c-3-07 130º-310º Yes 
      3c-4-07 030º-210º Yes 
      3c-5-07 030º-210º Yes 
      3c-6-07 030º-210º Yes 
    M3-5 3h-07 160º-340º Yes 
    M3-6 None   Yes 
  M3-c M3-7 M3-7_9-08 040º-220º Yes 
    M3-8 3e-1-07 160º-340º Yes 
      3e-2-07 160º-340º Yes 
      3e-1-08 155º-335º Yes 
      3e-2-08 155º-335º Yes 
    M3-9 None   Yes 
G           
  GT-a GT-1 None   Yes 
    GT-2 2e-1-07 015º-195º Yes 
      2e-2-07 015º-195º Yes 
      2e-3-07 040º-220º Yes 
      2e-10-08 020º-200º Yes 
    GT-3 None   Yes 
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Table 4.1 Table with an overview over the thrust domains and subareas with their measured scan-lines for each 
locality. Each scan-line has an identification number which have been referred to in the text. Note that the scan-
line trend gives the direction of the fracture measurement, which is usually also is a fracture-set direction.    
 
 

high angle, and that has the bisecting angle revealing an axis perpendicular to the bedding. 3) 

A fracture population of low-angle-to-bedding faults (also named as thrust). In order to 

discriminate between fracture sets formed prior to folding and those formed synchronous with 

folding, the fracture sets are restored with bedding back to subhorisontal. Table 4.1 provides 

an overview of the three sub-domains and their subareas including localities, scan-lines, scan-

line trends and bed measurements. 

4.2 Description of fold-thrust structures in domains and subareas 
The structural descriptions are based on field work carried out summer 2007 and 2008, photo-

textured Lidar scan (e.g. figure 4.9) and 3D modelling from the lidar scans (figure 4.8). 

4.2.1 M1 fold-and-thrust domain 
The M1-thrust is the eastern-most thrust of Mediumfjellet and is located in the flat area 

between Mediumfjellet and Muslingodden (figure 4.1). The thrust fault is poorly exposed, and 

the evidence for a thrust is based on the assumed hanging wall cut-off of the forelimb at the 

M2 anticline, where steeply dipping Kapp Starostin Formation strata of the forelimb are 

placed next to subhorizontal strata of Triassic shales. The M1- thrust has earlier been 

interpreted (see chapter 1) as a nearly horizontal thrust or detachment from the eastern end of 

Mediumfjellet and eastward (Bergh and Andresen, 1990). Wennberg (1990) suggests a 

connection from Mediumfjellet on the southern side of Sveabreen and the God’deryggen fault 

at the north-eastern side of Mediumfjellet and Sveabreen. 

4.2.2 M2 fold-and-thrust domain 
The M2-thrust crops out in subareas M2-a, M2-b and partly in M2-c (figure 4.1). The thrust 

ends in a tip line in a macro-scopic anticline displayed in subarea M2-c. This anticline is the 

hanging wall structure of the M1-thrust, and as such the M2-thrust is interpreted to connect to 

the M1-thrust underneath Mediumfjellet (see chapter 1; Bergh & Andresen, 1990). 

Subarea M2-a is located east of Gavltinden (figure 4.1; see also figure 4.11), at the boundary 

to the Sveabreen and north of the Mediumbreen. In this subarea, the backlimb of the major 

M2 anticline is exposed and has been studied. Strata belonging to the Kapp Starostin 

Formation and overlying Triassic shales are involved in the folding. An irregularly occurring 

diabase dyke crosscuts the Triassic shales. The M2 backlimb geometry of the M2 anticline is 
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seen as a steeply dipping (ca. 70º WSW), yet fairly straight fold flank, with decreasing dip 

towards the fold hinge (e.g. 130/25). This indicates the location of the anticlinal closure in the 

area (figure 4.2). Bedding orientation data reveals best fit great-circle and with an associated 

π-point, 

  
 
Figure 4.1: Three different maps of Mediumfjellet. A: Bedrock map including structural elements. The mint 
green color of Kapp Starostin Formation indicates the areas for scan-line measurements (modified from 
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Norwegian polar institute). B: Structural map including the bed orientations measured in field. C: Outline of the 
study area, with colors for the different seven subareas of Mediumfjellet including the structural macro-scale 
elements.    
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Figure 4.2: Three geological cross-sections made from Lidar scan interpretations. The cross-section lines are 
seen on the map in figure 4.1. Section A’-A represent subareas M2-a, M3-a and G-a, section B’-B represent 
subareas M2-b, M3-b and G-a and section ‘C-C represent M2-c and M3-c. The Lidar scan interpretations are 
exported into Petrel where surfaces are can connect the lines and cross-sections can be made. Note that the units 
in the legend refer to figure 3.1 (chapter 3). 
   
 

showing that the fold plunges gently to the SSE (figure 4.11). Worth mentioning is that a 

superb example of a small thrust fault cuts through one of the upper beds in the Kapp 

Starostin Formation near the fold hinge, developing a small fault-propagation fold (figure 

4.3). 

Subarea M2-b is located south of the Mediumbreen and SW of the Sveabreen (figure 

4.1; figure 11). This area is the continued structural position of subarea M2-a (figure 4.1). In 

which, the M2-thrust and anticline are fully exposed. The anticline is bounded below by the 

M1-thrust and has the M2-thrust in its core (figure 4.2). The fold core consists of deformed 

layers of the Gipshuken Formation, which are imbricated, thickened and disharmonicly 

folded. Both limbs of the major M2-anticline is made up of the Kapp Starostin Formation. 

Triassic shales are found in the western M2-backlimb beneath the M3-thrust (figure 4.2). The 

M2 -fold is thought to be the continuation of the M2-fold from subarea M2-a. Geometrically, 

the major M2-anticline is near symmetrical and tight, with an axial plane dipping 

subvertically to the WSW (figure 4.11). The backlimb is gently curving, steep (e.g.175/79) 

and relatively undeformed, while the forelimb is thinner, steep (e.g. 350/70), and more folded 

and faulted (figure 4.4). The interlimb angle is about 30º, the fold axis strikes SSE-NNW and 

plunges gently to the SE (Figure 4.11). The M2-thrust cuts through the centre of the fold core 

at locality M2-3, but the displacement is small, about 20 meters (figure 4.2; figure 4.4).  

Subarea M2-c is situated in the south, near Yoldiabukta, and makes up the 

southernmost part of the Mediumfjellet thrust stack (figure 4.1; figure 4.11). The structural 

position is similar to that of the fold system of subareas M2-a and M2-b. Subarea M2-c is 

characterized by a major hanging wall anticline with a blind thrust in the core (figure 4.2). 

The anticline consists of rocks of the Kapp Starostin Formation, with Gipshuken Formation 

strata in the core. The Triassic shales crop out on the ridge west of the fold in the backlimb. A 

diabas dyke looks like a sill, but in the digital elevation model this feature can be seen as a 

low-angle-to-bedding dyke, that along strike seems to cut the Kapp Starostin Formation with. 

The asymmetric anticline has a straight and relative gently dipping backlimb and a steep, 

overturned forelimb. The hinge zone is narrow with an  
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Figure 4.3: Photo interpretation of subarea M2-a. The photo displays the backlimb of an assumed anticlinal. A 
small fault-propagation fault can be seen in the middle of the photo. Gavltinden and the Gavltinden thrust can be 
seen in the background. Note that the units refer to figure 3.1 (chapter 3). 
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Figure 4.4: Photo interpretation of subarea M2-b. The M2-thrust cuts through the anticline hinge zone. Note the 
small low-angle-to-bed thrust faults. The overturned anticline from subarea M3-b can be seen in the background 
with the belonging M3 thrust beneath. 
   
 
 
interlimb angle of about 60º. The fold plunges gently to the south and the axial plane strikes 

N-S and dips steeply towards the west (figure 4.11). In the northern mountainside of the 

exposed fold, the core is cut by a major fault. This fault crops out as a hanging wall flat and 

footwall ramp thrust, and is associated with a transported fault-propagation fold in the 

hanging wall (figure 4.2). The Gipshuken Formation is not exposed in the fold core, but is 

present in a lower section in the mountain side revealing the backlimb (figure 4.9). However, 

the Gipshuken Formation is expected to be present also in the core of the fold. 
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Figure 4.5: Photo interpretation of subarea M2-c and M3-c. Note that the M2-thrust slightly cuts through the 
anticline. Subarea M3-c to the west displays the two faults with a first order anticline in the front and a second 
order anticline in the back. The Yoldiabukta and Bohemansfløya can be seen in the background. 
   

4.2.3 M3 fold-and-thrust domain 
The M3-thrust is the best displayed thrust of Mediumfjellet and is exposed along strike for at 

least 10 km from Yoldiabukta past Gavltinden (figure 4.1). The thrust splits into several 

smaller thrusts but they are here all mentioned as the M3 thrust. The thrusts are earlier 

interpreted (chapter 1) to splay from a decollement surface in the Gipshuken Formation and 

cut steeply up section to the Triassic shales, partly replacing the gypsum/anhydrite in the 

Gipshuken formation on top of the Triassic shales (figure 4.2).   

Subarea M3-a is located far to the north in the field area, east of Gavltinden (figure 

4.1; figure 4.11). The subarea consists of a major anticline in the hanging wall to the M3-

thrust. The fold has only been studied in the backlimb and hinge to near forelimb regions, due 

to lack of access (figure 4.6). Kapp Starostin Formation strata and Triassic shales are involved 

in the folding as seen in the outcrops. The bedding is folded into an asymmetric, open to tight, 

east facing macro-scopic anticline with an overturned eastern limb. The fold can be traced 
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Figure 4.6: Photo interpretation of subarea M3-a. The M3-anticline disappears underneath the glacier. The 
Gavltinden and Gavltinden thrust can be seen in the background. 
   
 

along strike to subarea M3-b (figure 4.1). Throughout the area, the axial plane dips 

moderately towards the SW. The backlimb is long, straight and dips 40º to the SW. The hinge 

zone is tight with a steep, partly overturned forelimb, dipping 50º to NE (figure 4.11). 
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Subarea M3-b is situated in the central part of the Mediumfjellet thrust stack, just 

south of the Mediumbreen (figure 4.1). The area is showing a major hanging wall anticline 

extending along strike from subarea M3-a. The entire fold is exposed in a cliff south of 

Mediumbreen and was carefully studied as this subarea. The strata involved in this macro-fold 

include the section from the Kapp Starostin Formation up through the lower Triassic shales, 

and with the Gipshuken Formation in the core of the anticline (figure 4.2; figure 4.5). The 

Triassic shales are found both above the Kapp Starostin Formation in the backlimb, and in the 

footwall beneath the M3-thrust, and are displayed in the cross section (figure 4.2; figure 4.7). 

Also this area shows a diabase dyke/sill. Its appearance is similar to the one observed further 

north, in that the dyke obliquely truncates strata of the Kapp Starostin Formation. The overall 

structural geometry is characterized by a macro-scopic, asymmetric, and open to tight, 

overturned anticline, which is plunging about 9º to the NW. Based on the Petrel interpretation 

(figure 4.8); the fold seems to be situated on a lateral ramp creating a complex fold. The hinge 

zone is narrow and has an axial plain dipping steeply to the SW (figure 4.11). The backlimb is 

long and dips overall moderately (ca. 50º) to the SW, but steepens along strike southwards 

(figure 4.8). The forelimb is very steep to overturned (average of 76º to SW), and the strata 

are thinned and internally deformed. The latter is seen by local meso-scopic, open, synclines 

and anticlines that can be genetically related to smaller thrust faults or thrust intersections. For 

example; at locality M3-5, an open anticline and syncline are present (figure 4.7). At locality 

M3-3, a fault-propagation fold is caused by small thrusts (figure 4.8). Within the core of the 

macro-scopic fold, smaller disharmonic fold structures are seen in the Gipshuken Formation, 

but smaller folds are also found within the Kapp Starostin Formation at the southern side of 

peak 805m. These folds seem to have Z and M geometries (figure 4.8), depending on their 

position with respect to the axial plane. 

Subarea M3-c is located to the southernmost part of Mediumfjellet (figure 4.1; figure 

4.11). Steep mountain sides excellently expose the entire M1-M3 thrust stack and associated 

fault related folds. The Kapp Starostin Formation is the most prominent rock. The Gipshuken 

Formation occurs in the core of the anticline and along the main M3 thrust, while a diabase 

sill occurs in the core of the M3 fold. In the Lidar scans, it is evident that this diabase 

intrusion crosscuts several stratigraphic layers of the Kapp Starostin Formation to the north 

but runs layer parallel toward the south (figure 4.9). The subarea is recognized by two macro-

scopic M3-folds with associated thrusts.  The SW-most anticline is small and exists behind a 

major first order anticline (figure 4.2; figure 4.5). Both folds are asymmetric and NE verging. 

From the Lidar data it is clear that the M3 thrust split into two 
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Figure 4.7: Photo textured Lidar interpretation of subarea M3-b seen from the Mediumbreen (see figure 4.1). 
The macro-scale anticline displays a meso-scopic open syncline anticline pair. Note that the low angle to bed 
thrusts cut the bed with a similar angle and are rotated with the fold. 
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Figure 4.8: A: Gridded surfaces in Petrel, shows the lateral variations. The Y-axis marks the direction of north-
south. The thrusts are red, top Gipshuken Formation is yellow, top of unit 3 is blue, bottom of unit 6 is green, top 
of unit 10 is orange, base of unit 14 is turquoise, top unit 14 is purple and Perm-Trias boundary is pink. The unit 
numbers refer to figure 3.1 (chapter 3) Note that the thrusts have less displacement southwards. B: Thrust faults 
displayed alone with no folds. Two lateral oblique thrust ramps can be seen in the M3 thrust. The Y-axis marks 
N-S direction. C: An overturned anticline in subarea M3-2, with thinned limbs and thickened hinge zone. Note 
the small folds in the core. D: A fault-propagation fold in the backlimb of the anticline in subarea M3-b. 
 
 

faults at locality M3-7 and then merges into one fault at the southern end of Mediumfjellet. It 

thus seems to be a fault linkage of two thrusts (here, both are mentioned as part of the M3-

thrust system), which may create a relay ramp with a secondary fold behind the major first-
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order fold (figure 4.8). The smaller fold seems to be the continuation of the thrust system 

from subarea M3-a and M3-b, as the fold at locality M3-7 plunges southwards (figure 4.8), 

thereby indicating reduced displacement of the thrust southwards. The major fold appears to 

be of another fault system developed underneath and east of the second order M3-thrust 

system (figure 4.2). Both folds are asymmetric and NE verging. The major fold has a long and 

straight, relatively undeformed backlimb that is dipping approximately 50º towards the SSE, 

and with a more deformed, folded and faulted, tight hinge zone. The forelimb is overturned 

and dips 80º towards the SSE. The fold hinge plunges slightly towards the NNW, and the 

axial plane dips steeply towards the SW (figure 4.11). The hinge zone contains small, tight 

asymmetric syncline-anticline pairs and numerous splay faults in the centre. The minor fold is 

tight, with a short and overturned forelimb and a steep backlimb that dips 70º to the SW. The 

fold core hosts a diabase sill, probably the same occurring at the southern face of 

Mediumfjellet (figure 4.9). 

4.2 4 Gavltinden fold-and-thrust domain 
The Gavltinden thrust is situated in the western and central part of the Mediumfjellet ridge. 

The thrust can be traced from about 3 km northwest of Yoldiabukta to Gavltinden (figure 

4.1). Prominently, the Gavltinden thrust cuts down the stratigraphic section towards the NNE, 

as can be seen in the southern outcrops of the subarea G-a. The truncation has a low angle to 

the bedding, and as Triassic shales are observed under the thrust along its entire length, a full 

cut-off of the Kapp Starostin Formation is likely (figure 4.2).  

The subarea G-a is localized in the Gavltinden mountain area (figure 4.1; figure 4.11) 

and includes the hanging wall fold of the Gavltinden thrust. Rocks exposed in the area are 

mainly the Kapp Starostin Formation and Triassic shales, the latter hosting a diabase 

intrusions. From the outcrops and the Lidar scans it is clear that the diabase dyke/sill is 

located between the Gipshuken and Kapp Starostin Formation strata and climbs up-section 

into the Triassic shales (figure 4.10). Some of the nearby units are internally disturbed and 

bent, probably related forces created by the diabase dyke intrusion. Subarea G-a is dominated 

by a macro-scopic, tight and asymmetric anticline, which plunges 21º to the NW at locality 

GT-1. The fold is horizontal at locality GT-2 and plunges subhorizontally to the south-east at 

locality GT-4 (figure 4.11). The axial plane is subvertical and dips towards the SW. The limbs 

are straight and nearly vertical; the NE forelimb is slightly steeper then the SW limb. This is 

shown by the NE limb that dips about 80º to the ENE, whereas the SW backlimb dips 65º to 

the WSW. The backlimb also displays an open kink-fold at locality GT-2, resulting in making 
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parts of the backlimb very steep (e.g. dipping 70º) (figure 4.10). The hinge zone of the major 

anticline is extremely narrow and hosts a diabase sill in the fold core.  

 
Figure 4.9: Photo textured Lidar interpretation of Mediumfjellet seen from Yoldiabukta (see figure 4.1). Subarea 
M2-c is to the east and subarea M3-c is to the west Note that the Gipshuken Formation is placed on top of the 
Triassic shales. The M3 thrust is also slightly steeper than the M2 thrust. 
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Figure 4.10: Photo textured Lidar interpretation of subarea G-a. The Gavltinden anticline is a very steep and 
tight fold. The continuation of the backlimb (west) can be seen in the back. Note the low-angle-to-bedding thrust 
that has been bent with the fold. 
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4.2.3 Summary of fold-and-thrust domains 
This section summarizes the description of fold-and-thrust geometries written in the previous 

section, with focus on the local variations. The Mediumfjellet mountain area is split into four 

thrust domains (M1, M2, M3 and G), with associating hanging wall anticlines (M2, M3, and 

G). The shape and orientation of the anticlines vary laterally, to some extent. The M2-

anticline is not completely exposed to the north, however in the subarea M2-b the fold is 

relatively tight, and only locally overturned, where the fold axis strikes NNW-SSE. 

Southwards, the fold axis is rotated clockwise and strikes N-S. The fold is very tight and 

overturned, indicating less displacement. The anticline seems to be situated on a relative flat 

footwall thrust (figure 4.2; figure 4.8). The M3-anticlines are well exposed along strike. The 

fold seems to be small and tight in the north, developing into a major anticline at subarea M3-

b, and again developing into two smaller tight and overturned anticlines in the south (figure 

4.2). The fold axis is similar to the M2-anticlines, slightly rotated clockwise southwards. The 

Gavltinden anticline is extremely tight and based on the 3D model the anticline is clearly cut 

off both in the backlimb and forelimb, which are proves for an out-of-sequence thrust. The 

Gavltinden anticlinal can not be followed laterally.  

 The thrust geometry is summarized by figure 4.8B, which implies great lateral 

variations. The M1-thrust is poorly exposed and is only assumed to exist. However, the M2-

thrust is documented and can be followed laterally. This thrust slightly curves from subarea 

M2-b to subarea M2-c, with a relatively uniform and steep dip. Dissimilarly, the M3-thrust 

has greater variations along strike. Based on the 3D modelling, an oblique ramp can be seen at 

subarea M3-b. The thrust abruptly changes from a flat thrust at subarea M3-a, into a steep 

ramp at subarea M2-b. Similarly, another smaller oblique ramp is seen southwards in subarea 

M3-c. The M3-thrust is also in general steeper dipping than the M2-thrust. Gavltinden thrust 

is a steep dipping thrust, but can not be followed laterally, and thus seems to be uniform along 

strike. The distance between the M1-, M2-, and M3-thrust decreases southwards, where they 

seems to gather. 

 The fold plunge variations are seemingly in proportion with the lateral ramps. The 

M2-thrust steadily plunges to the SSE, terminating in a steep southwards plunge in subarea 

M2-c. In subarea M3-b, the fold plunges to the NNW relative to the oblique ramp seen in 

subarea M3-b. Similarly, are the two anticlines near the southern ramp both plunging against 

the ramp on either sides. The Gavltinden anticline steeply plunges towards NW, which may 

indicate a ramp or less displacement of the fold.  
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 Based on the Lidar scan and the measurements of the fold geometry, two thrust 

segments with associating relay ramps are thought to exist along the M3-thrust. Based on 

observations of the two thrusts segments, a small oblique ramp in the Lidar interpretation and 

folds plunging towards the ramp, may be a clear indication of a thrust linkage in subarea M3-

b (figure 4.1). Similarly, a larger oblique thrust ramp and fold plunge may indicate a thrust 

linkage in subarea M3-b. However, only one thrust has been observed. Though, an open 

syncline-anticline pair is found in the backlimb of the fold, and thus may indicate a thrust. 

Yet, the area is buried by the Mediumbreen. 
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Figure 4.11: Fracture occurrence from each subarea. Each figure displays the map with the current subarea and 
localities. The contoured poles of the bedding orientation and the best fit great circle with associating π-point are 
placed next to the map. The fracture data are situated under the map and the bedding, separated by fold domains 
(backlimb, hinge and forelimb). The diagram to the left show the distribution between the different fracture sets. 
The contoured poles of all the fracture orientations are displayed in the middle. The perpendicular sets and 
conjugate sets are shown to the right.  A: subarea M2-a. B: subarea M2-b. C: subarea M2-c. D: subarea M3-a. E: 
subarea M3-b. F: subarea M3-c. G: subarea G-a. 
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4.3 Description of fractures in domains and subareas 
This chapter will explain the distribution of fractures at the Mediumfjellet. The fractures are 

split into three populations, where each individual fracture population is explained separately. 

Perpendicular fractures are perpendicular to bedding, conjugate sets are here explained as 

steep dipping to the strata with crosscutting relationship, and thrusts are fractures appearing 

low-angle to the bedding (figure 4.12). The thrust fractures consist of fractures occurring 

within the scan-line or fractures observed elsewhere in the study area. 

4.3.1 Subarea M2-b 
The fractures measured in subarea M2-b are mainly perpendicular fracture sets. Conjugate 

fracture sets and low-angle-to-bedding-thrust fractures. Populations of fractures that appear in 

an unsystematic fashion without a logical explanation are also present (mentioned in figure 

4.11 as “unknown fractures” in the fracture distribution diagram). 

Perpendicular fractures 
Fractures were measured on the backlimb strata of the macro-folded Kapp Starostin 

Formation units 3, 4, 7, 10 and 21 (figure 3.1; table 4.1), which dips about 30º SW. The 

recorded fractures comprise four major orientations; each defining a separate fracture set (I-

IV) (figure 4.11). All fractures are oriented perpendicular to the bedding surface. Sets I, II and 

IV are steep and sub-vertical to the bedding orientation, and strikes between NW-SE and 

NNE-SSW. Set I is parallel to the fold axis which strikes NNW-SSE, while sets II and IV 

may represent conjugate sets striking NNE-SSW and NW- SE with the acute, bisecting angle 

nearly parallel to the fold axis. Set III strikes ENE-WSW and is made up of steep to 

subvertical fractures that are oriented perpendicular to the fold axis. Sets I and III are the most 

frequently occurring fracture sets (figure 4.11). 

Similarly, the hinge zone of the major fold contains four main fracture sets. Set I 

strikes NNW-SSE and is parallel with the fold axis, set II strikes N-S, set III strikes NE-SW 

and is perpendicular to the fold axis, and set IV strikes WNW-ESE. All these fracture sets are 

steep, sub-vertical and oriented perpendicular to sub-horizontal bedding planes of the fold 

hinge zone. Set II and IV are apparently conjugate sets with the acute angle parallel to the fold 

axis and occur more often than set I and III (figure 4.11).  

The forelimb region of the macro-fold has similar fracture orientations as the 

backlimb. The overall dips of the investigated beds are about 45º to the ENE. In this portion 

of the fold, set I strikes NNW-SSE, set II strikes NNE-SSW, set III strikes WSW-ENE and set 

IV strikes NW-SE. All four sets are perpendicular to the bedding. Set I is near parallel to the  
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Figure 4.12: Fractures. A: A conjugate fracture set with the acute bisecting angle perpendicular to the bedding.  
B: Dilatational fractures and shear fractures perpendicular to bedding. C: Low-angle to bedding fracture. 
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Crosscutting perpendicular fractures. D: Low-angle to bed fractures (thrust) in the fold core in subarea M2-c. E: 
Smooth and straight fractures. F: En-echelon fractures. G: Roughed fracture surface. 
   
 

fold axis while set III is almost perpendicular to the fold axis. Set II and IV are apparent 

conjugate sets with the abute angle parallel to the fold axis. Fracture sets I and II occur most 

frequently in the forelimb (figure 4.11). Similar fracture set where found in the lidar scan 

(figure 4.14). 

The fractures measured in this subarea are straight and mostly cut through the whole bed. 

They commonly terminate at the bed boundaries, but some are throughgoing. The fracture 

surfaces are planar and smooth (common), rugged (less common) or calcite filled (rare). 

Conjugate fractures 
The apparent conjugate fractures with the acute angle symmetric around the c-axis 

(perpendicular to the bedding) (figure 2.4A; Hancock, 1984), were also observed in subarea 

M2-b. The backlimb consist of one set (set w) that strikes ENE-WSW. Similarly, the hinge 

consists of one set (set q), which strikes NNE-SSW. Both these fractures have a crosscutting 

relationship and dip steeply with an average dip of 70º to opposite sides (SE and NW) (figure 

4.12). The fractures show no displacement to mm-scale displacement and are normally 

smooth, but may also be rugged (figure 4.12). 

Thrusts 
Several low-angle thrusts cut up-section through the Kapp Starostin Formation with 

displacements between 5 and 20 meters. These thrusts have accompanying fracture sets with 

similar orientations. Based on their field-site orientation (present orientation) there seems to 

be several sets with different orientations. In the backlimb, there are three main sets; set A 

strikes NNE-SSW, set B strikes WNW-ENE and set C strikes NNW-SSE. In the hinge, there 

is one major fracture set (set A) that strikes NNE- SSW, and in the forelimb there is one set 

(set C), which strikes NW-SE (figure 4.13). They all dip with an average angle of about 30º to 

the bedding. Both fore- (east-directed) and back-thrusts (west-directed) are present. The two 

sets are tentatively conjugate sets with the acute bisecting angle parallel to the bedding. In 

order to further consider if these sets of fractures developed prior to folding, the thrust 

orientations have been restored by unfolding the layering back to horizontal. The restored 

thrusts show three different fracture sets; Set A strikes NNE-SSW, set B strikes E-W and set 

C strikes NNW-SSE (figure 4.13). Some of the thrust faults cut stratigraphically up-section to 

the Triassic shales, while others end in small fault-propagation folds, indicating that they are  
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Figure 4.13: Low-angle to bed fractures (thrusts).  The three left rows represent thrusts in present position in the 
backlimb, hinge and forelimb. The two rows to the right represents the thrusts which are restored with the 
bedding back to horizontal. 
   
 

 
Figure 4.14: Fractures interpreted on bedding surface. A: Fractures interpreted form a photograph taken in field 
in subarea G-a.  B: Fracture sets interpreted of the surface from lidar scans in subarea M3-b. C: Also fractures 
interpreted from lidar scans in subarea M2-c. 
   

 

local, as low-angle (to bedding) thrusts. The thrust faults and associated fractures are 

normally filled with calcite and many display surfaces with slickensides. 

4.3.2 Subarea M2-c 

Perpendicular fractures 
Fractures of subarea M2-c were not measured in the field, due to inaccessible steep cliffs, but 

were interpreted from the Lidar scan data (figure 4.14). Four sets are visible in the Lidar 

scans. Set I strikes N-S, set II strikes NE-SW, set III strikes E-W, and set IV strikes NW-SE. 

Set I is parallel and set III is perpendicular to the fold axis. Sets II and IV seem to be a 

conjugate pair with the acute angle parallel to the fold axis. The fracture sets are apparently 

perpendicular to the bedding surface. Set I consist of major throughgoing fractures that locate 

deep cuts and eroded valleys into the mountainsides. These fractures have greater spacing 

between them commonly in the range of meters. Sets II and IV seem to be the most common 

fractures. Their distribution and orientation vary with the acute angle either parallel or 

perpendicular to the fold axis (Figure 4.14). 
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Thrusts 
Subvertical thrusts cut steeply dipping beds with a low angle to the bedding in the backlimb 

of the major anticline. Several small thrusts are also seen in the core of this major M2-fold. 

These thrusts were measured and comprise mainly one set (set C) that strikes NW-SE (figure 

4.12; figure 4.13).  These thrusts have not been restored because the bedding is near 

horizontal where the thrusts were measured. 

4.3.3 Subarea M3-a 
The fracture distribution in subarea M3-a is mainly dominated by perpendicular fracture sets 

(figure 4.11D). In addition, there are some non-systematic fractures that occur in the 

backlimb. 

Perpendicular fractures 
The fractures in subarea M3-a were measured in unit 10 and 21 of the Kapp Starostin 

Formation (figure 3.1, table 4.1). The backlimb bedding dips about 40º to the WSW where the 

fractures have been collected. A fracture pattern similar to the fractures collected in subarea 

M2-b was found. Set I strikes NNW-SSE (near parallel to the fold axis), set II strikes NNE-

SSE and set III strikes NE-SW (the two latter sets are perpendicular to the major fold axis), 

and set IV strikes NW-SE. All fracture sets are steep to sub-vertical relative to the bedding. 

Set II and IV are apparent conjugate sets with the acute bisecting angle parallel to the fold 

axis. The dominating fractures sets are I, II and III, however, the pattern of fracture 

occurrence for each set seems to be similar to the forelimb of subarea M2-b, where set I and II 

are dominating (figure 4.11). 

Mainly two major fracture sets (set II and IV) were found in the hinge zone of the 

macro-scopic fold, but another two less pronounced sets have been identified. The sets are all 

steep to subvertical to the bedding that dips on average 40º to the ENE. Set II strikes N-S and 

set IV strikes E-W. There is an indication of set I, striking NW-SE parallel to the fold axis, 

and set III, striking NE-SW perpendicular to the fold axis. Both sets have subvertical 

fractures. Sets I and IV are seemingly conjugate sets, where the bisecting axis strikes parallel 

to the fold axis. Set II and IV are numerous and dominate the fracture occurrence in the hinge 

zone (figure 4.11). 

Fractures of subarea M3-a are usually open, straight and planar shaped. They are 

commonly smooth but also locally occur as rugged. Either conjugate fracture sets or thrust 

sets were measured in this subarea. 
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4.3.4 Subarea M3-b 
The fractures are distributed between the different populations. All sets and populations occur 

within subarea M3-b (figure 4.11E). 

Perpendicular fractures 
Fractures were measured in the backlimb unit 21 of the Kapp Starostin Formation. Similarly 

unit 2, 3 and 4 were studied in the backlimb hinge and forelimbs (figure 3.1, table 4.1). These 

fracture sets partly differ in geometry and orientation from fractures in the other subareas 

(figure 4.11).  

The backlimb bedding dips on average 45º to the SW. It reveals three major fracture 

sets. Set I strikes NNW-SSE and is parallel to the fold axis, set II strikes NNE-SSW, whereas  

set III strikes ENE-WSW and is perpendicular to the fold axis. All three sets are perpendicular 

to the bedding. Set II is absent (figure 4.11).  

The bedding of the hinge zone is subhorisontal and reveals four major fracture sets. 

Set I strikes NW-SE, set II strikes NNE-SSW, set III strikes NE-SW, and set IV strikes ENE-

WSW. They are all steeply dipping and subvertical. Set I is parallel and set III is 

perpendicular to the fold axis. Sets II and IV seem to be a conjugate pair with the acute angle 

perpendicular to the fold axis (figure 4.11). 

The bedding in the forelimb has an average NW-SE strike and dip angle of about 70º 

to the NE. The forelimb consists of similar fracture sets as the backlimb. Set I strikes NW-SE, 

set II strikes NNE-SSW, set III strikes ENE-WSW and set IV strikes ESE-WNW. Set I is 

parallel and set III strikes perpendicular to the fold axis, whereas set II and set IV are apparent 

conjugate sets with the bisecting acute angle perpendicular to the fold axis (figure 4.11). 

Compared to the lidar interpretation of fractures, similar sets can be found (figure 4.14). All 

three sets cut steeply and are perpendicular to the near-horizontal bedding.  

The majority of the studied fractures are open and planar, cutting through the whole 

bed. Throughgoing fractures that cut several beds are common, especially in the forelimb. A 

few fractures are rugged or listric shaped, bending off towards the bed boundaries. No 

fractures have calcite filling.  

 

Conjugate fractures 

Steeply dipping conjugate sets with their acute angle perpendicular to bedding were found 

both in the backlimb and hinge. Three steep angle fracture sets have been measured in the 

backlimb, where set q strikes NNE-SSW, set w strikes ENE-WSW and set x strikes ESE-

66 



Chapter 4  Structural descriptions 

WNW. Similar fractures were found in the forelimb, where set w strikes ENE-WSW and set x 

strikes ESE-WNW. They all dip steeply with an average angle of about 70º in proportion to 

the bed orientation. En-échelon fractures were observed in the backlimb at locality M3-3 with 

(set q) NE-SW strike, dipping 30º to NW (figure 4.12). 

Thrusts 
Several small-scale thrust faults or imbricate thrusts are seen in the backlimb, hinge and 

forelimb of the Kapp Starostin Formation strata, similar to those mentioned for subarea M2-b. 

Several of the thrust faults end blindly in folds. In particular, one meso-scopic fault-

propagation fold with related minor thrust faults is observed (figure 4.8D). The faults have a 

common planar geometry and easterly transport direction, and on either limb of the macro-

fold they seem to be rotated within the major fold (figure 4.7). In present position there are 

two sets in the backlimb; set A strikes to the NNE-SSW and set C strikes to NW-SE. The 

hinge comprises only one set; set C strikes NW-SE. All sets cut the bedding with a low angle. 

In this case aswell, these thrust faults have been restored through rotating the bedding back to 

horizontal. In restored position, set A strikes NE-SW and set C strikes NW-SE. They appear 

as both fore- and back-thrusts, and may therefore represent conjugate sets with the bisecting 

acute angle parallel to the bedding (figure 4.13).  

4.3.5 Subarea M3-c 
The fracture distribution consists mainly of perpendicular fracture sets, but also thrusts and 

conjugate fractures occur (figure 4.11F). 

Perpendicular fractures 
Units 3, 5 and 10 (figure 3.1, table 4.1) were studied for fracture measurements in the Kapp 

Starostin Formation. Four fracture sets were recognized in the backlimb (figure 4.11F); Set I 

strikes NNW-SSE (parallel to the fold axis), set II strikes NNE-SSW, set III strikes ENE-

WSW and (perpendicular to the fold axis), and set IV strikes to the NW-SE. All sets dip 

steeply and are nearly perpendicular to the bedding plane, which has an average dip of 60º to 

the SW. Set II and IV seem to be apparent conjugate fracture sets with the acute bisecting 

angle parallel to the fold axis. 

Three fracture sets are found in the hinge; set I strikes NNW-SSE and is parallel to the 

fold axis, set III strikes ENE-WSW and is perpendicular to the fold axis, set IV strikes ESE-

WNW. Set II is absent. All fractures are perpendicular to the bedding, which is sub-
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horizontal. In light of observations from other subareas, set IV may be part of a conjugate 

fracture set (with set II) (figure 4.11). 

Fractures observed in field are for the most part straight, planar and open. 

Throughgoing fractures cutting through several beds are abundant in the forelimb, but are rare 

in the hinge and backlimb. Calcite filled fractures occur infrequently. 

Conjugate fractures 
Conjugate fractures with the acute bisecting angle perpendicular to the bedding were 

measured in the backlimb. Two fracture sets where found; set q strikes NNE-SSW whereas 

set x strikes NW-SE. They both dip steeply with the average dip between 65º-80º to the 

bedding (figure 4.11). The fractures show commonly a smooth surface, but are also 

sometimes rough. They are layer bound and in many cases terminate within the bed. 

Thrusts 
Similarly to subarea M3-b, several meso-scopic imbricate thrusts cut the backlimb, hinge and 

forelimb of the major fold. In this subarea the thrust faults produce complex structures in the 

forelimb and hinge zone, e.g. a duplex is observed in the backlimb (figure 4.9). The thrust 

faults indicate in present position that two sets exist in the backlimb and two sets in the hinge. 

In the backlimb set A strikes NNE-SSW and set C strikes NW-SE. In the hinge set B strikes 

E-W whereas set C strikes NNW-SSE.  These thrusts all dip with a low-angle to the bedding. 

When the thrusts are restored with the bedding back to horizontal, two sets are prominent. Set 

A strikes NE-SW and set C strikes NW-SE. (figure 4.13). Calcite filling and slickensides are 

often found on the shear fracture surfaces (faults). Two slickensides were measured, and both 

show the displacement towards NE. 

4.3.6 Subarea G-a 
Most fracture populations are present at subarea G-a (figure 4.11G). However, the 

perpendicular fractures are more numerous. 

Perpendicular fractures 
Fracture data have been measured in units 7 and 10 (figure 3.1, table 4.1) of the Kapp 

Starostin Formation. The bedding in the backlimb is in average dipping 50º to the SSE, and in 

this limb four main fracture sets were found. Set I strikes NNW-SSE and is parallel to fold 

axis, set II strikes NNE-SSW, set III strikes NE-SW and is perpendicular to fold axis, and set 

IV strikes ENE-WSW. All fracture sets are oriented perpendicular to the bed surface. Set III 
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and set IV are apparent conjugate sets. Fractures interpreted on photographs taken in the field 

show the same pattern as for the dataset on measured fractures (figure 4.11; figure 4.14).  

The hinge zone shows three fracture sets that are all sub-vertical to the sub-horizontal 

bedding. Set I strikes NNW-SSE and is parallel to the fold hinge, set II strikes NE-SW, and 

set IV strikes E-W. Set III is absent. Sets III and IV have a slightly different strike compared 

to other subareas. Further they are probably conjugate sets with the acute angle nearly 

perpendicular to the fold axis (figure 4.11). 

Fracture sets measured in this subarea are similarly oriented to the sets observed 

elsewhere. Their character is also similar in that they are open, planar, and straight fractures. 

Some are rugged, but they are most often smooth. Throughgoing fractures are less common 

than short fractures terminating at the bed boundaries. 

Conjugate fractures 
Conjugate fractures with their acute bisecting angle perpendicular to bedding are only found 

in the backlimb. They consist mainly of two sets; set q strikes NNW-SSE and set x strikes 

WNW-ESE. They cut the bedding with an average angle of 72º, and dips to the WSW and 

SSW (figure 4.11). These fractures are mainly smooth, but can also be rugged. The fractures 

are rarely throughgoing. 

Thrusts 
The low-angle-to-bedding thrust faults crosscutting the beds of Kapp Starostin Formation are 

here found to have a slightly different strike compared the other thrust domains. The sets 

seem similar, but are possibly oriented clockwise with approximately 40º. In the present fold-

position, the backlimb and hinge each consist of one fracture set. The backlimb comprises set 

A that strikes N-S, whereas the hinge reveals set C, which strikes NW-SE. When restored 

with the bedding back to horizontal position, two major fracture sets occur. Set B strikes 

WNW-ESE and set C strikes NNW-SSE. The fault planes are commonly throughgoing, 

showing displacements between 1 and 10 meters. They are usually filled with calcite and are 

coated slickensides. Two slickenside surfaces were measured, and associated slip-lines show 

displacement towards NW and WNW (figure 4.13). Evidence for a possible pre-folding stage 

of the thrust faults is here seen at locality GT-1, where the fault cuts through the hinge zone 

and is folded all the way around with the bedding, before it terminates in the backlimb (figure 

4.10). Spectacular examples of such splay faults crop out near the Gavltinden peak, seen as 

internal deformation of the forelimb of a syncline-anticline pair (figure 4.3; figure 4.6). 
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4.4 Fracture intensity 
This chapter presents the intensity of fracturing that has been recorded in each structural 

domain (forelimb, backlimb and hinge). The fracture frequency will be considered briefly and 

then compared with the fracture orientations. The fracture intensity depends highly on the bed 

thickness, and the following descriptions are made from only three subareas (M2-b, M2-c and 

M3-b), were the same bed and same bed thickness could be traced between the structural 

domains of the macro-fold (forelimb, backlimb and hinge). 

A characteristic 15 cm thick bed of the Vøringen Member was followed through the 

backlimb, hinge and forelimb in subarea M2-b. The measurements were taken from the same 

bed both beneath and above the through-cutting M2-thrust (figure 4.4). When comparing the 

separate domains (backlimb, hinge and forelimb) above and underneath the M2-thrust, there 

are some differences (figure 4.15). The fracture intensity measured in the backlimb above the 

thrust is low, 6 fractures per meter. The intensity increases from 6 to 10 fractures per meters 

in the direction of the hinge area. In comparison, the fracture intensity in the backlimb 

beneath the thrust is higher, 13 to 20 fractures per meter. The fracture intensity in the hinge is 

very high; fractures are present up to 28 times per meter. The intensity of the forelimb is fairly 

low, with frequencies increasing from 4 to 12 fractures per meters towards the hinge zone. In 

subarea M3-c the fracture intensity was recorded in a bed with thickness of 53cm. The hinge 

zone has an average of 15 fractures per meters, and has significantly higher fracture intensity 

than the backlimb, which has 6 fractures per meters (figure 4.15). The fracture intensity can 

be compared between the hinge and backlimb of subarea M3-b, in a 32 cm thick bed. In this 

case the fracture data shows slightly higher frequency in the backlimb than in the hinge zone; 

where the backlimb has an average of 6 fractures per meter in comparison to the hinge, which 

has only 4, 3 fractures per meters. 

Bed thickness versus fracture frequency is analyzed in figure 4.16 that shows a 

diagram were absolutely all the numbers of fractures per meter is plotted towards the bed 

thickness. The plots show linear trends, suggesting a general higher fracture intensity in the 

hinge zones. The backlimb and forelimb can not be clearly distinguished, because of their 

crossing lines, but in general display larger variations and lower intensities.  

The final analysis addresses the large throughgoing fractures cut across more than one bed, 

compared to the short fractures terminating in the bed or at the bed boundary. When 

comparing fractures in the limestone with the dark spiculites (figure 3.2), the throughgoing 

fractures are observed with several meters spacing. When comparison is made between the 
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two lithologies, it is clear that 30% of the measured fractures in the carbonate beds are 

 
Figure 4.15: Fracture intensity measured in different fold domains by following in the same bed with the same 
thickness. A: A 32cm thick bed followed in backlimb and hinge in subarea M3-b. B: A 53 cm thick bed was 
followed through the backlimb and hinge in subarea M3-c. C: A 15cm thick bed from the Vøringen member was 
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measured in subarea M2-b. The bed was studied in the forelimb, hinge and backlimb underneath the thrust and in 
the backlimb above the thrust. 
   
 

 
Figure 4.16: Numbers of fractures per meter versus bed thickness. All collected data are plotted. Note the red 
line, which shows that the hinge has overall higher fracture intensity. Mean square error of linear regressions are 
16,6 (backlimb), 2,8 (forelimb) and 26,6 (hinge). 
   
 
 

through going, however, only 4% of the measured fractures are observed to be throughgoing 

in the dark spiculite. The throughgoing fractures seem to have the same orientation as the 

short fractures. When comparing the fold domains, the throughgoing fractures constitute of all 

measured fractures; 31% in the backlimb, 26% in the hinge and 43% in the forelimb, whereas 

the short fractures comprises 69% in the backlimb, 74% in the hinge and 56% in the forelimb. 
 

4.4.1 Tentative interpretation 
Many similarities can be determined between both the thrust domains and subareas. Three 

fracture categories can be distinguished. On the background of these observations the 

following interpretations are made:  

Four bedding-perpendicular fracture sets striking more or less systematic to the fold 

axis are found in nearly all the thrust domains; set I, II, III and IV (figure 4.17; 4.18). Set I 
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strikes between NW-SE and N-S and are parallel to the fold axis. These fractures are 

interpreted as tensile fractures within the b- and c-axis (Turner and Weiss, 1963; Hancock, 

1985). However, many may have been reactivated as shear fractures (see discussion chapter 

5). Set III strikes between NE-SW and E-W and are perpendicular to the fold axis. This set is 

interpreted to be tensile fractures within the a- and c-axis (Turner and Weiss, 1963; Hancock, 

1985); again reactivation is possible. Set II strikes between N-S and NE-SW and set IV strikes 

between E-W and NW-SE. They are together interpreted as conjugate hk0 shear fractures 

with the enclosing acute angle perpendicular or parallel to the b-axis (Price, 1967; Hancock 

1985). 

 
Figure 4.17: Along-strike variations showing the dominating sets including all populations. See figure 4.1 for 
legend of bedrock map. 
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Figure 4.18: An overview map of the Mediumfjellet displaying the strike orientations of the three fracture 
populations 
   
 

Three conjugate sets with the acute angle perpendicular to the bedding are found, striking 

mainly in three directions; Set q strikes NNE-SSW, set x strikes WNW-ESE to NW-SE, and 

set w strikes ENE-WSW. These fractures do not seem to have developed symmetrically with 
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the macro-folds. However they are still interpreted to be conjugate h0l/0kl sets with the 

enclosing acute angle about the c-axis (Hancock, 1985). 

The low-angle-to-bedding thrust faults/ shear fractures and their associated fractures 

are both analyzed in present orientation and restored with the bedding back to horizontal. In 

order to further consider whether they are pre-folding or syn-folding fractures. Three sets are 

found in their outcrop orientation. Set A strikes between NNE-SSW to N-S, set B strikes 

WNW-ESE to W-E, and set C strikes NNW-SSE to NW-SE.  When restoring the fractures, 

three sets are also identified, but with slightly different strikes. Set A strikes NNE-SSW to 

NE-SW, set B strikes W-E to WNW-ESE, and set C strikes NNW-SSE to NW-SE. These 

fractures dip in two directions opposite of each other and are therefore interpreted to be 

conjugate h0l/0kl sets with the acute angle about the a- or b-axis (parallel to the bedding) 

(Hancock, 1985). 

Fracture intensity is interpreted to be in general higher in the hinge zone, although 

examples of higher intensities in the forelimb also are present. When comparing limestones 

and spiculites, the throughgoing fractures are more common i the limestones.  

4.5 Summary 
This chapter will give a brief summary of the structural elements and the fractures linked to 

the fold-and-thrust domains. The area has been divided into four domains; three domains 

associated with the in-sequence thrusts (M1, M2, M3), where the oldest is placed to the NE 

(M3) and youngest to SW (M1), and one domain linked to the younger out-of-sequence (G). 

Each thrust domain consists of several subareas. A short constellation of the subareas will 

follow (see table 4.2 for composite summary of all data).  

The M1-thrust is assumed to be a footwall flat underneath the M2-fold and is laterally 

poorly exposed (figure 4.8). The thrust marks the cut-off of the overlaying M2 anticlinal 

forelimb. No fractures were possible to determine in this thrust domain.  

The M2-thrust is laterally exposed as a tipline in the core of the M2-fold. At locality 

M2-b, the M2-thrust cuts slightly through the fold hinge. The orientation of the fold axis 

curves southwards in a clockwise direction from a NNW-SSE to a N-S trend (from 160º to 

177º). Southwards, the fold also tightens and develops a moderate plunge (figure 4.8). The 

fractures in the M2-thrust domain show a throughgoing similarity. Four fracture sets 

perpendicular to the bedding are found; set I strikes NNW-SSE, set II strikes NNE-SSW, set 

III sets ENE-WSW and set IV strikes WNW-ESE. Of these sets I and III are interpreted to be 

extensional fractures, and sets II and IV are conjugate hk0 shear fractures (Hancock, 1985). 
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The fracture system seems to be more complex where the thrust cuts through the fold hinge. 

The perpendicular to bedding fractures do also show general clockwise rotation southwards. 

The conjugate sets with the acute angle perpendicular to the bedding consist of two major 

sets; set w strikes ENE-WSW and set q strikes NNE-SSW. These sets are interpreted to be 

h0l/0kl fractures (Hancock 1985), but are without symmetric relationship to the fold axis. The 

low-angle-to-bedding thrust faults display three sets, both in present position and when 

restored. However, they show some minor differences. In present positions, set A thrusts 

strike NNW-SSE, set B strikes between WNW-ENE and NW and set C strikes between 

NNW-SSE and NW-SE. The restored fractures reveal thee sets; set A strikes NNE-SSW, set 

B strikes E-W, set C strikes between NNW-SSE, and NW-SE. In both in-situ and restored 

cases, set C is the most prominent fracture set. These fractures are interpreted to be h0l/0kl 

thrust faults with the bisecting acute angle about the a- or b-axis (Hancock, 1985). 

The major M3-thrust appear as a relative flat lying thrust in subarea M3-a. However, 

the thrust seems to develop a prominent oblique ramp in subarea M3-b, before the thrust again 

flattens laterally southwards on a higher stratigraphic level. The lateral ramp is identified 

along strike, where it seems to climb southwards in a flat-ramp-flat geometry (figure 4.8). The 

M3-anticline is fairly small to the N, developing into a NNW plunging, major fold towards 

the ramp-area, and further into two smaller anticlines above faults (branching) in the south. 

The fold axes have a relatively stable orientation. In subarea M3-c, the orientation of the fold 

axis is similar to the M2-thrust, showing a mild bend southwards (from 324 to 339). The 

restored fractures in the M3 domain have great similarities to the M2-thrust domain. Four 

mutual, major perpendicular fracture sets are found. These occur with greater variations than 

in domain M2, in that set I strikes between NNW-SSE and NW-SE, set II strikes between 

NNE-SSW and NE-SW, set III strikes between ENE-WSW and NE-SW, and set IV strikes 

between ESE-WNW and ENE-ESE. Of these, sets I and II are interpreted to be extensional 

fractures parallel and perpendicular to the fold axis and sets II and IV are interpreted to be 

conjugate hk0 sets (Hancock, 1985). The larger variations are found in connection to 

localities near the oblique ramp (subarea M3-b). There, the conjugate sets with the acute angle 

perpendicular to bedding display three orientations, where set q strikes NNE-SSW, set w 

strikes ENE-WSW, and set x strikes WNW-ESE. These fractures are interpreted to be h0l/0kl 

fractures with the bisecting angle about the c-axis (Hancock, 1985), but are not systematic 

with the fold axis. The low-angle-to-bedding thrust faults consist of three sets in their present 

positions. Set A strikes NNE-SSW, set B strikes E-W, and set C strikes between NNW-SSE 

and NW-SE. When restored, they appear as only two sets, where set A strikes NE-SW and set 

76 



Chapter 4  Structural descriptions 

  77   

C strikes NW-SE. Set C is also here the most prominent set for both present and restored 

positions. These fractures have been interpreted to be low angle h0l/0kl thrust faults 

(Hancock, 1985), similar to those in thrust domain M2. 

The Gavltinden thrust (GT) is a steeply dipping thrust, observed to cut down section 

into the Kapp Starostin Formation strata. The thrust has a small curvature in map view, 

bending in both directions towards Wahlenbergbreen. The fold is extremely tight and plunges 

steeply to the NW at the northern end, which could indicate a small oblique ramp in this area. 

The fold is straightening up southwards and seemingly plunges to the SE at the south side (no 

measurements). The fracture sets of the Gavltinden area are similar to the fractures measured 

in the M2- and M3-thrust domains; set I strikes NNW, set II strikes NNE-SSW, set III strikes 

NE-SW, and set IV strikes ENE-WSW. Sets I and III are interpreted to be extensional 

fractures parallel or perpendicular to the fold axis, whereas sets II and IV are interpreted to be 

conjugate hk0 sets (Hancock, 1985). Conjugate sets with the acute angle perpendicular to the 

bedding exhibit two sets, where set q strikes NNE-SSW and set x strikes NW-SE. These 

fractures are interpreted after Hancock (1985) to be conjugate h0l/0kl fractures with the 

bisecting angle parallel to the c-axis. The low-angle-to-bedding thrust faults are slightly 

different in this thrust domain compared to M2- and M3- domains. Two sets are documented 

both in-situ, and restored positions. In observed position, set A strike N-S and set C strikes 

NW-SE, whereas in restored position set B strikes WNW-ESE and set C strikes NNW-SSE. 

Set C is also here the most prominent, but compared to the two previous thrust domains, these 

thrusts are oriented slightly anticlockwise. The fractures are also here interpreted to be low 

angle h0l/0kl thrust faults (Hancock, 1985). 

 

The fracture intensity is in general higher in the fold hinge zones. However, evidences 

for higher intensities are locally also present in the fold limbs (figure 4.15). Large 

throughgoing fractures are observed to be more common in the limestones than in the 

spiculites. Further more, the throughgoing fractures are representing the same orientations as 

the short fractures. When comparing throughgoing fractures to the fold domain, they are in 

general more common in the forelimb (43% of total measured fractures in the forelimb) than 

in the hinge (26%) and the backlimb (31%). 
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Chapter 5 
Structural analysis and discussion 

 

5.1. Introduction 
This chapter includes an analysis and the related interpretation of the structural elements 

described in chapter 4, with the main focus on the fracture system of the study area. The 

interpretation leads to the discussion including a 2 stages fracture model, followed by the 

relevance of the fracture system for fluid flow. 

 

The focus of the study is on the fracture geometry. However, in order to understand the 

fracturing, the influence or link to the large structural elements is of great importance. The 

chapter is split into 3 parts. The discussion firstly addresses the macro-scopic structural 

elements in chapter 5.2 and, secondly, the fracture distribution within the fold-and-thrust 

system of Mediumfjellet (chapter 5.3). Certain observations regarding the fold geometry, fold 

evolution and the fracture distribution will then be addressed in chapter in context of the 

regional kinematics including the two stage fracture model. Subsequently, chapter 5.4 will 

discuss how the fold mechanics influences the fracturing, before the model is compared 

similar petroleum regions in the world, and discussed with permeability and porosity 

occurrence at Mediumfjellet.  

5.2 Fold and thrust geometry 
Fracturing is well known to be kinematically closely related to folding and thrusting, and the 

knowledge of the fold and thrust evolution can to a certain degree be used to predict the 

occurrence of fold-related fractures (e.g. Fischer and Wilkerson, 2000). The discussion of the 

fold-and-thrust system geometry of Mediumfjellet forms the foundation for further debating 

the fracture development at the field sites. 

 Summarized, the field area of Mediumfjellet is divided into three in-sequence thrust 

domains (M1, M2, and M3) and one out-of-sequence thrust domain (G) (figure 4.1). The M1 

thrust is poorly exposed and can not easily be followed, but seems to be a footwall low-

angular thrust cutting the forelimb of the M2 fold-propagation fold. The M2 thrust splays 

from the M1 thrust and forms a macro-scopic anticline, where the M2 thrust basically 

terminates in the core of the fold. The anticline is tight, with an overturned eastern limb and 
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locally is cut by the thrust. In the north, the fold plunges to the south. Southwards it tightens 

and the fold axis rotates clockwise near Yoldiabukta. The M3 thrust domain similarly consists 

of a tight and overturned anticline, in this case in the NW of the M3-thrust, but the fold seems 

to have greater lateral variations. The fold changes southwards from a small and tight 

anticline in the north, to a major, overturned, NW-plunging anticline with a smaller frontal 

syncline, and then splits into two folds above two thrusts southwards near Yoldiabukta. The 

Gavltinden thrust domain (G) is characterized by a steeply dipping thrust that is observed to 

cut down-section through the strata. The hanging wall of the G displays a very tight and partly 

overturned, NW-plunging anticline that changes to a southwards plunge in the south. A bend 

in the thrust and the steep fold plunge in the north may indicate variations in thrust 

displacement.  

When analyzing the thrusts in more detail, the admissible cross-sections show that the 

M1 thrust cut the foot-wall with a low angle and is most likely a hanging wall flat close above 

a thrust ramp resulting in the hanging wall M2 anticline. The thrust truncation of the M2 fold 

core towards the north and the clockwise rotation of the M2 fold towards the south cold imply 

that the M2 thrust displacement decreases southwards. The lateral variations in the M3-thrust 

system is interpreted to reflect two thrust linkages, probably resulting in oblique ramps or 

ridges (figure 4.8), whereas the out-of-sequence Gavltinden thrust is superimposed on earlier 

structures. 

This study suggests that the thrust system is a forward propagating in-sequence 

imbricate fan where the M3-thrust is the oldest and the M1-thrust is the youngest. The fold-

and-thrust system consists of low-angle-to-footwall-bedding thrusts and fault-propagation 

folds or transported fault propagation folds (see McClay, 1992). The Gavltinden thrust is 

thought to be an out-of-sequence thrust, transporting an older, truncated anticline. This is so 

because of the tight fold shape and the locally down-section-cutting thrust. These 

interpretations are based on the following observations: 1) fault geometry, 2) fold geometry, 

and 3) the lidar scan interpretation. See chapter 4 for detailed description of the lateral 

changes of the three sub-domains and their accompanying subareas, and chapter 1 for a brief 

description of previous work and models presented from the field area.  

 The model of the fold-and-thrust geometry suggested in this study is in accordance 

with several other interpretations of this and nearby areas (e.g. Bergh and Andresen, 1990; 

Wennberg et al., 1993; Bergh et al., 1997; Braathen et al., 1999a; Braathen et al., 1999b; 

Ingebrigtsen, 1994 and Haabet, 1995), but has some minor differences. These differences are 

identified because this study has made it possible to see the structural geometry and the 
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associated lateral variations in a completely different way. The collected laser-scan of the 

mountain-ridge has been analyzed in a computer based 3D-model (e.g. figure 4.8), which 

visualize the entire Mediumfjellet fold-and-thrust system. There are several benefits of the 

computer based analysis. For example, Berg and Andresen (1990) refer to the M3-thrust as 

one throughgoing thrust along the Mediumfjellet ridge. Interpretations made in the presented 

model shows that the M3 thrust surface has significant lateral variations, in that the thrust 

surface shows two ENE-WSW directional ridges, separated by large concave trajectories 

(figure 4.8). These ridges are located in subareas M3-b and M3-c. Such furrowed or fluted 

surface-patterns have been described by Ray (2006) as a common shape of thrust growth and 

subsequent fault linkage in fold-and-thrust belts. This study suggests that the three M3 

segments are linked in these two subareas, which is added by the observations of two fault 

segments that appear on different stratigraphic levels, and that the associated folds plunge in 

the linkage direction, implying less displacement (chapter 5). 

Berg and Andresen (1990) suggest that the lateral changes prove that the fold 

mechanism is interchangeable between a fault-propagation fold mechanism (e.g. Jamison, 

1987) and fault-bend fold mechanism (e.g. Suppe, 1983; see chapter 2). However, neither of 

the two fold models explains the fold geometry of the Mediumfjellet properly, as discussed in 

the continuation.  

Based on the observations of thinned forelimbs and thickened hinges, Bergh and 

Andresen (1990) also suggested that the folding is caused by shear folding. These 

observations are confirmed in the present study. However, evidences for flexural slip folding 

(Twiss and Mores, 1992; see chapter 2) has also been observed in the field, which is further 

supported by earlier described flexure slip folding from the Vermlandrygg anticline 

(Ingebrigtsen, 1994; Haabet, 1995). The questions of structural style and folding mechanism 

are further discussed in chapter 5.5.2 and 5.5.3; however, in this case the discussion is in 

relation to the fracture distribution. 
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5.3 Kinematics and chronology of fractures 
The fracture characteristics of Mediumfjellet suggest a complicated fracture history. Three 

main fracture populations are documented, the so-called; 1) perpendicular fractures (sets I-

IV), 2) conjugate fractures (sets q, w and x), and 3) thrust faults (sets A, B and C) (see chapter 

4). The fracture distribution is further discussed in section 5.4, but is here discussed as the 

main criteria for the fracture chronology. These criteria are based on, firstly the symmetric 

relationship of the fracture orientations to the fold axis and, secondly rotated positions within 

the major fold. 

The perpendicular and conjugate fractures are interpreted to be related to the folding 

event, whereas the thrusts are interpreted to be related to an early stage of contraction that 

most likely occurred prior to folding. This suggests a 2 stage fracture model (figure 5.1), with 

a pre-folding fracture event indicating a NE-SW shortening direction and a syn-folding 

fracture event suggesting a NE-SW to E-W shortening. The fractures are described with their 

tentative interpretations in chapter 4. Braathen et al., (1999) describe a 5-stage kinematic 

model for the Spitsbergen fold-and-thrust belt as a whole, of which two events affected the 

central zone including Mediumfjellet (Bergh and Andresen, 1990). This is outlined in chapter 

1. The suggested 2 stage model in the present study proposes a third stage in addition to the 

model presented earlier from the central zone (explained as stage 1 in the suggested 2 stage 

fracture model).   

The suggested 2 stage fracture model in the present study (figure 5.1), is supported by 

earlier studies made in the Spitsbergen fold-and-thrust belt (e.g. Kleinspehn et al., 1989; 

Wennberg et al., 1994; Braathen and Bergh 1995; Bergh et al., 1997; Braathen et al., 1999). 

Bergh & Andresen (1990) introduce a 2 stage kinematic model from the Mediumfjellet and 

Lappdalen thrust front starting with an in-sequence and a subsequent out-of-sequence stage. 

Braathen et al. (1999) shows that the in-sequence thrusting are characterized by folding-and-

thrusting in an ENE direction (stage 2 and 3; chapter 1), and the following out-of-sequence 

folding and thrusting is in a NE direction (stage 4; chapter 1). These two stages are part of the 

5 stage model of whole Spitsbergen fold-and-thrust belt, which Braathen et al., (1999) 

summarize from earlier work. However, stage 1 and stage 5 are not shown to exist in the 

central zone of the thin skinned deformation province (Braathen et al, 1999). The two fracture 

stages will here be discussed in light of the earlier suggested five stages. 
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5.3.1 Pre-folding fracturing (stage 1) 
As well established above, the fracture system has been split into three main populations; 

fractures perpendicular to bedding (extensional and shear fractures), conjugate h0l/0kl 

(hybrid) fractures, and thrusts. A fourth population is the so called unknown fractures. The 

fractures have been described in detail and interpreted in chapter 4. Earlier conceptual models 

from similar studies are described in chapter 2.  

The low angle thrust faults are interpreted to be conjugate h0l/0kl fractures with the 

acute bisecting angle parallel with the bedding (Hancock, 1985). Three sets are observed.;Set 

A strikes between NNE-SSW to N-S, set B strikes WNW-ESE to W-E and set C strikes 

NNW-SSE to NW-SE.  The restored (back-rotated with bedding) fractures consist similarly of 

three sets, showing some minor differences in orientation. Set A strikes NNE-SSW to NE-

SW, set B strikes WNW-ESE to W-E and set C strikes NNW-SSE to NW-SE. Set C is the 

most dominating in both cases. Because of the similarity in style/orientation, the sets will 

hereafter be referred to as restored fracture when they are mentioned. The fractures dip in 

opposite directions between 15º and 40º. In an interpretation as conjugate shear fractures, the 

largest principal stress direction is parallel to the bedding and perpendicular to the strike 

direction (see chapter 2) (Hancock, 1985; Price 1966), which implies a WNW-ESE (set A), 

NNW-SSE (set B) and ENE-WSW orientation of stress. These fractures are interpreted to 

have developed prior to the folding event; however, some aspects regarding the fracture 

distribution will be discussed here. 

 The indication for a pre-fold fracture event is sustained by the following observations; 

i) the low-angel-to-bedding thrusts strike preferably with a NW-SE to NNW-SSE orientation, 

which indicates a NE-SW to ENE-WSW shortening axis. ii) Slickensides on the fault planes 

trend in a NW-SE direction. iii) Fault planes are rotated or even folded within the major folds 

indicating that they developed before folding (see chapter 4). Finally, iv) the thrust faults 

orientation is consistent when restored with bedding (bedding back to horizontal position). 

When restoring the thrusts, they all seem to have the same dip (between 15º and 40º), which is 

the mechanical expectation for a pre-folding thrusts position.  Additionally can calcite filling 

on most of the thrust surfaces and perpendicular fractures terminating at the faults surface can 

be mentioned, but there are not enough data to conclusive. Two of the evidences (ii and iii) 

are discussed under, related to the kinematics and the fracture chronology. 

 
In the light of the kinematics established for the fold-and-thrust belt, the this population of 

fractures (sets A, B and C) are thought to be developed at an early stage of the fold-and-thrust 
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belt evolution. Early developed thrusts, which later have been folded, would appear as rotated 

within the fold system. Several rotated thrust-related structures (thrust faults or small fault 

propagation folds) are observed in many of the subareas (e.g. figure 4.7). The evidence for 

rotation is that the thrusts seem to have a consistent fault angle to the bedding regardless of 

the bed orientation. Butler (1992) shows, similarly, that low-angle fractures to the bedding 

most likely have developed prior to folding. He demonstrates this theory by restoring the low-

angle-to-bedding fractures (unfolds the beds back to horizontal). He points out that low-angle 

fracturing caused by folding would rather develop near parallel to the main thrust and cause 

shearing and thinning in the forelimb of the fold (discussed in chapter 5.4). These fractures 

are in this present study interpreted to have developed prior to folding. 

Looking at the low-angle-to-bedding thrust faults from field observations in the thin-

skinned deformation zone represented by Mediumfjellet, the present study tentatively presents 

evidence for an early initial contractional stage (stage 1 in Braathen et al., 1999; chapter 1). 

This deformation phase is characterized by fairly mild NE-SW shortening, by small thrusts at 

Mediumfjellet, in contrast to the intense deformation reported from areas in the west 

(Braathen et al. 1999). Similar conclusions have been reached from work in the western 

basement-involved deformation zone (Nordenskiøldland; Braathen and Bergh, 1995, and 

Brøggerhalvøya; Bergh et al., 2000), which proposes an initial stage characterized by NNE–

SSW to N-S shortening.  

 There are however minor differences between the kinematics of earlier work and the 

pre-folding fractures at Mediumfjellet.  Firstly, the thrusts documented at Mediumfjellet have 

a slightly clockwise rotated orientation compared to that reported from the western thick-

skinned deformation zone at Nordenskiøldland (Braathen and Bergh, 1995). A possible 

explanation could be that Mediumfjellet is located in proximity to the Isfjorden-Ymerbukta 

fault zone, a transfer fault in the fold-and-thrust belt (see previous work, chapter 1; Braathen 

et al., 1999a; Karlsen, 2000). The strain partioning of the thrust sheets caused by this 

transverse structure might have rotated the stress field slightly as indicated by the bend in the 

M2- and M3-fold axes to the south. This theory is supported by Karlsen (2000) who also 

reports low-angle-to-bedding thrust faults with ENE-WSW to ESE-WNW shortening 

direction. These thrusts are interpreted to pre-date the later major thrusting.  

Secondly, several of the restored thrust faults also have strikes prominently between 

E-W and ENE-WSW, indicating N-S directed shortening orientations. Similar thrust 

directions were reported by Hansen (1991) (see also Wennberg, 1994) from the Lappdalen 

area north of Mediumfjellet. There are several possible explanations for these structures; i) 
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they may be caused by the folding event (syn-folding structures) and should in such a case not 

be restored; ii) they may be caused by local and lateral variations of the stress field such as 

around lateral ramps, which will rotate the stress field (Aptoria, 1992); iii) they may represent 

reactivation of pre-existing structures, in this case suggesting that even earlier fracture imprint 

may exist. In the latter context, it is worth mentioning the technical picture established at 

Brøggerhalvøya (Bergh et al., 2000), where N-S shortening is pronounced at an early stage. 

The few observations at Mediumfjellet opens for that those structural trends are more 

widespread. 

 
Figure 5.1: The present study suggested two-stage model of fracturing in Mediumfjellet. Stage one suggests 
generation of low-angle-to-bedding thrusts and possible extensional fractures, whereas stage two displays the 
rotated low-angle-to-bedding thrust truncated by superimposed perpendicular fractures and conjugate hybrid 
fractures (see text for explanation). 

5.3.2. Syn-folding fracturing (stage 2) 
Two fracture populations are recognized with a symmetric relationship to the fold; bot 

subvertical and conjugate hybrid fractures. 
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Looking into the perpendicular fractures, there are striking similarities between the 

thrust domains and the subareas. Four fracture sets can principally be determined; set I, II, III 

and IV (figure 4.11). All four fracture sets strike in directions which are interpreted to be in 

systematic around the fold axis (figure 4.18) and, hence, are here suggested to be related to 

the folding event (e.g. Fischer and Wilkerson, 2000), as clarified above. As described earlier, 

set I strikes between NW-SE and N-S, set II strikes between N-S and NE-SW, set III strikes 

between NE-SW and E-W, and set IV strikes between E-W and NW-SE. Set I and III is 

interpreted to be extensional orthogonal sets (e.g. Kulander et al., 1979), where set I is parallel 

and set III perpendicular to the fold axis. Set II and IV are interpreted to be hk0 shear fracture 

sets (e.g. Hancock, 1985), which both occur with the intersecting acute angle parallel or 

perpendicular to the fold axis. 

 Similar fracture patterns have been reported from other studies (e.g. Stearns, 1968; 

Hancock, 1985; Bergbauer and Pollard, 2004; Bellhansen et al., 2006; Cooper, 2006). These 

conceptual models show the distribution of fracture orientations that can be expected from 

thrust-related folds. In general they all separate into three different populations; dilatational 

fractures, shear fractures and hybrid fractures (e.g. Hancock, 1985). In some models, the 

fracture system connects to cylindrical (e.g. Price, 1966) or symmetric folds (e.g. Stearns, 

1968), while others argue for fracturing in more complex non-cylindrical (e.g. Stearns and 

Friedman, 1972) and asymmetric folds (see chapter 2 for more information).  In any case 

several differences can be noted when comparing published results with those presented 

herein.   

 Firstly, cylindrical fold models can not explain the fracturing associated with the 

lateral ramps and fault segments. In these subareas (M3-b and G-a), where the fold plunges 

similar to the ramp, the fractures seem to be oriented nearly angular to fractures elsewhere. 

This is well illustrated in subarea M3-b and GT-a, where the hk0 fractures are oriented 

perpendicular to the fold axis (acute bisecting angle around the a-axis). With the basis in the 

literature, previous studies considering non-cylindrical fold (e.g. Stearns and Friedman, 1972) 

explain how the fracture orientations changes around the fold as the fold axis varies in plunge 

(figure 2.4). This suggests lateral variations of fracturing in relation to non-cylindrical 

element. 

 Secondly, the fractures which were measured and interpreted to be hk0 fractures 

(Hancock, 1985) in the study area are mainly oriented with the intersecting acute angle 

parallel to the fold axis (b-axis). This fracture set is described as infrequent by Price and 

Cosgrove (1990) (figure 2.4). Yet, Stearns (1968) pointed to that such hk0 shear fractures 
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(with the enclosing angle about the b-axis; Hancock 1985), can be related to the more 

common hk0 fractures (with the enclosing acute angle about the a-axis). In the case when a 

given fold has developed a neutral surface (figures 2.4), the principal axis of stress and strain 

are known to position across this neutral surface (figure 2.3; chapter 2). This means that 

conjugate fracture sets with the acute angle about the a-axis underneath the neutral surface, 

may change to conjugate fracture sets with the acute angle about the b-axis above the neutral 

surface. This kind of hk0 fracturing has also been reported from the Alpine external southwest 

Pyrenees (Hancock, 1985). The present study at Mediumfjellet suggests a neutral surface 

folding mechanism  

 Thirdly, the orthogonal fracture system consists of dilational fractures both parallel 

and perpendicular to the fold axis. However, the most commonly occurring fracture of the 

M2- and M3- thrust systems are the fractures striking perpendicular to the fold axis. Hancock 

(1985) showed that this fracture orientation develop parallel with the direction of the highest 

principal stress. Contrary to the other subareas, such fractures are basically absent in subarea 

G-a. In this case, the extensional fracture set parallel to the fold axis is the most prominent. 

This might be related to the out-of-sequence thrust-related folding, where the layers have been 

folded extremely tight and therefore experienced layer parallel, fold-axis perpendicular 

stretching.  

 

There are also identified three sets of conjugate fractures (hybrid fractures) with the acute 

bisecting vector perpendicular to the bedding. These h0l and 0kl fractures are also called 

hybrid fractures and develop as extensional shear fractures where the maximum stress (σ1) is 

perpendicular to bedding (see chapter 2). Set q strikes NNE- SSW to NE-SW, set x strikes 

WNW-ESE to NW-SE and set w strikes ENE-WSW. See chapter 4.3 for detailed description 

of these fractures or chapter 4.5 for a brief summary. 

 Hybrid fractures have been described by several authors (e.g. Jaeger and Cook, 1979; 

Ramsey and Chester, 2004). Hancock (1985) points out that these fractures can be present in a 

fold but will form symmetrically around the fold axis, either parallel or perpendicular to the 

axis. The sets q and x fractures collected at Mediumfjellet can easily be related to the fold 

symmetry as both set q and x strike obliquely to the fold axis. However, set w is 

perpendicular to the fold axis. The orientations of these fractures can be explained in several 

ways, as addressed below.  

 The fractures could be extensional features developed in relation to folding. In this 

case, the fractures will develop perpendicular to the direction of the least principal stress; if 
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the greatest principal stress is vertical to the bedding (e.g. Peacock and Sanderson, 1992). Set 

w, perpendicular to the fold-axis, suggests that extension along the fold axis may have 

occurred. As the fold geometry is not cylindrical in the study area, local strain fields may have 

developed. Alternatively, changes in fracture orientations cold be related to fold plunges and 

associated lateral ramps (e.g. Stearns and Friedman, 1972), as discussed earlier with 

perpendicular fractures. However, these w-set fractures do not occur frequently in areas where 

major folds plunge significantly (in subarea G-a and M3-b; see chapter 4). Another 

explanation of these hybrid fractures related to the folding event in that they may be the 

formation as en échelon fractures. This can be explained by shearing between two controlling 

fractures. Set q and x both strikes oblique to the fold axis, although together they are oriented 

symmetric compared to the fold axis with crosscutting relationship. Their bisecting acute 

angle strikes parallel to the extensional fractures. Their interpretation can be supported by  the 

work of Florez-Niño (2005), who shows that shearing between extensional fractures oriented 

perpendicular to the fold axis may produce oblique fractures. In this case, shearing between 

the extensional fractures perpendicular to the fold axis has not been observed. However, en-

échelon fractures (set q) were observed in subarea M3-b, which supports the theory. 

Perpendicular extensional fractures oriented normal to the fold-axis at Mediumfjellet are also 

seen as large, pronounced and throughgoing fractures which could have caused shearing 

between them. 

 A second explanation for the hybrid fractures is that they are pre-existing features 

developed prior to folding. Several studies have shown that such fractures to be common for 

flat-lying sedimentary strata (e.g. Peacock and Sanderson, 1992) 

 
In a regional context, three fracture populations (sets I-IV and q, w and x) have been 

interpreted to have developed synchronously with the folding event; i) extensional fractures 

parallel and perpendicular to the fold axis (sets I and III), ii) conjugate hk0 (Hancock, 1985) 

shear fractures with the acute bisecting angle parallel to the bedding and parallel or 

perpendicular to the fold axis (sets II and IV), and iii) conjugate h0l/0kl (Hancock,1985) 

fractures with the acute bisecting angle perpendicular to bedding, and orientations symmetric 

with respect to the fold axis (sets q, w and x) (see discussion in chapter 5.4 for more 

information of the these fracture types and the  distribution). The evidence for temporally 

interacting folding and fracturing is based on the symmetric relationships with the fold 

geometry, suggesting a link between these two deformation mechanisms. Such a linked small 

and large scale deformation style is reported by numerous authors (e.g. Price, 1966; Stearns 

88 



Chapter 5  Structural analysis and discussion 

1968; Stearns and Friedman, 1972; Price and Cosgove, 1990; Bergbauer and Pollard, 2004). 

However, McClay (2000) argues that the fracture chronology and orientations may vary with 

the changing slip and stress/strain orientations. Following McClay’s (2000) view; two 

theories for fracture development and evolution will be discussed (figure 5.2); i) fractures 

developed in relation to the major folds, or ii) extensional fractures developed in an 

orthogonal  pattern prior to folding and have later been reactivated as shear fractures during 

folding. 

The first theory include the three fold related fracture populations mentioned above. 

The dilatational (extensional) fractures found at Mediumfjellet are both parallel and 

perpendicular to the fold axis (chapter 4). These fractures have their axis of least principal 

stress perpendicular to their strike direction and the axis of greatest principal stress 

perpendicular to bedding or parallel to the strike direction. In a folding event, the maximum 

horizontal stress is most likely parallel to the strike of the fractures (Hancock, 1985) (see 

chapter 2). The direction of the greatest horizontal stress is here found to strike between NE-

SW to NNE-SSW for Mediumfjellet. The conjugate hk0 (Hancock, 1985) shear fractures 

found at Mediumfjellet have an acute bisecting angle both parallel and perpendicular to the 

fold axis, of which the most common fracture population has the acute angle parallel to the 

fold axis. This study suggests that these fractures have developed in accordance to local stress 

fields during the folding event, by extension along the trend of the fold axis and by local 

shearing, basically by developing en-échelon fractures between the dilatational fractures. 

Therefore, they are not related to the regional kinematics 

The second theory is based on that the perpendicular fractures may have developed as 

extensional orthogonal sets in two directions prior to the major folding event, first in a NW-

SE initial contractional stage possibly related with the low-angle-to-bedding thrusts (stage 1; 

Braathen et al., 1999), followed by a new set within a NNE-SSW contractional stage (stage 2; 

Braathen et al., 1999). In this model the early developed extensional fractures have been 

reactivated in the major folding event as shear fractures (figure 5.2). Of special interest in this 

context is the work by Engelder and Geiser (1980) and Engelder (1982), which show that 

extensional fractures parallel to the maximum horizontal stress in the Appalachian Plateau 

(New York) are the first fractures to develop in a contractional regime. Such fractures may 

even develop far ahead of the advancing thrust front. Further these authors argue that even if 

several fracture sets occur with a crosscutting relationship, they are extensional fractures that 

have developed in a changing stress field, reflecting the orientation of the maximal horizontal 

stress at any given time that the fracturing stress is reached. 
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The interpreted stress axes for the three aforementioned fracture populations suggests 

a general NE-SW to E-W orientation, which is in accordance to what has earlier been 

suggested (e.g. Braathen et al., 1999). Fractures that do not fit into this syn-fold model are 

thought to be fractures developed in accordance with local stress/strain fields such as the 

mentioned lateral ramps, or have developed prior to folding. Based on the close symmetrical 

relationship between the major folds and fractures, this study suggests that the syn-folding 

fracture event best explains the vast majority of the fracture data. 

 
Figure 5.2: Two models for chronological fracture development at Mediumfjellet. The uppermost figure 
suggests three stages of pre-folding fracturing (1 and 2) and one syn-folding stage (3) with reactivation of 
previous fractures (from 2) as conjugate hk0 shear fractures. The lowermost figure displays pre-folding 
fracturing initiated as thrusts (1) and syn-folding fractures (2). It is concluded that the latter, is the most likely 
model in this study. 
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5.3.3 Out-of-sequence fracturing (stage 3?) 
A third possible stage of fracturing may potentially exist in the area, related to the out-of 

sequence thrusting. In order to address this option, a comparison between fracture 

development within the in-sequence thrust domains and the out-of-sequence thrust domain 

was conducted. No major variations were found. The fractures of the out-of-sequence thrust 

domain are thus suggested to have developed synchronous with the in-sequence fracturing 

and subsequently likely been reactivated during the out-of-sequence fold-and-thrust event. 

5.3.4 Non-systematic fractures 
The non-systematic fractures do not show any orderly relationship to the fold axis or to each 

other. These fractures can not be interpreted to have developed synchronously or prior to 

folding. They may be preexisting fractures or fractures caused by local stress fields within the 

complex fold-and-thrust system. Similarly, Hancock (1985) interprets fractures that do not 

have any symmetric relationship with the fold axis to be developed prior to or after the 

folding event, or be caused by local stress fields within the fold systems. Fischer and 

Wilkerson (2000) interpreted them to be induced by fold-related strain. 
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5.4 Fold growth linked to fracturing 
Most of the existing fracture models do not consider the temporal evolution of the folding, 

such as fold migration, hinge rotation or influence of pre-existing fractures (e.g. Price, 1966; 

Stearns, 1968; Hancock, 1985). By connecting the fold geometry (discussed in chapter 5.2) 

and the fracture distribution (discussed in chapter 5.3), these topics can now be further 

considered. 

Fracturing within the two fault-related folds of current interest (fault-bend fold and 

fault-propagation fold) depends on several factors regarding the kinematics and temporal 

evolution of the fold. Numerous studies highlight the different aspects in the development of 

these two fold types (e.g. Suppe, 1983; Jamison, 1987; Saffar, 1992; Erslev and Mayborn, 

1996; Salvini and Storti, 2000; Suppe et al., 2004; Hardy and Connors, 2005; Tavani et al., 

2006). These studies are in general regarding the interaction between fold and fault growth, 

i.e. the fault propagation, in light of ramp angles (e.g. Almendinger, 1998), limb rotation (e.g. 

Erslev, 1991), hinge migration (e.g. Suppe, 1983), and fold mechanisms (shear or flexural slip 

folding) (e.g. Colman-Sadd, 1978; Suppe 1983 and Erslev, 1991). In the following sections, 

fold and fracture aspects of the present study be will discussed by combining the relationship 

between fracturing, the folding and bed properties. The background theory is already 

described in chapter 2. 

 Generally speaking, the thrust-related fold geometry depends on the ramp angle, as 

discussed by Suppe and Medwedeff (1990). High thrust ramp angles produce open and 

upright folds, whereas low thrust-ramp angles produce tight and overturned folds. This is 

interesting since tight folds in general will develop higher fracture intensities in the hinge 

zone than open, upright folds. In this study, very tight folds are observed both in subarea M2-

c and G-a. Subarea M2-c reveals a low-angle thrust fault, whereas the subarea G-a with the 

upright Gavltinden thrust anticline is thought to be tight because of the two generations of 

folding and thrusting (out-of-sequence) imposed on the rocks. In a broader perspective, 

several authors have found strong correlations between fold-hinge curvature and fracture 

intensities (e.g. Pearce et al., 2006). This study supports this correlation by showing that the 

hinge zone has higher fracture intensity than the backlimb and forelimb (figure 4.16; see 

chapter 4). On the contrary, Mynatt et al., (in press) found that fractures do not necessarily 

relate to the fold curvature. Salvini and Storti (2000) support that by inferring that the 

deformation depends on the time and space distribution of the fold evolution. 
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 Limb rotation or fixed limbs are two typical models for explaining the fold evolution 

of thrust related folds. They are commonly explained in relation to if the fold hinges are 

migrating or fixed (e.g. Salvini and Storti, 2001; figure 5.3). Fold-propagation folds are 

commonly regarded to develop with a fixed hinge and rotating limbs (Mosar and Suppe, 

1992). Contrary, a fold-bend fold has hinge migration and fixed limbs (Suppe, 1983). In 

addition, a transported fault-propagation fold forms as a mixture of these two fold 

mechanism. In a non-migrating hinge zone (fixed hinge zone), the deformation will basically 

concentrate at the hinges and decrease towards the limbs and will be more or less constant 

during fold growth, except the forelimb, which go through some deformation (e.g. Erslev, 

1991). Contrary, the deformation in a hinge-migrating fold will be higher in the fold limbs, 

and constantly deforming as the fold propagates over the ramp (e.g. Suppe, 1983). The 

fractures are largely influenced by the deformation in the fold, where a relationship between 

fold mechanism and the fracture intensity are established. Figure 4.16 shows the overall 

fracture intensity in number of fractures per meter versus the bed thickness. It is clear the fold 

hinges in Mediumfjellet in general has significant higher fracture intensity than the forelimbs 

and backlimbs. In accordance with the discussion above, this may indicate a fixed hinge for 

the development of the Mediumfjellet folds, proposing fold-propagation folding (see figure 

5.3). However, local variations show that the intensities can also be higher in the forelimb in 

this case suggesting either a fault-bend fold or transported fault propagation fold deformation. 

Limb rotations occur only within a fault-propagation fold or a transported fault-propagation 

folding. In this model, the forelimb continuously changes the dip, and may even be vertical or 

overturned (Shaw et al., 2005).  

The three folds presented above may all be present in Mediumfjellet. They could be 

induced by two possible fold mechanisms; i) shear folding or ii) flexural-slip folding (see 

chapter 2 for descriptions). Shear folding mechanism may be present in both fault-

propagation folding and fold-bend folding (Shaw et al., 2005). A fault-propagation fold is 

characterized by a triangular (trishear) zone of shearing propagating from the thrust tip 

(Erslev, 1991), which produces thinning in the forelimb and thickening in the hinge. It has 

earlier been alluded that the folding mechanism in the study area has developed partly by 

shear folding, because of the thickened hinge zones and observed thinning of the limbs 

(Bergh and Andresen, 1990). This has also been observed in the present study. However, 

other observations rather suggested an input of a forced folding mechanism (flexural-slip 

folding), because of the following two observations; Firstly, shear surfaces between the 

stratigraphic layers has been observed near the hinge zone, for example at locality M3-7  
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Figure 5.3: Deformation panels of fault-propagation folds (A) and fault-bend fold (B). A) Constant thickness (a) 
and overturned (b) fault-propagation fold. Note that deformation for the overturned fault-propagation fold is high 
in the hinge zone and low in the fold limbs B) Simple step fault-bend fold with migrating fold hinges. The 
highest deformation is located in the limbs (modified from Salvini and Storti, 2001).  
 

 

(figure 4.12) and, secondly, M and Z meso-scopic fold geometries are observed for example 

in subarea M3-b. These structures are commonly associated with flexural-slip folding or 

neutral surface folding (Davis and Reynolds, 1996).  

The present study thus proposes a relationship between the fracture intensity in the 

fold domains (forelimb, hinge and backlimb) and the fold mechanism. The intense fracturing 

in the hinge zone, combined with observations such as overturned (limb rotation) and thinned 

forelimbs (trishear) suggest that the Mediumfjellet thrust stack most likely consist of fault-

propagation folds and transported fault-propagation folds formed by both shear folding and 

flexural-slip folding. This study thus suggests local lateral variations between these two 

mechanisms.  
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5.5 Fold-and-thrust belts and fracture reservoirs 
Zagros fold and thrust belt is located at the northeaster part of the Arabian plate. The fold-

and-thrust belt is a result from a collision between the Arabian plate and the central Iran plate 

starting in the late Cretaceous until present (e.g. Stocklin, 1968). Similarly to Spitsbergen 

fold-and-thrust belt, the Zagros fold-and-thrust belt consist of several levels of weak strata 

and detachment horizons interbedded with stronger competent beds (Fard et al., 2006). The 

lithologies consist mainly of limestones interbedded with sand, evaporites and shales 

(Rudkiewicz et al., 2007). Emphasis has been on the Asmari Formation, which has been 

investigated for fracture development (Wennberg et al., 2006; Ahmadhadi et al., 2007). 

Similar to the present study of Mediumfjellet, Wennberg et al., (2006) analyzed orthogonal 

fracture sets with the most prominent set parallel to the fold axis. However, no shear fractures 

where documented. Wennberg et al., (2006) further compared the fracture intensity to the bed 

mechanics. Contrary, in the study of Ahmadhadi et al. (2007) the fracture orientation in 

several anticlines is oblique to the fold axis. Thus, the derived interpretation is that controlling 

pre-existing fractures were reactivated during the folding event. The Zagros fold-and-thrust 

belt is today highly productive on hydrocarbon resources (Wennberg et al., 2006; Ahmadhadi 

et al., 2007; Rudkiewicz et al., 2007), in many cases producing from fracture reservoirs. 

The South Pyrenean fold-and-thrust belt is located between Spain and France and is a 

result of a continental collision of the European plate and the Iberian plate. Collision occurred 

between early Eocene to late Oligocene. The orogeny is double-verging in that it consists of 

two foreland fold-and-thrust belts, one on each side of the collision suture (e.g. 

Puigdefàbregas et al., 1992). Main lithologies involved in the deformation are red sand at the 

base overlain by carbonate rocks interbedded with salt, gypsum and shale, again overlain by 

turbeditic silisiclastic rocks. Salt is making up the detachment horizon (Travé et al., 2007). 

Major folds are formed by thrusts ramping up from the weak detachment surface (Travé et al., 

2007). Similarly to the present study at Mediumfjellet, Tavani et al., (2006) studied the 

relationship between folding mechanism, mechanical stratigraphy and spatial evolution of 

meso-scale structures. They suggest that the frequency of pressure solutions cleavage displays 

a spatial distribution in relation to the fold position, whereas joints and veins are not 

systematic in a similar way. In another publication from the same fold-and-thrust belt, Travé 

et al. (2007) address, factors controlling the fluid flow, and suggested that the fracture 

properties are controlling the flow. In this case as well, the South Pyrenees represents an 

example of a present hydrocarbon producing field, with productive fracture reservoirs. 
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As obvious from the two mentioned fold-and-thrust belts, fractures play a major role 

as fluid flow pathways (e.g. Odling, 1992; Aydin, 2000; Odling et al., 2004) and for 

increasing porosity. Major through going fractures are important for the migration, whereas 

the shorter fractures are valuable for the porosity, especially for impermeable strata such as 

those occurring in the Kapp Starostin Formation. 

 This section will first discuss the rock properties in the Kapp Starostin Formation, 

before comparing the carbonate strata to the fracture development in the fold domains, 

proposing a 2D porosity-permeability model. 

The rock-properties and their related diagenetic history may be an important factor of 

fracturing. Six sedimentary lithologies are sub-divided in the Kapp Starostin Formation at 

Mediumfjellet; siliceous shale, bryozoan shale, brachiopod limestone, bryozoan limestone, 

light-colored spiculite and dark spiculite (see description chapter 3). All the stratigraphic 

layers where considered as potential strata for a possibly carrier rock or rock with reservoir 

properties. These six lithologies can be subdivided into three mutual characteristic categories 

based on the fracture properties; 1) limestone, 2) silica rich mudstone or shale, and 3) paper 

shale.  

Carbonates are common strata for fractured reservoirs (e.g. Normann Wellsfield, 

NTW, Canada; Val d’Agri Fields, Italy; La Paz field, Venezuela). Limestones are 

characterized as a hard and competent rock. Tsang (1984) pointed out that these rocks 

produce clear and tall fractures. Fractures observed in the carbonate rich strata (unit 1, 2, 3, 6, 

9 and 20; figure 3.1) at Mediumfjellet are commonly running through the whole bed 

terminating at the layer boundary. This makes them easy to be determined and measured. 

However, up to 30% of all the fractures observed in field are through-going (running through 

more than one bed). The through-going fractures usually also have the same orientations as 

the shorter fractures.  

Compared to the silica rich strata at the Mediumfjellet, the fractures in the silica-rich 

shale are commonly characterized by very thin hairline fractures often filled with calcite and 

appear in untidy fracture patterns (figure 3.2). One explanation for this could be that when 

siliceous ooze compacts and heats, the rock mass contracts and fractures. This happens when 

the silica transform from opal A to opal C/T (see chapter 2) (Davies, 2005; Davies et al., 

2008).  

 This study suggests the following permeability and porosity model. The model is 

based on fractures collected in the carbonate beds (units 1, 2, 3, 6, 9 and 20; figure 3.1). The 

assumption is built on that the throughgoing fractures benefit the permeability and that the 
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short fractures are important for the porosity. The backlimb consist of 31% throughgoing 

fractures and 69% short fractures, which is the area with a general high porosity and 

permeability.  The hinge zone is dominated by the short fractures (69%), which suggest a low 

permeability and high porosity. Whereas the forelimb have the highest occurrence of 

throughgoing fractures (43,5%), implying moderate permeability and porosity. Consequently, 

the forelimb with the general highest amount of throughgoing fractures will together with the  

 
Figure 5.4: A theoretical permeability and porosity model based in fracture characteristic and their appearance 
in domain. Good porosity and permeability properties can in general be found in Mediumfjellet. In this model 
moderate permeability makes up 30% and 60% of the area, low permeability is less than 30 %, moderate 
porosity is between 30% and 60%, whereas high porosity makes up more than 60% of the area. The percentage 
is estimated from the total fractures collected in the domain. 

 

relative high fracture intensity (see above), result as a good carrier rock for fluid 

transportation. The hinge zone, which is characterized by relative good porosity and high 

fracture intensity, will work as the domain with the best reservoir properties. The Backlimb 

will probably be insignificant for a fluid model.  

 This study suggests a model, assumed that the thrust fault is open for fluid flow but 

sealed at the top (Triassic shales), with fluid migration along the thrust fault into, and through 

the forelimb and thereafter into the hinge zone. 
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Chapter 6 
Conclusion and future work 

 
6.1. Conclusion 
Based on the descriptions and discussions made of the thesis, the following conclusions can 

be drawn: 

1. Based on Lidar scan data, 3D field modelling, and fracture analysis, the geometry of 

the Mediumfjellet thrust stack is documented to have variations along strike. The 

thrust geometry varies along-strike with examples including thrust intersections, 

possible thrust displacement gradients and oblique ramp faults and folds. This likely 

relates to lateral variations between fault-propagation folding and transported fault-

propagation folding. The fold geometry is also controlled by the folding, as suggested 

by observations of both shear folding and flexure-slip folding.  

 

2. Three fracture populations are interpreted to exist in the Mediumfjellet thrust stack; i) 

perpendicular fractures, ii) hybrid fractures, and iii) thrust fractures. The perpendicular 

fractures consist of a conjugate shear fracture system (set II and IV) and an orthogonal 

extensional fracture set (set I and III). The hybrid fractures consist of three steeply 

dipping fracture sets (set w, x and q), and are suggested to be local extensional 

features or en-échelon fractures indicating local shearing. The thrust fractures (sets A, 

B and C) are conjugate shear fractures indicating bedding-parallel contraction. 

 

3. The discussed fracture development at Mediumfjellet suggests a 2-stage fracture 

model, where the folded and thereby rotated thrusts within the major folds indicate a 

pre-folding stage. The geometrical relationship between the perpendicular fractures, 

conjugate hybrid fractures and the fold-axis is consistent with a syn-folding fracture 

event. The 2 stage fracture model suggests an initiation stage of thrust fracturing and 

extension fracturing reflecting NE-SW shortening and later a syn-folding event 

consistent with NE-SW to E-W contraction. 
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4. Non-systematic fractures are interpreted to result from variations in the local stress 

fields, such as in areas hosting lateral ramps. Alternatively, they are pre-existing 

fractures developed prior to folding and in cases reactivated during later deformation 

 

5. General higher fracture intensity in the fold hinges suggests folding with fixed hinges 

and rotating forelimbs, as commonly ascribed to fault-propagation folding. Local 

variations occur, with more deformation in the forelimb, suggesting effects associated 

with transported fault-propagation folding. 

 

6. High fracture intensities and a general higher number of short fractures in the fold 

hinge zones confirm the hinge as a good fractured carbonate reservoir. Additionally, 

the forelimb and the areas around the major thrusts will probably work as better 

pathways for fluid migration as the forelimb reveals more throughgoing fractures 

compared to the hinge zone and backlimb. The backlimb will be less significant as a 

reservoir and for fluid flow. 

6.2. Future work 
This fracture study has been carried out in a large area, made up of complex fold-and-thrust 

structures. In order to cover such a large area, it is important to understand the value of data 

gathered in smaller areas, especially of fracturing. More detailed single-fold case studies 

should be carried out in order to further understand the detailed links between fractures and 

folding.  

The 3D modelling and modelling software applied in this work opens for an enormous 

range of possibilities. It is possible to make fold curvature maps, where fracture intensity and 

fold curvature may be compared. It is possible to give each bed in the strata different fracture 

properties. A fractured layer model may be generated and fluid flow models from 

porosity/permeability input could be used to address the lateral variations in the fluid flow. It 

should also be possible to establish a trend between fracture intensity and bedding thickness. 

This trend can be used as a conditioning factor for all the layers in the numerical model. This 

could further be conditioned to the model, which in the end would result in an advanced 3D 

fractured model 
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Appendix I 
Unit-description of Kapp Starostin Formation 

 
 
 Rock-description of Kapp Starostin Formation 
1 Grey colored, highly silicified shale. Individual laminaes are about 3-5 cm thick, in total 

making up 3 m of unit thickness. No lithoclasts from Gipshuken formation is found. 

Similar beds are not described from the type section at Festningen [Dalmann 1999], but 

are here interpreted to belong to the Kapp Starostin formation.  

2 Grey bedded limestone with patches of yellow weathering relief. Various layers are 

between 15 and 50 cm thick, summarizing to a total thickness of about 3,5 meters. It is 

very coarse grained and contains large (>10cm) fragments of brachiopods, sponges and 

crinoids. 

3 Medium grey colored, coarse grained packstone to wackestone with coarse sandy matrix 

of medium grey color with scattered yellow weathering. The unit has a gradual contact to 

the underlying strata because of slope scree. Individual beds are competent and from 

0,5m to 2 m thick. The fabric consists of Abundant macrofossils i.e. whole brachiopods, 

shell fragments and spicules. The unit is interpreted to be the Vøringen member. 

4 Medium grey colored, cliff forming mudstones, which are more light grey colored 

towards the top. The beds vary from 10cm to 30cm in thickness together reaching a total 

unit thickness of 12 meters. They are highly silicified and recrystalized. Individual beds 

can be seen to be bioturbated, with nodular and undulating boundaries. They often 

contain black elongated chert concretions up to 10 cm in length. Partly dissolved 

macrofossils and scattered whole fossils and fragments are present.   

5 Alternating grey, highly silicified shale and dark grey soft shale. total thickness of the 

unit is 15 meters thick. The grey silicified shale has an upward thickening trend from 10-

15 cm at the bottom to more than 50 cm at the top. In contrast, the dark shales are 

upwards thinning trend from about 10 cm to a few cm. The. They are both very 

bioturbated.  

6 Grey limestone layers with patches of yellow weathering. Each layer is about 50 cm 
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thick and has a total thickness of 3 meters. It is very coarse grained made up of big 

closely spaced whole brachiopods, sponges and crinoids (packstone).  

7 Light gray, strongly silicified beds with slightly nodular bed boundaries. The bed 

thickness varies between 0,5m and 1 meter. The total thickness of the unit is about 2,8m 

thick. It reveals partly silicified lamination and elongated chert nodules. There are also 

up to 20 cm abundant silicified bioclasts occurring. At the top with a sharp contact to unit 

8, it occurs a 0,5 m thick bed with silicified shale. 

8 Intercalations between grey, fine grained cliff forming beds with nodular bedding and 

darker, weathered out soft shale. The total thickness of the unit is about is 2,4 meters 

thick. The competent beds are about 20 to 50 cm thick, and have an upwards thinning 

trend. The soft shale layers are up to 5 cm thick. Scattered bioclasts and abundant 

spicules occur, but no obvious macrofossils. 

9 Cliff forming, light grey bioturbated limestone beds, with an upwards thinning trend. The 

unit has a total thickness of 3,7 meters. The beds range from thicknesses of 50 cm to less 

than 10 cm thick. The beds have a characteristic yellow weathering color. The bed 

boundaries are smooth between the thick beds and more rugged between the thinner 

beds. Towards the top there are some scattered to abundant macrofossils, the latter seen 

as whole brachiopods sponges, shell fragments and crinoids. Dark burrows occur at top 

of- and sometimes within the bedding. About 30 cm of soft weathered out shale towards 

unit 11.  

10 Fine grained, dark grey, cliff forming and silicified mudstone beds with platy shale 

intercalations. The total thickness of the unit is 3 meters. The bed boundaries are rugged 

and slightly nodular. Sponge spicules and scarse scattered silicified bioclasts occur.  

11 Slopeforming, soft, weathered bryozoan paper shale. The total thickness is about 20 

meters mainly of slopescree. 

12 Bioturbated dark grey to black shale with two major upwards fining and thinning cycles. 

A distinct yellow weathered bed occurs on top of each cycle. The total thickness of the 

unit is 15 meters. The thickness of each bed decreases from 80 cm to 40 cm thicknesses. 

They are intercalated with 2-10 cm platy shale, decreasing in frequencies towards the 

top. The bed boundaries are rugged and nodular bedding is common above just above the 

shales. Abundant spicules and scattered bioclasts can be found.  

13 Silicified dark grey mudstone with shaly intercalations with a total thickness of the bed is 

3,5 meters. The beds are heavily bioturbated. 
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14 Grey, cliff forming rock, with light grey, yellow to white weathering color. The total 

thickness of the bed is 10 meters. Mudstone beds are intercalated with shale at the 

bottom. The middle part consists of thicker and more massive beds with elongated 

sandslingers, bedding parallel strong veining and a possible sedimentary breccia. There 

are abundant silicified bioclasts and heavy bioturbation further. The upper part of the unit 

contains partly laminated cliff forming mudstone intercalated with shale. 

15 Bioturbated, dark grey, fine grained silicified mudstone. Abundant spicules and scattered 

bioclasts occur. The total thickness of the bed is 3,5 meters.  

16 Three upwards fining packages of fine grained competent dark silicified shale reaching a 

total thickness of 16 meters. The three packages have a total overall fining upwards 

trend. The bedding is nodular and contains abundant spicules. The middle part has a bit 

of yellow weathering color and is more competent and more bioclasts occur. The top part 

is very fine grained with strong nodular bedding and contains rounded red chert nodules. 

The content of spicules and bioclasts are also higher.  

17 Bioturbated, dark grey to grey silicified mudstone with rugged bedding boundaries. No 

obvious macrofossils occur. Total bed thickness is 3,5 meters. 

18 Highly nodular, bioturbated, dark silicified shale. The nodules have a black inner part 

and a grey coating. The total bed thickness is 2 meters.  

19 Dark silicified cliff forming mudstone, with a total thickness of 1,5 meters. The beds 

contain bedding parallel lamination with dark elongated pebbles and sandy slingers. The 

beds are heavily bioturbated and contain dark scattered shell fragments.  

20 Dark silicified, highly nodular shales with a total thickness of the unit is 8 meters. A 

distinct intercalated competent yellow weathered bed, can be several meters thick or 

totally pinch out laterally. 

21 15 meters of massive, light grey silicified cliff forming mudstone. The unit has a very 

characteristic yellow weathering colour, the same as seen in unit 3, 7 and 10. The contact 

to the underlying unit is very sharp. 

22 Silicified, nodular, cliff forming mudstone beds. With a total thickness of 2,5 meters. 

This unit is the topmost of Kapp Starostin Formation and lay conformly underneath the 

Triassic Vardebukta Formation. This boundary is a regional hiatus marked by the great 

mass-extinction in Perm. 
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Appendix 2

Locality: 2e
GPS Coordinates: ?

Thrust System: OOST
Structural Position: Backlimb
Scanline Number: 2e-1
Lithological Unit: 10
Bed Thickness: 50 cm
Scanline Trend: 015

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 150/51 3 7 20 43 IR S

24 340 26 IA S
40 340 22 IR S
52 334 27 IR R
61 328 20 IR R
74 270 5 IR R
80 10 30 IR S

1-2m 147/55 17 6 320 30 IA S
18 5 43 IR S
45 340 21 IR S
68 21 40 IR S
80 250 70 IR S
85 266 65 IR S

2-3m 154/60 42 6 327 30 IA S
50 327 30 IA S
83 1 60 IA R
91 354 21 IA S
94 340 34 IR R
99 350 35 IA S



3-4m 153/57 28 5 293 20 IA S
38 260 68 IR S
59 315 27 IA S
74 318 35 IR S
81 260 70 IA S

4-5m 154/54 2 6 278 45 IA S
10 315 28 IA S
21 265 70 IR S
40 320 30 IR S
51 20 2 IA S
68 354 35 IR S

5-6m 130/52 8 7 260 70 IR R RHR corrected
30 328 20 IR S values
45 262 70 IR S prominent
65 310 30 IR S prominent
70 250 70 IR S
80 350 40 IR S
90 0 40 IR S

6-7m 154/48 0 5 270 70 IR S
40 184 40 IR S
70 60 90 IR S prominent
80 340 42 IR S

100 85 80 IR S
7-8m  - 70 2 88 70 IR R

100 196 55 IR S prominent



Locality: 2e
GPS Coordinates: 33 X 0479748

8719772
Thrust System: OOST
Structural Position: Backlimb
Scanline Number: 2e-2
Lithological Unit: 10
Bed Thickness: 50 cm
Scanline Trend: 015

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 166/45 13 4 18 40 IR S

28 348 41 IR R
48 354 37 IR R
84 12 40 IR S

1-2m 147/51 8 5 293 37 IA S
19 21 36 IR S
36 14 45 IR R
90 5 50 IR S
90 346 34 IR S

2-3m 145/55 29 5 275 63 IR R
29 320 46 IR S
32 340 32 IR S
33 11 43 IR S
80 20 43 IR S
96 258 67 IR S

3-4m 150/54 14 3 335 30 IA S
22 335 30 IA S
22 20 43 IR S

4-5m 153/55 21 3 327 20 IR R
52 20 41 IR S
98 335 25 IA S



Locality: 2e
GPS Coordinates: N 7832527

E 1405192
Thrust System: OOST
Structural Position: Backlimb
Scanline Number: 2e-3
Lithological Unit: 10
Bed Thickness: 40cm
Scanline Trend: 040

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 158/52 28 291 45 IA Rough

39 28 43 IR Smooth
57 30 14 IA Rough
73 30 14 IA Rough
86 10 45 IR Rough
92 328 30 IA Smooth

1-2m 152/50 9 346 36 IR S
52 343 42 IR R
68 20 42 IR S
72 342 41 IR R
85 330 46 IR R

2-3m 145/50 25 21 43 IR S
35 351 64 IR S
58 352 30 IA R Conjugate set
62 291 84 IR R Conjugate set
65 352 30 IR R Conjugate set
72 291 84 IA R Conjugate set
83 7 35 IR R
89 291 84 IA R Conjugate set

3-4m 150/50 4 320 43 IR S
14 14 36 IA S
44 327 65 IR R
81 20 45 IR R
98 164 47 IR R



4-5m 146/50 13 343 25 IA R
33 20 25 IR S
36 343 25 IR R
38 343 25 IR S
59 5 53 IR R
66 328 40 IR R

5-6m 160/50 2 354 45 IR S
16 325 50 IR S
57 355 45 IR S
78 324 36 IR S Conjugate set

100 46 80 IR S Conjugate set
6-7m 148/48 19 358 45 IR R

23 310 20 IR R
34 358 45 IA R
60 355 38 IR R
73 358 45 IR R
96 325 35 IR S

7-8m 140/50 6 355 35 IR S
46 45 40 IR S
68 46 80 IR S Conjugate
84 0 30 IR R
87 330 35 IR R



Locality: 3b
GPS Coordinates: 33X 0480301

8718424
Thrust System: M3
Structural Position: Backlimb
Scanline Number: 3b-1
Lithological Unit: 21
Bed Thickness: ?
Scanline Trend: 330

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 126/44 0 12 274 78 IR S conj?

1 238 30 IA S conj?
6 253 64 IA S

10 238 30 IA S conj?
18 238 30 IR S conj?
24 260 83 IA S
29 265 87 IA S
38 203 13 IR S Conjugate set
38 136 73 IR S Conjugate set
40 270 66 IR S
52 7 60 IA S
61 155 45 IA S Conjugate

1-2m 126/41 36 2 252 70 IA S
42 267 62 IA R

2-3m Covered
3-4m 133/55 0 5 323 40 IR S

14 354 82 IR R
30 255 41 IR S
63 240 62 IA S
78 241 65 IA S

4-5m 133/55 5 13 232 52 IA S
18 320 70 IR S
28 255 65 IR S
43 236 65 IR S



55 254 65 IA S
61 265 62 IA S
68 262 70 IR S
74 256 63 IA S
80 270 50 IA S
82 270 50 IA S
83 270 50 IA S
86 263 36 IR S

100 250 75 IR S
5-6m 140/65 49 6 256 75 IA S

51 292 50 IR R
68 12 60 IR S
68 260 70 IR S
83 67 61 IR S
99 250 70 IA S

6-7m 140/65 42 3 235 30 IA S Conjugate
44 235 30 IA S Conjugate
46 235 30 IA S Conjugate

7-8m  - 6 11 325 08 IA S
8 241 65 IR S

16 250 60 IA S
21 250 50 IA S
35 163 34 IA S Conjugate
53 248 76 IA S
54 248 76 IR S
56 340 54 IA S
78 267 50 IA S
80 253 69 IA S
97 235 75 IA S Conjugate



Locality: 3b
GPS Coordinates: 33X 0480389

8718658
Thrust System: M3
Structural Position: Backlimb
Scanline Number: 3b-2
Lithological Unit: 21
Bed Thickness 30 cm
Scanline Trend: 348

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 150/42 0 12 68 64 IR S Conjugate set

1 250 70 IR S Conjugate set
4 250 70 IR S
5 75 78 IR S
5 342 46 IA S

20 92 90 IA S conj?
22 345 70 IA S
47 295 60 IR S
55 274 88 IR S conj?
58 274 88 IR S conj?
67 272 85 IR S conj?

100 218 60 IR S
1-2m 162/60 9 13 158 88 IA S

10 345 50 IA S
20 348 44 IR S
20 276 88 IR S conj?
30 270 62 IA S
30 20 58 IA S
40 258 60 IR S
40 342 50 IR S
65 314 60 IR S
70 314 60 IR S
80 272 62 IR S
85 325 40 IR S



90 272 62 IR S



Locality: 3c
GPS Coordinates: N 7832062

E 1409016
Thrust System: M3
Structural Position: (forelimb) - hinge - (backlimb)
Scanline Number: 3c-1
Lithological Unit: 2
Bed Thickness: 30 cm
Scanline Trend: 030

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 281/12 16 5 197 85 IA R Backlimb

18 197 85 IR R
29 172 82 IR R
65 172 82 IR R
82 200 67 IR S

1-2m 281/12 20 6 190 89 IR S Backlimb
23 190 89 IR S
40 150 73 IR R
60 140 79 IR R
71 159 84 IR S

100 144 90 IR S
2-3m 13 8 202 90 IR S Backlimb

16 144 90 IR S
27 130 14 IA S
30 144 90 IR S
57 354 87 IR S
60 217 87 IR S
70 153 85 IR R

100 202 80 IR R
3-4m 6 7 151 80 IR R Backlimb

13 143 81 IR R
33 155 86 IR S
70 160 87 IR R
78 193 76 IR S



92 325 88 IR S
98 307 23 IR S

4-5m 1 10 137 72 IA R Hinge
5 155 75 IA R

36 138 80 IR R
55 138 80 IA R
71 148 82 IR S
72 181 73 IR S
73 181 73 IR S
80 192 80 IR S
90 82 65 IR R

100 194 75 IR S
5-6m 267/20 4 3 153 82 IR S Hinge

19 326 84 IR R
67 138 87 IR R

6-7m 17 3 120 62 IR R Hinge
35 73 85 IR R
67 290 42 IR S

7-8m 1 9 130 90 IA R Forelimb
14 65 81 IR R
22 100 87 IA R conj?
29 100 87 IA R conj?
36 100 87 IA R conj?
55 72 56 IR R
70 72 56 IA R
85 72 56 IA R
94 146 60 IR R

8-9m 285/45 1 8 34 54 IA S Forelimb
12 72 69 IA S
16 138 61 IA R
30 70 72 IR S
33 70 72 IR S
76 92 62 IA S
78 130 60 IR S

100 79 81 IR S



Locality: 3c
GPS Coordinates: N 7832050

E 1409032
Thrust System: M3
Structural Position: Hinge
Scanline Number: 3c-2
Lithological Unit: 2
Bed Thickness: 150 cm
Scanline Trend: 030

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m no fractures 0
1-2m  - 0 6 256 88 IR S

16 194 78 IR S listric shape
18 194 78 IR S listric shape
65 175 84 IA S
80 192 82 IR S
84 192 82 IR S

2-3m 268/23 43 2 352 89 IR S
58 352 89 IR S

3-4m 201/18 85 1 344 84 IR S
4-5m 234/34 no fractures 0
5-6m 256/12 45 3 150 70 IR S

62 188 80 IR S
100 180 68 IR S



Locality: 3c
GPS Coordinates: ?

Thrust System: M3
Structural Position: Forelimb - (Hinge)
Scanline Number: 3c-3
Lithological Unit: 3
Bed Thickness: 60 cm
Scanline Trend: 310

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 323/60 4 8 60 85 IA R Hinge

10 60 85 IA R
24 70 85 IA R
47 70 85 IA S
67 70 85 IR S
84 76 83 IR S
86 65 75 IA R
96 65 75 IR S

1-2m 340/78 4 6 65 75 IA S
33 65 75 IA S
43 65 75 IA S
60 55 76 IA R
78 65 75 IA R
89 65 75 IA R

2-3m 336/74 8 4 60 75 IA R
75 63 80 IA S
80 60 80 IA R
86 65 80 IA R

3-4m 326/74 3 7 58 80 IR S
19 58 80 IA R
29 58 80 IA S
40 58 80 IR S
47 58 80 IA R
52 43 85 IA R



83 58 79 IR R
4-5m 325/76 20 3 60 78 IR S

41 60 80 IR R
68 58 79 IR R

5-6m 320/75 5 8 86 84 IR S
19 60 75 IR S
41 60 75 IA R
59 53 76 IR S
66 53 76 IR R
70 53 76 IR S
86 53 76 IR S
97 60 79 IR S

6-7m 330/70 10 7 60 79 IA S Forelimb
20 60 79 IA S
27 75 75 IR S
38 58 79 IR S
65 55 82 IR S
77 235 2 IR R
98 75 80 IA S

7-8m 339/80 10 4 75 80 IR S Forelimb
30 67 85 IR S
84 72 78 IA R
99 80 79 IR S



Locality: 3c
GPS Coordinates: 33 X 0481154

8718178
Thrust System: M3
Structural Position: Forelimb - Hinge
Scanline Number: 3c-4
Lithological Unit: 3
Bed Thickness: 50 cm 
Scanline Trend: 030

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 260/17 1 11 176 82 IR R Hinge

12 148 66 IR R
28 75 75 IA S
37 75 75 IA S
45 95 79 IA S
50 260 85 IR R
60 310 79 IA S
65 165 84 IA S
74 195 89 IR S
79 147 79 IR S
99 189 81 IR S

1-2m 258/19 24 7 85 85 IR S Hinge
30 187 80 IR S
40 90 86 IR S
57 185 85 IR S
75 160 79 IR R
77 185 85 IR S
93 193 82 IR R

2-3m 253/21 22 7 193 71 IR R
45 193 71 IR R
52 168 78 IR R
72 261 86 IA S
74 261 86 IA S
83 261 86 IA S



96 267 87 IR S
3-4m 284/19 7 8 170 78 IA S

32 145 80 IR R
43 296 90 IA S
51 140 75 IA R
66 10 85 IR S
90 174 74 IR R
96 174 74 IR S

100 275 89 IR S
4-5m 330/22 18 7 186 60 IA S

37 200 60 IR R
56 160 72 IA S
64 130 77 IA S
72 170 70 IR S
89 190 80 IR S
97 105 70 IA S

5-6m 330/29 3 13 105 70 IA S
14 115 84 IA S
26 163 75 IR R
39 88 65 IR R
44 256 89 IR S
55 209 70 IR S
56 145 15 IA S
59 145 15 IA S
78 145 15 IA S
83 173 64 IA S
90 145 15 IA S
92 173 64 IA S
99 280 72 IR R

6-7m 325/32 29 6 150 59 IR S Forlimb
50 150 59 IR S
51 275 75 IR S
90 150 59 IR S
96 150 64 IR S

100 150 64 IA S
7-8m 325/34 7 9 150 64 IA S



24 150 42 IR S
32 80 88 IR R
40 160 50 IR R
47 325 54 IA R
58 211 71 IA S
74 147 65 IA S
91 160 67 IA S
95 160 67 IA S



Locality: 3c
GPS Coordinates: 33 X 0481141

8718180
Thrust System: M3
Structural Position: Backlimb
Scanline Number: 3c-5
Lithological Unit: 3
Bed Thickness: 30 cm
Scanline Trend: 030

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 150/19 0 8 295 85 IR R Backlimb

11 336 65 IA R
35 15 85 IR S
40 103 80 IA R
42 103 80 IA S
44 103 80 IA S
45 103 80 IA S
60 286 60 IA R

1-2m 174/15 8 11 190 85 IR S
21 190 85 IA S
27 65 75 IA S
30 65 75 IA S
45 293 2 IR R
51 276 82 IA S conj?
55 276 82 IR S conj?
61 337 60 IA S
66 337 60 IA S
79 337 60 IR R
99 80 85 IR R



Locality: 3c
GPS Coordinates: ?

Thrust System: M3
Structural Position: Forelimb - Hinge
Scanline Number: 3c-6
Lithological Unit: 4
Bed Thickness: 80 cm
Scanline Trend: 030

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 072/28 0 13 58 88 IA S Hinge

10 172 76 IR R
20 180 79 IA R
43 98 78 IA R
43 234 86 IA S
53 234 86 IA S
58 134 76 IA S
71 162 77 IA S
71 96 76 IA S
82 55 90 IA S
94 179 68 IR S
98 187 88 IA S

100 185 76 IA S
1-2m 054/28 76 2 94 80 IR R

100 165 52 IR S
2-3m 058/27 20 3 170 65 IR S

25 118 86 IA R
33 167 82 IA S

3-4m 052/26 17 6 170 70 IR S Forlimb
27 170 70 IR S
57 184 60 IR R
65 78 80 IA S
90 134 82 IR R

100 134 82 IR R



Locality: 3e
GPS Coordinates: 33 X 0482892

8712910
Thrust System: M3
Structural Position: Backlimb
Scanline Number: 3e-1
Lithological Unit: 3
Bed Thickness: 70 cm
Scanline Trend: 340

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 160/35 60 1 283 80 IR R
1-2m 160/35 2 6 330 67 IR S conj?

25 240 87 IA S
35 335 70 IR R conj?
44 250 81 IR S
57 70 85 IR S
64 50 33 IR S

2-3m 160/33 51 2 67 98 IA R
98 255 78 IA S

3-4m 160/37 7 4 250 90 IR S
21 42 45 IA S
36 248 89 IA R
94 256 90 IR S

4-5m 160/34 62 1 266 85 IR R
5-6m 158/34 35 3 58 75 IR S

50 273 82 IR R
95 260 80 IA S

6-7m 158/36 4 2 138 45 IA R
91 260 80 IR S

7-8m 147/32 53 2 246 80 IA S
56 246 80 IA S

8-9m 153/30 19 3 265 84 IR S
49 253 67 IA S
68 288 80 IA R



9-10m 160/34 12 5 264 80 IA R
30 235 80 IR R
50 12 60 IA S
54 96 80 IR S
79 80 89 IR S

10-11m 163/26 18 3 285 76 IR R
40 314 68 IR R
67 287 80 IA S

11-12m 167/34 7 8 290 63 IA S
16 264 72 IR S
18 264 72 IA S
19 264 72 IA S
24 264 72 IA S
40 28 66 IR S
77 236 45 IA R
83 254 86 IA S

12-13m 165/45 9 11 278 80 IR S
12 278 80 IA S
15 278 80 IA S
30 242 82 IA S
36 275 80 IA S
50 242 82 IA S
60 242 82 IA S
61 265 86 IA S
63 265 86 IA S
82 242 82 IA S
92 273 70 IA S

13-14m 163/35 8 3 80 70 ? ? Covered
31 40 80 ? ? Covered
46 260 75 ? ? Covered

14-15m 160/35 15 3 287 75 IA R
21 60 78 IR R
75 254 57 IA S

15-16m 160/40 13 5 56 85 IR S
46 273 70 IA S
50 250 34 IA S



63 270 81 IR S
99 270 81 IR S

16-17m 148/30 77 1 50 72 IA R
17-18m 158/34 18 2 265 80 IR R

80 260 84 IA S
18-19m 145/30 3 3 48 89 IR S

57 60 78 IA S
97 280 90 IR S

19-20m 165/25 88 1 280 89 IR S
20-21m 165/36 83 1 242 45 IR S
21-22m 165/36 5 3 110 78 IA S

15 246 75 IA S
39 266 85 IA S

22-23m 160/35 24 3 90 75 IR R
45 90 75 IR R
99 255 65 IR R

23-24m 150/40 75 2 40 55 IR R
81 275 75 IR S

24-25m 0 no fractures
25-26m 145/32 9 1 268 75 IR S
26-27m 152/45 5 3 260 76 IR R

94 275 85 IR S
98 275 85 IA S

27-28m 160/44 2 5 16 50 IA S
27 230 82 IA S
42 230 86 IA S
66 82 89 IR R
92 270 90 IA S

28-29m 160/35 15 2 270 70 IR R
76 263 67 IR R

29-30m 160/35 7 8 265 68 IR R
13 265 68 IA S
22 60 76 IR S
23 263 76 IR S
25 60 76 IR S
44 263 76 IR S



87 270 77 IR S
97 273 80 IR S



Locality: 3e
GPS Coordinates: 33 X 0482872

8712668
Thrust System: M3
Structural Position: Backlimb
Scanline Number: 3e-2
Lithological Unit: 10
Bed Thickness: (1) 50 cm, (2) 42 cm
Scanline Trend: 340

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 190/75 55 3 82 86 IR S  Bed: 1+2

75 300 60 IA R 1
85 270 85 IR S 1

1-2m 175/65 10 3 80 85 IA S 2
33 78 86 IA S 2
68 320 43 IR S 1+2

2-3m 170/66 7 8 250 70 IA S 1
12 260 87 IA R 2
29 263 84 IR S 1
36 20 40 IR S 1
40 290 36 IA R 2
62 75 88 IR R 1
66 290 36 IA R 2
86 95 30 IR R 1

3-4m 170/52 5 6 80 86 IR S 2
38 80 86 IA S 2
59 255 80 IR S 1
68 305 60 IR S 2
74 265 85 IA S 2
90 290 60 IR S 1

4-5m 167/55 38 6 82 85 IR S 2
53 323 45 IR S 1
73 70 82 IR R 2
73 260 86 IR S 1



80 232 67 IR S 1
85 330 50 IA S 1

5-6m 170/70 12 10 85 84 IR S 1
19 85 89 IR S 2
30 85 84 IA S 1
41 298 60 IR S 1
43 74 80 IR S 2
53 295 64 IA R 1+2
63 15 40 IA S 1
63 269 89 IA R 2
70 320 50 IR S 2
85 70 89 IR S 1+2

6-7m 170/50 0 4 314 40 IR S 1+2
28 252 85 IR R 1
65 268 80 IR S 2
98 258 88 IR S 1+2

7-8m 169/59 4 5 290 60 IR S 1
20 148 45 IR S 2, conjugate set
47 268 82 IR R 2
75 78 88 IR S 1+2

100 6 48 IR S 1+2, conjugate set
8-9m 170/38 0 3 255 82 IR S 2

42 318 58 IR S 1+2
80 104 82 IR R 1+2

9-10m 169/66, 170/54 12 8 272 82 IA R 2
14 272 82 IR R 1
34 265 80 IA S 1
37 265 80 IR S 2
60 260 85 IA R 1
63 160 54 IA S 1, prominent, 1.50m
66 260 85 IA R 1
98 335 40 IA R 2

10-11m 168/58 7 7 272 65 IR R 1
12 95 86 IR R 2
20 165 62 IR S 1, conjuate
27 90 80 IA R 2, conjugate



61 250 88 IR S 1
64 244 89 IR S 2

100 320 38 IR R 2
11-12m 174/54 10 5 234 34 IR R 1+2

22 95 89 IR S 2
35 320 44 IR S +2
54 265 88 IR S 1+2
78 305 55 IA R 1

12-13m 170/60 25 7 70 75 IR S 1+2
29 70 75 IR S 1
62 262 80 IA R 1
76 262 80 IA S 1
94 70 82 IR R 2
98 70 82 IR S 1

100 324 40 IR S 2
13-14m 172/42 3 4 250 82 IR S 2

27 262 86 IR S 1+2
53 302 60 IR S 1+2
75 86 85 IR S 1+2

14-15m 175/64 25 6 320 42 IR S 1+2, conjugate
55 322 48 IR S 2, conjugate
72 85 82 IA S 1+2
75 135 68 IR S 1+2
85 72 78 IR S 1
93 322 48 IR S 2

15-16m 175/60 35 7 260 88 IR S 1+2
50 268 80 IR S 1
55 268 80 IR S 2
66 310 50 IA S 2
74 314 44 IR S 2
90 318 54 IR S 2

100 65 80 IR S 1+2
16-17m 168/55 0 9 150 52 IR S 2

5 70 90 IR S 1+2
14 250 86 IR S 1
15 148 50 IR S 1+2, conjugate



21 270 82 IA R 1
48 270 82 IA S 1
66 328 44 IA S 1
84 75 90 IR S 2
91 75 90 IR S 1

17-18m 170/40 15 7 72 90 IA S 2
25 68 82 IR S 1+2
60 305 48 IR S 2
70 188 60 IR S 2
76 260 82 IR S 1

100 146 54 IR S 1+2, conjugate
100 268 82 IR S 1

18-19m 170/38 30 6 252 88 IR S 1
58 325 45 IR S 1
59 260 86 IR S 2
72 318 40 IA S 2
95 328 46 IR S 1

100 24 40 IR S 2
19-20m 178/48 21 7 256 80 IR S 1+2

35 325 40 IA S 1
40 260 80 IA S 2
63 325 52 IR S 2
75 310 50 IR S 2
80 78 82 IR R 1
90 310 50 IR R 1

20-21m 168/55 10 4 318 40 IR S 1
70 80 90 IR S 1
95 72 82 IR S 1+2

100 20 40 IR S 1+2
21-22m 168/52 1 6 310 44 IR S 1+2

27 70 98 IR S 1+2
48 256 88 IR S 1+2
84 252 80 IR S 1+2
85 268 86 IR S 1+2
96 268 86 IR S 1+2

22-23m 170/44 10 6 260 82 IR S 1+2



48 320 50 IA S 1
54 70 80 IR R 1+2
70 78 80 IR S 1+2
95 314 50 IR S 2
96 264 86 IR S 1

23-24m 172/40 24 4 322 50 IR R 2
40 252 84 IR S 1+2, prominent
75 318 52 IR S 1+2
92 262 80 IR S 1+2, major



Locality: 3g
GPS Coordinates: 33 x 0480373

8719528
Thrust System: M3
Structural Position: Hinge
Scanline Number: Hinge
Lithological Unit: 10
Bed Thickness: 32 cm
Scanline Trend: 025

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 330/09 13 9 336 83 IA S

29 0 85 IR S
41 16 80 IA S
42 16 80 IA S
52 33 85 IR S
52 303 87 IR S
62 33 85 IR S
89 3 85 IA R
99 354 87 IA R

1-2m 330/09 9 9 352 85 IR R
11 12 88 IR S
15 357 63 IA S
20 357 63 IA S
22 0 90 IR S
48 357 63 IA S
53 355 85 IR S
77 355 85 IR S

100 355 85 IR S



Locality: 3g
GPS Coordinates:  33 x 0480392

8719704
Thrust System: M3
Structural Position: Hinge
Scanline Number: 3g-2
Lithological Unit: 10
Bed Thickness: 32 cm
Scanline Trend: 125

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1cm 358/10 0 3 65 80 IR S

30 273 88 IR S
67 267 89 IA S

1-2m 340/04 15 3 267 87 IA S
49 276 90 IA S
71 72 83 IR S



Locality: 3g
GPS Coordinates:  33 X 0480375

8719792
Thrust System: M3
Structural Position: Hinge
Scanline Number: 3g-3
Lithological Unit: 10
Bed Thickness: 48 cm
Scanline Trend: 350

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 240/02 1 6 270 90 IR S

14 230 69 IR S
23 283 89 IR R
34 84 82 IA S
44 70 85 IA S
88 270 89 IR S

1-2m 230/04 14 4 291 87 IR S
45 210 70 IR S
64 260 90 IR S
87 78 80 IR S



Locality: 3h
GPS Coordinates: ?

Thrust System: M3
Structural Position: Forelimb (local)
Scanline Number: 3h
Lithological Unit: 10
Scanline Trend: 160

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 296/54 0 8 97 37 IR S conj?

6 97 37 IA S conj?
16 97 37 IA S conj?
36 216 60 IA R
45 97 62 IA S
64 95 53 IR S
86 82 50 IA S
99 87 37 IA S

1-2m 307/52 4 10 73 40 IR S
15 73 40 IA S
18 86 85 IA S
44 115 42 IR R
51 103 49 IA S
53 209 45 IA S
73 103 40 IR S
90 105 70 IA S
95 155 22 IA S
97 155 22 IR S



Locality: 3i
GPS Coordinates: 33 X 0479267

8721403
Thrust System: M3
Structural Position: Backlimb
Scanline Number: 3i
Lithological Unit: 21
Scanline Trend: 030
Bed thickness 34cm

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 147/37 20 5 52 78 IR S

29 296 45 IA R
54 48 78 IR S
59 252 72 IR S
87 320 46 IR S

1-2m 142/37 4 3 26 60 IR R
24 42 80 IR R
89 320 55 IR R

2-3m 146/37 34 5 320 90 IR R
42 306 57 IA S
52 322 45 IR R
64 247 67 IR S
75 53 84 IR S

3-4m 137/42 9 10 5 67 IA R
16 263 60 IA R
36 18 59 IA S
39 345 44 IR S
48 65 58 IA S
51 350 45 IR S
56 11 50 IA S
58 311 40 IR S
63 352 42 IR R
74 330 32 IR S

4-5m 140/36 1 6 322 55 IA R
9 332 55 IA S



11 253 73 IR S
21 253 73 IA S
24 348 45 IA R
37 290 45 IR R

5-6m 140/36 18 3 312 37 IR S
34 307 45 IR S
95 20 77 IR R

6-7m 154/42 2 8 315 85 IR R
22 253 80 IR S
35 55 82 IR S
58 352 43 IR S
64 230 88 IA S
66 260 76 IR S
79 49 88 IR S
90 350 42 IR S

7-8m 150/40 49 2 245 83 IR S
94 342 60 IA S

8-9m 157/40 24 2 323 48 IR S
32 252 75 IR S

9-10m 154/47 21 4 303 70 IA S
53 320 40 IR S
56 302 42 IR R
58 145 54 IA S

10-11m 152/40 2 6 4 70 IA R
10 9 69 IA R
20 252 78 IA S
27 8 50 IA S
67 320 50 IR S
90 340 44 IR S

11-12m 146/40 20 2 312 45 IR R
76 232 82 IA R

12-13m 156/40 0 4 346 42 IR R
43 262 70 IR R
63 304 39 IR R
92 259 80 IR S

13-14m 144/44 6 3 342 45 IR R



48 342 45 IR R
60 340 42 IR S

14-15m 136/42 24 2 300 42 IR R
30 300 42 IR S



Locality: 4b
GPS Coordinates: 33 X 0481893

8718550
Thrust System: M2
Structural Position: Backlimb
Scanline Number: 4b-1
Lithological Unit: 10
Bed Thickness: 32 cm (bed 1 at 4b-1 underlies bed 2 at 4b-2)
Scanline Trend: 130

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 143/45 0 3 70 62 IR S Bed: 1

61 240 75 IR S 1
72 80 71 IR S 1

1-2m 144/35 24 2 240 75 IR S 1
98 240 82 IR S 1



Locality: 4b
GPS Coordinates: 33 X 0481893

8718550
Thrust System: M2
Structural Position: Backlimb
Scanline Number: 4b-2
Lithological Unit: 10
Bed Thickness: 49 cm (bed 2 at 4b-2 overlies bed 1 at 4b-1)
Scanline Trend: 130

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 143/35 25 3 260 84 IR S 2

69 243 76 IR S 2
97 260 57 IR S 2

1-2m 144/35 42 3 250 86 IR S 2
53 272 60 IR S 2

100 265 85 IR S 2



Locality: 4b
GPS Coordinates: 33 X 0481863

8718738
Thrust System: M2
Structural Position: Backlimb
Scanline Number: 4b-3
Lithological Unit: 10
Bed Thickness: 48 cm
Scanline Trend: 355

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 153/35 0 3 112 70 IR R

42 20 80 IR S
78 70 75 IA S

1-2m 140/35 8 3 20 63 IA R
48 20 63 IA R
90 23 65 IA S

2-3m 165/35 20 3 15 65 IR S
40 84 71 IR S
82 358 55 IA S

3-4m 157/40 2 4 358 55 IR S
37 10 55 IR S
75 10 55 IR S

100 10 55 IR S
4-5m 150/45 2 6 15 67 IR S

13 265 84 IA R
36 30 70 IA R
58 70 30 IR S
69 35 56 IR S
90 350 35 IR S



Locality: 4b
GPS Coordinates: 33X 0481727

8718858
Thrust System: M2
Structural Position: Backlimb
Scanline Number: 4b-4
Lithological Unit: 21
Bed Thickness: 30 cm
Scanline Trend: 300

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 148/60 0 9 92 90 IR S

1 10 10 IR S
30 352 50 IA S
60 9 38 IR S
68 9 38 IA S
80 10 40 IR S
85 10 40 IR S
90 10 60 IA S

100 255 88 IR S
1-2m 148/68 20 10 252 85 IR S

30 25 60 IR S
40 8 35 IR S
55 15 38 IR S
60 270 88 IR S
67 15 38 IR S
88 258 60 IA S
89 258 60 IA S
90 260 60 IA S

100 264 80 IR S
2-3m 152/60 10 9 78 90 IA S

20 245 82 IR S
30 0 30 IR S
40 358 38 IR S
55 252 85 IA S



69 348 32 IR S
90 348 32 IR S
98 345 30 IR S

100 242 85
3-4m 142/62 1 12 205 50 IA S

5 50 90 IR S
7 74 90 IA S
8 235 50 IA S

30 345 30 IR S
35 65 90 IR S
40 65 90 IR S
50 352 30 IA S
65 74 90 IA S
70 235 50 IA S
80 352 30 IR S
90 255 82 IA S



Locality: 4d
GPS Coordinates: 33 X 0482671

8716568
Thrust System: M2
Structural Position: Backlimb
Scanline Number: 4d-1
Lithological Unit: 3
Bed Thickness: 78 cm
Scanline Trend: 085

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 154/60 20 8 295 30 IA S Backlimb

25 295 30 IA S
46 340 46 IA S
47 54 30 IA S
48 65 81 IR S
54 158 45 IA S
60 290 35 IA S
74 290 35 IA S



Locality: 4d
GPS Coordinates: 33 X 0482666

8716646
Thrust System: M2
Structural Position: Backlimb
Scanline Number: 4d-2
Lithological Unit: 3
Bed Thickness: 70 cm
Scanline Trend: 095

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 170/64 15 5 67 60 IA S Backlimb

26 300 35 IA S Backlimb
36 30 46 IA S Backlimb
56 348 75 IR R Backlimb
80 37 80 IR S Backlimb

1-2m 163/70 19 2 65 52 IR R Backlimb
92 270 75 IR S

2-3m Covered
3-4m 170/60 21 4 15 40 IA R

39 17 36 IA S
60 345 35 IA R
95 320 40 IR R

4-5m 170/66 10 5 330 40 IR S
30 86 84 IA S
35 15 66 IR S
59 350 48 IR S Backlimb
99 70 55 IR S

5-6m Covered
6-7m 170/66 1 5 320 34 IR S

17 320 34 IR S
35 53 66 IR S
75 65 34 IA S Backlimb
91 40 50 IA S Backlimb

7-8m 158/67 29 5 39 28 IR S Backlimb



34 80 45 IR S Backlimb
57 268 88 IA S Backlimb
70 330 33 IR S Backlimb
77 260 85 IA S Backlimb

8-9m 168/60 16 4 60 85 IA S Backlimb
28 53 67 IR S Backlimb
57 243 81 IR R Backlimb
97 255 89 IA R Backlimb

9-10m 165/62 11 6 338 40 IR R Backlimb
40 74 84 IR R Backlimb
70 40 82 IA R Backlimb
77 350 30 IA R
82 8 59 IA R
90 70 85 IA R

10-11m 150/60 13 7 350 35 IR R
31 260 85 IR S
76 335 45 IA S
82 40 75 IA S
90 50 36 IA S
96 260 86 IA S
99 50 36 IR S

11-12m 153/55 5 2 76 89 IR S
35 326 35 IR R

12-13m 161/50 4 3 258 70 IR R
10 327 33 IA R
62 330 28 IR R

13-14m 165/60 2 6 348 18 IR R
25 150 35 IR S
30 20 47 IA S
38 20 47 IA S
40 340 86 IR S
67 327 30 IA S

14-15m 165/60 1 10 35 60 IR S
2 175 70 IA S
7 35 60 IA S

21 50 32 IA S



38 254 89 IA S
39 40 60 IA S
45 65 21 IA S
47 0 40 IA S
50 193 80 IR S
99 80 80 IR S Backlimb



Locality: 4d
GPS Coordinates: 33X 0483097

8716888
Thrust System: M2
Structural Position: Forelimb
Scanline Number: 4d-3
Lithological Unit: 3
Bed Thickness: 80 cm
Scanline Trend: 015

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 340/58 0 2 70 60 IR S

50 65 72 IA S
1-2m 322/58 15 3 74 58 IR S

24 74 58 IR S
40 74 58 IR S

2-3m 335/58 15 2 90 70 IR S
70 258 78 IA S

3-4m 330/65 8 4 65 80 IA S
30 58 58 IR S
65 64 64 IR S
80 60 70 IA S

4-5m 330/64 20 2 58 30 IA S
98 68 62 IR S

5-6m 340/62 14 6 68 40 IA S
20 240 50 IR S
30 90 48 IA S
36 60 76 IR S
50 315 45 IR S
50 315 40 IR S

6-7m 332/76 20 3 80 72 IA S
50 38 64 IR S

100 305 50 IR S
7-8m 334/65 30 4 245 80 IA S

50 80 55 IA S



70 305 82 IR S
100 340 50 IR S



Locality: 4d
GPS Coordinates: 33X 0483097

8716888
Thrust System: M2
Structural Position: Forelimb
Scanline Number: 4d-3
Lithological Unit: 4
Bed Thickness: 100 cm
Scanline Trend: 015

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 350/70 0 4 262 80 IR S

35 140 48 IR S
55 140 48 IR S
60 310 62 IR S over several m

1-2m 345/52 5 6 142 45 IA S
20 324 45 IR S
30 324 45 IA S
35 65 68 IR S
70 135 50 IR S
80 92 75 IA S

2-3m 335/50 25 5 130 55 IA S
40 110 70 IA S
45 110 70 IA S
60 128 50 IR S
80 88 72 IA S

3-4m 335/60 10 3 68 72 IA S
40 132 40 IA S

100 68 60 IR S pronounced
4-5m 328/70 0 7 20 75 IA S

40 135 50 IA S
50 135 40 IA S
60 58 82 IR S
70 130 50 IA S
80 55 80 IA S



100 124 40 IR S pronounced
5-6m 338/62 10 3 120 40 IA S

60 60 62 IR S
100 65 68 IR S pronounced



Locality: 4d
GPS Coordinates: 33 X 0482421

8716726 
Thrust System: M2
Structural Position: Backlimb
Scanline Number: 4d-5
Lithological Unit: 10
Bed Thickness: 50 cm
Scanline Trend: 090

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 183/66 1 8 340 40 IR R Backlimb

25 65 77 IR S
33 315 15 IR S
40 65 45 IA S
52 65 45 IR S
64 170 25 IR S
85 170 25 IR S
95 170 25 IR S



Locality: 4R (River)
GPS Coordinates: 33X 0483026

8717112
Thrust System: M2
Structural Position: Forelimb
Scanline Number: 4R
Lithological Unit: ?
Bed Thickness: 40 cm
Scanline Trend: 290

UNIT BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 338/56 20 5 148 30 IR S

42 72 80 IA S
45 158 30 IR S
66 165 40 IR S
98 75 70 IA S

1-2m 336/52 1 7 170 24 IA S
29 190 30 IA S
36 202 32 IR S
50 74 78 IA S
65 178 30 IA S
80 178 30 IR S
96 178 30 IA S

2-3m 330/60 12 5 308 32 IR S
30 308 32 IA S
45 168 30 IR S
75 142 25 IA S
88 140 30 IA S

3-4m 338/58 2 6 0 85 IR S
5 75 80 IA S

40 340 80 IA S
65 320 40 IR S
90 74 78 IA S

100 172 22 IR S



Locality: 2e
GPS Coordinates:

Thrust System: OOST
Structural Position: Hinge
Scanline Number: 10-08
Lithological Unit: 7
Scanline Trend: 020/200
Thickness: 30cm
Date: 27/7-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 175/14 1 3 050 90 ia

40 336 76 ia
51 275 90 ir

1-2m 192/19 20 6 278 88 ia
22 340 76 ia
35 278 88 ir
58 278 88 ir
63 278 88 ir
77 335 74 ia

2-3m 192/19 48 2 256 90 ir
50 335 74 ir

3-4m 192/12 23 5 243 90 ia
65 155 84 ir
67 305 17 ir Lavvinkla
70 154 30 ir Lavvinkla, ss: (tp) 154/30
85 280 84 ir

4-5m 180/11 4 10 280 84 ir
15 280 84 ir
25 340 73 ia
45 275 90 ir
60 058 89 ir
65 058 89 ir
67 290 80 ir
74 270 90 ir



85 154 30 ir
90 065 90 ir

5-6 172/15 40 5 275 90 ir
48 337 65 ia
75 275 90 ia
85 330 02 ia Lavvinkla
88 345 74 ir

6-7m 172/15 17 8 340 73 ir
18 095 90 ia
22 055 76 ir
24 095 90 ir
45 337 81 ia
72 290 90 ir
80 280 90 ir
90 270 90 ir

7-8m 160/12 10 6 050 88 ir
29 260 90 ir
45 260 90 ir
55 275 90 ir
76 275 90 ia
95 275 90 ir

8-9m 140/13 37 3 093 88 ia
88 050 85 ia
90 332 84 ia

9-10m 140/13 10 5 050 85 ir
15 268 90 ir
26 268 90 ir
46 268 90 ir
78 050 85 ir



Locality: 3e
GPS Coordinates:

Thrust System: M3-backlimb
Structural Position: M3-backlimb
Scanline Number: 1-08
Lithological Unit: 3
Scanline Trend: 155
Thickness 42cm
Date: 23/7-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 160/36 19 5 255 83 ir s

56 257 84 ir s
75 265 85 ir s
99 260 86 ir s
99 350 54 ia s

1-2m 160/36 27 2 255 84 ir r
80 260 86 ir s

2-3m 160/36 72 3 270 84 ir s
99 265 83 ir s ca
99 350 54 ir s

3-4m 16 2 259 80 ir s ca
64 260 80 ir s

4-5m 24 6 265 82 ir s
62 265 82 ir r
83 259 84 ir s
83 350 53 ia s
85 351 54 ia s
85 289 55 ir r

5-6m 32 3 265 83 ir s
73 260 80 ir s
73 350 54 ia s

6-7m 13 3 250 54 ir r
53 350 52 ia s
53 268 75 ir s



7-8m 10 4 356 52 ia s
10 263 84 ir s
28 263 84 ir s
60 263 84 ir s

8-9m 10 3 290 90 ir r conjugate sets
32 315 75 ir r conjugate sets
90 253 90 ir s

9-10m 40 3 350 54 ir r
44 354 52 ir r
40 256 87 ir s



Locality: 3e
GPS Coordinates:

Thrust System: M3-baclimb
Structural Position:
Scanline Number: 2-08
Lithological Unit: 3
Scanline Trend: 155
Thickness: 9cm
Date: 23/7-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1 160/36 5 6 357 50 ir s

13 260 88 ia s
19 288 66 ir s
41 277 75 ir s
59 280 66 ir s
82 263 80 ia s

1-2m 160/36 3 10 265 85 ir r
10 265 85 ir r
15 263 90 ir s
17 357 50 ir s
40 310 60 ia r
48 260 84 ir r
64 255 81 ir s
70 255 80 ir r
76 257 80 ia s
85 259 82 ia r

2-3m 160/36 20 16 050 75 ia s
27 254 84 ir s
31 254 84 ir s
31 254 84 ir s
42 354 52 ia s
45 275 80 ir s
48 310 50 ir s
52 52 52 ir s



55 280 80 ir s
59 280 68 ir s
67 280 68 ir s
70 280 70 ir s
78 335 50 ia s
95 267 82 ia s
99 267 82 ia s Ca
99 335 50 ia s

3-4m 160/36 1 10 280 85 ir s
12 280 85 ir s
20 280 85 ir s
26 280 85 ir s
26 045 67 ir s
30 280 84 ir s
49 005 56 ir r
50 282 83 ia s
75 225 81 ia r
78 225 81 ir r

4-5m 160/63 20 13 238 80 ir r
22 238 80 ir r
23 238 80 ir r
25 263 86 ir s
39 354 60 ia r
39 263 86 ir s
53 354 60 ia s
62 263 86 ir s
67 354 60 ir s
68 263 86 ir s
75 262 79 ir s
79 262 82 ir s
85 250 82 ir s

5-6m 160/63 5 14 256 80 ir s
10 256 80 ir s
15 256 80 ir s
17 256 80 ir s
25 256 80 ir s



25 349 51 ir s
43 256 80 ir s
46 256 80 ir s
55 256 80 ir s
63 260 82 ir s
73 260 82 ir s
76 285 80 ir s
85 260 82 ir s
98 045 88 ir s

6-7m 160/63 5 10 330 52 ia s
28 330 52 ir s
33 330 52 ir s
42 330 52 ir s
50 330 52 ia s
63 260 75 ia s
65 330 52 ir s
73 331 54 ir s
83 332 50 ia s
90 343 57 ir s

7-8m 160/63 8 9 260 52 ir s
14 260 52 ir s
18 335 70 ir s
20 335 70 ia s
50 240 85 ir r
75 270 85 ir s
80 250 85 ir s
95 250 85 ir s

0-2 160/36 5 6 357 50 ir s



Locality: 3e
GPS Coordinates:
Thickness: 3cm
Thrust System: M3
Structural Position: backlimb
Scanline Number: 3-08
Lithological Unit: 5
Scanline Trend: 155

Date: 23/7-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 170/40 2 26 37 43

3 315 56
10 37 43
20 315 56
27 233 75
30 198 58
33 233 75
37 295 55
38 198 58
39 320 60
41 295 55
45 198 58
49 280 85
50 37 43
51 315 56
54 315 55
55 37 43
61 275 85
69 275 86
74 298 62
80 270 85
81 335 52
86 55 52
92 335 52



94 45 50
95 265 85

1-2m 170/40 1 24 045 45
3 325 45
4 045 45
7 271 71
10 310 50
14 045 50
18 149 63
23 70 75
28 251 81
32 251 81
34 251 80
42 250 79
46 251 82
55 249 82
58 249 82
58 50 42
60 325 45
66 250 80
71 049 43
71 325 45
75 250 80
78 125 75
83 245 80
93 315 45



Locality: 4c
GPS Coordinates:

Thrust System: M2
Structural Position: Forlimb
Scanline Number: 4-08
Lithological Unit: 7
Scanline Trend: 130
Thickness: 47-60
Date: 25/7-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 350/43 12 7 230 42 ir s ca

30 178 48 r
50 085 84 s
62 150 74 r
79 170 85 ir s
81 150 74 s
93 025 89 ir s

1-2m 350/43 13 8 210 55 ir s cojugate set
22 010 85 ir s cojugate set
24 210 55 ir s
31 091 78 ir s
40 190 72 ir s
51 190 72 ir s
70 085 86 s
70 342 98 s

2-3m 350/43 10 9 078 86 s
31 165 85 ia r
45 195 60 ir s conjugate set
53 350 73 ir s conjugate set
62 015 90 ia s
68 195 80 ia s
86 010 90 ia s
97 153 76 ia s
99 206 69 ir s



3-4m 350/43 15 8 222 66 s
30 180 72 s
40 180 72 s
41 195 40 ir s conjugate set
42 001 79 s conjugate set
59 180 72 s
70 020 78 s conjugate set
82 170 74 s

4-5m 350/43 1 10 080 78 s
25 180 51 s
30 215 64 s
45 186 61 s
50 186 61 s
53 180 45 s
70 081 76 s
75 180 45 s
88 180 45 s
98 180 45 s

5-6m 350/43 11 7 180 56 s
12 180 45 s
20 175 55 s
30 195 64 s
46 201 57 s
73 190 69 s
99 150 49 s

6-7m 350/43 2 7 200 55 s
10 095 79 r
25 225 53 s
43 095 79 r
43 180 59 s
91 095 79 r
96 180 53 s

7-8m 350/43 1 12 095 79 r
5 180 49 s
5 095 79 r
10 180 49 s



15 095 79 r
15 145 64 s
30 240 97 s
45 180 57 s
60 105 73 r
70 045 80 s
70 180 53 s
90 155 53 s

8-9m 350/43 5 10 220 80 s
8 220 80 s
16 170 45 s
20 077 86 s
31 170 45 s conjugate set
45 170 45 s conjugate set
55 203 32 s conjugate set
68 203 32 s conjugate set
88 180 43 s
99 200 65 s

9-10m 350/43 1 14 225 48 s conjugate set
5 200 65 s conjugate set
6 225 48 s conjugate set
10 200 65 s conjugate set
20 205 45 s conjugate set
28 207 85 s conjugate set
35 216 60 s
35 165 60 s
46 230 56 s
70 097 75 s
83 212 59 s
91 212 59 s
94 212 59 s
99 212 59 s



Locality: 4c
GPS Coordinates:

Thrust System: M2
Structural Position: Forlimb
Scanline Number: 05-08
Lithological Unit: Vøringen
Scanline Trend: 130-310
Thickness: 14cm
Date: 25/7-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 013/33 1 3 245 67 ia s

40 260 78 ir s
80 225 67 ir s

1-2m 015/26 17 4 205 65 ia r
33 205 65
65 035 79 ir r
84 262 31 ir r

2-3m 010/26 6 8 045 82 ir r
25 160 36 ia r
65 155 86 ir r
69 155 86 ir r
70 140 81 ia r
78 205 45 ir s
82 205 45 ia r
91 125 75 ia

3-4m 355/22 7 7 335 85 ia
14 335 85 ir
20 255 74 ia r
30 325 79 ia
48 280 62 ir
78 240 67 ir
92 222 50 ir r

4-5m 010/22 18 12 070 80 ir
22 070 80 ir



28 165 40 ia
33 260 77 ia
50 113 76 ir
51 140 80 ir
57 170 85 ir
68 100 66 ir
75 340 87 ia
80 304 87 ir
85 265 80 ir
94 265 80 ir



Locality: 4c
GPS Coordinates:

Thrust System: M2
Structural Position: hinge
Scanline Number: 06-08
Lithological Unit: Vøringen
Scanline Trend: 117-297
Thickness: 15cm
Date: 25/7-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 031/11 1 28 013 85 ir s

3 062 78 ir
5 105 81 ir
8 180 81 ir r
12 125 89 ir
20 095 77 ir
20 202 72 ir
25 260 78 ir
26 260 77 ir
28 165 84 ir
30 260 78 ir
35 165 84 ir
37 260 78 ir
42 165 84 ir
45 260 78 ir
47 165 84 ir
50 165 84 ir
52 260 78 ir
55 165 84 ir
60 260 78 ir
65 145 82 ir
72 050 84 ir
79 270 78 ir
82 175 85 ir



86 175 85 ir
96 270 78 ir
97 270 78 ir
97 197 83 ir

1-2m 040/12 1 21 165 84 ir
5 115 89 ir
10 003 72 ir
18 003 72 ir
20 003 72 ir
23 225 23 ir
28 225 23 ir
34 043 85 ir
35 225 23 ir
42 003 72 ir
45 165 84 ir
48 030 40 ir Lavvikla
52 030 63 ir
55 030 63 ir
81 148 79 ir
86 040 90 ia
89 040 90 ir
90 084 80 ia
94 145 89 ir
96 084 80 ia
99 145 89 ir

2-3m 010/10 1 15 190 52 ir
5 285 86 ir
11 190 52 ir
12 285 86 ir
16 190 52 ir
20 285 86 ir
27 190 52 ir
29 190 52 ir
31 325 73 ir
33 190 52 ir
36 190 52 ir



40 190 52 ir
42 342 52 ir
57 214 56 ir
90 235 46 ir

3-4m 025/10 8 16 045 50 ir
18 130 66 ir
22 242 85 ir
25 130 66 ir
32 355 65 ir
40 100 79 ir
50 200 55 ir
54 100 79 ir
66 112 79 ir
68 112 79 ir
70 112 79 ir
75 100 79 ir
76 048 76 ir
76 112 79 ir
88 224 87 ir
90 105 90 ir

4-5m 020/08 5 18 020 60 ir
22 006 30 ia lavvinkla
30 100 90 ir
53 316 80 ir
55 316 80 ir
57 316 80 ir
64 125 85 ir
68 020 82 ir
69 335 80 ir
70 277 70 ir
72 335 80 ir
75 003 82 ia
78 120 88 ir
85 003 82 ir
88 220 18 ia lavvinkla
90 325 57 ir



98 220 63 ir
99 318 81 ir



Locality: 4c
GPS Coordinates:

Thrust System: M2
Structural Position: Backlimb
Scanline Number: 7-08
Lithological Unit: Vøringen
Scanline Trend: 25/205
Thickness: 15cm
Date: 25/7-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 186/55 1 13 313 60 ia

4 106 63 ir
20 106 63 ia
35 104 75 ia
47 097 60 ir
49 106 63 ir
52 106 63 ir
55 097 60 ir
73 097 60 ir
76 323 60 ir
90 326 45 ir
95 286 90 ir
99 350 44 ir

1-2m 190/60 25 10 350 44 ir
35 350 44 ir
37 273 90 ir
37 047 55 ir
57 318 56 ir
70 318 56 ir
80 318 56 ir
83 318 56 ir
88 318 56 ir
90 040 47 ir

2-3m 176/54 13 20 145 55 ir



20 047 70 ir
21 145 55 ir
30 047 70 ir
30 050 73 ir
46 276 75 ir
55 300 45 ir
55 276 75 ir
61 300 45 ir
67 300 45 ir
70 276 75 ir
74 300 45 ir
78 300 45 ir
83 300 45 ir
88 300 45 ir
90 240 82 ir
91 300 45 ir
95 300 45 ir
99 300 45 ir
99 276 75 ir



Locality: 4c
GPS Coordinates:

Thrust System: M2
Structural Position: Backlimb above thrust
Scanline Number: 7-08b
Lithological Unit: Vøringen
Scanline Trend: 357-177
Thickness: 15cm
Date: 25/7-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 171/23 1 10 274 80 ir

5 274 80 ir
13 274 80 ia
13 355 73 ia
20 274 80 ir
26 235 67 ir
63 274 80 ir
75 274 80 ia
85 274 80 ir
97 250 63 ir

1-2m 180/25 1 8 276 79 ir
44 274 81 ir
59 274 80 ir
59 350 66 ir
63 275 76 ir
73 275 76 ir
92 295 79 ir
92 005 71 ir

2-3m 185/26 1 7 279 76 ir
2 353 68 ir
13 279 76 ir
25 279 76 ir
64 279 76 ir
90 279 76 ia



94 279 76 ir
3-4m 195/30 15 8 279 76 ir

15 349 67 ir
37 279 76 ir
61 279 76 ir
69 279 76 ir
77 279 76 ir
85 279 76 ir
90 345 65 ir

4-5m 210/30 30 6 150 81 ir
35 203 42 ir lavvinkla
45 279 76 ir
53 279 76 ir
98 000 68 ir
99 279 76 ir



Locality: 4c
GPS Coordinates: (58) 0482434 8717568

Thrust System: M2
Structural Position: Backlimb above thrust
Scanline Number: 08-08
Lithological Unit: Vøringen
Scanline Trend: 205-25
Thickness: 15cm
Date: 25/-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 180/39 5 7 170 85 ia

10 265 90 ir
23 265 90 ir
63 120 88 ir
73 090 88 ir
83 090 88 ir
87 004 60 ir

1-2m 174/45 1 8 265 85 ir
14 265 85 ir
35 331 69 ir
41 265 85 ir
60 265 90 ia
70 160 88 ir
75 160 88 ir
83 355 60 ir



Locality: 3g
GPS Coordinates: (060) 0482029 8715430

Thrust System: M3
Structural Position: Hinge
Scanline Number: 9-08
Lithological Unit: unit 3
Scanline Trend: 220-40
Thickness: 53cm
Date: 26/7-08

UNIT (m) BED ORIENTATION DISTANCE FRACTURE FREQUENCY STRIKE DIP INTER / INTRA SURFACE COMMENTS
0-1m 164/42 5 18 310 67 ir backlimb

8 325 60 ir
9 290 78 ir
11 325 60 ir
13 325 60 ir
25 065 85 ir
26 335 74 ir
30 285 86 ir
39 285 86 ir
54 315 86 ir
60 315 86 ir
62 315 86 ir
70 325 80 ir ss:(TP) 230/20
75 325 80 ir
77 325 80 ir
85 327 88 ir
85 060 81 ir
96 320 72 ir

1-2m 153/03 1 19 323 86 ir hinge
5 080 45 ir Lavvinkla
10 328 90 ir
11 328 90 ir
20 334 90 ir
30 300 25 ir Lavvinkla



32 323 74 ir
37 323 74 ir
48 332 90 ir
57 328 90 ir ss:(TP) 230/20
64 328 90 ir
72 155 75 ir
73 155 75 ir
81 155 75 ir
82 173 36 ir Lavvinkla
87 148 80 ir
94 150 85 ir
98 333 85 ir
99 053 70 ir

2-3m 328/30 3 10 340 90 ir forlimb
12 165 70 ir
30 165 70 ir
35 150 90 ir
40 150 90 ir
50 150 90 ir
50 045 85 ir
60 150 90 ir
80 150 90 ir
99 163 85 ir
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