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Abstract

The muscular tissue of the heart is able to contract in the absence of external load. This

behaviour is stimulated by a spontaneous electrical depolarization of cardiac cells in the

sinoatrial node, which spreads electrical activation through the whole heart, that triggers

the synchronized mechanical contraction of the heart muscle. This phenomenon, referred

to as active contraction is commonly modelled mathematically using two approaches:

the active stress and the active strain approach. The active stress approach has a more

physiological basis, whereas the active strain approach, is more mathematically robust

and is less computationally expensive. In this thesis, we aim to investigate if both ap-

proaches (though fundamentally different in their formulations), can produce identical

simulation of ventricular stress in a patient-specific bi-ventricular model. We used a com-

putational modelling and data assimilation framework called pulse-adjoint to create the

personalized models. The finite element method was used to find a numerical solution to

the force-balance equation, that models heart mechanics. A gradient-based optimization

method, was used to assimilate clinical data (i.e. volume and regional circumferential

strain) into the computational models. To validate the models, we predicted the longi-

tudinal and radial strains not used in the optimization. Two personalized models were

created for each subject used in this study; one based on the active stress approach

and the other based on the active strain approach to enable comparison between both

formulations. By applying the framework using data obtained from three patients with

pulmonary arterial hypertension, we were able to extract ventricular stress in the fibre,

circumferential, longitudinal and radial directions. Our results show that differences

exist in the stress prediction using both approaches. However, total Cauchy stress (in

the fibre, circumferential and longitudinal directions) was simulated more closely be-

tween the two approaches, compared to the total stress in the radial direction or the

deviatoric component of total stress in all four directions. We also showed that in a

simple case, (simplified in terms of model geometry and myocardial fibre orientation),

both approaches can produce very similar stress predictions.
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1 Introduction

The muscular tissue of the heart can contract in the absence of external load. This

behaviour, which is key to maintaining heart function, is commonly modelled math-

ematically using two approaches (the active stress and the active strain approaches),

which are fundamentally different in their formulations. Here, we seek to investigate

if there are differences in how both approaches simulate ventricular stress in patient-

specific models of cardiovascular mechanics. Our patient-specific models were based on

data from three subjects with pulmonary arterial hypertension (PAH), acquired at the

National Heart Centre of Singapore, as part of an ongoing project at Simula Research

Laboratory (where this thesis was conducted). From our simulations, we can conclude

that both approaches simulate total stress (in the fibre, circumferential and longitudinal

directions) very closely with the exception of the peak fibre stress, as was also observed

in the literature [26]. However, simulation of total radial stress and the deviatoric com-

ponent of stress was significantly different between both approaches.

1.1 Aim of Thesis

In this thesis, we focus on the solid mechanics aspects of the ventricular chambers of the

heart and used a framework called pulse-adjoint [12] (which is based on the packages

FEniCS [66] and dolfin-adjoint [24]) to create patient-specific bi-ventricular (biV) models

using non-invasive data from patients with pulmonary arterial hypertension (PAH). The

models are used to investigate the differences between the active-stress and active-strain

approaches to modelling active contraction of the myocardium (heart muscle). The fi-

nite element method is used to find a numerical solution of the forward model (i.e. the

force-balance equation) that describes the mechanics of the heart. Piecewise quadratic

elements are used to discretize the displacement field and piecewise linear elements for

the hydrostatic pressure field (which enforces the incompressibility constraint imposed

on the myocardium). A variational data assimilation method also referred to as 4D-var

is used to assimilate patient data into the computational model. This involves the min-
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1 Introduction

imization of an objective functional representing the mismatch between measured and

simulated volume and regional circumferential strain, while ensuring that the forward

model remained satisfied. This PDE-constrained optimisation problem is solved with

a sequential quadratic programming (SQP) algorithm. The gradient of the objective

functional, which is required in the algorithm, is computed automatically by solving

the adjoint equation using the framework dolfin-adjoint. By minimizing the objective

functional, we are able to match simulated and measured data for each of the patients

used in this study. We validate the models by predicting the regional longitudinal and

radial strain not used in the optimization. Finally, we extract ventricular stress results

from the personalized biV models to compare stress prediction using the active stress

versus the active strain approach.

This rest of this thesis is organized as follows: The remainder of this section presents

a background and motivation for the work conducted in this thesis and an overview of the

anatomy and physiology of the cardiac system. We conclude the section by presenting

some basic knowledge about pulmonary arterial hypertension. Section 2 presents a

review of existing patient-specific cardiac mechanics models and optimization methods

used to fit the model to patient data. In Section 3, we present a mathematical model

and constitutive relations used in modelling the mechanics of the heart. Further, we

describe the method used to personalize the cardiac mechanics model and present details

of the implementation in pulse-adjoint. Numerical results are presented and discussed

in Section 4. We also present the limitations of these results and discuss directions for

future studies in this section. Finally, in Section 5, we draw conclusions from the work

conducted in this thesis.

1.2 Background and Motivation

Towards increased understanding of the causes and consequences of cardiac diseases,

research in biomechanics of the heart is an active direction, motivated by the knowledge

that mechanics plays a critical role in regulating cardiac function under both normal

and pathological conditions [48, 57, 95]. A goal is to better understand the mechanics

of the heart, to aid clinicians in making decisions and proposing treatment plans based

on patient specific data; be it pharmaceutical, surgical or medical device based therapy.

Computational modelling has a potential to bridge this knowledge gap and is beginning

to be incorporated into clinical practice [19, 38, 63]. This method of research provides

a relatively low cost framework for assessing the efficacy of therapy approaches. For
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1 Introduction

example, therapeutic parameters can be easily adjusted and assessed in multiple con-

current simulations, and also computational sensitivity studies can be easily conducted

to support clinical decision making and optimise treatment planning [86].

Patient-specific modelling (PSM) came about as a result of advances in numerical

methods and three-dimensional imaging techniques [49, 86, 99]. It is the development

of computational models that are individualized to a patient or subject and typically

involves incorporating anatomical and physiological patient data in the computational

modelling workflow. This data is usually extracted non-invasively using medical imaging

techniques such as magnetic resonance imaging (MRI), echocardiography and computed

tomography (CT) and can also be used to validate the model [38, 50]. PSM is gaining

more attention from research groups and funding agencies around the world because of

its potential to improve diagnosis, optimize clinical treatment by predicting outcomes of

therapies and surgical interventions, and inform the design of surgical training platforms

[61, 75]. In 2015, Novo Nordisk Fond funded a consortium ”MI-RISK: Risk factors for

sudden cardiac death during acute myocardial infarction” with the goal being to bridge

the knowledge gap between acute myocardial infarction (AMI) and sudden cardiac death

(SCD) using patient-specific modelling [2]. The Research Council of Norway funds re-

search projects on medical problems utilizing patient-specific models of heart electro-

physiology and mechanics such as the inHeart project whose main goal is to accelerate

heart failure research by facilitating the use of accurate and validated patient-specific

models [1]. Furthermore, biomechanical models based on non-invasive medical imaging

could provide invaluable data on the in vivo service environment where cardiovascular

devices are employed and on the effect of the devices on physiologic function. In a recent

study by Lee et al. [63], PSM was used to investigate the effects of the Parachute R© de-

vice (developed by Cardiokinetix Inc.) on left ventricular wall stress and function. Also

notable are two FDA-cleared medical devices (Heartflow R© FFRCT
1 and the Medtronic

CardioInsight R© Cardiac Mapping System2) which include patient-specific modelling in

their workflow.

Patient-specific models have been developed representing several aspects of the car-

diac system spanning disciplines such as electrophysiology, electromechanics, solid me-

chanics, and fluid dynamics. These models predict macroscopic phenomena such as elec-

trical impulse propagation and active contraction of the myocardium as well as flow and

pressure dynamics occurring in the ventricles, aorta and coronary arteries during each

1https://www.accessdata.fda.gov/cdrh_docs/pdf15/K152733.pdf
2https://www.accessdata.fda.gov/cdrh_docs/pdf16/k162440.pdf
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1 Introduction

cardiac cycle [38]. The mechanics of the myocardium is characterized by a passive be-

haviour and an active behaviour. The active response (referred to as active contraction)

is unique in the sense that the muscle fibres (cardiomyocytes) can generate contractile

forces by themselves; in other words, they have the ability to contract and relax in re-

sponse to biochemical signals [61, 74]. Two fundamentally different approaches to model

this active behaviour are available in the literature: the active stress [40] and the active

strain approach [74, 95]. The active stress approach is more common and involves the

additive decomposition of the stress tensor into a passive component and an active com-

ponent. In other words, the activity of the cardiomyocytes is represented (mechanically)

in terms of an active stress, which is to be added to the overall material stress [86]. On

the other hand, the active strain formulation applies a multiplicative decomposition of

the deformation gradient into a passive (elastic) deformation and active distortion [74].

Whereas the additive approach captures physiological phenomena more meaningfully,

multiplicative decomposition is considered to be more mathematically robust [86].

In this thesis, the active contraction of the myocardium will be modelled using the

both approaches. The aim is to determine if both formulations yield identical results,

and if not, to try to understand why there are differences. Patient-specific models have

been developed in a previous study [26] using the active strain formulation, as such this

thesis will help to validate the results from that study. As cardiac models continue to

shift from being solely research tools to potential clinical products for informing patient

care, the need for robust and validated cardiac mechanics software is of key importance

which serves as a motivation for the work conducted in this thesis.

1.3 Overview of the Structure and Function of the

Cardiovascular System

In this section, a brief description of the structure and function of the cardiac system is

presented. For a more detailed description, we refer to the books by Hoskins et al [51]

and Arnold M. Katz [57] from which most of the theory in this section is taken.

1.3.1 Organization of the Cardiovascular System

The cardiovascular (or cardiac) system consists of the heart, blood vessels, and blood. It

has three main functions: transport of nutrients and removal of metabolic wastes; defence

and healing; thermoregulation and maintenance of fluid balance between different tissues
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1 Introduction

Figure 1.1: Diagram of pulmonary and systemic circulation of the cardiac system. Reprint
from https://en.wikipedia.org/wiki/Circulatory_system

in the body. A flow chart of the cardiac system is shown in Figure 1.1. It comprises

two sub-systems: the systemic circulation and the pulmonary circulation. The role of

the heart is to pump blood through the two sub-systems. The right side of the heart

supplies the pulmonary circulation which is concerned with obtaining oxygenated blood

from the lungs and removing waste products of metabolism (such as carbon dioxide),

while the left side supplies the systemic circulation which transports oxygenated blood

to the rest of the body and also returns deoxygenated blood via the veins.

1.3.2 Anatomy of the Heart

The heart with its principal components is illustrated in Figure 1.2. On its superior

end, the base of the heart is attached to the aorta, the pulmonary arteries and veins,

and the vena cava, while the inferior end (the apex of the heart) rests just above the

diaphragm. The base of the heart is located along the midline of the body with the apex

pointing towards the left side. The heart is housed in the pericardial cavity whose walls

and lining are made of a serous membrane known as the pericardium. This membrane

acts to protect the heart and assist in its mechanics. It produces a serous fluid that

lubricates the heart and prevents friction between the heart and its surrounding organs

5
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1 Introduction

Figure 1.2: Sectioned view of the human heart. Source: https://en.wikipedia.org/wiki/
Heart

and also serves to hold the heart in position while maintaining a hollow space for the

heart to expand into when it is filled with blood. The heart comprises three layers of

tissue: epicardium, myocardium and endocardium. The epicardium is the outermost

layer of the heart and is actually the visceral layer of the pericardium. The myocardium

is the middle layer and is the thickest of the three. It contains the cardiac muscle tissue

and is the layer responsible for heart contractions. The endocardium is the innermost

layer of the heart. It is a very smooth layer which keeps blood from sticking to the inside

of the heart wall and forming blood clots.

The heart is basically a four-chambered pump with two priming chambers, the left

atrium (LA) and the right atrium (RA), and two primary pumping chambers, the left

ventricle (LV) and the right ventricle (RV). Its function can be divided in two main

phases, referred to as the contraction (ejection) phase and the relaxation (filling) phase.

The ventricles, situated in the lower part of the heart are the chambers from which

blood ejects from the heart during the contraction phase. The LV ejects blood into

the relatively high-pressure systemic circulation and the RV ejects blood into the low-

pressure pulmonary circulation. The atria are smaller and have less muscular walls than

the ventricles and are situated in the upper part of the heart. These are the chambers

through which blood enters the heart during the relaxation phase. The heart valves

operate as check valves thus preventing backflow of blood into the heart. During the

contraction phase, the aortic and pulmonary valves are open for blood to be ejected

6
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1 Introduction

into the aorta and pulmonary artery respectively, while the tricuspid and mitral valves

remain closed. In contrast, during the relaxation phase, the aortic and pulmonary valves

remain closed while the tricuspid and mitral valves are opened for blood to fill the heart

chambers via the vena cavae and the pulmonary vein, respectively.

1.3.3 The Cardiac Cycle

The cardiac cycle includes all of the events that take place during a heartbeat which

approximately lasts for a second. As mentioned earlier, the heart has four chambers and

at any given time during the cardiac cycle, the chambers may be found in one of two

states:

• Systole - during which the cardiac muscles contract to push blood out of the

chamber, and

• Diastole - during which the cardiac muscles relax to allow the chamber to fill with

blood.

To start off the cycle, deoxygenated blood returning from the body enters the RA from

the superior and inferior vena cava. The RA contracts and the blood is pumped through

the tricuspid valve into the RV and then through the pulmonary valve into the pulmonary

trunk. The pulmonary trunk carries blood to the lungs where it releases metabolic wastes

and absorbs oxygen. The blood then returns to the LA via the pulmonary veins. The

LA contracts to pump blood through the mitral valve into the LV. Contraction of the

LV ejects blood from the heart through the aortic valve and into the aorta. From the

aorta, the blood is pumped throughout the tissues of the body until it returns to the

heart via the vena cavae for a repeat of the cycle.

Each heartbeat and thus the cardiac cycle begins with the spontaneous depolarisa-

tion of cells in the natural pacemaker of the heart known as the sinoatrial (SA) node,

which is located in the wall of the right atrium. These cells make up about one percent

of the cardiac muscle cells in the heart and set the pace for the rest of the cells. This

spontaneous depolarisation causes an electrical activation to spread through the whole

heart, acting as a signal to initiate and synchronise mechanical contraction of the muscle

cells in the heart chambers. The cardiac muscle cells are arranged so that this contrac-

tion acts to increase the pressure in each heart chamber, leading to the synchronised

opening of the valves and the pulsatile flow of blood around the circulation. Each heart-

beat therefore relies on a sequence of events that include mechanical contraction, as well

7



1 Introduction

Figure 1.3: Relationship between LV pressure and LV volume during a single cardiac
cycle. Reprint from https://upload.wikimedia.org/wikipedia/commons/1/1c/Cardiac_

Pressure_Volume_Loop.jpg

as opening and closing of valves in the correct order. The electrical signal generated by

the SA node propagates from cell to cell through the LA and RA until it reaches the

atrioventricular (AV) node, another cluster of cells situated in the centre of the heart

between the atria and ventricles. In a normal heart, the AV node provides the only

path for the electrical signal to propagate through the atrioventricular bundle (a fibrous

tissue separating atria and ventricles) to the ventricles. It acts as a gate that slows the

electrical current before the signal is allowed to pass down through the LV and RV. This

delay ensures that the atria are able to fully contract before the ventricles are stimulated.

After passing the AV node, the electrical signal travels to the ventricles along special

fibres (Purkinje fibres) embedded in the walls of the ventricles, stimulating the cardiac

muscle cells to contract in a coordinated manner to pump blood out of the heart.

A common way to characterize the cardiac cycle is by means of the pressure and

volume inside the individual heart chambers. A plot of pressure against volume known

as a pressure-volume (PV) loop can be used to depict the changes in pressure and volume

during the cardiac cycle. Figure 1.3 illustrates a typical PV-loop for the left ventricle.

Proceeding anticlockwise, the loop traces the chain of events of one cardiac cycle. Systole

is represented in the right and top boundaries of the loop, while the diastole is represented

in the left and bottom boundaries. The bottom right corner of the loop is the mitral

valve closure point, which occurs at end diastole (ED) when the pressure in the LV

exceeds that of the atrium. From that point, the isovolumic contraction starts, the

pressure in the LV increases at a constant volume, until the pressure exceeds that of
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1 Introduction

the aorta causing the aortic valve to open and the heart to eject blood into the body.

The pressure continues to increase while the LV volume decreases as the blood is ejected

rapidly into the aorta. Once the peak systolic pressure is attained, the ejection slows as

both pressure and volume decrease. This continues until LV pressure becomes smaller

than the aortic pressure, causing the aortic valve to close. This point is referred to as

end systolic (ES) point (the top left corner in Figure 1.3) and the diastolic relaxation

begins from this point. The LV first undergoes isovolumic relaxation, decreasing pressure

rapidly at a constant volume, until the opening of the mitral valve when LV pressure

becomes smaller than that in the atrium. The blood now flows rapidly into the LV as it

completes its relaxation, this is known as the filling phase. The LV pressure and volume

then increase as blood continues to flow in during the remainder of diastole, until the

mitral valve closes (at ED) and the cycle repeats.

1.4 Basic Knowledge about Pulmonary Arterial

Hypertension

Pulmonary arterial hypertension (PAH) is one of the five classification groups of pul-

monary hypertension. It is characterized by a resting mean pulmonary arterial pressure

(mPAP) of more than 25 mmHg, or an mPAP with exercise of more than 30 mmHg,

with a mean pulmonary arterial wedge pressure of less than 15 mmHg [8]. It results in

a progressive increase in pulmonary vascular resistance and, ultimately, leads to right

ventricular failure and death. The pathogenesis of most forms of the disease is still

unknown, however, three factors are thought to cause the increase in pulmonary vas-

cular resistance: remodelling of the pulmonary arterial wall, vasoconstriction (of the

pulmonary artery) and the formation of a blood clot in the pulmonary artery [23, 52].

The gold standard for diagnosis of PAH is by right heart catheterization (RHC) with

the measurement of PAP, cardiac output, right atrial pressure (RAP) and pulmonary

arterial wedge pressure [29]. Doppler echocardiography allows non-invasive evaluation of

PAP and is increasingly being used in PAH diagnosis [8, 102]. However, the accuracy of

the method is operator-dependent and it has been shown to produce an underestimation

of pressures when compared with RHC [102].

Treatment options for patients with the disease have evolved over the past two

decades. These treatments only help to prolong their survival and improve their quality

of life, as no current therapy can cure the condition [52, 85]. We refer to the detailed

review by Humbert et al. [52] of different drug therapies for treating PAH. Conven-

9
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tional therapies include oxyen therapy (for chronic hypoxemia as a result of restricted

pulmonary circulation), diuretic therapy (which reduces right ventricular preload), and

oral vasodilators (to treat pulmonary artery vasoconstriction). Other therapies have a

more long-term strategy such as administration of high-dose calcium-channel blockers.

This therapy has been shown to produce a significant reduction in both mPAP and

pulmonary vascular resistance. However, not all patients have a sustained benefit from

the therapy [83, 91].

Recent advances in our understanding of the pathophysiological mechanisms that

may cause PAH, have led to the development of new drug therapies and with more

research and knowledge of this disease, it might soon be possible to produce a cure.

10



2 Review of Patient-Specific Cardiac

Mechanics Models

Computational methods were first applied to compute velocity and pressure fields in

idealized, generic models of vascular anatomy and physiology[27, 81, 99]. With the

improvements in computing power, modelling software, availability of high-resolution

medical imaging and the potential of biomechanical measurements for clinical decision-

making and surgical planning, it is now possible to quantify cardiovascular mechanics

in subject-specific anatomic and physiologic models [49].

Cardiac mechanics models personalized to individual patient data started gaining

momentum around the year 2000 (see Figure 2.1) indexed by an exponential increase in

the number of yearly publications on the topic. Since that time, many patient-specific

models have been developed and utilized by different groups to investigate the develop-

ment of cardiovascular disease for example in the coronary arteries [34], the carotid artery

[105] and the aorta [97]. In particular, image-based models are increasingly being used

to understand ventricular mechanics under pathological conditions such as myocardial

infarction [3, 11], left bundle branch block [12, 25], concentric and eccentric hypertrophy

[15], pulmonary arterial hypertension [113] as well as heart failure treatments [19, 63, 98].

PSM techniques have also been applied to evaluate patient-specific regional myocardial

contractility and ventricular wall stresses using an optimisation approach to estimate

material parameters that describe the passive myocardium [12, 25, 26].

To facilitate the discussion of existing patient-specific cardiac mechanics models,

we have organized this review in terms of (1) the realistic description of the three-

dimensional cardiac geometry, (2) the accurate representation of myocardial fibre ar-

chitecture, and (3) the constitutive equations that characterize the material properties

of the myocardium. The review also includes a discussion of some of the optimization

methods used for estimating material parameters in patient-specific cardiac models.

11



2 Review of Patient-Specific Cardiac Mechanics Models

Figure 2.1: Number of yearly publications of peer-reviewed journal articles for fintie-element-
based studies focusing on cardiac ventricular mechanics. Source: Thomson Reuters ISI Web
of Knowledge and PubMed databases, January 2016

2.1 Cardiac Geometry

Until recently, simplified left ventricular geometries were used as the primary computa-

tional tool for investigating cardiac mechanics [86]. First, a spherical model was proposed

for the geometry of the LV [41, 69, 112] until this was replaced by a more accurate de-

scription of the LV using a prolate ellipsoid [47, 68, 110]. The first three-dimensional

patient-specific computational bi-ventricular geometry of the heart was introduced in

1968 by Okajima et al [78]. The geometry was reconstructed based on pictures taken of

a heart embedded in a frozen gelatine solution. The heart was obtained at autopsy from

a patient who showed no cardiac abnormality. Almost two decades later, Nielsen et al.

[77] presented a realistic bi-ventricular model that was novel for its accurate geometric

description and definition of myofibre orientation. The method used for reconstructing

the heart geometry was similar to that used by Okajima et al. as the measurements

were taken ex vivo using a canine heart. In 1972 the first use of in vivo imaging tech-

niques for creating heart geometries was reported by Gould et al. [36]. X-ray was used

to image the LV and the finite element method was used to estimate wall stress. Since

then, more realistic heart geometries (derived non-invasively) have become prevalent in

patient-specific computational models largely due to improvements in medical imaging

techniques and computing power. Non-invasive clinical imaging techniques have become

the standard procedure for anatomic model reconstruction. For example, Krams et al.

[60] in 1997 used intravascular ultrasound (IVUS) to reconstruct a three-dimensional

12
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geometry of the coronary artery to study the development of atherosclerosis. More

recently, Aguado-Sierra et al. [3] used echocardiography (cardiac ultrasound) to recon-

struct a bi-ventricular geometric model of a failing heart with a myocardial infarct and

left ventricular bundle branch block adopting the approach developed by Nielsen et al.

to create the finite element mesh from the medical images. Tang et al. [98] introduced

a new model using cardiac magnetic resonance (CMR) imaging to create different zero-

load diastole and systole geometries for more accurate cardiac stress/strain calculations

with a potential to predict post pulmonary valve replacement surgical outcome. As the

quality of imaging modalities and automatic segmentation software continue to improve,

so will the accuracy of patient-specific cardiac geometries.

2.2 Myofibre Architecture

The orientation of the myofibre i.e. the spatial arrangement of ventricular myocyctes

has a critical effect on cardiac mechanics as it influences both the passive and active

properties of the myocardium. Indeed, myocardial fibre orientation determines the pref-

erential electrical wave propagation and tissue contraction in the heart [22]. A recent

study by Finsberg et al. [26] confirmed that finite element predictions are very sensitive

to variations in fibre orientation, as such accurately representing this data is critical

so that model predictions match with experimental data. Our fundamental knowledge

of the myofibre architecture is based on early histological studies which found that the

myocardial wall has a well-ordered distribution of fibre angles varying from about 60◦

at the endocardium to about −60◦ on the epicardium [92]. Nielsen et al. [77] in 1991

made comprehensive measurements of fibre orientation throughout the ventricular my-

ocardium of a fixed canine heart to reveal patterns of fibre orientation that had not been

previously quantified. Their results were broadly consistent with an earlier study [92],

however they observed regional differences in fibre orientation on the epicardial surface.

These results were used in the patient-specific model by Aguardo-Sierra et al. presented

earlier.

To date no computational models have investigated cardiac function using truly

individual patient-specific fibre orientation [86]. Diffusion tensor magnetic resonance

imaging (DTMRI) can non-invasively provide regional information on myofibre archi-

tecture throughout the ventricular walls and is typically used to assign fibre orientation

to cardiac models [3, 14, 50]. However due to challenges of performing this procedure

in vivo (as it requires long acquisition and reconstruction times), the method is often
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limited to a single post mortem data set from which the derived fibre orientations are

mapped onto other patient-specific geometries (obtained through other imaging modal-

ities) using for example nonlinear finite element fitting techniques [22, 86, 108]. An

alternative is to use rule-based methods such as those proposed by Wong and Kuhl

[111], Bayer et al. [14] or Doste et al. [22] to incorporate fibre information in cardiac

computational models and this has been applied in several patient-specific models (e.g.

Finsberg et al. [26]; Balaban et al. [12]). Wong and Kuhl’s [111] method is capable of

generating smoothly varying fibre orientations, quickly, efficiently and robustly, for both

generic and patient-specific bi-ventricular models. The method proposed by Bayer at al.

[14] uses a novel Laplace-Dirichlet Rule-Based (LDRB) algorithm to perform the same

task as in [111] and produces results nearly indistinguishable from DTMRI-derived fibre

orientations.

Recent studies have shown promising results with regards to in vivo measurement

of fibre orientation using DTMRI [76, 100, 104]. In the future we should be able to

investigate cardiac mechanics using wholly personalized myocardial fibre architecture.

2.3 Constitutive Models of the Myocardium

In creating a model (be it generic or patient-specific) for studying cardiac mechanics, the

calculated stress distribution across the myocardial wall is dependent on the accuracy of

the constitutive law chosen to characterize the material properties of the myocardium.

There are several constitutive models of the passive myocardium available in the litera-

ture, including isotropic models [20], transversely isotropic models [39, 53, 54] and more

recently, orthotropic models [45, 58, 87]. Several of the earlier heart mechanics models

were based on linear isotropic elasticity [36, 55, 80] and proved to be too simplified and

inadequate as they introduced large errors in describing the process of ejection and the

transmural distribution of stresses [5]. In 2002, Dokos et al. [21] clearly showed from

simple shear tests on passive ventricular myocardium (from porcine hearts) that the

tissue is orthotropic having three mutually orthogonal planes with distinct material re-

sponses. Based on this study, Holzapfel and Ogden [45] developed a general framework

for constitutive modelling of the passive myocardium based on invariants associated with

these three directions, namely the fibre axis, the sheet axis and the sheet-normal axis.

The notation and material parameters detailed by Holzapfel and Ogden have become

the most widely used form of a passive material law for studying cardiac mechanics using

patient-specific models [86].
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To account for the active myocardium in the constitutive model, two approaches

are commonly used in the literature. The first and more common approach referred

to as the active stress formulation is based on the classical three-element Hill muscle

model [43] and adds an active stress contribution to the overall material stress, typically

oriented mainly along the local fibre orientation [40]. This formulation has been applied

in many studies using patient-specific cardiac mechanics models (for e.g. Walker et al.

[106]; Baillargeon et al. [9]; Usyk et al. [101]; Lee et al. [63]). The second approach,

referred to as the active strain formulation, involves a multiplicative decomposition of

the deformation gradient and is more mathematically robust [95]. Rossi et al. [84] used

this approach for the numerical simulation of cardiac biomechanics and concluded that

it is mathematically consistent and is also able to represent the main features of the

phenomenon, while being less computationally expensive compared to the active stress

approach. This approach has also been applied by Finsberg et al. in patient-specific

models used to estimate indices of cardiac contractility and myofiber stress [25, 26].

Notably, Berberoğlu et al. [15] in 2014 used a generalization of the Hill muscle model [35]

to investigate different cardiac dysfunctions (such as infarction and hypertrophy)related

to the excitation-contraction coupling in the heart. This framework enabled a ”best of

both worlds” scenario where the advantageous features of the active stress and active

strain formulations suggested in the literature were combined.

2.4 Optimization Methods used for Patient-Specific

Modelling

The material parameters in the various constitutive models of the myocardium cannot

be extracted in vivo. As such, in patient-specific models, these parameters are estimated

using a method that fits the output of the model to patient data. In other words, a set of

material parameters are selected and tuned until the error between the simulated output

and measured data is below a set tolerance limit. This is typically achieved by defining

a so-called objective function which represents the mismatch between simulated and

measured data, such that a minimization of this function serves to bring the simulated

data close to the measured data. Several optimization algorithms have been used in

the literature to solve such parameter estimation problems such as sequential quadratic

programming (SQP) algorithm [7, 10, 26, 108], genetic algorithm [70, 71, 73], BOBYQA

(Bound Optimization BY Quadratic Approximation) algorithm [32, 88] and parameter

sweeps method [114]. The SQP algorithm is a gradient-based optimization technique
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that uses the derivative of the objective function (i.e. the functional gradient) to find

a search direction that leads to a local minimum of the function. This algorithm uses

relatively few iterations to converge to a minimum but has a disadvantage in that they

converge to a local minimum which might not be the optimal solution in the case of a

function with several local minima. One way to circumvent this challenge is to apply

a multi-start optimization method where many optimizations are run from randomly

chosen initial parameter points and the parameter set that gives the best fit is chosen as

the optimal set. This method was used by Balaban et al. [10] to estimate cardiac hyper-

elastic material parameters from shear data. Furthermore, optimization methods which

require gradient information are not suited to functions that are non-differentiable. For

such functions, the BOBYQA algorithm which is a derivative-free optimization tech-

nique developed by Michael J.D. Powell in 2009 [82] is more practical and was used

by Genet et al. [32] to estimate passive material parameters. They were able to pre-

dict circumferential and longitudinal strains to within 6 % of measured values using this

method. Genetic algorithms mostly converge towards a global minimum of the function

and were found to be a robust method for estimating myocardial material parameters in

a study by Nair et al. [73]. Using a realistic 3D heart model, they were able to achieve

optimized material parameters to within 5 % of the true values. Roch Molléro et al.

[71] also used a genetic algorithm called CMA-ES (which stands for Co-variance Matrix

Adaptation Evolution Strategy) in their parameter estimation framework for cardiac

models. This algorithm is known to produce very good results on problems involving a

large parameter space [31, 42]. However, some of the drawbacks associated with global

optimization algorithms (such as the genetic algorithm) are that they are computation-

ally expensive as they typically require a lot of functional evaluations, and for even the

most basic variations of the algorithm there are several problem-dependent parameters

that need to be tuned by the user [103]. In the parameter sweeps method, a range of

values for each parameter is selected, and simulations are run with all possible combina-

tions of these values from which the optimal set of parameters is chosen. This exhaustive

method was utilized by Xi et al. [114] to fit a passive mechanics model to patient data.

An obvious drawback with this method is that the computational cost increases with

the number of model parameters. Also, as some parameters will have much less effect on

the objective function, this will lead to a number of redundant simulations. However, if

the importance of each parameters is known, then this can inform the number of values

picked for each parameter, thus reducing the required number of simulations to achieve

an optimized parameter set.

16



3 Methods and Implementation

In this section, we present the methods used for patient specific modeling in this the-

sis. Except otherwise stated, the methodology is based on the work by Finsberg et al.

[26]. The medical data acquisition, biV mesh and myocardial fibre generation were not

carried out as part of this thesis. The medical data was acquired at the National Heart

Centre of Singapore with written informed consent obtained from all participants, while

the biV mesh and myocardial fibre generation was done by the Computational Physi-

ology Department1 at Simula Research Laboratory (where this thesis was conducted).

However, the methods for carrying out these tasks are described here for completeness.

3.1 Data Acquisition and Processing

Here, we will describe the methods used to extract the clinical patient data, to generate

the bi-ventricular mesh from medical images and to assign myocardial fibre orientation

to the models. We also describe the method used in this thesis to derive the reference

geometry relevant for the simulations.

3.1.1 Clinical Data

Data from four PAH patients (referred to here as MR011, MR015, MR016 and MR019)

who underwent both cardiac magenetic resonance (MR) imaging and right heart catheter-

ization (RHC) was used in this thesis. A 3T Philips scanner was used to acquire cine MR

images from the patients in multi-planar short- and long-axis views. Three-dimensional

bi-ventricular geometries were then reconstructed from the cine MR images and parti-

tioned into 3 regions comprising the left ventricular free wall (LVFW), right ventricular

free wall (RVFW) and interventricular septum (SEPT) as shown in Figure 3.1a. RHC

was used to acquire left and right ventricular pressure while cavity volumes of the LV

and RV were measured at different time frames within a cardiac cycle using the MR-

1https://www.simula.no/research/projects/department-computational-physiology
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reconstructed bi-ventricular geometries. These pressure and volume data were synchro-

nized and used to reconstruct the LV and RV pressure-volume loops for the patients.

Regional circumferential and longitudinal strain were estimated from the cine images

using a hyperelastic warping method described in [116]. Normal strains in the circumfer-

ential and longitudinal directions at the LVFW, RVFW and SEPT were computed from

the displacement field using the end-diastole as the reference configuration. Note that

the circumferential and longitudinal directions in the bi-ventricular model were assigned

using a Laplace-Dirichlet-Rule-Based algorithm as described in [14].

3.1.2 Mesh and Fibre Generation

For each patient, three-dimensional finite element meshes (see Figure 3.1b) were gen-

erated in the volume enclosed by the endocardial and epicardial surfaces using GMSH

[33]. These surfaces were cut by a least squares fitting plane fitted to the basal points

of the surfaces, and then the plane was adjusted so that the cavity volume in the mesh

was within 1 mL of the measured volume. Points on the epi- and endocardial surfaces

above the cutting plane were discarded.

The myocardial fibre orientation, denoted by f0, were assigned using a rule-based

algorithm described in [14], with the helix fibre angles set to 60◦ on the endocardium

and rotated clockwise throughout the ventricular wall to −60◦ on the epicardium. A

representation of the myocardial fibres is shown in Figure 3.1c.

3.1.3 Unloaded Geometry Generation

In principle, the patient-specific geometry reconstructed from medical images is not

stress-free because the observed images represent a configuration of the heart already

stressed by in vivo conditions such as blood pressure. Hence, we need to estimate the

unloaded (zero-pressure) geometry which will revert back to the original reconstructed

geometry (during the simulation). Several computational strategies exist to achieve

this based on for example inverse design analysis [30], a modified updated Lagrangian

formulation [30, 37] and a backward displacement method [16, 89]. Some studies have

instead used images extracted at atrial systole [11, 12] or early ventricular diastole [113,

114] to represent the unloaded geometry as the LV and RV pressures can be considered

close to the minimum at these points. As part of the work carried out in this thesis, an

estimate of the unloaded geometry was found by applying the backward displacement

method described in [16]. Note that for bi-ventricular geometries, this method might
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(a) (b)

(c) (d)

Figure 3.1: (a) Partition of regions: RVFW (red); SEPT (gray); LVFW (blue). (b) Finite
element mesh model. (c) Myocardial fibre orientation with a transmural variation of 60◦

(endo) to −60◦ (epi) for the bi-ventricular model. (d) Collapsed RVFW as a result of failed
unloading, which can occur if the myocardial tissue is soft and the pressure in the RV is high.

fail to converge, particularly if the tissue is soft and the pressure in the right ventricle

is high leading to buckling of the RVFW (see Figure 3.1d). This was observed with one

of the subjects (MR015) used in this thesis.

3.2 Mathematical Model

In this section, we will introduce the concepts of continuum mechanics necessary to model

the mechanics of the heart. For a detailed description of the theory and derivations of

the equations we refer to books by Gerhard Holzapfel [44] and Stuart S. Antman [4].

3.2.1 Force-balance Equation

We represent the heart as a continuum body in R3. We denote the current configuration

of the heart by ω, and the reference configuration by Ω. We use x to denote the

current position of a material particle in ω that was originally placed at X in Ω. The
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motion of the continuum body is defined using the smooth one-to-one map ϕ : Ω→ ω,

ϕ(X) = X + u(X) where u denotes the displacement vector u = x−X which relates

postions in the reference configuration to positions in the current configuration.

We now define some other quantities relevant to modelling cardiac mechanics. The

deformation gradient is a second order strain tensor which maps vectors in the reference

configuration to vectors in the current configuration and is represented as

F = Grad x. (3.1)

Since x = u + X, we have that

F = Grad u + Grad X = Grad u + I, (3.2)

where I is the identity tensor. From this, we define the volume map as the determinant

of the deformation gradient such that an infinitesimal volume element dV in Ω is related

to an infinitesimal volume element dv in ω as below

dv = det(F) dV. (3.3)

Also associated with the deformation gradient, are the right Cauchy-Green deformation

tensor, C = F>F, and the left Cauchy-Green deformation tensor, B = FF>. Another

useful expression for strain relevant to cardiac mechanics is the Green-Lagrange strain

tensor defined as E = 1
2
(C− I).

The force-balance equation for the mechanics of the heart is based on the principle

of conservation of linear momentum which states that the change in linear momentum

of a body equals the total applied force acting on the body. For a continuum body with

constant mass density, ρ this implies that∫
ω

ρv̇ dv = f , f =

∫
∂ω

t ds +

∫
ω

ρb dv, (3.4)

where v̇ is the spatial velocity field and the total applied force f (given as the sum of a

volume and surface integral) comprises a tractive force, t and a body force, b.

By Cauchy’s theorem, the tractive force vector, depends linearly on a unit normal n;

that is, there exists a second order tensor σ (called the Cauchy stress tensor) such that

t = σn. This implies that ∫
∂ω

t ds =

∫
∂ω

σn ds,
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and using the divergence theorem we get∫
∂ω

t ds =

∫
∂ω

σn ds =

∫
ω

∇ · σ dv. (3.5)

By combining (3.4) and (3.5) we get∫
ω

ρv̇ dv =

∫
ω

∇ · σ dv +

∫
ω

ρb dv,

from which we arrive at Cauchy’s equation of motion

∇ · σ + ρb = ρv̇. (3.6)

The contributions from the body force, b, and the inertial term, ρv̇ can be considered

negligible compared to the stress term [72, 96], thus we have the force balance equation

as

∇ · σ = 0. (3.7)

Note that (3.7) is formulated in the current configuration as the Cauchy stress tensor

relates forces to areas in the current configuration. An equivalent formulation in the

reference configuration is

∇ ·P = 0, (3.8)

where P is the first Piola-Kirchhoff stress tensor and is related to σ via the expression,

P = JσF−>, or σ = J−1PF>, (3.9)

with J = det(F). In this thesis, the myocardium is modelled as a hyperelastic material

which implies that the stress-strain relationship is derived from a strain energy density

function, Ψ and the first Piola-Kirchhoff stress tensor is given as

P =
∂Ψ(F)

∂F
. (3.10)

The actual strain energy density function used (in the constitutive model) in this thesis

will be presented in Section 3.3.

A common assumption in cardiac mechanics modelling, which has also been applied

in this thesis, is to model the myocardium as an incompressible material, implying that

the volume remains constant during deformations. This means that a constraint is
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placed on the volume map (see Equation (3.3)) such that

J = det(F) = 1, or J − 1 = 0. (3.11)

Thus, to ensure incompressibility of the hyperelastic myocardium, the strain energy

density function is modified to the isochoric form

Ψ = Ψ(F) + p(J − 1), (3.12)

where the hydrostatic pressure p serves as a Lagrange multiplier to enforce the incom-

pressibility constraint. The first Piola-Kirchhoff stress tensor then becomes

P =
∂Ψ(F)

∂F
− JpF−>, (3.13)

and from (3.9) we derive the Cauchy stress tensor as

σ = J−1∂Ψ(F)

∂F
F> − pI. (3.14)

3.2.2 Boundary Conditions

Boundary conditions are required to solve differential equations such as the force-balance

equation (3.8) and when imposed on a model, they should mimic, as close as possible,

what is observed in reality. Different approaches have been proposed to constrain biven-

tricular models in the literature [28, 79, 107, 109]. In this thesis, a Neumann boundary

condition was used for the endocardium representing the endocardial blood pressure.

For the left and right ventricles we have

σn = −plvn, ∀x ∈ δωendo,LV, and σn = −prvn, ∀x ∈ δωendo,RV, (3.15)

where δωendo,LV and δωendo,RV represent the left and right endocardial domains respec-

tively, plv and prv the blood pressure in the LV and RV respectively, and n is the unit

outward facing boundary normal. This condition is imposed on the current configura-

tion. To impose it on the reference configuration we used the transformation in (3.9) to

obtain
PN = −plvJF−>N, ∀X ∈ δΩendo,LV, and

PN = −prvJF−>N, ∀X ∈ δΩendo,RV.
(3.16)
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The ventricular base was fixed using a Dirichlet boundary condition,

u1 = 0, ∀X ∈ δΩbase, (3.17)

where u1 is the longitudinal component of the displacement field u = (u1, u2, u3). Finally,

the epicardial surface of the bi-ventricular geometry was constrained using a Robin type

boundary condition

PN + ku = 0, ∀X ∈ δΩepi, (3.18)

where PN = −pepiJF−>.N, ∀X ∈ δΩepi and k is the stiffness of a spring that limits

the movement of the epicardium such that k = 0 and k → ∞ represent a free and

fixed boundary respectively. A linear spring stiffness k = 0.5 kPa/cm was used in this

thesis based on a previous study [113]. Note that an often used simplification which

was also applied in this thesis is to set the epicardial pressure pepi to zero [93, 107].

A bi-ventricular geometry illustrating the different boundary conditions applied in this

thesis is presented in Figure 3.2.

Figure 3.2: Boundary conditions on the biV model: Dirichlet BC (yellow); Neumann BC
(gray); Robin BC (red).
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3.2.3 Variational Formulation

Considering the myocardium as an incompressible, hyperelastic material we have the

strong form of the force-balance equation in the Lagrangian formulation

∇ ·P = 0

J − 1 = 0,
(3.19)

with boundary conditions as defined in Section 3.2.2. To find a numerical solution

to (3.19) using the finite element method, we first need to express it in a variational

(weak) form. To achieve this, we utilized the principle of stationary potential energy

which states that a physical system is at equilibrium when the total potential energy is

minimized, and any infinitesimal variation from this state involves no change in energy.

For an incompressible, hyperelastic material the total potential energy, Π in the system

is given as

Π(u, p) = Πint(u, p) + Πext(u), (3.20)

Πint(u, p) =

∫
Ω

[p(J − 1) + Ψ(F)] dV, (3.21)

Πext(u) = −
∫

Ω

B.u dV −
∫
∂ΩN

Tu dS, (3.22)

where Πint represents the internal (strain) energy stored in the deformed body and Πext

represents the external potential energy associated with external forces. According to

the principle of stationary potential energy we find the stationary conditions with respect

to u and p as

DδuΠ(u, p) = 0, and DδpΠ(u, p) = 0. (3.23)

That is we compute and set to zero the directional derivatives of Π with respect to a vir-

tual displacement field δu and a virtual hydrostatic pressure field δp. With reference to

(3.23) we substitute (3.21) and (3.22) into (3.20) and obtain the weak forms (derivations

have been omitted)

DδuΠ(u, p) =

∫
Ω

[pJF−> + P] :∇δu dV +DδuΠext = 0, (3.24)

in the direction of the virtual displacement field, and

DδpΠ(u, p) =

∫
Ω

(J − 1)δp dV = 0, (3.25)
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in the direction of the virtual hydrostatic pressure field. The second term in (3.24) is

associated with the external forces applied as boundary conditions on the model, that is

DδuΠext =

∫
δΩendo,LV

plvJF−>Nδu dS +

∫
δΩendo,RV

prvJF−>Nδu dS +

∫
δΩepi

kuδu dS.

(3.26)

The variational equations (3.24) and (3.25) provide the fundamental basis for the finite

element implementation and are commonly referred to as the Euler-Lagrange equations.

If we denote V and Q as two suitable Hilbert spaces for the displacement u and the

hydrostatic pressure p respectively, then the variation formulation reads:

Find (u, p) ∈ V ×Q such that ∀(δu, δp) ∈ V ×Q,

DδuΠ(u, p) = 0, and

DδpΠ(u, p) = 0.
(3.27)

Discretization of the Force Balance Equations

In deriving the variational form in Section 3.2.3, we utilized a two-field variational prin-

ciple because finite element analysis of problems associated with constraint conditions

(such as the incompressibility constraint imposed in this thesis) experience significant

numerical difficulties if we choose to discretize over only one field i.e. the displacement

field. These difficulties, referred to as locking phenomena, arise from the over-stiffening

of the system causing instability in the numerical solution [44]. To eliminate this, we

discretize the displacement field and the hydrostatic pressure field independently using

a mixed finite elements method. The elements used in this thesis are the Taylor-Hood

mixed finite elements [46]; that is, a piecewise quadratic discretization of the displace-

ment field and a piecewise linear discretization of the hydrostatic pressure field. These

mixed elements satisfy the discrete inf-sup condition [62] which is a requirement for

stability of the numerical solution.

3.3 Constitutive Model

3.3.1 Modelling the Passive Myocardium

In this thesis, we will use a constitutive law proposed by Holzapfel and Ogden [45] to

model the passive myocardium. This law takes into account the orthotropic nature of

the myocardial tissue that is the presence of three mutually orthogonal directions of
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alignment of cardiac cells namely the fiber axis, f0, sheet axis, s0, and sheet-normal axis,

n0. The invariant-based nature of this law also makes it independent of the frame of

reference. The orthotropic model proposed by Holzapfel and Ogden has the form

Ψ =
a

2b
eb(I1−3) +

af

2bf

[ebf(I4f0−1)2 − 1] +
as

2bs

[ebs(I4s0−1)2 − 1] +
afs

2bfs

[ebfsI
2
8f0s0 − 1], (3.28)

where a, b, af, as, bf, bs, afs and bfs are positive material parameters, with the a pa-

rameters having dimensions of stress and the b parameters dimensionless. We define the

invariants I1, I4f0 , I4s0 and I8f0s0 as

I1 = tr(C), I4f0 = f0.(Cf0), I4s0 = s0.(Cs0), I8f0s0 = s0.(Cf0), (3.29)

with f0 and s0 being unit vectors aligned with the fiber and sheet directions respectively.

Since the myocardium can be considered to have a preferred direction which is the fiber

axis f0, we used a transversely isotropic version of (3.28) in this thesis to reduce the

number of model parameters. To achieve this, we set as = bs = afs = bfs = 0 and get

the strain energy density function on the form

Ψ =
a

2b
eb(I1−3) +

af

2bf

[ebf(I4f0−1)2 − 1], (3.30)

which yields the Cauchy stress tensor (see [45] for derivation),

σ = a eb(I1−3)B + 2af(I4f − 1)ebf(I4f−1)2f ⊗ f − pI, (3.31)

where B is the left Cauchy-Green tensor defined earlier, f = Ff0 and ⊗ signifies the

outer product.

3.3.2 Modelling the Active Myocardium

As stated in Section 1 the myocardium exhibits a non-standard continuum mechanics

behaviour as the muscle fibres can generate contractile forces by themselves (in response

to biochemical signals) without the application of external loads. There are two common

approaches used in cardiac mechanics to mathematically describe this behaviour; the

active stress and the active strain formulation. In this thesis, the active stress formulation

will be used. For a detailed description of the formulation, we refer to [40]. In this

approach, the total Cauchy stress σ is decomposed additively into a passive contribution
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σp and an active contribution σa (termed as the active stress),

σ = σp + σa. (3.32)

The passive contribution is based on the material model in Section 3.3.1 and is calculated

using (3.31) while the active stress is given by

σa = σff f ⊗ f + σsss⊗ s + σnnn⊗ n, (3.33)

where σff , σss, and σnn are the active stress in the fiber, sheet and sheet-normal direc-

tions respectively, s = Fs0 and n = Fn0. If we consider the active stress in the transverse

directions (σss and σnn) to be non-negligible (which is supported by experimental evi-

dence [65]), then we can assume a uniform transverse activation such that (3.33) can be

written as

σa = Ta[f ⊗ f + η(s⊗ s + n⊗ n)], (3.34)

where η represents the amount of transverse activation and Ta is the magnitude of

the active stress such that when η = 0, the active tension acts purely in the fiber

direction and (3.34) reduces to σa = Taf ⊗ f . We set η = 0.2 in this thesis based on a

previous study [94]. Note that this simplification of (3.33) is possible as we consider the

myocardium as a transversely isotropic material, implying that the material response

along the transverse directions is the same.

For completeness we present the formulation for the active strain approach. For a

detailed description of the formulation, we refer to [95] and [74]. In this approach, a

multiplicative decomposition of the deformation gradient is adopted, that is,

F = FeFa, (3.35)

where Fe is the elastic deformation, Fa is the active deformation and F is referred to

as the visible deformation. The elastic deformation is defined as the difference between

the active and the visible one

Fe = FF−1
a , (3.36)

while the active deformation for a transversely isotropic material with an active response

has the form

Fa = (1− γ)f0 ⊗ f0 +
1√

1− γ
(I− f0 ⊗ f0), (3.37)

where γ is associated with the relative active shortening along the muscle fibers. Note
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3 Methods and Implementation

that the constraint det(Fa) = 1 is considered in the formulation so that the active

deformation is also volume preserving.

3.4 Data Assimilation

In order to incorporate patient data into the cardiac mechanics model a variational data

assimilation approach was used which is based on minimizing an objective functional

that represents the mismatch between simulated and measured data, while ensuring that

the force balance equation (3.27) remains true. This approach is summarized below:

Let w denote the state variables u and p in (3.27) which we refer to here as the physical

forward model M(w). This forward model also depends on material parameters in (3.31)

and the active contraction parameters in (3.34) or (3.37). We refer to these parameters

as the control parameters µ and can therefore express the forward model in the form,

M(w, µ) = 0. Next we define the objective functional J (w, µ) as

J (w, µ) = αJvolume(w, µ) + βJstrain(w, µ) + λJreg(µ), (3.38)

Jvolume(w, µ) =

(
VLV − ṼLV

VLV

)2

+

(
VRV − ṼRV

VRV

)2

,

Jstrain(w, µ) =
3∑
j=1

(
εj − ε̃j

)2
,

(3.39)

where, Jvolume(w, µ) is the sum of the squared relative volume error in the LV and RV,

Jstrain(w, µ) is the total squared strain error in the three material regions (i.e. LVFW,

RVFW, and SEPT) and Jreg(µ) is a regularization term that penalizes large variations

in the control parameter for numerical stability. The accented terms in (3.39) represent

the simulated values while the other terms are the measured values gotten from the

patient. The weights α, β and λ control what term is favoured in the optimization. Note

that the definition of the objective functional in this way is referred to as the weighted

sum method which can be used in an optimization problem where multiple observations

(or objectives) are to be minimized; in this case, the volume and strain observations.

The simulated cavity volume is given by the expression

Ṽ = −1

3

∫
∂Ωendo

(X + u)JF−>N dS, (3.40)
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3 Methods and Implementation

while the simulated averaged normal strain in one material region Ωj is given by the

expression

ε̃j =
1∣∣Ωj

∣∣ ∫
Ωj

ek.Eek dV, (3.41)

where E is the Green-Lagrange strain tensor, and ek denotes the unit vector field in the

chosen strain direction. In this thesis, the circumferential direction was chosen for the

data assimilation.

Minimizing the objective functional in (3.38) while ensuring that the forward model is

satisfied is referred to as a PDE-constrained optimization and can be formally stated as

minimize
µ

J (w, µ)

subject to DΠ(u, p) = 0.
(3.42)

In this thesis we use the gradient descent method to solve this optimization problem

with the following steps:

1. Solve the forward model M(w, µ) = 0 for some initial guess µ0 to obtain w0.

2. Compute the cost function J (w0, µ0).

3. Compute the gradient DJ (w0, µ0) to find the direction of the steepest descent.

Note that the negative of the gradient gives the direction of steepest descent.

4. Move along this direction and update the initial guess µ0 until we reach a minimum

for the cost function.

It should be noted that the minimum found using this method is not necessarily the

global minimum of the function (except the function is convex with respect to the control

parameters). This approach mostly converges towards a local minimum of the function

which is convenient for our case.

3.4.1 Computing the Gradient of the Cost Function

Computing the functional gradient is the same as finding the derivative of the cost

function with respect to the control parameters. By the chain rule we have the functional

gradient DJ (w, µ) as
dJ
dµ

=
∂J
∂µ

+
∂J
∂w

dw

dµ
. (3.43)
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The terms ∂J
∂µ

and ∂J
∂w

are straight-forward to compute, however computing the term dw
dµ

requires first a solution of the force-balance equation (3.27) to determine w. This will

be computationally expensive if we have several control parameters i.e. for N control

parameters we will then have to solve the force-balance equation N + 1 times. However,

by using an adjoint model, we will be able to derive a linear system (linear in µ) which

eliminates the need to solve the dw
dµ

term, thus extremely reducing the number of compu-

tations needed to compute the functional gradient. The method is explained below, for

a detailed description we refer to the books by Kyung K. Choi and Nam-Ho Kim [17, 18].

The total derivative of the force balance equation with respect to the control parameter

is given as
dM
dµ

=
∂M
∂w

dw

dµ
+
∂M
∂µ

= 0. (3.44)

If we assume that ∂M
∂w

is everywhere nonsingular, then we can re-write the expression as

dw

dµ
= −

(
∂M
∂w

)−1
∂M
∂µ

. (3.45)

Substituting this relationship into (3.43) yields

dJ
dµ

=
∂J
∂µ
− z∗∂M

∂µ
, (3.46)

where

z∗ = −∂J
∂w

(
∂M
∂w

)−1

. (3.47)

This equation is a row vector times a square (nonsingular) matrix and using linear

algebra this can be understood as the solution to the linear equation(
∂M
∂w

)∗
z = −

(
∂J
∂w

)∗
, (3.48)

where (.)∗ is the Hermitian transpose also called the matrix adjoint, z∗ is a vector

of adjoint variables enforcing the PDE constraint and (3.48) is the adjoint equation.

Therefore, to compute the functional gradient we first solve for z, then insert z∗ in (3.46).

This way, computing the gradient requires only one additional solve of a linearized system

(i.e. Equation (3.48)) that is independent of the number of control parameters.
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3 Methods and Implementation

3.4.2 Parameter Estimation

We have described the mathematical model for cardiac mechanics and the methods used

to assimilate patient data into the model. As part of the data assimilation process, we

need to estimate the elastic material parameters (a, b, af , bf ) in (3.30) and the active

contraction parameter [Ta in (3.34) or γ in (3.37)] for the active stress and active strain

model respectively, as these parameters cannot be extracted in vivo. The data assimila-

tion procedure was divided into two phases; a passive and an active phase. In the passive

phase, we estimated only the linear isotropic material parameter a with an initial guess

value of 1.291 kPa and the other three material parameters were fixed at af = 2.582 kPa,

b = bf = 5.0 kPa according to the work by Asner et al[6]. The cost function, Equation

(3.38) was minimized using a as the control parameter with the weights set as α = 1.0,

β = 0.0, and λ = 10−6 so that only volumes were used for the fitting. Once an optimal

value was achieved for a, the material parameter was fixed and the active contraction

parameter (Ta or γ) with an initial guess of zero, was set as the control parameter for

the active phase of the data assimilation. The weights were set to α = 0.1, β = 1.0, and

λ = 10−4 for this phase so that both volume and strain were used for the optimization.

Note that the parameter estimated in the passive phase was spatially resolved on the LV

(i.e LVFW + SEPT) and RVFW while the parameter in the active phase was spatially

resolved on the LVFW, RVFW and septum separately.

The set of parameters (both active and passive) that yield the closest fit between

model and measured volume and regional strains is taken to be the optimal set, and is

used to extract biomarkers (such as ventricular wall stress).

3.5 Implementation Details

The computational modelling framework used in this thesis is called pulse-adjoint [26]

and it has also been used in previous studies [11, 25]. A Galerkin finite element method

with Taylor-Hood tetrahedral elements [46] (i.e. a piecewise quadratic vector field for

the displacement and a piecewise linear scalar field for the pressure) was employed to

find a numerical solution to the force-balance equations (3.24) and (3.25). The software

implementation of the finite element method is based on the package FEniCS [66], which

automatically generates matrix and vector assembly code from a symbolic representa-

tion of the force-balance equations. The resulting non-linear system of equations were

solved using a Newton trust region algorithm [13] which linearizes the equations. The

linear system of equations was solved by LU decomposition using a scalable distributed-
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memory sparse direct solver [64].

To solve the PDE-constrained optimization problem, sequential least squares pro-

gramming (SLSQP) as implemented in [59] and wrapped in the package SciPy [56] was

used. dolfin-adjoint [24] was used to automatically derive the discrete adjoint system

of equations from the discrete forward (force-balance) equations and compute the func-

tional gradient needed in the SLSQP algorithm. The simulations were performed on the

Abel Cluster, owned by the University of Oslo and Uninett/Sigma2, and operated by the

Department for Research Computing at USIT, the University of Oslo IT-department1.

The full source code is publicly available2.

1http://www.hpc.uio.no/
2https://github.com/ComputationalPhysiology/pulse_adjoint
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4 Results and Discussion

In this section, we present the results from the model personalization process. All

simulations were performed on the Abel computing cluster using 1 node with 8 cores

(with 4 GiB memory per core). The run times for the simulations are presented in Table

4.1. Note that results for the subject MR015 are not presented due to reasons discussed

in Section 3.1.3.

4.1 Matching of Simulated and Measured Data

The simulated and measured pressure-volume (PV) loops of the LV and RV are shown

in Figures 4.1 and 4.2 for the active stress and active strain approach respectively. We

were able to achieve a very good fit using both approaches across all the subjects, with

the largest error in predicted volume being 6.49 ml as shown in Table 4.2. A good fit

was also achieved for the circumferential strain in the LV, RV and septum as shown

graphically in Figure 4.3. Note that the time points on the horizontal axis refer to

the different points at which strain was measured during a cardiac cycle. The average

absolute error in the simulated circumferential strain using both approaches is shown

Patient ID Active model Mesh elements Total run time, hrs

MR011 Active stress 7686 15.07

Active strain 7686 4.95

MR016 Active stress 4126 4.22

Active strain 4126 2.5

MR019 Active stress 4696 14.63

Active strain 4696 4.47

Table 4.1: Timings for the simulations running on 1 computing node with 8 cores (with 4
GiB memory per core) for the different subjects and active contraction model.
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4 Results and Discussion

Figure 4.1: Simulated and measured pressure volume (PV) loops in the left ventricle (top row),
and right ventricle (bottom row). Simulated values are based on the active stress approach.

in Table 4.2. Overall, circumferential strain matching on the LV, RV and septum was

better for MR011 and MR016 compared to MR019. The maximum error in predicted

values for MR011 and MR016 was 0.023 and 0.022 respectively, while for MR019 the

maximum error was double that of MR011 and MR016 with a value of 0.046. One

possible reason for the relatively poor fit of the circumferential strain in MR019 could

be the weighted sum method used for solving the multi-objective optimization problem

(discussed in Section 3.4). This method involves a trade-off when fitting both the volume

and strain data in the combined objective functional and the solution found depends on

the chosen weights of each objective. An exhaustive search to determine the optimum

combination of weights (for the volume and strain functionals) for each subject was not

performed in this thesis. Rather, the weights were fixed across all subjects and were

based on values used in a previous study [26].

4.2 Validation of Computational Models

Although available, we chose not to use the longitudinal and radial strain data in the

optimization. Hence, to validate the model, we compared the measured and simulated

longitudinal and radial strains to determine how closely the model predicts strain. The

comparison is shown graphically in Figure 4.4. Moreover, the average absolute error of
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4 Results and Discussion

Figure 4.2: Simulated and measured pressure volume (PV) loops in the left ventricle (top row),
and right ventricle (bottom row). Simulated values are based on the active strain approach.

Figure 4.3: Comparison of the simulated and measured circumferential strain in the left
ventricle (top row), right ventricle (middle row), and septum (bottom row). Simulated results
are based on the active stress (orange lines) and active strain (green lines) approaches.
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the predicted strain is given in Table 4.2. For the longitudinal strain, we see that the

best fit is produced on the LV across the three subjects (using both approaches). The

predicted longitudinal strain on the LV is a maximum of 0.028 off the measured strain,

while for the RV and septum, it is 0.041 and 0.071 off the measured strain respectively.

This is possibly due to method used in assigning fibre orientation to the biV model. The

rule-based algorithm used in assigning myocardial fibre orientation to the biV model (see

Section 3.1.2) is based on histological data collected from the LV. Hence, estimation of

fibre angles on the RV and septum might not be as accurate as in the LV, and this may

explain the less accurate predictions of strain in those regions. The radial strains were

less closely predicted compared to the longitudinal strains, with the predicted strain

being up to 0.466 off the measured strain. This error was recorded for MR019 and it is

noted that the error in radial strain prediction was less for MR011 (maximum of 0.162)

and MR016 (maximum of 0.143) compared to MR019.

Overall, longitudinal and radial strain prediction was less accurate for MR019 com-

pared to MR011 and MR016. This could possibly be due to the relatively poor data

matching (of volume and circumferential strain discussed in Section 4.1) for that sub-

ject. Further, the active stress approach generally predicted longitudinal and radial

strain better than the active strain approach across the three subjects, based on the

quantified errors shown in Table 4.2.

4.3 Active Stress vs. Active Strain Models

Time traces of the average Cauchy fiber stress on the LV and RV using both approaches

are shown in Figure 4.5 for the three subjects. Overall, the active stress formulation pre-

dicts higher peak stresses compared to the active strain formulation (except for results

on the LV of MR019). The difference in peak stress prediction is more pronounced in

the LV, as was also observed in a previous study [26]. In Figure 4.6 and Figure 4.7, we

compare the average circumferential stress and average longitudinal stress respectively,

using the two formulations. Both approaches predicted similar stresses in the circumfer-

ential and longitudinal directions (with only slight variations), except for the predicted

results on the LV of MR019. However, there was no similar correlation in the radial

stress prediction, with the active strain formulation estimating higher radial stresses

as shown in Figure 4.8. Note that the inconsistency observed in the stress predictions

on MR019 could possibly be a consequence of the relatively poor data-fitting for that

subject.
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(a)

(b)

Figure 4.4: Validation of the model personalization process using simulated and measured (a)
longitudinal strain and (b) radial strain in the left ventricle (top row), right ventricle (middle
row), and septum (bottom row). The measured longitudinal and radial strains were not used
in the optimization and the simulated results are based on the active stress (orange lines) and
active strain (green lines) approaches.
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Avg. absolute strain error

Patient ID Active model Region
Avg. absolute

volume error (mL)
Circumferential

strain

Longitudinal

strain

Radial

strain

MR011 Active stress LV 2.66 0.015 0.012 0.161

RV 1.63 0.016 0.038 0.138

SEPT - 0.010 0.037 0.096

Active strain LV 2.10 0.011 0.028 0.115

RV 1.83 0.023 0.041 0.162

SEPT - 0.010 0.052 0.079

MR016 Active stress LV 1.89 0.020 0.012 0.140

RV 3.05 0.011 0.024 0.085

SEPT - 0.010 0.036 0.085

Active strain LV 2.44 0.022 0.024 0.143

RV 2.73 0.011 0.029 0.090

SEPT - 0.011 0.048 0.074

MR019 Active stress LV 2.92 0.046 0.016 0.345

RV 5.54 0.020 0.024 0.099

SEPT - 0.029 0.071 0.284

Active strain LV 1.80 0.045 0.017 0.390

RV 6.49 0.022 0.013 0.106

SEPT - 0.027 0.068 0.466

Table 4.2: Error quantification for the simulated volume as well as the simulated circumfer-

ential, longitudinal and radial strains. The average absolute error is computed as
∑n

i=1 |si−mi|
n ,

where si and mi are the simulated and measured values respectively and n is the number of
sample points.

Significant differences were observed in how both formulations predicted deviatoric

stress as shown in Figure 4.9 for MR016. Similar differences were observed for the

other two subjects (MR011 and MR019) used in this study. Note that the deviatoric

component of the total Cauchy stress (σ) is made up of all the terms in Equation

3.31 except the Lagrange multiplier term (pI). To determine if the nodes at the model

extremities (i.e. the basal boundary and apex) played a role in creating these significant

differences, we took a slice approximately midway through the biV model (see Figure

4.10a) and extracted the deviatoric stress in the fibre, circumferential, longitudinal and

radial directions. As shown in Figure 4.10b, deviatoric stress prediction still varied

significantly along the slice between the active stress and active strain formulations.

This suggests that the model extremities and boundary conditions do not affect the

extracted stress results. Since the total Cauchy stress prediction is fairly close between

the active stress and active strain formulations, a possible explanation for the difference
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Figure 4.5: Estimated Cauchy fiber stress in the left ventricle (top row) and right ventricle
(bottom row) using the active stress (blue lines) and active strain (orange lines) formulation.

in deviatoric stress prediction between the two formulations can be as a result of the

incompressibility constraint imposed on the model. In the active stress formulation, the

resultant hydrostatic pressure (p) applied to ensure constant volume is much higher than

that required for the active strain formulation as shown in Figure 4.11. This directly

impacts the value of the deviatoric stress component in (3.31,) as a larger p ultimately

implies a higher deviatoric stress prediction.

4.3.1 Active Stress vs. Active Strain for a Simple Case of a

Contracting Tissue Cube

To show that both formulations can produce similar stress predictions in a simplified

setting, we considered the case of a tissue cube with uniform fibre orientation aligned

with one of the principal axes. The cube was assumed to be fully incompressible, with

a uniform deformation state. It was assumed to contract against a linear spring force

while being unloaded in the transverse directions. A detailed derivation of the Cauchy

stress tensor and force balance equation based on the active stress and active strain

formulations for this simplified case is provided in Appendix A.

By tuning the active stress and active strain parameters in Equations 3.34 and 3.37

respectively, we matched the deformation of the tissue cube using both approaches as
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Figure 4.6: Estimated circumferential stress in the left ventricle (top row) and right ventricle
(bottom row) using the active stress (blue lines) and active strain (orange lines) formulation.

Figure 4.7: Estimated longitudinal stress in the left ventricle (top row) and right ventricle
(bottom row) using the active stress (blue lines) and active strain (orange lines) formulation.
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Figure 4.8: Estimated radial stress in the left ventricle (top row) and right ventricle (bottom
row) using the active stress (blue lines) and active strain (orange lines) formulation.

Figure 4.9: Estimated deviatoric stress in the left ventricle (top row) and right ventricle
(bottom row) of MR016 using the active stress (blue lines) and active strain (orange lines)
formulation. The columns represent the stress in the fibre, circumferential, longitudinal and
radial directions.

41



4 Results and Discussion

(a)

(b)

Figure 4.10: (a) A slice (in red) approximately midway through the biV model used to
extract deviatoric stress results away from the model extremities. (b) Estimated deviatoric
stress in the left ventricle (top row) and right ventricle (bottom row) on the slice shown in (a)
using the active stress (blue lines) and active strain (orange lines) formulation. The columns
represent the stress in the fibre, circumferential, longitudinal and radial directions.
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Figure 4.11: Hydrostatic pressure on the LV and RV using the active stress (blue lines) and
active strain (orange lines) formulations.

shown in the left panel of Figure 4.12. Consequently, this produced similar Cauchy

stress prediction using both approaches as shown in the right panel of Figure 4.12. Such

manual parameter tuning might not be feasible in a personalized heart model due to the

complex geometry and myofibre orientation. However, the sole aim of this experiment

was to show that despite the fundamentally different formulations for the active stress

and active strain approaches to modelling active contraction, they can produce similar

stress predictions in a simplified case.

4.4 Limitations and Future Directions

We have used a fully incompressible model of the myocardium, although it is well known

that the myocardium is compressible due to perfusion of blood [115]. We observe large

differences in the hydrostatic stress component between the two approaches, and it is

possible that the differences in the total stress are largely caused by the incompressibility

constraint. Future studies could therefore investigate the role of compressibility on stress

predictions of the two approaches, and compare the Lagrange multiplier method applied

here to alternative approaches such as the penalty method for quasi-incompressibility

[90]).

In assigning myocardial fibre orientation to the biV model, we used a rule-based

algorithm which was based on histological data for only the LV. For this reason, the
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Figure 4.12: Left: Deformation of tissue cube under spring load using the active stress
and active strain formulations. Right: Cauchy stress on the tissue cube as a result of the
deformations using the active stress (blue lines) and active strain (orange lines) formulation.

estimated fibre angles on the RV and septum may not be as close to actual values. A

sensitivity analysis to determine the effect of this on the model predictions would be ben-

eficial and should be carried out in future studies. Equally, a rule-based algorithm that

estimates fibre angles on the LV, RV and septum independently could be implemented

in future studies, or if possible, in vivo measures of fibre angles could be used.

As noted, the weights used in the multi-objective functional (3.38) were based on a

previous study [26] and may not have been the optimal choice for the dataset used in

this thesis. We achieved a good data-matching for two subjects (MR011 and MR016),

while a relatively poor fit was observed for MR019. The poorly fitted strains may have

led to inconsistencies in the predicted results. Future studies could conduct sensitivity

analysis by testing different weight combinations for the strain and volume functionals to

obtain an optimum combination. Also, other general methods for solving multi-objective

optimization problems (see [67]) may provide superior results to those of the weighted

sum method and could be considered in future studies.

Further, only the model predicted ventricular wall stress was compared between the

two formulations in this thesis. It would be beneficial to investigate if differences exist

in the prediction of other mechanical features such as ventricular elastance or regional

myocardial work using both formulations. This could be explored in future studies.
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5 Conclusion

We have used a computational modelling and data assimilation framework, to produce

a similar set of patient-specific models of cardiac mechanics, but using the active stress

and active strain approaches to modelling cardiac contraction. We used these personal-

ized models to compared stress prediction using both approaches, and found that fibre,

circumferential and longitudinal total stress predictions (Figures 4.5 to 4.7) were closely

matched between the two approaches for the subjects used this thesis. Peak fibre stress

in Figure 4.5, was however, higher using the active stress approach, which proved to be

consistent with the literature [26]. On the other hand, predictions of total radial stress

in Figure 4.8, and the deviatoric component of the total stress in the fibre, circumferen-

tial, longitudinal and radial directions (Figure 4.9), were significantly different between

both approaches for all the subjects. It is noted that inconsistencies were observed in

the results produced for one of the subjects (MR019), especially on the LV. This could

possibly be attributed to the relatively poor data matching (for that subject) during the

data assimilation, or noise in the clinical data.

Moreover, we were able to show in Section 4.3.1 that in a simplified setting, such as

the contraction of a tissue cube, both approaches can produce similar stress predictions

(Figure 4.12) by tuning the active stress and active strain parameters in order to match

the deformation produced, and by extension, the stress prediction using both approaches.

Due to the limitations discussed in Section 4.4, we cannot conclude that one approach

is better than the other in modelling cardiac contraction. The active stress approach

produced a better strain prediction as shown in Table 4.2, however, as we do not have

measured stress values for the subjects, it is not possible to say which approach predicted

stress better. On the other hand, we can conclude that differences exist in the stress

prediction using both approaches. Future work could be used to compare how closely

both approaches predict other mechanical features such as ventricular elastance and

regional myocardial work. Also, the effect of compressibility on stress prediction using

the two approaches could be explored in a future study.
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APPENDIX A

Unidirectional Contraction of a Tissue Cube

To show that the active stress and active strain approaches to modelling active contrac-

tion of the myocardium can produce similar stress predictions in a simplified setting,

we considered the case of a tissue cube with uniform fibre orientation aligned with one

of the principal axes; in this case, the x-axis. What follows is based on notes provided

by Joakim Sundnes. The cube undergoes unidirectional contraction against a linear

spring force which results in a uniform deformation state with a diagonal deformation

gradient. Assuming tissue incompressibility, we can write the deformation gradient as

F = diag(λ, λ−1/2, λ−1/2), with λ being the stretch in the fibre direction. First, we

consider the active strain model, and decompose F as

F = FeFa.

with Fa = diag((1−γ), (1−γ)−1/2, (1−γ)−1/2), where γ is a parameter describing active

muscle shortening (active strain parameter). The elastic component of the deformation

gradient, Fe, is given by

Fe = FF−1
a =


λ(1− γ)−1 0 0

0 λ−1/2(1− γ)1/2 0

0 0 λ−1/2(1− γ)1/2

 .

A corresponding decomposition of the right Cauchy-Green tensor, C gives

C = FTF = (FeFa)
T (FeFa) = FT

aFT
e FeFa = FT

aCeFa,
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and with the uniform deformation state considered here, Ce is diagonal with components

Ce,11 = λ2(1− γ)−2,

Ce,22 = Ce,33 = λ−1(1− γ).

Based on the chosen strain-energy function (Equation 3.30 in Section 3.3.1), we have

the Cauchy stress as

σ = aeb(I1−3)FFT + 2af (I4f − 1)ebf (I4f−1)2F(f0 ⊗ f0)FT − pI. (1)

where I1, I4f are invariants of Ce, given by

I1 = tr(Ce), I4f = f0 · (Cef0),

with f0 being a unit vector aligned with the fiber orientation. For the deformation state

considered here, the invariants are given as

I1 = λ2(1− γ)−2 + 2λ−1(1− γ), (2)

I4f = λ2(1− γ)−2, (3)

and the resulting Cauchy stress tensor is diagonal with the following components:

σ11 = aeb(I1−3)λ2 + 2af (I4f − 1)ebf (I4f−1)2λ2 − p, (4)

σ22 = σ33 = aeb(I1−3)λ−1 − p. (5)

Since the cube is unloaded and therefore stress free in the transverse directions, (5) gives

p = aeb(I1−3)λ−1,

and we insert this into (4) to get

σ11 = aeb(I1−3)(λ2 − λ−1) + 2af (I4f − 1)ebf (I4f−1)2λ2. (6)

This gives a simple relation between active strain parameter γ, fibre shortening λ and

fibre stress σ11.

On the other hand, considering the active stress model, the deformation gradient

and thus the right Cauchy-Green tensor are not decomposed into an elastic and active
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part. Hence the right Cauchy-Green tensor is given by

C = FTF,

which is a diagonal tensor with components

C11 = λ2,

C22 = C33 = λ−1.

Thus the invariants I1, I4f read as

I1 = λ2 + 2λ−1, (7)

I4f = λ2. (8)

The Cauchy stress expression in (6) makes up the passive component in the active stress

model, and the active component of the total stress takes the form

σa = TaF(f0 ⊗ f0)FT ,

where Ta is the active stress parameter. This expression simplifies to

σa = Taλ
2. (9)

Thus, by the active stress model, we add (6) and (9), to get the total Cauchy stress as

σ11 = aeb(I1−3)(λ2 − λ−1) + 2af (I4f − 1)ebf (I4f−1)2λ2 + Taλ
2. (10)

which gives a simple relation between the active stress parameter Ta, fibre shortening

λ and fibre stress σ11. We used Equations (6) and (10) to predict stress on the tissue

cube and compared the stress results to see if both approaches produce identical stress

predictions. As stated earlier, the tissue cube contracts against a linear spring force.

The resulting balance equation is

σtissue + σseries = 0,

where σtissue is given by Equation (6) for the active strain model or Equation (10) for
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the active stress model. σseries is the linear spring force given as

σseries = kse(λ− λ0).

Here, kse is the spring stiffness. We have chosen kse = 50, which gives reasonable

contraction dynamics for the tissue. We used the fitted active strain parameter γ, and

active stress parameter Ta for one of the subjects used in this thesis as input. The

material parameters a, b, af , bf were selected based on optimized values for the subject.

The python code for performing the computations is attached below:

import numpy as np

import os

import matplotlib.pyplot as plt

from scipy.optimize import fsolve

import seaborn as sns

sns.set()

"""Cauchy stress based on active strain formulation"""

def active_strain(lmbda,gamma):

a, a_f, b, b_f = 1.78454663458,2.582,5.0,5.0

l, g = lmbda, gamma

I4f = l**2/(1-g)**2

I1 = I4f+2*(1-g)/l

f_iso = a * np.exp(b*(I1-3))*(l**2-1/l)

f_fib = 2*a_f*(I4f-1)*np.exp(b_f*(I4f-1)**2)*l**2

force_ATSR = (f_iso+f_fib)

return force_ATSR

59



APPENDIX A

"""Cauchy stress based on active stress formulation"""

def active_stress(lmbda,sigma):

a, a_f, b, b_f = 1.78454663458,2.582,5.0,5.0

l = lmbda

I4f = l**2

I1 = I4f + 2*(1/l)

f_iso = a * np.exp(b*(I1-3))*(l**2-1/l)

f_fib = 2*a_f*(I4f-1)*np.exp(b_f*(I4f-1)**2)*l**2

force_passive = (f_iso+f_fib)

force_active = sigma*(l**2)

force = force_passive + force_active

return force

"""force balance based on active stress formulation"""

def force_balance(lmbda,sigma,lmbda_0):

k_se = 50.0

f_serial = k_se*(lmbda-lmbda_0)

return f_serial + active_stress(lmbda,sigma)

"""force balance based on active strain formulation"""
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def force_balance_ATSR(lmbda,gamma,lmbda_0):

k_se = 50.0

f_serial = k_se*(lmbda-lmbda_0)

return f_serial + active_strain(lmbda,gamma)

"""solve for deformation and stress based on active stress formulation"""

data = np.loadtxt(’.//data/data/gamma_MR016_active_stress.csv’,

skiprows=1,delimiter =’,’)

sigma = data[:,0]*0.035

force = np.zeros_like(sigma)

l0 = 0.9

lmbda = []

force = []

for t in sigma:

l = fsolve(force_balance,l0,args = (t,l0))

lmbda.append(l)

force.append(active_stress(l,t))

"""solve for deformation and stress based on active strain formulation"""

data_ATSR = np.loadtxt(’.//data/data/gamma_MR016_active_strain.csv’,

skiprows=1,delimiter =’,’)

gamma = data_ATSR[:,0]
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force_ATSR = np.zeros_like(gamma)

l1 = 0.9

lmbda_ATSR = []

force_ATSR = []

for g in gamma:

ll = fsolve(force_balance_ATSR,l1,args = (g,l1))

lmbda_ATSR.append(ll)

force_ATSR.append(active_strain(ll,g))

"""plot active stress parameter"""

plt.figure(1)

plt.title(’Active stress $\sigma$, MR016’)

plt.plot(sigma)

"""plot active strain parameter"""

plt.figure(2)

plt.title(’Active strain $\gamma$, MR016’)

plt.plot(gamma)

"""

plot deformation and 1D stress comparison

between active stress and active strain formulations

"""
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fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6,8))

line_labels = [’active stress’, ’active strain’]

l1 = ax1.plot(lmbda, ’o-’, linewidth=2.5)[0]

l2 = ax1.plot(lmbda_ATSR, ’o-’, linewidth=2.5)[0]

l3 = ax2.plot(force, ’o-’, linewidth=2.5)[0]

l4 = ax2.plot(force_ATSR, ’o-’, linewidth=2.5)[0]

axes = [ax1, ax2]

for i in axes:

plt.setp(i.get_xticklabels(), fontsize=18)

plt.setp(i.get_yticklabels(), fontsize=18)

i.xaxis.labelpad = 10

i.yaxis.labelpad = 15

fig.legend([l3, l4],

labels=line_labels,

loc=’center right’,

borderaxespad=0.7,

title=’’,

fontsize=24,

frameon=False

)

ax1.set_xlabel(’Time point\n’, fontsize=22)

ax1.set_ylabel(’Deformation’, fontsize=22)

ax2.set_xlabel(’Time point\n’, fontsize=22)

ax2.set_ylabel(’Cauchy stress (kPa)’, fontsize=22)

plt.subplots_adjust(right=0.80, wspace=0.3)

plt.show()
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