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Abstract

Accurate sea-ice prediction is essential for safe operations in the Arctic and
potentially also for weather forecast at high-latitudes. The increasing number
of sea-ice related satellite observations in the Arctic can be used to improve the
model predictions through data assimilation. For sea ice, sea-ice concentration
(sic) observations have been available for many years. Observational informa-
tion of sic can be used to constrain the sea-ice extent in models. In addition to
sic, other sea-ice related observations such as sea-ice thickness (sit) and snow
depth have recently become available. The assimilation of these observations is
expected to have a substantial impact on the sea-ice forecast. Sea-ice modelling
and assimilation are computationally costly operations. Traditionally, dynami-
cal models are used for sea-ice prediction. However,with the growing number of
Arctic observations and machine-learning methods, a machine-learning model
could provide a more straightforward and computationally cheaper alternative
to the dynamical models.

In this thesis, the main goal is to enhance the sea-ice model forecast accuracy
by improving the initial model state on which the forecast is based. Primarily,
the assimilation of sea-ice-related observations that are previously little used
in sea-ice data assimilation is investigated. This includes the assimilation of
sit, snow depth and high-resolution sic observations. A secondary objective
of this thesis is to reduce the computational cost of both sea-ice assimilation
and modelling. A new direct and computationally cheap method for data
assimilation, the Multi-Variate Nudging (mvn) method, is proposed as an
alternative to more complex assimilation methods for sea-ice. In addition, to
reduce the computational cost of the sea-ice prediction, two machine-learning
methods were applied for sea-ice forecasting, the Fully Convolutional Network
(fcn) and the k-Nearest Neighbours (k-nn).

It is found that the assimilation of observations other than sic has the poten-
tial to enhance the accuracy of sea-ice models and improve predictions. The
proposed new assimilation method, the mvn, proves to be a valid assimila-
tion alternative to the Ensemble Kalman Filter (enkf) when few observation
types are available, and the computational resources are limited. The machine-
learning forecasts are found to improve upon persistence and show comparable
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skills to the dynamical model. Hence there is a potential for machine-learning
methods for sea-ice predictions which should be developed further.
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Introduction

The overall extent of the Arctic sea ice has significantly declined over the last
decades [1–10]. It has been predicted that within a couple of decades, the Arctic
Ocean will be nearly ice-free in summer [11, 12]. The decrease in Arctic sea-ice
extent leads to increased Arctic warming. The Arctic is warming twice as fast
as the global average, this effect is called Arctic amplification [13, 14]. One of
the main contributors to the Arctic amplification is the ice-albedo feedback,
which is an effect that is invoked when the sea ice melts. The amount of
solar radiation reflected by the ice/snow surface is significantly larger than
for the ocean surface. Therefore, more solar radiation is absorbed when the
sea-ice extent decreases. This leads to ocean warming and further sea-ice melt.
Another potential for Arctic amplification is a feedback related to increased
ocean vertical mixing due to sea-ice melt [15].

When the sea-ice extent changes the heat flux between the ocean and the
atmosphere is affected [16, 17]. Several studies have shown that because of
the decline in sea ice; there has been an increase in local air temperature,
evaporation, air moisture, cloud cover and precipitation [16]. This effect has
also been described by using coupled atmosphere-ocean-sea-ice models [18–22].
Additionally, a recent study showed that a decrease in sea-ice extent could
impact the Arctic ocean circulation [15]. Due to the strong connection between
sea ice, ocean and atmosphere, there are reasons to believe that improved sea-
ice models and a better representation of sea ice in the operationalmodels could
lead to enhanced weather forecasts, especially at high latitudes [16, 18].

1
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The decrease in sea-ice extent leads to an expected increase of human involve-
ment and marine operations in the Arctic [23]. For instance, by utilising an
ice-free Northeast passage, the sailing distance from Rotterdam to Shanghai
can be reduced by 24 % compared to sailing through the Suez Canal [24].
In addition, it is estimated that 13 % of the worlds undiscovered remaining
oil and 30 % of the undiscovered gas are located in the Arctic region [25].
These resources could potentially lead to more marine operations in the Arctic.
However, with the increase in renewable and sustainable energy production
and the possibility of future restrictions on oil and gas exploration in the Arctic,
the extraction of Arctic fossil fuel is still very uncertain. Nevertheless, it is
likely that Arctic activity and human involvement close to the sea-ice edge will
increase, and therefore the operators need accurate information regarding the
conditions of weather, ocean and sea ice to conduct safe operations.

The focus of the current study is sea-ice forecasts based on different types of
models spanning from dynamical to machine learning models. The first modern
sea-ice model was developed based on observations during the International
Geophysical Year, 1957-1958. This model was a pure thermodynamical model
[26–28]. It took another 20 years before dynamics were included in models.
These was based on field observations from a joint study of sea-ice dynamics
and interaction with the atmosphere and ocean conducted by the United States
of America (USA) and Canada, the The Arctic Ice Dynamics Joint Experiment
(aidjex) project [29–31]. With dynamical models, it became possible to predict
the spatial evolution of the sea ice, which led to the coupling between sea-ice
and ocean models [32]. Since then, the sea-ice models have been continuously
improved and developed, e .д. concerning sea-ice physics and dynamics [26,33–
36].

For a skilful numerical model prediction, an accurate model initial state is im-
portant. When observations are available, a numerical model can be improved
by adjusting it towards the observations; this is called data assimilation. Before
1979 observations of sea ice were collected from meteorological stations, ships
and aeroplanes, and covered only local areas [37]. Since 1979, continuous obser-
vations of sea-ice concentration (sic) from satellites using passive microwave
instruments have been available [7,38]. Satellite observations benefit from a
full coverage even in an inaccessible area as the Arctic ocean.

Observations of sic have been assimilated in several sea-ice studies [39–48]. For
sea-ice data assimilation, primarily observations of sic have been assimilated in
numerical models, however recently more observations have become available.
A first study of the potential impact of sea-ice thickness (sit) observations was
done with simulated data and showed promising results [49]. In recent years
the spatial and temporal coverage of other sea-ice related observations such
as sit and snow depth have significantly increased and more observations are
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now available, e .д. from Cryosat-2 [50–52], Soil Moisture and Ocean Salinity
(smos) [53], combined smos Cryosat-2 [54] and snow depth from the Ad-
vanced Microwave Scanning Radiometer (amsr-e/2) [55]. Before this thesis,
few studies with data assimilation of sea-ice thickness observations had been
conducted [49, 56], however, in parallel to this work, assimilation of sit has
been applied in several studies [46,57–63]. In these studies, it was shown that
by assimilating sit the modelled sit is significantly improved.

In addition to observations of sit and snow depth, high-resolution observations
of sic and sea-surface temperature (sst) are now available [64, 65]. With
an increasing desire for higher resolution models, there is a need for higher
resolution observations, both for verification and assimilation. Two recent
studies show improved ice forecasts when high-resolution observations of sic
were assimilated into a high-resolution model [42,43].

The earth geophysical system is a complex, chaotic system with processes that
occur on many temporal and spatial scales. Numerical models aim to describe
these process as realistic as possible. However, there are still many process that
are not included inmodels, andmany small scale process are often parametrised
in the models. In addition, there are process that are unknown or poorly known.
A method for estimating model uncertainties is through ensemble forecasting.
With ensemble forecasting the model uncertainty is taken into account by using
an ensemble of models that cover the range of possible outcomes. Note that,
evenwith ensemble forecasting therewill in practice be systematic uncertainties
that are not covered by the ensemble. In weather forecasting, ensembles have
been used with success since the 90′s [66–69]. For operational usage, an
ensemble can provide a probabilistic forecast that can be used for decision
making. Ensemble forecasting also facilitates for ensemble-based assimilation
methods such as the Ensemble Kalman Filter (enkf) which has been used in
many atmospheric, ocean and sea-ice studies [39,56,57, 70–73].

For sea-ice data assimilation many different assimilation methods have proved
to performwelle .д. the Ensemble Kalman Filter (enkf) [39,44], 3-D Variational
(3-d var) [43,74], Combined Optimal Interpolation and Nudging (coin) [40],
the Localised Singular Evolutive Interpolated Kalman (LSEIK) filter [56], opti-
mal interpolation [48] and Newtonian relaxation [47,75]. These assimilation
methods vary in both computational cost and assimilation properties. For exam-
ple, the enkf requires that a full ensemble of models are propagated forward
in time. By using an ensemble, generally, the computer resources required are
proportional to the number of ensemble members. A benefit of using ensemble
methods is that the ensemble facilitates estimation of the model-error covari-
ance matrix. This matrix is essential in data assimilation as it provides the
model uncertainty in addition to a relationship between model variables used
for also updating variables that are not observed. However, for sea ice, primarily
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sic have traditionally been used for assimilation in operational models. The
sic is defined as an area fraction, where a value of 1 describes a fully ice
covered area, and 0 no ice. Therefore the sic is only significantly different
from 0 or 1 in the marginal ice zone. This mostly limits the effect of assimilating
sic to constraining the ice edge, hereby providing an opportunity for using
simpler assimilation methods, for example the coin or the Newtonian relax-
ation methods for sic assimilation. A recent study showed that multivariate
properties could be included for a simple Newtonian relaxation method [75].
In that study a relation between sic and sit was used for multi-variate update
of sit during sic assimilation.

With higher resolution and smaller-scale processes, the computational cost of
numerical geophysical models is increased. An alternative to the physic-based
prediction models is statistical models, e .д. machine learning models. Machine
learning methods have gained much interest in recent years and are now used
in various disciplines e .д search engines [76], car technologies [77] and satellite
data interpretation [78] to mention a few. Machine-learning methods have
recently reached the geoscientific community where it is shown to be useful in
several aspects of numerical weather prediction [79–85]. A study introducing
machine learning in sea-ice forecasting has also been conducted [86]. This
study showed encouraging results for the September sea-ice extent compared to
an average of the dynamical model forecasts submitted to the Sea Ice Prediction
Network (SIPN) (https://www.arcus.org/sipn).

1.1 Objectives

There is a strong need for improved Arctic sea-ice and weather predictions for
operational use [87]. This study focuses on sea-ice modelling. An improved sea-
ice model could potentially also improve the weather predictions through the
boundary conditions. This work is a part of the Center for Integrated Remote
Sensing and Forecasting for Arctic Operations (cirfa). A goal of this centre
is to develop an operational Ensemble Prediction System (eps) for ocean and
sea ice. With an eps, a probabilistic forecast can be achieved which can be
used provide information on sea-ice structures useful for shipping and Arctic
operations. As a part of developing a sea-ice-ocean eps, several aspects of
sea-ice forecasting are developed and investigated in this thesis.

The focus of this thesis is on improving sea-ice forecasting by investigating both
data assimilation and modelling. A primary objective is to improve the model
initial state. In particular, the enkf is used to study the effect of assimilating
various sea ice related observations, both new and not commonly used in
operational models.

A secondary objective of this thesis involves reducing the computational cost
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of sea-ice modelling and data assimilation. In this part, approaches to simplify
both the assimilation methods and the sea-ice modelling are developed and
tested.

A list of the specific objectives investigated in this thesis is given here:

1. Improve sea-ice forecasting by the assimilation of both new and previously
little used sea-ice related observations.

2. Explore possibilities for simple and computationally cheap methods for
sea-ice data assimilation.

3. Explore possibilities for simple and computationally cheap methods for
sic prediction, for example based on machine-learning approaches.

Paper I Paper II Paper III
Objective 1 x x x
Objective 2 x
Objective 3 x

1.2 A brief history of Arctic exploration

Evidence of Viking settlements dating back to the ninth century has been found
in the Southern parts of Greenland, which shows that human activity in the
Arctic has been ongoing for more than a thousand years [88]. Since then
there have been many expeditions to the Arctic, and Arctic sea-ice exposed
areas, both motivated by economic and scientific prospects. In addition to
whale fishing and hunting, Arctic explorers have been searching for a shorter
trade route between the Atlantic and Pacific oceans. There are considered to
be three potential routes passing through the Arctic from the Atlantic to the
Behring Strait (Fig. 1.1): 1. The Northwest passage, extending through Baffin
bay and following the Canadian and Alaskan coasts, 2. The Northeast passage,
following the Russian coast into the Barents sea, this is an extension into the
Barents Sea of the Northern Sea Route (Fig. 1.1), and 3. The Transpolar Route
through the central Arctic. The latter is the shortest but of less practical use,
due to continuous, thick sea ice along the track. It is speculated that with the
current rate of Arctic ice melt this could be a possible late summer alternative
in the future. During the last millennium, many expeditions in the Arctic went
searching for a trade route through the Arctic.

It took several centuries from the first expedition into the Arctic until an
expedition lead by Baron Adolf Erik Nordenskiöld first successfully traversed



6 CHAPTER 1 INTRODUCT ION

Figure 1.1: The passages through the Arctic. Reproduced from [24,89],with permission
from ©Taylor & Francis and ©Springer Nature.

the Arctic in 1879 [88]. Baron Nordenskiöld set out from Tromsø in 1878
and following the Northeast passage, reached Alaska in 1879, after having
spent almost a year with the ship frozen-in in the sea ice close to the Bering
Strait [88]. The Northwest passage, however, was first successfully sailed in
1906 by the Norwegian explorer Roald Amundsen [88] during a three-year
scientific cruise through the Arctic. Almost 60 years later, the first commercial
ship sailed through the Northwest passage, the Manhattan, in 1969 [88].

A full opening of the Northwest passage was reported for the first time by
Arctic researchers on 21 August 2007 [90, 91]. As a result of the reduced
summer sea-ice extent, two German ships from the Beluga group were the
first commercial western ships to sail through the Northeastern passage in
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2009 [92]. The captain of The Beluga Foresight, Valeriy Durov, reported that
due to the low amount of ice during the passage, the accompanying ice breaker
was unnecessary [92]. However, sea ice is not the only limiting factor in regards
to the usage of the Arctic passages. There is a lack of infrastructure for search
and rescue in case of emergency, and even with less sea ice, there is a need
for more expensive ships, both for drifting sea-ice protection and winterisation
due to harsh weather conditions [24]. Thus, even though the Arctic sea ice
continues to decline, it is still uncertain whether or not this will lead to an
increase in Arctic shipping.

There have been many other Arctic expeditions throughout the years, e .д.
the Fram expedition, led by Fridtjof Nansen from 1893-1896, drifted with
the Arctic sea ice for almost three years to study the Arctic ice and oceans
currents [88]. Furthermore, there are still many scientific expeditions in the
Arctic, e .д. [93–95]. This year, 2019, the MOSAiC expedition is taking place,
which is the largest polar expedition in history [96]. During this year-long
expedition, the German icebreaker, Polarstern, will drift with the sea ice, similar
to the Fram expedition.

1.3 Thesis Outline

The topics of this thesis include both sea-ice modelling, assimilation and ma-
chine learning. In chapter 2, a brief introduction to sea-ice and ocean modelling
is given. This chapter includes a basic introduction to sea-ice dynamics and
thermodynamics. In addition, the chapter includes a brief overview of how
the ocean affects the sea ice. In chapter 3, an overview of the observations
used for modelling and verification in this study is given. This includes obser-
vations of sea ice and sea-ice related observations from several sources, but
mostly from satellites. In chapter 4, the theory behind data assimilation and
some of the methods used are presented. This includes the minimum variance
approach, variational methods and the Ensemble Kalman Filter. In chapter 5,
the wide range of verification metrics used in this thesis are presented. Both
grid-cell metrics and specific ice-edge metrics are described. In chapter 6, a
brief overview of the machine-learning methods used for sea-ice forecasting
is presented. This includes both the k-Nearest Neighbour algorithm and the
Fully Convolutional Network. In chapter 7, a summary of each of the papers
presented in this thesis is given. In chapter 8, a conclusion of the findings is
presented together with suggestions for further work. In chapters 9-11, the
publications that make the core of this thesis are attached.





2

Modelling

Sea-ice models have been developed by several groups. They appear both
as standalone models and models coupled with other components such as
atmosphere, ocean and waves. Examples of sea-ice models are the The Los
Alamos sea-ice model (cice) [97], the Louvain-la-Neuve, LIM [98], and the
Lagrangian sea-ice model, neXtSIM [99]. The cice model is used in all papers
presented in this thesis. There are also many ocean models available for use
operationally and in research; a few examples are, Regional Ocean Modeling
System (roms) [100], HYbrid Coordinate Ocean Model (HYCOM) [101] and
Finite Volume Community Ocean Model (fvcom) [102]. In paper II and III
a coupled system using cice as the ice component and roms as the ocean
component is used. In this chapter, the basic physics and assumptions that
are governing the cice and the roms model are presented. In addition,
the importance of coupled sea-ice-ocean models and ensemble forecasting is
described.

2.1 Modelling sea ice

Modern sea-icemodels includemany complex physical processes, both affecting
the sea-ice externally and internally. A subject of intense research is the ice-
ice interactions and the way this is taken into account by the model. This
has lead to the development of sea-ice models with different descriptions
of the ice-ice interactions, the rheology of the material, e .д. Elastic-Plastic
(ep) [29], vp [30], Elastic-Viscous-Plastic (evp) [97], Elasto-Brittle (EB) [103],
anistropic [104].

9
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For sea ice, a critical stress leads to permanent deformations, equivalent to
plastic materials, where all deformations are permanent. However, for sub-
critical stresses, the situation is more complicated and has been extensively
studied. This has led to the use of several different rheologies [26, 29, 30, 97,
103, 104, 104–107], some of which will be described here. A large part of the
evolution in sea-ice modelling can be traced back to the aidjex project. In
this project, US and Canada collaborated in a joint study of sea-ice dynamics
and interaction with atmosphere and ocean. Based on observations during
the aidjex project, a new sea-ice model was proposed [29]. With this model,
the sea ice was described as an ep material. By describing sea ice as an ep
material, the deformations were assumed to be elastic and reversible up to a
critical stress. When a critical stress is reached, the deformations are assumed
to be plastic and irreversible. However, the elastic assumption is only physically
realistic on a laboratory scale, and it introduces numerical complexities [97].
This problem led to the invention of the vp rheology [30]. Instead of describing
the sub-critical stress area as an elastic material, it was described as a viscous
fluid which was easier to simulate numerically [30,97].

In Fig. 2.1 a 1-dimensional strain-strain rate curve for the vp rheology is
shown [33]. Deformations are shown along the x-axis, and applied stress is
along the y-axis. The compression stress threshold, σc , signifies the limit for
failure in compression where deformations can occur. A failure in compression
can lead to the formation of an ice ridge. Similarly, σt is the tension stress
threshold; a failure in tension can lead to the formation of leads and polynyas.
In general, due to the presence of leads and polynyas, the magnitude of the
tension stress threshold is smaller than the compression stress threshold. Note
that the thresholds shown in Fig. 2.1 are not constants, but dependent on both
the sea-ice concentration and thickness [33].

A problem with the vp rheology is that in areas of rigid sea ice, the viscosity is
theoretically infinite. In practice this is solved by using bounded viscosities [97].
However, even with bounded values, the range of viscosities is large, and an
explicit model solution in rigid areas requires a short time step for model
stability [26]. This limitation makes the vp rheology computationally costly
for high-resolution models as generally implicit models involve a substantial
amount of communication between processors, which is a disadvantage for par-
allel implementation [26,97]. The need for affordable high-resolution explicit
models led to the introduction of the evp rheology where elastic behaviour is
included for numerical efficiency [97, 108]. The elastic behaviour in the evp
is different from that in the ep rheology as the elastic behaviour is based on
numerical simplifications rather than physics [97]. The evp rheology provides
a more efficient way of running the sea-ice model with a longer explicit time
step, in addition, the evp rheology scales well with the number of computer
processors used [33,97]. This rheology is applied in the CICE model, which is
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Figure 2.1: The vp stress-strain rate curve. The viscous regime in the vp rheology
is defined in the range −σc < σ < σt , where σ is applied stress and
Ûϵ=∂u/∂x the deformation. Reproduced from [33] with permission from
Cambridge University Press.

used for the studies in paper I, II and III.

Traditionally, models using versions of the vp rheology are the most common.
However, the validity of these models to represent ice deformations realistically
has been questioned [109]. These concerns have led to new rheology formula-
tions where deformations are more strongly taken into account [99, 103, 110].
As mentioned, in this thesis, the Los Alamos CICE model based on the evp
rheology has been used [111]. In the rest of this chapter, the main focus will be
on this model and its components.

2.1.1 The Los Alamos CICE model

A fundamental part of the CICE model is that the ice pack is considered to
be a highly fractured two-dimensional quasi-continuum [97]. This means that
the individual ice floes are not described, but are a part of a larger continuum.
The continuum assumption decreases the complexity and computational cost
of the model [33]. A requirement for the continuum assumption is that the
grid-cell size should be at least an order of magnitude larger than the ice-floe
size [112]. A typical sea-ice-floe size range from 1 m to 1 km, which means that
the continuous sea-ice assumption ideally requires a grid-cell size of at least 10
km.

In recent years several sea-ice studies have investigated sea-ice models with a
resolution higher than 10 km where a quasi-continuum needs to be assumed
[109, 113–116]. Girard et al. (2009) investigated the use of high-resolution
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sea-ice models (9-12 km) and found that the statistical properties of the ice
deformations were not well represented by the sea-ice models based on the
vp rheology [109]. However, more recent work have shown good agreement
between model and observations for high-resolution large scale deformations
[114–116]. This indicates that the sea-ice models using the quasi-continuous
assumption could potentially also be used in high-resolution sea-ice studies.
However, the use of high-resolution sea-ice models is an active area of research.
In paper III of this study, a high-resolution continuous sea-ice model with 2.5
km resolution was used. However, the validity of using high resolution has not
been investigated in this thesis.

Many sea-ice related processes, both thermodynamic and dynamic, are strongly
related to the ice thickness [31, 117]. In Fig. 2.1, both σc and σt are a function
of the sea-ice thickness. Mechanical deformations, such as ridging, are more
likely to occur for thin sea ice than thick sea ice [26]. Average ice growth over
open water in winter is 10 cm/day, while for thickness over 3 m it is around 1
cm/day [33]. For most sea-ice models, due to the continuum assumption, the
grid-cell size (10-100 km) is much larger than the individual ice-floe size (1
m-1 km). Thus, each grid cell normally includes many ice floes with potentially
large thickness variations. To better resolve the thickness dependency of the
sea-ice models, an ice-thickness distribution (itd) was introduced [118]. The
prognostic equation for the itd, д(x,h, t), is the fundamental equation solved
by the CICE model: [26, 118, 119]:

∂д

∂t
= −∇ · (дu) + ϕ − ∂

∂h
f д + L, (2.1)

where u is the horizontal velocity, h the thickness, f the ice growth rate,
and ϕ represents the redistribution of thickness in categories due to ridging
and other mechanical processes. L represents lateral melting of ice due to
open water within the ice pack, or melting by heat convection through thin
ice [26,33].

The itd is defined such that дdh describes the sea-ice concentration (fraction
of area covered by sea ice) for ice with thickness in the range [h, h + dh] [26].
With this formulation д(0) is the fractional area covered by ocean. In the
CICE model, the itd is a discreet distribution with a predefined number of
ice thickness categories and an ocean layer. For the studies described in this
thesis, five thickness categories were used. When Eq. (2.1) is solved discretely,
the continuous function д is replaced by the discrete ice concentration, an for
ice category n [119]. an is defined as,

an =

∫ h2

h1

д(x,h,y)dh, (2.2)

here h1 and h2 are the thickness boundaries for ice thickness category n. Thus
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a discrete itd equation for each category can be solved by integrating Eq. (2.1)
over the thickness boundaries for each category. With a discrete itd, each grid
cell includes information regarding the amount of ice of each discrete thickness
category, which is used for the thickness-dependent calculations.

Sea-ice dynamics

The first term on the right-hand side of Eq. (2.1) represents horizontal transport
between grid cells. In the cice model, the horizontal transport is solved by
incremental remapping [120]. With this method, the flux at the grid cell edges
are defined from departure regions specified by the velocity vectors at the cell
corners. The velocities,u, in Eq. (2.1) are derived from the momentum equation
for sea ice. In a sea-ice model, the dynamics can be described by using Newtons
2nd law of motion. Typically the horizontal scales (1000 km) of motion in a
sea-ice model is usually much larger than the vertical scales (1-10m). Thus
in practice, the sea-ice dynamics can be considered to be two-dimensional,
and a vertically integrated momentum equation can be used for the sea-ice
dynamics [33]. The vertically integrated equation of motion in the CICE model
is written as [30]:

m
Du

Dt
= ∇ · σ + τa + τw − k̂ ×mfcu −mд∇h, (2.3)

where m and u are the combined mass of ice and snow per unit area and the
velocity vector, respectively. On the right-hand side, the first term represents
the mechanical ice-ice interactions, also called rheology, which was described
previously. As mentioned, the CICE model describes the sea ice as an evp
material. In the rheology term, σ is the vertically integrated internal stress
tensor. τa andτw represent wind and ocean stress, respectively. The fourth term
on the right-hand side is the Coriolis force, where fc is the Coriolis parameter.
Furthermore, the last term on the right-hand side of Eq. (2.3) represents stress
exerted by the pressure-gradient force induced by the gradient of the sea
surface height, where д is the gravitational constant and h is the sea surface
height.

It has been shown that for large portions of the year the dominant terms of Eq.
(2.3) is the wind, ocean and the internal stresses [121]. For the CICE model the
wind stress is given by [111],

τa =
ρau

∗2Ua

|Ua | , (2.4)

where ρa is the air density, u∗ is a turbulent velocity scale related to the ice
roughness and Ua is the wind velocity. Similarly the ocean stress is given by,
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τw = cwρw |Uw −u | (Uw −u) , (2.5)

where cw is a ocean drag coefficient, ρw is the water density, Uw is surface
ocean current, and u is the ice velocity. Notice that the ocean stress includes
the ice velocity, while the wind stress does not. This is related to a wind velocity
being typically much larger than the ice velocity.

Redistribution function

The second term on the right-hand side of Eq. (2.1) is the redistribution
function,ϕ. This parameter describes the sea-ice mechanical redistribution due
to horizontal transport. When there is a convergent horizontal transport ridging
can occur. Ridging is solved in the model with the redistribution function by
converting thin ice to thick ice. For example, if convergence leads to a sic
larger than one, thin sea ice is converted into thick sea ice such that the sic
becomes one. During the redistribution process, the ice volume and energy
are conserved while the ice area is reduced [111]. Generally, thin sea ice is
more likely to ridge than thick sea ice. Therefore the CICE model applies a
weighing function that favours ridging of thin ice and closing of open water.
The thickness distribution of the ice participating in ridging, ap(h), in the CICE
model is given by [111]:

ap(h) = b(h)д(h), (2.6)

where д is the thickness distribution and b is weighting function that favours
ridging of thin ice and closing of open water. For the CICE model an exponential
ap(h) is used [122].

The opposite situation of converging sea ice is diverging sea ice. When the
sea ice is diverging the redistribution functions acts to replace the ice-covered
areas with open water. A third alternative is shear forces, where a combination
of ridging and lead opening might occur.

Transport in thickness space

The third term on the right-hand side of Eq. (2.1) refers to transport in thickness
space due to ice growth and melt. For the CICE model, a remapping method
is used to transfer sea-ice between neighbouring categories [123]. With this
method, the ice thickness category boundaries are projected forward and
displaced based on ice growth and melt. After the displacement, the displaced
categories are remapped to the original categories by transferring the sea-ice
area and volume between neighbouring categories.

Sea-ice thermodynamics is included in Eq. (2.1) through the melt/growth rate,
f , defined as [118]:

f =
dh

dt
, (2.7)
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where the change in sea-ice thickness with time, f , is governed by the heat
flux at the top and bottom of the ice, the thickness of the ice and snow, and the
distribution of brine [118]. The foundation for the thermodynamic component
in modern sea-ice models is based on the work done byMaykut and Untersteiner
(1971) [28],who developed the first sophisticated thermodynamic sea-ice model
[26]. In the following, a short description of the sea-ice thermodynamics is
presented.

A change in sea-ice thickness is normally caused by a model heat imbalance,
Fnet . A heat abundance, leads to warming of the ice and potentially to melting,
while a heat deficiency, lead to sea-ice growth. The prognostic equation for
sea-ice mass in the CICE model is given by [111]:

ρ
dh

dt
= −Fnet

q
, (2.8)

where ρ is the sea-ice density (a constant density was used for the studies
in this thesis), Fnet the net heat flux at the snow/ice surface or sea ice base,
and q is the enthalpy of the surface layer. The enthalpy is here defined as the
amount of energy required for a transition between two thermodynamic states
(enthalpy of fusion). For example, the enthalpy of the transition from ice to
water is the amount of energy required to melt a unit mass of sea-ice and raise
its temperature to 0◦C. At the snow/ice atmosphere interference, the net heat
flux can be written as:

F snet = Fs + Fl + F
d
LW − FuLW + (1 − α)(1 − i0)FSW − F sc , (2.9)

where F snet is the net atmospheric heat flux at the surface, and Fs and Fl are the
sensible and latent heat flux, respectively. FdLW is the long-wave radiation down-
wards, FuLW the long-wave radiation upwards, FSW the shortwave radiation,
α the albedo, i0 the fraction of the shortwave radiation penetrating into the
sea ice/snow, and F sc is the vertical conductive heat flux at the surface [26,33].
When the net surface heat flux leads to positive surface temperatures the excess
energy causes snow/ice to melt according to Eq. (2.8).

At the base of the sea ice, the heat flux is given by:

Fbnet = Fbc − Fw , (2.10)

where Fbnet is the net heat flux at the sea-ice base, Fbc the vertical conductive
heat flux at the base, and Fw is the ice-ocean heat flux. If the heat imbalance
at the base is negative the ice grows, and if it is positive the ice melts (see Eq.
(2.8)). The downward ice-ocean heat flux, Fw , is given by [124],

Fw = −ρwcwchu∗
(
Tw −Tf

)
, (2.11)
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where ρw is the seawater density, cw is the specific heat of seawater, ch is a heat
transfer coefficient,u∗ is the friction velocity,Tw is the sea surface temperature,
and Tf is the sea-ice freezing temperature.

In the CICE model, the internal heat transfer is described as that of a mushy
layer consisting of pure sea ice with microscopic salty brine inclusions [125,126].
For mushy thermodynamics, both salinity and enthalpy are prognostic variables
in the model [111]. A benefit of using mushy layer thermodynamics is that all
parts of the sea-ice can be treated with the same equations regardless of the
brine content. The difference between the skeletal layer of ice crystals at the
ocean-ice interface and the sea-ice interior can then be described by the brine
content. For example, the heat conductivity, k, in a mushy sea-ice layer is
written as a weighted sum of the conductivity of solid sea ice and brine,

k = ϕkice + (1 − ϕ)kbr , (2.12)

where ϕ is the fraction of solid ice, kice the ice conductivity, and kbr is the
brine conductivity.

An additional source of ice growth included in the sea-ice model is the snow-ice
formation [119]. Increasing snow mass on top of the ice due to precipitation
can lead to submerged ice. During submersion, the ice is flooded with seawater,
and a portion of the snow layer is transformed into ice such that the ice is no
longer submerged.

Lateral melting

The fourth term on the right-hand side of Eq. (2.1) represents lateral melting,
L. Lateral melting occurs along the sea-ice edges. In most situations, the lateral
melting is small compared to the vertical melting. However, it has been shown
that lateral melting becomes important for individual ice floes with a diameter
on the order of 30 m [127]. In the CICE model, a fraction of the total ocean
energy available for melting is used for lateral melting [26].

Parametrization

In both the sea-ice model and the ocean model, many processes occur on scales
smaller than that resolved by the model. For these processes, parametrizations
are used. For the CICE model, examples of parametrizations are e .д ridging,
melt ponds, wind stress and ocean stress to mention a few [111]. For the
ocean model, two examples are the parametrization of lateral and vertical
mixing [100].

2.1.2 Sea-ice data assimilation

In this thesis there are three sea-ice related observations that are primarily
assimilated sic, sit and snow depth. The modelled sic is included in the
discrete version of the itd equation (Eq. (2.1)) where the continuous function
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д is replaced by the discrete function an , where an is the ice concentration in
ice thickness category n [119],

∂an
∂t
= −∇ · (anu) + ϕn − ∂

∂h
fnan + Ln, (2.13)

here fn ,ϕn andLn are the melt/growth rate,mechanical redistribution function
and lateral melt in ice thickness category n, respectively.

For data assimilation, the observations are not split into ice categories but
instead the total ice concentration, A, is observed,

A =
N∑
n=1

an, (2.14)

where N is the number of ice thickness categories. Comparing ice category val-
ues with observed ice concentration will be described in a later chapter.

For sit the discrete equation for the change of sit in ice thickness category n
is given by,

fn =
dhn
dt
= − 1

ρi

Fnet ,n
qn
, (2.15)

where ρi is the ice density, fn the ice growth rate in ice thickness category n,
Fnet ,n is the net heat in ice thickness category n, and qn is the enthalpy in ice
thickness category n.

Similarly for snow depth, the evolution equation is given by,

dhs ,n
dt
= − 1

ρs

Fnet ,n
qn

+ P, (2.16)

where hs ,n is the snow thickness in ice category n, ρs is the snow density and
P is a source term representing precipitation. Similar as for sic assimilation,
the difference between the model ice categories and observed integrated snow
depth and sit needs to be solved.

2.2 Ocean modelling component

In paper I, a standalone sea-ice model is used with a prescribed ocean from a
decoupled model. For a standalone sea-ice model, a change in the sea ice, e .д.
melting, does not induce a response in the ocean. In paper II and III, a coupled
ocean and sea-ice model is used. With a coupled model, both the ocean and
sea ice are active components, and a change in one component affects the
other.

The ocean has a substantial impact on the sea-ice dynamics, e .д. sea-ice drift,
and thermodynamics. The sea-ice drift is governed by a combination of ocean
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currents and wind. As mentioned, drifting sea ice can lead to ridging or lead
openings, which affects both navigation and heat transport. When warm water
comes into contact with the sea ice, it will lead to sea ice melt. Another
important reason for using coupled ocean-sea-ice models is the ice-albedo
feedback described previously [128, 129]. With a decoupled ocean, the arctic
amplification caused by the ice-albedo feedback is not possible to model.

Ocean vertical mixing in the Arctic is strongly linked to the sea ice. For example,
the vertical mixing induced by wind is significantly reduced when sea ice is
present. On the other hand, during sea-ice formation brine rejection is a source
of vertical mixing. Therefore, a change in the sea-ice extent could potentially
have a significant impact on vertical mixing in the Arctic ocean. However, the
net effect of a change in sea-ice extent on the vertical mixing is not know. A
recent study assumed that wind is the dominant vertical mixing effect, and
that a decrease in sea-ice extent will lead to increased vertical mixing. Using
this assumption, it was found that increased vertical mixing can be a potential
climate feedback that will enhance the Arctic sea-ice melt and also impact the
Arctic ocean circulation [15].

In paper II and III, the Regional Ocean Modeling System (roms) is coupled to
the cice model as an ocean component in the model system. roms is a three-
dimensional, free-surface model with topography-following coordinates [100].
The governing equations for roms1 are briefly described below.

2.2.1 Governing equations ROMS

The horizontal momentum equation solved by roms is given by,

∂u

∂t
+ (u · ∇)u + 2Ω ×u = − 1

ρ0
∇P + ∂

∂z

(
Km
∂u

∂z
+ ν
∂u

∂z

)
+ Du , (2.17)

where u is the horizontal velocity vector, Ω the earth angular velocity, P the
pressure, ρ0 a constant density (Boussinesq approximation, see below), Km
represents a Reynolds stress term parametrisation accounting for turbulent
fluctuations, ν molecular viscosity and diffusion coefficient, and Dv is a hori-
zontal diffusion term representing small-scale diffusive processes not resolved
in the horizontal model grid. The second term and third term on the left-hand
side represent advection and the Coriolis force, respectively. The first term on
the right-hand side (RHS) is the pressure-gradient force. The second term and
third term on the RHS represent forces due to vertical turbulent and molecu-
lar diffusion, respectively. In roms the Reynolds stresses are obtained using
dedicated turbulence schemes [130].

The equations governing the ocean motion in roms are simplified by two

1. https : //www .myroms .orд/
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important approximations, the Boussinesq approximation and the hydrostatic
approximation.

Bussinessq approximation

The ocean density can be written as,

ρ = ρ0 + δρ(x,y, z, t), (2.18)

where ρ0 is a mean density and δρ is the density variations. In the ocean,
generally, the density variations are small compared to the mean density,

|δρ | � ρ0. (2.19)

With this approximation the momentum equation can be simplified (ρ0 in
Eq. 2.17), and the mass continuity equation can be reduced to that of an
incompressible fluid,

∇ ·v = 0, (2.20)

where v is the three-dimensional velocity.

Hydrostatic approximation

By assuming that the vertical accelerations in the ocean are small compared
to the pressure gradient and gravity, the vertical component of the momentum
equation can be written as,

∂P

∂z
= −ρд, (2.21)

where д is the acceleration due to gravity. This relation is called the hy-
drostatic balance. By using the hydrostatic balance, small-scale phenomena
such as turbulence in the surface mixed layer are neglected. However, since
non-hydrostatic phenomena process such as small-scale turbulence are not
generally resolved with typical model resolutions, hydrostatic balance is a valid
approximation [131].

Temperature and Salinity

The time evolution of the ocean temperature in roms is governed by an
advection-diffusion equation:

∂T

∂t
+v · ∇T = ∂

∂z

(
KT
∂T

∂z
+ νθ
∂T

∂z

)
+ FT + DT , (2.22)

where T is the temperature, KT a vertical turbulent coefficient, νθ a molecular
viscosity and diffusion coefficient, FT external sources, e .д. shortwave flux, and
DT represents horizontal small-scale diffusion. The terms affecting the time
evolution of temperature are similar to those of horizontal momentum (Eq.
(2.17)). The evolution equation for salinity is the same as for temperature (Eq.
(2.22)) where salinity, S , is substituted for the temperature, T , with different
external sources, e .д. brine rejection from ice.
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Boundary conditions

At the surface, the ocean is driven by wind and atmospheric heating similarly
as described for sea ice ( Eq. (2.9)). At the bottom, the ocean is affected by
bottom friction modelled as a linear or quadratic drag.

2.2.2 Coupling

The thermodynamic and dynamic equations in the cice model are dependent
on solutions to the equations in roms. Similarly, the governing equations of
roms are dependent on input from the cice model. Thus instead of running
the two models separately with input from the other model, the two can be
coupled by continuously transferring information between the two models. The
coupling between the cice model and roms is done through the The Model
Coupling Toolkit (mct) [132, 133]. The sea-ice model uses several parameters
from the ocean component: sst, sea-surface salinity, freezing/melting poten-
tial, freezing temperature, heat flux, mixed-layer depth, ocean currents, and
sea-surface height. Similarly, the ocean uses several variables from the ice
model: freshwater flux, salt flux, net heat flux from ice to ocean, shortwave
radiation penetrating the ice and ice-ocean stresses.

By exchanging variables through mct, the two model components do not
need to use the same time step. Different time steps can significantly reduce
the computational cost if one model component requires a shorter time step
than the other. For example, for the coupled studies in this thesis, the ocean
component needed a shorter time step than the sea-ice component to achieve
stable solutions.

2.3 Atmospheric forcing

Both the cicemodel androms require atmospheric input. There exists several
fully coupled atmosphere-ocean-sea-ice model alternatives, e .д. the UK Met
office global coupled model [21] and the European Centre for Medium Ranged
Weather Forecast (ecmwf) integrated forecast system (IFS) [20]. However,
a coupled model, as described in the last section, can be computationally
expensive. An alternative to coupled models is the use of forcing from a
model that is run outside of the model system. In this thesis, the atmospheric
forcing is provided by separate models instead of using fully coupled models as
described above. The atmospheric variables used by the ocean and ice models
are wind, air temperature, mean sea-level pressure, precipitation, humidity,
cloud-cover fraction, longwave radiation and shortwave radiation. In this thesis,
atmospheric forcing from several models with different properties was used,
ecmwf ERA-Interim [134], ecmwf Integrated Forecast System (IFS) [135]
and AROME-Arctic [136]. ERA-Interim is a reanalysis dataset with relatively
coarse resolution. IFS includes an ensemble of atmospheric forecasts. AROME-
Arctic was used because of high-resolution variables.
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2.4 Boundary conditions

In this thesis, a regionally downscaled model is used. Therefore, input from a
global model at the boundaries is needed. This is performed through an offline
one-way nesting. In this thesis, only ocean variables were used at the boundaries.
For papers I and II, the full Arctic was considered such that ice boundary
conditions were not needed. In paper III, a short study of the predictability of
the sea-ice edge is investigated in a small region of the Arctic. However, themain
focus of this study was related to the location of the sea-ice edge. Therefore,
the ice-ice boundaries were considered to be of less importance.

2.5 Ensemble forecasting

In sea-ice modelling, there are large uncertainties in the forecast, e.g. the atmo-
spheric forcing, the model physics and the initial model state. With ensemble
forecasting, several slightly different model realisations are used to create a
probabilistic forecast that takes model uncertainties into account. Also, informa-
tion regarding the model uncertainty is included in the ensemble spread. The
different model realisations can have different initial states, input parameters,
input forcing or a combination of the three, depending on the uncertainties in
the model. Now, many operational numerical weather centres utilise ensemble
forecasting to obtain probabilistic meteorological forecasts [68, 69, 137, 138].
Ensemble forecasting also facilitates for ensemble assimilation systems as will
be described in chapter 4. Ensemble forecasting has been used in papers I, II
and III.





3

Observations relevant for

sea-ice modelling

In this thesis, a wide range of sea-ice related observations has been used both
for assimilation and for verification. In this chapter, the observations used and
the methods used to observe them are described.

Due to the vast and remote polar regions, the only way to provide a full obser-
vational coverage is through satellite observations. The first satellite, Sputnik
1, was launched by the Soviet Union in 1957, and shortly after, in 1960, the first
weather observing satellite, TIROS-1, was launched by the United States [139].
Since then the number of Earth-observing satellites has increased drastically, ac-
cording to the United Nations Register of Objects Launched into Outer Space as
of 2019 more than 700 Earth-observing satellites were orbiting the Earth [140].
For sea ice, a complete record of the Earth’s sea-ice cover began in 1979 with
microwave observations from the Scanning Multi-channel Microwave Radiome-
ter (smmr) on the Nimbus-7 satellite [141, 142]. The Earth-observing satellites
consist of a wide spectre of different instruments, measuring in various fre-
quency bands; some satellites are passive, relying on natural radiation sources,
while others are active and emits radiation. Different devices make it possible
to observe various properties of the Earth geophysical system.

23



24 CHAPTER 3 OBSERVAT IONS RELEVANT FOR SEA- I CE MODELL ING

3.1 Instruments

Passive microwave instruments use the antenna temperature of an antenna
pointed towards the Earth to measure the Earth thermal microwave emission.
Examples of passive microwave instruments are the Scanning Multi-channel
Microwave Radiometer (smmr), Special Sensor Microwave/Imager (ssm/i),
Special Sensor Microwave Imager Sounder (ssmis) and amsr-e/2 [143–146].
Since these instruments measure thermal emission, they do not require sunlight
to operate. Low-frequency microwaves can penetrate clouds. Thus the passive
microwave instruments can operate in nearly all weather conditions [147,
148].

Examples of other passive instruments are visible and infrared radiometers.
However, these instruments are not able to see through clouds. As the Arctic
has an annual cloud-cover average of about 70 % [149], these instruments are
unable to provide a full Arctic coverage. The visible instruments are dependent
on the sun for illumination, which for the Arctic is not present during large
portions of the year. However, these instruments often have a higher resolution
than the microwave measurements, and they are easier to interpret.

There are also active instruments used for measuring the sea ice. Active instru-
ments do not use a natural source of radiation but emit radiation. One such
instrument is a Synthetic Aperture Radar (sar). A sar is a side-looking radar
which transmits electromagnetic waves and measures the backscatter received.
In general, the azimuth resolution of a side-looking radar is proportional to
the distance to the target [150], which for space-borne satellites would imply
coarse resolution. By mechanically moving the antenna and applying signal
processing techniques, it is possible to synthesise a broad antenna which is
independent of the distance to the target [150]. Thus, in general, sar obser-
vations have a very high resolution. In addition, the microwave transmissions
of the sar instrument have nearly all-weather capabilities. However, due to
the energy consumption, the sar instruments must recharge and cannot have
global coverage, the active radars are only operated around 10-25 per cent of
the time [148].

Another important instrument for sea-ice observations is altimeters. An altime-
ter transmits an electromagnetic wave in the nadir direction, directly below, and
uses the measured travel time between emitted and reflected electromagnetic
wave to estimate the distance to the surface. Generally, there are two kinds of
altimeters, radar and laser, where the latter can neither penetrate clouds nor
snow [151].
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3.2 Sea-ice concentration (SIC)

With passive microwave, the sic can be derived using a variety of frequen-
cies. Especially at the 19 and 37 GHz channels, the differences in emissivity
between ocean and water are found to be relatively large [152]. There are
several different algorithms that can be used to classify ice water based on
passive microwave, e.g. the National Aeronautics and Space Administration
(nasa) team algorithm [143, 153], the Bootstrap algorithm [154], and the
Bristol algorithm [155]. In addition there are hybrid methods that combine
algorithms [156], e.g. the European Organisation for the Exploitation of Mete-
orological Satellites (eumetsat) Ocean and Sea Ice Satellite Application Fa-
cility (osisaf) algorithm combines the Bootstrap and Bristol algorithms [157].
In this combined algorithm, the Bristol algorithm is used for high sic and the
Bootstrap algorithm for low sic retrievals [157]. An example of the osisaf
ssmis sic product is given in Fig. 3.1. In general, low-frequency passive mi-
crowave observations have a relatively coarse spatial resolution. However, the
resolution can be increased by the use of high-frequency channels (near 90
GHz), but these channels are more prone to atmospheric contamination [158].
One such algorithm is the Artist Sea Ice algorithm [159]. With this method,
the atmospheric contamination is removed by weather filters using numerical
weather prediction models [148, 160]. An important drawback of the passive
microwave observations is that none of the algorithms can distinguish open wa-
ter from melt ponds [156]. This problem leads to larger method uncertainties
in summer compared to in winter.

Converting sar backscatter to sic observations, is more difficult than using
brightness temperature measurements. This is caused by imaging geometry,
variations in moisture and surface roughness [161]. Therefore automatic detec-
tion of sic from sar is an ongoing field of research [161, 162]. Currently the
only operational sic observations from sar are hand-drawn maps, such as the
Norwegian Meteorological Institutes (MET Norway) ice charts 1.

sic observations are used for assimilation inmany operationalmodels involving
sea ice and have been used in several studies with different models, e.g. [39–
41,43,44,46, 74]. These studies have shown that assimilation of sic leads to a
significant update of the modelled sic and also smaller multivariate update of
variables such as the sit. sic is assimilated in paper I, II and III.

As described in the previous chapter, the model used in this thesis includes sev-
eral ice-thickness categories described by the ice-thickness distribution (itd).
With the itd formulation, the ice concentration in the thickness category
[h,h + dh] is defined by д dh in Eq. (2.1). The observations, on the other
hand, only include a single thickness value for the area observed. Therefore,

1. http://wms.met.no/icechart/
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Figure 3.1: Sea-ice concentration from the OSISAF SSMIS product on 1 April 2018.

for assimilation purposes, д dh needs to be integrated over all ice thickness
categories ( h > 0). The update of individual ice categories based on the
integrated observations will be explained in the next chapter.

3.3 Sea-ice thickness (SIT)

Currently, sit observations in the Arctic are sparse, and the existing observa-
tional datasets include large uncertainties. To retrieve sit with altimetry, the
sea-ice freeboard, fc , shown in Fig. 3.2, is measured. From the freeboard mea-
surements, the sit can be calculated based on Archimedes’ principle, where
the sea ice is a body immersed in the ocean. For measurements with a radar
altimeter, which penetrate through the dry snow, the following equation is
used (for laser altimeters, when the snow is opaque, the equation is slightly
different [148]):

hi =
ρw f0 + ρshs
ρw − ρi , (3.1)

where hi , f0 and hs are the ice thickness, freeboard and snow thickness, respec-
tively, and ρw , ρs and ρi are the water, snow and ice densities, respectively. Eq.
(3.1) includes several unknowns: the snow depth, the snow density and the ice
density. Consequently, sit calculated from radar altimeters has been found to
include large uncertainties [163,164]. For the snow thickness in Eq. (3.1), either
a model or the Warren climatology of snow is used [165,166]. For the densities,
normally nominal densities are used, which introduces large uncertainties due
to the complexity and variability of snow and ice densities. For example wet
snow has much larger density than dry snow. Altimeter observations have a
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Figure 3.2: The parameters needed to calculate the sit from measured sea-ice free-
board fc . Reproduced from [167], ©Creative Commons Attribution Li-
cense.

small footprint, and a full Arctic coverage requires a significant amount of spa-
tial and temporal interpolation. Therefore, global maps of sit have a coarse
temporal (14-30 days) and spatial resolution (25 km - 100 km) [148]. E.g. the
Cryosat 2 observation product used in paper II has a temporal resolution of 30
days and a spatial resolution (grid size) of 25 km [50].

An alternative method for measuring sit from satellite is through passive
microwave measurements. It has been found that by using the 37 and 85 GHz
channels from the ssm/i and 36 GHz channel of amsr-e/2, it is possible to
derive thin sea-ice thickness up to about 20 cm from brightness temperatures
[168–170]. With the launch of the smos mission in 2009, the first L-Band
(1.4 GHz) measurements of the Earth’s radiation became available [171]. With
the SMOS wavelength of 21 cm, the penetration depth in sea ice (cold) is
relatively long, which is suitable for sit measurements [53, 172–174]. With a
long-wavelength, the inhomogeneities in the sea ice, such as brine pockets
and air bubbles become small compared to the wavelength. In this case, the
sea-ice emissivity can be considered to be the same as that of a homogeneous
medium [172, 173]. The maximum thickness that can be retrieved from the
SMOS observations is of the order of 0.5 m [58, 172], but varies with the
snow and ice conditions [53]. A limitation with the smos product is that all
retrievals are assumed to be taken with a sic of 1, which generally leads to an
underestimation of the observed sit [53].

In addition to the satellite observations, aerial observations of sit from the Ice-
Bridge campaigns [175,176] and the Ice Mass-Balance (imb) buoy observations
exists [8]. In this thesis, these limited temporal and spatial observations have
been used for verification. Another method for sit observations is based on the
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use of sea-ice draft measurements from an upward-looking sonar (ULS) [177].
A ULS uses an acoustic signal to measure the distance between the instrument
moored at the ocean bottom to the base of the ice.

As continuous satellite observations of sea-ice thickness with reasonable un-
certainty are relatively new, the use of these observations is still in the ex-
periment phase. However, several research groups have started research into
using sit for assimilation in their numerical models, with promising prelim-
inary results [46, 49, 56–63]. The results showed a strong influence on the
modelled sit and also some weaker impacts on the model sic. Furthermore,
the assimilation of sea-ice thickness is investigated in paper I and II.

Similar to sic, the observed integrated sit is not a direct model variable in
the cice model. In general, the model includes information regarding the ice
volume in each discrete itd category. Thus, the total ice volume is the sum of
the volume of each ice thickness category. In the model, the volume is defined
per pixel area, such that the average pixel thickness observed is calculated
from the integrated volume divided by the integrated concentration. For both
the Cryosat-2 and smos retrievals, a full sea-ice coverage is assumed; thus the
observations are comparable to the integrated model ice volume [53].

3.4 Snow depth

The first derived snow depths from satellite observations were performed by
Markus and Cavalieri (1998) [178]. In that study, snow depths were calculated
from an empirical relationship between snow depth and observed brightness
temperature using passive microwave channels with frequencies of 19 and 37
GHz. This method was found to only work for first-year ice in the Arctic as the
snow penetration depth of the 19 and 37 GHz frequency channels is limited
to 0.5 m [179]. Rostosky et al. (2018) [55] improved upon the snow retrieval
method by using lower frequency channels, 6.9 and 10.7 GHz. With the use of
these channels, it became possible to observe deeper snow. However, a large
uncertainty regarding the snow-depth retrievals from satellites is related to the
snow properties. As mentioned previously, the radiometric properties of snow
are highly dependent on the liquid water content [180]. Thus observations of
snow depth are currently only available when the snow is dry. An example of
the Rostosky et al. (2018) snow-depth product is given in Fig. 3.3 [55]. There
also exist other methods of measuring the snow depth, Guerreiro et al. (2016)
developed an algorithm for retrieving snow depth from radar altimeters [181].
A method for deriving snow depth from the smos L-band observations has
also been developed [182].

Similarly to the sit, snow-depth observations exist from the Icebridge mission
[166, 176], and the imb buoys [183]. For the Icebridge mission, a snow radar
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Figure 3.3: Snow depth from the Rostosky et al. (2018) product based on amsr-e/2
data on 1 April 2018 [55].

was used to measure the snow-air and snow-ice interfaces [184].

A full coverage of observed snow depth in the Arctic is still in an early de-
velopment phase, and the first study of snow-depth assimilation in a coupled
model is presented in paper II. Similarly, as for sit, the observed snow depth
is equivalent to the modelled snow volume aggregated over all thickness cate-
gories.

3.5 Sea-surface temperature (SST)

The ocean temperature has a large impact on the sea-ice, both for the thermo-
dynamics and the dynamics. Thus coupled ocean-sea-ice models must include
accurate information regarding the ocean temperature. As for the other obser-
vations mentioned in this chapter, sst can be observed from satellites. There
are several satellite-based methods for observing sst, e .д. infra-red retrievals
and microwave retrievals. Besides, a large number of buoys provide continuous
in situ measurements of sst.

With the introduction of the Group for High Resolution SST (ghrsst), which
was the end result of the global ocean data-assimilation experiment high-
resolution sst pilot project [185, 186], a system for operational observations
of sst was introduced. This system facilitated for merged sst products based
on sst observations from multiple sources, e.g. the Operational Sea Surface
Temperature and Sea Ice Analysis (ostia) [64] and the Multi-scale Ultra-high
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Resolution Sea Surface Temperature (mur sst) [65]. These two sst products
combine infra-red,microwave and in situmeasurements from theghrsst into
high-resolution sst products with global coverage. In the final products, the
infrared retrievals are used for high-resolution information, and the microwave
retrievals provide a full global coverage. sst has been assimilated in a wide
range of ocean models [187–190] and coupled ocean-sea-ice models [39, 191].
The impact on sea ice by assimilating sst on the sea ice in a coupled ocean-
sea-ice model is investigated in paper III.

Neither the observed sst nor the modelled sst is located at the surface. For the
observations, the measured depth is dependent on the penetration depth of the
instruments, which is relatively small as sea-water is an opaque medium [185].
For the romsmodel used in this study, the temperature is defined in the middle
of each grid cell. Thus the uppermost ocean temperature will never be at the
surface and will be dependent on the model vertical resolution. This may have
led to some inaccuracies when assimilating sst. For the study in paper III, the
applied model sst depth was approximately 1m.

3.6 Other sea-ice related variables

In this thesis, the observations mentioned above are used for assimilation and
verification, but there are also other Arctic observations highly relevant for
modelling. One such observation is the sea-ice drift. The average sea-ice drift
can be measured by comparing identifiable polygons of ice at roughly the
same location at different times. In general, for these kinds of measurements,
any observational instrument that can separate ice from the ocean can be
used, where SAR observations give the satellite observations with the highest
resolution. There are several sea-ice drift algorithms, but the most common
algorithms used are the Maximum Cross-Correlation [192] and the Continuous
Maximum Cross Correlation [193] algorithms. Another method for calculating
sea-ice drift is by measuring the Doppler shift of the sar signals [194]. With the
Doppler method, the instantaneous drift velocity is found. However, due to the
way the Doppler shift is measured, only the range velocity of the ice floes can
be derived, while the azimuth velocity will remain unknown. The sea-ice drift
has been used successfully in several assimilation studies [39,47,48].

Another important variable for sea-ice models and climate studies is melt
ponds. Melt ponds on the sea ice can be retrieved from high-resolution optical
satellites [195]. However, due to clouds and the need for illumination, the
spatial coverage is limited. Melt-pond fractions have also been observed by
using an imaging spectrometer. [196–198].

The sea-ice-surface temperature can be found by using an empirical relationship
of brightness temperature from optical and thermal infrared instruments [199–
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203]. Observations of the sea-ice-surface temperature can be used to estimate
radiative and turbulent heat fluxes over sea ice [117, 203–205].

3.7 Observation uncertainty

For data assimilation purposes, the uncertainty of the observations must be well
known. Most of the observational products described in this chapter, and used
in this thesis, include an uncertainty estimate. For assimilation, the uncertainty
is essential in order to determine the weight given to the observations in the
assimilation process. More details regarding the uncertainty of the individual
data product used in this thesis are found in the papers I, II and III.

For satellite observations, there are several sources of uncertainties. There
are general uncertainties related to remote sensing. There are instrument
uncertainties, for example, sensor noise. There are algorithm uncertainties
related to the conversion from the instrument measurement to the retrieval
product.

One general source of uncertainty in the satellite data products is the represen-
tativeness error. Representativeness error occurs when the measured signal is
interpolated onto a predefined grid [157]. For example for the smos sit obser-
vations, the footprint is 35 - 50 km while the model grid used was 12.5 km [53].
Thus, in addition to a lower resolution of the observations than provided in
the product, each grid cell potentially also consists of interpolation of several
observations. In for example the osisaf sic product, the representativeness
error is calculated by a model and included in the total uncertainty.

Another source of uncertainty is geolocation error related to the registration
of the radiometer data to the Earth-fixed frame of reference [206]. In general,
the geolocation error is often small (around 5 km) compared to the footprint
size [207]. Additional uncertainty comes from the fact that the data products
include observed scenes from a sampling period where it is reasonable to
assume that there has been some variability in the sea ice.

Algorithm uncertainties include the uncertainty in the variables needed for
the conversion from the measurements to the product. For example, for the
smos sit calculation, the uncertainties in the ice temperature and the ice
salinity lead to increased sit uncertainty. Another source of uncertainty in sit
estimation, is the snow depth on top of the ice. However, this is more difficult
to take into account as very few observations exist for verification.

A method for evaluation of observation uncertainty is through comparison with
more accurate observations, such as buoy and aerial observations. This method
is applied for the snow-depth observations and the sst observation.
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Not all observations used in this thesis include an uncertainty estimation, and
in these cases, a best guess is applied. This applies to the Cryosat-2 sit obser-
vations, the ice charts and parts of the mur sst observations. The mur sst
observations are based on different sources, both from observations included in
the ghrsst and independent sources. In general, the observations included in
the ghrsst are required to include an uncertainty estimation [185]. However,
the mur sst product also includes some none-ghrsst observations which
do not include an uncertainty estimation. For these observations, a best guess
was used [65].

3.8 Assimilating observation products versus

raw data

In this chapter, several sea ice related observations derived from satellite
observations have been described, and these are also the products used for
assimilation in this thesis. However, as several of these products are derived from
the same instruments, a more natural approach would be to assimilate the raw
observation data directly. In the next chapter, data assimilation will be described
in detail, and it will be described that in theory, raw data can be assimilated
directly. In numerical weather prediction, assimilating raw data (radiances)
directly is often done [208]. By assimilating the raw data, uncertainties related
to the algorithm can be removed. Additionally, some of the algorithms require
model data to derive the data products which by assimilating the raw data
could have been provided during assimilation, this applies to for example the
CryoSat-2 ice-thickness calculations which require snow-depth input. However,
assimilating the raw data requires a deep understating of how the different
observation products are derived.

Another possibility of assimilating raw data could be to include a radiative
transfer model in the model system. With the radiative transfer model, the
model could predict what the different instruments would observe, and the
model variables could be updated based on multivariate properties of the
assimilation method. Multivariate data assimilation will be described in the
next section.
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Data Assimilation

George E. P. Box stated: "All models are wrong but some are useful". Indeed, the
Earth geophysical system includes processes covering a huge range of spatial
and temporal scales, which are practically impossible to model numerically
in full detail. In addition, there are geophysical processes that are not well
known. Therefore the models generally include uncertainties that make them
diverge from the observed real world. However, the models are useful as they
provide a method for describing our geophysical system numerically. Often the
numerical accuracy is better for shorter time scales and larger spatial scales.
The model accuracy at shorter time scales can be exploited by using the vast
number of observations described in the previous chapter to continuously
adjust the model. The method of using the observations to adjust the models is
called data assimilation. With data assimilation, model values and observations
are combined to adjust the model towards a more realistic state. This more
accurate new state can be used for a potentially improved model prediction.
The methodology of data assimilation originated in the atmospheric sciences to
improve weather prediction but is now used frequently within the geosciences
[70,71, 209].

The concept of data assimilation is closely linked to numerical forecasting.
Numerical forecasting is defined as a prediction of a future state based on a
numerical model. For a numerical forecast, an accurate prediction requires that
the initial model state is as close to the true state as possible, which can be
achieved with data assimilation.

33
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Imagine that you want to predict the air temperature for tomorrow. A simple
“model“ is that the air temperature tomorrow is similar to the air temperature
observed today (persistence). A scalar temperature assimilation example using
a persistence model is shown in Fig. 4.1. If you know it was 25 degrees yesterday
(black dot); you will assume with a persistence model that it is around 25
degrees today (green) and that it will be about 25 degrees tomorrow (red).
However, if you check your old, low-resolution, rusty thermometer today, you
will see that the temperature is around 19-23 degrees (yellow). Notice that the
size of the dots in Fig. 4.1 is not scaled by their uncertainties. By combining
the “model“ information which is the predicted temperature today (Today’s
forecast) with the thermometer information which is the observed temperature
today (Observation), you can define a new initial state (Assimilation analysis)
for tomorrows forecast. In data assimilation, the uncertainties of the model
and observations are used to weigh the information content. In the example
described in Fig. 4.1, the observation uncertainty is defined by the range of
possible temperatures observed from the thermometer, here 2 degrees. However,
the model uncertainty is unknown in this example, and this is also the case for
many numerical models. Let us assume a model uncertainty of 4 degrees in this
example. Thus based on this information, the new initial state (grey) for the
prediction can be calculated, and in this case it is approximately 22 degrees. The
calculation of the new initial state based on the model, observation and their
uncertainties will be described in more detail in the next section. With the new
initial state (grey), the persistence model will predict tomorrow’s temperature
to be 22 degrees (blue), less than the 25 degrees predicted without assimilation
(red). By altering the initial state of the prediction (today’s temperature), the
forecast has likely been improved.

In the example above, the model was an assumption that the temperature
tomorrow will be the same as the temperature today (persistence). In mete-
orological forecasting, the models are more sophisticated, but the principles
behind data assimilation remain the same. The initial model state is updated
based on an optimal combination of the observations and the model variables.
The combination of model variables and observations can be performed in
several different ways which will be described in this chapter.

A 1-dimensional (1-D) data assimilation example with several assimilation steps
is shown in Fig. 4.2. At the end of each forecast (blue lines) an analysis (black
circle) is performed based on the predicted value and the observation (green
dot). In this example, a lower observation error than model error was used.
This difference is seen by the fact that the analysis always is closer to the
observation than the prediction.

Assimilation methods range from simple and fast methods such as the 1-D
minimum variance approach shown in Fig. 4.2 to more complicated and time-
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Figure 4.1: A scalar example for the assimilation of temperature in a persistence
model.

Figure 4.2: A scalar minimum variance assimilation example. The red line represents
the true state, blue line represents model forecast, green dots represent
observations, and the black circles represent analysis result.
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Figure 4.3: An ensemble prediction system. The blue line represents the true state,
red lines the model forecast for the different ensemble members, green
dots the observations, and the black dots represent analysis results.

consuming methods such as the 4-D Variational (4-d var) method. With the
4-d var method, the model is simulated back and forth in time in an iterative
manner to achieve the best possible initial state [210]. Other assimilation meth-
ods, like the Ensemble Kalman Filter (enkf) [211], require an ensemble of
model states. A schematic view of an ensemble assimilation system is given in
Fig. 4.3. With an ensemble assimilation system, each ensemble member is fore-
cast forward and updated. For an ideal ensemble, the ensemble is distributed
around the true model state with the ensemble mean equal to the true state.
However, due to model uncertainties and inaccuracies of the initial state this is
in practice not the case. Even though the ensemble mean might diverge from
the true state, the ensemble spread should still represent the model error and
this is used when the enkf is applied.

4.1 A scalar minimum variance approach

In this section a scalar temperature example is used to describe a minimum
variance assimilation approach [210]. The background (model first guess)
temperature is given by, Tb ; the observed temperature is given by, To . The
modelled and observed temperature can be written as a sum of the true
temperature, Tt , and their respective errors,

Tb = Tt + ϵb (4.1)
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To = Tt + ϵo (4.2)

The error statistics, ϵb and ϵo , are assumed to be uncorrelated and have zero
mean, hence Tb and To are said to be unbiased estimates of Tt . The analysis
temperature, Ta , is assumed to be a linear combination of the observation and
background temperature given by:

Ta = αTo + βTb + γ , (4.3)

where α , β and γ are constants. The analysis temperature estimate, Ta , is also
assumed to be an unbiased estimate of Tt . By inserting Eqs. (4.1) and (4.2) in
the analysis Eq. (4.3), the equation can be rewritten as:

Ta = ϵa +Tt = α (Tt + ϵo) + β (Tt + ϵb ) + γ (4.4)

Since all temperatures are assumed to be unbiased estimates ofTt the average
of this equation can be written as:

ϵa = (α + β − 1)Tt + γ = 0. (4.5)

Where the overbar represents the mean value operator. Since Eq. (4.5) holds
for all values of Tt the following must be true:

α + β = 1 (4.6)
γ = 0 (4.7)

Thus the linear analysis Eq. (4.3) can be rewritten as:

Ta = αTo + (1 − α)Tb . (4.8)

By using equations (4.1), (4.2), (4.4), the equation above can be rewritten as
an equation of errors,

ϵa = αϵo + (1 − α)ϵb . (4.9)

In this example the optimal solution is defined as the solutionwith theminimum
variance. The variance of Ta is found by squaring Eq. (4.9), averaging and
utilising that ϵo and ϵb are assumed to be uncorrelated,

ϵ2a = α
2ϵ2o + (1 − α)2 ϵ2b (4.10)

The derivative of Eq. (4.10) is used to find the minimum variance,

dϵ2a
dα
= 2αϵ2o − 2 (1 − α) ϵ2b = 0 (4.11)

Which gives the optimal solution for α ,

α =
ϵ2b

ϵ2b + ϵ
2
o

. (4.12)
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By inserting α in Eq. (4.8) the a minimum variance solution is found as:

Ta =
ϵ2b

ϵ2b + ϵ
2
o

To +
ϵ2o

ϵ2b + ϵ
2
o

Tb . (4.13)

The equation above can, for reasons that will be obvious later, be rewritten as:

Ta = Tb +
ϵ2b

ϵ2b + ϵ
2
o

(To −Tb ), (4.14)

This equation describes an analysis where the optimal initial state is a weighted
sum of the model and the observation, where the weight is based on the
background error and the observation error. A large observation error relative to
the background error gives a small effect of the observation during assimilation.
In contrast, a small observation error relative to the background error gives a
substantial assimilation effect of the observation. The variance describing the
uncertainty of the analysis temperature is given by Eq. (4.10). The minimum
variance approach derived in this section is intuitive and easy to implement,
and has successfully been used in data assimilation of sic [40]. A modified
version of the scalar minimum variance approach described here was used in
Paper I for the mvn method.

4.1.1 The Multi-variate nudging (MVN)

For the scalar minimum variance approach described above, there is a one-to-
one relationship between observation and model value, where the model value
is pushed towards the observation based on the magnitude of the uncertainties.
Geophysical models usually include a wide array of variables, and several of
these are observed simultaneously. For situations with several observations, the
solution can be solved similarly as above but with model variables, observations
and uncertainties defined by vectors andmatrices (see section 4.2), this is called
the 3-dimensional (3-D) Optimal Interpolation method [210]. The 3-D Optimal
Interpolation method was used operationally at ECMWF from 1979 until 1996
when it was replaced by the 3-d var method [212].

A benefit of a 3-D assimilation method is a multivariate update of variables,
where model variables that are not observed can be updated based on correla-
tion with the observed variable. The correlation is defined through information
in a background error covariance matrix. A background error covariance matrix
include the model variable uncertainties along the diagonal and covariances
between model variables on the off-diagonals. In general, the background error
covariance matrix is not known and needs to be predefined or estimated, which
can be computationally costly. The mvn was proposed as a simple, low-cost
alternative for multivariate assimilation update without a need for a prede-
fined or estimated background error covariance matrix. The mvn is based
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on the coin method proposed by Wang et al. (2013) [40]. This assimilation
method applies a parameter nudging combined with the minimum variance
approach for adjusting the model values towards the observations. For sic
assimilation, the variable nudging can be shown by using the discrete version
of the ice-thickness distribution (itd) equation, Eq. (2.1), including a nudging
term:

∂an
∂t
= −∇ · (anu) + ϕn − ∂

∂h
fnan + Ln +G(yn − an), (4.15)

where the itd, д, in Eq. (2.1), is substituted by an , the discrete sic in ice
thickness category n ∈ [1, .., 5]. Similarly, all other terms in Eq. (4.15) are
defined for the discrete ice thickness category n. The extra term (last term
right hand side) in the discrete itd equation above is the nudging term, where
yn is the observation of sic in category n, and G represents a nudging weight,

G =
Knд

τ
, (4.16)

where Knд is the weights defined by the uncertainties,

Knд =
ϵ2b

ϵ2b + ϵ
2
o

, (4.17)

and τ is a nudging time scale that defines the nudging impact. The nudging
weight can take values between 0 and 1, where a value of 0 gives no effect of
the observations, while a value of 1 sets the model to the observed value.

The coin method provides a cost-effective alternative for sic assimilation.
In the sea-ice model, the sit is defined as the sea-ice volume divided by
the sic. Thus, a scalar data assimilation of sic in a multi-variate model will
induce a change in either the modelled sea-ice thickness (sit) or sea-ice
volume depending on which variable is kept constant during assimilation. Both
accurate sic and sit/sea-ice volume are important for an accurate sea-ice
prediction. To improve upon the assimilation update of sit/sea-ice volume,
the mvn modification to the coin method was introduced. The mvn method
updates both sic and sit when either type of observation is assimilated. The
mvn multivariate update uses an empirical relationship between sic and sit
defined by observations in the marginal ice zone. The mvn method is similar
to that of Tietsche et al. (2013) [75]. In that study, also an empirical relationship
between sic and sit was used for assimilation update of sit during sic
assimilation.

In Eq. (4.15), when the mvn is used for multi-category sea-ice models, there is
a need for assimilating multi-category sea-ice observations, yn . Multi-category
sea-ice models take into account the fact that each grid cell includes many
ice floes with different thicknesses. The observations on the other hand, only
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provide single point measurements. In paper I, multi-category observations
were generated from the assumption that the ice thickness category distribu-
tions of the background and the observations are the same. Thus prior to the
assimilation, the observations were split into thickness categories based on the
background ice-thickness distribution. For example, for an observed sic of 0.8,
with an assumed background sic of [0.4,0.6,0,0,0], the multi-category obser-
vation of sic assimilated were [0.32,0.48,0,0,0]. For the sit assimilation in
paper I, only thin sea ice in the first thickness category was assimilated.

For sic assimilation, the assimilation analysis update is primarily limited to the
marginal ice zone where the sic is significantly different from zero and one.
Therefore, the assimilation of sic primarily leads to an adjustment of the sea-
ice edge. Because of this property, a nudging method is a well-suited alternative
for sic assimilation as it provides a simple method for adjusting the ice edge.
The mvn is a computationally cheap method with comparable properties to
more advanced assimilation methods. The mvn is further described and used
in paper I.

4.2 Ensemble Kalman Filter

The Ensemble Kalman Filter (enkf) [211, 213] is an ensemble-based version
of the Kalman filter [214]. The Kalman filter is a sequential method for model
reinitialisation by the use of available observations. The Kalman filter equation
are derived from an assumption of a linear model and Gaussian errors. The
Kalman filter analysis equation is given by:

xa = xb + PbH
T

(
HPbH

T + R
)−1
(y −Hxb ) , (4.18)

where xb ∈ Rn×1 and xa ∈ Rn×1 are the model background and analysis,
respectively. Pb ∈ Rn×n represents the background error covariance matrix,
R ∈ Rm×m the observation error covariance matrix, and H ∈ Rm×n is the
observation operator used to transform the model background to observation
space.y ∈ Rm×1 is the observation matrix. Note that, the Kalman filter analysis
equation is equivalent to the scalar minimum variance approach described in
Eq. (4.14). However, instead of updating a single variable based on a single
observation weighed by the observation and model uncertainty, Eq. (4.18) take
into account the analysis update of several variables simultaneously. The back-
ground and observation errors are matrices describing both the variances and
the covariance in the model variables and the observations, respectively.

There are several limitations with the standard Kalman filter, firstly it applies to
linear models, generally, large complex physical systems are highly non linear.
Secondly, for the Kalman filter the background error covariance matrix, Pb ,
is propagated forward in time. Thus for models with large state vectors, the
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storage and propagation of the background error covariance matrix can become
too computationally costly for practical simulations. The first limitation can be
solved by the extended Kalman Filter (EKF), which is a Kalman filter version
that can be used on non-linear models [215]. The second point, however, is not
solved by the EKF, but can be solved with the enkf, which additionally, also
does not require linearity. The enkf is used in all papers in this thesis and has
been used in a wide variety of geophysical systems [70,71, 211, 215].

The enkf requires that an ensemble of background models is used. There are
many methods of forming the ensemble, for example: perturbing either the
forcing, the model parameters, the observations or a combination of the three.
The benefit of an ensemble is that there is no need to store the full background
error covariance matrix, Pb , as the error statistics is assumed to be represented
by the ensemble. For the enkf the analysis equation is the same as for the
standard Kalman filter analysis Eq. (4.18). However, for the enkf analysis
equation, the vectors are matrices spanned by the variables in each ensemble
member. More specifically, xb ∈ Rn×N , xa ∈ Rn×N ,y ∈ Rm×N , where N is the
number of ensemble members. Thus for sea-ice assimilation xa and xb include
for example sic, sit and snow depth for all ensemble members and grid cells.
Generally, for the studies in this thesis, most of the output variables of the cice
model are included in the model background and analysis.

In Eq. (4.18), the observation error covariance matrix, R, includes the ob-
servation variance of each observation along the diagonal and the covari-
ance between the observations on the off-diagonals. In many practical data-
assimilation studies, and in this thesis, the observations have been assumed to
be uncorrelated such that the observation error covariance matrix is a diagonal
matrix. This is a simplification often used as generally the covariance between
observations is not well known. The observation error covariance matrix,R, has
the same role as the observation error, ϵo (Eq. (4.14)), in the scalar minimum
variance approach. This matrix provides the uncertainty of each observation,
and when compared to the background error covariance matrix, the magni-
tude of the assimilation update is defined similar to the minimum variance
approach.

The observation operator, H , in the Kalman filter, Eq. (4.18), defines a linear
transformation from the model space to the observation space. For the enkf,
there is no requirement that the transformation operations are linear. This
is because the full background error covariance matrix does not need to be
explicitly calculated [216] (see also section 4.2.1) . For a non-linear observation
operator,H , the transformation from model space to observations space can
be written as,

H(x) ∈ Rm×N . (4.19)
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For the studies in this thesis, the analysis has been limited to a linear transfor-
mation matrix where model variables have been observed. Thus, the transfor-
mation from model space to observation space is limited to interpolation from
model grid to the observation grid. However, if for example ”raw” observations
of passive microwave radiances were to be assimilated, a non-linear observation
operator could have been applied (see section 3.8).

In this thesis, pre-processing was performed to simplify the observation op-
erator. For example, integrated variables were defined as the sum over all
thickness categories for sic, sit and snow depth to be consistent with the
observations. This made it possible to match model variables with the observa-
tions without changing the observation operator. In addition, the assimilation
of observations with a significantly lower resolution than the model, can lead to
a model-resolution reduction during the assimilation. To prevent resolution re-
duction when assimilating low resolution observations, an equivalent reduced
resolution model dummy variable was defined. Thus during assimilation the ob-
servation equivalent model dummy variable is assumed to be observed, and the
high-resolution model variable can be updated based on information included
in the background error covariance matrix as will be described shortly.

As mentioned, with the enkf, the error statistics of the model is assumed to
be represented by the ensemble. Therefore, the background error covariance
matrix, Pb ∈ Rn×n , can be estimated as:

Pb = (xb − xb )(xb − xb )T . (4.20)

In (4.20) the overbars signify ensemble average. Similarly, the analysis covari-
ance matrix, Pa ∈ Rn×n , is given by:

Pa = (xa − xa)(xa − xa)T . (4.21)

The background error covariance matrix includes not only the variance of
each model variable, but also the covariance between different model variables.
The covariances between different model variables are extremely useful in
data assimilation because these facilitates for multivariate update of variables.
Multivariate update of variables was briefly explained in the previous section
for the mvn. By using information in the background error covariance matrix,
model variables that are not observed are updated based on the covariance with
model variables observed. For the mvn, a predefined empirical relationship
was used for the multivariate update, while for the enkf the background error
covariancematrix is continuously being updated based on the statistics included
in the ensemble. Another benefit of the enkf multivariate update, is that it
basically applies to any model variable without any preprocessing. However,
the multivariate updates are only dependent on the ensemble statistics, thus
for a realistic multivariate update an ensemble spread representing the true
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model error is needed. Additionally, statistical properties require a substantial
ensemble size, which as discussed previously can become computationally
costly. According to Monte Carlo theory the sampling errors decrease with the
proportionality 1/√N , where N is the ensemble size [71].

The multivariate properties of the enkf are particularly useful when applied
to multi-category sea-ice models as described by the ice-thickness distribution
(itd) used in this study. As described previously, the cicemodel uses thickness
categories while the observations are point measurements. However, a dummy
variable can be defined in the model such that it is equivalent to that observed:
integrated values of sic, sit and snow depth. Because the background error
covariance matrix includes the covariance between model variables, the indi-
vidual ice thickness categories can be updated based on the observations of the
defined dummy variable. Therefore, there is no need to split the observations
into ice thickness categories as was done for the mvn.

The estimation of the error covariance matrix provides a practical method for
solving the Kalman filter equations for large dynamical systems. However,when
the error covariance matrix is estimated it becomes theoretically different from
that of the Kalman filter [213, 217]. Following Sakov and Oke (2008) [217], by
inserting Eq. (4.18) in Eq. (4.21), the analysis error covariance matrix estimate
for the enkf can be rewritten as:

PEnKF
a = (I − 2KH )Pb +KHPbH

TKT , (4.22)

K = PbH
T

(
HPbH

T + R
)−1
, (4.23)

where K is often called the Kalman gain matrix. For the standard Kalman filter
the analysis error covariance matrix is [213]:

PKalman
a = (xa − x t )(xa − x t )T = (I −KH )Pb, (4.24)

where xt is the true state, related to the true observations, yt ,

yt = Hxt . (4.25)

Subtracting Eq. (4.22) by Eq. (4.24) gives the difference between the two error
covariance matrices,

∆Pa = PEnK F
a − PK alman

a (4.26)

= (I − 2KH )Pb +KHPbH
TKT − (I −KH )Pb (4.27)

= −KHPb +KHPbH
TKT . (4.28)
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If the termKH is small the quadratic term above can be neglected with a linear
approximation, and the estimated corvariance in the enkf becomes effectively
smaller than the error covariance in the standard Kalman filter. A reduced
error covariance will lead to a lower ensemble spread [213]. Without ensemble
spread the estimated background error will converge to zero and the ensemble
will no longer represent the model error statistics. A consequence of reduce
ensemble spread is that future assimilation will have a reduced effect.

Several methods to solve the problem of reduced ensemble spread have been
proposed [213, 217–221]. The original method use observation perturbation for
maintaining the ensemble spread, where small perturbations are added to the
observations individually for each ensemble member [213]. This method is also
called the stochastic enkf. This method of perturbing the observations intro-
duces extra sampling error in the assimilation system,which especially for small
assimilation systems could lead to increased background error [217].

To avoid introducing extra sampling error in the analysis, several alternative
methods to solve the enkf without perturbed observations have been pro-
posed, some examples are: the ensemble transform Kalman filter [218,219], the
ensemble adjustment Kalman filter [220], the maximum likelihood ensemble
filter [221] and the Deterministic Ensemble Kalman Filter (denkf) [217]. In
this thesis, the denkf is used. The denkf utilises that when KH is assumed
to be small the quadratic term can be neglected with a linear approximation
and Eq. (4.22) can be written as:

Pa ≈ (I − 2KH )Pb . (4.29)

This equation corresponds to the Kalman filter covariance matrix in Eq. (4.24),
but with a halved Kalman gain matrix, K̂ ,

K̂ =
1
2
K . (4.30)

The idea behind the denkf is to preserve the ensemble spread by using half the
Kalman gain matrix when updating the ensemble anomalies. A more specific
description of the analysis steps within the denkf method is described below
and in Sakov and Oke (2008) [217],

1. Calculate ensemble mean of the background, xb ,

xb =
1
N

N∑
i=1

x ib , (4.31)

where x i
b
is the model background state of a single ensemble member i,

and N is as before the number of ensemble members.
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2. Calculate the background ensemble anomalies, Ab ,

Ab = xb − xb . (4.32)

3. Calculate the ensemble mean analysis following Eq. (4.18),

xa = xb +K (y −Hxb ) . (4.33)

4. Calculate the analysis anomalies, Aa , with half the Kalman gain matrix,

Aa = Ab − K̂HAb (4.34)

= Ab −
1
2
KHAb . (4.35)

This step forms the core of the denkf, by using half the Kalman gain
matrix the ensemble spread is preserved without perturbing the obser-
vations.

5. Calculate the final analysis by offsetting the ensemble mean analysis by
the analysis anomalies

xa = Aa + xa . (4.36)

Thus, by using the denkf described by the five steps above, the ensemble
spread is maintained without perturbing the observations.

In many practical implementations of the enkf, the ensemble size is much
smaller than the model size and the number of observations. This can lead to an
insufficient rank of the estimated background error covariance matrix, where
spurious covariances due to distant state vector elements can occur [222, 223].
The rank of the estimated background error covariance can be reduced by
using a localisation method [71, 216, 224, 225]. Two commonly used localisation
methods are covariance localisation [225,226] and domain localisation [216,227].
It has been shown that these provide similar results [223].

In this thesis, domain localisation is used. With this method the analysis is
performed grid-cell-by-grid-cell based on observations in a local area. The
observations in the local area are chosen based on distances, where observa-
tions within a certain localisation radius are used. The localisation radius is
chosen such that the estimated error covariance matrix is close to full rank [71].
However, when the ensemble analysis is calculated grid-cell-by-grid-cell, dis-
continuities might occur when different observations are used for neighbouring
grid cells. To avoid this discontinuity, the polynomial taper function is often
used to provide a continuous analysis update [223, 228, 229]. This function
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enhance the effect of nearby observations and suppress distant observations in
the analysis.

To calculate the ensemble mean local analysis (step 3 denkf) in a single grid
point, i, the following equation is used,

xa,i = xb ,i +K
L
i ,:

(
yL −HLxL

b

)
, (4.37)

where xa,i is the mean analysis vector which includes all model variables in
grid cell i, similarly xb ,i is the mean model background in grid cell i. The
superscript L signifies that the variables are in the local area defined by the
localisation radius. Thus,yL is the observation vector in the local area,HL the
observation operator in the local area, and xL

b
is the model background in the

local area. KL
i ,: is the rows of the Kalman gain matrix related to the variables

in grid cell i in the local area,

KL
i ,: = PL

i ,:H
T ,L

(
HLPLHT ,L + RL,

)
, (4.38)

where PL
i ,: is the rows of the background error covariance matrix related to

the variables in grid cell i in the local area, and RL is the observation error
covariance matrix in the local area.

Similarly, the analysis anomalies (step 4 in the denkf in the local area is given
by,

AL
a,(i ,:) = AL

b ,(i ,:) −
1
2
KL
i ,:H

LAL
b , (4.39)

where Aa,(i ,:) and Ab ,(i ,:) are the analysis and background anomalies for the
variables in grid cell i, in the local area for all ensemble members, Ab ,(i ,:),
respectively. AL

b
is the background anomalies in the local area.

The enkf is currently used in operational models such as the Towards an
Operational Prediction system for the North Atlantic coastal Zones (topaz4)
model [39] and the atmospheric model at the Canadian Meteorological Centre
[230]. A review of the enkf used in atmospheric data assimilation can be
found in [70]. In this thesis, the denkf is used in paper I, II and III.

4.2.1 Solving the matrix inverse

A crucial part of solving the enkf analysis equation (Eq. 4.18) is the inversion,
which can be a computer costly operation. The inversion,

C = (HPbH
T + R)−1, (4.40)

can be solved by using an eigenvalue decomposition. The eigenvalue decom-
position of C is,

C = ZΛZ , (4.41)
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where Z is a matrix containing the eigenvectors of C, and Λ is a diagonal
matrix containing the eigenvalues of C. Since C is a symmetric matrix, the
eigenvectors are orthogonal. The inverse of any orthogonal matrix is the
transpose. Therefore the inverse of C can be written as,

C−1 = ZΛ−1ZT . (4.42)

The benefit of this equation, is that the inverse of a diagonalmatrix is the inverse
of each diagonal element. For large scale systems, C can become numerical
singular when the matrix is not of full rank. However, in these cases, a pseudo
inverse, C+, can be used [231]. The pseudo inverse has rank p which is the
number of non-zero eigenvalues in Λ. WhenC is of full rank the pseudo inverse
becomes equal to the inverse.

Using the eigenvalue decomposition described above requires the eigenvalue
decomposition of an m ×m matrix, thus when m is large this can become
computationally expensive. An alternative method is to use singular value
decomposition [216, 231, 232]. Notice that the background error covariance
matrix can be written as a function of the ensemble anomalies Ab (see Eqs.
(4.20,4.32)),

Pb =
AbAb

T

N − 1
. (4.43)

Using this equation C can be written as:

C =
HAATHT

N − 1
+ R = SST + R, (4.44)

S =
HA

(N − 1)0.5 (4.45)

A singular value decomposition of S can be written as,

S = V0Σ0U0, (4.46)

whereV0 andU0 are orthogonal vectors and Σ0 is a diagonal matrix. Using the
decomposition of S the matrix C can be rewritten as:

C = SST + R (4.47)

= U0Σ0V0(U0Σ0V0)T + R (4.48)

= U0Σ0σ
T
0 U

T
0 + R (4.49)

= U0

(
Σ0Σ

T
0 +U

T
0 RU0

)
UT

0 (4.50)

≈ U0Σ0

(
I + Σ+0U

T
0 RU0Σ

+T
0

)
ΣT0U

T
0 (4.51)

= U0Σ0 (I +X0) ΣT0UT
0 , (4.52)
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where Σ+ is the pseudo inverse of Σ, I the identity matrix, and X0 is defined
as:

X0 = Σ+0U
T
0 RU0Σ

+T
0 . (4.53)

The eigenvalue decomposition of X0 can be written as,

X0 = Z1Λ1Z
T
1 , (4.54)

Inserting this equation in Eq. (4.52) the pseudo inverse of C can be written as:

C+ ≈
(
U0Σ

+T
0 Z1

)
(I + Λ1)−1

(
U0Σ

+T
0 Z1

)T
(4.55)

This derivation describes an alternative solution where the eigenvalue decom-
position is performed on matrices of size N × N , rater thanm ×m described
previously. For systems wherem � N this can significantly reduce the compu-
tational cost of the inversion.

4.3 enkf-c

The implementation of the denkf in this thesis is performed through the
offline data assimilation framework enkf-c [233]. For the studies in this thesis,
primarily data assimilation of sea-ice related variables is tested. Therefore
the model background state matrix, xb , includes variables such as sic, sit,
snow depth, ice temperature and also others. In general, most of the sea-ice
output variables are included in the state vector, however many are not signifi-
cantly updated during the assimilation as the covariance with the observations
are in many cases small. In addition, in paper III and partially paper II, the
ocean temperature and salinity are also included in the background state
matrix.

The enkf-c method includes several tuning parameters, in this thesis the R-
factor and the localisation radius are primarily used. The localisation radius
was introduced earlier as a method for defining the size of the local area
used for analysis. The R-factor is used to reduce the observation impact. In
practice the observation impact is reduced by multiplying the observation error
covariance matrix in Eq. (4.18) by a constant, the R-factor. The tuning of these
two parameters is done with the use of two validation metrics, Degrees of
Freedom of Signal (dfs) [39,234] and the Spread-Reduction factor (srf) [39].
Tuning is essential in order to avoid ensemble collapse, which occurs when the
ensemble spread is reduced too much during assimilation. More information
on ensemble collapse is given in [217].

The dfs is used to identify potential model rank problems related to an
ensemble size which is much smaller than the number of observations in the
assimilation system. Without changing the ensemble size, the model rank can
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be improved and the dfs decreased by reducing the number of observations
used during the assimilation analysis. Thus changing the localisation radius
improves the model rank and reduces the dfs. For tuning purposes a dfs less
than the number of ensemble members divided by three is used for the studies
in this thesis.

The srf gives a measure of the observation impact on the model during assim-
ilation. More specifically, for the denkf, this metric describes the ensemble
spread reduction during the assimilation analysis. This metric can be changed
by changing the observation impact during assimilation. For the enkf-c software
used in this study, the R-factor can be tuned to specify the assimilation impact
for each observation. An increased R-factor lead to an increased observation
variance and a lower effect of the observations in the assimilation analysis,
which again gives a reduced srf. For tuning purposes an srf less than two is
used for the studies in this thesis.

4.4 Variational methods

The variational methods are not used in this thesis but are mentioned briefly
here as these are widely used in geophysical applications [71], including several
sea-ice studies, e.g. [42,43,74]. There are twomain types of variationalmethods,
3-d var and 4-d var, where the 4-d var includes the temporal dimension.
The variational methods use a maximum a posteriori (MAP) approach, where
the solution is found by minimising a cost function generated from Bayesian
statistics [235]. It can be shown that for Gaussian probabilities the MAP solution
is the same as that for the enkf seen in Eq. (4.18) [235]. However, with the
variational methods the equation is solved as a minimisation problem.

When time is taken into account with the 4-d varmethod, the observations are
assimilated at the model time when they are observed. The 4-d var method
requires the model to be integrated forward and backwards in time during the
assimilation to minimise the cost function. However, instead of running the full
model, simplified linear versions are used, the adjoint (backwards) and tangent
linear (forward) models [236]. The 4-D Var method has been considered the
state-of-the-art in data assimilation for numerical weather prediction for many
years and replaced the 3-D Var at the ECMWF in 1997 [212, 237].





5

Verification metrics

When using geophysical models, it is essential to verify the output to ensure that
the model behaves as expected. As mentioned in the previous chapter, there
are numerous Arctic observations which can be used to verify the models. For
verification, there are metrics with different properties which can be used to test
different aspects of the model output. For sea-ice verification and comparison
several studies have been performed [238–240]. In this chapter, some of the
metrics used for sea-ice model verification will be presented, with emphasis on
the metrics used in this thesis. The verification metrics are here separated into
three different classes: mean absolute error, grid-cell metrics and sea-ice edge
distance metrics. Mean absolute error are useful for climate studies where the
total extent/volume is evaluated over time. Grid-cell metrics are used to verify
model grid cell values; this can be used for any variable. Sea-ice edge metrics
are different from the others as the actual grid-cell values are not as important;
instead, the position of the sea-ice edge is evaluated.

5.1 Mean absolute error

The mean absolute error is one of the simplest metrics used for verification.
With this method, aggregated values are compared and used to evaluate the
model. For sea ice, this could be a comparison of the total sea-ice extent or
volume. Mathematically the mean absolute error is written as the difference

51
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between the observed and the modelled value.

AD =
N∑
i=1

xi −
M∑
j=1

Yj , (5.1)

where AD is the absolute deviation, xi and Yj are the model and observation
value of a single grid cell in the two grids, respectively. N and M are the
number of model and observation grid cells, respectively. The benefit of this
method is that if both the model and the observations are assumed to cover
the whole sea-ice extent there is no need to regrid either product.

5.2 Grid-cell metrics

Grid-cell metrics apply pixel-by-pixel verification. These verification methods
require that the model and observations are on the same grid. For the verifica-
tion done in this thesis, the observations are normally regrided to the model
grid using interpolation. The interpolation is performed by a weighed sum of
the 4 nearest observations for each model grid cell. Additionally, as described
previously the dynamical model uses an ice-thickness distribution (itd), while
observations describe the integrated state. The verification is only of integrated
values and there is no evaluation of the individual ice categories.

5.2.1 Root Mean Square Error (RMSE)

Root Mean Square Error (rmse) is used to asses the absolute difference
between grid cell values. The equation for calculating the rmse is given by:

RMSE =

√∑N
i=1 (xi − yi )2

N
, (5.2)

where N is the number of samples, x ∈ RN the model values, i signifies a
specific grid-cell value, and y ∈ RN is the observation values interpolated to
themodel grid. Thermse requires corresponding values in the observation and
model, thus for most practical cases, the calculation of the rmse will involve
interpolation. This involves extra effort in the calculation and potentially
also introduces extra errors compared to the mean absolute error [240]. A
limitation with using rmse values is that all observations have an equal
weight, independent on the individual observation uncertainties. To include
observation uncertainty a scaled rmsewas applied in paper II, where a scaling
by the observation variance is performed. An alternative to the scaled rmse
is the Dn metric described in the next section.
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5.2.2 The Dn metric

The equation for calculating the Dn metric is given by [238],

Dn =
1
N

N∑
i=1

(xi − yi )2
Rii

. (5.3)

The extra term compared to eq. (5.2), Rii , is the observation variance given by
the diagonal element ii of the observation error covariance matrix. Since the
observation variance is included, the Dn metric is dimensionless. Therefore a
sum of different Dn values can be used to asses the model based on multiple
observations simultaneously. In addition, it has been shown that the Dn metric
follows a gamma distribution [241]. By dividing the absolute difference by
the observation variance, the more accurate observations provide a stronger
impact on the total sum (Dn). Thus the Dn metric provides a more detailed
description of the model error than the rmse.

5.3 Sea-ice edge distance metrics

For sea ice, especially sic verification, the most interesting region is the area
around the ice edge where the largest sic variations occur. When rmse
and Dn is used for sic verification there are often vast areas where both the
model and the observations have the same value, while the only area with
differences would be in the marginal ice zone. Therefore, it is more instructive
to investigate how the sea-ice edge compares between the model and the
observations. This has lead to a large number of so-called sea-ice edge distance
metrics [239, 240, 242, 243]. As for the grid-cell metrics described above, the
observations and model are assumed to be on the same grid for these metrics,
thus an interpolation is generally needed.

5.3.1 The average ice edge displacement

For verification purposes a grid cell located on the sea-ice edge can be defined
as a grid cell with a concentration larger than a concentration threshold,ce , that
is located next to a grid cell with a concentration lower than the threshold [239].
Mathematically this definition of a grid cell on the sea-ice edge grid can be
written as:

c[i, j] ≥ ce ∧min (c[i − 1, j], c[i + 1, j], c[i, j − 1], c[i, j + 1] < ce ) , (5.4)

where c is a 2-D grid of ice concentrations and ce could for example be defined
as 0.15 (15 %), which is applied in paper III of this thesis.

When two sea-ice edges are compared, e.g. modelled and observed, the defi-
nition of a grid cell on the sea-ice edge defined above can be used. Distances
between the two edges can then be calculated separately.
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An example of how distances between two ice edges are calculated is given in
figure 5.1. In this figure, grid cells on two ice edges are represented by the blue
and red coloured dots, the two ice edges could for example be modelled and
observed. The green lines show examples of the shortest distance from grid
cells on edge 2, to the closest grid cells on edge 1, while the black lines show
the shortest distances from edge 1 to edge 2. The results show that there are
substantial differences in distances, depending on which edge is used as the
starting point for the distance calculation. A single example is shown by the
three points P1, P2 and P3. For P1, the closest cell on edge 2 is P2, while for P2,
the nearest cell on edge 1 is P3. This example shows that the average ice edge
displacement is strongly influenced by local differences between the two ice
edges compared.

For the average ice-edge displacement, the mean distance between the two
edges, as defined in Fig. 5.1, is used [239]:

DI E
AVG =

1
2

[
1
No

No∑
n=1

dno +
1
Nm

Nm∑
n=1

dnm

]
, (5.5)

where No and Nm are the number of grid cells along the ice edge for the
observations and model, respectively. do and dm are distances from each grid
cell on the observed and modelled ice edges to grid cells on the modelled and
observed ice edges, respectively.

5.3.2 Integrated ice edge error

The average ice-edge displacement described in the previous section is sensitive
to local areas of ice or open water,which are common in model and observations
[239]. Goessling et al. (2016) [242] proposed the integrated ice edge error, which
is an alternative ice-edge metric less susceptible to local areas. The integrated
ice edge error is defined as the area where there is a difference between the
modelled and observed ice edge. Similar to the average ice edge displacement,
a concentration threshold is used to separate between ice and open water.
Mathematically, the integrated ice-edge errors are given by [242]:

I IEE = O +U ,

O =

∫
A
max(cm − co, 0)dA,

U =

∫
A
max(co − cm, 0)dA.

(5.6)

WhereO is overestimated ice (ice in model not in observation),U is underesti-
mated ice (ice in observation not in model), c is binary concentrations, 1 if ice,
0 if no ice, andm and o represent model and observations, respectively.

A comparison between a modelled and observed ice edge used for calculating
the integrated ice edge error in an area around Svalbard is shown in figure
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Figure 5.1: Calculation of distances between two representations of ice edges. Red
dots represent grid points on ice edge 1 and blue dots grid points on ice
edge 2. The black and green lines represent the shortest distance too grid
points on the opposite ice edge for ice edge 1 and 2, respectively. P1-3 are
described in the text.

5.2. The large red and blue regions represent areas where both the model and
the observations indicate ice and ocean, respectively. Differences between the
model and observations are shown by the grey and green areas; these are pri-
marily located along the ice edge. When the integrated areas of the difference
between model and observations are used to estimate the ice-edge displace-
ment, the displacement is independent of where the differences are. Thus this
metric is less susceptible to local errors, such as for example polynyas.
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Figure 5.2: A comparison between the modelled and observed sic used for integrated
ice edge error calculation. Red and blue areas represent ice and ocean,
respectively, in model and observations. The grey area represents predicted
ice in the model while water is observed. The green area represents
predicted water in the model while ice is observed.



6

Machine learning

An alternative to using dynamical models for prediction is the use of ma-
chine learning methods. As described previously, the Arctic sea ice is well
observed, and these observations are continuously being used for data as-
similation. However, the observations can also be used for machine learning.
Generally, day-to-day variations for the spatial scales used in dynamical sea-ice
models are relatively small. In paper III it was shown that for 7-day forecasts,
persistence (assuming no change from the initial state), provide in many cases
an equally skilful prediction compared to the dynamical model. Therefore, a
machine-learning model based on initial state observations could be a cost-
effective alternative to a dynamical model for Arctic sea-ice prediction. It is
also important to note that even though the dynamical models contain a broad
set of physical input variables, the short term prediction is primarily governed
by a smaller subset, e .д. sea-ice concentration (sic), sea-surface temperature
(sst) and 2-m air temperature (t2m).

Machine-learning methods have already been applied successfully in geophys-
ical prediction, for example, within weather prediction [244], sea ice [86] and
climate [79]. For sea ice, continuous observations of sic have been available
from satellite for the last 40 years. In addition, as mentioned previously, more
observations are continuously becoming available with new instruments and
improved methods, e.g. sea-ice thickness (sit) and snow depth. Also, long
time series of global sst observations are available. Machine-learning methods
can also utilise model data, for example, reanalysis data.
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Table 6.1: The WMO Total concentration standard

Concentration description value in ice chart
0 Ice free 0

< 10 % Open water 0.05
10-30% very open ice 0.2
40-60% open ice 0.5
70-80% close ice 0.75
90-100% very close ice 0.95
100% Fast ice 1.00

In this thesis, the machine-learning prediction of sea-ice is viewed as a classifica-
tion problem. The input to the classification is the initial forecast state, and the
output is a prediction of ice classes. In machine learning, there are many differ-
ent classification methods with distinct properties and complexities [245–248].
In this work, one straightforward approach, the k-Nearest Neighbours (k-NN),
and one deep neural network, a fully convolutional network (FCN), is applied
for sea-ice prediction. In this thesis, pixel-wise classification is used, where
each pixel is assigned to a specific class. For example, one class can be grass;
thus if a pixel in the image is a part of a grass field, the pixel is classified as
grass. Other classification can be for example cars, persons, dogs and bicycles.
In this study, the classes are the World Meteorological Organization (WMO)
total concentration standard given in table 6.1, where the sic is split into
seven discrete classes as provided in the ice charts. In addition, instead of
considering segmentation of a static image, the prediction is performed based
on geophysical input variables.

Both thek-nn and Fully Convolutional Network (fcn) are supervisedmethods
dependent on labelled training data, containing input-output pairs. During a
machine learning training process, the methods use the labelled training data
to learn functions that maps input to output. After training, the learned models
can be used on new input data, for example for sea-ice prediction. In this thesis,
the k-nn method was chosen both because of its theoretical simplicity and
ease of implementation. As mentioned, this is a supervised method, however no
training process is needed. In contrast, the more intricate fcn is a deep neural
network with many layers that requires extensive training. Deep-learning
methods have received much attention in recent years due to several beneficial
properties when it comes to image processing,e .д. learning of intricate patterns
and features [248]. In general, a prediction performed by the trainedfcnmodel
is significantly faster than a prediction with the k-nn model. However, the
one-time cost of the fcn model training can be costly. Since both machine-
learning methods are based on relatively simple relations, and do not require
small time steps for stable solutions, they are both, generally, computationally
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less costly than a dynamical model. Another essential difference between the
two machine-learning methods applied in this thesis is that the k-nn does not
incorporate spatial context in the prediction.

6.1 k-Nearest Neighbours (k-NN)
The k-Nearest Neighbours (k-nn) classifier is a supervised machine-learning
method [249–251], where labelled data is required. However, no training proce-
dure as such is necessary since the training data is used as a reference dataset
only. For each prediction, the input variables are compared to the input of
the training dataset based on a distance. The prediction is obtained from the
classification of the k nearest training samples. In this study, the euclidean
distance, d, is used to find the nearest samples in the training data,

d(x,y) =
√√ n∑

i=1

(xi − yi )2, (6.1)

where x is the model input vector, y is the input vector of a single training
data sample and n is the number of input variables. Thus, for each pixel, the
input variables are compared to those of the training dataset and the prediction
is the median class of the k nearest neighbours (lowest d ’s) in the training
dataset.

A further description of the k-nn is provided by the example in Fig. 6.1. In
this example, a training dataset consisting of two classes, class A (red) and
class B (blue) is used. Based on the training data, three new inputs (black)
are classified based on the three nearest neighbours (k=3). The dashed lines
in the figures shows the direction of the nearest neighbours. For P1, the three
nearest neighbours are red, thus P1 is classified as class A. Similarly for P3, all
nearest neighbours are blue, thus P3 is classified as class B. The majority of
the neighbours for P2 are blue (two blue, one red), therefore P2 is classified as
class B. In this example, the prediction input is the 2-dimensional coordinates,
while for a sea-ice forecast, the input consists of sea-ice related variables. In
paper III, when sic is predicted with the k-nn method the model inputs are
observations of sic, 2-m air temperature (t2m) and sst.

In Fig. 6.2, the practical setup for the k-nn sic prediction in paper III is
described. The k-NN base the prediction on seven geophysical input values,
sst (initial day, 2-day prior, 6-day prior), t2m (initial day, 2-day prior, 6-day
prior) and sic (initial day). The choice of input data is based on availability
and experiments. In this example, the median class of the 15 nearest neighbours
(k=15) corresponds to an ice chart sic of 0.2 (very open ice). In general, an
aim of paper III is to predict future ice charts, therefore the discrete ice chart
values are used as output. As the k-nn method is based only on the distance
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Figure 6.1: k-nn example with two classes, class A (red) and class B (blue). The
black dots are unlabelled data points and the dashed lines show the three
nearest neighbours.
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Figure 6.2: An overview of the input and output for the k-NN method applied in paper
III.

to the training dataset, it does not require any training. However, as each
classification is dependent on the distance to the nearest neighbours, it does
become slow when the training dataset or the input vector becomes too large.
This limitation puts a significant constraint on the amount of training data and
the number of input variables than can be used by the k-nn method.

6.2 Fully convolutional networks (FCN)

The fcn is based on the work done by Long, Shelhamer and Darrell (2015,
2017) [247, 252]. This method is a particular type of a neural network that
is widely used to address segmentation tasks. Neural networks are methods
inspired by our brains for decision making. Our brain consists of billions
of connected neurons that work together for everyday decision making. In
an artificial neural network a hierarchy of transformations are structured in
multiple layers, where the transformations are parametrised by a set of weights
that are learned from data. As mentioned, the fcn is a supervised learning
method dependent on labelled (inputwith known output) training data. During
the training process a function, f , that maps the input, x , to the output, y,
by minimising a loss function L(f (x),y) is found. This loss function thus
describes the goodness of the mapping from the input to the output. Learning
a function f for the training data that performs well is trivial, however, the
objective of training the model is to find a function f that generalises well to
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Figure 6.3: The convolution operation. An ice chart (left) is convolved with a common
edge detection filter to produce an edge filtered ice chart (right).

unseen data. The fcn uses a hierarchy of layers (transformations) that perform
convolution, pooling and upsampling operations, where the convolutional and
upsampling layers consist of learnable parameters. Convolutional layers are
further followed by non-linear activation functions. How the parameters of
the fcn can be learned, in a supervised manner, for the task of pixel-wise
classification will be detailed below.

In a convolutional layer, the input is convolved with several filters to extract
important features in the input, for example, edges, horizontal lines and vertical
lines. An horizontal edge detection filter example is shown in Fig. 6.3. In this
example it is shown how the horizontal edges in an ice chart can be detected
by a simple matrix convolution. The convolution operation and the fact that
the size of the filter typically is much smaller than the size of the image, leads
to a filtering result, where each filter response is dependent only on a local
area around a given pixel (locally connected). Each convolutional layer in the
network, consists of several convolutional filters that each extract different
information and that are learned during the training process of the fcn.

In between the convolutional layers are the pooling layers. In a pooling layer,
the input to the layer is subsampled leading to a reduction in the spatial
dimension. By keeping for example only the largest input values in a region
(max pooling), the layer allows the network to summarise information, thereby
further introducing some small amount of translation invariance in the input
as well as reduce the computational cost of the network [253]. Assuming that
the filter size is held constant throughout the network (which it typically is),
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Figure 6.4: An example of a max pooling operation. In this example a 2 × 2 stride max
pooling is performed, by extracting the maximum value from each 2 × 2
matrix. The resulting matrix is downsampled to a fourth of the original
matrix.

filters will consider larger regions in the input image when applied to the
summarised information. An example of a pooling layer is max pooling shown
in Fig. 6.4. In this figure, a 2 × 2 max pooling with a stride of 2 is performed. In
the example, the maximum value of each of the coloured boxes in the matrix
to the left is extracted and gathered in a new matrix to the right with matrix
size one quarter of the original matrix.

An upsampling layer, consists of fractional strided convolutions (deconvolution)
for pixel-wise prediction of input with reduced spatial dimension due to pooling
operations. To improve resolution of the output, skip connections can be
utilised during the upsampling process [247, 252]. With skip connections, high-
resolution information in early layers is combined with large scale information
in the latter layers for step-wise upsampling.

The activation layer applies an element-wise activation function to the con-
volutional layer output. This activation function introduces non linearity in
the model in order to learn more complex functions. Without the activation
function the network basically becomes a linear regression model consisting
of linear convolution operations. In this thesis, a rectified linear unit (ReLU) is
used [254], which is a function that filters out negative values,

дReLU (x) =max(0,x), (6.2)

where x is an input and д is the activation function.
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An example of an FCN setup is shown in Fig. 6.5 [247]. In this example, an
image with three colour channels (each RGB colour is a separate matrix), an
image of a cat and a dog, is convolved and pooled several times. The blocks
here represent output of the different layers. The convolutional (and activation)
layers are seen when the channel dimension (number of features) is expanded,
each new dimension reflects the number of different convolutional matrices
used. The pooling layers are seen by the image spatial dimension reduction.
The second last step, which converts the data from a small spatial dimension
with many features to the full scale segmented image, is the upsampling layer.
During the network training, the convolutional matrices in the convolutional
and upsampling layers are trained, and these trained matrices are later used
for the prediction.

When the fcn is used for sea-ice prediction, the input data consists of sea-ice
related variables. In paper III, the input data were observed values of sic, t2m
and sst. An overview of the method used for sea-ice prediction in paper III
is shown in Fig. 6.6. The figure shows how the method utilises 2-dimensional
sea-ice related variables and predicts the future sic based on the trained fcn
model. The output predictions classes are based on the WMO ice classes used
by the ice charts. A full description of the internal steps of the fcn can be
found in Long, Shelhamer and Darrell (2015, 2017) [247, 252].

As mentioned, the computational power needed to train the fcn model can
be substantial depending on the size of the training dataset. However, it is
significantly less than that of running a dynamical model, especially since
the fcn model training only needs to be performed once. The fcn forecast
is extremely fast when a pre-trained model exists. This is why the fcn is
such a favourable method for sea-ice forecasting. In paper III of this thesis, a
simplification was made by downscaling the spatial dimension of the study area
during the fcn forecasting. This is not a limitation of the fcn, instead it was a
simplification to keep the training process simple and fast. The benefit of using
a smaller input matrix is that the storage, memory and computational cost of
the training process decreases. However, downscaling reduces the resolution
of the output and this effects especially the short-term predictions, which was
seen in paper III. The study in paper III is a first-test study primarily performed
locally on a desktop computer, where the main goal is to assess the use of
machine-learning for sea-ice prediction. In general, too large datasets during
the fcn training can lead to high memory usage as a large amount of training
data is needed. A method for solving this could be to split the full model grid
into smaller subgrids and perform the training and forecast on these subgrids.
In addition to solving the memory-related problems, this leads to more training
data which should further enhance the prediction accuracy.
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Figure 6.5: The stages of the fcn method. Reproduced from [247, 252] ©2015 IEEE

Figure 6.6: fcn method applied in paper III.
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Overview of Publications

7.1 Paper Summaries

Paper I

S. Fritzner, R. Graversen, K. Wang, K. H. Christensen. "Comparison between a
multi-variate nudging method and the ensemble Kalman filter for sea-ice
data assimilation", Journal of Glaciology, vol. 64, no. 245, June 2018. In this
study, a computationally cheap data assimilation method for assimilation of sea-
ice concentration (sic) and sea-ice thickness (sit) is introduced. Arctic sea-ice
observations have traditionally been sparse, and for assimilation, primarily sic
observations have been used. Because sic is a bounded variable between zero
and one, the assimilation of sic provides a method primarily for constraining
the sea-ice edge. However, this constraint on the sea-ice edge could potentially
be accomplished by a more straightforward assimilation method with lower
computational cost than those recently used for sea-ice data assimilation such
as 3-dimensional variational and ensemble-based methods. A new method
for multivariate assimilation update, the Multi-Variate Nudging (mvn), is in
this study proposed and implemented as a cost-effective assimilation alterna-
tive.

Themvnmethod is based on the CombinedOptimal Interpolation andNudging
(coin) [40] scheme for assimilation. Contrary to the original version of the
method, a component for a multivariate update is implemented in this study.
This multivariate component is based on an empirical relationship between
sic and sit from observations in the marginal ice zone.
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Many physical processes governing sea ice is dependent on the ice thickness.
Thus simultaneously updating the sit when sic is assimilated is assumed to
have a significant effect on the sea-ice prediction accuracy. Similarly, an update
of sic is important when sit is assimilated.

For the assimilation experiments, The Los Alamos sea-ice model (cice), is used
in a standalone mode with a resolution of 20 km. The assimilated observations
are sic from Ocean and Sea Ice Satellite Application Facility (osisaf) Spe-
cial Sensor Microwave Imager Sounder (ssmis), and sit from Soil Moisture
and Ocean Salinity (smos) Microwave Imaging Radiometer using Aperture
Synthesis (MIRAS). An Ensemble Prediction System (eps) with the more
computer-costly Deterministic Ensemble Kalman Filter (denkf) utilising 20
ensemble members is set up as a reference experiment.

The new mvn method is verified by an assimilation cross-validation study
where a model system with sic assimilation is verified by sit observations
and vice versa. The study shows that in terms of multivariate update of
sit and sic during assimilation in winter, the mvn method has comparable
skills as the more advanced and computationally expensive denkf. The mvn
method is based on winter observations only, as summer observations of sit are
not available operationally. A comparison between the multivariate updates
is shown in figure 7.1. The evolution of sic rmse is shown when sit is
assimilated with the two methods (denkf - black, MVN - red), and in addition
a control model (blue) without assimilation is shown. In terms of modelled
sic, the mvn assimilation of sit significantly improves upon the control
model and shows comparable multivariate update skills as the more advanced
denkf.

This study shows promising skills for the mvn method, as the mvn compared
to the denkf is straightforward to implement and computationally cheaper
since it does not require an ensemble. Hence, when few observation types are
available, and the computational resources are limited, the mvn method can
be a valid assimilation alternative to the enkf.

The model used in this study has a positively biased sea-ice extent with more
sea ice than observed. For the enkf, the assimilation update depends on
the ensemble to contain the statistical information regarding the model error.
However, when sic is assimilated, only the marginal ice zone has a signifi-
cant ensemble spread. Thus, if there are large biases that shift the ice edge
north/south, the observed ice edge could be located in a model area without
ensemble spread. It is essential to note that in these situations, the model error
is underestimated by the ensemble, which leads to unrealistic low effect of
observations in the enkf. To compensate for the model biases in this study, an
increased model error is included in the enkf assimilation system through a
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Figure 7.1: RMSE sic for assimilation of sit with the denkf (black line), mvn (red)
and without assimilation (blue).

more substantial perturbation of the atmospheric forcing. With increasedmodel
error, the enkf assimilation system performs well with reasonable updates of
both sic and sit verified by the observations. Therefore, the sea-ice extent
bias should not affect the overall conclusion of this study.

Paper II

S. Fritzner, R. Graversen, K. H. Christensen, P. Rostosky, K. Wang. "Impact
of assimilating sea ice concentration, sea ice thickness and snow depth
in a coupled ocean–sea ice modelling system", The Cryosphere, vol. 13, pp.
491-509, February 2019

The aim of this study is to investigate the assimilation effect of several relatively
new observations which have previously been little used in sea-ice assimilation
studies. The use of additional sea-ice related observations for assimilation could
potentially lead to improved models with more accurate predictions.

The model used in this study is a coupled ocean-sea-ice eps with a resolution
of 20 km and 20 ensemble members. The eps is setup with the Regional Ocean
Modeling System (roms) as the ocean component, cice as the ice compo-
nent, and the denkf is used for assimilation. The observations assimilated
are sic from passive microwave (osisaf ssmis), SIT from both passive mi-
crowave (smos, thin ice) and altimeter (Cryosat-2, thick ice) and snow depth
retrieved from passive microwave (Advanced Microwave Scanning Radiometer
(amsr-e/2)). The assimilation of Cryosat-2 observations and the snow depth
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observations are particularly interesting as these provide information in an
area where sic observations generally are little informative.

The observations are assimilated separately in the same model; however, due to
the massive impact and importance of assimilating sic, these observations are
assimilated in all experiments. The experiments are compared and verified by
the total sea-ice extent, volume and seven-day forecasts. For verification of sic,
another observation product derived from amsr-e/2 is used. For thickness
verification, a combined smos Cryosat-2 product is applied. For snow depth,
the same observational product is used for both assimilation and verification
as no other product with full spatial coverage exists. In addition, observations
from the operational Icebridge (aerial) and the ice mass balance buoys are
applied for verification. The assimilation experiments are verified by both a
model without assimilation and a model with sic assimilation only.

In this study, the observation variances are essential as these are used both
for weighing the data assimilation impact and the Root Mean Square Error
(rmse) verification. In particular, the sic observations have high uncertainties
(0.1-0.4) around the sea ice edge and low uncertainties (0.03) in the ocean
and in the central Arctic. Thus local areas with a shift in the ice edge compared
to the observations dominate the total rmse. For the sit observations, the
Cryosat-2 observation product does not include an uncertainty estimation and
a relatively high uniform uncertainty of 0.5 m is chosen here. The smos
observations include an uncertainty which is relatively low compared to that
of Cryosat-2, on the order of centimetres. Thus when calculating the rmse
values the smos observations are dominating the total sum, and excessive ice
along the ice edge lead to large rmse values due to the small uncertainties.
The snow depth product also includes an uncertainty estimate which is on the
order of centimetres.

The results show that, in general, the model without assimilation has too thick
ice. However, by assimilating sea-ice observations in the model, the errors are
substantially reduced. The most significant errors of the control model are
adjusted with the assimilation of sic only. Further improvements are found
by also assimilating sit and snow depth. Especially in summer, considerable
improvements in the 7-day forecast are found when sit is assimilated.

A model forecast verification is performed by separating the model grid cell
values into three classes, high sic ( > 0.5), low sic ( < 0.5, > 0.1) and
open water (< 0.1). In Fig. 7.2 the monthly averaged fraction of grid cells
correctly classified for each model experiment based on data from 2011-2013
is shown. The results show that when sit is assimilated in addition to sic,
the fraction of correctly classified grid cells is significantly improved, especially
in summer. Additional results show an improved total sea-ice volume when
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sit is assimilated. However, when snow depth is assimilated, the total sea-ice
volume is increased compared to the assimilation of sic only. The snow depth
observations generally include low uncertainties in order of centimetres; thus,
a high impact on the model is found when these are assimilated. The effect
of assimilating snow depth is found to result in thicker snow and ice in the
central Arctic, while some thinner snow and ice are seen along the rim.

With the assimilation of sit, the overall sea-ice volume is reduced. However,
the updated sit due to the assimilation vary spatially. The sit updates are
found to be lower thicknesses along the ice edge and the land boundaries, while
some areas in the central Arctic has an increased thickness due to assimilation
of sit. These updates of thickness in winter impact the melting processes in
summer.

The most significant impact on the summer sea-ice forecast is found through
the assimilation of the thick Cryosat-2 observations. The uncertainty of the
Cryosat-2 product used in this paper is a uniform value of 0.5 m. In comparison,
the provided smos observations have a low uncertainty (order of centimetres),
which can lead to a more substantial assimilation effect for the smos obser-
vations compared to the Cryosat-2 observations. However, in contrast to the
thin smos observations, the Cryosat-2 assimilation impacts the multi-year ice,
which seems to be why more considerable improvements are seen in summer
for this experiment.

In conclusion, this study shows that there are potentially large benefits of
including more observations than those of sic in sea-ice data assimilation
models. In parallel to this study, several other studies investigating the effect
of assimilating sea-ice thickness were performed illustrating the timeliness of
the study [46, 57–63]. The results in this study agree with the other studies
that the primary improvements are found in the modelled sit, and also some
improvements to the sic are found, especially in the melt season. Compared
to these studies, the novelty in our study is that the assimilation of snow depth
is compared to the assimilation of the observational sit products from smos
and Cryosat-2.

Paper III

S. Fritzner, R. Graversen, K. H. Christensen "Assessment of high-resolution
dynamical and statistical models for prediction of sea-ice concentration",
resubmitted Journal of Geophysical Research: Oceans.

This manuscript is currently in review at the Journal of Geophysical Research:
Oceans. The main goal of this study is to investigate the potential for using
machine-learning methods in sic forecasting. In particular, a dynamical sea-ice
model with assimilation is compared to two machine-learning methods: the
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Figure 7.2: Classification of the model result based on three classes, high concentration
ice (> 50 %), low concentration ice ( < 50 %, > 10 %), and water (< 10
%). The model values are compared to the amsr-e/2 sic observations.
The monthly averaged fraction of correctly classified grid cells for the
years 2011-2013 is shown. The lines represent different model experiments,
black: only sic assimilation, blue: sic and CryoSat-2 thick internal sit
assimilation, red: sic and smos and thin rim SIT assimilation, yellow: sic
and snow depth (SD) assimilation, magenta dotted: without assimilation.
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k-Nearest Neighbours (k-nn) and the Fully Convolutional Network (fcn).
Both of these are supervised classification methods requiring labelled training
data (input with known output).

The dynamical model is an eps with ten ensemble members consisting of a
coupled roms-cice model with 2.5 km resolution covering an area around
Svalbard. The eps utilises assimilation of sea-ice related observations with
the denkf. The dynamical model is investigated through several assimilation
experiments. The benefit of assimilating high-resolution sic observations (ice
charts) compared to lower-resolution observations (passive microwave) in the
high-resolution model is investigated.

The machine-learning forecasts use observations of sic, 2-m air temperature
(t2m) and sst as input, and the output is the discrete sic classes as defined
by the ice charts (tab. 6.1). The two methods are investigated for a full year
of forecasts with different forecast lengths, 1,2,3 and 4-weeks. In general, the
machine-learning forecasts outperform persistence (assuming no change)when
more substantial changes in the Arctic occur, such as in summer and longer
forecasting periods. In addition, the k-nn outperform the fcn for short-term
predictions.

The dynamical and machine-learning models are compared in terms of 7-day
forecasts by two different ice-edge verification metrics, the average ice-edge
displacement and the integrated ice-edge error (IIEE) average displacement.
For verification, an independent sic product (osisaf amsr-e/2) is used. A
comparison of the IIEE average displacement between the machine-learning
forecasts and the dynamical model is shown in Fig. 7.3. Compared to the
dynamical forecasts, the machine-learning forecasts have comparable skills
when there are less substantial changes in the sea ice extent. However, during
a period of substantial melt, the dynamical model shows improved forecast
skill. The results show that machine-learning forecasts could potentially be an
alternative to dynamical forecasting for simple applications.

The dynamical model uses atmospheric forcing from a model with the assimi-
lation of observations. Thus this model includes future information which may
have improved the predictions. Therefore, the fact that the machine-learning
models are found to be significantly better than persistence and close to the
dynamical model in this period is a further motivation for the continued devel-
opment of these models. Note that the machine-learning forecasts are much
faster to compute and generally require substantially lower computational
power than the dynamical model. However, the one-time fcn training process
can be costly.

In addition to the comparison between the machine-learning and dynamical
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Figure 7.3: Comparison of IIEE average displacement between 7-day forecasts of
the dynamical and machine-learning models. The colours describe the
different forecasts: fcn (red line), dynamical model (blue), persistence
(black) and k-nn (green).

models, this study includes an investigation of the assimilation system. The
high-resolution model applies assimilation of high-resolution sic ice charts
and high-resolution sst observations. It is expected that the assimilation of
ice charts compared to conventional passive microwave observations of sic
should potentially lead to more accurate predictions. However, in this study,
no significant improvements when high-resolution ice charts are assimilated
instead of the low-resolution passive microwave observations are found. With
the current assimilation setup, the information gained through the assimilation
of these products is found to be of the same order. It is important to note that
the study period is two months, and the changes in sea ice are relatively small
over this period. It is expected that for a more extended period, with more
substantial sea-ice changes, the assimilation could induce more considerable
differences between the two experiments. Thus these assimilation results
cannot be applied in general without further research.

7.2 Other Publications

1. S. M. Fritzner, R. G. Graversen, K. H. Christensen, K. Wang. "Assimilation
of high-resolution ice charts in a coupled ocean-sea-ice model",
IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sens-
ing Symposium
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Conclusion & future work

8.1 Main conclusions

In this thesis, several aspects of sea-ice modelling, forecasting and assimilation
are investigated and improved. The first and main objective is to investigate
how the assimilation of various sea-ice related observations that are previously
little used for data assimilation affect the forecasts of sea-ice models. The
second and third objective involve methods for reducing the computational
cost of both assimilation and modelling. The second objective is to explore
possibilities for simple and computationally cheap methods for sea-ice data
assimilation. The third objective is to investigate possibilities for simple and
computationally cheap methods for sic prediction.

The first objective, how various sea ice related observations previously little for
data assimilation effect the forecasts of sea-ice models, is investigated by assim-
ilating observations of sea-ice thickness (sit), snow depth and high-resolution
sea-ice concentration (sic). Both the observations of sit and snow depth
are still in an early development phase, with limited temporal coverage and
possibly underestimated uncertainties. In paper II, sit and snow depth was as-
similated successfully, and especially sit was shown to provide positive effects
by improving the model sit and summer sea-ice predictions. These improve-
ments, when assimilating sit, motivate the need for more sit observations
with accurate uncertainties spanning not only the cold season. For snow depth,
an impact was seen although few observations were available. Both snow depth
and thick ice thickness observations from the internal Arctic are important in
sea-ice modelling as these provide information at locations where the sic
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observations provide little useful information. High-resolution ice charts were
assimilated in a high-resolution coupled ocean and sea-ice model in paper III.
However, for our assimilation system, no improvements were found compared
to assimilating observations of a more conventional type.

The second objective is to develop a simplified and cheap method for data
assimilation of sic and sit. When sic is assimilated, the effect is primarily
seen in the marginal ice zone where the sic is significantly different from 0
or 1. In addition, for ensemble-based methods such as the enkf, the ensemble
spread is generally confined to the marginal ice zone. Thus, the use of the
enkf for sic assimilation becomes a method for mainly constraining the
sea-ice edge. Therefore the mvn was introduced in paper I as a simple and
computationally cheap method for constraining the sea-ice edge in situations
where a more complicated method such as the enkf is superfluous. The mvn
is a 1-D nudging method that includes an empirical method for a multivariate
update. With the multivariate update, other variables than those observed
can be updated during the assimilation. The mvn method is found to have
comparable multivariate update skills of sic and sit as the substantially more
computationally expensive enkf during winter. Based on the results in paper
I, the mvn provides a valid cost-effective assimilation alternative when few
observation types are available, and the computational resources are limited.
However, with the recent availability of more sea-ice related observations, such
as Cryosat-2 sit and snow depth covering the central Arctic, a 3-dimensional
assimilation method as the enkf becomes more useful due to its versatility and
the innate ability to assimilate multiple observations simultaneously.

The third objective was to investigate cheap computational alternatives to dy-
namical sea-ice models. This led to the development of two machine-learning
models presented in paper III, one method using the k-Nearest Neighbours
(k-nn) and one using an Fully Convolutional Network (fcn) approach. Com-
pared to persistence, the machine-learning forecasts showed improved skills
during periods of substantial sea-ice change. Additionally, the machine-learning
methods were compared to a dynamical model. The results showed a similar
forecasting skill between the models during a period of small changes. However,
during a period of substantial sea-ice melt, the dynamical forecast performed
better than the machine-learning methods. It is important to note that the
atmospheric forcing applied for the dynamical model is from an assimilative
model that includes future information which potentially enhances the results
of the dynamical model.

8.2 Implications and future work

Snow depth impacts sea-ice thermodynamics, both in terms of growth prop-
erties and albedo. Thus it is expected that an update of modelled snow depth
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should have an impact on the modelled sic and sit. However, the amount
of observation data used in paper II was too small to provide any conclusive
results. A further study regarding the need formore snow observations and how
sea-ice predictions could benefit from the assimilation of these observations is
necessary. In paper II, the ensemble spread of the snow depth was relatively
small,which lead to, by construction, assumed lowmodel uncertainty and there-
fore low utilisation of the observations. A future study could investigate the
use of more ensembles and a more substantial perturbation of the atmospheric
precipitation for a more extensive ensemble spread of the snow depth. Without
new observations covering an extended temporal period, a study with artificial
observations could be carried out to more robustly highlight the impact of snow
observations for accurate sea-ice forecasting.

Visually the high-resolution ice charts include more details than do the lower
resolution passive microwave observations of sic. However, when these ob-
servations were assimilated in paper III, no improvements in the sea-ice edge
forecast were found. As also discussed in paper III, we believe this is related
to the need for ensemble spread when the denkf is used. The ensemble
spread is maintained by adjusting the impact of the observations during assim-
ilation. Further work should involve more ensembles and an extended study
period.

As described previously the mvn introduced in paper I is useful when few
observation types are available and computational resources are limited. How-
ever, with the continuously increasing amount of sea-ice related observations
available, the method might already be outdated, as other observations than
sic is now commonly assimilated. In addition, ensemble based models are
becoming more common. When an ensemble is available, the difference in
time consumption between the enkf and the mvn becomes considerably
smaller.

Machine-learning-based forecasts presented in paper III showed that currently
there is a potential for machine-learning forecasts of sea-ice. With more train-
ing data, especially for the fcn, it is expected that these models can be further
improved. The computational cost of the fcn training process can be reduced,
and the resolution increased by using graphics processing unit (GPU) program-
ming. In addition, the resolution can be increased by training the model on
data patches, where the full grid is split into smaller subgrids. This sub analysis
can then be performed on affordable grid sizes, and the patching method will
also lead to better utilisation of the training data.

Further improvements to the fcnmodel could include custom length forecasts
and the prediction of several continuous variables. The fcn has the advantage
that the forecast is computed fast and can be performed on basically any
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computer. A further study could also involve a combination of machine learning
and dynamicalmodelling. By using a dynamical forecast as input to themachine
learningmodel, themodel could potentially “learn“ the biases and issues related
to the dynamical model.

An ongoing study is the development of a high-resolution sea-ice model provid-
ing detailed sea-ice predictions for operational usage. Our idea is to develop a
lightweight setup that can easily be adapted to a specific region of interest and
run operationally, possibly even on a local computer on a ship. However, the
current sea-ice models based on the evp rheology [26,30,97] are not initially
intended for resolutions of the same order as the ice-floe sizes, as this violates
the continuous ice assumption [113]. Thus, there is a need for investigating the
sea-ice dynamics at these scales, and propose potential model modifications
for a high-resolution sea-ice model. In order to develop a lightweight model
setup, the Finite Volume Coastal Ocean Model (FVCOM) [102] is used. This
model can utilise an unstructured grid with a space-varying resolution to model
high-resolution effects in localised areas. The model is set up with a circular
grid where the resolution is increasing towards the grid centre. At the edges,
the model resolution is 2 km and in the centre about 100 m. At the boundaries,
the model variables are nested from a lower resolution model.

For an operational eps with assimilation, the ensemble spread is essential to
estimate the model uncertainty accurately. In the three papers applying the
denkf, two different methods for ensemble generation were utilised. In paper
I and II, the initial ensemble spreadwas generated from ice states from different
years, and the spread was maintained from perturbing the atmospheric forcing
and a model parameter. In paper III, the ensemble spread was generated from
an initial topaz4 ensemble; in addition, the spread was maintained through
ensemble atmospheric forcing and ensemble ocean boundary conditions. Both
of these methods primarily define the model error as variations due to the
forcing. Especially during the winter season, small perturbations of the atmo-
spheric forcing have a limited effect on the sic, which lead to low utilisation
of the observations. A future study could be to investigate the errors in the
coupled ocean-sea-ice model and generate the ensemble directly from the
model instead of the forcing.

An essential goal of improving the sea-ice forecast is to improve upon the
weather forecast at high latitudes. It was shown in paper III that with high-
resolution atmospheric forcing the sea-ice-edge forecast was significantly im-
proved compared to when a lower resolution product was used. As mentioned
previously, when the sea-ice changes, for example, the heat flux between the
ocean and the atmosphere is affected. Several operational centres have in
recent years implemented coupled ocean-sea-ice-atmosphere models, e .д. the
UK Met office global coupled model [21] and the ecmwf integrated forecast
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system (IFS) [20]. Recent studies with the IFS have shown promising prelimi-
nary results with significant improvements to both the sst and near-surface
air temperature predictions [20]. Thus, it is likely that further improvement
of the sea-ice model will have an impact on the atmosphere and weather
forecast.

This work has been a part of developing the cirfa eps for the ocean and
sea-ice forecasting, which is now available with the assimilation of sic, sit,
snow depth and sea-surface temperature.
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ABSTRACT. Increasing ship traffic and human activity in the Arctic has led to a growing demand for
accurate Arctic weather forecast. High-quality forecasts obtained by models are dependent on accurate
initial states achieved by assimilation of observations. In this study, a multi-variate nudging (MVN)
method for assimilation of sea-ice variables is introduced. The MVN assimilation method includes pro-
cedures for multivariate update of sea-ice volume and concentration, and for extrapolation of observa-
tional information spatially. The MVN assimilation scheme is compared with the Ensemble Kalman Filter
(EnKF) using the Los Alamos Sea Ice Model. Two multi-variate experiments are conducted: in the first
experiment, sea-ice thickness from the European Space Agency’s Soil Moisture and Ocean Salinity
mission is assimilated, and in the second experiment, sea-ice concentration from the ocean and Sea
Ice Satellite Application Facility is assimilated. The multivariate effects are cross-validated by comparing
the model with non-assimilated observations. It is found that the simple and computationally cheapMVN
method shows comparable skills to the more complicated and expensive EnKF method for multivariate
update. In addition, we show that when few observations are available, the MVN method is a significant
model improvement compared to the version based on one-dimensional sea-ice concentration
assimilation.

KEYWORDS: Arctic glaciology, sea ice, sea-ice modelling

1. INTRODUCTION
In recent years there has been a decrease in the Arctic sea-ice
cover (e.g. Stroeve and others, 2007) which has lead to
increased ship traffic and other operations in the Arctic. In
order to travel and operate safely in the Arctic, there is a
need for high-quality Arctic sea-ice forecasts.

There are several advanced sea-ice models currently in
use for modelling sea-ice, for example the Louvain-la-Neuve
sea-ice model (LIM3; Vancoppenolle and others, 2009)
and the Los Alamos sea-ice model (CICE; Hunke and
Dukowicz, 2002). Also, several fully coupled models with
integrated sea-ice components have been developed,
for example the Massachusetts Institute of Technology
General Circulation Model (MITgcm; Marshall and others,
1997; Losch and others, 2010), towards an Operational
Prediction system for the North Atlantic European coastal
Zones (TOPAZ; Sakov and others, 2012) and the Community
Ice-Ocean Model (CIOM; Yao and others, 2000). These
models are the most commonly used for sea-ice modelling,
and they all use the elastic-plastic-viscous rheology (Hunke
and Dukowicz, 1997, 2002) based on former schemes
using the viscous-plastic rheology (Hibler, 1979).

Since the late 1970s, the amount of observable meteoro-
logical variables has increased significantly due to the devel-
opment of satellite technology. This has led to new and
improved techniques for assimilation of observations in
numerical models. The first approaches used in numerical
meteorology were simple interpolation methods (Panofsky,
1949; Barnes, 1964; Hoke and Anthes, 1976). Later more
advanced mathematical methods were introduced, such as

the 3D-variational methods (3D-Var; Sasaki, 1970) and the
4D-Var (Dimet and Talagrand, 1986; Bouttier and others,
1997), where 4D-Var is a further development of 3D-Var,
taking the variation of observations with time into account
by assimilating at the time of observation. The 4D-Var assimi-
lation requires a tangent linear and adjoint model that is run
several times both backward and forward in time. The
tangent linear and adjoint models can be difficult to
develop, and the assimilation is computationally expensive
since it requires several backwards and forwards operations.
Later Evensen (1994) introduced the ensemble Kalman filter
(EnKF; Evensen, 1994, 2003, 2009; Burgers and others,
1998) as an alternative to the variational methods, where
cross-covariances are continuously updated based on the
statistics of an ensemble of model states. These assimilation
methods have been extensively used in a wide range of appli-
cations, especially for NWPs (e.g. Evensen, 2003; Gauthier
and others, 2007; Houtekamer and Zhang, 2016).

In the last 30 years, there has been an increase in Arctic
observations due to an increased number of polar-orbiting
satellites. This has lead to several attempts at assimilating
sea-ice concentration (SIC) observations. SIC is defined as
the fraction of the geographical area covered by sea ice.
Lisæter and others (2003) were pioneers within SIC assimila-
tion. In their study, the EnKF was used to assimilate SIC from
passive microwave-sensor data into a coupled sea-ice ocean
model. The assimilation was found to improve the modelled
SIC compared with observations, especially along the ice
edge. The effect of assimilation was found to be stronger in
summer compared with winter, partly due to lower ensemble
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spread in winter causing excessive confidence in the model,
and partly due to larger differences between the modelled
SIC and observed SIC in summer. The result also showed
an improved model estimate of sea-ice thickness (SIT)
caused by multivariate update during the assimilation.

Caya and others (2010) used CIOM (Yao and others, 2000)
and the 3D-Var assimilation method to assimilate daily
gridded ice charts covering the Canadian east coast. In this
study, 3D-Var assimilation was compared with a direct inser-
tion method and a nudging method using short-term fore-
casts. The three methods showed similar skilful short-term
forecasts when the daily ice charts were assimilated. When
SIC observations from Radarsat were included in the assimi-
lation, the 3D-Var method was found to give significantly
improved results compared to ignoring the observations,
demonstrating the advantage of 3D-Var to simultaneously
assimilate multiple types of observations.

The TOPAZ4 system is a coupled sea-ice ocean data
assimilation system for the North Atlantic and the Arctic. In
TOPAZ4 both ocean and ice observations are assimilated
using the EnKF. Previous experiments with the TOPAZ4
system have shown good multivariate impact of SIC assimila-
tion (Sakov and others, 2012). Similar experiments showing
multivariate update of sea-ice parameters for SIC assimilation
were done with the NEMO-LIM3 model (Massonnet and
others, 2015). Both studies showed model improvements of
SIT as a consequence of SIC assimilation.

Lindsay and Zhang (2006) and Wang and others (2013)
used nudging methods to assimilate SIC into coupled sea-ice
ocean models. Wang and others (2013) used the Combined
Optimal Interpolation and Nudging (COIN) method to assimi-
late SIC based on SSM/I observations (OSISAF, www.osi-saf.
org) into the ROMS model (Shchepetkin and McWilliams,
2005). The results were validated against the AMSR-E SIC
maps acquired from microwave scanning radiometer
(Spreen and others, 2008), and it was found that the assimila-
tion induced a significant improvement of the background
model. Lindsay and Zhang (2006) assimilated the Gice SIC
dataset (Rayner and others, 1996) into a coupled sea-ice
ocean model. Significant multivariate improvements were
found by validation against upward-looking sonar observa-
tions of ice draft.

Recent developments in satellite technology andmeasure-
ment techniques have led to the possibility of observing SIT
from satellites. The first experiment with SIT observations
was done by Lisæter and others (2007). They assimilated syn-
thetic SIT observations and found multivariate effects on
ocean salinity, surface temperature and SIC. Today SIT obser-
vations are available from the European Spaces Agency’s
(ESA) Cryosat and Soil Moisture and Ocean Salinity (SMOS)
missions. The SMOS dataset includes observations of SIT reli-
able for thicknesses smaller than 0.4 m (Xie and others,
2016). These data have recently been introduced in the
TOPAZ4 assimilation system, and it was found that assimila-
tion of the SMOS thickness provides significant improve-
ments on the thin SIT and slight improvements to the SIC
(Xie and others, 2016).

There are several challenges regarding sea-ice assimila-
tion, such as the lack of routinely observed parameters
other than SIC. Thickness can be observed, yet the reliability
is limited. The SIC forecast is strongly dependent on both SIT
and sea-surface temperature (SST), thus assimilation with a
multivariate approach is essential. However, SIC is a
bounded variable between zero and one. Therefore, a SIC

of one may be related to any thickness, and a SIC of 0 can,
in principle, mean an SST of anything from − 1.8K and
warmer. The EnKF has large technical advantages compared
with the nudging methods, for example by spreading the
information in space and across variables. Still, when
the EnKF is applied to bounded parameters such as SIC,
the EnKF may fail to show improved skills relative to the
simpler approaches.

This study introduces a multi-variate nudging (MVN)
method, which is an improvement of the simple 1D-
nudging method (Wang and others, 2013). The improve-
ments consist of a multivariate and spatially updating mode.

In the next section, the assimilation systems for MVN and
EnKF based on the state-of-the-art sea-ice model CICE
version 5.1 are introduced. In the results section, the MVN
method is compared with the more advanced EnKF in
terms of spatial and multivariate update associated with
assimilation of SIC and SIT.

2. ASSIMILATION SYSTEM

2.1. The CICE model
The Los Alamos CICE model version 5.1 (Hunke and
Dukowicz, 2002) is a state-of-the-art sea-ice model using
the elastic-plastic-viscous rheology (Hunke and Dukowicz,
1997). The model has components for thermodynamics,
dynamics, transport and ridging. The model uses five SIT cat-
egories, with seven ice layers and one snow layer. CICE is a
computationally efficient model and is used in fully coupled
models, for example Community Earth System Model
(CESM; Hurrell and others, 2013). The CICE model is used
in the present study for modelling the sea ice.

2.2. Forcing data
In our study, the CICE model is forced by atmospheric data
and SST from the ERA-Interim dataset of the European
Centre for Medium Ranged Weather Forecast (ECMWF; Dee
and others, 2011). Sea-surface salinity (SSS) is taken from
the Regional Ocean Modelling System, Arctic-20 km
(ROMS; Shchepetkin and McWilliams, 2005). Data from
ROMS were only available from 2010 to 2013, these data
have been applied in a perpetual way in order to spin-up
the model. The atmospheric forcing used is precipitation,
cloud cover, moisture content and 2 m air temperature
from the ERA-Interim dataset. The SST forcing has been
modified to be consistent with the observations: every grid
point where the observations indicate SIC larger than 0.1
has been set to the mushy freezing point defined by the
CICE model. This model freezing point, Tf [°C], is a function
of the salinity, S, defined by,

Tf ¼ S
�18:48þ 18:48 × 0:001Sð Þ : ð1Þ

2.3. Observations
In the present study, the re-analyzed SIC product from the
European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application
Facility (OSISAF, www.osi-saf.org) is used for assimilation
(Tonboe and others, 2016). The OSISAF dataset is based
on SSM/I observations of antenna temperatures converted
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into brightness temperatures, and then corrected for atmos-
pheric contamination by the ECMWF NWP model
(Andersen and others, 2006). The brightness temperatures
are then converted into SIC by a combination of the
Bootstrap algorithm (low concentration) and the Bristol
Algorithm (high concentration; Tonboe and others, 2016).
The OSISAF dataset includes an observation confidence, C,
given on a scale between zero and five, where five indicates
a high confidence and zero indicates no confidence. Based
on estimates of representativeness uncertainty, observation
operator uncertainty and measurement uncertainty, we
have chosen a minimum observation uncertainty of 0.1 for
the OSISAF SIC observations. Additionally, we chose a
linear increase of uncertainty with decreasing confidence
of the observation. The observation uncertainty, σobs based
on these assumptions is defined as,

σobs ¼ 0:1ð6� CÞ: ð2Þ

For the open ocean and the ice interior the observation con-
fidence is high (five), while in/around the marginal ice zone
the confidence varies between one and four. The OSISAF
dataset is structured on a 10 km stereographic grid, using a
Gaussian weighting with 75 km radius of influence for each
observation. Coastal regions and fjords are masked out in
the OSISAF dataset (Tonboe and others, 2016).

In the present study, the observations of SIT are the SMOS
daily SIT (Tian-Kunze and others, 2014) version 3.1. The SMOS
dataset consists of microwave measurements (L-band) of bright-
ness temperatures converted into SIT by applying a radiation
model and a thermodynamic model, the full algorithm
used for the conversion is described by Tian-Kunze and
others (2014). Following Xie and others (2016), only ice
thinner than 0.4 m has been used in the analysis.
Therefore, the observations are sparse and they vary in loca-
tion and on a daily basis. All observations include an uncer-
tainty estimation which is used to define the observation
impact during assimilation. Due to wet snow conditions
and melt ponds on the sea ice in summer, it is currently not
possible to accurately calculate the SIT in this season. Thus
the SMOS dataset is only available in the cold season from
mid-October to mid-April from 2010 to present. The SMOS
observations are structured on a stereographic grid with
12.5 km resolution.

2.4. Ensemble Kalman Filter
The EnKF is a sequential data assimilation method used in a
wide variety of geophysical systems (Evensen, 1994, 2009;
Houtekamer and Zhang, 2016). The key property of the
EnKF is that the model uncertainty is calculated from an
ensemble of model states, generated by perturbing the
forcing, the model parameters, the observations or a combin-
ation of the three. The Kalman filter equation can be written
as (Jazwinski, 1970; Evensen, 2003),

~fa ¼ ~ff þ~Pf~HT ~HPf~HT þ~R
� ��1

~d � ~H~ff
� �

: ð3Þ

In this equation, ~ff ∈ ℝn×N and ~fa ∈ ℝn×N are the model first
guess and analysis state vector, respectively. In the state
vector, all information about the current state of the model
is stored. Here n is the number of variables multiplicated
by the number of grid points, and N is the number of

ensemble members. The co-variance of observations is
given by ~R ∈ ℝm×m, where m is the number of observations,
~H ∈ ℝm×n is the transformation matrix operator used to trans-

form the model to observation state space, ~d ∈ ℝm×N repre-
sents the observations. The estimated model co-variance,
~Pf ∈ ℝn×n, is given by,

~Pf ¼ ð~ff �~ffÞð~ff �~ffÞ: ð4Þ

In (4) the overbars indicate ensemble average. The covari-
ance between the different model variables is used to
update also non-observed variables. Thus the full state
space ~ff , including all model variables, can be updated
based on observations of a single variable.

The EnKF analysis may lead to spurious co-variances
caused by distant state vector elements and insufficient
model rank when small ensemble sizes are used. These arte-
facts can be reduced by using a method for localization
(Evensen, 2003; Sakov and Bertino, 2011). With localization,
the analysis is limited to local areas. In our study, the polyno-
mial taper function by Gaspari and Cohn (1999) was used to
create a smooth localization where nearby grid points are
more important than distant grid points in the analysis.

In the present study, the deterministic EnKF (DEnKF) was
used. This method has been shown to perform better for
ensemble prediction systems with few ensemble members
(Sakov and Oke, 2008). The code used for assimilation is
the EnKF-c algorithm version 1.60.3 (https://github.com/
sakov/enkf-c).

An example of the EnKF assimilation is given in Fig. 1. In
this figure, an average of all ensemble members is given
before and after EnKF assimilation for the difference
between modelled (CICE) and observed (OSISAF) SIC on
23 October 2011. The largest differences after assimilation
are located in the marginal ice zone, where the ensemble
spread is largest, and therefore, the observations have the
largest impact on the EnKF assimilation. Note that since con-
centration is a bounded value, no errors are expected in the
ice interior where both observations and model have a con-
centration of 1. Thus, it is clear that the effect of assimilation
varies throughout the Arctic, some locations show large
impacts of assimilation, while others have little impact. This
reflects the robustness of the EnKF and demonstrates how
ensemble spread is used in the EnKF to update the model.

2.5. Multivariate nudging
The COIN is a basic data assimilation method where model
variables are nudged towards observed values based on an
optimal interpolation between model and observations.
The model uncertainty in the COIN scheme is dependent
on the difference between model and observation. The
basic formulation of the MVN method used in the present
study is similar to the COIN method applied by Wang and
others (2013). We use a slightly altered nudging weight,
and assimilation is done at 10-day intervals. The assimilation
time step is chosen to be similar to that applied in the EnKF.
For the EnKF assimilation, the build-up of ensemble spread
requires a sufficient time period between assimilation steps.
We used 10 days to compensate for a stand-alone model
with decreased model drift caused by a prescribed ocean
component. The major difference between the methods of
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MVN and COIN is that multivariate and spatial properties
have been included for MVN. The assimilation process for
the MVN and COIN is given by

fa
i ¼ ff

i þGi di � ff
i

� �
ð5Þ

In this equation all variables are scalars, fa
i and ff

i are the
analysis and model first guess, respectively, di represents
the observed value, and Gi is the nudging weight. The sub-
script i indicates a specific grid point, which from here on
will be omitted. In order to make the results from the analysis
comparable with those of the EnKF, the observed value d is
perturbed using a normal distribution with a mean of zero
and a standard deviation equal to the observation uncertainty
σobs. The nudging weight is defined as

G ¼ K=τ; ð6Þ

where,

K ¼ σ2
m

σ2
m þ σ2

obs

; ð7Þ

and σm and σobs represent the model and observation uncer-
tainty, respectively. The τ parameter is a delay timescale of
the nudging towards observations. τ is defined such that
large uncertainties have less delay,

τ ¼ exp aðσmax � σmÞ: ð8Þ

In Eqn (8) the parameter a is a nudging delay parameter defin-
ing the strength of the nudging, and σmax is the largest pos-
sible uncertainty, for example unity for SIC, in the present
study we used a equal to one. The model uncertainty is
defined as the difference between the observation and the
model first guess:

σm ¼ jd � ffj ð9Þ

The observation uncertainty, σobs, is taken from the confi-
dence levels of the observations, given by Eqn (2).

In the study by Wang and others (2013) the modelled SIT
was preserved during assimilation. When new ice was added

as a result of the assimilation, the ice thickness was enforced
to be 0.5 m. In the present study, we use an alternative
approach where a statistical relationship between ice
volume and SIC is used for the multivariate update. This
approach is based on observation statistics from the marginal
ice zone. The CICE model does not use SIT directly but cal-
culates SIT as the sea-ice volume divided by the SIC. Thus the
sea-ice volume must change when the SIC changes to pre-
serve model physics after assimilation. For example, if the
SIC is reduced during assimilation and the modelled ice
volume is unchanged, the resulting ice would be thicker.
Thick ice is more resistant to melt and will cause a build-
up of ice at the ice edge. Similarly, increased SIC will result
in thin ice which requires less energy to melt. We used a rela-
tionship between ice volume (V) and SIC (C) based on regres-
sion of observed SIC (OSISAF) and SIT (SMOS) values (see
Fig. 2),

CðVÞ ¼
12:3V ; V < 0:03;

1
3:867

ln
V

0:0072

� �
; 0:03< V < 0:34;

1; V > 0:34:

8>><
>>: ð10Þ

Similarly, when assimilating concentration, (Fig. 3),

VðCÞ ¼ 0:02C exp 2:8767Cð Þ; 0< C < 0:8;
0:5C; C < 0:8; Vm < 0:1:

�
ð11Þ

The expressions in (10) and (11) are only valid for the
marginal ice zone where thickness data are available for
regression. When the SIC is close to one, it is not possible
to define a relationship between SIC and SIT since SIC is
bounded. The model uncertainty in the marginal ice zone
is large due to small perturbations inducing transitions
between ice and water. These transitions are strongly affected
by the forcing, while in the interior of the ice the model is
more stable. The second expression in Eqn (11) uses the
first guess volume Vm, this ensures that new ice witha high
concentration (C > 0.8) resulting from assimilation is
coupled to an updated volume, even though this new ice is
not located in the marginal ice zone. The two expressions

Fig. 1. Difference between modelled (CICE) and observed (OSISAF) SIC on 23 October 2011, before (left) and after (right) assimilation using
EnKF.
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in Eqns (10) and (11) are not the inverse of each other, this is
related to minor mathematical simplifications in order to
keep the relationships simple.

We used an extrapolation method to improve the spatial
properties of the MVN. The extrapolation is performed using
a simple digital inpainting approach based on elliptic partial dif-
ferential equations (http://se.mathworks.com/matlabcentral/
fileexchange/4551-inpaint-nans). In the present study, a
method using the fourth partial derivatives was used.

An example of the MVN assimilation is given in Fig. 4. The
figure shows the difference between modelled (CICE) and
observed (OSISAF) SIC on 23 October 2011. After assimila-
tion (right panel), the model has been nudged towards obser-
vations, by decreasing the difference between model and
observations. There are several negative differences in the
central Arctic after assimilation. This is due to modelled
grid points with lower concentration compared with the
observations. These negative values are an artefact of the
observation perturbation, which causes small errors at
random grid points in the interior of the sea ice. There are
only negative differences because the observations are

close to the one in the central Arctic and concentrations
have an upper bound of 1. Similar errors are not found in
the open ocean because the open ocean observations with
maximum confidence are not perturbed which avoids ice
residuals in known ice-free areas.

3. SETUP
The model simulation was initialized without Arctic sea ice
and spun-up without assimilation from 1 January 1979 until
1 January 2010. Both assimilation schemes were then run
for 3 years from 1 January 2010 to 31 December 2012 with
the assimilation of OSISAF SIC every 10 days. In addition,
the assimilation was run for two cold seasons from 15
October 2010 to 15 April 2011, and 15 October 2011 to
15 April 2012 for SMOS SIT assimilation. The number of
ensemble members for the EnKF was 20, and a localization
radius of 300 km was used. The initial ensemble was gener-
ated by using ice states from 1 January from 20 different
years. The ensemble members were perturbed in a similar
way as used in the TOPAZ system (Sakov and others,
2012), using a smooth pseudo-random field (Evensen,
2003) with zero mean to perturb the input forcing. The stand-
ard deviation of temperature used to perturb the 2 m tem-
perature was 10 K. We chose 10 K to compensate for the
lack of perturbation in the ocean forcing. The standard devi-
ation for cloud cover was 20%, for the per-area precipitation
flux it was 4 × 109ms−1, and for wind, it was 1ms−1. In the
CICE model, the shear strength relative to the compressive
strength is scaled by the dimensionless parameter e. Since
the value of the e parameter is not well known (Dumont
and others, 2009), we perturbed e to increase the ensemble
spread. Following Sakov and others (2012) we used the par-
ameter e as a normal distributed stochastic variable with a
mean equal to two, which is the default model setting and
a standard deviation of one.

After assimilation, the state space was post-processed.
During the post-processing the variables were checked for
physical consistency, to avoid for example hotspots, zero
or negative ice volume, snow on water, ice in hot water
and similar non-physical situations. For the EnKF assimila-
tion, bounded values such as SIC can create erroneous cov-
ariances, which make post-processing important in order to
check that variables are within their realistic bounds. For
the MVN assimilation, the multivariate update based on the
statistical relationship between SIC and SIT was done
during the post-processing. When the assimilation resulted
in decreased sea-ice extent, the SST were updated to avoid
immediate refreezing. This was done by using a predefined
gradient of SST based on the distance to the sea-ice edge.
The average gradient was estimated from the ECMWF ERA-
Interim dataset (Dee and others, 2011) to 0.007 Kkm−1.
Similarly, when the assimilation provided more sea ice
than in the first guess, both the SST and SIT was updated to
avoid immediate remelting of the ice.

In the CICE model, the ice is distributed in five thickness
categories, while observations only have one category. For
the EnKF, this is not a problem, since the individual categor-
ies are updated based on the correlation. For the MVN we
used the model thickness distributions of the initial first
guess to redistribute the assimilation result into the five ice
thickness categories. Thus the fraction of the total SIC in a
given category was the same before and after assimilation,
but the total SIC could have changed. If thickness categoriesFig. 3. As Fig. 2, but volume as a function of concentration.

Fig. 2. Observations of thickness (SMOS) and concentration
(OSISAF) spanning the period 2010—12, are used to obtain a
relationship between volume and concentration by regression. A
random selection of 5000 observations from all available
observations is shown. The figure shows concentration as a
function of volume. The red dots represent observations and the
blue line is the regression line.
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proved to be overfull in the model after assimilation, the
surplus volume was transferred to the next thickness cat-
egory. This method avoids discontinuities in the sea-ice
cover.

To analyze the strength of assimilation the RMSE between
model and observations were used,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 ðdi � fa
i Þ2

m

s
: ð12Þ

This statistic provides the total deviation between the model
and observations but does not provide information on over or
under extension of sea ice.

4. RESULTS
A verification of the multivariate properties of the MVN and
EnKF assimilation systems has been conducted by two cross-
validation experiments. In the two experiments either SIT or
SIC observations were assimilated, and the non-assimilated
SIC or SIT observations were used for verification. For the
assimilation systems shown in Fig. 5, SIC observations were
assimilated and SIT observations were used for verification.
In this figure, the monthly averaged SIT RMSEs over three
cold seasons are plotted. Only observations from the mar-
ginal ice zone were used. In the marginal ice zone, the
ensemble has the largest spread and the EnKF has the
largest effect. For MVN, the multivariate relationship
between sea-ice volume and SIC is undefined outside the
marginal ice zone, see Eqn (11). In the present study, we
defined the marginal ice zone as grid cells with SIC <0.8.
The marginal ice-zone location differs between the MVN
and EnKF model system, therefore two different marginal
ice zone definitions were used for the calculations. In
Fig. 5 the solid lines indicate a marginal ice zone as
defined for the EnKF assimilation model system, and the
dashed lines from the marginal ice zone as defined by the
MVN model system. All model results indicate an increase
of SIT RMSE from October to April. This is a consequence
of modelled ice growth being larger than observed ice
growth, which is due to a bias in the background forcing,
leading to an overestimation of the sea-ice extent. As a

consequence of the sea-ice overestimation, the marginal
ice zone as defined by the observations is mostly located in
the interior of the modelled ice pack. Since the SIT in the
interior increases throughout the cold season, the differences
between the modelled and the observed SIT are increasing
during this season. The temporal increase of SIT RMSE is
most apparent in the control run, blue lines in Fig. 5. When
assimilation is applied, the temporal effect is significantly
reduced, both for the EnKF and the MVN. However, a
small increase of SIT RMSE during the cold season is still
evident after assimilation, which is related to the prescribed
model forcing not affected by the assimilation.

The SIT RMSE of the EnKF results calculated for the mar-
ginal ice zone defined by the MVN model system are signifi-
cantly higher than the MVN SIT RMSE values. These high SIT
RMSE values are caused by an error in the ensemble spread,
due to model bias: For the EnKF, the model bias leads to a
skewed ensemble spread towards larger ice extent which

Fig. 4. Difference between modelled (CICE) and observed (OSISAF) SIC on 23 October 2011, before (left) and after (right) assimilation using
MVN.

Fig. 5. Monthly mean of RMSE of SIT with and without SIC
assimilation. Blue lines are control runs without assimilation,
while red and black lines are EnKF- and MVN-assimilated runs,
respectively. For the SIT RMSE calculations, only grid points in the
marginal ice zone were used, defined as ice concentration <0.8
based on EnKF (solid line) and on MVN (dashed line). The SIT
RMSE values were based on 3 years of assimilation.
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causes low ensemble spread in the observed marginal ice
zone. The marginal ice zone defined by the EnKF assimila-
tion system is then displaced from the observed marginal
ice zone. For the MVN assimilation, the one model realiza-
tion is pushed towards the observations, independent of the
model bias. Thus the MVN method has a large effect in the
marginal ice zone defined by the observations.

A check for statistical significance of the assimilation skills
in Fig. 5 was conducted using a student’s t-test with a zero
hypothesis of equal values. The result shows that all lines
are statistically different on a 95% level, showing that both
assimilation methods are better than the control run, and
the MVN assimilation shows better skills than does the
EnKF assimilation.

A second model experiment was performed where the
same method as described above was used, but where SIT
was assimilated and SIC was validated against observations.
Only grid points where SIT observations exist were used in
the validation. The results are shown in Fig. 6. The results
describe a similar situation as for the SIC assimilation in
Fig. 5. The MVN and EnKF results with both marginal ice
zone definitions are significant improvements of the back-
ground model. For the marginal ice zone defined by the
MVN assimilation, the MVN method showed better skills
than the EnKF, Fig. 6. As for the SIC assimilation shown in
Fig. 5, this is related to model bias and the way the two
assimilation systems update the model parameters: Due to
model bias, the EnKF has low ensemble spread in the
observed marginal ice zone, while the MVN has a large
effect here. This is because the differences between model
and observations are large in the marginal ice zone.

The difference between the two methods was larger for SIT
assimilation (Fig. 6) than for SIC assimilation (5). This is due to
few SIT observations available for assimilation, and that the
number of observations varies on a daily basis. The daily var-
iations in observation location will lead to an assimilation
system which gives comparable results to those of an assimi-
lation system with time steps longer than 10 days. This virtu-
ally increased time step is because some locations might only
have a local observation every 20 days or more seldom.
Since the model has excessive ice during winter, the ice
extent will be increased as a consequence of the model
bias and variations in observation locations. Increased ice
coverage will create an increased biased ensemble spread,

and this explains the higher SIC RMSE values for the EnKF
compared with the MVN for SIT assimilation. There is no
clear temporal tendency for the result in Fig. 6, this is
because SIC does not increase as does the SIT (see Fig. 5):
SIC is bounded with a maximum value of 1 while SIT is
unbounded upwards.

A check for statistical significance of the assimilation skills
in Fig. 6 was conducted using a student’s t-test with a zero
hypothesis of equal values. All lines in Fig. 6 were found to
be statistically different on a 95% level, confirming that
the MVN method shows better multivariate update than the
EnKF and that both methods are an improvement of the
control case.

4.1. Spatial correlation
In this section, the spatial properties of the EnKF and MVN
were compared by assimilating 25% of all SIC observations.
The RMSE values for the SIC in the control model are shown
by the blue solid line in Fig. 7. The control model has a large
increase of SIC RMSE from April to June, caused by excessive
ice growth in the model compared with the observations. In
June the ice melting starts and the SIC RMSE of the control
model is reduced. In September there is an increase of SIC
RMSE due to excessive ice melting which declines in
October due to ice growth. Fig. 7 shows that the current
model forced by ERA-Interim and ROMS has a too large
annual cycle of SIC with excessive ice melting during
summer and excessive ice growth during winter. The solid
red line in Fig. 7 represents the MVN assimilation where all
available SIC observations were used. The MVN assimilation
shows large improvements compared with the control model
for SIC RMSE values. In summer the MVN assimilation shows
a clear weakness with large SIC RMSE values caused by an
underestimation of sea-ice extent. During the extended
summer period (June–October), a large portion of the ice
cover has a SIC<0.8, which in the present study was consid-
ered as the marginal ice zone. In the marginal ice zone, the

Fig. 6. As Fig. 5, but SIT assimilation and SIC RMSE over two cold
seasons.

Fig. 7. RMSE of SIC after assimilation of SIC for 2010. For the dotted
lines, only25% of the SIC observations were used for the
assimilation. The red and black dots are the MVN- and EnKF-
assimilated runs, respectively. For the dashed, red line, the MVN
assimilation without spatial extrapolation was used for assimilation
of 25% of the SIC observations. The solid lines show assimilation
using all observations, the blue line is the control model, the red
line is the MVN model, and the black line is the EnKF model.
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SIT is updated based on the relation given in Eqn (11) for
MVN. This relation is based on available winter observations
and the applicability in summer is not known, which may be
the reason for the large errors in summer. A second reason for
the large SIC differences between model and observations in
summer is the excessive model ice melting; the assimilated
ice is thin and sensitive to the model forcing.

The dashed red line (MVN p25 wo) in Fig. 7 shows the
result of MVN assimilation without the extrapolation
method when 25% of all SIC observations are assimilated.
The SIC RMSE values for this model system are close to
those of the control run, dominated by the background
forcing. The MVN assimilation without extrapolation, limits
the build-up of ice in late spring (April–June). The reduced
ice pack in summer leads to an almost ice-free Arctic, due
to excessive summer ice melt in the model, which in turn
leads to increased SIC RMSE values. This shows that
without extrapolation of the observations, the MVN method
is not applicable in a situation where the model has large
biases, as in this study. The red dots (MVN p25) in Fig. 7
represents the full MVN method with extrapolation when
25% of the observations are used. We found that although
the MVN p25 model system has slightly higher SIC RMSE
values compared with using all observations, the difference
is relatively small.

The black solid line in Fig. 7 represent the EnKF where all
observations are used and the black dots (EnKF p25)
represent a case using 25% of the SIC observations. The
results show small differences between the two cases, indi-
cating that fewer observations are not a problem for the
EnKF assimilation. For EnKF there are large initial errors
when the assimilation starts, followed by a decrease as the
ensemble becomes more heterogeneous around the true
state. In summer the EnKF has much lower SIC RMSE
values than the MVN, since the EnKF has a large ensemble
spread during summer caused by thin ice being more sensi-
tive to the perturbation of the background forcing. The
large ensemble spread leads to more weight on the observa-
tions during assimilation and low SIC RMSE values. The SIC
RMSE values of the EnKF increases slightly in October due to
less ensemble spread in the cold season (October–April) as a
consequence of thicker ice which requires more energy to
melt. This causes biases in the ensemble spread towards
larger ice extent as mentioned previously.

A summary of the statistical significance of the results in
Fig. 7 is provided in Table 1. The table shows that for MVN
there is a statistical difference on a 95% level between the
p25 result and the all observations result, all p25 SIC RMSE
values are larger than the SIC RMSE values for the all obser-
vations case. For EnKF there was no statistical difference
between the p25 and the all observations case.

5. CONCLUSION
In this study, the EnKF and MVN assimilation methods were
used to assimilate SIC and SIT into the state-of-the-art sea-ice
model CICE. Compared with the traditional nudging
methods, the EnKF has many advantages, for example multi-
variate update and spatial correlation. The MVN method
aims to provide a simple low-cost alternative to the EnKF
comparable in quality for sea-ice assimilation. Multivariate
update of variables is an important part of the EnKF, where
non-observed variables are updated during the assimilation
based on correlation with observed variables. This advanta-
geous property of the EnKF has been shown in several
earlier works on sea-ice assimilation (Lisæter and others,
2003, 2007; Massonnet and others, 2015; Xie and others,
2016). For the Nudging scheme, the multivariate update of
variables is not part of the original method. In the present
study, we propose a nudging method with multivariate prop-
erties by using a pre-defined relationship between sea-ice
volume and SIC as given by Eqns (10) and (11).

In our study, we conducted a cross-validation experiment
where SIT or SIC observations were assimilated. The non-
assimilated variables were used for validation of the multi-
variate properties. We show that multivariate update of
sea-ice thickness and concentration is more skilful for
MVN than for EnKF. However, the model has biases
towards increased sea-ice extent in winter which affect the
EnKF ensemble spread.

We show that the spatial properties of the EnKF can to
some extent be mimicked by an extrapolation algorithm for
the MVN. The extrapolation introduces some extra errors in
the assimilation but still lead to a significant improvement
as compared with the non-extrapolation method. There are
uncertainties regarding theMVN in summer. The relationship
between SIC and sea-ice volume for the MVNmethod is only
based on observations from the cold season. In addition, the
CICE model in the standalone mode used with ERA/ROMS
forcing has excessive ice melting during summer.

The MVN method is not limited to linear correlations as
the EnKF. This is an advantage since linear correlation may
not be appropriate for bounded values as those of SIC.
However, it is important to emphasize the skilful properties
of the EnKF for sea-ice assimilation. We show here that the
EnKF has excellent out-of-the-box properties when it comes
to sea-ice modelling. Without any modifications, the EnKF
has similar multivariate skills and better spatial skills than
the MVN assimilation. In addition, the EnKF has several
useful properties compared with the MVN assimilation.
Assimilation of other observations can easily be implemen-
ted in the EnKF. The multivariate properties span all vari-
ables, not just SIT and SIC, and the relationship between
variables change in time and space dependent on the
model state. In conclusion, when observations are limited
to SIT and SIC, the MVN method performs similarly to the
advanced EnKF for sea-ice assimilation. There are still
issues regarding the validity of the MVN method in
summer, but could likely be solved when summer observa-
tions become available.
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Abstract. The accuracy of the initial state is very important
for the quality of a forecast, and data assimilation is crucial
for obtaining the best-possible initial state. For many years,
sea-ice concentration was the only parameter used for assim-
ilation into numerical sea-ice models. Sea-ice concentration
can easily be observed by satellites, and satellite observations
provide a full Arctic coverage. During the last decade, an
increasing number of sea-ice related variables have become
available, which include sea-ice thickness and snow depth,
which are both important parameters in the numerical sea-ice
models. In the present study, a coupled ocean–sea-ice model
is used to assess the assimilation impact of sea-ice thickness
and snow depth on the model. The model system with the
assimilation of these parameters is verified by comparison
with a system assimilating only ice concentration and a sys-
tem having no assimilation. The observations assimilated are
sea ice concentration from the Ocean and Sea Ice Satellite
Application Facility, thin sea ice from the European Space
Agency’s (ESA) Soil Moisture and Ocean Salinity mission,
thick sea ice from ESA’s CryoSat-2 satellite, and a new snow-
depth product derived from the National Space Agency’s Ad-
vanced Microwave Scanning Radiometer (AMSR-E/AMSR-
2) satellites. The model results are verified by comparing as-
similated observations and independent observations of ice
concentration from AMSR-E/AMSR-2, and ice thickness
and snow depth from the IceBridge campaign. It is found
that the assimilation of ice thickness strongly improves ice
concentration, ice thickness and snow depth, while the snow
observations have a smaller but still positive short-term ef-
fect on snow depth and sea-ice concentration. In our study,

the seasonal forecast showed that assimilating snow depth
led to a less accurate long-term estimation of sea-ice extent
compared to the other assimilation systems. The other three
gave similar results. The improvements due to assimilation
were found to last for at least 3–4 months, but possibly even
longer.

1 Introduction

Observations show that for the last 50 years there has been a
decline in both Arctic sea-ice extent (Stroeve et al., 2007;
Perovich et al., 2017) and sea-ice thickness (Kwok and
Rothrock, 2009). In addition, models show that the sea-ice
decline is likely to continue (Zhang and Walsh, 2006). Wang
and Overland (2012) estimate the Arctic Ocean to be nearly
ice-free within the 2030s. This large change in the global cli-
mate system leads to a need for improved models and fore-
casting systems due to more variable and mobile Arctic sea
ice (Eicken, 2013). In addition, a decreased amount of sea ice
will lead to increased Arctic ship traffic (Smith and Stephen-
son, 2013). Safe travel in the Arctic is dependent on accu-
rate knowledge of weather and sea ice. The Arctic is char-
acterised by harsh conditions involving, for instance, sea ice,
icebergs, and polar low storms. The numerical weather pre-
diction models are becoming more complex and detailed, but
still, the vital part of an accurate forecast is the model initial
state. Accurate initial states can be achieved by assimilating
observations into the model system.
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For sea-ice modelling in the Arctic, observations are
sparse. The sea-ice concentration (SIC), defined as the frac-
tion of the total area covered by sea ice, has been available
since the start of the satellite era in 1979, but observations of
other parameters such as sea ice thickness (SIT) are more dif-
ficult to obtain because of the remote location, and satellites
cannot easily be used to extract information about the SIT.
The passive microwave satellites derive SIC from bright-
ness temperatures, but many of the Earth observing satellites
do not have sufficient wavelength to observe changes in the
brightness temperature as a function of the SIT. Thus, ac-
quiring SIT from satellites is significantly more difficult than
acquiring SIC, but as will be described later, satellites using
the L-band frequency can, to some degree, be used to mea-
sure the SIT as a function of brightness temperature.

During the last 15 years, there have been various studies of
SIC assimilation using several different models and assimila-
tion methods. Lisæter et al. (2003) assimilated SIC obtained
from passive microwave satellite into a coupled ocean–ice
model using the ensemble Kalman filter (EnKF; Evensen,
1994; Burgers et al., 1998). In the study of Lisæter et al.
(2003), the assimilation was found to have a strong effect
on the modelled SIC and small effects on other model pa-
rameters due to the multivariate properties of the EnKF. The
multivariate properties of the EnKF consist of a model up-
date for all model variables based on correlation with the
observed variables. A similar SIC assimilation study using
the 3D variational (3D-Var) assimilation method was done
by Caya et al. (2010). In this study, both ice charts from the
Canadian east coast and Radarsat 2 SIC observations were
assimilated. Significant improvements to the short-term fore-
cast were found for the assimilation system. Studies with the
coupled ocean–ice model TOPAZ (Sakov et al., 2012) have
shown improvements to SIT and multivariate effects on SIT
for assimilation of SIC (Sakov et al., 2012). Other SIC stud-
ies have been done by Lindsay and Zhang (2006) and Wang
et al. (2013), both using nudging methods to show model im-
provements for SIC assimilation. Posey et al. (2015) assimi-
lated high-resolution SIC observations (4 km) into a coupled
ocean–sea-ice model, the Arctic Cap Nowcast/Forecast Sys-
tem (ACNFS) using the 3DVAR assimilation method. In this
study, they showed that increased observation resolution has
a significant impact on the ice edge forecast.

In recent years there has been a focus on increasing the
number of observable ice parameters, but obtaining accu-
rate knowledge of the Arctic SIT is especially important for
quantifying changes in the total Arctic sea-ice volume and
to elucidate changes related to for instance global warming.
Dedicated satellite altimeters like ICESat (Forsberg and Sk-
ourup, 2005) and CryoSat-2 (Laxon et al., 2013) have been
prepared for SIT measurements. These satellites use mea-
surements of the ice freeboard to calculate the SIT (Kurtz
and Harbeck, 2017; Kurtz et al., 2014b). Another source of
satellite SIT observations is the European Space Agency’s
(ESA) Soil Moisture and Ocean Salinity (SMOS) mission.

The SMOS mission uses L-band passive microwave mea-
surements utilising long penetration depth and a relationship
between observed brightness temperature and ice thickness
(Tian-Kunze et al., 2016). However, in general, the uncer-
tainties of the CryoSat-2 and SMOS SIT observations are
high (Zygmuntowska et al., 2014; Xie et al., 2016), which
result in reduced, though still valuable, observational infor-
mation available for assimilation into the model system. The
SIT observations are limited to winter conditions, when the
snow and ice are dry.

One of the first studies with SIT assimilation was done by
Lisæter et al. (2007). In this study, computer-generated SIT
observations simulating CryoSat observations were assimi-
lated into a coupled ice–ocean model using the EnKF. The as-
similation showed significant effects on the model state; both
improvements to the modelled SIT and multivariate effects
on SIC, ocean temperature and ocean salinity were found.
Yang et al. (2014) used the localised singular evolutive inter-
polated Kalman filter (Pham, 2001) to assimilate the SMOS
SIT observations into the Massachusetts Institute of Tech-
nology general circulation model (Marshall et al., 1997). In
this study, an improved thickness forecast was found when
assimilating SMOS observations and some improvements to
the SIC forecasts. Similarly to Yang et al. (2014), Xie et al.
(2016) used the EnKF to assimilate SMOS SIT observations
into the TOPAZ system (Sakov et al., 2012). In this study it
was found that assimilation of SMOS observations showed
improvements for the ice thickness along the ice edge, both
compared to SIT observations not assimilated and compared
to the SMOS observations themselves. In general, similarly
to that found by Yang et al. (2014) the SMOS observations
were found to have a relatively small impact on the SIC and
the SIT far from the ice edge. Fritzner et al. (2018) assim-
ilated SMOS observations into a stand-alone sea-ice model
with the EnKF. This study showed that, due to the corre-
lation between SIC and SIT, the SMOS observations were
found to have a positive effect on the modelled SIC. In the
last couple of years, there has also been an increase in the
use of Cryosat-2 observations in various forms for assimila-
tion. Chen et al. (2017) assimilated both the SMOS thin SIT
and the CryoSat-2 thick SIT into the National Centers for En-
vironmental Prediction’s (NCEP) Climate Forecast System
version 2 (Saha et al., 2014) using the localised error sub-
space transform ensemble Kalman filter (Nerger and Hiller,
2013). This study showed improved sea-ice prediction with
SIT assimilation, thus verifying the importance of SIT ob-
servations to achieve accurate sea-ice forecasts. Xie et al.
(2018) assimilated a blended SMOS CryoSat-2 product into
TOPAZ. They showed that these observations provided the
primary source of observational information in the central
Arctic, and when assimilating this product, the model SIT
was improved. Blockley and Peterson (2018) showed that,
by assimilating Cryosat-2 observations, the Arctic summer
prediction of ice extent and location was significantly im-
proved. Allard et al. (2018) used CryoSat-2 observations for
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initialisation in the coupled ocean–sea-ice ACNFS model.
The study showed improved model thickness with CryoSat-
2 initialisation when compared to independent ice thickness
observations.

Recent attempts have proved that it might be possible to
observe snow depth from satellite (Markus and Cavalieri,
1998; Maaß et al., 2013; Rostosky et al., 2018). Both Maaß
et al. (2013) and Rostosky et al. (2018) used a relationship
between observed brightness temperature and snow depth
to calculate the latter variable. Due to the close connection
between snow, albedo and ice melting, accurately modelled
snow depths are expected to have a large impact on the snow
and ice models. Snow observations are limited to the winter
season when the ice and snow are dry.

In our study, a coupled ocean–sea-ice model (Kristensen
et al., 2017) is used. The coupled model is prepared for im-
proved sea-ice representation compared to previous coupled
ocean–sea-ice models. This improvement will give a deeper
insight into how sea ice is affecting both the ocean and at-
mosphere. The assimilation system will be tested with dif-
ferent kinds of observations to analyse both long-term and
short-term effects. Observations of SIC, SIT and snow depth
are assimilated. The results will be verified with independent
and semi-independent data in addition to forecasts both in
summer and winter.

This study is important for elucidating the effect of dif-
ferent sea-ice observations and revealing the most important
observations for an improved sea-ice forecast. Even though
some studies have looked into the assimilation of different
SIT observations, as far as we know this is the first study to
compare the effect of the different observations on the assim-
ilation system. In addition, as far as we know, this is the first
study to present the assimilation of snow-depth observations
in a coupled ocean–sea-ice model.

2 The coupled ocean–sea-ice model

The coupled model (Kristensen et al., 2017) is based on the
Regional Ocean Modelling System (ROMS; Shchepetkin
and McWilliams, 2005; Moore et al., 2011) version 3.6 as
the ocean component and the Los Alamos sea-ice model ver-
sion 5.1.2 (CICE; Hunke and Dukowicz, 1997; Hunke et al.,
2015a) as the ice component. The ROMS model is a state-of-
the-art ocean model, which in our study is configured with
35 terrain-following vertical layers. The eddy viscosity and
eddy diffusivity are parameterised using a second-order tur-
bulence closure model.

The CICE model is a state-of-the-art sea-ice model with
five thickness categories, seven ice layers and one snow layer.
The model has a thermodynamic component calculating the
local growth rate of snow and ice, an ice dynamics compo-
nent calculating ice drift based on the material ice strength,
a transport component, a melt pond parameterisation and a
ridging parameterisation used to distribute ice in thickness

Figure 1. The model domain: the blue area is covered by the model
and grey indicates land areas.

categories (Hunke et al., 2015a). The model has a horizontal
resolution of 20 km with 242× 322 grid cells covering the
entire Arctic Ocean. The model domain covering the Arctic
sea is shown in Fig. 1.

The coupled model is forced by atmospheric data from the
ERA-Interim data set from the European Centre for Medium
Ranged Weather Forecast (ECMWF; Dee et al., 2011). The
ERA-Interim data set has a horizontal resolution of approx-
imately 0.7◦, corresponding to a T255 spectral truncation.
In addition, the model has prescribed ocean boundary and
climatic forcing from the Fast Ocean Atmosphere Model
(FOAM; Bell et al., 2003). The assimilation system used in
the model is the ensemble Kalman filter. The code used for
assimilation is the EnKF-c code (Sakov, 2015). The EnKF-c
is an easy-to-implement and efficient framework for offline
data assimilation for use in geophysical models.

3 Observations

In the present study, observations related to the Arctic sea ice
are used for assimilation, which include SIC, SIT and snow
depth. The SIC observations used for assimilation are from
the European Organisation for the Exploitation of Meteoro-
logical Satellites (EUMETSAT) Ocean and Sea Ice Satel-
lite Application Facility (OSISAF; Tonboe et al., 2016). The
SIC product is the near-real-time global sea-ice concentra-
tion product. This data set contains SIC observations calcu-
lated from brightness temperatures measured by the SSMI/S
passive microwave radiometer. The SSMI/S brightness tem-
peratures are corrected for air temperature, wind roughening
over open water and water vapour in the atmosphere by the
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ECMWF numerical weather prediction (NWP) model (An-
dersen et al., 2006). To convert brightness temperatures to
SIC a combination of the bootstrap and the Bristol algorithms
is used (Tonboe et al., 2016). The bootstrap algorithm is pri-
marily used for observations with low SIC, and the Bristol
algorithm for high SIC. The older OSISAF products do not
include an error estimate, but an estimate of the observation
confidence. The observation confidences are a simple mea-
sure of the observation quality, where 5 is excellent quality,
2 indicate poor quality, 1 indicates computation failure, and
0 no data. In the more recent OSISAF observations, a total
uncertainty parameter is associated with each observation. In
our study, the observation uncertainty of the OSISAF obser-
vations was given by the following formula:

TU= a+ b · (5−C), (1)

where C is the confidence and TU is the total uncertainty,
a = 0.06 and b = 0.1 are estimated based on the relation-
ship between confidence and uncertainty in the more re-
cent OSISAF observations. Observations flagged with a con-
fidence of 0 or 1 are not used in our study. For verifica-
tion of the modelled SIC, the ESA Sea Ice Climate Change
Initiative, Sea Ice Concentration Climate Data Record from
the AMSR-E and AMSR-2 Instruments at 25 km Grid Spac-
ing, version 2.0 (Toudal Pedersen et al., 2017). The data set
consists of satellite observations from the National Space
Agency’s Advanced Microwave Scanning Radiometer in-
struments (AMSR-E/AMSR-2). The AMSR-E/2 observa-
tions are, like the OSISAF SIC observations, also based
on measurements from a passive microwave measuring the
brightness temperature. The observations are structured on a
25 km grid. The OSISAF and AMSR-E/2 data sets are differ-
ent data products, but are in many cases tuned to give similar
results and cannot be viewed as true independent data sets.
The AMSR-E/2 product has a gap from October 2011, when
AMSR-E failed, to July 2012, when AMSR-2 became oper-
ational. This is in the middle of our analysis period, resulting
in less data for verification. The AMSR-E/2 SIC observation
product includes individual uncertainty estimates for all grid
points. This uncertainty is based on the sum of the algorithm
uncertainty and smearing uncertainty. Smearing uncertainty
is related to the location of the observation compared to the
grid.

Two different SIT products are assimilated. For thick SIT
observations, the CryoSat-2 Level-4 Sea Ice Thickness prod-
uct is used (Kurtz and Harbeck, 2017). The CryoSat-2 obser-
vations are based on radar altimeter measurements of sea ice
freeboard. The SIT is derived assuming nominal densities for
ice, snow and water and is only valid for high-concentration
ice (> 70 %; Kurtz et al., 2014b); thus they are assumed to be
observations of thick ice relative to the SMOS observations.
The snow depth used to calculate sea-ice elevation is con-
structed from the Warren climatology of snow depth (Warren
et al., 1999), modified to account for the loss of multi-year
ice in recent years (Kurtz and Farrell, 2011). The data set has

a spatial resolution of 25 km and a 30-day average tempo-
ral resolution covering the entire Arctic. For the CryoSat-2
data set, no uncertainty estimates are provided; thus follow-
ing Zygmuntowska et al. (2014) an uncertainty of 0.5 m was
used for all CryoSat-2 observations. Due to the low temporal
coverage, this is most likely an underestimation of the un-
certainty, and other publications have suggested higher un-
certainties (Xie et al., 2016; Chen et al., 2017). In our study,
the main focus is on the impact of the observations on the
assimilation system and thus a low error is applied in order
to elucidate the model impact of the observations. Since the
CryoSat-2 data set is only valid for high-concentration ice, all
observations are in the internal part of the Arctic sea ice and
will in future also be referred to as internal ice thickness. The
CryoSat-2 observations are only available in the cold season
from October to April.

For thin SIT observations, the daily L3C SMOS Sea Ice
Thickness version 3.1 is used (Tian-Kunze et al., 2016).
These SIT observations are acquired from a satellite using a
passive microwave with L-band frequency. Measurements of
brightness temperatures are converted into SIT using a radi-
ation and thermodynamic model based on penetration depth
(Tian-Kunze et al., 2014). Xie et al. (2016) found that obser-
vations thinner than around 0.4 m were the most realistic to
use in the analysis. Hence, in this study, observations thicker
than 0.5 m have not been used. For the SMOS observations
it is assumed that all observations are acquired at 100 % SIC;
thus the observations are assimilated as normalised ice vol-
ume. The SMOS data set has a resolution of 12.5 km and is
structured on a stereographic grid. Since all SMOS observa-
tions are thinner than 0.5 m they are all located in the vicin-
ity of the Arctic ice rim and will in future also be referred
to as rim ice thickness. As for the internal ice thickness ob-
servations, the SMOS SIT are only available in the cold sea-
son from October to April. The SMOS observations include
individual uncertainty estimates for each grid point. These
uncertainty estimates are a combination of uncertainties of
measured brightness temperature, auxiliary data sets and as-
sumptions made in the radiation and thermodynamic mod-
els. In general thicker ice has higher uncertainty (Kaleschke
et al., 2017).

For verification of the modelled SIT, the weekly combined
SMOS-CryoSat-2 data set version 1.3 was used (Ricker et al.,
2017). This observation product provides SIT observations
covering the whole Arctic during the cold season. In addi-
tion, the IceBridge L4 Sea Ice Thickness observations are
used for verification (Kurtz et al., 2013; Kurtz et al., 2014a).
This data set consists of SIT and snow-depth measurements
from an aeroplane, using a radar altimeter measuring the ice
freeboard. The IceBridge observations are limited temporally
to March–April, and spatially to parts of the Beaufort Sea, the
Canadian Archipelago and north of Greenland.

The snow-depth observations are derived from AMSR-E/2
observed brightness temperatures (Rostosky et al., 2018).
The data are available on a daily basis with a resolution
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of 25 km× 25 km. The algorithm uses the same technique
which was developed by Markus and Cavalieri (1998) to re-
trieve snow depth over Antarctic sea ice. Their product is
based on an empirical relationship between the gradient ratio
of the 37 and 19 GHz brightness temperature observations
and Antarctic snow depth. It was adapted to retrieve snow
depth on Arctic sea ice (Comiso et al., 2003), but due to the
radiometric properties of Arctic multi-year ice, the retrieval
is limited to first-year ice only. The new product by Ros-
tosky et al. (2018) makes use of lower frequency channels
(i.e. brightness temperature observations at 6.9 GHz) which
are less sensitive to the Arctic multi-year ice and thus the re-
trieval can be, with some exceptions (Rostosky et al., 2018),
applied over the whole Arctic sea ice. The new snow-depth
retrieval was trained and evaluated using NASA’s Operation
IceBridge airborne snow-depth observations (Newman et al.,
2014). Those observations are, however, mainly limited to
March and April and, so far, no evaluation of the snow-depth
product exists for the remaining winter season. We, therefore,
limit our analysis to snow-depth observations in March and
April. For the snow-depth product, uncertainty estimates ex-
ist for every grid point. There are two main sources of uncer-
tainty in this observation product: the first is that the number
of IceBridge observations used to develop the empirical re-
lationship between brightness temperatures and snow depths
is small compared to the coverage of the product. The sec-
ond uncertainty is in the input parameters (brightness tem-
perature, ice concentration, etc.). More on how the uncer-
tainties are explicitly calculated can be found in Rostosky
et al. (2018). When the model simulations were performed,
the snow-depth product was in its early development state.
Now, a slightly updated version of the snow-depth product
exists, but since the overall differences between the updated
version and the early state version are small we do not expect
the updated data set to yield substantially different results.

In addition to the radar observations, ice mass balance
(IMB) buoy observations of SIT and snow depth (Perovich
et al., 2018) are used for model verification. These data in-
clude measurements of SIT and snow depth from drifting
buoys in the Arctic at multiple time intervals and different
locations every year. The measurements are performed by
sounders (Polashenski et al., 2011).

4 Methods and model setup

4.1 The ensemble Kalman filter

The ensemble Kalman filter (EnKF) is a sequential data-
assimilation method used in a wide variety of geophysi-
cal systems (Evensen, 1994, 2009; Houtekamer and Zhang,
2016). The analysis equation for the EnKF is given by
(Jazwinski, 1970; Evensen, 2003)

xa = xb+PbHT
(

HPbHT
+R

)−1
(y−Hxb) . (2)

The model background and analysis state vectors are matri-
ces given by, xb ∈ Rn×N and xa ∈ Rn×N , respectively. Here
n is the number of variables (that will become updated) times
number of grid cells, andN is the number of ensemble mem-
bers. The covariance of the observations is given by R ∈
Rm×m, where m is the number of observations, H ∈ Rm×n
is the observation operator, which is a transformation opera-
tor between model and observation space, and y ∈ Rm×N is
the observation matrix. For the EnKF, the background error
covariance matrix, Pb, is estimated based on the covariance
of an ensemble of model states. The ensemble is generated
by either perturbing the forcing, the model parameters, the
observations or a combination of the three. The estimator for
background error covariance, Pb ∈ Rn×n, is

Pb = ((xb− xb)(xb− xb)T ). (3)

The overbars indicate an ensemble average. In our study,
the deterministic ensemble Kalman filter (DEnKF) proposed
by Sakov and Oke (2008) is used. This method solves the
analysis equation without the use of perturbed observations.

When using the EnKF spurious covariances might occur
due to distant state vector elements and insufficient model
rank when small ensemble sizes are used. These artefacts
can be reduced by using a method for localisation (Evensen,
2003; Sakov and Bertino, 2011), limiting the assimilation to
affect a smaller area. There are several methods for localisa-
tion, and in this study, the polynomial taper function (Gaspari
and Cohn, 1999) is used. The taper function is a bell-shaped
function providing stronger influence on nearby grid cells.

4.2 Ensemble spread

Sufficient ensemble spread is essential for a robust and well-
functioning EnKF assimilation system. In general, this is
maintained by the Kalman Filter equations, but it is impor-
tant to also take into account the uncertainty in the model
and the atmospheric forcing. The atmospheric forcing is per-
turbed to account for uncertainty in the forcing. The atmo-
spheric forcing is perturbed using smooth pseudo-random
fields (Evensen, 2003) with zero mean and standard devia-
tion based on perturbation values applied also in the more
tested and robust TOPAZ system (Sakov et al., 2012). For the
2 m temperature, the standard deviation is 3 K, cloud cover is
20 % and per-area precipitation flux is 4× 10−9 m; and for
wind, 1 m s−1 in both horizontal directions is applied. To ac-
count for model uncertainty, the ice strength parameter, P ,
is perturbed. This is done by perturbing the model parame-
ter Cf which is the frictional energy dissipation parameter.
In CICE, Cf is proportional to the ice strength (Hunke et al.,
2015b),

P ∝ Cf. (4)

The default value of Cf is 17, but according to Flato and
Hibler (1995) this is not a well-known parameter. In our
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study, this parameter is modelled as a stochastic variable with
a mean value of 17 and a standard deviation of 10. The dif-
ferent values are chosen based on values found during model
tuning using observations by Flato and Hibler (1995). Since
only one value less than 10 was found in their study, values
less than 10 for Cf are not used.

4.3 Experimental design

The assimilation model system consists of 20 ensemble
members, with an assimilation time step of 7 days. Simi-
larly to Sakov et al. (2012) a localisation radius of 300 km is
used. The initial ensemble is generated from ice states from
1 January based on 20 different years of a stand-alone sea-
ice model run without assimilation. The stand-alone model
was initialised without ice in 1979. All initial ocean states
are model output at the initial date 1 January 2010. This out-
put is taken from a model spin-up over 1993–2010. Before
performing the experiments, a model system assimilating ice
concentration and sea-surface temperature (SST) from OS-
TIA (Donlon et al., 2012) is run for 1 year until 1 Jan-
uary 2011, to be used as an initial state.

In the CICE model, the sea-ice variables are distributed
into 5 thickness categories, while all observations are sin-
gle category values. This discrepancy was solved by assim-
ilating the aggregated category values and using the EnKF
correlation properties to update each category individually.
After assimilations, the analysis results are post-processed
before new forecasts are run. During post-processing, it is
verified that the consistency of the different ice variables is
maintained during assimilation, as the analysis can lead to,
for instance, situations in which some areas have a positive
partial SIC but the corresponding partial SIT is zero or less
than zero – in this example the SIC is set to zero. In addition,
all variable bounds are checked during post-processing. Due
to linear correlation effects of the EnKF, locations with non-
physical concentrations can occur, for instance, SIC values
both above one and below zero.

For the ocean parameters, only ocean temperature and
ocean salinity are updated during the assimilation. Experi-
ments have shown that large instantaneous changes to the
ocean parameters lead to model instability. These large
changes are especially seen in the marginal ice zone (MIZ),
where the ensemble spread is largest and the update to the
ensemble is strongest. To prevent these instabilities in the
ocean, the magnitude of the ocean update during an assim-
ilation step is limited. In this work, a maximum temperature
update step of 0.2 K for the ocean surface layer and 0.1 K for
all other ocean layers is chosen. Similarly, for the salinity, 0.2
for the surface layer and 0.1 for all other layers is chosen. The
limits are chosen crudely, based on values where the model
did not immediately crash after assimilation. Although this is
a crude simplification, almost omitting the ocean update, it is
believed to be sound, because the focus in this research is on

Table 1. Overview of the five experiments used to assess observa-
tion impact. The X marks a given observation that is assimilated in
the experiment.

OSISAF CryoSat-2 SMOS Snow
depth

Exp1 (SIC) X
Exp2 (SIC + SITI) X X
Exp3 (SIC + SITR) X X
Exp4 (SIC + SD) X X
Exp5 (Control)

the sea ice, and because it is implemented consistently for all
the model experiments.

Five experiments assimilating different observations are
used to investigate the effect of observations on the model.
In experiment 1 only OSISAF SIC is assimilated, in experi-
ment 2 both OSISAF SIC and CryoSat-2 SIT, in experiment 3
both OSISAF SIC and SMOS SIT, in experiment 4 OSISAF
SIC and snow depth (SD) observations, and experiment 5 is
a control run without assimilation. All assimilation systems
are initialised after 1 year of initial assimilation on 1 Jan-
uary 2011 and run for 3 years. A summary of the different
experiments is shown in Table 1.

5 Results

In this section, the output of the five ensemble experiments
is compared. All results are based on the output from 2011
to 2013. As mentioned, the first year of modelling, 2010, is
only used to spin-up the experiments, generating a stable and
consistent ice–ocean model state.

Many of the results shown in this section will be based
on the root mean squared error (RMSE). In this study, the
RMSE is weighted by the observation uncertainty, σObs(i),

RMSE=

√√√√√
N∑
i=1

(Mod(i)−Obs(i))2

σ 2
Obs(i)

N
, (5)

where N is the number of grid cells, Obs and Mod are the
observations and model values, respectively. Thus, an RMSE
of 1 indicates that the difference between model and obser-
vations are on average of the same order as the observation
uncertainty.

5.1 Validation against concentration observations

In Fig. 2 the monthly averaged ensemble mean of the five ex-
periments were validated against two different SIC observa-
tion products; one assimilated and one independent are plot-
ted. In Fig. 2a the RMSE values of the ensemble mean of
the modelled SIC validated with the observed AMSR-E/2
product are plotted after assimilation. All four assimilation
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Figure 2. The monthly averaged RMSE of the ensemble mean SIC over 3 years. In (a) the model is validated against AMSR-E/2 SIC
observations and (b) OSISAF SIC observations. The lines represent different experiments: black is only SIC assimilation, blue is SIC
and CryoSat-2 thick internal SIT assimilation, red is SIC and SMOS and thin rim SIT assimilation, yellow is SIC and snow-depth (SD)
assimilation and magenta dotted is without assimilation.

experiments are found to be significant improvements com-
pared to the control experiment without assimilation. Using
a one-sided paired sample student t test over all 36 months of
simulation, both the CryoSat-2 internal SIT and SMOS rim
SIT experiments show significant improvements compared
to the OSISAF SIC-only experiment on a 5 % level, but the
differences are relatively small. The significance is derived
using monthly data, but not yearly averaged data as in the
figures. However, the snow experiment is not found to be sig-
nificantly better than the OSISAF SIC-only experiment on a
5 % level: a p value of 0.23 is found. The difference between
the SIT experiments and the SIC-only experiment is largest
during the first half of the year, while in the second half of
the year all experiments give similar results with a peak in
the RMSE in October–November. This peak in RMSE is also
seen in the control model, indicating a possible model prob-
lem related to the transition from the melt season to the grow-
ing season.

In Fig. 2b the monthly averaged RMSE of the model SIC
ensemble mean versus the assimilated OSISAF SIC observa-
tions is plotted. The result in Fig. 2b is similar to that of (a),
but the differences between the models are larger when veri-
fied against OSISAF, even though the OSISAF observations
are assimilated in all experiments. This is partly related to the
lower observation error in the MIZ for the OSISAF data set
than for the AMSR-E/2 data set, and the OSISAF including
almost an extra year of observations due to the AMSR-E/2
gap. Since the RMSE values are weighted by the observation
error the differences in the MIZ are more pronounced when
verified against OSISAF SIC observations. In addition, ev-
idence that there are small differences between the two ob-
servation products is seen by different shapes on the graphs,
even though the curves follow the same trends. As men-
tioned, the CryoSat-2 and SMOS SIT experiments are signif-

icantly better than the OSISAF SIC-only experiment. When
compared to the OSISAF observations, the snow-depth as-
similation experiment is also found to be significantly better
than the OSISAF SIC-only experiment: there are significant
differences, especially during the first half of the year. In con-
clusion, assimilating SIT and to some degree, snow depth has
a significant effect on the SIC RMSE, and the effect is largest
for the first half of the year. In the transition from melting ice
to freezing ice, all four experiments give similar high RMSE
values.

RMSE estimates are sensitive to individual measurements,
contributing to large portions of the total RMSE; thus, a small
area with large errors will obscure the overall model results.
Another assimilation quality measure is hit rates, where all
grid cells are given equal weight in the analysis. In our work,
the hit rate is analysed by classifying the SIC in three cate-
gories: open water (concentration less than 10 %), low con-
centration (< 50 %), and high concentration (> 50 %). The
hit rate is defined as the number of grid cells correctly classi-
fied. The independent AMSR-E/2 observations are used for
verification. In Fig. 3a the number of grid cells correctly clas-
sified is shown; in Fig. 3b the number of grid cells with mod-
elled ice and observed water are shown; in Fig. 3c the number
of grid cells with modelled water and observed ice are shown;
in Fig. 3d the number of grid cells with a wrong concentra-
tion category are shown, with high SIC classified as low SIC
and vice versa. All assimilation experiments outperform the
control run in terms of hit rate. The control run has a large
number of false positives, indicating too much ice. Among
the experiments, the variations are small in spring, autumn
and winter, while summer shows significant differences. In
summer all experiments have a minimum, which is related to
an underprediction of sea ice and wrong classification of con-
centration in observations due to melt ponds on ice, which
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leads to an underestimation of SIC in the observations (Kern
et al., 2016). In summer the CryoSat-2 assimilation has the
highest number of hits, closely followed by the SMOS and
snow experiments.

5.2 Total extent and volume

In Fig. 4, the total sea ice extent (Fig. 4a), the total sea-ice
volume (Fig. 4b), and the total sea-ice volume overlapping
the area and period covered by the CryoSat-2 internal SIT
observations (fig. 4c) are shown for the five experiments. Fig-
ure 4a shows that the control experiment has a too large sea-
ice extent both in summer and winter, while the assimilation
experiments have a slightly too large ice extent in winter.

The total sea-ice volume shown in Fig. 4b indicates large
differences between the five experiments. Snow depth assim-
ilation generally leads to thicker ice. The model has a lower
amount of snow than the observations, and due to a posi-
tive correlation, the ice thickness is also increased during the
assimilation of snow depth. The increased thickness can be
seen by the fact that the snow-depth experiment has about
the same extent as the other experiments, but shows a sig-
nificantly larger ice volume, both in summer and winter for
all 3 years. Both the SMOS and CryoSat-2 ice thickness ex-
periments lead to thinner sea ice compared to the control ex-
periment. In particular, the SMOS assimilation model shows
much thinner sea ice than the other assimilation experiments.
The thin SIT observations have a very strong effect on the
modelled SIT, seen by an abrupt update of sea-ice volume
during assimilation in winter. A concerning effect of the as-
similation experiments is the strong decrease in the Arctic
sea-ice volume throughout the period of study. The sea-ice
volume maximum in winter decreases for every year of as-
similation; this is not seen in the control run.

In Fig. 4c the modelled sea-ice volume is compared to the
sea-ice volume in the combined CryoSat-2-SMOS product.
The control model is found to have too thick ice compared
to the observations, while the experiments assimilating SIT
are much closer to the observations, though largely biased.
This can be used to explain the drastic decrease in sea-ice
volume found in Fig. 4b. The model SIT is adjusting to the
observations by rapidly thinning the sea ice. For the OSISAF
SIC-only assimilation experiment, the volume is also slowly
diverging towards the observed volume, even though SIT is
not assimilated. This is likely related to a more accurate sea-
ice extent that also leads to improved ice thickness in the
marginal ice zone. However, the improvements are obtained
at a slower pace than when assimilating SIT directly.

5.3 Validation against thickness observations

In Fig. 5a the SIT RMSE of the ensemble mean modelled SIT
is verified with the combined SMOS-CryoSat-2 SIT prod-
uct. The experiment assimilating SMOS thin SIT has signif-
icantly lower RMSE values than the other three assimilation

Table 2. The March–April averaged RMSE values of the five ex-
periments compared to the IceBridge aerial SIT observations. Bold
values represent the model with the lowest RMSE values for that
year.

2011 2012 2013 2011–2013

SIC 0.88 0.87 1.11 0.94
SIC+SITI 0.63 0.86 0.72 0.80
SIC+SITR 0.74 1.14 0.87 0.96
SIC+SD 0.93 1.38 1.64 1.51
Control 0.82 1.25 2.31 1.38
Cryo observations 0.67 0.95 0.84 0.84

experiments. The other three experiments are more similar,
all showing high RMSE values. It is found using a one-sided
paired student t test that only the SMOS SIT experiments
are significantly better than the SIC-only assimilation, with
p values less than 5 %. Due to the high RMSE values, only
small improvements are seen compared to the control run.
The result is consistent with what was found for the sea-ice
volume (Fig. 4c), regarding the SMOS SIT assimilation hav-
ing the strongest effect on the modelled SIT. The reason for
the high RMSE values is that, in general, the model has too
much ice, leading to too thick ice in the MIZ. For the SMOS-
CryoSat-2 SIT product, the uncertainties provided are very
small, especially in the MIZ where the SMOS observations
are used; thus when calculating the RMSE these values have
a huge effect on the result. Thus, it is also reasonable that
the assimilation system for these MIZ-thickness observations
also gives the lowest RMSE values. For the other assimila-
tion systems, the ice extent is updated in the MIZ, but the
thickness reduction takes longer because it has to evolve over
time.

As for the SIC observations, the RMSE values are bi-
ased by locations showing large differences. Particularly for
thickness which is not bounded upwards, a few grid cells in
the MIZ can contribute to a large total RMSE. As for con-
centration, an alternative measure is one in which correctly
classified model thickness hit rates are used. The model is
separated into four thickness categories: less than 0.5 m, be-
tween 0.5 and 1.5 m, between 1.5 and 3 m, and above 3 m. In
Fig. 6a the number of correctly classified ice thicknesses grid
cells is plotted for each experiment. The figure shows that
the CryoSat-2 internal SIT experiment is the model which
has the highest number of correctly classified grid cells.
The other experiments are more similar, except in spring
where the SMOS rim SIT assimilation is equally good as
the CryoSat-2 internal SIT assimilation, and both are much
better than the other three. In spring the SIC-only and snow-
depth assimilations are not improved compared to the control
case. In general, the model shows too much ice. This can be
seen by a large number of grid cells having too thick ice in the
control model (Fig. 6b). This is a combination of the sea-ice
extent being too large and the ice being too thick. By assim-
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Figure 3. Classification of the model result based on three classes: high-concentration ice (> 50 %), low concentration ice (< 50 %) or water
and compared to AMSR-E/2 SIC observations. The figures show (a) the fraction of correctly classified grid cells, (b) the fraction of grid cells
with modelled ice while water is observed, (c) the fraction of grid cells with modelled water while ice is observed, and (d) fraction of grid
cells where the model and observations have different SIC classification. The colour coding in the figure is the same as that of Fig. 2. These
panels cover all possible classifications; thus the sum of them equals one.

ilating the observations, the ice volume is reduced, not only
for the SIT assimilations, but also for the snow-depth and
SIC-only assimilations, but to a lower degree for the latter.
This is an effect of a lower sea-ice extent (Fig. 4a). In Fig. 6c
the number of grid cells with too thin ice compared to the ob-
servations is shown. It was found that this is a big problem in
early winter for all experiments but reduces during winter for
all experiments except the SMOS experiment. During SMOS
assimilation, only thin ice is assimilated, which might lead to
a bias towards the thinner ice, causing a relatively high num-
ber of grid cells with too thin ice.

As an example, in Fig. 7 the absolute differences be-
tween the experiments and the combined CryoSat-2 SMOS
ice thickness observations are plotted for 1 April 2011. Fig-
ure 7 is consistent with Fig. 6a, showing that the CryoSat-2
experiment has the smallest differences compared to the ob-
servations in the internal Arctic, affecting a large area; how-
ever, large differences can be seen in MIZ. While for the
SMOS rim SIT assimilation the effect is the opposite, with
a large impact in the MIZ and small impact in the ice inte-

rior. This shows that assimilating SIT is important both in the
interior and in the MIZ.

In addition to the satellite observations, the independent
airborne IceBridge data set is used for verification of the
modelled SIT (Kurtz et al., 2013; Kurtz et al., 2014a). This
data set has low temporal and spatial distributions, but is be-
lieved to have higher accuracy and much higher spatial and
temporal resolutions. All observations occurring in March
and April are gathered as a yearly averaged observation as
a function of space. These yearly observations are then com-
pared to modelled SIT averaged over the same period for the
observed IceBridge locations. Since the IceBridge resolution
is much higher than that of the model, all IceBridge obser-
vations within one model grid cell are averaged and used
for verification. The average is done by a weighted mean
based on the observation uncertainty. The validation results
are shown in Table 2. On average, the CryoSat-2 SIT exper-
iment has the best SIT estimation as compared to IceBridge.
Both the SMOS and the CryoSat-2 SIT experiments give on
average thinner SIT than the IceBridge observations, which
are consistent with the findings of Chen et al. (2017). The
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Figure 4. The evolution of (a) total sea-ice extent, (b) total sea-ice volume and (c) total sea-ice volume for the area covered by the CryoSat-
2-SMOS SIT observation product. The coloured lines represent the same as in Fig. 2. In (a) the black stars represent the AMSR-E/2 SIC
observations and the red stars the OSISAF SIC observations. In (b) same as (a) without observations. In (c) the black stars represent the
CryoSat-2-SMOS observation product. The x label is given as month and year.

last line in the table shows the RMSE between the CryoSat-2
observations and the IceBridge observations and the results
show that the error is comparable to the model errors.

For all 3 years, the CryoSat-2 assimilation has lower
RMSE values than the CryoSat-2 observations, indicating a
well-balanced assimilation, with appropriate observation er-
ror and ensemble spread. It should also be mentioned that the
CryoSat-2 observations have less spatial coverage than the
model and not all IceBridge observations are covered; thus
the number of useful observations for the CryoSat-2 RMSE
calculation are smaller than for the validation of the experi-
ments.

Another independent data set of SIT observations comple-
menting the IceBridge observations by a temporal resolution
spanning the entire year is the IMB buoy data set. The re-
sult of model validation with the IMB product is shown in
Table 3. For these observations, a slightly different method
than that applied for IceBridge is performed. This is because
IceBridge temporarily only covered March–April, while the
IMB data span the entire year. The buoy observations are
converted to daily averages on the model grid. From these

values, the RMSE is calculated on the 7-day ensemble mean
and averaged for each year. Since SIT is a relatively slow
varying variable, for each 7-day output, observations from
±3 days are used to increase the number of observations. The
IMB observations do not include an uncertainty estimation;
hence the RMSE is not normalised as was the case for other
RMSE estimates in this work. The results show that over the
3 study years, the SMOS internal SIT assimilation system has
the lowest RMSE values, followed by the CryoSat-2 internal
SIT assimilation. The other three show similar results, again
indicating a positive impact of assimilating ice thickness in
the model.

5.4 Validation against snow observations

In Fig. 5b the RMSE of monthly averaged modelled snow
depth is plotted over all ensembles validated against the ob-
served satellite snow depth (Rostosky et al., 2018) used for
assimilation. The control experiment is found to have the
lowest RMSE values. This is most likely an effect of sea-ice
extent being different to the assimilation experiments, rather
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Figure 5. RMSE of monthly averaged model SIT and snow depth averaged over all ensemble members for the years 2011–2013 calcu-
lated against the (a) combined SMOS-CryoSat-2 SIT product and (b) observed snow-depth product. These are observations also used for
assimilation. The colour coding is as in Fig. 2.

Table 3. The yearly averaged RMSE values of the five experiments
compared to the IMB SIT buoy observations. Bold values represent
the model with the lowest RMSE values for that year. No uncertain-
ties are used to normalise the RMSE values.

2011 2012 2013 2011–2013

SIC 0.99 1.45 1.32 1.27
SIC+SITI 1.08 1.28 1.00 1.13
SIC+SITR 1.09 1.07 0.99 1.05
SIC+SD 1.02 1.40 1.28 1.25
Control 1.46 1.27 1.23 1.26

than the assimilation declining the accuracy of the modelled
snow depth. In addition, the control experiment has an in-
creasing RMSE during the period, while the assimilation ex-
periments show the effect of assimilation by decreasing the
RMSE. For the assimilation experiments, the snow experi-
ment has the lowest RMSE values followed by the CryoSat-2
experiment, indicating that the thick ice observations have a
correlation effect on the snow depth. These two observation
products also cover a similar area of the Arctic Ocean.

A verification of the modelled snow depth using the in-
dependent IceBridge data set is given in Table 4. The same
method as for the SIT in Table 2 was used, where March–
April model values are compared to the IceBridge obser-
vations and averaged. It is found that none of the experi-
ments are particularly better than any of others when ver-
ified against IceBridge snow-depth observations. It is seen
that, within one grid cell, there are huge variations in the
IceBridge snow observations. Such variations cannot be pro-
vided with a coarse-resolution model. Hence, even though
IceBridge is used to “tune” the snow observations (Rostosky
et al., 2018), large RMSE values are estimated for the exper-
iment assimilating snow depth. In addition, the snow compo-
nent used in our coupled system is likely too simple, having

Table 4. The March–April-mean RMSE of the ensemble-mean
snow depth averaged over all grid cells. The five experiments and
the snow-depth satellite observations are compared to the IceBridge
airborne snow-depth observations. Bold values represent the model
with the lowest RMSE values for that year.

2011 2012 2013 2011–2013

SIC 0.79 1.38 2.64 1.63
SIC+SITI 0.79 1.15 1.44 1.06
SIC+SITR 0.78 0.83 1.73 1.17
SIC+SD 0.74 1.22 1.46 1.13
Control 0.77 2.49 1.85 1.33
Snow observation 1.46 NA 1.17 1.16

NA – not available

only one snow layer, which may affect the snow cover accu-
racy. It is also important to mention that the snow observa-
tions are in an early development stage and might have larger
uncertainties than those used in this study.

Additional model verification is performed with the inde-
pendent IMB buoy snow-depth observations. The method of
validation is performed in a similar manner as for SIT vali-
dation with IMB buoy data: the results are shown in Table 5.
As the IMB data do not include an uncertainty these RMSE
values are not normalised; thus they are significantly lower
than the error estimates from the ice bridge validation in Ta-
ble 4. From the table it is clear that the differences between
the assimilation systems are small. The assimilation systems
for snow depth and CryoSat-2 internal SIT are slightly bet-
ter than the others, but the differences are too small to obtain
conclusions.
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Figure 6. The monthly mean SIT averaged over all ensemble members is classified into four thickness categories and compared to the
CryoSat-2-SMOS SIT observation product. The fraction of grid cells are shown with (a) correctly classified thickness category, (b) too thick
ice, and (c) too thin ice. As in Fig. 2 the coloured lines represent different experiments.

Table 5. The yearly averaged RMSE values of the five experiments
compared to the IMB snow-depth buoy observations. Bold values
represent the model with the lowest RMSE values for that year. No
uncertainties are used to normalise the RMSE values.

2011 2012 2013 2011–2013

SIC 0.06 0.15 0.2 0.15
SIC+SITI 0.08 0.14 0.17 0.13
SIC+SITR 0.09 0.15 0.17 0.14
SIC+SD 0.09 0.14 0.16 0.13
Control 0.09 0.16 0.19 0.15

5.5 One week forecasts

Figure 8 shows the RMSE of the monthly averaged mod-
elled SIC over all ensemble members before assimilation
validated against the AMSR-E/2 and OSISAF SIC observa-
tions. Since the assimilation time step is 7 days, this gives
the accuracy of a 7-day forecast. The comparison against
AMSR-E/2 SIC observations (Fig. 8a) shows that the dif-
ferences between the experiments are small, and the differ-
ences are similar to those found after assimilation (Fig. 2a).
In general, the system with the most accurate initial state

also gives the most accurate forecasts. Thus, the CryoSat-2
and SMOS SIT assimilation experiments have a better 7-day
forecast from January to June than SIC only, and snow-depth
assimilation shows improvements from January to April. Us-
ing the OSISAF SIC observations (Fig. 8b) gave the same re-
sult as found for AMSR-E/2: the best initial states also pro-
vide the best forecast, indicating that the sea ice does not
change much overall in a week. The same experiments were
also done for ice thickness and snow depth and similar re-
sults were encountered. A reason for the small differences
between the different experiments is the coarse model reso-
lution. Large-scale variations as seen by a 20 km model are
not expected within a week.

6 Seasonal forecast

In the previous section, it was found that our coarse-
resolution model only exhibits small changes during a 1
week forecast. Thus, a more interesting forecast would be
one of seasonal length. A 5-month forecast of the Septem-
ber sea-ice extent is performed. This is done by running
each of the experiments from mid-April to mid-September
each year without assimilation and validating them against
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Figure 7. Absolute differences between the experiments and the combined SMOS-CryoSat-2 observation product are given on 1 April 2011.
The experiments are assimilating (a) OSISAF SIC, (b) OSISAF SIC and CryoSat-2 SIT, (c) OSISAF SIC and SMOS SIT and (d) OSISAF
SIC and snow depth.

Figure 8. RMSE of monthly averaged (over 3 years) ensemble mean of 7-day forecast SIC validated against (a) AMSR-E/2 SIC observations
and (b) OSISAF SIC observations.

the OSISAF SIC observations. The actual start date varied
slightly from year to year because of the 7-day assimilation
cycle, but the start date was the same for all experiments. In
Fig. 9a, the RMSEs of three 5-month forecasts are shown se-
quentially, and a monthly averaged RMSE over the 3 years
is shown in Fig. 9b. The figures show that the experiments
have very similar seasonal forecasts, with some differences

in late summer. In general, the model error is gradually in-
creasing towards the level of the control run, and in sum-
mer they have similar error levels. In August–September the
experiments assimilating thickness and concentration seem
to be improved compared to those without assimilation and
assimilating snow-depth observations. All experiments show
an increased RMSE in 2013: this is related to a too low sea-
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ice extent. The low sea-ice extent is caused by weaker mod-
elled ice growth compared to observations in the first months
of 2013.

The seasonal forecast is compared to a climatological sea-
sonal forecast in Fig. 10. This provides an estimate of the
expected sea-ice forecast accuracy. The climatological ex-
periment is done by running the model with averaged atmo-
spheric forcing data over the years from 2000 to 2014. The
result shows that the forecast skill of the model is rapidly de-
creasing and that a correct atmospheric forecast is very im-
portant for an accurate sea-ice forecast. Still, skills are ev-
ident on much longer timescales that can be obtained with
numerical weather prediction models.

7 Discussion

Significant differences in modelled SIC after assimilation
was found, especially in the first half of the year. The SMOS
and CryoSat-2 SIT assimilations gave the lowest RMSE val-
ues, which are significantly better than when assimilating
OSISAF SIC-only. The snow-depth experiment showed im-
provements during the first half of the year compared to the
experiment assimilating OSISAF SIC observations only. In
addition, assimilating SIT and snow depth lead to an im-
proved model of SIC in summer, where the CryoSat-2 in-
ternal SIT assimilation gave the highest number of correctly
classified grid cells, closely followed by the SMOS rim SIT
and snow-depth assimilations. The reason for these differ-
ences in summer is that the pace at which the ocean becomes
ice-free is dependent on the ice thickness and the snow depth.
In the second half of the year, autumn and early winter, all
our experiments gave similar results. These similarities seem
to be a consequence of the transition from melt season to
growing season not being well represented in the model. The
observed transition is faster than the modelled, leading to an
extended period with more open water in the model than in
the observations.

In the control model without assimilation, the ice extent
both in summer and winter was found to be larger than
observed. However, with assimilation, the experiments are
closer to the observed extent, even though a slight overes-
timation of extent in winter was found for the first 2 years.
The sea-ice extent overestimation in winter is a result of a
lower effect of SIC assimilation in winter due to lower en-
semble spread. When the ensemble spread is low the EnKF
assimilation result is closer to the model values, because the
estimated model errors become small.

It is found that originally the sea-ice volume is too large
compared to the observations, and over the 3 years, the sea-
ice volume in the assimilation experiments are gradually de-
creasing towards the observed values in the SMOS-CryoSat-
2 SIT product. The effect is much stronger for the SMOS
rim SIT assimilation, indicating that a large portion of the
original sea-ice volume overestimation is located in the MIZ.

This is a consequence of too much ice in the control model,
causing the observed MIZ to be located deeper in the Arctic
compared to the model, as noted by Fritzner et al. (2018).

In the verification of modelled SIT (Fig. 5a), the SMOS
rim SIT assimilation was found to give the lowest RMSE
values, while the CryoSat-2 internal SIT assimilation had
the largest amount of correctly classified thickness grid cells.
This is as expected since, even though the CryoSat-2 obser-
vations cover a larger area, they are 30-day averaged obser-
vations with much larger uncertainties than the SMOS ob-
servations. In addition, the non-updated grid cells in the MIZ
lead to larger RMSE values than non-updated grid cells in
the internal Arctic, where the model, in general, is more ac-
curate and less sensitive to changes. When verified by Ice-
Bridge observations, which only cover the central Arctic, the
CryoSat-2 SIT assimilation experiment was found to give the
lowest SIT RMSE values. The CryoSat-2 SIT observations
are in general thinner than the SIT values for the SIC-only
experiment. In comparison with the IceBridge observations,
the CryoSat-2 SIT is biased low, which was also found by
Chen et al. (2017). When assimilating snow depth, it was
found that snow-depth observations, in general, were thicker
than those modelled, resulting in increased snow depth dur-
ing assimilation. Due to the correlation nature of the EnKF,
a positive correlation between snow depth and SIT resulted
in increased SIT in the snow-depth assimilation experiment
compared to the other assimilation experiments.

Validating our experiments with snow observations proved
the control run to have the lowest RMSE values. This can be
an effect of different sea-ice extents in the control run than
in the assimilation experiments. For the control model, the
ice extent is too large, thus collecting more snow on the ice
than the assimilation experiments. When the ice concentra-
tion is reduced during assimilation, the accumulated snow is
also removed, which can result in the removal of too much
snow if the ice extent is less than it should be. A verification
of the impact of assimilation on the snow depth is that the
RMSE is decreasing throughout the observation period for
the assimilation experiments, while for the control run the
RMSE is increasing. Between the assimilation experiments,
the snow-depth assimilation was found to give the lowest
snow-depth RMSE values, which is not unexpected since the
same data set is used for assimilation and verification. More
interestingly the CryoSat-2 internal SIT experiment has sig-
nificantly lower RMSE values than the SMOS rim SIT and
OSISAF SIC-only assimilations, indicating a close correla-
tion between SIT and snow depth. A curiosity here is that
the SIT assimilation has a positive effect on the snow depth,
while it was found previously that the snow-depth assimila-
tion had a negative effect on the SIT. This is likely an ef-
fect of more SIT observations than snow-depth observations,
and SIT is assimilated throughout the whole winter. It could
be the case that the correlation relationship between snow-
depth and SIT changes throughout the winter. This results
in a better snow-depth estimate for SIT assimilation, while
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Figure 9. Seasonal forecast of summer sea-ice extent. Each forecast started at the beginning of April every year. The figures show the RMSE
of the ensemble mean SIC averaged over 3 years and verified against the assimilated OSISAF SIC. The coloured lines represent the same as
in Fig. 2. (a) Full period and (b) monthly averaged values.

Figure 10. Seasonal forecast of summer sea-ice extent, both with
climatological forcing and reanalysed forcing. Each forecast started
at the beginning of April every year. The figure describes monthly
averaged RMSE SIC averaged over all ensemble members. The blue
line represents a forecast using a climatological forcing made from
atmospheric data over 2000–2014 with assimilation, the black line
using reanalysed atmospheric forcing and assimilation, and the dot-
ted magenta line use reanalysed forcing only.

for snow-depth assimilation the assimilation period is lim-
ited to March–April. In addition, when a parameter is only
assimilated during two months of the year, the model error
is larger when the assimilation period starts; thus the assimi-
lation update has a large effect both on snow depth and SIT.
An indication of the relation between SIT and snow depth is
also seen by lower snow-depth RMSE values for the SMOS
rim SIT assimilation than the OSISAF SIC-only assimila-
tion. Since the SMOS system covers a much smaller area and
has less overlap with the snow data set than the CryoSat-2 in-

ternal SIT, the effect of assimilation on the modelled snow is
smaller.

When validating our experiments with the IceBridge
snow-depth observations, none of the experiments showed
any improvement compared to the others. This can be related
to an underestimated uncertainty in the snow observations or
that the snow representation in the model is too simplistic,
only utilising a single layer. Another problem is local varia-
tions: the coupled model is coarse with a resolution of 20 km,
but, as can be seen from the IceBridge observations, the snow
depths have large spatial variations in this range. This causes
high RMSE values, both compared to satellite observations
(on the model grid) and the modelled snow-depth values.
In addition only 4 months of snow-depth observations were
available for assimilation during the 3 years.

For sea ice, the model drift is in general small, the model
system with the best initial state provides the best short-term
forecast. The main parameters analysed in this study, snow
depth, SIT and SIC, all vary on timescales longer than 1 week
for the spatial resolution in our model. Thus, the correlation
between day 1 and day 7 is too strong. As also shown by
Chen et al. (2017), the sea-ice drift is low.

Several 5-month seasonal forecasts of the September sea-
ice extent showed small differences between the assimilation
experiments. All experiments showed a steady increase in
RMSE with time. This is likely caused by the model over-
growth of ice. The seasonal forecasts showed that after 3–
4 months the RMSE values were found to be of the same
order as those in the control run. Thus, assimilation gives
at least an improvement over 3–4 months, and the Septem-
ber result suggests that with the assimilation of SIC and SIT
there are improvements in the Arctic sea-ice extent compared
to the control run on even longer timescales. This was not
seen for the snow depth experiment. The seasonal forecast
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was compared to a climatological run, and it was found that
without accurate forcing the forecast degenerates fast.

In this work, four different observation products have been
used for assimilation. The different products differ widely in
both temporal and spatial coverage in addition to accuracy.
There is no doubt that it is preferable to have as much cov-
erage and as accurate observations as possible. Where a re-
alistic observation error is a necessity for the assimilation,
without a realistic observation error, the observation is not
useful. For example, the CryoSat-2 product does not pro-
vide an observation error and a uniform error was chosen,
which will lead to some observations being given too much
weight and others too little. In this study, the spatial resolu-
tion of the observations is not a problem, because the model
resolution is coarse, but in the future, when the model res-
olution increases, there will be an increasing demand for
high-resolution SIT observations. Both SIT products are only
available in winter, and temporal coverage of the snow-depth
observations are limited to 4 months of a 3-year experiment.
Thus, for these products to be even more useful, there is a
strong need for increased seasonal coverage, especially in
summer when the Arctic sea-ice extent is at a minimum and
there is ship traffic there. Observations can then help to im-
prove the models, thereby helping to plan operations and de-
crease the risks. In addition, because there are few snow ob-
servations available for assimilation, there are large unknown
aspects regarding the assimilation effect. Finally, it should be
remembered that the model itself has in general too much ice
and that the forcing is known to contain biases and errors
(Jakobson et al., 2012).

8 Conclusions

In conclusion, we have found that assimilation of more ob-
servation types than SIC into coupled sea-ice–ocean models
can lead to significant model improvements. We show that
the assimilation of SIT, in particular, leads to improvements
in modelled SIC, SIT and snow depth for long-term model
improvement. There is clear evidence that assimilation of
SIT gives a better representation of the full ice state, and we
recommend that they are assimilated into models when avail-
able. Even though SIT seems to be an important variable for
improving sea-ice modelling, it still has several limitations
in terms of spatial and temporal resolution and realistic ob-
servation errors. It is important to emphasise that assimila-
tion of SIC is vital to the assimilation update: these observa-
tions give important information with full Arctic coverage on
where the ice is located. In addition, the fractional ice in the
MIZ is important for the forecast in terms of how the short-
term changes in the sea-ice will look, and also an indication
of the thickness.

Assimilation of snow depth was found to have a weaker
effect on the model than assimilating SIT, but improvements
to modelled SIC and modelled snow depth were found. In

addition, we found a strong correlation between SIT and
snow depth, which should be analysed further when more
observations from other months become available. The low
efficiency of snow-depth observations can be related to the
low model resolution. The IceBridge observations show large
snow-depth variations within a model grid cell. It is also im-
portant to keep in mind that the snow-depth observations are
in an early development stage, and the uncertainty estima-
tions might not be correct. Possibly inaccurate observations
or a wrong uncertainty estimation can have a huge impact on
the assimilation result. Due to the small temporal coverage
in our study more investigation has to be done on the effect
of assimilating snow-depth observations.

As mentioned, the assimilation of SIT leads to an im-
proved model, which leads to improved short-term forecasts
over time, because the initial states are better represented.
For the seasonal forecast, we found that the model improve-
ments due to assimilating observations have a memory of at
least 3–4 months, and possibly even longer. Assimilating SIC
and SIT showed improvements of the September ice fore-
casts compared to assimilating snow depth and no assimila-
tion.

Comparing the two SIT products, SMOS thin SIT and
CryoSat-2 thick SIT, we see that, in general, the CryoSat-
2 observations give the best long-term model improvement,
but especially for decreased RMSE values in summer. It is
expected that the SMOS observation assimilation should be
better for the short-term forecast, but we were not able to pro-
vide any results on this. This could be an effect of the model
resolution being too low. With 20 km resolution the ice state
does not change much over a week of simulation.
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Abstract12

In this study, the potential for sea-ice concentration prediction using machine-learning13

methods is investigated. Three different sea-ice prediction models are compared: one high-14

resolution dynamical assimilative model and two statistical machine-learning models. The15

properties of all three models are explored, and the quality of their forecasts is compared.16

The dynamical model is a state-of-the-art coupled ocean and sea-ice ensemble-prediction17

system with assimilation. The observations assimilated are high-resolution sea-ice con-18

centration from synthetic aperture radar (SAR) and sea-surface temperature from infrared19

instruments. The machine learning prediction models are a fully convolutional network20

and a :-Nearest Neighbours method. Both machine-learning models use observations of21

sea-ice concentration, sea-surface temperature and 2-m air-temperature reanalysis data22

as input for the forecast. The machine-learning forecasts where compared to persistence,23

which is the assumption that the sea-ice does not change over the forecasting period. The24

machine-learning forecasts where found to improve upon persistence in periods of sub-25

stantial change, e.g. during summer. Compared to the assimilative dynamical model, the26

:-Nearest Neighbour algorithm was found to improve upon the 7-day forecast during a27

period of small sea-ice variations. The fully convolutional network provided similar qua-28

lity as the dynamical forecast. The study shows that there is a potential for sea-ice pre-29

dictions using machine-learning methods, and we conclude that these methods should be30

developed further.31

Plain Language Summary32

This study investigates the use of statistically-based models and compares them to33

a physically-based model for sea-ice prediction. The physical model uses assimilation of34

observations to improve the forecast. When substantial changes in the sea ice are observed,35

the machine learning models show skilful forecasts compared to assuming that the sea ice36

does not change during the forecasting period (persistence). A comparison between the dy-37

namical and statistical forecast shows that the statistical model may be a simple alternative38

to the physical model during periods of small variations in the sea-ice extent.39

1 Introduction40

Since the start of the satellite era about 40 years ago, there has been a decline in the41

Arctic sea-ice extent. Cavalieri and Parkinson [2012] reported that during 1970-2010, the42
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Arctic sea-ice extent declined by on average 4% per decade. The decline has continued43

so that the last 12 years have been those with the lowest sea-ice minimums recorded du-44

ring the 40-year satellite period [Scott, 2018]. The decrease in sea-ice extent has led to an45

increase of marine operations in the Arctic from several industries such as shipping, tou-46

rism, fishing, and oil and gas exploration [Stephen, 2018]. As the Arctic sea-ice continues47

to melt, and the Arctic becomes more accessible for marine operations, the human presen-48

ce in this region will likely increase further. The recent sea ice decline is much smaller49

than the seasonal variations, which is one of the main challenges for the operators close to50

the ice edge. Therefore, safety requirements for future marine operations close to the ice51

edge demands for accurate sea-ice predictions with a high spatial and temporal resolution52

both for daily and seasonal predictions.53

Since the 1950s there has been a continuous development of sea-ice models, 4.6.54

The Los Alamos Community sea-ice model [CICE; Hunke and Dukowicz, 1997], Louvain-55

la-Neuve sea-ice model [LIM3; Vancoppenolle et al., 2009] and coupled ocean-sea-ice56

models such as Towards an Operational Prediction system for the North Atlantic coastal57

Zones [TOPAZ; Sakov et al., 2012] and the Massachusetts Institute of Technology Gene-58

ral Circulation Model [MITgcm; Marshall et al., 1997] to mention a few. Numerous sea-59

ice forecast studies in the Arctic have been performed using these models 4.6. Caya et al.60

[2010]; Wang et al. [2013]; Sakov et al. [2012]; Buehner et al. [2013]; Yang et al. [2014];61

Posey et al. [2015]; Shlyaeva et al. [2016]; Xie et al. [2016]; Mu et al. [2018]; Fritzner62

et al. [2018, 2019]. Common for many of the Arctic sea-ice models used in these stu-63

dies is that the model resolution is typically coarse, on the order of 10-20 km. Coarse-64

resolution models are often satisfactory for climate studies on a global scale, but less use-65

ful for maritime operations where detailed forecasts of the sea ice are important.66

In a forecasting system, the initial state of the model forecast is essential. When ob-67

servations are available, the best possible initial state can be achieved through data assimi-68

lation. Satellite-based passive microwave observations of sea-ice concentration have been69

available for the last 40 years, and several studies have investigated how the assimilation70

of these observations impacts the models, 4.6. Lisæter et al. [2003]; Sakov et al. [2012];71

Wang et al. [2013]; Buehner et al. [2013]; Posey et al. [2015]; Fritzner et al. [2018, 2019].72

Sea-ice concentration (SIC) is by far the most used variable in sea-ice data assimilation73

studies, however other types of observations have become available in recent years. In the74

last decade, there have been efforts to extract more sea-ice information from satellites, and75
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now observational products of sea-ice thickness [Kurtz and Harbeck, 2017; Tian-Kunze76

et al., 2016; Ricker et al., 2017], sea-ice drift [Ninnis et al., 1986; Lavergne et al., 2010;77

Kræmer et al., 2015], and snow depth [Rostosky et al., 2018] are available. The SIC pro-78

ducts derived from passive microwave are generally provided with a resolution of 10-2579

km depending on the instrument, method and measurement frequencies used. Deriving80

SIC from the brightness temperatures observed by the passive microwave instruments can81

be done in several different ways with various benefits and uncertainties [Andersen et al.,82

2007].83

The steady increase in computing power is facilitating for more complex numerical84

models with higher spatial and temporal resolutions. High-resolution observations of sea-85

ice are available through active microwave measurements such as those of Synthetic Aper-86

ture Radars (SAR), 4.6. onboard the European Space Agency’s (ESA) Sentinel constella-87

tion which consists of two SAR satellites, Sentinel 1a and b. In the Arctic, the Sentinel-188

satellites use extra-wide swath, acquiring measurements with a resolution of about 20x4089

m covering a width of approximately 400 km [Torres et al., 2012]. This resolution pro-90

vides detailed information regarding the sea-ice-edge variability with a higher spatial re-91

solution compared to that obtained from passive microwaves. Currently, manual products92

based on SAR observations, such as the ice charts provided by the Norwegian Meteorolo-93

gical Institute (MET Norway) for the area around Svalbard (http://wms.met.no/icechart/),94

are produced. This operational product consists of hand-drawn maps combining several95

different sea-ice retrievals such as SAR, passive microwave and optical instruments, into a96

high-resolution (1 km grid spacing) SIC product. As far as is known to the authors, there97

is not yet any operational high-resolution automatic Arctic sea-ice maps from SAR.98

In recent years some high-resolution sea-ice assimilation studies have been perfor-99

med using the 3-D variational method for data assimilation [Buehner et al., 2013; Posey100

et al., 2015]. Posey et al. [2015] investigated the effect of assimilating sea-ice concentra-101

tion observations with a resolution of 4 km into a coupled model with an approximate102

resolution at the North pole of 3.5 km. In their study, a blended sea-ice concentration103

product with data from AMSR-2 and the Interactive Multisensor Snow and Ice Mapping104

System [Helfrich et al., 2007] was applied. These observations were assimilated into the105

Arctic Cap Nowcast/Forecast system produced by the US Navy [Metzger et al., 2014]. By106

assimilating the high-resolution observations (4 km), a smaller ice-edge error was obtained107

compared to assimilating coarser (25 km) resolution observations. Buehner et al. [2013]108
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provided an alternative method for high-resolution sea-ice forecasting without applying a109

dynamical model. In that study, several types of sea-ice observations were assimilated to110

provide a 5 km sea-ice concentration analysis every six hours. Their results showed an im-111

proved sea-ice extent compared to the Canadian Meteorological Centre global ice analysis.112

The Arctic SIC is assumed to be strongly related to the upper ocean temperature,113

the past sea-ice concentration, and the ice-edge location. In addition, for a large portion of114

the year, the day-to-day sea-ice variations on a general model scale (1-20 km) are small,115

and for these periods persistence (assuming no change) provides a sufficiently accurate116

forecast. Therefore, instead of a dynamical model, a prediction could potentially be per-117

formed with a machine-learning model trained on historical data. Besides, a machine-118

learning-model forecast may likely be performed with a significantly lower computatio-119

nal cost than a dynamical model system. Chi and Kim [2017] used a deep neural network120

to perform one and two-month forecasts of the Arctic sea-ice based on past observations121

of monthly observed SIC. The September sea-ice extent was found to be reasonably well122

predicted compared to an average of the dynamical model forecasts submitted to the Sea123

Ice Prediction Network (SIPN) (https://www.arcus.org/sipn). The potential for machine124

learning in weather forecasting was shown in a recent study by Scher and Messori [2019].125

In that study, a fully convolutional network was used for weather forecasting. The study126

showed encouraging results compared to a simplified general circulation model.127

In the present study, the use of machine-learning prediction models for sea-ice con-128

centration forecasts is investigated and compared to a dynamical model. However, as none129

of these model setups have previously been described in the literature they are investiga-130

ted individually before they are compared. Therefore this study consists of three parts, one131

where the assimilation system is investigated, one where the machine learning predictions132

are investigated, and in the last part the two methods are compared for weekly SIC predic-133

tion.134

With the ice charts described above, there now exist daily high-resolution observa-135

tional products of SIC in the Arctic. In addition, there exist high-resolution observations136

of sea-surface temperature from the Multi-scale Ultra-high Resolution (MUR) product137

[Chin et al., 2017]. It has previously been shown that by using high-resolution models,138

the assimilation of high-resolution observations improves the results [Buehner et al., 2013;139

Posey et al., 2015]. Both of these previous studies applied the 3-D variational method for140

–5–



Confidential manuscript submitted to JGR-Oceans

data assimilation. In this study, the Ensemble Kalman Filter (EnKF) is applied for assimi-141

lation. With the EnKF, the model covariance matrix is continuously updated for multiva-142

riate assimilation, and the ensemble provides a probabilistic forecast. Besides, we apply a143

higher model and observational resolution compared to the previous studies [Posey et al.,144

2015; Buehner et al., 2013].145

The machine-learning model part of this study builds upon that of Chi and Kim146

[2017] that applied machine learning for sea-ice forecasting. In that study, a single SIC147

product was used, while we use two SIC products, an sea-surface temperature (SST) pro-148

duct and a 2-m air-temperature (T2) product and two different machine-learning models.149

We hypothesise that the use of SST observations and T2 reanalysis in addition to SIC ob-150

servations will have a positive impact on the forecast skill of the machine-learning met-151

hods, as these represent two of the main drivers of the sea-ice variations. Finally, we com-152

pare the machine learning models with the dynamical model to see whether machine lear-153

ning can provide an alternative to complex and computationally costly dynamical models.154

In section 2, the dynamical and the two machine learning models are presented. In155

section 3, the observations used for verification and assimilation are introduced. This in-156

cludes several observational products for sea-ice concentration and sea-surface temperatu-157

re. In section 4, the setup of the model experiments are described, both for the machine-158

learning experiments and the experiments with the dynamical model. In section 5, the159

assimilation system of the dynamical model is investigated. In section 6, machine lear-160

ning models are investigated and tested for different forecast lengths. In section 7, the two161

machine learning methods are compared to the dynamical model. And finally, in section 8,162

a summary and a conclusion are presented.163

2 The models164

2.1 The dynamical model165

A coupled ocean and sea-ice model [Kristensen et al., 2017] with a horizontal re-166

solution of 2.5 km is used. This model is similar to that applied in Fritzner et al. [2019].167

However, here a high resolution regionally downscaled version covering the ice infested168

areas in the Barents Sea, Greenland Sea and the Kara Sea is used (grid size: 739x949).169

An overview of the model domain is shown in Figure 4.170
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The model ocean component is the Regional Ocean Modeling System [ROMS; Shche-171

petkin and McWilliams, 2005] version 3.6, and the sea-ice component is the Community172

sea-ice model [CICE; Hunke and Dukowicz, 1997] version 5.1.2. The ocean component173

has 42 terrain-following sigma layers, and a second-order turbulence closure model is used174

to parametrise the eddy diffusivity and viscosity. The sea-ice component uses a mechani-175

cal redistribution scheme with five ice-thickness categories, seven ice layers and a single176

snow layer. This state-of-the-art model includes both melt pond and ridging parameterisa-177

tions, as well as models for thermodynamics, ice dynamics, and transport.178

The dynamical model framework includes an ensemble prediction system (EPS) with179

ten ensemble members and EnKF assimilation every seven days. The ensemble model sys-180

tem is forced by an ensemble of low-resolution (18 km) atmospheric forecasts from the181

European Centre for Medium Ranged Weather Forecast [ECMWF; Owens, 2018] Integra-182

ted Forecast System (IFS). The ocean boundary conditions are based on an ensemble from183

the TOPAZ4 model [Sakov et al., 2012]. Generating the ensemble from ensemble forcing184

is a preferable alternative to 03-ℎ>2 forcing perturbations, as the ensemble forcing input185

already contains a well-established and tested method for ensemble generation. The TO-186

PAZ4 forcing data are available from 2018-03-15 to 2018-05-15.187

The dynamical model does not include nesting of ice boundary conditions, only188

ocean boundary conditions. The lack of an ice boundary leads to errors along the northern189

and western boundaries due to ice transport. In this study, we avoid these boundary pro-190

blems by omitting the first 15 edge grid cells on the northern and western boundaries for191

verification. This study primarily focuses on the sea-ice edge location; thus, the results are192

not effected by the lack of ice boundary conditions. For brevity, the dynamical model will193

in the rest of this work be referred to as Metroms [Kristensen et al., 2017].194

2.2 The Ensemble Kalman Filter195

In Metroms, we use the Deterministic Ensemble Kalman Filter [DEnKF; Sakov and196

Oke, 2008] for assimilation; the same setup was also used in Fritzner et al. [2019]. The197

DEnKF is a version of the Ensemble Kalman Filter [EnKF; Evensen, 1994; Burgers et al.,198

1998] which has been applied in a wide range of geophysical models [Houtekamer and199

Zhang, 2016]. In contrast to the traditional EnKF, the DEnKF is not dependent on pertur-200

bation of observations to maintain ensemble spread. Perturbing observations introduces201
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additional sampling error in the analysis, which for applications with few ensemble mem-202

bers might be significant [Sakov and Oke, 2008; Whitaker and Hamill, 2002].203

The standard analysis equation solved by the EnKF is given by [Jazwinski, 1970;204

Evensen, 2003]:205

x0 = x1 + P1H)
(

HP1H) + R
)−1
(y −Hx1) , (1)

where x0 ∈ R=×# is the analysis vector representing the updated variables after assi-206

milation, x1 ∈ R=×# the model first guess (background), and y ∈ R<×# is the observation207

vector. # is the number of ensemble members, = the number of variables multiplied by208

the number of spatial grid points in our model, < the total number of observations of all209

variables, R ∈ R<×< the observation covariance, and H ∈ R<×= is the observation ope-210

rator. The key property of the EnKF is that the background error covariance matrix Pb211

∈ R=×=, providing the model uncertainty, is estimated as the variance of the ensemble of212

background states,213

Pb = ((x1 − x1) (x1 − x1)) ). (2)

In the equation above, the overbars signify the average operator. The implementa-214

tion of the assimilation is done offline with the use of the enkf-c software package [Sakov,215

2015].216

2.3 Machine learning methods217

The growing field of machine learning includes numerous approaches ranging from218

simple, transparent methods such as those based on regression to more sophisticated vari-219

ants based on, for instance, deep neural networks. In this work, a straightforward approa-220

ch, the :-Nearest Neighbours (:-NN), and a deep neural network, a fully convolutional221

network (FCN), is applied for sea-ice prediction. These methods have traditionally been222

used for image segmentation, where an image is separated into different classes based on223

pixel properties. A classification is, for example, that a pixel is a part of a car. Then this224

pixels’ class is ”car”. Other classification can be for example cars, persons, dogs and bi-225

cycles. In this study, the SIC intervals defined by the World Meteorological Organization226

(WMO) total concentration standard (table 1) used by the ice charts are the output classes,227

while the input is sea-ice related variables.228
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Table 1. The WMO Total concentration standard229

Concentration description value in ice chart

0 Ice free 0

< 10 % Open water 0.05

10-30% very open ice 0.2

40-60% open ice 0.5

70-80% close ice 0.75

90-100% very close ice 0.95

100% Fast ice 1.00

Both the :-NN and FCN are supervised methods. This means that they are depen-230

dent on labelled training data, containing input-output pairs. During a machine-learning-231

training process, the methods apply the labelled training data to learn functions that map232

the input to output. After training, the models can be used on new input data, for examp-233

le for sea-ice prediction. In this study, the :-NN method was chosen both because of its234

theoretical simplicity and its ease of implementation. As mentioned, this is a supervised235

method, however, no training process is needed.236

In contrast, the more intricate FCN is a deep neural network with many layers that237

requires extensive training. Deep learning methods have received much attention in re-238

cent years due to several beneficial properties when it comes to image processing, 4.6.239

learning of intricate patterns and features [Guo et al., 2018]. In general, a prediction per-240

formed by the trained FCN model is significantly faster than a prediction with the :-NN241

model. However, the one time cost of the training process can be substantial. Since both242

machine-learning methods are based on relatively simple relations and do not require a243

small time step for stable solutions, they are both, generally, computationally less costly244

than a dynamical model. Another essential difference between the two machine-learning245

methods applied is that the :-NN does not incorporate a spatial context in the prediction.246

2.3.1 k-Nearest Neighbours247

The :-Nearest Neighbours (:-NN) classifier is a supervised machine-learning met-248

hod [Cover et al., 1967], where labelled data are required. However, no training procedure249

as such is necessary since the training data are used as a reference dataset only. For each250
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prediction, the input variables are compared to the input of the training dataset based on a251

distance. The prediction is obtained from the classification of the : nearest training samp-252

les. In this study, the Euclidean distance, 3, is used to find the nearest samples in the trai-253

ning data,254

3 (x, y) =
√√

=∑
8=1
(G8 − H8)2, (3)

where x is the model input vector, y the input vector of a single training data sample and255

= is the number of input variables. Thus, for each pixel, the input variables are compared256

to those of the training dataset, and the prediction is the median class of the : nearest257

neighbours (lowest 3 (x, y)). The input variables in this case of SIC prediction are the sea-258

ice related variables, SIC, SST and 2-m temperature.259

2.3.2 Fully convolutional network260

The FCN is based on the work done by Long et al. [2015]; Shelhamer et al. [2017].261

This method is a particular type of a neural network that is widely used to address seg-262

mentation tasks. In an artificial neural network, a hierarchy of transformations structured263

in multiple layers is used, where the transformations are parametrised by a set of weights264

that are learned from data. As mentioned, the FCN is a supervised learning method de-265

pendent on labelled (input with known output) training data. The FCN uses a hierarchy266

of layers (transformations) that perform convolution, pooling and upsampling operations,267

where the convolutional and upsampling layers consist of learnableparameters. Convolutio-268

nal layers are further followed by non-linear activation functions.269

In a convolutional layer, the input data are convolved with several filters to extract270

important image features such as edges, vertical lines, horizontal lines and others [Good-271

fellow et al., 2016]. In a pooling layer, the outliers (max pooling) from the convolutional272

layer output is extracted. A pooling operation provides a larger field of view and improves273

computational efficiency. In the upsampling layer, the convolved and pooled features are274

deconvolved for pixel-wise prediction. During the training process of the FCN, the con-275

volutional matrices used in the convolutional and upsampling layers are “learned“ based276

on the labelled training data. More information regarding the individual layers of the FCN277

can be found in the Appendix A: .278

In this study, we will use the FCN8 network [Long et al., 2015], and the implemen-279

tation of the FCN8 in Python with the “Keras“ software package [Gupta, 2019; Yumi,280
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2018]. In an FCN with multiple layers of convolution and pooling, the output resolution is281

in general significantly reduced compared to the input. However, the FCN8 method com-282

bines low-resolution deep and high-resolution shallow layers by using so-called skip layers283

Long et al. [2015]. This combination improves the output resolution, which is essential for284

the application in the present study. Further information regarding the individual layers of285

the FCN8 method can be found in the original work [Long et al., 2015].286

3 Observations287

In this study, observations of SIC and Sea-Surface Temperature (SST) are used for288

machine learning, assimilation and verification. A list of the different observations used289

and how they are applied is presented in table 2. Three different types of SIC products are290

used: OSISAF SSMIS, ice charts and OSISAF AMSR-2. The OSISAF SSMIS observa-291

tions are the Global Sea Ice Concentration product from the European Organisation for292

the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea ice Satellite293

Application Facility (OSISAF, www.osi-saf.org). In this product, the sea-ice concentra-294

tion is derived from brightness temperatures measured by the Special Sensor Microwave295

Imager Sounder [SSMIS; Tonboe et al., 2016], which is a passive microwave instrument.296

The conversion from brightness temperatures to SIC is done based on a combination of297

the Bootstrap and the Bristol algorithms [Tonboe et al., 2016]. The OSISAF observations298

include an accompanying uncertainty estimate which is used during the assimilation. The299

observations are provided on a 10 km grid.300

The OSISAF AMSR-2 SIC observations are derived from brightness temperature301

measurements from the National Aeronautics and Space Administration (NASA) Advances302

Microwave Scanning Radiometer 2 (AMSR-2) provided on a 10 km grid [Lavelle et al.,303

2016]. This is also a passive microwave instrument. The conversion from brightness tem-304

perature to SIC observations is done in the same way as for the SSMIS data. All observa-305

tions include an estimation of the observation uncertainty [Tonboe et al., 2016].306

The ice charts are manually-drawn operational SIC maps provided by MET Norway.307

The ice charts are based on Synthetic Aperture Radar (SAR) data from Sentinel-1, Ra-308

darsat and Envisat, as well as visual and infrared data from MODIS, NOAA and VIIRS.309

In addition, low-resolution passive microwave observations are used to provide full spati-310

al coverage. This operational product is provided on a 1 km grid [Dinessen and Hackett,311
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2016]. The concentrations in the ice charts are according to the WMO defined total con-312

centration intervals (Table 1). The ice charts do not include an uncertainty estimate for the313

observations; instead, two times the size of the WMO intervals were chosen as a conser-314

vative estimate for the observation uncertainty. Note that the Norwegian ice charts are only315

available during weekdays, thus to avoid frequent data gaps in our dataset, the Friday ice316

chart is applied for Saturday and Sunday. Other missing days in the dataset are replaced317

by the previous observed day.318

In addition to the SIC observations, two SST observational products are included319

for assimilation and verification: The Multi-scale Ultra-high Resolution (MUR) product320

[Chin et al., 2017] and The Operational Sea Surface Temperature and Sea Ice Analysis321

product [OSTIA; Donlon et al., 2012]. These data products are based on the Group for322

High-Resolution SST [GHRSST; Donlon et al., 2009] framework for SST measurements323

and include SST observations from infrared instruments, microwave instruments, and 8=324

B8CD measurements. High-resolution SST observations are observed with the infrared sen-325

sors, while microwave observations provide all-weather capabilities to achieve full global326

coverage. Infrared measurements are profoundly affected by diurnal heating from the sun,327

and therefore mostly night time measurements are used to derive the SST products. The328

OSTIA dataset is provided with a resolution of 0.05◦x0.05◦, while the MUR dataset co-329

mes with a resolution of 0.01◦x0.01◦. The improved resolution in the MUR dataset comes330

from the inclusion of high-resolution observations from the Moderate Resolution Imaging331

Spectroradiometer (MODIS) sensors, which provide SST observations with 1 km reso-332

lution [Chin et al., 2017]. Similar to the OSISAF products, the SST products include an333

uncertainty estimation. As the MUR product consists of several sources of observations,334

the total uncertainty is a combination of these. For the products from the GHRSST, there335

is a requirement for the uncertainty estimations Donlon et al. [2007], while for those not336

from the GHRSST a best guess was applied [Chin et al., 2017].337

4 Methods and model setup339

4.1 The dynamical model340

The quality of the Metroms assimilation system is assessed by several assimilation341

experiments. These are all started on 20.03.2018 based on an ensemble output from the342
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Table 2. Observations used.338

Name Type Assimilated in dynamical model Verification Training data for ML

OSISAF SSMIS SIC yes yes yes

Ice charts SIC yes yes yes

OSISAF AMSR-2 SIC no yes no

MUR SST yes yes yes

OSTIA SST no yes no

TOPAZ4 coupled ocean-sea-ice assimilation system [Sakov et al., 2012]. The experiments343

are run for eight weeks, until 15.05.2018, with assimilation every seven days.344

Tuning of the assimilation system is performed by two ensemble data assimilation345

analysis tools: the degrees of freedom for signal [DFS; Cardinali et al., 2004; Sakov et al.,346

2012] and the spread reduction factor [SRF; Sakov et al., 2012]. Tuning is essential in or-347

der to avoid ensemble collapse, which occurs when the ensemble spread is reduced too348

rapidly. More information on ensemble collapse is given in [Sakov and Oke, 2008]. The349

DFS is used to identify potential model rank problems related to an ensemble size which350

is much smaller than the number of observations in the assimilation system. Without chan-351

ging the ensemble size, the model rank can be improved, and the DFS decreased by redu-352

cing the number of observations used during the assimilation analysis.353

In this study, a local assimilation analysis is performed where the assimilation ana-354

lysis is calculated for each grid cell individually [Sakov and Bertino, 2011; Houtekamer355

and Mitchell, 2001]. The local analysis uses only local observations within a certain loca-356

lisation radius of the appropriate grid cell. Thus, the DFS can be changed by varying the357

localisation radius, effectively changing the number of observations included in the analy-358

sis.359

The SRF gives a measure of the observation impact on the model during assimila-360

tion. More specifically, for the DEnKF, this metric describes the ensemble spread reduc-361

tion during the assimilation analysis. This metric can be changed by changing the observa-362

tion impact. For the enkf-c software used in this study, an '-factor can be tuned to specify363

the assimilation impact for each observation. The '-factor is defined to be a multiplication364

factor to the observation error covariance matrix, ', defined in Eq. (1). An increased '-365
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Table 3. Observation localisation and R-factor.381

Name Localisation radius R-factor

OSISAF SSMIS SIC 40 1.5

Ice chart SIC 25 60

MUR SST 25 70

factor lead to an increased observation variance and a lower effect of the observations in366

the assimilation analysis, which again gives a reduced SRF.367

A DFS less than the number of ensemble members divided by three (3.33), and an368

SRF less than two were used for tuning [Personal correspondence with Pavel Sakov; Sak-369

ov et al., 2012]. A summary of the individual '-factor and localisation radii used for each370

observation type are given in table 3. The individual '-factor values are dependent on371

both the observation resolution (observation density) and the magnitude of the uncertain-372

ties.373

The dynamical model has a significantly higher spatial resolution than the OSISAF374

SSMIS SIC observations. Due to this sizeable spatial difference, the assimilation can lead375

to a reduced model resolution. In order to avoid this effect, a dummy SIC variable is used376

in Metroms during the assimilation of low-resolution observations. This dummy variable377

has the same resolution as the OSISAF SSMIS SIC observations. Based on the analysis378

update of the dummy variable, the actual model SIC is updated based on the background379

error covariances.380

4.2 Machine learning models382

4.2.1 :-Nearest Neighbours383

The :-NN model is trained on data spanning the year of 2016 covering 16,000 random-384

ly chosen grid points in and around the sea-ice edge. From the full training dataset, 20 %385

of the data were used for verification only. Recall that for the :-NN, : signifies the num-386

ber of neighbours in the training data used for the prediction. In this study, a : of 15 with387

uniform weighting is applied, which means that the prediction is the median of the class388

of the 15 nearest neighbours. The :=15, was chosen based on experiments with different389

values where 15 was found to give the results with lowest errors compared to the verifi-390
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Figur 1. An example of :-NN input and output. The :-NN finds the :-nearest neighbours in the training

data and the output is the median output class of these training data.

404

405

cation data. The input data used to calculate the Euclidean distance for the :-NN forecast391

are the initial day ice chart SIC, MUR SST, T2, 2-day prior SST and T2, and 6-day prior392

SST and T2. The T2 observations are from the ECMWF ERA 5 dataset [Copernicus,393

2019].394

The :-NN forecasts become more computer intensive when more input data sources395

are included. Therefore simple tests were carried out to select the most important input396

data from the 6-day prior variables. The input variables were chosen based on a combi-397

nation of best performance and data availability. The idea behind the machine learning398

prediction is to predict future ice distribution, presented in the same way as the ice charts:399

WMO total concentration standard for ice classification. A description of the input and400

output of an example :-NN prediction is given in Figure 1. The :-NN selects the 15 ne-401

arest data points in the training data, and the output is defined as the median over the out-402

put classes of these 15 training data points.403

4.2.2 Fully convolutional network406

The FCN model provides another method for predicting future ice charts using the407

classes defined by the WMO total concentration standard classification. The model tra-408

ining data consist of observations from 2016 and 2017. The model uses 28 input data409

–15–



Confidential manuscript submitted to JGR-Oceans

Figur 2. An example of FCN8 input and output.420

sources for the forecast, which for this model are the six consecutive days prior (in ad-410

dition to the initialisation day) to the forecast initialisation of T2, MUR SST, ice charts411

SIC, and OSISAF SSMIS SIC observations.412

In order to reduce the computational costs of the training phase, the grid size of all413

data was reduced to 224x224 pixels. This simplification limits the accuracy of the forecast,414

especially the short-term forecast. However, we believe this resolution to be sufficient to415

show the advantage of the FCN for SIC prediction. A figure describing the input and out-416

put of an FCN prediction is shown in Figure 2. A more technical description of the inter-417

nal layers of the FCN8 implementation used in this study can be found in the Appendix418

(A: ).419

4.3 Verification metrics421

For verification of the predictions, sea-ice-edge metrics and a variable distance met-422

ric are used. The sea-ice edge metrics are only used for verification of the sea-ice edge423

location. In contrast, the distance metric can be used to verify the whole model area for424

several model variables. As a distance metric, we utilise the Langenbrunner �= metric,425

a variance-based metric for point-to-point verification [Booker, 2006]. For sea-ice model426
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verification, this metric was introduced by Urrego-Blanco et al. [2017] to asses modelled427

sea-ice concentration and thickness. The metric is given by428

�= =
1
#

#∑
8=1

(>8 − <8)2
B2
8

, (4)

where > are the observations, < the model values, B the observation standard deviation,429

and # is the number of grid cells in the domain. Since the metric is dimensionless, it can430

be used to aggregate values across different variables. In this study, this metric is used to431

verify the SIC and SST forecast values of the dynamical model.432

For sea-ice concentration verification, generally, the only area where the model and433

observations are different are along the sea-ice edge. The exact concentration of both the434

observations and the model are relatively uncertain, therefore instead of evaluating the435

SIC it can be more instructive to verify the location of the sea-ice edge. There are seve-436

ral metrics available for sea-ice edge verification [Melsom et al., 2019; Goessling et al.,437

2016; Dukhovskoy et al., 2015; Palerme et al., 2019]. The sea-ice edge metrics applied in438

this study are described in "4;B>< 4C 0;. [2019, hereafter MM]. Following this work,439

several recommended ice-edge displacement metrics are used: (1) The average ice-edge440

displacement (here called �̂%C% , referred to in MM as �̂ � �
�+�

), (2) The integrated ice edge441

error (IIEE) average displacement (here called ��A40, referred to in MM as � � � ��
�+�

), and442

(3) The IIEE bias (Δ � � �� ) [MM; Goessling et al., 2016]. The first two metrics are both443

used to evaluate the location of the sea-ice edge, although they often provide significant-444

ly different results. The average ice-edge displacement metric, �%C% , defines the ice-edge445

offset by a point-to-point Euclidean distance between grid cells on the observed ice ed-446

ge and the shortest distance to the modelled ice edge and E824 E4AB0. The IIEE average447

displacement metric, ��A40, defines the ice edge offset by the area between the observed448

and modelled ice edge. By utilising the area for error estimation, instead of point-to-point449

distances, small local ice features such as openings of polynyas have a much lower impact450

on the total offset [Goessling et al., 2016]. The third metric, IIEE bias, is a measure of the451

integrated amount of ice in the model compared to the observations, where a positive bias452

means that the ice extent in the model is too large relative to the observations.453
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5 High-resolution dynamical forecasts454

In this section, the dynamical model is investigated. The dynamical model system455

is fundamentally the same as that applied in Fritzner et al. [2019]. However, here a high-456

resolution regional downscaling is used with the assimilation of high-resolution observa-457

tions. Experiments with this regional model and the assimilation of high-resolution ob-458

servations have not previously been reported. Therefore a brief assessment of this sea-ice459

assimilation system is provided here, comparing the assimilation of different variables. A460

list of the model experiments and observations assimilated in each experiment is given in461

table 4.462

The first four experiments are all assimilation experiments. In the first experiment,463

both high-resolution SST from MUR and SIC from the ice charts are assimilated. In the464

second and third experiment, observations of SIC from the ice charts and OSISAF SS-465

MIS are assimilated, respectively. Recall that the OSISAF SSMIS passive microwave (PM)466

observations have significantly lower resolution than the ice charts, which include high-467

resolution observations from SAR. In experiment number four, both OSISAF SSMIS and468

ice charts are assimilated, but the ocean variables are not updated during the assimila-469

tion. This experiment is used to asses the importance of multi-variate ocean update for470

SIC forecast. The fifth experiment is a free run of the Metroms model, 8.4. the model wit-471

hout assimilation, used to assess the importance of assimilation. The last two experiments472

represent persistence, where it is assumed that no change has taken place over the forecas-473

ting period. Experiment 6 and 7 are persistence defined by the ice charts and OSISAF474

SSMIS, respectively.475

5.1 Ensemble spread477

The ensemble spread is a measure of the difference between the individual ensemble478

members. For efficient data assimilation with the DEnKF, the ensemble spread should re-479

present the model error, which is the difference between the model prediction and the true480

state. In general, for large-scale geophysical models, the true state is not known. However,481

observations provide an estimate of the true state. Thus, the model error can be estimated482

as the difference between the modelled and observed value.483

The observation uncertainty can be taken into account by applying an observation484

interval defined by the observation plus/minus the uncertainty. Thus, a minimum model485
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Table 4. The experiments and their properties.476

Experiment Name Assimilated variables Comment

1 IC+SST MUR-SST Ice chart SIC Metroms

2 IC Ice chart SIC Metroms

3 PM OSISAF SSMIS SIC Metroms

4 O2>=BC OSISAF SSMIS and ice

chart SIC

Metroms, no update of

ocean variables during

assimilation

5 Free None Metroms, no assimilation

6 IC pers N/A The ice chart SIC from 7

days earlier

7 PM pers N/A The OSISAF SSMIS SIC

from 7 days earlier

01-Apr-18 01-May-18
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Figur 3. The RMSE for maximum (red line) and minimum (blue line) model error compared to the ensem-

ble spread for five ice thickness categories (green line) and one ice thickness category (black line). The model

error is calculated from OSISAF AMSR-2 SIC observations.

494

495

496

error can be defined by the distance from the model value to the observation interval. Si-486

milarly, a maximum model error is found by the distance to the interval limit the furthest487

away from the model value. In Figure 3, the maximum and minimum model Root Mean488

Square Errors (RMSEs) of SIC are compared to the ensemble spread (ensemble standard489

deviation) before assimilation. The observations used are OSISAF AMSR-2 SIC obser-490

vations. The ensemble spread is found to be low compared to the model error, but of the491

same order. A low ensemble spread compared to model error could lead to a lower effect492

of the observations during assimilation, and potentially a lower model accuracy.493
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Figur 4. The IIEE area of an ensemble mean of a 7-day forecast with the MUR-ice chart assimilation mo-

del verified against an ice chart on 2018-05-08. Dark blue areas represent the ocean in both types of data, and

red areas represent ice in both model and observations. Grey areas represent areas where the model has ice,

while the ice chart has not, and E824 E4AB0 for green areas.

502

503

504

505

5.2 Ice-edge metrics497

An example of the Metroms ensemble mean forecast where SIC and SST are assi-498

milated at 2018-05-08 is given in Figure 4. In this figure, �+ represents modelled ice not499

observed, and �− observed ice not modelled. For this day, it it seen that the model prima-500

rily over-predicts the sea ice extent compared to the observations.501

Derived ice-edge distance metrics for the whole period from 2018-03-20 to 2018-05-506

15 are shown in Figure 5a-c. The observed ice edge used for verification is taken from the507

independent low-resolution OSISAF AMSR-2 SIC product. The study period can be split508

into two periods, one period with relatively small changes during the first six weeks, and509

one period with larger changes in the last two weeks. During the last two weeks there was510

strong melting along the sea-ice edge, and several polynyas opened around Svalbard and511

Franz Josef Land. The polynyas at 2018-05-08 can be seen by the grey areas inside the ice512

in Figure 4.513

In the Figures 5a-c the three different sea-ice edge metrics are used to assess diffe-514

rent aspects of the forecasts, a) �̂%C% , b) IIEE bias and c) �0A40. As described previously,515

�̂%C% verifies the ice edge by a point-to-point comparison with the observed ice edge, and516

�0A40 is based on the integrated area between the modelled and observed ice edge. The517

IIEE bias gives a measure of the total ice content compared to the observations.518
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All assimilation experiments (solid lines, see table 4) show an improved modelled519

ice edge compared to the free-run experiment (dotted blue line). The free-run experiment520

has higher displacement errors, especially during the last period when there are more sub-521

stantial changes for both ice edge distance metrics (Figures 5a and c). The IIEE bias (Fi-522

gure 5b) of all Metroms experiments are similar and seems independent of the assimila-523

tion.524

The difference between the assimilation experiments (solid lines) is found to be525

small for all three validation metrics. This result has several implications in our case: there526

are no significant evidence of local ice edge differences; little effect of assimilating high-527

resolution observations compared to the conventional low-resolution type; assimilating528

SST observations does not improve the sea-ice edge forecast; updating the ocean during529

assimilation has no significant effect when forecasting the sea-ice edge. However, it is im-530

portant to note that these findings applies to this particular model setup and study period,531

and may not be valid in general without further research.532

A further comparison of the assimilation experiments is performed by using the533

high-resolution ice charts for verification, note that these were also used applied for as-534

similation. The comparison is provided by using the �0A40 metric and shown in Figure535

5d. The use of high-resolution verification data have the potential to reveal the advantages536

of assimilating high-resolution data. However, also for this test, it is shown that the diffe-537

rences are small. A potential reason for the small differences could be model drift. During538

the forecast, between the assimilation steps, the model could potentially lose all informa-539

tion from the assimilation due to the model being driven by the forcing. To investigate540

the drift, the �0A40 was calculated for the assimilation experiments assimilation analysis541

(Figure 6a). It is found that for the assimilation analysis, the assimilation experiments pro-542

vide similar �0A40 indicating that the ice-edge information gained during assimilation is543

of more or less the same level of high-resolution detail for all experiments.544

There are several reasons why there does not seem to be any effect of using high545

resolution compared to low-resolution observations in our study. First of all, the study546

period is relatively short. Secondly, both SIC products provide approximately the same547

ice-edge location. The ice charts use the passive microwave observations to both fill the548

gaps of the SAR observations and to verify ice water in ambiguous situations. Finally, the549

small differences could also be related to the assimilation method, and the need to main-550
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tain ensemble spread when the EnKF is applied. Remember that the EnKF assimilation551

impact is tuned such that the ensemble spread (see section 5.1) is maintained. The tuning552

is performed by reducing the observation impact, which might be why a lower effect than553

expected is seen when the ice charts are assimilated. Besides, for the ice chart a conser-554

vative low-resolution estimate of 5 % sea-ice concentration is applied which could also555

affect the results.556

The lack of improvements when SST is assimilated could be related to the length of557

the study period. When the SST observations are assimilated, the most significant updates558

are found far from the ice edge. Thus these updates are not expected to affect the sea-ice559

forecast immediately. This is also consistent with the lack of impact found when the ocean560

was kept constant during the assimilation of SIC. In addition, close to the sea-ice edge,561

the SST in the observational MUR product is derived based on an empirical relationship562

between OSISAF SIC and SST [Chin et al., 2017], and therefore this information is alre-563

ady taken into account through the SIC assimilation.564

Finally, the Metroms model is compared to persistence (dashed black and red lines565

in Figure 5). Persistence is the ice charts (dashed red) and the OSISAF SSMIS (dashed566

black) observations from the previous assimilation step. Persistence has comparable and in567

some cases a lower edge displacement than the assimilated runs for the period with small568

changes. This is especially seen when the �̂%C% is used (Figure 5a), indicating that small569

local areas are in fact better predicted by persistence. This could be related to for examp-570

le polynyas that are not resolved in the model, and because of low ensemble spread, are571

not updated during the assimilation either. However, for the period with more substantial572

changes, the dynamical model shows clear improvements over persistence, especially for573

the ��A40 metric, when the larger scales are verified.574

For the experiments shown in Figures 5 and 6a, low-resolution atmospheric forcing575

data from ECWMF IFS is applied. However, it is expected that for a high-resolution mo-576

del as applied here, there could potentially be a benefit of using high-resolution atmos-577

pheric forcing. In Figure 6b the freerun model forced by atmospheric forcing from Aro-578

me Arctic (2.5 km) [Müller et al., 2017a,b] and ECMWF IFS (18 km) is compared to579

the AMSR-2 observations based on the ��A40 metric. It is shown that when the high-580

resolution AROME Arctic is used, ��A40 is significantly reduced for the first period com-581
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pared to when ECMWF IFS is used, for the last period they are more similar. Thus, utili-582

sing high-resolution forcing can potentially have a significant impact on the sea-ice forecast.583

5.3 Jn metrics596

In the previous section the modelled ice-edge offset was analysed, while in this sec-597

tion, the �= metric [Urrego-Blanco et al., 2017] is used to analyse individual grid cell598

values. The verification is shown in Figure 7 for two categories of observations: a) SIC599

and b) SST. For SIC, both OSISAF SSMIS and OSISAF AMSR-2 products are used for600

verification. Note that, the ice charts are not used for SIC verification in this analysis as601

these apply discrete values.602

Compared to the experiment without assimilation (dashed blue), the assimilation603

models show significant improvements both for the SIC and SST on the grid-scale. Howe-604

ver, there are no significant differences between the individual Metroms assimilation expe-605

riments (solid lines) for SIC verification, consistent with the results found previously with606

the ice edge metrics.607

For SST verification, both the MUR SST and OSTIA SST observational products608

are used. For this verification, the IC-MUR experiment (solid blue), assimilating SST, per-609

forms significantly better than the other assimilation systems. In addition, the system that610

does not update the ocean during assimilation (solid yellow) shows a small error which is611

increasing throughout the period.612

These results showt an effect of both updating the ocean during assimilation and613

assimilating SST on the grid-scale. However, as mentioned previously, the effect of assimi-614

lating SST is most substantial far from the sea-ice edge. Thus, for more extended temporal615

simulations, when these parts of the ocean come into contact with the sea ice, the effect of616

assimilating SST may become significantly more evident.617

In summary: In these experiments, little or no improvements in using high-resolution621

sea-ice concentration observations for assimilation are found. However, it is shown that622

using high-resolution atmospheric forcing can have a significant impact on the forecast.623

In general, compared to the coupled model, persistence is a reasonable assumption for624

forecasts up to 7 days, when there are small changes in the sea ice. However, when more625
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Figur 5. Ice-edge metrics as a function of time calculated from the 7-day forecasts and verified by ob-

servations. The different metrics are a) average ice-edge displacement verified by AMSR-2 SIC, b) IIEE

bias verified by AMSR-2 SIC, (c) IIEE average displacement verified by AMSR-2 SIC, and d) IIEE average

displacement verified by ice charts. Light blue is assimilation of MUR SST and ice chart SIC, solid black

is assimilation of ice chart, dashed black is persistence ice chart forecast, red is OSISAF SIC assimilation,

dashed red is persistence OSISAF SSMIS forecast, dashed blue is a free run without assimilation and solid

green line is the assimilation of ice chart and OSISAF SSMIS SIC without updating the ocean. The verti-

cal dotted black line represents the date 2018-05-08 used in Figure 4. See also table 4 for more information

regarding the experiments.
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substantial changes appear, the dynamical forecast model system shows significant skills626

relative to persistence.627

6 machine-learning forecasts628

6.1 FCN forecast629

The FCN model was trained with observations from 2016 and 2017, and the mo-630

del was verified using forecasts for 2018. As mentioned, the FCN is trained on lower re-631

solution observations. Therefore the same resolution is also applied for verification. The632

trained model is assessed by 1-, 2-, 3- and 4-week forecasts.633

In Figure 8, the ��A40 of the FCN forecasts are shown. The FCN forecasts are com-634

pared to reduced-resolution ice-chart persistence. The 7-day FCN forecasts (Figure 8a),635

have a similar skill as the ice-chart persistence. This similarity is expected since sea ice636

has small variations on these time and spatial scales, recall the low ��A40 values for per-637

sistence in Figure 5. For the other three forecast lengths, the FCN shows similar skill as638

persistence during most of the year, except in summer. In summer, the most substantial639

changes in the Arctic sea ice occur, and the FCN significantly improves upon persisten-640

ce. These improvements are found for the 2- to 4-week forecasts, and the improvements641

increase with the forecast length as persistence performs worse for longer timescales.642

In Figures 9 a) and b) the IIEE areas for an FCN forecast and 4-week persistence,650

respectively, validated by ice-chart observation 2018-08-17 (black vertical line Figure 8)651

are shown. This date is in a period of substantial change, where the FCN forecast per-652

forms significantly better than the persistence forecast. The most substantial improvements653

with the FCN for this date are the representation of the melt in the southern Kara Sea.654

6.2 Verification of the FCN forecast655

Verification of the FCN 4-week forecast for 2018 is performed by switching the tra-656

ining and verification data. An FCN forecast model for 2016 is trained by data from 2017657

and 2018, and an FCN model for 2017 is trained by data from 2016 and 2018. The ��A40658

for the two new 4-week forecasts is shown in Figure 10. As for the 2018 forecasts, the659

2016 and 2017 forecasts show improvements in summer, similar to the results for 2018.660

These results verify that the FCN model well predicts summer melt.661
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Figur 8. IIEE average displacement calculated for FCN and :-NN forecasts with a length of a) 7 days, b)

14 days, (c) 21 days and (d) 28 days. The red line represents the FCN forecasts, the blue line a persistence

forecast, the green line the difference between FCN and persistence forecast, and the black line is the diffe-

rence between :-NN and persistence forecasts. The vertical dashed, grey and black lines represent the dates

2018-07-06 and 2018-08-17, respectively.
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Figur 9. IIEE regions for 28-days forecast of the date 2018-08-17 for a) FCN forecast, b) persistence

forecast and (c) :-NN forecast. The colours and coding are as in Figure 4.
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662

663

–28–



Confidential manuscript submitted to JGR-Oceans

Figur 11. :-NN 28-day sea-ice forecast on 2018-07-06.682

6.3 k-NN forecast664

The differences between the ��A40 for the :-NN forecasts and ice chart persistence665

are shown in Figure 8. The results are compared to the FCN forecast for four forecasting666

periods, 1-, 2-, 3- and 4-weeks. Forecasting with the :-NN model is more computationally667

expensive than with the FCN. Therefore a :-NN forecast is only performed every third668

week. For comparison purposes, the :-NN forecast results are rescaled to the resolution669

of the FCN forecast, 224×224 pixels. When the changes in the sea ice are small, the :-670

NN forecasts have similar displacements as the persistence forecast, both improve upon the671

FCN forecasts, while when more substantial changes occur, the :-NN forecasts are closer672

to those of the FCN model.673

Note that, due to the lack of spatial coherence in the :-NN method, small local674

changes in the marginal ice zone can mean the difference between ice and water in a gi-675

ven pixel. Thus, with this method, the forecast can include unrealistic areas of drifting676

sea ice and polynyas. An example is shown in Figure 11, where a forecast with the :-NN677

method is shown for 2018-07-06. The forecast shows an unrealistic occurrence of large678

polynyas and several large areas of drift ice. It can be seen from Figure 8d, that for this679

particular day (grey dotted vertical line) the :-NN forecast has a small ��A40. This result680

is related to the fact that ��A40 considers the integrated values and not local effects.681

In Figure 9c the IIEE area for the 4-week :-NN forecast at 2018-08-17 is shown.683

The forecast result for this day is similar to that of the FCN, Figure 9a, with significant684

improvements compared to the persistence forecast shown in Figure 9b. Again, due to the685

lack of spatial context, the forecast has more drifting ice around the sea-ice edge, com-686

pared to the FCN forecast.687
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7 Comparison between the dynamical Metroms forecast and the two machine lear-688

ning models for 7-day forecasts689

In this section, the 7-day machine-learning forecasts from the :-NN and FCN are690

compared to the Metroms assimilation system assimilating SIC ice charts and SST MUR691

observations. In Figures 12a and b the �̂%C% and ��A40 metrics, respectively, are plotted692

for 7-day forecasts from FCN, :-NN, Metroms model and persistence. All forecasts are693

mapped to the 2.5 km Metroms grid, with the land mask taken from the low-resolution694

FCN grid.695

For the �̂%C% , the FCN has on average, higher displacements than the other forecasts.696

The persistence forecast and :-NN are similar and show the lowest displacements for most697

of the period. The displacements from the Metroms assimilation experiment are also of a698

similar magnitude in the first part but shows improvements in the second part when sub-699

stantial changes in the SIC occur. For the ��A40, the :-NN method shows significantly700

lower displacements than the other forecasts for most of the period, except for the last two701

weeks when more substantial changes occur, in this period the dynamical forecast is the702

most skilful. The results show that the FCN method performs worse when it comes to pre-703

dicting local areas; however, for the larger-scale ice edge, it has similar properties as the704

other methods. The :-NN prediction show reliable results with low errors. However, the705

most substantial changes are only predicted by the dynamical model.706

An example of the IIEE areas for 2018-05-08 (black dotted vertical line in Figure707

12b) is given in Figures 13a-c for FCN, Metroms and :-NN forecast, respectively. Du-708

ring the week leading up this day, there was a significant northward progression of the ice709

edge, especially close to Svalbard in the local area. From Figure 13a, it is seen that the710

dynamical forecast shows the best skill with regards to predicting this ice melt, followed711

by the :-NN forecasts. This result is in accordance with that shown in Figures 12.712

8 Discussion and conclusions719

In this study, the applicability of using machine learning for sea-ice concentration720

forecasting has been assessed. This is done by assessing the machine-learning methods721

individually and comparing them to a dynamical model.722

The improvements of the machine-learning forecasts compared to persistence were723

found to vary with the forecast length. For short-term forecasts, the FCN provided only724
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Figur 12. Comparison of a) average ice-edge displacement and b) IIEE average displacement calculated

from 7-day forecasts during the Metroms study period 2018-03-20 - 2018-05-15. The red line represents the

FCN, blue line the Metroms IC-MUR assimilation model, black line the persistence forecasts, and the green

line is the :-NN forecast. The vertical dotted black line represents the date 2018-05-08.
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Figur 13. IIEE areas 2018-05-08 for 7-day forecasts of a) The FCN method, b) Metroms assimilation

system, and (c) the :-NN method. The colours are as used in Figure 4
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small improvements compared to persistence. This was partly due to small sea-ice chan-725

ges in the SIC on these timescales, implying that persistence becomes a skilful forecast726

alternative, and partly due to the low resolution of the FCN. The FCN model uses lay-727

ers of pooling and convolution, which reduce the resolution of the features and provide728

lower-resolution results. In general, when using such a machine-learning method, it can-729

not be expected that the output has the same resolution as the input data (see examples730

in Long et al. [2015]). A potential solution could be to use fewer convolutional blocks to731

keep more high-resolution features (see appendix A: ).732

For longer timescales, significant improvements were found with the FCN forecast in733

summer, indicating melt effects being well represented in the trained model. The summer734

improvements are related to lower accuracy of persistence in this period when the chan-735

ges in the Arctic sea ice are more substantial. In general, the results found with the FCN736

method provided limited improvements compared to persistence which might be related to737

a too-small training dataset and too low resolution. For sea-ice observations, consecutive738

days have a high correlation. Therefore, the effective training-set size is likely much less739

than the original 700. In general, as shown by Scher and Messori [2019], a more extensi-740

ve training set should be used to obtain improved results. However, the fact that the FCN741

model can be used to forecasts sea ice quickly on almost any computer as long as a pre-742

trained model exists makes this model attractive. The results shown here motivate for a743

more sophisticated version with higher resolution based on a more extensive training data-744

set. A higher resolution could potentially be achieved by using patching, where smaller745

areas are used for training and forecasting. In addition, the use of a Graphical Processing746

Unit (GPU) programming could potentially reduce computational training time.747

The :-NN method was found to provide forecasts close to that of persistence throug-748

hout most of the year but improved upon persistence when the sea-ice changes were more749

substantial. In general, the :-NN method provides forecasts with consistently lower ice-750

edge displacements than the FCN forecasts. A problem with the :-NN forecasts is oc-751

casional noise output in the form of ice residuals. These ice residuals are caused by not752

including the spatial context in the predictions when this method is applied. Compared to753

the FCN, the :-NN forecasts are computationally expensive, and the training data size is754

limited.755
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Compared to the dynamical forecasts, the FCN method provided a higher average756

�̂%C% and a similar ��A40, and show no significant improvements upon the dynamical757

forecast. The FCN forecasts have significantly lower resolution than the other forecast mo-758

dels used in this study, which likely affected the results. The :-NN method was found759

to give a significantly lower ��A40 compared to the dynamical model when there where760

small changes in the sea-ice concentration during the forecast, while when more substan-761

tial changes occurred, the dynamical forecast gave the best SIC forecast. It is important to762

note that the :-NN forecast also has the highest resolution, 1 km, similar to the ice charts,763

while the Metroms model has a 2.5 km resolution and the FCN 10-20 km.764

It is also important to mention that compared to the :-NN forecast, both the dyna-765

mical model and the FCN use prior information in the forecasts. For the dynamical mo-766

del, the atmospheric forecast has assimilated data which includes information regarding767

the future, which likely leads to a better forecast than using an atmospheric prediction.768

For the FCN, a limitation is the amount of training data. However, a trick to artificially769

create more training data is to use the same training data several times but shuffled. How-770

ever, when the same training dataset is used several times in different orders, there is a771

concern that the model might become overfitted. For an overfitted model, the predictions772

will be biased towards the training dataset. To avoid overfitting a method of early stop-773

ping was applied. With early stopping, the trained model with the lowest error compared774

to the forecast data was chosen. This method might reduce the generality of the trained775

model. However, we believe that the results still indicate how well the FCN performs for776

sea-ice forecasting. Moreover, it is important to note that the FCN is not trained on the777

forecast data. However, as both the FCN and dynamical model use future information in778

the forecast, the results of the simple :-NN method becomes even more impressive.779

The motivation for using machine-learning forecasts is primarily to reduce the com-780

putational cost while meeting the requirements for prediction accuracy. Both machine-781

learning methods presented here are significantly cheaper computationally than the dyna-782

mical model. Both the machine-learning predictions are made locally on a desktop com-783

puter. However, the training of the FCN model was done on a cluster, but only using 20784

CPUs. Ideally, GPUs should be used for FCN training. For comparison, the dynamical785

model forecast is generally run on more than 80 CPUs. For the FCN method, increasing786

the resolution would lead to a more costly model training. However, the training of the787

FCN method is a one-time cost. Thus a computationally costly model training is affordab-788
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le as the predictions are extremely fast. It was shown in this study, that the simple :-NN789

method outperformed the FCN. However, we recommend that the FCN method is investi-790

gated further for sea-ice prediction as it has a wide range of useful properties. With the791

FCN method, more than one variable can be predicted, and the method can be used si-792

milarly as a dynamical model [Scher and Messori, 2019]. In addition, since the forecast793

is fast, a prediction time step of one day can be used, and more extended forecasts would794

require several model predictions with model output as input.795

In addition to assessing the machine-learning methods, an investigation of the as-796

similation system was performed. For the dynamical model, a period in spring 2018 was797

used to investigate the effect of assimilating different observations in the Metroms high-798

resolution ocean-sea-ice coupled model system. The SIC forecast when assimilating high-799

resolution observations was found to give similar results as when assimilating lower reso-800

lution observations. This result is unexpected with regards to previous results found by Po-801

sey et al. [2015]. There are several reasons for this, firstly only two months with relatively802

small changes have been investigated. In addition, the resolution difference between the ice803

charts and the passive microwave observations are not that large. In Posey et al. [2015], a804

25 km product was used as the low-resolution product, while we use a 10 km product.805

It was found that neither updating the ocean during assimilation nor assimilating806

SST have a significant impact on the SIC forecast. However, these ocean-related imple-807

mentations were found to have a significant effect on the SST forecast. Thus, it is expected808

that for more extended model simulations, the assimilation of SST and updating ocean809

variables may have a positive impact on the quality of the SIC forecast. It is also impor-810

tant to note that close to the sea-ice edge, the MUR product uses the OSISAF SIC and an811

empirical relationship to derive the SST. Thus, these observations provide little new infor-812

mation compared to the SIC observations close to the sea-ice edge, which might be why813

no significant effect on the SIC forecast is seen when assimilating the MUR SST.814
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A: FCN8837

In this section a more technical description of the FCN8 network used in this study838

is given. The full FCN8 network used is shown in Fig. A.1. The network consists of 5839

blocks of convolution and max pooling layers.840

The FCN8 uses locally connected layers of convolutional (Conv2d, see Figure A.1),841

pooling (MaxPooling2D), upsampling (Conv2DTranspose), and non-linear activation (in-842

cluded in Conv2D) for decision making. The upsampling layer, consists of fractional stri-843

ded convolutions/deconvolution for pixel-wise prediction of input with reduced spatial di-844

mension due to pooling operations. To improve resolution of the output, skip connections845

are utilised during the upsampling process Long et al. [2015]; Shelhamer et al. [2017].846

With skip connections, high-resolution information in early layers is combined with large-847

scale information in the deep layers for step-wise upsampling. The skip connections are848

combined in Add, where information from block 3,4 and 5 is combined by individual up-849

sampling.850
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The activation layers provide an activation function that is performed on the convo-851

lution layer output. This activation function introduce non linearity in the model, without852

the activation function, the network becomes a linear regression model consisting of linear853

convolution operations. In this study, a rectified linear unit (ReLU) is used Glorot et al.854

[2011], which is a function that filters out negative values,855

6'4!* (x) = <0G(0, x), (A.1)

where x is an input and 6 is the activation function.856

The last step in Fig. A.1 is an activation layer, which gives the probability for each857

pixel to be in one of the discrete WMO ice concentration intervals.858
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Figur A.1. An overview of the internal layers and their dimensions in this study. The numbers in each

box are the matrix dimensions for each layer: (time, longitude, latitude, level). None values are the time di-

mension, which is not applicable here but is included by the the software library used. The level dimension is

the channels/features described in the text.
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