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ABSTRACT. Temperature fluctuations can be described by a persistent cor-
relation structure known as long-range dependence (LRD). This is a phe-
nomenon which implies that the autocorrelation function follows a power-
law decay and that observations may still be significantly correlated even if
the temporal or spatial distance between them is large. Moreover, temper-
ature is widely known to be influenced by radiative forcing, or how much
of the solar radiation is absorbed by the earth. This is affected by factors
such as solar variation and emission of climate gases.

The topic of this thesis is to develop efficient statistical methodology
to obtain Bayesian inference for global and local climatic time series data.
This is achieved using the general hierarchical modeling framework of latent
Gaussian models (1Gms). Bayesian analysis can be performed efficiently
using the methodology of integrated nested Laplace approximation (INLA),
utilising the sparse structure of the precision, inverse covariance, matrix
of the latent Gaussian field. Obtaining inference for LRD processes using
INLA is inefficient on account of their precision matrix being dense. For
an n X n matrix essential matrix operations such as Cholesky factorization
generally require O(n?) floating point operations to perform.

Paper I demonstrates how stationary Gaussian LRD processes with
memory governed by a single-parameter can be approximated using a mix-
ture of only four first-order autoregressive (AR) processes. This approx-
imation ensures that the LRD model retains conditional independence and
that inference can be obtained efficiently. The accuracy of this approach is
remarkable and the computational benefits are excellent, allowing inference
to be obtained by INLA in linear time and memory.

Paper II details how this methodology can be used to design a Bayesian
model for global mean surface temperature (GMST) that reflects climate
dynamics by incorporating radiative forcing data. This model has been
made available as part of the R-package INLA.climate, and is used to es-
timate the transient climate response and to predict temperature response
to future forcing scenarios. Paper III uses the GMST model to estimate
equilibrium climate sensitivity, and paper IV applies the same methodology
to gridded local time series from the GISS Surface Temperature Analysis
spatio-temporal data set.
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CHAPTER 1

Introduction

The main aim of this project is to develop efficient statistical methodology
to analyse climatic time series, including both global mean surface temper-
ature (GMST) and local temperature data. These have both been observed
to exhibit persistent correlation structure known as long-range dependence
(LRD) (Rypdal et al., ). The concept of LRD implies that correlation
follows a power-law decay and that observations far apart in time or space
are still significantly correlated. LRD is found to describe behaviour found
in many different fields of research, see e.g. Beran ( ) and Beran et al.
( ) for various examples of analysing LRD. Specifically, we will use a
fractional Gaussian noise (fGn) (Mandelbrot and van Ness, ) model
component to describe LRD in climatic data.

Climatic time series are widely known to be affected by radiative for-
cing. This is the net amount of the sun’s radiation to be absorbed by the
earth and is influenced by factors such as volcanic activity and greenhouse
gases. The contribution to radiative forcing from some of these factors
can be determined using proxy data from e.g. corals, tree rings and ocean
sediments. To reflect real climate dynamics the temperature change associ-
ated with these forcing contributions should be accounted for in our model.
Rypdal et al. ( ) argue that global temperature can be described as a
scale-invariant response to radiative forcing for time scales that apply to
all data analysed in this project. The same persistent behaviour has also
been observed for local temperature time series data (Lgvsletten and Ryp-
dal, ). The temperature variation that is not explained from known
radiative forcing is assumed to be described by an fGn.

Using a Bayesian statistical framework is beneficial in that it allows for
prior information about model parameters and variables to be incorporated
in the form of prior distributions. This improves reliability as uncertainty
in the assumed probability model is accounted for. Existing methods of
performing Bayesian analysis of time series with LRD properties include
Graves et al. ( ) and Makarava et al. ( ). For this project we pro-
pose to perform Bayesian analysis by formulating a latent Gaussian model.
Latent Gaussian models represent a unified computational framework to
perform Bayesian analysis of a wide range of statistical models. Specifically,
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this framework defines a three-stage hierarchical model in which underlying
temporal and spatial dependency structure of observed data is modelled
in terms of a latent Gaussian field. The variability and structure of the
latent field is governed by hyperparameters. Traditionally, the most com-
monly used approach to analyse such models is Markov chain Monte Carlo
(MCMC) methods, see e.g. Gamerman and Lopes ( ) and Robert and
Casella ( ). Although such methods are general and flexible they are
often very time-consuming. Rue et al. ( ) present a computationally
superior alternative, namely the methodology of integrated nested Laplace
approximations (INLA). This is available as the R package R-INLA, which
can be downloaded for free at www.r-inla.org. Since its introduction, this
method has become a widespread tool applied to a wide range of differ-
ent scientific fields. Instead of relying on simulations INLA computes the
posterior marginal distributions for all model parameters directly by using
numerical approximations and integration. A key assumption is that the
inverse covariance matrix of the latent Gaussian field is sparse. However,
LRD processes such as fGn are inherently unsuited for such algorithms as
they are characterised by having a dense inverse covariance matrix.

For stationary Gaussian LRD processes where the memory structure is
expressed by a single parameter, we introduce an accurate and computa-
tionally efficient approximation in terms of a weighted sum of first order
autoregressive (AR) processes. We find that by using only four AR(1) pro-
cesses we obtain an aggregate process with autocorrelation function almost
identical to that of the LRD process we wish to approximate. This allows
for accurate Bayesian inference to be obtained in linear time and memory
consumption using INLA. Support within the R-INLA framework is advant-
ageous in that the LRD latent model component can easily be incorporated
into more complex models with other fixed and random effects such as linear
responses or seasonal variations.

By employing this approximation within R-INLA, we provide a compu-
tationally efficient modeling framework for analysing the GMST in terms of
radiative forcing. The model is available in the R-package INLA.climate,
which provides a user-friendly interface for our developed methodology,
making it accessible also for applied climate scientists. This package has
been used to estimate the climate sensitivity measures known as transi-
ent climate response (TCR), defined as the temperature increase follow-
ing a gradual COy-doubling, and the equilibrium climate sensitivity (ECS),
defined as the temperature increase following an immediate and sustained
CO3-doubling. Whereas advanced Earth System Models (ESMs) require a
substantial runtime in order to provide these estimates, our approach can
obtain Bayesian inference in seconds. Furthermore, it can also be applied to
general data sets that are not produced by simulating ESMs. This approach
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1.1 — Thesis outline

can also be easily adopted to perform temperature predictions by expressing
the future temperature as a response to some known future forcing scen-
ario. Specifically, we have used the Representative Concentration Pathway
trajectories to describe the future forcing. This modeling framework has
also been used to analyse local data independently, Here, we also include
a linear trend which is found to be significant for 84% of local time series,
indicating a temperature increase for the majority of Earth’s surface.

1.1 Thesis outline

Chapter 2 provides theoretical background and introduces the concept of
long-range dependence along with the two most commonly applied LRD
processes. This chapter also presents the framework of latent Gaussian
modeling and applies this methodology to a real data example and explains
how incorporating LRD into such a framework is problematic.

Chapter 3 summarises the first paper of this thesis and explains how ap-
proximating LRD in terms of a weighted sum of short-range dependent pro-
cesses resolves the computational issues associated with LRD. This chapter
presents such an approximation by adopting a mixture of AR(1) processes
with weights and first-lag autocorrelation parameters selected using numer-
ical optimization. Further discussion not included in the paper regarding
choosing the quantities of the optimization procedure and how the accuracy
of the approximation is affected is also included.

Chapter 4 elaborates on adopting the AR(1) mixture approximation to form
a realistic model for climatic data which incorporates data on radiative for-
cing as described in paper II. This chapter also covers the various climate
applications of our model that we have studied during this project. This in-
cludes temperature prediction, estimation of the transient climate response
(TCR) and equilibrium climate sensitivity (ECS), as well as trend testing
of local data. Brief summaries of papers II-IV are also included.

Chapter 5 provides concluding remarks, followed by the four papers included
in this thesis, of which three have been published.

Appendix A includes a description and tutorial of the inla.climate pack-
age.
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CHAPTER 2

Theoretical background

2.1 Long-range dependence

Long-range dependence (LRD) or long memory is a property relating to the
rate of decay of statistical dependence of two observations as the temporal
or spatial distance between them increases. For long memory processes the
autocorrelation function (acf) typically follows a power-law decay. Con-
versely, the acf of short-range dependent (SRD) processes exhibit an ex-
ponential decay. Although numerous competing mathematical definitions
of LRD have emerged over the years (Guegén, ), the long memory
property is often defined by the behaviour of the covariance between two
variables as the temporal distance between them increases. In this thesis
we have only studied stationary LRD processes and as such we define long
memory by the asymptotic behaviour of the acf, denoted p. Specifically,
the stationary stochastic process {z;} is said to exhibit LRD if

lim p(k) = ck*172

k—o0
where ¢ > 0 is a constant and H € (0.5,1) is the memory parameter known
as the Hurst exponent or Hurst parameter. For non-stationary processes,
a prevalent alternative definition is to define LRD as when the sum of the
covariance at each lag diverges towards infinity, i.e.

Z Cov (zt, x445) = 00.

k=—o00

Both of these definitions have equivalent definitions in the spectral do-
main. Long memory has been used to describe behaviour found in many

different fields such as econometrics (Baillie, ; Diebold and Inoue, )
climate science (Franzke, ; Koutsoyiannis, ) and dendrochronology
(Baillie and Chung, ). One of the most important contributions on

this topic is a study performed by Hurst ( ) on the fluctuations of the
water level in the Nile river. To measure the variability of the time series
Hurst developed the rescaled range statistic, denoted (R/S); for some time
point t. For observations y = (y1,...,yn)', define z = (z1,...,2,) and

5
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u=(u,..,u,) " by

t

1 t
a=Y (yi—Ely]) and w = n > i
i=1

=1

The rescaled range statistic is then defined as

max(z1, ..., 2z¢) — min(zy, ..., 2;)
t
VAT — )

This statistic provides an assessment of how the variability of a time
series changes with the length of the time-period being considered. For
large t, Hurst observed that (R/S); oc t?, where H =~ 0.72. This implies
that the variability is expected to increase according to a power-law of order
H. In hydrology, this describes the tendency of dry years to cluster together
to form periods of drought, and conversely for wet years to cluster and form
wet periods. This behaviour has since also been called the Joseph effect
(Mandelbrot and Wallis, ), referring to the biblical story of Joseph,
whom predicted seven years of great abundance to be followed by seven
years of famine.

This behaviour had been studied before, see e.g. Kolmogorov ( ),
but Hurst was able to show that this phenomenon could not be explained
using contemporary hydrological models. Specifically, he showed that for
independent identically distributed (iid) Gaussian models the (R/S); stat-
istic should exhibit growth proportional to t1/2 as ¢ —» co. This was later
proven mathematically to hold for standardized iid random variables with
finite variance, with contributions from e.g. Feller ( ). Hurst’s result
lead to substantially more interest on the topic, which is why both the
Hurst exponent H as well as the behaviour expressed when H > 1/2; since
referred to as the Hurst phenomenon, is named after him. This phenomenon
puzzled both hydrologists and mathematicians, whom for years tried to cre-
ate a model that could successfully reproduce it.

It should be noted that, although similar to the concept of long memory,
the Hurst phenomenon is not synonymous with it, see e.g. Franzke et al.
( ) or Bhattacharya et al. ( ). However, the rescaled range statistic
remains a useful method for identifying the Hurst exponent of an observed
time series suspected of exhibiting LRD. Moreover, research motivated by
explaining the Hurst phenomenon lead to major breakthroughs in develop-
ing models that capture LRD, including those we have employed in this
thesis. For an overview of the discussion and research that followed the
Hurst study see e.g. Graves et al. ( ).

(R/S), = E [S(t)] —E



2.1 — Long-range dependence

2.1.1 Fractional Gaussian noise

Fractional Brownian motion (fBm) was first introduced by Kolmogorov
( ). However, it was not until the seminal paper by Mandelbrot and
van Ness ( ) where the relevance of fBm in explaining the Hurst phe-
nomenon was first recognized, see e.g. Taqqu ( ) for a review. It was
also in this paper where the process received its name and where many of its
useful properties were derived. Fractional Brownian motion is a continuous
stochastic process defined by the stochastic integral

Br(t) = By (0) + HHL/Q) (/_(; ((t —s)H-1/2 _ (—s)H—W) dB(s)
+ /O (t — s)H1/2dB(s)> ,

where B is a regular Brownian motion process, I' is the gamma function
and H € (0,1) is the Hurst exponent. This process is a generalization of
a Brownian motion that exhibits long-range dependency. The behaviour of
the fBm can be categorized in three different cases. If 0.5 < H < 1 the fBm
exhibits long-range dependence and positive correlation. If H = 0.5 the fBm
is memory-less and reduces to a regular Brownian motion. If 0 < H < 0.5
the fBm exhibits anti-persistence and is negatively correlated. The fBm is
also self-similar (also referred to as self-affine), which is another property
introduced in Mandelbrot and van Ness ( ). This means that if we let
By denote an fBm with Hurst exponent H and let ¢ be an arbitrary real
number, then

By(ct) = CHBH(t).

In fact, fractional Brownian motion is the only self-similar Gaussian
process with stationary increments

en(t) = Bu(t+1) — Bu(1),

see e.g. Tudor ( ) for proof. These increments form another LRD process
called fractional Gaussian noise (fGn) which also possess several important
properties. One of the most significant findings of Mandelbrot and van
Ness ( ) was that the rescaled range of the fGn was proportional to ¢
as t — oo. Mandelbrot and van Ness had thus been able to construct
a stationary Gaussian process which reproduced the Hurst phenomenon.
Furthermore, the fGn also fulfills the criterion for defining LRD in stationary
processes. This can be seen by inspecting the acf of an fGn

1
plk) = 5 (k= 1P = 20627 + [k + 1), (2.1)
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which follows p(k) ~ H(2H — 1)|k|>(# =1 for large lags k. Similar to the
fBm, the fGn is long-range dependent when 0.5 < H < 1, anti-persistent if
0 < H < 0.5 and memoryless if H = 0.5. Only fGn processes with Hurst
exponents in the persistent range H € (0.5,1) will be considered in this
project.

A nice property of fGn processes is that since it is defined as the incre-
ment of the self-similar fBm many asymptotic relations hold also for finite
sample sizes (Taqqu et al., ). FGn has also enjoyed popularity due to its
analytic tractability (Purczynski and Wlodarski, ). In some situations,
the parsimony of the f{Gn can be considered a flaw as it is not as flexible
as other LRD processes that has been introduced since. Most notable of
these is the class of autoregressive fractionally integrated moving average
(ARFIMA) processes which can incorporate both LRD and SRD. Neverthe-
less, the fGn holds historical importance as being the first LRD process to
successfully describe the Hurst phenomenon.

2.1.2 Autoregressive fractionally integrated moving averages

Fractional Gaussian noise is essentially a discrete approximation of a frac-
tional derivative of Brownian motion. Hosking ( ) proposed to discretise
first, then perform fractionally differencing. This was partly based on an
idea presented by Granger ( ) whom later developed the theory inde-
pendently (Granger and Joyeux, ). These contributions lead to the the
ARFIMA class of models. In short, the ARFIMA models are an extension
of ARIMA(p,d, q)

¢(B)P(1 — B)x; = (B)ey,
where B denotes the backshift operator Bz, = z;_1, and ¢(B)P and 6(B)?
describes the backshift polynomial corresponding to the AR(p) component
and the MA(q) component, respectively. ARFIMA (p, d,q) models allow d
to be a non-integer number. This change has interesting consequences for

the covariance structure. Consider first the case of ARFIMA(0,d,0) also
known as a fractionally integrated (FI) process

Ty = (]. - B)_d6t.
Using Taylor expansions this can be interpreted as a moving average process

B I'(s+4d)
" e

s=0

o0

where 0 < d < 1/2. Granger and Morris ( ) show that this process has
act
I'l—d) T'(k+d)

PR =@ The1=d)




2.2 — Incorporating LRD in a flexible modeling framework

Using Sterling’s theorem the acf can, for large k, be approximated by
p(k) =~ Ck?~1, where C is an appropriate constant. For d > 0, the acf
has an asymptotic hyperbolic decay and thus satisfies the criterion for long
range dependence. For d < 0, the process exhibits negative correlation. The
ARFIMA(0, d,0) has very similar properties as an fGn with Hurst exponent
H = d+ 1/2. They both exhibit long-range dependency explained parsi-
moniously by a single parameter and their acfs exhibit similar asymptotic
behaviour. The ARFIMA(p,d, q) process is both stationary and invertible
for —1/2 < d < 1/2, however, only ARFIMA(0, d, 0) processes which exhibit
long memory, i.e. 0 < d < 1/2 will be considered in this thesis.

A notable advantage of the ARFIMA(0,d,0) model is its flexibility as
it is a case of the more general class of ARFIMA(p,d, q) models thus al-
lowing the Box—Jenkins method (Box et al., ) to be applied. The
ARFIMA(0,d,0) model also has a very simple spectral density function
(Taqqu et al., )

1 N7
fA) =— <2sin ) ~—\"" as A —0,
2 27

where A is the frequency. The re-scaled partial-sums ARFIMA(0,d,0)
model converges in distribution to fBm (Taqqu, ) and thus exhibits
self-similarity asymptotically. However, introducing non-zero p or g will
destroy this property.

Although other LRD processes exist, see e.g. the broken-line process
of Rodriguez-Iturbe et al. ( ), the f{Gn and ARFIMA models are by far
the most widely used. While the ARFIMA models are preferred in most
scientific fields, f{Gn seems to be the most used model in physics (Graves
et al., ). As this thesis focuses on problems in climate science, much of
the methodology developed here will therefore be presented with the fGn
in mind. However, all methods developed for the f{Gn can just as easily be
adopted for the ARFIMA (0, d,0) model.

2.2 Incorporating LRD in a flexible modeling framework

Inference about LRD processes primarily includes estimating the Hurst ex-
ponent H, and over the years various methods to estimate this parameter
have been developed. Popular methods include the aforementioned rescaled
range analysis (Hurst, ), detrended fluctuation analysis (Peng et al.,

) and Whittle’s estimator (Whittle, ). Bayesian methods include
approximating the likelihood which is incorporated into a Markov chain
Monte Carlo approach (Graves et al., ), and estimating H in terms of
linear mixed models (Makarava et al., ).

9
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2.2.1 Latent Gaussian modeling

Fractional Gaussian noise and ARFIMA(0, d,0) do not enjoy the same flex-
ibility as the general ARFIMA(p, d,q) models which can incorporate both
short and long memory in the same model. Real data, and many of the cases
considered in this thesis, cannot always be explained by a single LRD com-
ponent. Therefore, we introduce fGn as a latent model component in the
existing framework of latent Gaussian models (IGms), a subclass of struc-
tured additive regression models. This is a hierarchical Bayesian model
where the mean of the observation variable y; is linked to a structured ad-
ditive predictor n; through a link function g such that g(E[y;]) = n;. The
predictor expresses the effects of various covariates

BO"‘ZIBkzzk"'_ij uj’L + €.

= 7j=1

Here ¢; is an unstructured noise term, fy is an intercept term and {S}
are linear effects of covariates z; = (z;1,..., zi,nﬁ)T. The unknown func-

tions {fU)} are called random effects. These functions can take on very
different forms which enable many different applications. For latent Gaus-
sian models By, {81}, {9}, {e;} are all assigned Gaussian priors. For the
random effects, however, this prior may depend on a set of hyperparamet-
ers, denoted 3. Let the latent field x = (x1,...,2,,)" denote the vec-
tor containing the additive predictor and all stochastic terms therein x =
(0, Bo, {Br}, {fP},€)". This is a multivariate Gaussian random field which
explains the temporal and spatial dependency structure of all stochastic
terms in the predictor.

Formally, the latent Gaussian model formulation is defined in three
stages. The first stage specifies the likelihood of the observations. Let 6
denote the vector of parameters, if any, of the likelihood distribution and
0=(0],0,)" =(b,..., 0n,) " denote all model parameters. We assume the
observations to be conditionally independent given the latent field x and
parameters 6, i.e.

m(y | x,0) = Hﬂyz|xz,91

The second stage specifies the prior distribution for the latent Gaussian
field x given a set of hyperparameters 2. For 1Gms this is a multivariate
Gaussian distribution

x |0 ~N(p,Q")
where p = E[x | 0] and precision matrix, defined as the inverse covariance

matrix, Q = X1

10
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The final stage specifies the joint prior distribution for the hyperpara-
meters m(62) that specify the form of x. This distribution is typically formed
by assigning a prior to each of the m hyperparameters independently,

m
m(02) = [[=(6:).
i=1
For transparent prior selection we have adopted penalised complexity
(PC) priors (Simpson et al., ) to our hyperparameters. This is a re-
cently developed class of priors which are based on specific principles that
emphasize simplicity. These are governed by two fixed parameters v and
«. For an alternative to PC priors which allows the prior to be assigned
jointly, see the hierarchical decomposition prior (Fuglstad et al., ).
The class of 1IGm presents a unified framework to analyse a wide range
of statistical models and allows us to obtain full Bayesian inference. This
implies a complete description of the joint and marginal posterior distri-
butions for the hyperparameters and latent variables. The joint posterior
distribution for all components and hyperparameters is obtained by taking
the product of the likelihood and the prior distributions

m(x,0) x w(y | x,01)7(x | 02)7(0).

2.2.2 Computation using R-INLA

For latent Gaussian models, the marginal posterior densities m(x;|y) and
7(0;|y) can be obtained by using integrated nested Laplace approximation
(INLA). INLA is implemented for R as the package R-INLA package which
can be downloaded for free at www.r-inla.org. INLA utilises efficient nu-
merical algorithms for sparse matrices to achieve fast approximate Bayesian
analysis. However, if the precision matrix of x is dense, the computational
advantage is lost. Applying INLA on LRD processes such as the fGn is there-
fore inefficient, on account of their long-range dependent memory structure
which implies dense precision matrices. This has consequences for compu-
tational efficiency and memory usage, in particular for longer time series.

As an fGn model component is not included in the R-INLA package, we
specify it manually using rgeneric. This is a custom modeling framework
that allows the user to define generic latent model components for INLA.
This freedom comes at a computational cost as the rgeneric model com-
ponent needs to be interpreted in R which will make it run slower than the
built-in model components which are implemented for INLA in C.

The rgeneric implementation requires the specification of the precision
matrix and its determinant. This requires inverting the covariance matrix
which is dense and therefore very costly to perform. Typically, matrix in-
version of an n x n-matrix require O(n3) floating points operations (flops)

11
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to perform. However, this can be reduced by taking advantage of the Toep-
litz form of the covariance matrix of an fGn. By applying Trench inversion
(Trench, ; Golub and Loan, ) and the Levinson-Durbin algorithm
(Durbin, ; Levinson, ) we obtain the precision matrix and its de-
terminant in O(n?) flops. Under certain circumstances however, such as
when fGn is observed indirectly with inhomogenous noise, the precision
matrix will no longer be Toeplitz and the cost returns to O(n?) flops. For
the patient user, however, memory might be the more limiting resource.
In fact, when testing this approach for a simulated time series of length
n = 2,500 with my personal computer, a MacBook Pro (mid-2015) with
16GB RAM, INLA crashed due to reaching the computer’s memory limit.

2.2.3 Example: Fitting an 1IGm to the NileMin data

To illustrate the procedure I will apply the 1Gm framework to the n =
663 NileMin data set given by Tousson ( ), available in the R-package
longmemo. This is a popular data set for LRD analysis, see e.g. Beran
( ), that describes the annual water level minima measured at the Roda
gauge near Cairo for the period 622-1284. We will assume the observations
y = (Y1, ...,yn) | to be a realisation of a zero-mean fGn, although the same
procedure can be carried out similarly for an ARFIMA(0, d,0) process. We
will estimate both the Hurst exponent and the standard deviation, denoted
60 = (H,0), by computing the posterior marginal distributions for each of
them. To properly incorporate the long memory structure of the fractional
Gaussian noise it is expressed as a random effect instead of a noise term.
Using an identity link function the predictor is expressed as

mi=flu) =&

where we have denoted the fGn term by & = (e1,...,6,)". We assume
that there is no uncertainty not explained by the predictor and therefore
choose to assign a Gaussian likelihood with negligible fixed variance 05 ~0
and mean 7;. There are hence no unknown parameters associated with
the likelihood. This concludes the first stage of defining the 1Gm. For
the second stage the latent Gaussian field is specified. The mean vector of
which is assumed to be zero for all variables, and the precision matrix is
obtained by inverting the autocovariance matrix formed by equation (2.1).
For the last stage, we assign penalised complexity priors for the marginal
prior distributions for the hyperparameters. For scaling hyperparameters
such as the precision x = 1/02 the PC prior is be computed to be equal
to the exponential distribution. The PC prior for the Hurst exponent H is
computed numerically as instructed in Sgrbye and Rue ( ). Here, we use
prior parameters u, = 1 and a, = 0.01 for k, and uyg = 0.9 and ay = 0.1
for H.

12



2.2 — Incorporating LRD in a flexible modeling framework

Utilizing the Toeplitz form of the precision matrix, INLA converges in
around two minutes. Methods such as Whittle’s approximate maximum
likelihood estimate and rescaled range analysis produce similar results, but
are computed almost instantaneously. Although neither time consump-
tion nor memory usage is an issue for this particular demonstration, more
computationally challenging problems with either more observations, hy-
perparameters or replications might prove infeasible to perform.

13






CHAPTER 3

Approximating long memory by aggregating short
memory processes

This chapter will describe how Bayesian inference for 1Gms with an LRD
latent model component can be obtained efficiently by introducing an ap-
proximate Gaussian random field with a high degree of conditional inde-
pendence. This is obtained using numerical optimization such that the
resulting acf matches the theoretical acf of the target LRD process. The re-
search presented in Sgrbye et al. ( ) will be summarised, and alternative
specifications of the numerical optimization procedure and their impact on
speed and accuracy will be discussed.

3.1 Achieving sparsity by introducing a Markovian
approximation

Let x = (1,...,2,)" denote a multivariate Gaussian vector with mean g
and precision matrix Q,

x~N(p,Qh),

Also, define X_jj = (21, .., Tim1, Tig1, - s Tjm1, Tjg1s- - -5 z,) . If the Gaus-
sian variables x; and x; are conditionally independent given x_;;, i.e.

m(xi, x5 | Xij) = w(2i | xg)m(xs | x_i5),

then the corresponding term in the precision matrix, @Q;;, is zero, see e.g.
theorem 2.2 in Rue and Held ( ) for proof. This reflects the Markov
property, and a Gaussian random field (GRF) that possesses a high degree
of conditional independence is known as a Gaussian Markov random field
(GMRF). This implies a sparse precision matrix which allows for many
computationally efficient algorithms central to the INLA approach to be
employed. Most notably this includes computing the Cholesky factorization
Q = LL", where L is a lower triangular matrix. Hence, introducing a
GMRF that successfully approximates the latent Gaussian field x would
resolve the computational issues associated with LRD.

This is achieved by forming an aggregate process X,, = (Z1,...,Zm)
defined as a weighted sum of m independent AR(1) processes. Let {x;}

T
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denote a set of m independent AR(1) processes of equal length n,
Tit = (Zsixi,t—l + Eity 1= 17 ey 1, t= 17 -y 1, (31)

where each ¢; are distinct and ¢;; are iid zero mean Gaussian processes
independent of ¢;. The aggregate process is given by

m
Xm =0 Z Vwx; + w. (3.2)
i=1

Here, o denotes the standard deviation of the aggregate process, {w;} denote
the individual weights and w is a noise term with small variance in the
exp(—15) range added to ensure that the precision matrix is positive definite.
The complete latent field is defined as
X = (777 ima X1y ey Xm)T'
By expanding the joint density
T(X1y ey Xy X | @) = (X1 | 0) -+ - T(Xpmy | O)70 (X | X1y vy X, 0),

we find that temporal conditional dependence is only present within the
underlying AR(1) components and not in x (Sgrbye et al., ). Since
these processes all possess the Markov property, the complete latent field x
is also a GMRF. By rearranging the variables in x the resulting precision
matrix is a sparse matrix with bandwith b = m + 1. The number of flops is
db? = n(m+1)3 and the memory requirement is d(b+1) = n(m+1)(m +2)

reals. See e.g. Golub and Loan ( ) sec. 4.3.5 for proof. This ensures
great computational benefits assuming m is of order O(1), which allows the
log-likelihood to be evaluated quickly (Rue, ) and for INLA to obtain

full Bayesian inference in linear time and memory.

3.2 Simulation based aggregation

Let {x;} denote m individual AR(1) processes of length n as given by equa-
tion (3.1). According to Granger and Morris ( ) the sum of m such
AR(1) processes can generate an aggregated process X,, equivalent to an
ARMA (m,m — 1) process, i.e.

m

- 1

Ky = Z; —x; ~ ARMA(m,m —1).
This result shows that it is possible to create an aggregated process with a
correlation structure decreasing more slowly than for the components used
to construct it. In fact, it is even possible to apply such an approach
to create an aggregated process that exhibit LRD, as proven in Granger
( ). Let the first-lag autocorrelation parameters {¢;} of equation (3.1)
be sampled from a Beta distribution with shape parameter p and scale

16



3.3 — Numerical based aggregation

parameter ¢, ¢; ~ B(p,q). Then, as m — oo, the sum of AR(1) processes
X, will exhibit long memory. Specifically, X,,, follows an ARFIMA(0,d,0)
process with parameter d = 1 — ¢/2.

In theory, it should therefore be possible to recreate any fractionally
integrated process with Hurst exponent H = d — 1/2 by sampling ¢; ~
B(p,3 — 2H) for an arbitrary p and aggregate each simulated AR(1) series.
However, this turns out to be ineffective in practice. Haldrup and Valdés
( ) show that even when using m = n AR(1) components the ability of
the aggregate process to recreate LRD was still inadequate. Since the com-
putational cost of INLA would increase immensely if m is of order O(n), the
potential gain in computational efficiency by adopting an AR(1) mixture
representation is lost. It is therefore clear that forming AR(1) aggrega-
tions by randomly sampling their first-lag autocorrelation coefficients is an
impractical approach.

3.3 Numerical based aggregation

We propose to form the aggregation as a weighted sum of m AR(1) processes,
where the weights w = (wy, ..., w,,) " and first-lag autocorrelation paramet-
ers ¢ = (¢1,...,¢m) | are selected using a numerical optimization procedure.
This is done such that the resulting AR(1) mixture X,,, described by equa-
tion (3.2), best reproduces the target LRD process with memory parameter
H (or d = H —1/2 for ARFIMA(0, d,0) processes) under a given criterion.
The optimization is repeated for all H in a grid covering the persistent
and stationary range of (0.5,1) and interpolated in order to form a con-
tinuous mapping between H and the corresponding set of w and ¢. This
mapping allows INLA to link the approximate LRD process with the un-
derlying AR(1) processes and, by tuning H, find the set of (w, ¢) that gives
the optimal fit. We will introduce a sum-to-one constraint on the weights,
Yo, w; = 1. To improve mixing we require that ¢; > --- > ¢,. This is
achieved by introducing the parametrisation

) ! 7
> j—1€xp(v)) 1435 exp(—u;)

where v; = 1. This also achieves a stable and unconstrained parameter space
onv = (v2,...,0m)" € R™ Landu = (uy,...,un,) €R™. In Myrvoll-Nilsen

w; =

( ) the criterion for selecting w and ¢ was
(W, @)y = argmin (ﬁa\,g — H)?, (3.3)
(w,9)

where ﬁavg is the average of R = 10 maximum likelihood estimates of the
Hurst exponent. This is obtained by applying the FitFGN function from the
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since archived R-package FGN, to aggregations of m simulated AR(1) pro-
cesses with individual weights w; and first-lag autocorrelation parameter
¢;. To ensure that the parameter space of the optimization algorithm re-
mained consistent it was imperative that the seed for the random number
generator within each replication was equal and reset for each iteration of
the optimization algorithm. Although the mapping generated using this
optimization criterion was able to produce fast and reasonable estimates,
it was still slightly inaccurate. The results were found to be biased, un-
derestimating the Hurst exponent for processes with 0.5 < H < 0.75 and
overestimating for 0.75 < H < 1. This bias might be explained by the low
number of replications (R = 10) used to produce ﬁavg, but increasing this
would also further increase the computational cost of obtaining the mapping
which was already very intensive.

In Sgrbye et al. ( ) we improve upon this method by choosing another
optimization criterion. Here, we select (w, ¢) such that the theoretical acf
of the AR(1) mixture

m
k
(k) =3 widl, k=0,1,..,n-1,
i=1

best matches that of an f{Gn with Hurst exponent H given in equation (2.1)
truncated at some lag knyax. For each H, the associated numerical optimiz-
ation problem is

kmax

(w. ¢)rr = argmin Y (k) (px,. (k) = px(k))", (3.4)
(w.0) k=1

using the same parametrisation as before. Since the smallest lags of the acf
are very influential in identifying the Hurst exponent we introduce a lag-
weight function 1 to emphasize the accuracy at these lags. The optimization
problem is solved in R using the optim function, and to ensure continuity the
initial value for the numerical scheme at each iteration is chosen to be equal
to the optima located in the previous iteration. Since the optimization
procedure struggles to find stable solutions at both ends of the interval
(0.5,1) we choose to split it into two subintervals. The first starts at H =
0.75 and iterates towards H = 0.5, and the second starts at H = 0.75 and
iterates towards H = 1. For m = 4, kmax = 1000 and ¢ (k) = 1/k, this
results in the mapping illustrated in figure 3.1.

3.4 Selecting optimization parameters

In solving equation (3.4), we need to first make choices for the quantities
m, kmax and 1. Choosing proper values for these settings is important to
achieve good accuracy for different problems. Sgrbye et al. ( ) explain
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3.4 — Selecting optimization parameters

Coefficient
Weights

FiGureE 3.1. The mapping from H to the corresponding
set of first-lag autocorrelation coefficients (left panel) and
weights (right panel).

that choosing m = 4, kyax = 1000 and ¢ (k) = 1/k provides a good ap-
proximation in most applications. As the paper does not detail why these
specific settings were selected, I will use this opportunity to discuss the topic
more in depth.

To illustrate how these quantities influence the accuracy I will perform
separate analyses that estimate the Hurst exponent using the approximation
obtained by equation (3.4) with different values of m, kpax and 1, and com-
pare them with the estimate obtained using the exact model. The maximum
likelihood of the Hurst exponent for f{Gn simulations will be estimated using
the acf of the AR(1) mixture approximation with the given setting paramet-
ers. This is compared with the estimate obtained using the theoretical acf.
The analyses will be repeated for 1000 fGn simulations of length n = 1000
and with Hurst exponent H = 0.9. This is because the differences in accur-
acy are more pronounced for high values of H. The quantities to be tuned
include the number of AR(1) components m € {3,4,5}, the number of lags
for which the target acfs should be compared kpax € {500, 1000, 2000} and
the exponent p € {0,0.5,1,2} of the lag-weight function assumed to take
the form (k) = 1/kP for k < kpax.

As the runtime associated with the model component in equation (3.2)
increases as more AR(1) components are incorporated we wish to pick the
lowest possible m that yields sufficiently accurate estimates of H. Moreover,
since we intend for this approximation to be created only once and applied
for time series with different length and memory we also emphasize general-
ity. We therefore pick p and kpax such that the mixture properly recreates
the characteristic early descent of the acf, while being able to retain accur-
acy for k > kpax. A high kpax allows the mixture to properly approximate
longer time series, but will reduce the emphasis put on the small and mot
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important lags as they constitute a smaller part of the acf compared to the
overall size. Previously, we used kpax = 100 and even for such low kpax
the optimization procedure failed to capture the characteristic acf structure
without assigning a proper lag weight, 1. Lag weight functions with high
negative order p allows for acfs of higher k.« to be compared without los-
ing accuracy for the important smaller lags of the acf as is illustrated in
figure 3.2. However, if p is too high, and thus too much weight is placed
on the early lags, we observe that the accuracy is not properly maintained
for k > kmax. This is illustrated in figure 3.3. Scatter plots describing the
correlation between the MLEs obtained using the approximate f{Gn and the
exact fGn are illustrated in figures 3.4 to 3.6. We observe that for m = 3
the estimates are generally not sufficiently accurate, nor are the estimates
obtained when using ¢ (k) = 1. Based on the results we argue that selecting
m = 4, kmax = 1000 and ¢ (k) = 1/k is a good choice as this combination
of quantities seem to generally provide good accuracy and appears to be a
good trade-off between achieving accuracy for smaller and higher lags. Of
course, other valid choices exist as well.

3.5 Support in R-INLA

Originally the approximate fGn model obtained using the link found in equa-
tion (3.4) was implemented for use in R-INLA using the rgeneric modeling
framework. Doing so reduces the efficiency of INLA, especially if written
entirely using R. The fGn model, with the recommended settings above, has
since been implemented as a built-in latent model component in R-INLA
called fgn. This makes the f{Gn model easily accessible and computation-
ally more efficient as it has been written directly in the R-INLA C code.
Moreover, a computational superior version of the f{Gn model is also avail-
able in R-INLA, known as fgn2. Here, the GMRF x = (X,}, %, _1,...,%{ )T
is structured differently and includes the cumulative sums of the m AR(1)
processes

k
}ch: E v WiX;.
=1

Whereas the standard fGn model expands the latent Gaussian field for
an fGn of length n into a GMRF of length (m+1)n, the alternative approach
expands into a GMRF of length mn. This will reduce the runtime, but will
not allow for automatic source separation of the individual AR(1) processes.
See the documentation within the R-INLA package for more information,
accessible by the command inla.doc("fgn").

Although the content of this section has been primarily focused on fGn,
the approach for obtaining a similar approximation for other stationary
and Gaussian single-parameter LRD processes, such as the ARFIMA(0, d, 0)
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FIGURE 3.2. The acf of the m = 3 AR(1) mixture (blue)
truncated at kmax = 1000 against the theoretical acf an fGn
(black) with H = 0.9. Panels 14 (top left to bottom right)
show the acf corresponding to the approximate model using
lag-weight (k) = kP with p equal to 0,0.5,1 and 2 respect-
ively. We observe that as p increases fit in for the smaller
lags improve.

model, is almost identical. The only difference is which target acf is used
in the optimization procedure. However, as the ARFIMA(0, d,0) model is
currently not supported by R-INLA as a latent model component it has to
be specified using rgeneric.
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FIGURE 3.3. The acf of the m = 3 AR(1) mixture (blue)
truncated at kmax = 1000 against the theoretical acf an fGn
(black) with H = 0.9. Panels 14 (top left to bottom right)
show the acf corresponding to the approximate model using
lag-weight (k) = kP with p equal to 0,0.5,1 and 2 respect-
ively. We observe that as k > kp.x the approximate decays
increasingly rapidly as more emphasis is put on the smaller
lags of the acf.
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FIGURE 3.4. Scatter plot of the estimated H using the
AR(1) mixture approximation with different settings against
exact MLE for 1000 simulations with true H = 0.9 and
length n = 1000. Rows 1-4 show result for lag-weight
(k) = 1/kP with p equal to 0,0.5,1 and 2 respectively.
Columns 1-3 correspond to m equal to 3,4 and 5 respect-
ively. Here, kpax = 500 for all panels.
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FIGURE 3.5. Scatter plot of the estimated H using the
AR(1) mixture approximation with different settings against
exact MLE for 1000 simulations with true H = 0.9 and
length n = 1000. Rows 1-4 show result for lag-weight
(k) = 1/kP with p equal to 0,0.5,1 and 2 respectively.
Columns 1-3 correspond to m equal to 3,4 and 5 respect-
ively. Here, kpax = 1000 for all panels.
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CHAPTER 4

Applications in climate science

4.1 Modeling global mean surface temperature

Global radiative forcing F' denotes the net effect of changes to how much ra-
diation emitted from the sun is absorbed by the earth. This radiation affects
the energy balance of the earth system which leads to temperature change.
Understanding the global mean surface temperature (GMST) response to
radiative forcing is therefore essential to assess the risks of global climate
change. For time scales ranging from months to centuries this response

can be expressed as scale-invariant (Rypdal and Rypdal, ; Rybski et
al., ; Lovejoy and Schertzer, ; Huybers and Curry, ; Franzke,
; Fredriksen and Rypdal, ), implying long memory properties of

the temperature series. This chapter will apply the approximation obtained
using the link found by equation (3.4) and introduce a computationally ef-
ficient Bayesian approach to analyse temperature series, including response
to radiative forcing.

Components the radiative forcing can be determined using proxies such
as ocean sediments or volcanic ash layer analysis. These contributions to
radiative forcing will be treated deterministically and denoted by Finown,
and includes forcing originating from solar variations, volcanic activity and
anthropogenic effects such as land usage and emission of greenhouse gases.
We use time series data produced using earth system models (ESMs) to
describe Finown- As this data only measures change in forcing we introduce
an unknown shift parameter Fy to describe the initial level of this forcing.
The remaining forcing is caused by chaotic atmospheric dynamics and will
be explained stochastically using a white noise process dB/dt. Let o denote
a general scaling parameter, the total forcing is then expressed as

dB(t)
dt ’
where we introduce two scaling parameters oy and o, to allow for the forcing

components to be weighted differently. o denotes the total variance of the
GMST anomaly AT. The GMST anomaly is expressed as a filtering of F’

oF(t) = o (Finown(t) + Fo) + 02 (4.1)

AT(t) =Ty + U/t g(t — s)F(s)ds, (4.2)

—00
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where Tj is an intercept term used to shift the temperature anomaly to
the desired reference period. Inserting equation (4.1) into equation (4.2)
yields that the GMST anomaly can be expressed as the sum of a forced
temperature response

t

p(O) =T +or [ g(t = 5) Fnown(s)ds (1.3)

— o0

and an unforced temperature response

¢
e(t) = O'E/ g(t — s)dB(s).
—0o0
Assuming that the ocean layers can be represented by an m-box model
as described in Fredriksen and Rypdal ( ) the response function g is a
sum of m exponentials

m
g(t) =Y wie T,
i—1

where w; and 7; = 1—1/¢; denote the weights and characteristic time scales,
and must be treated as unknown hyperparameters. For the 1-box model the
response function is a single exponential, and the GMST response exhibits
SRD and depends on four hyperparameters. These are the first-lag auto-
correlation coefficient ¢ = 1/(1 — 71), the standard deviation of the forced
and unforced response oy and o, and the shift parameter Fy. For the m-box
model, the unforced response is a weighted sum of m Ornstein Uhlenbeck
processes, and the GMST response is governed by 2m + 2 hyperparameters,
which is computationally expensive due to the high-dimensional parameter
space. Moreover, the model is also prone to overfitting. However, as the
number of boxes increase towards infinity, g can be expressed as a scale-
invariant response function (Fredriksen and Rypdal, )

g(t) =732,

implying LRD properties. As mentioned previously, this assumption is valid
for time scales ranging from monthly to centennial. All weight and time scale
hyperparameters are then replaced with the Hurst exponent H, meaning
that the model now has only four hyperparameters H, Fy, oy and o.. This
means that the scale-invariant response has just as many hyperparameters
as the exponential response associated with the 1-box model, but is able to
describe heat transmission between the ocean layers more accurately.

Myrvoll-Nilsen et al. ( ) compare the two approaches for differ-
ent applications, and observe that the scale-invariant response routinely
provides estimates that are much closer to projections obtained using more
sophisticated models compared to using an exponential response, which tend
to underestimate.
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4.2 Statistical model

If we discretise AT = (AT(t1),...,AT(t,))" and F = (F(t1),...,F(t,))"
we see that the GMST anomalies follow an fGn with mean vector pu =
(f11, -+, fin) T and covariance matrix Q™! = Cov(e), where € = (e1,...,6,)
We let @ = (H, Fy, o0y, o.)" denote the hyperparameters and define a latent
Gaussian model as follows:

e The likelihood of the data AT is assumed to be Gaussian with fixed
negligible variance and mean expressed through the predictor

E[AT] =n = p(H, Fy,0r) +e(H, 0¢).

e Since both latent model components p and € in the predictor de-
pend on H our model is of non-standard form and cannot be treated
in INLA without modifications. We therefore choose to consider
the sum p + € as a single component. Using the approximate fGn
model specified in equation (3.2) with m AR(1) components the
latent Gaussian field is defined asx = (n7, (u+%m) ", %/, ..., x) )T,

e Priors are assigned independently to the hyperparameters

m(0) = n(H)m(Fo)m(of)m (o).

For the Hurst exponent H and the precision hyperparameters sy =
1/ 012[ and k. = 1/02 we assign PC priors, and for the shift para-
meter Fy we assign a Gaussian prior.

Inference is obtained using INLA, but since the fGn latent model com-
ponent in R-INLA does not allow for the inclusion of mean p(H, Fy, o)
we have to construct it manually using rgeneric. Furthermore, since we
consider the sum p + € as a single latent model component we only get the
posterior marginal distributions for g + €, not the marginal for g and e
separately. These can, however, be obtained by performing Monte Carlo
simulation from the joint posterior distribution of the hyperparameters, see
Myrvoll-Nilsen et al. ( ) for further details.

In order to make the given temperature response model easily access-
ible we have provided a user-friendly R-package called INLA.climate which
takes care of all the technical implementations and presents the results in
a readable format. This package is available at the GitHub repository
eirikmn/INLA.climate. A description and tutorial of the package and
its features is included in appendix A.
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4.3 Temperature predictions

An important goal in climate analysis is to compute future temperature
predictions. Using the INLA.climate package we can compute future tem-
perature as a response to future forcing scenarios. By assigning NA val-
ues for the variables we want to predict, INLA will produce the mar-
ginal posterior distributions of the missing temperature variables. For the
INLA.climate package this is done automatically within the inla.climate
function whenever the forcing input variable is an object of greater length
than the data temperature input.

In Myrvoll-Nilsen et al. ( ) we use future forcing data based on the
trajectories for greenhouse gas concentration adopted by the intergovern-
mental Panel on Climate Change (IPCC), known as representative concen-
tration pathways (RCPs). There are four RCP trajectories selected for cli-

mate modeling. These include RCP2.6 (van Vuuren et al., ; van Vuuren
et al., ), RCP4.5 (Clarke et al., ; Smith and Wigley, ; Wise
et al., ), RCP6 (Fujino et al., ; Hijioka et al., ) and RCP8.5
(Riahi et al., ; Rao and Riahi, ), which are named after the value

assumed for the radiative forcing (in W/m?) for the year 2100. The RCP
forcing scenario data sets are downloaded from the Integrated Assessment
Modeling Consortium (IAMC) data base hosted by the International Insti-
tute for Applied Systems Analysis (ITASA) on 2019-08-22. The data sets
consist of decennial global forcing data, and annual data is obtained by
interpolation using splines.

For the past interval of 1850-2015, we use the HadCRUT4 temperature
dataset, paired with an updated version of the greenhouse gas component
of the forcing introduced in Hansen et al. ( ). The RCP scenarios are
used to describe the forcing in the 2015-2100 range, and are shifted such
that the forcing value at year 2015 equals that for the Hansen forcing. The
RCP scenarios are presented in figure 4.1 where they have been appended
to the grenhouse gas (GHG) component of the Hansen forcing.

Using a scale-invariant and an exponential response model we obtain
predictions of the GMST. These are both compared to the temperature pro-
jections presented in table SPM.2 of IPCC’s fifth assessment report (AR5)
(IPCC, ). The results are illustrated in figure 4.2. When compared
to the AR5 projections we observe that an exponential response model un-
derestimates the temperature response. This is because the exponential
model does not take into account the heat exchange with the deep ocean
which increases the temperature response to forcing. On the other hand,
the scale-invariant approach tends to overestimate the response. However,
we conclude that the scale-invariant response model is overall more accurate
than the exponential model when compared to the AR5 projections.
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FIGURE 4.1. The RCP2.6 (blue), RCP4.5 (orange), RCP6
(red) and RCP8.5 (darkred) global radiative forcing scen-
arios appended to the GHG component of the Hansen forcing
(black).
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FI1GURE 4.2. The posterior marginal means of the GMST re-
sponse to the RCP2.6 (blue), RCP4.5 (orange), RCP6 (red)
amd RCP8.5 (darkred) appended to the HadCRUT4 temper-
ature data (black) using both a scale-invariant (solid) and ex-
ponential (dashed) response model. The rectangle describes
the AR5 projection area for each scenario.
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4.4 Climate sensitivity measures

Climate sensitivity describes how the GMST responds to changes in radi-
ative forcing. There are three ways of expressing climate sensitivity. This
include the transient climate response (TCR), the equilibrium climate sens-
itivity (ECS) and the earth system sensitivity (ESS). Each of these are each
defined over different time scales. The TCR describes the response after 70
years, the ECS after centuries and the ESS after multiple millennia. For
this project we have developed methodology to obtain Bayesian inference
empirically for both the TCR and the ECS since these are the sensitivities
relevant for the time scales where the scaling assumption is valid.

4.4.1 Transient climate response

The transient climate response is defined as the amount the temperature
will increase after a gradual COs-doubling in the atmosphere. Following a
1% annual increase this will be reached after 70 years. Mathematically, this
implies future radiative forcing

f(s) = 62725;22(5 + Fy), for s=1,..,80ys,

where QQ2x o0, is a model specific coefficient describing the increased forcing
following a CO2-doubling. For a list of Q2xco, corresponding to the ESMs
of the CMIP5 ensemble see Forster et al. ( ). We obtain the posterior
distribution of the TCR by Monte Carlo sampling. After fitting the model
to some temperature and forcing data with INLA we sample the hyperpara-
meters from the obtained joint posterior distribution 7(6 | y). Then we
compute the forced temperature response to the future forcing, given by

AT(t) =0y /Ot(t — s)H32(f(s) + Fy) for t=1,...,80yrs.

Finally, the TCR samples are formed by taking the average of the forced
temperature response 60-80 years in the future. This procedure can be done
using the inla.climate.tcr function in the INLA.climate package. Typ-
ically, the TCR, of temperature and forcing data generated from an ESM
are computed by letting the model run for 80 years longer under the ap-
propriate conditions. An advantage of our approach is that it allows for
empirical estimation of the TCR based exclusively on the temperature ob-
servations and corresponding forcing data. Additionally, this is a great com-
putational advantage since advanced ESMs typically require long runtime
to obtain the same results which takes only seconds using our approach. In
Myrvoll-Nilsen et al. ( ) we compare the posterior marginal means for
19 different ESMs from the CMIP5 ensemble with their corresponding TCR
values obtained directly from the model realisation. The empirical estim-
ates showed an 86% correlation with TCR. values obtained directly from the
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4.4 — Climate sensitivity measures

ESMs. We also perform similar comparison using instead an exponential
response function. This showed a correlation of 78%. During the review
process we have also extended the package to allow for general m-box mod-
els to be used. In the revised manuscript we will also estimate TCR, of the
ESMs using a sum of two exponentials response function.

We also estimate the TCR for the historical HadCRUT data set. This
was done by pairing the HadCRUT data set with each of the 19 forcing
observations as well as the Hansen forcing data set. 100,000 TCR samples
are generated for each pairing which resulted in a mean TCR of 1.53K and
standard deviation of 0.33K.

4.4.2 Equilibrium climate sensitivity

The equilibrium climate sensitivity describes the expected temperature in-
crease resulting from an immediate and sustained COsq-doubling after the
temperature has reached equilibrium. Mathematically, this is defined as

ECS = Q2X002 /OOO g(t)dt, (4.4)

where QQ2xco, denote the model specific constant forcing corresponding to a
COz2-doubling, see IPCC ( ) for a list of estimated values corresponding
to the ESMs of the CMIP5 ensemble. In Rypdal et al. ( ) we assume g to
be scale-invariant which causes the ECS to diverge towards infinity. This is
because scale-invariance is an accurate description of GMST response only
for monthly to centennial time scales. The truncated integral

T
ECSy = QQXCOQ/ g(t)dt, (4.5)
0

is therefore a good approximation of the truncated integral of the true re-
sponse function for 7" < 1000. This is true regardless of whether g is exact
scale-invariant or approximated using a weighted sum of exponentials se-
lected according to equation (3.4). If we choose the upper limit 7" to be
sufficiently high, the truncated integral will be consistent with the ECS es-
timate obtained using Gregory plots (Gregory et al., ). The estimate
can hence be improved by performing a linear fit

ECS = a + BECSy,

where we found o = 1.09K and 8 = 0.61 using the same ESMs used in
estimating the TCR previously, and 7" = 1000. Similar to the TCR we
estimate the ECS of the HadCRUT4 temperature data set, by pairing it
with forcing from Hansen et al. ( ) and forcing data from 19 different
ESMs. Here we use forcing Qaxco, = 3.8W/m? for all 20 analyses. We find
that the ECS ranges from 2.3 to 3.4K, see Rypdal et al. ( ) for details
about the approach and the results.
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4.5 Local temperature data

The speed of the INLA procedure and the AR(1) mixture approximation
allows for a larger number of analyses within a feasible time frame. In
Myrvoll-Nilsen et al. ( ) we use the approximate scale-invariant model
to perform Bayesian inference for the local time series data from the GISS
Surface Temperature Analysis version 4 (GISTEMP v4) (GISTEMP Team,
; Lenssen et al., ). This is a spatio-temporal gridded data set with
spatial resolution of 2° x 2° where for each local point there is a time series
covering the annual temperature data between 1900-2015. After eliminating
locations where the associated temporal data set were too inconsistently
measured, or had too many missing temporal observations, we have ns, =
11,997 individual time series. These are denoted y, = (y1,s, ...,ynt’s)T and
are each of length n; = 116. We do not consider any spatial correlation
between the points in space and analyse each local time series independently.
The objective of this paper was to investigate temperature increases for local
time series by considering a linear trend. We also want to investigate the
memory properties of the local time series and compare the results with
Lovsletten and Rypdal ( ) whom consider a linear trend model,

Ysit = O + Bst + €s,t- (46)

This model does not account for any forcing and uses either an AR(1) or
an fGn process to describe the residuals € ;.

The first approach we consider to estimate the trend term ( is to fit a
similar model using a latent Gaussian modeling formulation. We assume
each local times series to be explained by the linear predictor

me=a+ ft+e(H, o.). (4.7)

Here, « is an intercept term, § is a linear trend term and e¢:(H,o.) is an
fGn term. Inference is obtained using R-INLA.

A second approach to estimating 3 is to first fit a model corresponding
to the linear predictor

no = pe(H, 05, Fo) +ei(H, 0.). (4.8)
Here, € = (£1,...,6,) " is an fGn term and g = (p1, ..., ptn) | is the forced
temperature response as described in equation (4.3). Fitting this model with
INLA yields the posterior distribution 7(H, 0. | y). We wish to estimate the
trend term £ from equation (4.7) where H and o, reflect the variation found
by fitting equation (4.8). This is done by fitting equation (4.7), where H
and o, are fixed to be equal to samples (H;, 0;) from the posterior obtained
from fitting equation (4.8)

(Hi,o_i) ~ W(Ha Oc¢ | YS)'
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4.5 — Local temperature data

Repeating the analysis for ngy, samples of (H,o0.) yields ng, posterior
marginal mean estimates of 3. These are denoted by 8 = (54, ..., anim)T.
The average posterior marginal mean, denoted by [, of the linear trend

term is found by
1 Tsim

> B

J=1

/B pu—

Tsim

Let the latent Gaussian field x includes all stochastic terms in equation (4.7),

including the trend term (. Since equation (4.7) has no free hyperparamet-
ers left the posterior distribution of x is expressed as

m(x | ys) < w(ys [ ¥)7m(%).

Since both 7(y, | x) and 7(x) are Gaussian then so is 7(x | y,), and by ex-
tension m(5 | y,). This implies linearity meaning (3 is the posterior marginal
mean estimate found by fitting equation (4.7), using fixed hyperparameters
H and o equal to the posterior marginal means H and . obtained by fit-
ting equation (4.8). This means that we can obtain 3 using a single INLA
analysis without having to sample from the posteriors of equation (4.8). Us-
ing these two approaches we form separate 1Gms which are analysed using
the R-INLA framework for all local time series. What would otherwise be
a computationally infeasible task is, by taking advantage of INLA and the
AR(1) mixture approximation for the f{Gn component, completed in around
20 hours.

We found that when using either of the two approaches, the probability
of a positive trend was highly positive, i.e. Prob{8 > 0 | y,} > 0.95, for
84% of local time series using the model corresponding to equation (4.7),
and 89% for the model corresponding to equation (4.8). This exceeded the
ratio of 80% found in Lgvsletten and Rypdal ( ) using equation (4.6)
where €5 is the most optimal local selection between an AR(1) and fGn
model for the error term. For comparison, we repeated the analyses for
the intervals 1900-1950 and 1900-1985. For the time period 1900-1950 we
find the trend to be significantly positive for 30% and 38% of the local time
series for the two models, respectively, and for 1900-1985 we find the same
proportion to be 43% and 52%. This difference demonstrates that, when
spatial correlation is ignored, the warming trend has increased significantly,
even locally, for the past 30 years, well above what could be ascribed to
random noise.

Another benefit of our methodology is that we compute the posterior
marginal distributions of all hyperparameters in our models, allowing us
to observe how the estimated Hurst exponent vary locally. This is illus-
trated in figure 4.3 which indicates that ocean data exhibits a significantly
higher degree of memory compared to land data. Our model also suggests
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that the Hurst exponent is lower for the area around the El Nifio South-
ern Oscillation (ENSO) than the surrounding area. This constitute another
difference between our results and that of Lgvsletten and Rypdal (2016),
whom suggested an exceptionally high degree of memory in the same area.

H

FIGURE 4.3. The posterior marginal mean estimate of the
Hurst exponent obtained from fitting the 1Gm corresponding
to 1y to local time series data from 1900-2015.

4.6 Future work: Spatio-temporal modeling

Geographically close observations are often correlated, as is seen when tem-
peratures are measured at locations in close proximity to one another. In-
corporating spatial correlation into a model is therefore important in order
to properly describe behaviour expressed in spatio-temporal data, such as
the GISTEMP v4 temperature data set analysed in section 4.5. Applica-
tions of spatio-temporal models which exhibit LRD in time are not limited
to climate science, but are found in numerous fields. Examples include
analysis of wind speed data (Haslett and Raftery, 1929), analysis of ve-
getation variation (Jiang et al., 2011) and urban traffic volume modeling
(Vlahogianni et al., 2007). However, easily applicable methods to perform
Bayesian analysis of spatio-temporal data exhibiting temporal LRD appear
to be limited.
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A possible future extension of the methodology presented in this thesis
is therefore to develop a spatio-temporal latent model component which in-
corporates temporal LRD within the latent Gaussian modeling framework.
This allows the use of R-INLA to perform Bayesian inference. Currently
R-INLA supports several spatio-temporal latent model components, see e.g.
Cameletti et al. ( ) and Blangiardo et al. ( ) for an example. How-
ever, no spatio-temporal models that incorporate temporal LRD are cur-
rently included.

As modeling of spatio-temporal data often involves a high number of
latent variables it is important that the latent Gaussian field is a GMRF.
In this project we have shown that temporal LRD can be represented by an
approximate GMRF using the mapping found in equation (3.4). A compu-
tationally efficient model for spatial correlation is obtained by exploiting an
explicit link between a continuous Gaussian random field and an approxim-
ate GMRF presented in Lindgren et al. ( ). Specifically, this assumes
the spatial correlation to be expressed by a Matérn acf

ps(k) = (rd)" K (rd).

1
[(v)2v—1
Here, k = ||s; —s;|| denotes the Euclidean distance between the two spatial
points, k is a scaling parameter, v defines the smoothness of the process
and K, denotes the modified Bessel function of the second kind of order
v > 0. This process is referred to as a Matérn field and represents any exact
solution to the stochastic partial differential equation (SPDE)

(k2 = A)*2z(u) = W(u), (4.9)

where u € R% a = v+d/2, s > 0, v > 0 and (k% —A)*/? is a pseudodifferen-
tial operator (Whittle, ; Whittle, ). W is a spatial Gaussian white
noise process with unit variance and A is the Laplacian operator. According
to Whittle ( ), the most natural choice for the smoothing parameter in
two dimensions is v = 1, implying that a = 2.

The idea behind the SPDE approach is to represent the GRF as a set of
non-intersecting triangles. Mesh nodes are placed at the observed locations
s = (s1,...,8n,) | and additional nodes are placed in order to properly rep-
resent the enclosing area. Triangles are drawn between these nodes to create
an approximate discrete representation of the continuous Matérn field

Nm
x(s) = Zwi(s)wi,
i=1
using piecewise linear basis functions {t;(s)} chosen such that v¢; = 1 for
vertex ¢ and 0 for any other vertex. ny, is the number of mesh nodes and {w; }

are Gaussian weights which determine the height of each triangle. Doing so
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establishes a link between the Matérn field and an approximate GRF with
a neighbourhood structure which grants the Markov property. The SPDE
model is included in R-INLA as one of the default latent model components
for spatial modeling. See e.g. Bakka et al. ( ), Huang et al. ( )
and Hambly and Sgjmark ( ) for examples of applications, and Krainski
et al. ( ), Blangiardo and Cameletti ( ) and Bakka et al. ( ) for
details and a review on spatial modeling with R-INLA.

Spatio-temporal latent Gaussian models are prone to having a very high
dimension. Even if we wish to fit a spatio-temporal model to only a subset of
the GISTEMP v4 data set the number of variables could be overwhelming.
For the area illustrated in figure 4.4, covering the six European countries
of Germany, Slovakia, Austria, Hungary, Poland and the Czech Republic,
there are 30 temporal points, using a rather sparse mesh of n,, = 78 vertices.
Assuming the approximate temporal component is represented by m = 4
AR(1) processes and n; = 116, the number of latent variables corresponding
to the latent Gaussian field would be (m + 1)nin,, = 45240 nodes.

Different methods of simplifications are often necessary to overcome the
associated computational complexity. One major simplification is to assume
the spatio-temporal latent model component to be separable, i.e. its acf can
be expressed as the product of one pure temporal acf and one pure spatial
acf. This implies that the precision matrix of the latent Gaussian field Q
is equal to the Kronecker product of the precision matrix of one temporal
and one spatial model,

Q = Qt ® Qs'
Here Q, is the precision matrix corresponding to the AR(1) mixture ap-
proximation and Q, is the precision matrix of the spatial process specified
according to the SPDE approach. For details on the entries of Q, and Qg,
see Sgrbye et al. ( ) and Lindgren et al. ( ), respectively.

Although convenient, separable spatio-temporal models are often found
to be too simplistic in practice, see e.g. Cressie and Huang ( ). A
separable spatio-temporal model will assume identical temporal correlation
for each local time series. However, in analysing climatic data temporal
memory vary considerably depending on the geographical location, as illus-
trated in figure 4.3. We are therefore limited to analysing spatial domains
that are homogeneous in terms of temporal memory. This often implies
local time series that are in close proximity to one another which are of-
ten very similar. Hence, data that can be adequately fitted by a separable
spatio-temporal model can often be described almost as well just by fitting
pure temporal models to each local time series independently.

A more interesting and applicable aim would therefore be to create a
non-separable spatio-temporal latent model component, see e.g. Cressie
and Huang ( ) or Gneiting ( ) for examples of valid non-separable
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FIGURE 4.4. The GISTEMP v4 local temperature time
series locations and spatial mesh. The map is made using the
maps package for R which is based on the very old database
worldHires. Hence why some of the borders are outdated.

space-time covariance functions. Although non-separable spatio-temporal
modeling is considerably more difficult than separable modeling it is possible
to perform it in R-INLA, but it is currently rather limited. It is, however,
a topic of ongoing research within the R-INLA community, and new models
are currently in development. See Krainski ( ) for a recent overview
of non-separable spatio-temporal modeling in R-INLA. We were unable to
finish this work in time for it to be included in this thesis, but we hope to
complete it in the near future.
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CHAPTER 5

Concluding remarks

Models exhibiting long-range dependence are useful in describing the per-
sistent correlation found in climatic time series that cannot be expressed us-
ing the more computationally advantageous SRD processes. We have found
that if the weights and first-lag autocorrelation parameters are chosen care-
fully using numerical optimization then a weighted sum of AR(1) processes
can represent LRD processes with remarkable accuracy. Using only four
AR(1) processes one is able to produce an aggregate process that accurately
replicate the LRD correlation structure of an fGn. The resulting approx-
imation inherits the computational properties of the AR(1) processes, most
notably a sparse precision matrix. Moreover, we demonstrate that the given
approximation fits into the flexible class of latent Gaussian models, allow-
ing for the efficient computational framework of R-INLA to be employed.
Moreover, it allows us to introduce model components that incorporate sea-
sonal variation, linear trends and spatial correlation. The computational
advantage of using this approximate fGn model is substantial and allows
Bayesian inference to be obtained in linear time and memory using INLA.

Using this approximation we are able to define a computationally effi-
cient model for both local and global climatic time series data in terms of an
1Gm which incorporates knowledge of radiative forcing in order to better de-
scribe the climatic system. This model has been applied to several problems
in climate science, including the estimation of climate sensitivity measures,
temperature predictions to possible future scenarios and analysis of local
time series data. Since the model is of non-standard form it is not suppor-
ted by latent model components already specified in the R-INLA package
and thus has to be created using rgeneric. We have therefore made the
methodology available in the user-friendly INLA.climate package, allowing
applied climate scientists that may not be familiar with R-INLA to adopt
our model.

The methodology presented in this project is limited to stationary and
persistent LRD processes with Hurst exponent 0.5 < H < 1. This excludes
applications with anti-persistence found in fields such as electricity pricing
(Weron and Przybylowicz, ; Simonsen, ) and finance (Kyaw et al.,

; Huang et al., ), as well as non-stationary processes with H > 1
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which are known to occur in analysing tree-ring width (Telesca and Lovallo,
).

Although we have so far only applied this methodology for fractional
Gaussian noise and, to some extent, the ARFIMA(0, d,0) process it could
theoretically be used to approximate any stationary and persistent Gaussian
LRD process whose memory structure is governed by a single parameter.
However, this does imply that the more general ARFIMA(p, d, q) models,
which allow for both short and long memory to both be incorporated sim-
ultaneously, is not supported. Being compatible with the class of latent
Gaussian models allows for short memory to be incorporated as separate
latent model components instead. However, this does not capture the in-
teraction between short and long memory present in the ARFIMA(p, d, q)
models. Although it would certainly be interesting to investigate the pos-
sibility of extending this methodology to general ARFIMA (p, d, q) processes
it is considered beyond the scope of this project.
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APPENDIX A

The INLA.climate package

Having to implement the GMST model described in chapter 4 includes
specifying the model using the rgeneric framework. This is a somewhat
technical procedure which might discourage users with limited experience
with R-INLA from adopting our model. We have therefore created an R-
package called INLA.climate which manages all the technical parts of the
INLA model specification and provides a convenient and user-friendly in-
terface. The package includes functions that execute the INLA analysis
and presents all results in a readable format. The package and all source
code therein has been made publicly available at the GitHub repository
eirikmn/INLA.climate.

To increase speed I have written the most computationally expensive
parts of the code in C. These include the specification of the graph, preci-
sion matrix and the mean vector corresponding to the forced temperature
response. Any questions or issues regarding this package can be directed
to eirikmn91@gmail . com. As the package is still in an early phase changes
are likely to be made. The accompanying documentation gives an updated
description of the functions included in the package.

A.1 Installation

The software is available for the programming environment R of version 3.5
and above, and should work on Windows, Linux and Mac operating systems.
However, testing has been done primarily on Mac. If the devtools package
is already installed it can be downloaded directly from the R console using
the command

devtools::install_github("eirikmn/INLA.climate")

Alternatively, the package can be downloaded directly from the GitHub
repository at www.github.com/eirikmn/INLA.climate. For this package
to work one must have the testing version of the INLA package already
installed. This can be downloaded and installed by the following command:

install.packages("INLA", repos=c(getOption("repos"),
INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE)
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Appendix A — The INLA.climate package

A.2 How to use the package
A.2.1 Loading data

The INLA.climate package contains various temperature and forcing data
sets. This include the HadCRUT4 temperature data, the forcing data from
Hansen et al. ( ) and temperature and forcing data associated with
19 different ESMs from the CMIP5 ensemble. The forcing data from the
ESMs are adjusted such that the 18-year moving averages equal that of the
Hansen forcing. The package does of course work when using other data
sets as well. Data can be loaded in R by the data function. For example, the
GISS-E2-R data set can be loaded by data("GISS_E2_R"). See the package
documentation for more information about the data sets.

A.2.2 Selecting noise model

The noise model to be used in the INLA fitting procedure is specified in
the model input variable. In this paper the noise model has mostly been
assumed to be fractional Gaussian noise. This is the default choice in
INLA.climate, but other options include the ARFIMA(0,d,0) model and
an aggregate AR(1) model. The fGn process is selected by model="fgn", the
ARFIMA(0, d,0) process is selected by model="arfima" and the aggregate
AR(1) process is selected by model="ar1".

The input variable m determines how many AR(1) components are used
to form an aggregate process. If m = 1 the noise model equals a single
AR(1) component of weight w = 1. For the LRD noise models the weights
and first-lag autocorrelation parameters are linked with the Hurst exponent
H for the fGn, or d = H — 1/2 for the ARFIMA(0, d,0) model, according
to equation (3.4). For the AR(1) aggregate noise model however, they are
instead treated as free hyperparameters. Increasing m for model="ar1" will
therefore increase the number of hyperparameters and as a result consider-
ably increase the runtime of INLA as well. For m AR(1) components the
total number of hyperparameters in the model is 2m + 2. Furthermore, the
AR(1) aggregation differs from the LRD models also in how the transient cli-
mate response (TCR) and the forced temperature response p is computed,
as the Green’s function is now a sum of exponentials

m
g(t) =Y wie T,
=1

where w; and 7, = 1/(1 — ¢;) denote the weight and time scale hyper-
parameters. For m > 1 these hyperparameters are found by Monte Carlo
simulations.
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A.2.3 Performing INLA analysis

The primary function of INLA.climate is called inla.climate. This func-
tion performs the INLA fit and can also provide estimations for the transient
climate response (TCR) and the forced temperature response p. The full
function header is:

inla.climate(data, forcing,
Qco2 = NULL, compute.mu
restart.inla = FALSE, m
print.progress = FALSE,
inla.options = list(),
tcr.options = list(),
mu.options = list(),
arl.options = list() )

NULL, steplLength = 0.01,
4, model = "fgn",

The header lists the input arguments of the inla.climate function. How-
ever, only the arrays data and forcing are required to run the function.
These represent the temperature and forcing data. The other input ar-
guments allow the user to specify the settings of the INLA fitting pro-
cedure, the fGn approximation and the Monte Carlo sampling schemes,
if any. While most of these settings are specified within the list objects
inla.options, tcr.options, mu.options and arl.options, the most rel-
evant ones are included in the function header explicitly. These describe the
step length used in the INLA numerical scheme (stepLength), whether or
not the INLA procedure should restart the numerical procedure at the found
optima for increased accuracy (restart.inla), the number of AR(1) pro-
cesses used to approximate the noise model (m), which noise model should
be used (model) and whether or not the operations performed should be
printed to the screen (print.progress).

For the more experienced R-INLA user, there are many other possible
options for the INLA program. These can be specified in the inla.options
list. The list objects tcr.options, mu.options and arl.options are used
to specify the settings of the Monte Carlo sampling scheme of the TCR,
p and the weights and first-lag autocorrelation hyperparameters associ-
ated with an aggregate AR(1) process if model="ar1". The elements of
tcr.options and mu.options list objects match the input arguments of
the inla.climate.tcr and the inla.climate.mu functions which will be
explained more thoroughly in the following subsections.

The inla.climate function returns an object of class inla.climate.
This is a list object which contains all information obtained from the INLA
fit. The arguments of this object include hyperparam which contains the
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posterior marginal distributions and summary statistics of all model para-
meters. Another argument is latent.field which contains summary stat-
istics of all latent variables, including those that correspond to the un-
derlying AR(1) components. Time consumption (time) and model in-
formation criterias, such as the deviance information criteria (dic) and
the log marginal-likelihood (log.mlikelihood), are also included in the
inla.climate object. The return object from the inla function is also in-
cluded as argument inla.result. If the TCR or p is computed the relevant
information is included in the TCR and mu arguments respectively.

Important information and summary statistics can be extracted from the
return object and presented in a readable format using the summary function,
and graphical results such as the posterior marginal density functions and
TCR histogram can be displayed using the plot function. Below is an
example of using the inla.climate function to fit the model to temperature
and forcing generated by the GISS_E2_R earth system model (Schmidt et
al., ).

data("GISS_E2_R")

result = inla.climate(GISS_E2_R$Temperature,
GISS_E2_R$Forcing)

summary (result)
plot(result)

A.2.4 Estimating the transient climate response

Inference about the transient climate response is obtained using Monte Carlo
simulations. This procedure can be performed using the inla.climate.tcr
function

inla.climate.tcr(result, Qco2, nsamples = 100000,
seed = 1234, print.progress = FALSE, model = "fgn")

Here, the two obligatory input variables are result, the return object ob-
tained from the inla.climate function required here in order to sample
from the joint hyperparameter posterior distribution, and Qco2 which is
the slope coefficient imposed on the forcing when assuming a gradual CO»-
doubling. nsamples denote the number of samples to be generated, and
seed is the seed used for the random number generator. print.progress
specify whether or not progress should be printed to the screen. The model
input variable declare which noise model is assumed for the GMST model.
If set equal to "fgn" or "arfima", the TCR will be computed assuming a
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scale-invariant response, while for model="ar1" it will be computed assum-
ing a sum of exponentials response. In this case, the number of exponentials,
m, is determined automatically from the number of hyperparameters in the
result object.

The inla.climate.tcr function returns a list object of the same class
as the inla.climate function where the results of the Monte Carlo sampling
scheme is merged with the result input object. The information relevant
to the TCR estimation procedure is included in the tcr argument of the
return object.

Alternatively, the TCR can be computed directly in the inla.climate
function by specifying a value for Qco2 in the list of input arguments.
The number of samples and the seed value is then specified through the
tcr.options list. Below is an example of both approaches.

data("GISS_E2_R")

result = inla.climate(GISS_E2_R$Temperature,
GISS_E2_R$Forcing)

result.tcri inla.climate.tcr(result, 3.8)

result.tcr2 inla.climate (GISS_E2_R$Temperature,

GISS_E2_R$Forcing, Qco2 = 3.8)

summary (result.tcrl)
plot (result.tcr2)

A.2.5 Estimating the forced temperature response

As for the TCR, inference about the forced temperature response p is ob-
tained using Monte Carlo simulations. This can be accomplished using the
inla.climate.mu function

inla.climate.mu(result, forcing, quick = FALSE,
TO.corr = 0, nsamples = 100000, seed = 1234,
print.progress = FALSE, model = "fgn")

Again, result is the return object from the inla.climate function. We
also need the forcing data array describing the known radiative forcing.
The TO.corr variable denotes the temperature shift. If this is equal to
the intercept term Tp in equation (4.2) the results will be aligned with the
temperature observations. Similar to the TCR, the model input variable
determines which noise model is in use and whether or not to use a scale-
invariant response of a sum of exponential response.
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Since this function produces and stores full Bayesian inference of all
marginal variables of the mean vector instead of a single composite vari-
able this sampling scheme will be far more costly than that of the TCR.
Memory consumption is particularly demanding as the number of samples
(nsamples) can be quite high. If the user is only concerned with the pos-
terior marginal means or standard deviations it is possible to specify that
the function should not store the individual samples by setting quick =
TRUE.

The function returns a list object of the same class as the inla.climate
function where the results of the Monte Carlo sampling scheme is merged
with the result input object. The information relevant for the known
forcing response is included in the mu argument of the return object.

The mean vector can also be computed directly from the inla.climate
function by setting the compute .mu input variable equal to 2 or "full" for a
complete analysis, or 1 or "quick" for the faster and less memory intensive
approach. The number of samples, seed value and the temperature shift
value Tp is specified through the mu.options list. The example below shows
both approaches.

data("GISS_E2_R")

result = inla.climate(GISS_E2_R$Temperature,
GISS_E2_R$Forcing)

TO = mean(GISS_E2_R$Temperature[1:20])
result.mul = inla.climate.mu(result, GISS_E2_R$Forcing,

quick = FALSE,
TO.corr = TO)

inla.climate (GISS_E2_R$Temperature,
GISS_E2_R$Forcing,
compute.mu = "full")

result.mu?2

summary (result.mul)
plot(result.mu?2)

A.3 Troubleshooting

The most recurring problem with this package is that the numerical optimiz-
ation algorithm within the INLA program fails to find a reasonable solution
or crashes altogether. This can often be solved by tuning the stepLength
input parameter. If the INLA program finds a solution, but you suspect
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it may have been trapped in a local solution and not a global one adding
restart.inla might also help. For an updated list of ongoing problems
with the package see www.github.com/eirikmn/INLA.climate/issues. If
you encounter an issue with the package or have suggestions for future im-
plementation please send me an email at eirikmn91@gmail.com.
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Abstract

Fractional Gaussian noise (fGn) is a stationary time series model with long-memory properties applied in various fields like
econometrics, hydrology and climatology. The computational cost in fitting an f{Gn model of length n using a likelihood-based
approach is O(n?), exploiting the Toeplitz structure of the covariance matrix. In most realistic cases, we do not observe the fGn
process directly but only through indirect Gaussian observations, so the Toeplitz structure is easily lost and the computational
cost increases to O(n3). This paper presents an approximate fGn model of O(n) computational cost, both with direct and
indirect Gaussian observations, with or without conditioning. This is achieved by approximating fGn with a weighted sum of
independent first-order autoregressive (AR) processes, fitting the parameters of the approximation to match the autocorrelation
function of the fGn model. The resulting approximation is stationary despite being Markov and gives a remarkably accurate
fit using only four AR components. Specifically, the given approximate fGn model is incorporated within the class of latent
Gaussian models in which Bayesian inference is obtained using the methodology of integrated nested Laplace approximation.
The performance of the approximate fGn model is demonstrated in simulations and two real data examples.

Keywords Autoregressive process - Gaussian Markov random field - Integrated nested Laplace approximation - Long-range

dependence - Toeplitz matrix

1 Introduction

Many natural processes observed in either time or space
exhibit a long-range dependency structure, here referred
to as long memory. One way to characterize long mem-
ory is in terms of the autocorrelation function having a
slower than exponential decay as a function of increasing
temporal or geographical distance between observational
points. In second-order stationary time series, long memory
implies that the autocorrelations are not absolutely summable
(McLeod and Hipel 1978). Long-memory behaviour has
been observed within a vast variety of time series appli-
cations, like hydrology (Hurst 1951; Hosking 1984), geo-
physical time series (Mandelbrot and Wallis 1969b), network
traffic modelling (Willinger et al. 1996), econometrics (Bail-
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2 CEMSE Division, King Abdullah University of Science and
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lie 1996; Cont 2005) and climate data analysis (Franzke
2012; Rypdal and Rypdal 2014). For comprehensive intro-
ductions to long-memory processes and their applications,
see for example Doukhan etal. (2003) and Beranetal. (2013).
When introduced in Mandelbrot and Van Ness (1968),
fractional Brownian motion (fBm) represented a first paradig-
matic example of a long-memory model. The fBm is a
time-continuous Gaussian process which generalizes ordi-
nary Brownian motion to allow for dependent increments.
A unique property of fBm is that it is exactly self-similar
and its long-memory properties are characterized by the self-
similarity parameter H, also named the Hurst exponent. Of
specific interest is the discrete-time increment process of
fBm, referred to as fractional Gaussian noise (fGn). This
was the first stationary Gaussian process which could explain
the famous Hurst phenomenon (Hurst 1951). Since its intro-
duction, the fGn process has been applied in a variety of
applications ranging from hydrology (Molz et al. 1997), anal-
ysis of functional magnetic resonance images (Maxim et al.
2005) and climate analysis (Rypdal and Rypdal 2014).
Inheriting the parsimonious parameterization of fBm, the
autocorrelation function of fGn is fully specified as a function
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of H and the model has long memory when 1/2 < H < 1.
Exploiting the Toeplitz structure of the covariance matrix,
the computational cost of likelihood-based inference in fit-
ting an fGn process of length n is @(n?), making use of
the Durbin—Levinson or Trench algorithms (Levinson 1947;
Durbin 1960; Trench 1964; Golub and Loan 1996; McLeod
et al. 2007). However, the required Toeplitz structure is frag-
ile to modifications of the Gaussian observational model and
computations of conditional distributions. For example, the
Toeplitz structure is destroyed if fGn is observed indirectly
with Gaussian inhomogeneous noise, or has missing data. In
these situations, the computational cost of likelihood-based
inference would increase to O(n?).

This paper presents an accurate and computationally effi-
cient approximate fGn model of cost O(n), both with direct
and indirect Gaussian observations, with or without addi-
tional conditioning. This allows for routinely use of fGn
models with large n, with negligible loss of accuracy. The
new approximate model uses a weighted sum of independent
first-order autoregressive processes (AR(1)). The motiva-
tion is that aggregation of short-memory processes plays an
important role to explain long-memory behaviour in time
series (Beran et al. 2010) and an infinite weighted sum of
AR(1) processes will give long memory (Granger 1980). In
practice, the number of aggregated processes might need
to be rather large to reflect the underlying long-memory
parameter (Haldrup and Valdés 2017). However, the new
approximate fGn model only needs a weighted sum of four
AR(1) processes to be accurate. This is obtained by fitting
the weights and the coefficients of the AR(1) processes to
mimic the autocorrelation function of the exact f{Gn model,
as a continuous function of H.

A key feature of the approximate fGn model is a high
degree of conditional independence within the model. Specif-
ically, the approximate model will be represented as a
Gaussian Markov random field (GMRF), the computational
properties of which are not destroyed by indirect Gaus-
sian observations nor conditioning (Rue and Held 2005).
The approximate model is also stationary, a desired prop-
erty which is not common among GMRFs as they typically
have boundary effects. Since the approximate model is a
local GMREF, it also fits well within the framework of latent
Gaussian models for which approximate Bayesian analysis
is obtained with integrated nested Laplace approximations
(INLA) (Rue et al. 2009) using the R-package R-INLA
(http://www.r-inla.org). This provides a flexible modelling
framework in which the approximate fGn model can be
combined with for example time trends, linear and non-
linear covariate effects and other random effects to build
realistically complex models for observed time series. A dif-
ferent aspect is that an aggregated model of a few AR(1)
components could actually represent a more plausible and
interpretable model than the theoretical fGn process in real
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data applications. Specifically, the approximate model can
serve as a tool for automatic source separation in situations
where the data at hand represent combined signals. Among
others, this can be useful in climate data analysis in which
a weighted sum of Ornstein—Uhlenbeck processes has been
linked with multibox energy balance models (Fredriksen and
Rypdal 2017).

A flexible alternative in modelling long-memory pro-
cesses is to use the framework of autoregressive fractionally
integrated moving average (ARFIMA) models (Granger and
Joyeux 1980; Hosking 1981). These models represent a nat-
ural extension of the classical ARIMA models (Box and
Jenkins 1980) and can be used to model both short- and long-
range dependency structures simultaneously. If the order of
the autoregressive (AR) and moving average (MA) parts
are both 0, the resulting ARFIMA (O, d, 0) model has very
similar properties to fGn when the long-memory parame-
ter d = H — 0.5. Both of these models exhibit the same
hyperbolic decay of the autocorrelation function. A concep-
tual distinction between these two models is that fGn can
be considered as a discrete approximation to the fractional
derivative of the time-continuous Brownian motion (Hosking
1981). In contrast, AFRIMA(O, d, 0) is obtained by frac-
tional differencing of the ARIMA(O, 1, 0) model which is by
definition discrete. This natural extension of ARIMA (O, 1, 0)
can be seen as an advantage of ARFIMA(O, d, 0) models
compared with fGn (Graves et al. 2017). On the other hand,
many asymptotic relations of fGn processes also hold for
finite samples (Taqqu et al. 1995) and fGn-based models are
very popular due to their analytic tractability (Purczynski and
Wlodarski 2006).

This paper focuses on approximating fGn but as demon-
strated in Sect. 3.4 the same method can be used to approx-
imate ARFIMA(O, d, 0) models. We note that by using
algorithms based on the fast Fourier transform, ARFIMA
models can be fitted with O(nlog(n)) computational cost
when the process is observed directly (Jensen and Nielsen
2014). The fast Fourier transform can also be used to give
a computationally efficient infinite sum approximation of
fGn, reducing the computational cost of the Whittle esti-
mator (Purczyiiski and Wlodarski 2006). Chan and Palma
(2006) gives a review of different likelihood-based methods
to fit ARFIMA models. These include an approximate state-
space algorithm using the Kalman filter, which can also be
modified to analyse time series with missing data (Palma and
Chan 1997). The approximation uses a truncated state-space
approach, representing the ARFIMA model by a moving
average process with M ~ 30 terms. The general cost of
this algorithm is O(nM?), including n updates and inversion
of M x M matrices. Knorr-Held and Rue (2002) describe a
general GMRF framework which includes state-space mod-
els for time series. They describe the relation between the
Kalman filter and a Cholesky factor approach, stating that
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the latter is both conceptually simpler and computationally
more efficient as calculations are done only once for a band
matrix of dimension nM.

The presented approach takes advantage of both the
GMRF framework (Rue and Held 2005) and the Cholesky
factorization (Rue 2001; Knorr-Held and Rue 2002) to pro-
vide the approximate fGn model using a truncation with
only four terms. The plan of this paper is as follows. Sec-
tion 2 reviews the computational cost in fitting the exact
fGn model to direct and indirect Gaussian observations. Sec-
tion 3 presents the new approximate fGn model and derives
the computational cost and memory requirement for evaluat-
ing the log-likelihood. The performance of the approximate
model is demonstrated by simulations in Sect. 4, also includ-
ing a study of its predictive properties. In Sect. 5, we use the
implicit source separation ability in decomposing the histor-
ical dataset of annual water level minima for the Nile river
(Toussoun 1925; Beran 1994). Implementation within the
class of latent Gaussian models is demonstrated by analysing
a monthly mean surface air temperature series for Cen-
tral England (Manley 1953, 1974; Parker et al. 1992). For
comparison, we also include results using the approximate
ARFIMA(0, d, 0) model for these two datasets. Concluding
remarks are given in Sect. 6.

2 The computational cost of fGn

Let x = (x1,...,x,)T be a zero-mean fGn process, x ~
N, (0, X). The elements of the covariance matrix, X =

azyx (k) where k = |i — j|, are defined by the autocorrelation
function

1
yelk) = E(lk—1|2H—2\k\2H+\k+l\2H), k=0,1,....n— 1.

This function has a hyperbolic decay, yx(k) ~ H(2H —
Dk*H=D a5 k — oco. The fGn process is persistent when
1/2 < H < 1, while it reduces to white noise when H =
1/2. When 0 < H < 1/2, the f{Gn model has anti-persistent
properties, but we do not discuss this case here.

When {Gn is observed directly, we estimate H by maxi-
mizing the log-likelihood function

n 1 1
log( (x)) = —7 log(27) + 5 log| Q| — 5x Qx,

where @ = X! is the precision matrix of x. Making
use of the Toeplitz structure of ¥, the likelihood is evalu-
ated in O(n?) flops using the Durbin-Levinson algorithm
(Golub and Loan 1996, Algorithm 4.7.2). Also, the pre-
cision matrix @ can be calculated in O(n?) flops by the
Trench algorithm (Golub and Loan 1996, Algorithm 4.7.3).
In general, the Trench algorithm can be combined with the

Durbin-Levinson recursions (Golub and Loan 1996, Algo-
rithm 5.7.1), to calculate the exact likelihood of general linear
Gaussian time series models (McLeod et al. 2007).

A major drawback of relying on these algorithms for
Toeplitz matrices is that the Toeplitz structure is easily
destroyed if the time series is observed indirectly. Consider a
simple regression setting in which an fGn process is observed
with independent Gaussian random noise,

y=x+e, (e8]

where € ~ N, (0, D~') and D is diagonal. The log-density
ofx | yis

1 1
logm(x | y) = Elog|Q+D\ - ExT(Q+D)x+yTDx+conslanL 2)

The conditional mean of x is found by solving (Q +
D)pyy = Dy with respect to fy|y, while the marginal
variances equal diag{(Q + D)~!}. The Toeplitz structure
of Cov(y) = Q7'+ D! is only retained when the
noise term has homogeneous variance, i.e. D! « I. With
non-homogenous observation variance or missing data, the
computational cost in fitting (1) would require general algo-
rithms of cost O(12%). This makes analysis of many real data
sets infeasible, or at best challenging.

The motivation for expressing the log-likelihood func-
tion in terms of the precision matrix @, is to prepare for
an approximate GMRF representation of the fGn model.
We have already noted that aggregation of an infinite num-
ber of short-memory processes can explain long-memory
behaviour in time series. This implies that Q is (or can be
approximated with) a sparse band matrix, but with a larger
dimension (still denoted by n) for a finite sum. Assume for a
moment that such an approximation exists. We can then apply
general numerical algorithms for sparse matrices which only
depend on the nonzero structure of the matrix. This implies
that the numerical cost in dealing with Q or Q + D, is the
same. Conditioning on subsets of x implies nothing else than
working with a submatrix of Q or Q@ + D, and does not
add to the computational costs; see (Rue and Held 2005,
chap. 2) for details. Specifically, we can make use of the
Cholesky decomposition, in which the relevant precision
matrix Q + D is factorizedas Q + D = LL™, where L is a
lower triangular matrix. The log-likelihood is then evaluated
with negligible cost (Rue 2001), as the log-determinant is
log|Q + D| =2%"7_, Lj;. The conditional mean is found
by solving Lu = Dy and LT;Lx‘y = u. The numerical
cost in finding the Cholesky decomposition depends on the
nonzero structure of the matrix. For time series models the
cost is O(n) (Rue and Held 2005). The explicit construction
of such an approximation is discussed next.

@ Springer



824

Statistics and Computing (2019) 29:821-833

3 An approximate fGn model

This section presents an approximate fGn model which is
a weighted sum of a few independent AR(1) processes. We
will fit the parameters of the approximation to match the
autocorrelation structure of fGn up to a given finite lag. The
resulting approximate model is a GMRF with a banded preci-
sion matrix of fixed bandwidth, which gives a computational
cost of O(n).

3.1 Fitting the autocorrelation function

Define m independent AR(1) processes by

Zjr=@jZj-1+Vvjs, j=1lL....m t=1,...,n (3)
where 0 < ¢; < 1 denotes the first-lag autocorrelation

coefficient of the jth AR(1) process. Further, let {v j,,}’;’:]

be independent zero-mean Gaussians, with variance %2 i =

1-— ¢]2. Define the cross-sectional aggregation of the AR(1)
processes,

m
En=0y Juz", )

j=1

where z) = (zj1,...,2;,,)7 and Z']":l w; = 1. The
finite-sample properties of a similar aggregation of AR(1)
processes are studied in Haldrup and Valdés (2017), where
w; = 1/m, 02 = 1 and where the coefficients ¢, are
Beta distributed. They conclude that “First of all, one should
be aware that cross-sectional aggregation leading to long
memory is an asymptotic feature that applies for the cross-
sectional dimension tending to infinity. In finite samples and
for moderate cross-sectional dimensions, the observed mem-
ory of the series can be rather different from the theoretical
memory” (Haldrup and Valdés 2017, pp. 7-8).

The approximation presented here only needs a small
value of the cross-sectional dimension m to be accurate. The
key idea to our approach is to fit the weights w = {w_/-}_’].”: 1
and the autocorrelation coefficients ¢ = {¢ j};ﬂzl in (4) to
match the autocorrelation function of fGn, as a function of
H . The autocorrelation function of (4) follows directly as

0,1,....,n—1.

m
Ve, () =Y wipll, k=
j=1

Now, fix a value of 1/2 < H < 1. We fit the weights and
coefficients (w, ¢)y by minimizing the weighted squared
error

Kmax

(w, $)1 = argmin k; (5, (0 = v (), )
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where kmax represents a user-specified upper limit (we use
kmax = 1000). The squared error is weighted by 1 /k to ensure
a good fit for the autocorrelation function close to lag 0, while
less weight is given to tail behaviour as the autocorrelation
function is decaying slowly.

By a quite huge calculation done only once, we find
(w, @)y for a fine grid of H-values. Spline interpolation is
used for values of H in between, to represent the weights and
coefficients as continuous functions of H. The interpolation
and fitting are performed using reparameterized weights and
coefficients to ensure uniqueness and improved numerical
behaviour. These reparameterizations are defined as

evi 1

wj = - - d ¢j=——i,
dilie L+ e

where j = 1, ..., m and where v; = 0. The Hurst exponent
is transformed as H = 1/2+ 1/2exp(h)/(1 +exp(h)). This
ensures a stable and unconstrained parameter space on R2" !
for fixed h, where ¢ > --- > ¢,,. Note that the error of the
fit tends to zero, when H goes to 1 or 1/2. The resulting
coefficients and weights for m = 3 and m = 4 are displayed
inFig. 1. The fitted weights and coefficients are also available
in R using the function INLA: : inla. fgn.

3.2 A Gaussian Markov random field representation

‘We will now discuss the precision matrix for the approximate
fGn model. We start with one AR(1) process (3) of length n,
with unit variance and a tridiagonal precision matrix

1 —9¢;
—¢j 1+ 67 —9,
R@) = — PR
1o —pj 1+ 62 0,
—¢; 1

For the approximate fGn model, we have m such processes
and their sum. Hence, we need the (m + 1)n x (m + 1)n
precision matrix of the vector

(207, 2. ©

To ensure a non-singular distribution, we will add a small
Gaussian noise term to the sum, i.e. we let

m
Xp=0 Zdw_,-z(j)—l—e s 7

Jj=1
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where the precision of € is high, like k = exp(15). The (upper
part of the) precision matrix is found as

KI/O'2 —Jwikljo  —Juwrkl/o ... —Jwmkl]o
R(¢1) +wikl Jwiwakl L Jwiwmkl
R($2) +warcd -
SOm—1Wmkl

R(pm) + wmcl

The nonzero structure is displayed in Fig. 2 (left panel)
for m = 3 and n = 10. Even though the matrix is sparse,
a more optimal structure can be achieved by grouping the
m + 1 variables associated with each of the n time points,

T ~ (1) (m) =~ (1 (m)
v :(xmlsz] yeeenZ) 9 Xm2,3p -3
= 1 2
--~uxmnaZ,(1)sZ;(1)s-"?Zfz’n))‘

The benefit of this reordering is that the corresponding pre-
cision matrix @, is a band matrix, see Fig. 2 (middle panel).
Doing the Cholesky decomposition, @, = LULE, the lower
triangular matrix L, will inherit the lower bandwidth of Q,,
(Rue 2001; Golub and Loan 1996, thm. 4.3.1), see Fig. 2
(right panel). This leads to the following key result concern-

ing the computational cost of the approximate model, with a
trivial proof.

Theorem 1 The number of flops needed for Cholesky decom-
position of Q,, is n(m + 1)3. The memory requirement for
the Cholesky triangle is n(m + 1)(m + 2) reals.

Proof Q, is a band matrix with dimension d = n(m + 1)
and bandwidth b = m + 1. The computational cost of the
Cholesky factorization, Q, = L,LT is db®> = n(m + 1),
and the memory requirement needed is d(b + 1) = n(m +
1)(m 4 2) (Golub and Loan 1996, sec. 4.3.5). O

The computational cost and memory requirement of the
Cholesky decomposition do not change if the approximate
fGn model is observed indirectly, like in the regression model
(1). Also, the computational cost is much smaller than using
the Kalman recursions for a truncated ARFIMA process.
Notice that it is possible to construct a GMRF approxima-
tion which has an even lower computational cost by using
the cumulative sums of o Z';; 1 \/usz(j ) to form a sparse
mn X mn precision matrix, with the same bandwidth. How-
ever, this approach does not allow for automatic source
separation in situations where the fGn can be seen to repre-
sent combined signals. This feature of the approximate model
is demonstrated in Sect. 5.1.
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Fig.2 The structure of the
precision matrix of the vector in
(6) (right panel), the structure of
the precision matrix of the
reordered vector in (8) (middle
panel) and the resulting
structure of the lower triangular
matrix in the Cholesky
decomposition (right panel).
The matrices are illustrated for
the case m = 3 and n = 10

=

.,

3.3 Choosing the number of AR(1) components in
the approximation

The choice of m in (7) reflects a trade-off between computa-
tional efficiency and approximation error. This implies that
m should be as small as possible but still large enough to
give a reasonably accurate approximation of the autocorrela-
tion function of fGn. Figure 3 illustrates the autocorrelation
function of {Gn compared with the approximate model when
m = 3 and m = 4, using kmax = 1000 in (5). We only show
results for H = 0.9 as the differences between the curves
will be less visible using smaller values of H.

We do notice that m = 4 gives an almost perfect match
of the autocorrelation function up to kpyax. For larger lags,
the autocorrelation function of the approximate fGn model
will have an exponential decay; hence, we cannot match the
hyperbolic decay of the exact fGn. As a consequence, kmax
can be seen as a trade-off between having a good fit for the
first part of the autocorrelation function versus tail behaviour.

A different way to illustrate the difference between the
approximate and exact fGn models is in terms of the
Kullback—Leibler divergence. This is a measure of complex-
ity between probability distributions, which here measures
the information lost when the approximate fGn model is used
instead of the exact fGn model. Figure 4 displays the square
root of the Kullback—Leibler divergence for n = 500 and
n = 2000, as a function of H. We notice that m = 4 clearly
gives animprovement overm = 3, in particular for larger val-
ues of H. The loss in information when n = 2000 compared
to n = 500 is small, despite the fact that the autocorrelation
function is fitted only up to lag kpax = 1000.

3.4 A note on ARFIMA models

The presented approximation is especially suitable in fitting a
parsimoniously parameterized model like fGn. The fact that
the autocorrelation function of fGn is specified by only one
parameter can be seen both as a modelling benefit but also
as a limitation. An ARFIMA(p, d, ¢) model can be used to
model both short- and long-memory dependency structures,
both simultaneously and separately. The parameters p and ¢
give the orders of the short-memory autoregressive and mov-
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ing average parts of the model. The long-memory property
is prescribed by the parameter d, giving the order of the frac-
tional differencing of the underlying autoregressive moving
average model.

The method of matching autocorrelation functions can
easily be wused to provide an approximation of
ARFIMA(O, d, 0). Figure 5 displays the exact and approxi-
mated autocorrelation functions when d = 0.3 andd = 0.4.
As illustrated, the approximation method is very accurate
alsoin this case. This is not surprising as the ARFIMA(0, d, 0)
model has very similar properties to f{Gn whend = H —0.5.
Extensions of the given approximation idea to the case of
estimating all parameters of ARFIMA(p, d, g) models rep-
resent an interesting future project, but we have considered
this to be beyond the scope of this paper. We also note that
ARFIMA models have been criticized as having an atypi-
cal long-range dependency property, offering “no meaningful
diversity beyond fGn” (Veitch et al. 2013, p. 2). Even though
the use of fGn processes or ARFIMA(O, d, 0) might seem
limited, we gain flexibility by incorporating the given GMRF
approximation within the general class of latent Gaussian
models (Rue et al. 2009). This gives a user-friendly frame-
work in which an fGn component can be combined with other
explanatory effects in modelling real time series.

4 Simulation results

To evaluate the properties of the approximate fGn model, we
now study the loss of accuracy when using the approximate
versus the exact f{Gn model, for estimation and prediction.
The results will demonstrate an impressive performance
for both the estimation and prediction exercises, using the
approximate fGn model with m = 4.

4.1 Maximum likelihood estimation of H

We first study the loss of accuracy using the approximate ver-
sus the exact fGn model in maximum likelihood estimation
of H. We fit the approximate model usingm = 3 andm = 4,
to simulated fGn series of length n = 500, with N = 1000
replications. The error is evaluated in terms of the root mean
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Fig.5 The exact (solid) and approximated (dashed) autocorrelation function for ARFIMA(0,d,0), where d = 0.3 (left) and d = 0.4 (right)

squared error (RMSE) and the mean absolute error (MAE)
of [:Ii - I:Ii, where H; and I:Ii denote the estimates using the
approximate versus the exact fGn, for the ith replication.
The results are summarized in Table 1 in which the true
Hurst exponent ranges from 0.60 to 0.95. Using m = 3,
the Hurst exponent is underestimated and the error is seen
to increase with H, at least up to 0.90. The situation really
improves for m = 4, in which the error is small for all values
of H.The standard deviation estimates found from the empir-

ical Fisher information, are more similar than the estimates
themselves (results not shown).

Figure 6 displays scatterplots of the maximum likelihood
estimates for the approximate model with m = 3 and 4, ver-
sus the estimates using the exact model, when H = 0.7, 0.8
and 0.9. The inaccuracy for m = 3 is clearly visible and
increases with increasing values of H, while m = 4 shows
very good performance. We have noticed that the same gen-
eral remarks also hold when we increase the length of the
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Table 1 Maximum likelihood

DN L I H Average MLE of H RMSE(H) MAE(I:I)
estimation of H in simulations.
Exact m=73 m=4 m=73 m=4 m=23 m=4
The columns show the average
of the maximum likelihood 0.60 0.5998 0.5998 0.5998 0.0019 0.0007 0.0015 0.0006
estimates of H using the exact
versus the approximate models 0.65 0.6481 0.6478 0.6480 0.0026 0.0008 0.0021 0.0006
with m = 3 and m = 4, the 0.70 0.7004 0.6997 0.7003 0.0033 0.0008 0.0026 0.0006
corresponding root mean 0.75 0.7488 0.7472 0.7487 0.0032 0.0007 0.0025 0.0006
squared error and the absolute
mean error 0.80 0.7998 0.7974 0.7996 0.0031 0.0006 0.0026 0.0005
0.85 0.8503 0.8471 0.8500 0.0035 0.0004 0.0032 0.0004
0.90 0.8999 0.8965 0.8997 0.0035 0.0003 0.0034 0.0003
0.95 0.9500 0.9475 0.9499 0.0025 0.0002 0.0025 0.0001
The generated fGn processes are of length n = 500 with N = 1000 replications
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Fig.6 The maximum likelihood estimates of H for N = 1000 replications using the approximate f{Gn model with m = 3 (upper panels) and m = 4
(lower panels), versus the exact fGn. The true H values are H = 0.7 (left), H = 0.8 (middle) and H = 0.9 (right) and the generated series have

length n = 500

series ton = 2000. The series then contain more information
about H, and the error due to using kmax = 1000 is negli-
gible. In conclusion, we do get a very low loss of accuracy
using the approximate model with m = 4. This is impressive,
especially as it applies for all reasonable values of H in the
long-memory range.
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4.2 Predictive properties

This section investigates the effect of the approximation error
when we observe an fGn process of length n with fixed H,
and then want to predict future time points. The approximate
model is implemented with m = 4. To evaluate the properties
of the predictions, we consider the empirical mean of the
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standardized absolute prediction error,

N ~
1 lipi — Mp.il
erru(p)zﬁ§ 7“% L (®)
i=1

where N is the number of replications. /i ; is the conditional
expectation for p time points ahead from the ith replication
using the approximate fGn model. Correspondingly, 1 p ; is
the conditional expectation using the exact f{Gn model, while
o is the conditional standard deviation. To measure the error
in the conditional standard deviation, we use

_% _
erry (p) = o 1, )
4

which does not depend on the replication.

The left panel of Fig. 7 illustrates the empirical prediction
error in (8) for p = 1,...,250 time points ahead, follow-
ing either n = 500 or n = 2000 observations. The right
panel shows the corresponding error in the prediction stan-
dard deviation (9). We only report results for H = 0.8 as
other values of the Hurst exponent give similar results. We
notice that the mean prediction error increases slightly when
n = 2000 compared to n = 500, which is explained by the
increased error for lags larger than kpax = 1000. Otherwise,
both errors are relatively small and also quite stable with p.

5 Real data applications: source separation
and Bayesian inference

This section demonstrates two different aspects of the
approximate fGn model in real data applications. First, the
approximate model can be used as a tool for source separation
of a combined signal, for example representing underly-
ing cycles or variations for different time scales. This will
be illustrated in analysing the Nile river dataset (available

in R as longmemo: :NileMin). These data give annual
water level minima for the period 622—-1284, measured at
the Roda Nilometer near Cairo. Second, the approximate
model can easily be combined with other model components
within the general framework of latent Gaussian models
and fitted efficiently using R-INLA. This is demonstrated
in analysing the Hadley Centre Central England Tempera-
ture series (HadCET), available at http://www.metoffice.gov.
uk/hadobs. These data give mean monthly measurements of
surface air temperatures for Central England in the period
1659-2016. The two datasets are illustrated in Fig. 8.

5.1 Signal separation for the Nile river annual
minima

The Nileriver dataset is a widely studied time series (Mandel-
brot and Wallis 1969b; Beran 1994; Eltahir 1996) often used
as an example of a real fGn process (Koutsoyiannis 2002;
Benmehdi et al. 2011). Analysis of this dataset led to the
discovery of the Hurst phenomenon (Hurst 1951). For hydro-
logical time series, this phenomenon has been explained as
the tendency of having irregular clusters of wet and dry peri-
ods and can be related to characteristics of the fluctuations of
the series at different temporal scales (Koutsoyiannis 2002).

We can easily fit the exact fGn model to this dataset as the
process is observed directly, and the length of the series is
only n = 663. In this case, the maximum likelihood estimate
for the Hurst exponent is H = 0.831. Using the approx-
imate fGn model with m = 4, we get H = 0.829. This
illustrates that the approximate and exact models give very
similar estimates. A value of H = 0.83 also corresponds
well with results reported in literature (Mandelbrot and Wal-
lis 1969a; Benmehdi et al. 2011). Beran and Terrin (1996)
states that both a fractional Gaussian noise with H ~ 0.83
and an ARFIMA(O, d, 0) model with d = 0.4 fits well for
this dataset. Graves et al. (2015) analyse the given dataset fit-
ting an ARFIMA (0, d, 0) model using an MCMC-approach.
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Fig. 8 Mean-centred annual minimum water level of the Nile river (left panel). Monthly mean surface air temperatures for Central England, also

including the annual mean temperatures in white (right panel)

They get a posterior estimate of d = 0.402 with a 95%
credible interval equal to (0.336, 0.482). Our results using
the approximated ARFIMA(O, d, 0) model are very simi-
lar giving d = 0.399 with a 95% credible interval equal to
(0.350, 0.438).

An advantage of the approximate versus the exact model
is that the decomposition given by the mixture of AR(1) can
be used as a source separation tool. Figure 9 illustrates the
four estimated weighted AR(1) components in fitting model
(5). The estimated autocorrelation coefficients for these com-
ponents equal ¢ = (0.999,0.982,0.847,0.291), while the
weights are w (0.099, 0.129, 0.232, 0.540). The esti-
mated standard deviation is 6 = 0.888.

As illustrated in Fig. 1, the first autocorrelation coefficient
will always be quite close to 1. This gives a slowly vary-
ing trend, which in this case basically represents the mean.
The second component also reflects a slowly varying sig-
nal, which can be interpreted to represent cycles of the water
level fluctuations of about 200-250 years. The third compo-
nent seems to reflect shorter cycles of length 30100 years.
These cycles are seen to appear more irregularly, and we also
notice the tendency of having clusters of years with high and
low water levels, respectively. The fourth component, which
has the smallest autocorrelation coefficient and the largest
weight, can be interpreted as weakly correlated annual noise.

Kondrashov et al. (2005) study oscillatory modes of Nile
River records using empirical orthogonal functions. Fitting
a nonlinear data-adaptive trend to the data for the period
622-1470, they detect a 256-year cycle. This is in correspon-
dence with our result. They also find shorter cycles including
quasi-quadrennial and quasi-biennial cycles, in addition to
periodicities of 64, 19, 12 and 7 years. A disadvantage of
using the approximate f{Gn model as a source separation tool
is that the number of modes is fixed to be equal to the number
of AR(1) components used in the approximation. An advan-
tage is that the resulting components do have a quite clear

@ Springer

interpretation as these can be linked directly to the weights
and autocorrelation coefficients of the approximation.

5.2 Full Bayesian analysis of a temperature series

The HadCET series is the longest existing instrumental
record of monthly temperatures in the world. The observa-
tions started in January 1659 and have been updated monthly.
The observed temperatures do have uncertainties (Parker and
Horton 2005) and has been revised several times (Manley
1953, 1974; Parker et al. 1992). Especially, the measure-
ments up to 1699 have a precision of 0.5 °C, while the
precision is 0.1 °C thereafter (Graves et al. 2015). We anal-
yse temperatures up to December 2016, which gives a total
of n = 4296 observations.

We assume that the mean of the given temperatures can
be modelled by
E(y)) = Bo+ Bit+ s +x¢,, t=1,...,4296,
where y; is the temperature in month . The given linear
predictor includes an intercept By, a linear trend f; and a sea-
sonal effect s; of periodicity ¢ = 12 which captures monthly
variations. This seasonal effect is modelled as an intrinsic
GMREF of rank n — ¢ + 1, having precision parameter T
(Rue and Held 2005, p. 122) and scaled to have a general-
ized variance equal to 1 (Sgrbye and Rue 2014). The term
x; denotes the approximate fGn model with m = 4, having
precision parameter Ty.

The parameters By and B are assigned vague Gaussian
priors, 8 ~ N(0, 10%), while we use penalized complexity
priors (PC priors) (Simpson et al. 2017) for all hyperpa-
rameters. This implies a type II Gumbel distribution for the
precision parameters 7 and T, scaled using the probabil-
ity statement P(t~'/2 > 1) = 0.01. The PC prior for H
(Sgrbye and Rue 2017) is scaled by assuming the tail proba-
bility P(H > 0.9) = 0.1. The resulting analysis has proven
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Fig.10 Analysing the HadCET series: the marginal posterior 7 (H | y)

to be robust to prior choices. Among others, this has been
investigated by using Gamma(1, 5 x 10~) priors for the pre-
cision parameters (default in INLA) and the common choice
of using a uniform prior for H (Benmehdi et al. 2011). We do
prefer to use PC priors as these represent a principle-based
choice of priors (Simpson et al. 2017) which also facilitates
interpretation of hyperprior parameters (Sgrbye et al. 2018).

Analysis of the given model using an exact fGn term
is infeasible in terms of computational cost and memory

usage. A MacBook Pro with 16GB of RAM crashes due
to memory shortage when analysing exact fGn processes
of length n > 2500. Using the approximate fGn term with
m = 4, the full Bayesian analysis takes about 14 seconds.
The inference gives a significantly positive trend with pos-
terior mean /§] = 2.4 x 107* with 95% credible interval
(1.2 x 1074, 3.7 x 10~%). This corresponds to an increased
temperature of approximately 0.29 £ 0.15 °C per century.
This is in correspondence with the result in Gil-Alana (2003)
who estimated an increase of about 0.23 °C per century using
the same dataset up to the year of 2001.

The marginal posterior for H is illustrated in Fig. 10.
The posterior mean is H = 0.683 with a 95% equi-tailed
credible interval equal to (0.664, 0.704). We have also fitted
the model where x; is the approximated ARFIMA(0, d, 0)
model giving a posterior mean estimate of d equal to 0.229
with 95% credible interval equal to (0.205, 0.253). These
results are quite similar to Graves et al. (2015) who fitted
the ARFIMA (0, d, 0) model to a deseasonalized version of
the temperatures, giving a posterior mean of d = 0.209 with
a 95% credible interval equal to (0.186, 0.235). However,
in fitting the model to the whole series they assume mean
stationarity. In analysing the series for four different time
periods, Graves et al. (2015) report a significantly higher
value of the long-memory parameter (d = 0.277) for the
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first time period (1659 — 1744) compared to the other time
periods. We also observed this, both in fitting the f{Gn process
(H = 0.740) and the ARFIMA(0,d,0) model (d = 0.288).
The higher value of the long-memory parameter in this case
might be explained by a lack of resolution for the first time
period (Graves et al. 2015).

6 Concluding remarks

In this paper, we obtain a remarkably accurate approximation
of fGn using a weighted sum of only four AR(1) compo-
nents. The resulting approximate fGn model has a small
loss of accuracy for the whole long-memory range of H.
The key idea to obtain this is to ensure that the approximate
model captures the most essential part of the autocorrelation
structure of the exact f{Gn model. This is achieved by appro-
priate weighting, matching the autocorrelation structure up
to a specified maximum lag. The same idea can be used to
approximate other models, like ARFIMA(O, d, 0).

By construction, the autocorrelation function of the
approximate model has an exponential decay for lags larger
than the specified maximum lag. This implies that the
approximate model does not satisfy formal definitions of
long-memory processes. However, this trade-off is needed to
make analysis of realistically complex models computation-
ally feasible. The great benefit of the resulting approximation
is that it has a GMRF structure. This is crucial, especially as
computations can be performed equally efficient in uncondi-
tional and conditional scenarios.

An approximate model can never reflect the properties
of the exact model perfectly, but neither does a theoretical
model in explaining an observed data set. In theory, the fGn
model corresponds to an aggregation of an infinite number of
AR(1) components which indicates that the model is difficult
to interpret in practice. The given decomposition of just a
few AR(1) terms might provide a more realistic model. As
an example, we have provided a decomposition of the Nile
river data, which reflects fluctuations and cycles for different
temporal scales. Such a decomposition could also be valuable
in analysing other time series. For example, long memory
in temperature series has been related to an aggregation of
a few simple underlying geophysical processes (Fredriksen
and Rypdal 2017).

Implementation of the approximate fGn model in R-INLA
provides an easy-to-use tool to analyse models with fGn
structure. As demonstrated in the temperature example, we
can easily combine the fGn model component with other
terms in an additive linear predictor, for example nonlinear
effects of covariates, random error terms and random effects
including both temporally and/or spatially structured compo-
nents. Also, the mean function of the approximate f{Gn model
can be modified to include climate forcing and additional
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hyperparameters to provide realistic models for temperature
series. Among others, this makes it possible to estimate equi-
librium climate sensitivity in a computationally efficient way
(Rypdal et al. 2018). Further modifications include exten-
sions to spatio-temporal analysis. Especially, we do see a
potential in incorporating fGn model components in the anal-
ysis of spatial time series combining the given approximate
model with the methodology in Lindgren et al. (2011).
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Abstract. Reliable quantification of the global mean surface temperature (GMST) response to radiative forcing is essential for
assessing the risk of dangerous anthropogenic climate change. We present the statistical foundations for an observation-based
approach, using a stochastic linear-response model that is consistent with the long-range temporal dependence observed in
global temperature variability. We have incorporated the model in a latent Gaussian modeling framework, which allows for
the use of integrated nested Laplace approximations (INLAs) to perform full Bayesian analysis. As examples of applications,
we estimate the GMST response to forcing from historical data and compute temperature trajectories under the Representative
Concentration Pathways (RCPs) for future greenhouse gas forcing. For historic runs in the Model Intercomparison Project
Phase 5 (CMIP5) ensemble, we estimate response functions and demonstrate that one can infer the transient climate response
(TCR) from the instrumental temperature record. We illustrate the effect of long-range dependence by comparing the results
with those obtained from a 1-box energy balance model. The software developed to perform the given analyses is publicly

available as the R-package INLA.climate.

1 Introduction

Despite decades of research and development of global circulation models (GCMs) and Earth system models (ESMs), the dis-
crepancies between models remain substantial, even as we describe physical processes with increasing accuracy and resolution.
Part of the model spread is associated with a lack of understanding of the shortwave cloud feedback (Qu et al., 2018). However,
there are several other modeling choices and compromises that contribute to the uncertainty (Flato, 2011). As a consequence,
several studies have focused on constraining model results on climate sensitivity on observational data, see e.g., the work of
Annan and Hargreaves (2006), or the more recent studies of Cox et al. (2018) and Rypdal et al. (2018b, a). These studies focus
on the equilibrium climate sensitivity (ECS) as an essential metric of the climate response, as have numerous paleoclimate
studies (Hansen et al., 2013; von der Heydt and Ashwin, 2017; Kohler et al., 2017).

A simpler approach is to adopt a linear approximation, and to apply statistical methods to extract information on the climate
response from data on global surface temperature and radiative forcing in the instrumental era. Under the assumption of a linear

and stationary response, the global surface temperature anomaly AT can be expressed as a filtering of the global radiative
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forcing F', mathematically expressed as
t
AT(t) = / G(t—s) (F(s)ds +0dB(s)), M
—00

where odB(t) represents a white-noise forcing that gives rise to internal climate variability, and G is the response function,
or Green’s function, characterizing the relation between forcing and the temperature anomaly. A model of this form can arise

from the simplest energy-balance model, i.e. the equations

% = MT+F )
and AQ = CAT, where AQ is the change in the system’s heat content corresponding to a temperature change AT, and C'is a
heat capacity (Rypdal, 2012). If a white-noise forcing term is included on the right-hand side of Eq. (2) it becomes a stochastic
differential equation with a stationary solution on the form of Eq. (1), with G(t) = C~'e~*/7 and 7 = C//\. The process has a

natural decomposition into the response to the known forcing,
1 h
ATdel(t) = E / e*(tfs)/TF(s)ds (3)

and a stochastic term
t

X(t) = % / e (t=9/74B(s), 4)

oo
which for this particular model is an Ornstein-Uhlenbeck process. Rypdal and Rypdal (2014) show how the parameters of
the two terms can be estimated simultaneously from time series of forcing and the GMST using the maximum likelihood
(ML) method. They also demonstrate that the resulting process is inconsistent with observations. The stochastic term X (¢)
does not exhibit the strong positive decadal-scale serial correlations that is observed in the GMST in the instrumental era,
and secondly, the model’s response to reconstructed forcing for the last millennium does not show sufficient low-frequency
variability compared to Northern-hemisphere temperature reconstructions.

The inconsistency of the simple energy-balance model is due to the slow climate response associated with the energy ex-
change with the deep ocean. One can easily incorporate this effect within the framework of Eq. (1), by generalizing the
zero-dimensional (one-box) model to a two-box model that includes a layer representing the deep ocean (Geoffroy et al., 2013;
Held et al., 2010; Caldeira and Myhrvold, 2013), or the more general m-box model discussed by Fredriksen and Rypdal (2017).

The generalization from the zero-dimensional (one-box) energy balance model to the two-box model, or the m-box models,
means that the number of free parameters increases. Concerning statistical inference, this is problematic, and models are prone
to over-fitting. Mathematically, the generalization of Eq. (2) is on the form
dAT(t)

Cdt

=KAT(t) +F(t), 5
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where the diagonal elements of C are the heat capacities of each box, and the matrix K contains coefficients describing heat
exchange between boxes and the feedback parameter \.
The system in Eq. (5) is solved by bringing the matrix C 'Kto diagonal form, and the surface temperature anomaly can be

written as in Eq. (1) where G(t) is the weighted sum of m exponential functions (Fredriksen and Rypdal, 2017):

m we*t/”, t>0
Gty = == : ©)
0, t<0

The characteristic time scales 7, = —1/py, are defined from the eigenvalues i, of C~ 'K and wy, denotes the weight of the kth
exponential function.
On the other hand, global temperature variability exhibits an emergent scaling symmetry. For instance, both the forced and

the unforced global temperature variability have power spectral densities (PSDs) that are approximate power laws,
S~ f7 ©)

for frequencies corresponding to time scales ranging from months to centuries (Rypdal and Rypdal, 2016; Rybski et al., 2006;
Lovejoy and Schertzer, 2013; Huybers and Curry, 2005; Franzke, 2010; Fredriksen and Rypdal, 2016). The global temperature
fluctuations are consistent with a fractional Gaussian noise (fGn), which can formally be defined by the integral analogous to
Eq. (4), but with the exponential response function replaced with a scale-invariant response function

B/2-1
N ®

G(t) = (;
Here, + is a scale parameter with the dimension of time, and £ is a variable needed in order for G(¢) to have the correct physical
dimensions. The scaling exponent 3 (defined from the PSD in Eq. (7)) relates to the so-called Hurst exponent of the fGn via the
formula § = 2H — 1. Based on this Rypdal and Rypdal (2014) proposed a fractional linear response model in the form of Eq.
(1), in which the parsimonious expression in Eq. (8) replaces the linear combination of exponential functions in Eq. (6). The
cost of the reduction in model complexity is that the fractional linear response model does not conserve energy, and in general,
we cannot write the model as a system of differential equations as in Eq. (5). But on time scales up to approximately 103
years, the model provides an accurate description of both forced and unforced surface temperature fluctuations (Rypdal and
Rypdal, 2014; Rypdal et al., 2015), and the millennial-scale climate sensitivity in the estimated fractional linear response model
correlates strongly with ECS over the ensemble of models in the Coupled Model Intercomparison Project Phase 5 (CMIP5)
(Rypdal et al., 2018a).

Since temporal scaling is an emergent property, we cannot deduce the parameters in the fractional linear response model from
physical principles. This paper presents a statistical methodology that makes it possible to fit the model to observational data
and estimate all model parameters. Parameter estimation is done within a Bayesian framework making use of the methodology
of integrated nested Laplace approximation (INLA) for latent Gaussian models introduced in Rue et al. (2009). Barboza et al.

(2019) use this framework to investigate model formulations and forcing components in paleoclimate reconstructions.
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The INLA-methodology and inference for our statistical model, assuming the scale-invariant response function in Eq. (8),
is described further in Section 2. This section explains how to compute the marginal posterior distributions of the model
parameters. As the model has a non-standard form, this includes certain modifications of the INLA-methodology to ensure
computational efficiency. We discuss applications in Section 3.

In Section 3.1 we fit the model to the temperature and forcing data set generated by the GISS-E2-R ESM. Here we show
how to extract the GMST response to the known forcing using a Monte Carlo sampling approach. In Section 3.2, the model
is used for temperature forecasting where the representative concentration pathway (RCP) trajectories describe the future CO2
forcing. Section 3.3 describes how the transient climate response (TCR) can be estimated using our model. We obtain estimates
for 19 temperature series and their associated adjusted forcing series.

We compare the resulting estimates of TCRs with the TCRs obtained directly from the respective ESMs, and with TCR
estimates from historical HadCRUT4 temperature data set using different forcing data. The applications are incorporated in the
R-package INLA.climate. This package also includes the option of using the exponential response function defined by Eq.

(3) and Eq. (4). A discussion and final conclusions are given in Section 4.

2 Discrete-time modeling and statistical inference

Rypdal and Rypdal (2014) use an ML estimator to estimate the model parameters from the observational yearly time series
of AT = (ATy,...,AT,) of GMST, and the corresponding vector of radiative forcing F = (F1,..., F},). Here, we estimate
parameters by adopting a Bayesian framework, making use of the INLA-methodology (Rue et al., 2009, 2017). This approach
implies that parameters are treated as stochastic variables and assigned prior distributions. The information given by the priors
is then combined with the likelihood of the observations and updated to give posterior distributions using Bayes’ theorem.

In a discrete-time model, we assume that AT} has a Gaussian distribution with a random mean expressed by the linear

predictor
¢

T]tZOfZ(Gts(H)F9+FO)+5ta t=1,...,n )
s=1

where oy =y~ # /2+1 while F,y denotes a shift parameter which gives the initial forcing value. Gy, denotes a discretely indexed
element of the function,

(t—s+3H)H-3 1<s<t<n
Gus(H) = . (10)

0, otherwise

Further, the vector € = (¢1,...,£,) denotes a zero-mean fGn process, implying that the covariance between ; and £ is

U? 2H 2H
EtSZE(‘t—S-‘r” +‘t—5—1|

—2lt—s|*), ts=1,...,n, an
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where 0. = oo ¢. In vector notation, the predictor is then given by

n=pte (12)
where

p=p(Hop, Fy)=0G(H)(F+ Fp). (13)

The covariance matrix of the predictor is 3 = 3(H,o.) with the elements in Eq. (11). Notice that the matrix G(H) is lower
triangular with elements given by Eq. (10). The given formulation implies that the vector p represents the GMST response to
the known forcing F while € is the GMST response to the random forcing, i.e. the unforced climate variability.

The statistical regression formulation in Eq. (9) has a hierarchical structure in which the expected temperature anomalies
are modelled in terms of the random predictor 1 with elements specified by Eq. (9). The predictor depends on additional
model parameters 6 = (H,o.,0,Fp). This set-up implies that we need to assign priors, both to the predictor and to the
model parameters. By assigning a Gaussian prior to 7, the resulting model becomes a latent Gaussian model, which can be
analyzed using the INLA-methodology. In general, this class of models introduces a latent Gaussian field &, which contains
all the random components of a linear predictor, including the predictor itself. In our case, the latent field is equal to the linear
predictor, = 1 = p + €. However, inference for this model is not straightforward as the model parameter H appears in both
of the terms p and . We choose to circumvent this problem by considering the sum g+ ¢ as a single model component, i.e., as
a fractional Gaussian noise process with mean vector p and covariance matrix ¥. The dependence between two components
implies that we will not get separate posterior estimates for p and e, directly.

Using p(-) as a generic notation for probability density functions, we can summarize the three-stage hierarchical structure

of latent Gaussian models, including distributional assumptions, as follows:

— The first stage specifies the likelihood of the model. The observed temperature anomaly AT} is assigned a Gaussian
distribution with negligible fixed variance and mean 7;. The observations are assumed to be conditionally independent

given the latent field x and parameters 6, i.e.

n
p(AT|x,0) = [[p(AT; | 2.,6).
t=1
— The second stage specifies the prior distribution for the latent field. Given the parameters 8, the latent field x is assigned
a Gaussian prior distribution with mean vector p,, = E[x | ] and precision matrix, Q = Q(H, o..), defined as the inverse

covariance matrix, i.e.

det Q

p(x|0)= R

1
exp (= 50— 1) QX 1y))-
— The third stage specifies independent priors for the parameters:

p(0) = p(H)p(o:)p(os)p(Fo)-
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The shift parameter Fj is assigned a zero-mean Gaussian prior, while the other parameters are assigned penalised com-
plexity (PC) priors (Simpson et al., 2017). The class of PC priors represents a recently developed framework to compute
priors based on specific principles, including support to Occam’s razor. The PC prior of the two scaling parameters oy
and o, can be computed to equal the exponential distribution while the PC prior of H is computed numerically (Sgrbye
and Rue, 2018).

The joint posterior for all components of the latent field and all of the model parameters is then summarized by

n

p(x,0 | AT) o [ [ p(AT: | 20, 0)p(x | 6)p(8).

t=1

Our main objective is to estimate the marginal posterior distribution for all components of the latent field

D@ | AT) = /p(:vt 10,AT)p(0| AT)AO, t—=1,...n (14)
and the marginal posteriors for all the model parameters

p(ej|AT):/p(mAT)dE'_j7 j=1,...,4. (15)

Here, the notation 8 _; is used to denote the vector 6 excluding the jth parameter. The posterior distributions provide a complete
description of the latent field components and the parameters in our model. From the marginals in Eq. (14)-Eq. (15) we can
extract summary statistics such as the mean, variance, quantiles and credible intervals.

Traditionally, marginal posterior distributions have been approximated using Markov chain Monte Carlo methods (Robert
and Casella, 1999). Such methods are simulation-based and can potentially be very time-consuming for hierarchical models.
The INLA-methodology represents a computationally superior, but still accurate, alternative and is available using the R-
package R—-INLA. This package can be downloaded for free at www.r—inla.org. INLA provides a deterministic approach,
approximating the posterior distributions in Eq. (14)-Eq. (15) using numerical optimization techniques, interpolations and
numerical integration. Among others, this includes the use of the Laplace approximation (Tierney and Kadane, 1986) which is
an old technique to compute high-dimensional integrals. Specifically, the joint posterior distribution for the model parameters
in Eq. (15) is approximated by employing a Laplace approximation evaluated at the mode x*(0):
p(x,0,AT)

p(O|AT) ~ ——"—~— ,
(014T) pa(x|0,AT)| 1.

(16)
where pg(x | 0,AT) is a Gaussian approximation of
p(x| 6.AT) o p(x | O)p(AT | x,6).

This approximation is usually very accurate as we know that p(x | @) is already Gaussian. The marginal for each model
parameter is then obtained by assuming a normal distribution modified to allow for skewness,
N(07U]2+)7 ‘9]'>0

p(0; | AT) ~ .
N(0,07), 6;<0
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165 The scaling parameters o, and o;_ are found using the approximate joint posterior distribution of Eq. (16), see Martins
et al. (2013) for details. To compute Eq. (14), the Laplace approximation in Eq. (16) is combined with a simplified and
computationally faster version of the Laplace approximation of p(z; | @,AT). Finally, the integrand of Eq. (14) is evaluated
for values of 0 in a grid efficiently covering the parameter space for 6, see Rue et al. (2009) and Rue et al. (2017) for details.

A key assumption for the numerical approximations to be computationally efficient is that the latent Gaussian field x has

170 Markov properties, i.e. X needs to be a Gaussian Markov random field having a sparse precision matrix @ (Rue and Held,

2005). This is not the case for fGn as the long-range dependency structure of this process gives a dense precision matrix. We

resolve this problem by approximating € as a weighted sum of m independent first-order autoregressive (AR(1)) processes, i.e.
m
E= Z RV wZiZ .
i=1

To capture the correlation structure between € and each of the AR(1) processes X;, the latent field must be extended to also

175 include the underlying AR(1) processes, i.e. X = (1, t + €,X1,...,X;;,). The weights {w;}™, and the first-lag autocorrelation
coefficients of the AR(1) processes are selected such that the resulting autocorrelation function of € best approximates that of
fGn. In addition to ensuring computational efficiency, this approximation also proves to be remarkably accurate. For further
details about this approximation, see Sgrbye et al. (2019) who also provide a discussion from a statistical perspective. For a
physical interpretation of this approximation we refer to Fredriksen and Rypdal (2017).

180 Currently, there are no built-in model components in R—INLA which suit our specifications. This means that we have to con-
struct one manually using rgeneric, amodeling tool that allows generic model components to be defined for INLA. To make
this accessible to applied scientists we have developed an R-package called INLA.climate which includes functions that
take care of the technical part of the fitting procedure and presents important information and summary statistics in a readable
format. This package contains a versatile and user-friendly interface to fit the model in Eq. (9) and includes functions to replicate

185 all results presented in this paper. The package is available at the GitHub repository www.github.com/eirikmn/INLA.climate.

Detailed description of the package and its features is available in its accompanying documentation.

3 Applications
3.1 Estimating the forced temperature response

As explained in Section 2, our model formulation implies that the sum @+ is viewed as one model component. Consequently,

190 INLA will give an estimate for the posterior distribution of the sum, and not the marginal posterior distributions for each of the
terms g and €.

In this example, we illustrate how we can approximate the marginal posterior distribution for the temperature response

attributed to the known forcing, p(p; | AT), combining INLA with Monte Carlo sampling. We first fit our model to the GISS-

E2-R temperature and the forcing data using INLA. This gives the estimated marginal posterior distributions for each of the

195 model parameters @ = (H,o.,0, Fy), as shown in Fig. 1. Next, we use the inla.hyperpar.sample function from the
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Figure 1. The marginal posterior distributions of the parameters, obtained using INLA.climate to fit our model to the GISS-E2-R

temperature and forcing dataset. The vertical lines show the mean and 95 % credible intervals.

R-INLA package to draw 100,000 samples from the approximate joint posterior distribution of H,o; and Fj. For each of
these samples, we compute g according to Eq. (13). The resulting samples give approximate marginal posterior distributions
for each yi; which can then be used to calculate summary statistics.

For comparison, we apply the same approach to estimate the given marginal posterior distributions under the assumption of
an exponential response function in Eq. (3). In this case, the discretized unforced response described in Eq. (4) is an AR(1)
process. For both the scale-invariant and exponential response functions, we can then compute the marginal posterior means
and 95 % credible intervals for each p;. The results are shown in Fig. 2. The marginal posterior means are very similar.
However, we observe significantly wider credible intervals for the model using an exponential response function. The larger
uncertainty suggests that a smaller portion of the variance is explained by the unforced climate variability, leaving more of the
variation to be explained by the response to the known forcing. Using the INLA . climate package, we obtain full inference

in seconds on a personal computer. The code to run the example is as follows:

data ("GISS_E2_R")

y = GISS_E2_RS$Temperature

z GISS_E2_RS$Forcing
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Figure 2. The marginal posterior mean and 95 % credible intervals of the temperature response to known forcing p obtained by 100,000

Monte Carlo simulations compared to GISS-E2-R temperature data. Panel (a) shows the results under the scaling assumption, and panel (b)

shows the results using an exponential response.

3.2 Temperature predictions for Representative Concentration Pathway trajectories

Once trained on historical temperature and forcing data, the response model can easily be used to obtain temperature predictions
for different future forcing scenarios. Here, we present global temperature predictions for the years 2016 to 2100 based on the
HADCRUT4 temperature data and the greenhouse gas component of the Hansen forcing data for 1850 to 2015. For future
forcing, we use the representative concentration pathways (RCPs), RCP2.6 (van Vuuren et al., 2007), RCP4.5 (Clarke et al.,
2007; Smith and Wigley, 2006; Wise et al., 2009), RCP6 (Fujino et al., 2006; Hijioka et al., 2008) and RCP8.5 Riahi et al.
(2007). These trajectories were first published in 2000 and cover the years 2000 to 2100. In our analyses, we use the RCP for
the year 2016 to the year 2100 and adjust each of them so that the forcing in 2015 equals the greenhouse gas forcing in Hansen
data in 2015. The forcing scenarios are shown in Fig. 3.

Prediction is carried out using INLA . c1imate by appending the future scenario to the forcing of the past F = (Fpagi, Frure)-
The package automatically replaces missing observations with NA values and give predictions for these based on the model
fitted to the observed data.

As in the previous example, we compare the results using the scale-invariant versus an exponential response function.
Training and predictions only take seconds to carry out on a personal computer. Fig. 4 shows the marginal posterior means and

95 % credible intervals using a scaling response, and Fig. 5 show the same results using an exponential response. The figures
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Figure 3. The greenhouse gas component of the Hansen forcing (black) followed by the RCP2.6 (blue), RCP4.5 (orange), RCP6 (red) and
RCP8.5 (dark red) forcing scenarios.

also show comparisons with the ARS projections listed in table SPM.2 in IPCC (2013b). We observe that the exponential

response model fails to describe the persistence in the temperature response and underestimates the global warming increase

projections. The predictions obtained using a scale-invariant response predict higher future temperatures.

10
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Figure 4. Panels (a)—(d) describe the marginal posterior means and 95 % credible intervals of the predicted temperature response to future
forcing according to the RCP2.6, RCP4.5, RCP6 and RCP8.5 trajectories, respectively, using a scaling response function. These are compared
to the AR5 projections (black boxes).
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Figure 5. Panels (a)—(d) describe the marginal posterior means and 95 % credible intervals of the predicted temperature response to future
forcing according to the RCP2.6, RCP4.5, RCP6 and RCP8.5 trajectories, respectively, using an exponential response function. These are
compared to the AR5 projections (black boxes).
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3.3 Estimating the transient climate response

As a final application, we describe how our suggested method can be used to estimate the TCR. The TCR is defined as the
average temperature response between 60 and 80 years following a gradual CO»-doubling, assuming a 1 % annual increase. In

this scenario, the forcing increases linearly according to

f(s)= 627%;22(5+F0), for s=1,...,80 yrs.

Here, Q2xco, is a model-specific coefficient describing the forcing corresponding to a CO4 doubling. We obtain these coeffi-
cients from Forster et al. (2013) for all ESMs analyzed in this paper.

The computation of TCR is carried out by inserting the forcing into Eq. (1) and preforming the matrix multiplication
v=0;G(H)f.

where G(H) is the 80 x 80 matrix with elements defined as in Eq. (10) and f = (f(1), ...,f(80))T. This implies that TCR is

computed by
1 80 yrs
TCR = . 17
20 yrs t:%yrs " ( )

As in Section 3.1, the approximate marginal posterior distribution for TCR is obtained by combining INLA with Monte Carlo
sampling. We first generate samples from the joint posterior distribution of the model parameters p(6 | AT). For each of these
samples, we calculate TCR, which then gives the approximate posterior distribution for TCR.

For our analyses, we use temperature data sets generated from 19 ESMs in the Coupled Model Intercomparison Project Phase
5 (CMIP5) ensemble, see Table 2. We obtain the forcing by combining the forcing data from Forster et al. (2013) and Hansen
et al. (2010) such that the 18-yr moving averages of the two are equal. We use the instrumental HadCRUT dataset (Morice
et al., 2012), which combines the land temperatures of the CRU dataset (Jones et al., 2012) with the sea surface temperatures
of HadSST3 (Kennedy et al., 2011).

To assess the accuracy of the TCR estimations from Eq. (12) we compare the estimates from each of the 19 ESMs with
the TCR obtained from the ESMs directly (Forster et al., 2013). Inference is obtained by producing one hundred thousand
Monte Carlo simulations of the TCR. Summary statistics for our model are shown in Tables 3—4, which includes the marginal
posterior means and 95 % credible intervals for the TCR and the model parameters used to compute it.

To assess the approach using the scale-invariant versus the exponential response function, we compare the posterior mean
estimates with the values obtained directly from the ESMs. Specifically, we calculate the bias, the root mean square error (rmse)
and the correlation between the posterior mean estimates and the TCR-values from the ESMs, see Table 1. We observe that
the scale-invariant response performs better in all three cases. However, both approaches seem to indicate strong correlations,
which is depicted more clearly in the scatter plots shown in Fig. 6. Using INLA . climate we obtained, for a typical analysis,

inference in around 13 seconds using a scale-invariant response and 35 seconds using an exponential response.

12
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Figure 6. Scatter plot of the TCR obtained directly from the 19 ESMs against the corresponding marginal posterior mean estimates when

using a scale-invariant response function (panel (a)) and an exponential response function (panel (b)).

To obtain estimates for the TCR of the HadCRUT4 data set we use the 19 different forcing data associated with the ESMs
enlisted in Table: 2 as well as the Hansen radiative forcing which we will assign ID number 0. The Monte Carlo simulations are
carried out separately for each forcing data set, using one hundred thousand samples and forcing slope coefficient Q2 co, =
3.8 W m~2 (IPCC, 2013a). This is again performed using both a scale-invariant response and an exponential response. For
the scale-invariant response, the posterior means and credibility intervals of the TCR and the parameters used to compute the
TCR for each ESM are shown in Tables 5-6. The marginal posterior mean estimates and 95 % credible intervals for the TCR
using both approaches are illustrated in Fig. 7 where we observe wider credible intervals when using an exponential response
function. We obtain an estimated posterior distribution for the TCR across all models by aggregating all TCR samples obtained
from each analysis, totaling two million simulations. The posterior density is obtained from the Monte Carlo samples using the
density function in R. The resulting density function is depicted in Fig. 8, where it is compared with a histogram describing
the TCRs obtained directly from the ESMs. We observe a mean of 1.53 K and 1.46 K, and standard deviation of 0.33 K and
0.46 K when using a scale-invariant and an exponential response function, respectively. Both estimates fall in the lower half of

the range of TCRs.

13
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4 Conclusions

This paper presents a Bayesian formulation to analyse a linear temperature response model to radiative forcing, incorporating
long-range temporal dependence using a scale-invariant response function. Computational efficiency is achieved by incorporat-
ing the model within the R—~INLA framework and adopting the approximation introduced in Sgrbye et al. (2019). The benefits
of this methodology are three-fold. First, the model is both accessible and adaptable to more advanced models that require
more trends and effects. Second, the approximations ensure low costs in both computational complexity and memory, even for
long time series. Third, the method yields full Bayesian inference, giving a full description of the behavior of the time variables
and model parameters.

In addition to providing parameter estimates, the model has been used to produce temperature predictions as responses to
the four RCP forcing trajectories used to describe future radiative forcing. For comparison, we have also included prediction
results using the simple 1-box model having an exponential response function. We observe that the exponential response models
underestimate the predicted temperature compared to the projections made by the IPCC. On the other hand, the scale-invariant
response models tend to overestimate future temperatures but are overall more accurate than using an exponential response
function.

We further demonstrate that the model can be used to estimate the transient climate response in instrumental data. Our best
estimate is that the TCR is 1.53 K with a standard deviation of 0.33 K. This estimate falls right in the middle of the range put
forward in the IPCC report (0.8 — 2.5 K) and the accuracy is consistent with the TCR obtained directly from the ESMs. The
presented model has also been seen to give coherent estimates for the equilibrium climate sensitivity, compared with running
ESMs (Rypdal et al., 2018a).

Accurate linear response models for global temperature are essential alternatives to ESMs in studies where one needs to
explore a large number of emission scenarios, and the modeling framework presented here can easily be included in integrated
assessment models. Moreover, since the models are invertible, they can efficiently compute forcing scenarios corresponding to
given future scenarios for global temperatures. Hence, in combination with linear models for the CO; response to emissions,
they can be used to obtain observation-based estimates of the remaining carbon budget in scenarios where we reach the goals
of the Paris agreement.

In combination with dedicated ESM experiments, the methods presented in this paper can also be used to estimate global
and regional climate sensitivity as a function of background state and time scale. One can use such estimates to study the effect
of non-linear responses across time scales and to obtain insight into how sensitivities and fluctuations change in the vicinity of

climate tipping points.

Code and data availability. The code and data sets used for this paper is available through the R-package, INLA.climate, which can be

downloaded from: github.com/eirikmn/INLA.climate.
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Response ‘ bias rmse correlation
Scale-invariant | 0.09  0.28 0.85
Exponential -0.18 0.31 0.78

Table 1. Bias, root mean square error and correlation obtained when comparing the marginal posterior mean estimates of the TCR with the

TCR obtained directly from the ESMs. These are computed using both a scale-invariant and an exponential response function.
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ID  Earth System Model | Reference(s) Time interval TCR (K)  Q2xco, (W m™?)
1 GISS-E2-R (Hansen et al., 2010) [1850,2015] 1.5 3.8
2 HadGEM2-ES (Collins et al., 2011; Martin et al., 2011) [1860,2015] 2.5 2.9
3 IPSL-CM5A-LR (Dufresne et al., 2013) [1850,2015] 2.0 3.1
4 NorEMS1-M (Bentsen et al., 2013; Iversen et al., 2013)  [1850,2015] 1.4 3.1
5 ACCESS1.0 (Bietal., 2012) [1850,2015] 2.0 3.0
6 MIROC-ESM (Watanabe et al., 2011) [1850,2015] 2.2 43
7 MIROCS (Watanabe et al., 2010) [1850,2015] 1.5 4.1
8 CanESM2 (Chylek et al., 2011) [1850,2015] 2.4 3.8
9 CCSM4 (Gent et al., 2011) [1850,2015] 1.8 3.6
10 CNRMCMS (Voldoire et al., 2013) [1850,2015] 2.1 37
11  GFDL-CM3 (Donner et al., 2011) [1860,2015] 2.0 3.0
12 GFDL-ESM2G (Dunne et al., 2012, 2013) [1861,2015] 1.1 3.1
13 CSIRO-MK3-6-0 (Rotstayn et al., 2012; Jeffrey et al., 2013)  [1850,2015] 1.8 2.6
14 BCC_CSM 1.1 (Wu et al., 2014) [1850,2015] 1.7 32
15 BCC_CSM 1.1(m) (Wu et al., 2014) [1850,2015] 2.1 3.6
16  GFDL-ESM2M (Dunne et al., 2012, 2013) [1860,2015] 1.3 3.4
17 INM-CM4 (Volodin et al., 2010) [1850,2015] 1.3 3.0
18 MPI-ESM-LR (Giorgetta et al., 2013) [1850,2015] 2.0 4.1
19  MRI-CGCM3 (Yukimoto et al., 2012) [1850,2015] 1.6 32

Table 2. The earth system models used in this paper. The table includes ID-number, references, time interval, TCR obtained directly from

the ESM, and slope coefficient for the forcing corresponding to a CO2-doubling.
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ID| H oe (K) oy (K) Fo Wm™2) TCR (K)
1 0.605 0.054 0.062 -0.076 1.381
(0.553,0.682)  (0.048,0.06) (0.058,0.066)  (-0.117,-0.034)  (1.309,1.463)
2 0.977 0.355 0.08 0.085 24
(0.948,0.996)  (0.209,0.667)  (0.062,0.099) (-0.068,0.234)  (1.853,2.964)
3 0.898 0.158 0.077 -0.024 2.118
(0.829,0.955)  (0.121,0.211)  (0.065,0.089)  (-0.164,0.116)  (1.825,2.43)
4 0.838 0.122 0.059 0.06 1.457
(0.758,0.912)  (0.1,0.15) (0.047,0.071)  (-0.074,0.194)  (1.201,1.74)
5 0.899 0.129 0.076 0.086 2.026
(0.835,0.954)  (0.1,0.172) (0.063,0.089)  (-0.02,0.194) (1.706,2.375)
6 0.867 0.124 0.077 0.177 2.798
(0.794,0.933)  (0.1,0.158) (0.066,0.089)  (0.056,0.295) (2.408,3.215)
7 0.892 0.207 0.047 0.032 1.66
(0.807,0.961)  (0.154,0.29) (0.033,0.063) (-0.167,0.232)  (1.2,2.192)
8 0.793 0.155 0.087 -0.003 2473
(0.708,0.879)  (0.131,0.183)  (0.073,0.101)  (-0.117,0.111)  (2.148,2.82)
9 0.74 0.122 0.07 0.006 1.769
(0.652,0.831)  (0.106,0.141)  (0.06,0.082) (-0.109,0.114)  (1.599,1.969)

Table 3. This table contains marginal posterior means and 95 % credible intervals for the model parameters and the transient climate response,

obtained from fitting our model to temperature data from the first 9 ESMs.
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ID | H oe (K) o (K) Fo(Wm~2)  TCR(K)
10 | 0.797 0.123 0.08 0.098 2.25
(0.724,0.869)  (0.105,0.144)  (0.069,0.093)  (-0.009,0.204)  (1.907,2.626)
11 | 0815 0.138 0.094 0.074 2.197
(0.733,0.892)  (0.115,0.166)  (0.081,0.108)  (-0.016,0.164)  (1.876,2.547)
12 | 0.876 0.16 0.052 0.119 1.392
(0.797,0.942)  (0.124,021)  (0.042,0.063)  (-0.06,0.294)  (1.099,1.71)
13 | 0.904 0.165 0.077 0.137 1.799
(0.836,0.963)  (0.125,0.229)  (0.061,0.094)  (0.001,0.267)  (1.423,2.209)
14 | 0.882 0.127 0.057 0.309 1.616
(0.857,0.906)  (0.112,0.142)  (0.051,0.066)  (0.102,0.457)  (1.448,1.868)
15 | 0.805 0.108 0.076 0.231 2.067
(0.71,0.87) (0.083,0.13)  (0.07,0.083)  (0.076,0.434)  (1.8,2.314)
16 | 0.743 0.155 0.071 0.029 1.69
(0.655,0.832)  (0.134,0.179)  (0.058,0.086)  (-0.106,0.167)  (1.413,1.989)
17 | 0914 0.121 0.03 0.085 0.811
(0.849,0.967)  (0.09,0.17) (0.022,0.037)  (-0.121,0.292)  (0.638,1.003)
18 | 0.979 0.302 0.064 -0.135 2.71
(0.973,0.985)  (0.259,0.365)  (0.054,0.074)  (-0.324,0.056)  (2.274,3.125)
19 | 0.792 0.1 0.061 0.013 1.457
(0.707,0.873)  (0.084,0.118)  (0.049,0.074)  (-0.104,0.135)  (1.194,1.747)

Table 4. This table contains marginal posterior means and 95 % credible intervals for the model parameters and the transient climate response,

obtained from fitting our model to temperature data from the last 10 ESMs.
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H oe (K) oy (Wm™2)  Fy (K) TCR (K)
0| 0.776 0.121 0.072 -0.096 1.975
(0.704,0.858)  (0.106,0.137)  (0.057,0.085) (-0.215,0.038)  (1.559,2.353)
1 | 0.804 0.115 0.046 -0.012 1.318
(0.725,0.882)  (0.098,0.137)  (0.037,0.055) (-0.172,0.148)  (1.115,1.541)
2 | 0938 0.207 0.062 0.218 1.71
(0.886,0.979)  (0.147,0.31) (0.047,0.079)  (0.047,0.382)  (1.291,2.19)
3| 0.822 0.12 0.051 0.026 1.243
(0.744,0.895)  (0.1,0.144) (0.042,0.062)  (-0.126,0.178)  (1.041,1.469)
4 1 0.859 0.133 0.058 0.124 1.481
(0.787,0.931)  (0.109,0.167)  (0.046,0.07) (-0.024,0.27) (1.22,1.789)
5| 0925 0.183 0.059 0.207 1.645
(0.868,0.972)  (0.135,0.263)  (0.045,0.074)  (0.04,0.369) (1.271,2.06)
6 | 0.854 0.13 0.06 0.159 2.128
(0.778,0.92) (0.105,0.162)  (0.048,0.073)  (0.011,0.304)  (1.754,2.565)
7 | 0.84 0.125 0.055 0.127 1.806
(0.766,0.91) (0.104,0.153)  (0.045,0.066)  (-0.021,0.275)  (1.503,2.141)
8 | 0.843 0.127 0.049 0.084 1.497
(0.769,0.912)  (0.104,0.155)  (0.039,0.059)  (-0.08,0.246) (1.241,1.783)
9 | 0.806 0.116 0.041 0.037 1.118
(0.728,0.889)  (0.099,0.138)  (0.033,0.049)  (-0.13,0.204) (0.954,1.305)

Table 5. This table contains marginal posterior means and 95 % credible intervals for the model parameters and the transient climate response,
obtained from fitting our model to the HadCRUT dataset using forcing data from Hansen et al. (2010) (denoted by ID 0) and from the first 9
ESMs.
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H oe (K) of (Wm™2)  Fy(K) TCR (K)
10 | 0.843 0.126 0.061 0.146 1.849
(0.768,0.913)  (0.104,0.155)  (0.05,0.074) (0.006,0.283) (1.535,2.215)
11 | 0.929 0.193 0.05 0.262 1.421
(0.871,0.975)  (0.139,0.283)  (0.038,0.063)  (0.07,0.439) (1.086,1.789)
12 | 0.872 0.143 0.047 0.181 1.234
(0.801,0.938)  (0.114,0.184)  (0.037,0.057)  (0.003,0.357) (0.998,1.492)
13 | 0.932 0.192 0.065 0.178 1.597
(0.878,0.975)  (0.139,0.28)  (0.05,0.082)  (0.019,0.334)  (1.223,2.016)
14 | 0.788 0.111 0.049 0.03 1.159
(0.707,0.869)  (0.095,0.131)  (0.04,0.058) (-0.114,0.173) ~ (0.993,1.341)
15 | 0.934 0.193 0.039 -0.254 1.342
(0.911,0.954)  (0.164,0.226)  (0.031,0.047) (-0.414,-0.048)  (1.065,1.622)
16 | 0.865 0.14 0.049 0.042 1.384
(0.792,0.932)  (0.112,0.177)  (0.038,0.06) (-0.134,0.218)  (1.112,1.689)
17 | 0.847 0.122 0.051 -0.122 1.179
(0.785,0.907)  (0.102,0.148)  (0.038,0.062) (-0.286,0.064)  (0.787,1.502)
18 | 0.933 0.192 0.038 -0.245 1.461
(0.906,0.955)  (0.16,0.227) (0.027,0.049)  (-0.415,-0.029)  (1.042,1.891)
19 | 0.894 0.152 0.064 0.017 1.795
(0.83,0.951) (0.12,0.201) (0.049,0.08) (-0.136,0.173)  (1.406,2.225)

Table 6. This table contains marginal posterior means and 95 % credible intervals for the model parameters and the transient climate response,

obtained from fitting our model to the HadCRUT dataset using forcing data from the last 10 ESMs.
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Abstract: Earth’s global surface temperature shows variability on an extended range of temporal
scales and satisfies an emergent scaling symmetry. Recent studies indicate that scale invariance
is not only a feature of the observed temperature fluctuations, but an inherent property of the
temperature response to radiative forcing, and a principle that links the fast and slow climate
responses. It provides a bridge between the decadal- and centennial-scale fluctuations in the
instrumental temperature record, and the millennial-scale equilibration following perturbations in the
radiative balance. In particular, the emergent scale invariance makes it possible to infer equilibrium
climate sensitivity (ECS) from the observed relation between radiative forcing and global temperature
in the instrumental era. This is verified in ensembles of Earth system models (ESMs), where the
inferred values of ECS correlate strongly to estimates from idealized model runs. For the range of
forcing data explored in this paper, the method gives best estimates of ECS between 1.8 and 3.7 K,
but statistical uncertainties in the best estimates themselves will provide a wider likely range of
the ECS.

Keywords: climate sensitivity; scale invariance; long-range persistence; climate variability;
emergent constrains

1. Introduction

The Intergovernmental Panel on Climate Change [1] (IPCC) has estimated the likely range of
equilibrium climate sensitivity (ECS) to be between 1.5 and 4.5 K. The ECS, which is widely used
in assessments of anthropogenic climate change, is defined as the asymptotic temperature increase
following an instantaneous CO, doubling. In Earth system models (ESMs), the ECS is generally
estimated via the so-called Gregory plots [2], where the response in the top-of-the-atmosphere
radiation N is plotted against the global mean surface temperature (GMST) anomaly AT during
the equilibration following an instantaneous doubling or quadrupling of the atmospheric CO,
concentration. The assumption is that the adjustment in radiation depends linearly on the surface
temperature increase,

N = F — AAT, €8]

so that the feedback parameter A and the forcing F can be determined via linear regression. The ECS
is hence F,co,/A, where F,, co, is the forcing associated with a CO, doubling. The Gregory plots
show that the linearity assumption is only approximate, and in particular, there are slow feedbacks
in the models that reduce the feedback parameter as the planet warms [3]. A state dependence
is also observed in the so-called paleo sensitivity [4-7]. Nevertheless, the usefulness of ECS and
its estimation still relies on the linearity assumption in Equation (1). Satellite observations of the
top-of-the-atmosphere radiation are available through the Clouds and the Earth’s Radiant Energy

Climate 2018, 6, 93; doi:10.3390/ cli6040093 www.mdpi.com/journal/climate



Climate 2018, 6, 93 20f15

System (CERES), but unfortunately, the data only covers the years 2000-present. The state-of-the-art
ECS estimates based on the satellite data gives a wide likely range (in this case a 17-83% confidence
interval) of 2.4-4.5 K [8].

A different approach, which can be used when the top-of-the-atmosphere radiation is unknown,
is to combine model results with the instrumental temperature record. Recently Cox et al. claimed that
ECS can be constrained to a “likely range” (in this paper specified to be the 66% confidence interval) of
2.2 to 3.4 K, with a best estimate of 2.8 K [9]. They propose a metric i characterizing the correlation
structure of the internal variability of the GMST in both the instrumental temperature record in the
period 1880 to 2016 and in the corresponding historical runs in the Coupled Model Intercomparison
Project Phases 5 (CMIP5) ensemble. By exploring a so-called emergent relationship between ECS
and 1, they estimate a distribution P(ECS|y) for the Gregory estimate of ECS conditioned on 1,
and using the law of total probability in conjunction with Bayes Theorem, they obtain a probability
density function P(ECS) constrained by the instrumental record. However, it has been demonstrated
that their estimated metric depends on the response to the strong anthropogenic forcing in the time
period after year 1950, and hence one has to take into account that the historical forcing times series
used in different models in the ensemble are not exactly the same [10]. Another problem is that the
emergent relationship was derived from an oversimplified one-box stochastic energy balance equation
(Equation (7) described in Section 2.1). This model does not take into account the memory effects in
the response due to heat exchange between the ocean mixed layer and the deep ocean. Models that do
incorporate such memory effects are briefly reviewed in Sections 2.2 and 2.3.

A method of constraining ECS from the instrumental record that does not draw on a simplified
physical model is to include data for historical forcing, with its uncertainties, and to estimate response
functions that describe the relationship between global radiative forcing and the observed GMST.
If one adopts a hypothesis of a linear and stationary response, then the temperature anomaly AT
can be written as a convolution of the forcing F with a response function G(¢):

AT(F) = /t G(t —s) (F(s)ds + 0dB(s)), @)
—00
where the term F(t) is the known (deterministic) forcing and dB(t) represents a white-noise random
forcing that gives rise to the internal variability. Equation (2) only assumes linearity and stationarity of
the response, and it is only the functional form of G(t) that depends on the particular physical
modeling of this response. As discussed in Section 2.2, such a linear response can be derived from a
multi-layer energy balance model, where the response function is a sum of exponential functions with
decay rates that are given by the real and negative eigenvalues of the system of differential equations.
Fredriksen and Rypdal [11] have shown that three exponential terms are sufficient to obtain a model
that simultaneously displays responses to historical and reconstructed forcing that are consistent with
the instrumental temperature record and the reconstructed last millennium global mean temperature,
respectively. In addition, it correctly describes the statistical properties of the internal variability on
time scales from months to centuries [12]. The constructed response function corresponds to an ECS
estimate of 3.0 K, obtained by using the forcing F(t) = Fxco, ©(t) in Equation (2), where ©(t) is the
unit step function. Defining the ECS as lim;_,., AT(t), Equation (2) yields

ECS = Fy.co, /O G(t)dt. 3)

The forcing F,co, is well approximated by a logarithmic dependence of the CO; concentration,
with a best estimate of 3.7 W/m? found by the IPCC [1]. Uncertainties associated with the radiative
transfer calculations are small [13]. However, forcing estimates from CMIP5 models often include
rapid adjustments of the atmosphere, resulting in larger uncertainties [14]. The more serious issues are
the uncertainty of the estimate of the response function, the uncertainty of the adjusted forcing data,
and the validity of the linearity assumption.
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The uncertainty of the response function estimates can be assessed in several ways, for instance
using an ensemble of runs of the same experiment in one ESM. The uncertainty of the forcing
presents a significant challenge, which is not addressed by Cox et al. [9]. In the present paper,
we take part of this uncertainty into account by analyzing the spread of the adjusted forcing over
the CMIP5 ensemble. We shall also consider the order of magnitude of uncertainty that can be
attributed to our limited knowledge about the forcing from volcanic aerosols. In model runs with
historical forcing, the adjusted forcing is obtained from Equation (1) by comparing the time series of
AT(t) and the top-of-the-atmosphere radiation N(t) for a fixed estimate of the feedback parameter
A [15]. The resulting time series F(t) is an estimate of the forcing experienced by the ESM. However,
the construction of F(t) from the assumed linear relationship between AT (¢) and N (t) results in forcing
signals where some short-scale internal climate variability, including the El Nifio Southern Oscillation
(ENSO), are clearly observable in the forcing signal. Consequently, these forcing data are not suitable
for statistical estimation of response functions G(t) from Equation (2). The alternative, which is used
in this paper, is to fix a forcing time series, for instance the time series provided by Hansen et al. [16],
and to modify it for each model so that the trend (or low-frequency variability) is equal to the adjusted
forcing for the model. This approach serves two purposes; we ensure that when we fit a response
function to a model the increasing trend in the forcing is consistent with the forcing in the model run,
and it provides an ensemble of forcing time series with different trends. The estimates of the response
function from the observed temperature record can be repeated across this ensemble of forcing time
series and provide an estimate of the uncertainty in the response function that is associated with the
uncertainty in the forcing trend.

If one derives the response function from a multibox energy balance model it will take the form
(see Section 2.2),

N
Gt =Y et T, 4)
k=1

In Section 3 it is described how to obtain statistical estimates ¢, and 7 of the parameters c; and 7
from historical runs of each of the ESMs in the CMIP5 ensemble, as well as for the instrumental
temperature record. For each model, this estimate corresponds to an estimate of ECS through
Equation (3), which in this case reads

N
ECS = Fxco, Y &t
k=1

If the estimate ECS correlates strongly with the Gregory estimate of ECS over the CMIP5 ensemble,
then the estimate ECS obtained from the instrumental temperature record can be used to constrain the
distribution of ECS in the ensemble. Unfortunately, such an analysis will show a very weak correlation
between the two estimates, and this apparently indicates that response function estimates are useless
for constraining ECS. On the other hand, the reason for the low correlation is that the instrumental
temperature record is too short to provide useful information about the slow response of the climate
system, and the general form of the response function leads to statistical over-fitting. The method
can be improved by reducing the number of free parameters. A naive approach is to reduce the
response function to one characteristic time scale (which is what comes out of using the one-box model
employed by Cox et al. [9]). This gives a model that is unable to accurately describe the temporal
structure of the temperature response, and would lead to a systematic underestimation of the ECS.
A better alternative is to use the emergent property of temporal scale invariance.

Rypdal and Rypdal [12] have demonstrated that a scale-invariant response model, i.e.,
Equation (2) with

6o = ()" et ®
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where & = 1 km? J7! is a factor needed to give G(t) the right physical dimension, provides a
parsimonious and accurate model on time scales from months to several centuries, although not on
longer time scales. In fact, it will be argued in Section 4 that the power-law dependence (at least
in the models) is invalid on time scales substantially longer than a millennium. The existence of a
cut-off in this dependence on very long time scales is obvious, since the ECS according to Equation (3)
would be infinite otherwise [12]. We don’t have to worry about this cut-off when we estimate the
model parameters from historical data since the temperature records and the forcing time series we
have for the industrial period are relatively short compared to this cut-off time, which corresponds
to the time it takes for global surface temperature to relax to a new equilibrium after an abrupt CO,
doubling in ESMs. This large separation of the two time scales (observation time and relaxation time)
is also the main reason why it is so difficult to provide accurate estimates of ECS from observational
data. The fact that a response model with infinite ECS can perform well when tested on observation
data suggests that these time series are too short for ECS assessment and that ECS may not be the
most useful measure of climate sensitivity in the face of anthropogenic climate change. It may be more
useful to study the scale-dependent (or frequency-dependent) sensitivity;

R(f) = Faxco,|G(f)], (6)

where

G(f) = /_Z G(t)e2mift g

is the Fourier transform of the response function. However, as the main results of this paper will
show, the scale dependent sensitivity evaluated at f = 1073 y~! correlates strongly with the Gregory
estimate of ECS. Hence, this technique can be used to constrain the ECS in the model ensemble on the
instrumental temperature record. It is evident from the results presented in this paper that uncertainty
in the historical forcing data is the main obstacle for more accurate assessment of ECS.

The paper is structured as follows. In Section 2 we discuss stochastic linear response models
for global surface temperature variability to motivate the analyses presented in Section 4. We also
discuss some dissipation-response relations that follow from this modeling framework. Details on
data employed and the statistical analyses are presented in Section 3. In Section 4 we present the main
results, and in Section 5 we discuss and conclude our findings.

2. Linear Response Models and Scale-Dependent Sensitivity

2.1. The 1-Box Energy Balance Model

The simplest climate model, the so-called 1-box energy balance model, describes the temperature
anomaly AT via the first order differential equation

CAAT(t) = —AATdt + F(t)dt, @)

where C is a heat capacity, A is the feedback parameter and F(t) is the radiative forcing. If one includes
a white-noise stochastic forcing, the model becomes a stochastic differential equation on the form

CAAT(t) = —AATdt + F(t)dt + odB(t), ®)
where dB(t) is the white-noise random measure. The solution of the equation is

t t
AT(H) = é /_oo e (9T (s)ds + /_oo e~ =9/74p(s), )
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where the characteristic time scale is T = C/A. The second term in the above expression defines the
Ornstein-Uhlenbeck process

ot
X(t) = % /me*(f*S)/de(s),

i.e., the continuous-time version of an AR(1) process, sometimes referred to as red noise. This is
a Gaussian process characterized by its exponentially decaying correlation function. In fact,
the covariance structure of the process is given by the expression

rx(AF) = (X()X(t+ Ab)) = %e—wvr,

and from the Wiener-Kinchin theorem it follows that the power-spectral density (PSD) of X(f)

is Lorentzian -
e ; 1 o°T

Sx(f) = / e 2miftgp = - 7T

X(f) e rX( )e 21 +47‘CT2f2

The PSD scales as S(f) ~ f~2 for frequencies f > 1/7, and as S(f) ~ ¢27%/C? for f < 1/7.

The first term in Equation (9) can be referred to as the response to the deterministic (or known)
forcing, and denoted ATge(t). If the forcing is an instantaneous CO; doubling at time t = 0 we can
write F(t) = Foxc0,0(t), where F, o, is the forcing corresponding to the CO, doubling, and ©(¢) is
the unit-step function. The response is

_ Bxco, [t _(1—s)/r ;. _ Foxco,T “t/t
ATdet(t)*T/Oe dsf?(l—e )

In particular an expression for the ECS is obtained in the limit  — oo:

Fvco, T Bxco,

ECS = C n

We note that there are connections between the response to deterministic forcing and the statistical
properties of the random fluctuations X(#). For instance, the low-frequency limit of the PSD is
proportional to the square of the ECS:

o 22 2 o2
f—0 —o0 C FZ xCOy

The above expression is an example of a dissipation-response relation that holds for more general

linear response models.

2.2. Generalizations of the 1-Box Model

The 1-box energy-balance model describes temperature response through a single characteristic
time scale, and does not accurately take into account the warming of the deep oceans, which is much
slower than the thermal response of the atmosphere. A more accurate energy-balance model is the
so-called 2-box model, for which the analog of Equation (8) is

CldATl(t) = —)LATldt + K(ATZ - ATl)dt + F(f)di’ + UdB(t)
CodAT,(t) —x(AT, — ATl)dt.

For x > 0, this system has two negative eigenvalues —1/7 and —1/71, and the surface
temperature anomaly AT = AT can be written as Equation (2), where G(t) = (c1e™t/ T 4 cpe =t/ 2)@(t)
now is a response function with two characteristic time scales. The model can be further generalized to
the class of N-box models for which we have a response function given by Equation (4), or to an even
more general class of models for which we just assume that there is some response function G(t) with
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G(t) = 0for t < 0. In the general case we find, by using the definition X(t) = szot G(t —s)dB(s) of
the noise-driven response process and the relation (dB(s) dB(s')) « &(s —s’) for the white noise
process, that

rx(Af) = (X(DX(t + A1) = o2 /Ow G(H)G(t + At)dt

for At > 0. The angle brackets here denote the expectation value. From Equation (3), we then have

0 oo F? o F2
2 _ 2 _ 2xCco _ faxcoy 4.
ECS _PMOZ/O /0 G(+)G(s)dtds — Tz/_wrx(At)dAt_ S limSx(f). (0)
We now define the scale-dependent climate sensitivity as
Fxco
R(f) = === Sx(f)'/2. (11

o

It appears immediately from Equation (10) that R(f — o0) = ECS, so from a theoretical
viewpoint, this definition makes sense. For computational purposes, however, the definition presented
in Equation (6) is more practical. From the definitions of Sx(f), rx(f), and X(t) it is easy to
demonstrate that

Sx(f) = ?IG(f)I, (12)

hence the two definitions are equivalent.

2.3. Scale-Invariant Models

The statistical properties of global surface temperature are consistent with those of long-range
dependent (LRD) stochastic properties [17-22], in particular with fractional Gaussian noise (fGn).
This can be modeled by letting the response function G(t) take the form of Equation (5). In fact,

x = [ (52)" vt

can be taken as a formal definition of a fGn (see the Appendix of [12]). Its PSD is S(f) ~ f~F. Studies
also indicate that scale invariance is not only a feature of the observed temperature fluctuations, but an
inherent property of the temperature response to radiative forcing [11,12,22-24]. This means that the

deterministic component
ot —s\p/2-1
Maalt) = [ (2)7 F(s)zds
—00 ],{
is an accurate description of the temperature response to the known deterministic forcing. Moreover,
the stochastic and deterministic responses can simultaneously describe the deterministic temperature
response and the climate noise (residual), meaning that the parameters  and y can take the same
values in the two terms. This is a type of dissipation-fluctuation result, but not as strong as those

the stochastic component

that directly link the statistical properties of the climate noise to the characteristics of the response.
More important; it provides a statistical model for which parameter estimates are very stable, and this
makes these models suitable for extracting proxies of ECS from historical runs in the model ensemble.

3. Materials and Methods

3.1. Data

The instrumental temperature record used in this paper is the HadCRUT4 observational dataset
which was downloaded from https:/ /crudata.uea.ac.uk/cru/data/temperature/. The CMIP5 ESM
data was downloaded from https://esgf-data.dkrz.de/search/cmip5-dkrz/. Forcing data was
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retrieved from the sources provided in [15,16]. The time period 1850-2016 is used for all historical runs
and for the instrumental temperature record.

3.2. Parameter Estimation

In discrete time, the statistical model given by Equations (2) and (5) can be written as
AT = 0¢G(B) (Fo + F) +€(c, ), (13)
where we have defined a matrix

(t=s+3)P* 1, 1<s<t
Grs(B) = en

0, otherwise

Here AT = (AT(t),AT(t2),...,AT(t,))T is the time series for global surface temperature,

F = (F(t1),F(t2),...,F(ts))T is the time series for the known forcing, and € = €(, B) = (e(t1),e(t2),...,e(tn))T,
where e is a f{Gn with parameters  and ¢. In this paper we only consider time series that are sampled
yearly, so we let t; = i, and omit the time unit for simplicity. The random vector € is a segment of
a fGn, so by definition it is a stationary zero-mean Gaussian vector with covariance matrix

2
(% . . . . . .
mij = (fi= 1P 4 fi—j = 1P —2li i)

The parameter § is related to the Hurst exponent H through the relation p = 2H — 1 [25].

In fitting Equation (13) to a given temperature series, the parameters B, o, ¢ and [y are
found numerically using the methodology of integrated nested Laplace approximation (INLA) [26].
In addition, the parameter y is determined using the formula (1/p)#/2~1 = os. INLA is available
within the programming environment R, using the open-source package R-INLA which can be
downloaded from www.r-inla.org. It represents a computationally efficient Bayesian approach
which gives accurate estimates of the posterior marginals for all the parameters in Equation (13),
potentially also including the predictor itself.

Specifically, INLA is designed to provide inference for a flexible class of three-stage hierarchical
models, referred to as latent Gaussian models [26]. The first stage specifies that the observations (AT)
are assumed conditionally independent given a latent field and hyperparameters. The second stage
assumes that the latent field (E(AT)7,eT) given additional hyperparameters is a zero-mean Gaussian
Markov random field. This assumption implies that the precision (inverse covariance) matrix of the
latent field will be sparse. The third stage specifies a prior for each of the hyperparameters (8, o, oy, F).

The model defined by Equation (13) does not fit into the class of latent Gaussian models without
modifications. First, the LRD properties of the fGn process make the precision matrix of the latent
field dense. To ensure computational efficiency, this is circumvented by approximating the fGn as
a weighted sum of four AR(1) processes as introduced in [27]. Second, the mean of the observation
vector, E(AT) = o7G(B) (Fo + F) has a non-standard form. This requires separate specification as
described in [28], also providing implementation of the model using the freely available R package
INLA climate.

4. Results

For each ESM in the CMIP5 ensemble we modify the forcing data of Hansen et al. [16] such that its
17-year moving average becomes identical to the the moving average of adjusted forcing provided by
Forster et al. [15] for that model. This is done by adding the difference between the moving average of
the adjusted model forcing and the Hansen forcing to the raw Hansen forcing time series. The idea is to
construct forcing time series for each model that retain a common structure on time scales that resolve
volcanic forcing, the solar cycle and ENSO variability, but exhibit the overall trend on multi-decadal
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time scales of the forcing time series used in the respective models. A 17-year moving average window
is found to be the optimum choice to achieve that goal. For the model given by Equation (2) with
response function given by Equation (5) we fit parameters  and y to the global surface temperature of
the historical run of the given ESM, using the modified Hansen forcing as input. The parameters
are estimated using a technique described in Section 3. Figure 1a shows the adjusted forcing and
the modified Hansen forcing for the NorESM1-M model, and Figure 1b shows the response to the
modified Hansen forcing according to the fitted linear response model together with the global surface
temperature in the historical run of the NorESM1-M model.

T T T T

of 08 p ]
NorESM1-M 0.6¢ 1
1t 1 —— NorEMS1-M historical run
“:g 2 0.4¢ — Linear response to modified Hansen forcing ]
S 0 {4 =
s = 0.2} ]
w
< qf ] 0.0 1
7 . -0.2} ]
-2+ — Model forcing estimated by Forster et al. (2013)
— Modified Hansen forcing -0.4} g
850 1900 1950 2000 1850 1900 1950 2000

Figure 1. (a) The red curve is the adjusted forcing for the NorESM1-M model provided by
Forster et al. [15]. The black curve is the forcing data of Hansen et al. [16] modified so that its
17-year moving average equals the 17-year moving average of the red curve. (b) The black curve is the
global surface temperature in the historical run of the NorESM1-M model, and the blue curve is the
response to the modified Hansen forcing (the black curve in (a)) for the model given by Equation (5).
Parameters are estimated as 8 = 0.67 and y = 7.8 x 1073 y~L.

When parameters § and y are estimated for the historical runs of each ESM, the estimated scale
dependent sensitivity R(f) can be computed for each model using Equation (6). The factor Fyxco, is
taken individually for each model based on the Gregory estimates in [1]. A scalar metric R is obtained
by evaluating the functions R(f) at the frequency f = 107 y~!. The results are presented in Table 1.
The choice of frequency is based on how well the corresponding scalar metric correlates with the
Gregory estimates of ECS. The scale-dependent sensitivities are computed from Equation (6) under the
assumption that the response function is scaling and given by Equation (5). Hence the R(f)-curves are
power-laws and displayed as the straight, sloping lines in the double-logarithmic plot in Figure 2a.
The figure shows that over the model ensemble, R(f) typically equals the Gregory estimate of ECS for
frequencies f ~ 1072 y~1, and Figure 2b shows that the correlation (over the model ensemble) between
R(f) and the Gregory estimate of ECS has its maximum for f ~ 103 y~!. The falling correlation
for lower f suggests that the power-law assumption for R(f) fails for time scales much longer than
a millennium.

Figure 3a shows a plot of the R, i.e.,, R(f) evaluated at f = 1073 y~ 1, versus the Gregory
estimate of ECS. The points (letters) represent the different ESMs in the model ensemble, and the
contour plot shows the conditional probability density function (PDF) p(ECS|R) estimated from the
seventeen data points corresponding to the seventeen ESMs in the ensemble. The method used to
estimate p(ECS|R) is the same as prescribed by Cox et al. (2018) [9], with the obvious weakness that
itis based on the assumption that the deviation among the models from an emergent linear relationship
ECS = aR + b between ECS and R has a Gaussian distribution.
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Climate sensitivity (K)

50}

Table 1. Estimated quantities for the Earth system model (ESM) in the ensemble. The columns for
equilibrium climate sensitivity (ECS) and F,co, are obtained from Gregory plots for 4 x CO, runs
and taken from [1]. The columns denoted B, 4 and ¢ show the estimates of the parameters in the model
given by Equation (2) with response function given by Equation (5), obtained from historical runs of the
ESMs and the modified Hansen forcing for each model. The last column displays the scale-dependent
sensitivity R(f) obtained from Equation (6) using the values of F,co,, f and y that are listed in the

columns to the left, and evaluated at f = 1073y~ 1.

Model ECS(K) Fxco, Wm?) B pu(107%y) ocWm? REK*
GISS-E2-R 2.1 3.8 0.49 13.8 0.07 33
HadGEM2-ES 46 29 0.95 7.3 0.32 48
IPSL-CM5A-LR 2.6 3.1 0.79 9.6 0.16 4.0
NorESM1-M 28 3.1 0.67 7.8 0.12 2.7
Access1-0 3.8 3.0 0.68 7.3 0.10 26
Miroc-ESM 47 43 0.73 6.6 0.12 3.9
Miroc5 2.7 4.1 0.78 4.0 0.21 3.2
CanESM2 3.7 41 0.59 17.5 0.15 48
CCSM4 29 3.8 0.49 14.9 0.12 3.5
CNRM-CM5 3.3 3.6 0.60 15.0 0.12 3.9
GFDL-CM3 40 3.0 0.62 19.0 0.14 4.0
GFDL-ESM2G 24 3.1 0.72 5.8 0.15 25
CSIRO-MK3 4.1 26 0.82 8.9 0.17 34
BCC-CSM1-1M 28 32 0.53 15.8 0.09 3.2
GFDL-ESM2m 24 3.1 0.47 15.3 0.16 2.8
INM-CM4 21 3.0 0.82 1.6 0.12 1.6
MPI-ESM-LR 3.6 4.1 0.78 7.6 0.16 45
MRI-CGCM3 26 32 0.58 9.9 0.10 2.6

*In the last column R = R(f) for f =103 y~L.
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Figure 2. (a) The sloping lines are double-logarithmic plots of the scale dependent sensitivity R(f) for
each ESM in the ensemble. The different slopes correspond to different B-estimates. The horizontal
lines indicate the ECS of the ESMs obtained from the Gregory plots and reported in [1], and the black
dots indicate for which frequency f we have R(f) = ECS for each model. (b) Correlation (over the
ensemble of ESMs) between the scale-dependent sensitivity R(f) and the Gregory estimate of the ECS.
The correlation coefficient is plotted as a function of the frequency f.
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The vertical black line in Figure 3a is R = 2.9 K. This value of R is obtained from the parameters
B = 0.66 and p = 11.9 x 1073 y~!, which are estimated from the instrumental temperature record
using the Hansen-forcing. We have used Fyco, = 3.8 W/m?, which is the value for the GISS-E2-R
model given in Table 1. Hence this value for R is the one estimated for the effective forcing used in
this particular model and applied to the observed temperature time series. Similar estimates are made
for the adjusted forcing in all the other models, using the values of F,.co, for those models given
in Table 1. The black curve in the lower part of Figure 3a is a PDF P(R) for the metric R estimated
this way. The PDF is obtained by considering two sources of uncertainty in the R-estimates. One is the
spread in parameter estimates when we vary the forcing. The forcing is varied over the set of modified
Hansen forcing time series, where each modification corresponds to a historical run of an ESM in
the ensemble. The parameter estimates for the instrumental temperature record, and the resulting
value of R, for varying forcing data is shown in Table 2. Another source of uncertainty is the spread
in the parameters  and y across repeated historical runs of the same model, i.e., runs where the
known forcing is the same, but where chaotic dynamics create random components that vary among
realizations. Table 3 shows a set of parameter estimates for repeated historical runs of the CSIRO
model, which is the model in the CMIP5 ensemble that provides the largest number of runs with
identical forcing. The total variability from these two sources is obtained by a simple mixture model,
and the plotted PDF is computed by a smooth kernel method. The black, full curve in Figure 3b shows
the PDF for ECS computed from the formula

p(ECS) = / p(ECS|R)p(R)dR, (14)

where p(R) is the PDF shown in Figure 3a. The histogram in Figure 3b is the distribution of ECS in the
model ensemble, and the dotted curve is a Gaussian fit to the distribution of ECS in the model ensemble.
The figure demonstrates that when constrained by the scale-dependent sensitivity of the instrumental
temperature record, the best estimate of ECS in the model ensemble is reduced by approximately 0.2 K.
The PDF p(R) shown in Figure 3a, also shows that, with the uncertainties taken into account, models
with ECS larger than 4 K are inconsistent with the instrumental temperature record.

From Figure 3a and Equation (14) we observe that the uncertainty represented by p(ECS) in
Figure 3b is formed by a combination of the range of R-values R represented by the black curve
for p(R) in Figure 3a and the width of the conditional PDF represented by the contour lines in that
panel. The latter represents the uncertainty associated with the deviation from the emergent linear
relation between ECS and R among the models, which is the main source of uncertainty found by
Cox et al. (2018) [9]. In our approach, however, the wide range of the metric R represented by p(R)
that we have found by using the adjusted forcing of each model to estimate R is a major contribution to
the uncertainty in p(ECS).

One can explore the effect of uncertainty of adjusted forcing among models on the uncertainty of
ECS by neglecting the uncertainty associated with deviations from the emergent linear relation.
From the scatter plot in Figure 3a we can fit a linear relationship ECS = aR + b, and in Table 2 we
have a set of estimates of R for the instrumental temperature record. The linear fit maps each of
the R-estimates to an ECS-value, which can be interpreted as the best estimate of ECS based on the
corresponding forcing data. This mapping is shown in Figure 4a. The range of these best estimates of
ECS are between 2.3 and 3.4 K. Note that these are the best estimate of R for each model and that the
uncertainty of each estimate arising from uncertainty in estimates of g and y is not taken into account.
For this reason, we don’t plot PDFs, but only indicate the range of best estimates of R.
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Table 2. The parameter estimates for the instrumental temperature record, and the resulting values

of R, for varying forcing data.

Table 3. A set of parameter estimates for repeated historical runs of the CSIRO model.

Forcing B p103y) ocWm? R(K)?*
GISS-E2-R 0.61 5.8 0.12 2.4
HadGEM2-ES  0.87 5.3 0.20 3.3
IPSL-CM5A-LR  0.64 6.4 0.12 2.2
NorESM1-M 0.74 6.3 0.14 2.8
Access1-0 0.67 6.3 0.12 2.3
Miroc-ESM 0.68 7.6 0.14 3.7
Miroc5 0.68 6.6 0.12 3.3
CanESM2 0.68 5.5 0.13 3.0
CCsM4 0.62 4.5 0.13 2.1
CNRM-CM5 0.69 8.2 0.13 3.3
GFDL-CM3 0.86 5.6 0.19 3.4
GFDL-ESM2G ~ 0.75 4.4 0.14 2.3
CSIRO-MK3 0.86 6.0 0.19 3.1
BCC-CSM1-IM  0.70 3.9 0.13 2.0
GFDL-ESM2m  0.73 4.9 0.14 24
INM-CM4 0.67 5.9 0.12 2.2
MPI-ESM-LR 0.81 1.8 0.15 2.3
MRI-CGCM3 0.79 6.9 0.15 3.4

*In the last column R = R(f) for f =103 y~1.

EnsembleRun B u(107%y) o (Wm?) R(K)*
1 0.82 13.0 0.17 35
2 0.91 8.0 0.23 39
3 0.80 19.4 0.16 41
4 0.88 13.6 0.23 44
5 0.73 21.8 0.14 3.6
6 0.89 9.9 0.22 3.8
7 0.82 16.9 0.17 4.1
8 0.87 9.5 0.19 3.4
9 0.86 11.6 0.19 3.8

*In the last column R = R(f) for f =103 y~1.

The effect of uncertainty in the forcing on the estimated ECS can be explored further by varying
the various forcing components within plausible ranges of uncertainty. As an example we consider

the forcing from volcanic aerosols, which are subject to considerable controversy. In Figure 4b we
have made the same plot as in Figure 4a, but with the volcanic component of the Hansen forcing
reduced by 50 percent. The effect on the spread in the estimated ECS is considerable. Another
source of uncertainty is the choice of regression model for the emergent relation between ECS and R.

From a physical viewpoint, vanishing ECS should correspond to vanishing R, so if one sticks to a linear
model it could be reasonable to choose the model ECS = aR rather than ECS = aR + b. The result for
such a model, keeping the low volcanic forcing, is shown in Figure 4c, with a range of best estimates
for ECS between 1.8 and 3.7 K.
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Figure 3. (a) The letters (see the legend inserted in panel (b)) show the Gregory estimate of ECS
versus R(fym evaluated at f = 1072 y~! for each model in the ensemble. The contour plot shows the
conditional probability density function (PDF) p(ECS|R). The vertical black line is R = 2.9 K, which
is obtained from the parameters = 0.66 and u = 11.9 x 1073 y~! estimated from the instrumental
temperature record using the Hansen forcing. The thick, black curve is the estimated PDF of R(f).
(b) The full curve shows the PDF for ECS computed from Equation (14), where p(R) is the PDF shown

in (a). The histogram is the distribution of ECS in the model ensemble, and the dotted curve is a
Gaussian fit to the histogram.
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Figure 4. (a) The points in the scatter plot are the same as (the letters) in Figure 3a. The line
is the least-square fit of the model ECS = aR + b. The vertical lines correspond to the R-values
estimated from the instrumental temperature record for the different modified Hansen forcing time
series. The horizontal lines show how these R-values are mapped to ECS-values by the linear model.
(b) As in (a), but prior to the analysis the volcanic forcing is reduced to half of its original values.
(c) As in (b), but using a linear model ECS = aR with zero intercept to map R-values to ECS-values.

5. Discussion

The PDF for the ECS shown in Figure 3b is similar to the one presented by Cox et al. [9]. However,
there are important differences in methodology that must be pointed out. Cox et al. use a pure
dissipation-response relationship to constrain ECS in the model ensemble. They propose a metric ¢,
which plays a similar role as the metric R proposed in this work, and claim that estimates of 1 are
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independent of the forcing. This claim has been demonstrated to be false [10]. In our framework,
an approach in the spirit of Cox et al. would be to use Equation (10), and to seek estimates of the
correlation function (or equivalently the PSD) of the climate noise X () that are independent of the
forcing. Such an approach would lead to the same problems as those in [9], namely that the estimates
would be influenced by the strong anthropogenic forcing in the instrumental period. This is our
motivation for developing a method that employs forcing data in the estimation of our metric R, and as
a consequence we have to take the uncertainty in the forcing into account. We have done this by using
a fixed data set for historical forcing (the Hansen-forcing) and varied its low-frequency variability
over the ensemble of adjusted forcing time series provided by Forster et al. [15]. Clearly, this does not
represent the full uncertainty in the historical forcing, and hence the spread in the distribution of ECS
(the black, full curve in Figure 3b) is narrower than what we expect to find if we were to model the full
forcing uncertainty. We conclude that accurate estimates of the uncertainty in historical forcing is a key
factor for establishing constraints on ECS in ESM ensemb]es.

The modeling of the relationship between R and ECS is also a source of uncertainty. It is evident
from Figure 4a that the coefficient a in the linear map ECS = aR + b is less than one. In fact, its estimated
value is a = 0.6. As a consequence the mapping from R to ECS is contracting, so that the spread
in ECS-values is smaller than the spread in R-values. The same is true for the analysis presented
in Figure 3, since the conditional PDF p(ECS|R) is constructed from the fitted line ECS = aR + b.
We note that for a model without the intercept term b, and lower volcanic forcing, the estimated
coefficient is 2 = 0.91, and the range of the best estimates of ECS becomes 1.8-3.7 K. Other assumptions
about the functional relationship between R and ECS will lead to yet different ranges of best estimates.

Apart from the constraints on ECS, an important result presented in this paper is that
scale-dependent climate sensitivity provides a good proxy for ECS. Moreover, despite having infinite
ECS, scale-invariant linear response models are useful for estimating ECS from observational data.
The advantage over multi-layer energy balance models is that the scale-invariant models have few free
parameters and are less prone to statistical overfitting. The accuracy of the models is associated with
the scaling nature of climate variability, an emergent property of the complex climate system.
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Abbreviations

The following abbreviations are used in this manuscript:

ECS Equilibrium climate sensitivity
ESM Earth system model
IPCC Intergovernmental Panel on Climate Change

GMST  Global mean surface temperature

CERES  Clouds and Earth’s Radiant Energy System
CMIP5  Coupled Model Intercomparison Project Phase 5
ENSO  El Nifio Southern Oscillation

PSD Power Spectral Density

LRD Long-range dependence

fGn fractional Gaussian noise

PDF Probability density function

INLA  Integrated nested Laplace approximation
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Warming Trends and Long-Range
Dependent Climate Variability Since
Year 1900: A Bayesian Approach

Eirik Myrvoll-Nilsen, Hege-Beate Fredriksen, Sigrunn H. Serbye and Martin Rypdal*

Department of Mathematics and Statistics, UiT The Arctic University of Norway, Tromse, Norway

Temporal persistence in unforced climate variability makes detection of trends in surface
temperature difficult. Part of the challenge is methodological since standard techniques
assume a separation of time scales between trend and noise. In this work we present
a novel Bayesian approach to trend detection under the assumption of long-range
dependent natural variability, and we use estimates of historical forcing to test if the
method correctly discriminates trends from low-frequency natural variability. As an
application we analyze 2° x2° gridded data from the GISS Surface Temperature Analysis.
In the time period from 1900 to 2015 we find positive trends for 99% of the grid points.
For 84% of the grid points we are confident that the trend is positive, meaning that the
95% credibility interval for the temperature trend contained only positive values. This
number increased to 89% when we used estimates of historical forcing to specify the
noise model. For the time period from 1900 to 1985 the corresponding ratios were 42
and 52%. Our findings demonstrate that positive trends since 1900 are now detectable
locally over most of Earth’s surface.

Keywords: trend detection, climate change, long-range dependence, fractional Gaussian noise, bayesian methods

1. INTRODUCTION

Since the year 1900, the global mean surface temperature (GMST) has increased by almost 1 degree
K due to increasing concentrations of greenhouse gases in the atmosphere. While we are far from
a full understanding of the complex dynamics of Earth’s climate, the cause of the industrial-era
warming is well understood, and the question of detection of global warming is today of little
relevance. Recent detection studies for global temperature have instead focused on identifying the
onset time of the anthropogenic warming, as well as the time when the warming became statistically
detectable (Abram et al., 2016). For local and regional temperatures the situation is different. Not all
of Earth’s surface has warmed since 1900, and in some locations the warming is small compared to
the natural variability. Sutton et al. (2015) point out that the question of local detectability is highly
relevant since it provides insight into the strength of the warming signal relative to the natural
fluctuations for which ecosystems are adapted.

From a statistical point of view, temperature trends provide a unique challenge since the climate
naturally fluctuates on an extended range of time scales. A standard set-up is to assume that a
temperature anomaly time series AT(t) can be approximated by a model on the form:

AT(t) = m(t) + &(t), (1)
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where m(t) = a + bt is a linear trend, and &(t) is a
stochastic process (Bloomfield, 1992). In the zero-dimensional
global energy-balance model (EBM),

CAT = —XATdt + F(t)dt 4+ ooudB(t), (2)

the unforced temperature fluctuations &(t) are defined by the
equation Cde = —Aedt+ooudB(t), which describes an Ornstein-
Uhlenbeck (OU) process (the continuous interpretation of a
first-order auto-regressive (AR1) process) with a characteristic
correlation scale T = C/A:

t
oou

e(t) = o e =I/T4B(s).

In the equations above, C is the average heat capacity of Earth’s
surface, A is the feedback parameter, and F(t) is a forcing record.
For this model, parameter estimates in temperature time series
yield values of 7 that are much shorter than those relevant for
the warming trend. Hence, there is a separation of time scales
that makes it easy to estimate the characteristics of the noise
process without influence from the long-term trend. However,
the zero-dimensional EBM in Equation (2) does not model the
slow thermal response of the deep oceans, and the generalization
to the so-called 2-box EBM (Geoffroy et al., 2013) gives a noise
model on the form:

t
e(t) = / G(t — s)dB(s),

where the response function G(t) = cje™/™ + e/ is a
sum of two exponential functions. The generalization to N-box
models gives response functions that are sums of N exponential
functions. Models with multiple characteristic time scales are
consistent with observations. Estimated power spectral densities
(PSDs) of temperature reconstructions show approximate scale
invariance, i.e., S(f) ~ f#, for frequencies corresponding to
time scales from months to several hundred thousand years
(Rypdal and Rypdal, 2016). Analyses of the relation between
reconstructed forcing and reconstructed temperatures, as well as
experiments in Earth System Models (ESMs), show approximate
scale invariance in the climate response and in unforced climate
variability on time scales from months to several hundred years
(Rypdal and Rypdal, 2014; Rypdal et al., 2018). The implication
for trend detection is that the noise processes that represent
natural variability should be allowed to exhibit long-range
dependence (LRD). A parsimonious model with LRD is obtained
by using a power-law response function G(t) = (t/u)ﬂ/z’l.
With this choice, the noise model &(t) is a fractional Gaussian
noise (fGn). The parameter B is identical to the exponent in
the PSD and related to the so-called Hurst exponent via the
relation 8 = 2H — 1.

We write the discrete-time version of Equation (1) on the
following vector form:

V=00 o) = (m(t) + et omtn) +6t)) |, (3)

where y is the temperature time series. Using the short-hand
notation & = e&(f), the vector & = (1,...,8,)" is a

zero-mean stationary Gaussian process with covariance function
(Mandelbrot and Ness, 1968):

2
g, . . . . . .
Cov(sir &) = 75(\1 — AP i = 1P i P @)

Several previous studies have modeled climatic data using a
linear trend model m(t;) = a + bt;, i = 1,...n, and an
LRD noise term (Cohn and Lins, 2005; Koutsoyiannis and
Montanari, 2007; Franzke, 2012; Lovsletten and Rypdal, 2016).
Some of these studies conclude that trends that have been
identified as statistically significant based on AR1 noise models,
are not found to be significant when LRD noise models are
used. Ideally, the parameters in the noise model (the Hurst
exponent H and the scale parameter o) and the parameters
in the trend model (the intercept a and the slope b) should
be estimated simultaneously, but most previous studies have
used non-parametric measures of the second-order statistics
to determine the Hurst exponent. A standard approach is
to estimate a trend using a least-squares method, and to
subsequently estimate a Hurst exponent and a scale parameter
of the de-trended signal using a fluctuation function over a range
of time scales. The fluctuation function could be a wavelet-based
fluctuation function, a variogram, the de-trended fluctuation
(DFA) function, or the PSD. The significance of a positive
trend can then be tested using Monte-Carlo simulations, or by
theoretical estimates based on the specified noise model. The
disadvantage of the two-step approach is that it does not fully
take into account the dependence between the estimates of the
trend and the estimates of the noise parameters. Part of the
reason why fluctuation-based estimators of H and o are popular
is that likelihood-based methods are computationally costly for
processes with LRD. Computing the likelihood function involves
inversions of the dense covariance matrix X defined by the
elements ¥;; = Cov(e;, ;) in Equation (4).

In this paper we take advantage of recent work by Sorbye
et al. (2019) who incorporate f{Gn models within a Bayesian
hierarchical formulation using the computational framework
of latent Gaussian models. These models can be analyzed
efficiently using the methodology of integrated nested Laplace
approximation (INLA) developed in Rue et al. (2009). The
INLA methodology provides accurate estimates of the posterior
marginal distributions for all of the model parameters which
can then be used to calculate summary statistics like posterior
means, variances, credible intervals, and posterior probabilities.
Of particular interest is the posterior marginal distribution
p(b | y), which is used to calculate the probability Prob[b > 0 | y]
of a positive trend given the observed temperature anomalies y.
The Bayesian modeling approach is described further in section
2. In section 3 we discuss an alternative approach to trend
detection where data of historical forcing is used to discriminate
between forced response and natural variability. The results of
the latter is used to test and validate the methods described in
section 2. Results of analyses of gridded temperature data from
the GISS Surface Temperature Analysis are presented in section
4, and discussed in section 5.
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2. BAYESIAN INFERENCE

To analyse the regression model defined by Equation (3)
for a large number of gridded time series, computational
efficiency is crucial. The presented Bayesian approach makes
use of the computational framework of latent Gaussian models.
These models can be seen as a flexible class of three-stage
Bayesian hierarchical models where the different stages specify
the distribution of an observational vector y, a Gaussian
prior for a latent random field x and priors for random
hyperparameters @. The first stage of the model assumes that
the observations are conditionally independent given the latent
field and the hyperparameters. The resulting joint conditional
distribution of the observations is then expressed as the product
of the marginals:

ply [ %,0) =p(y1 | x1,0) -+ p(yn | X4, 0).

In our case, the observations represent the temperature time
series at some grid point and are assumed to have a Gaussian
distribution and the marginals are just univariate Gaussian
distributions. We consider each local time series independently
and thus do not include spatial correlation.

The second stage of the latent Gaussian model formulation
specifies that the conditional distribution of x given 6 is a
Gaussian random field. Based on the regression formulation in
Equation (3), the expectation of y is modeled in terms of a linear
predictor, n = E(y). The latent field x includes all the random
variables of the predictor x = (a,b,€)". By assigning Gaussian
priors to all of these variables, x will also be Gaussian and this is
what separates a latent Gaussian model from general three-stage
Bayesian hierarchical models. The conditional distribution of x
given hyperparameters is then defined by:

x|~ Np,Q Y )

where g denotes the mean vector and Q is the precision (inverse
covariance) matrix of all the random variables in x. The matrix
Q reflects conditional independence properties of the elements
in x, giving zeros for all combinations of elements x; and x; that
are independent conditioned on the other elements of x. Usually,
x is assumed to be a Gaussian Markov random field (GMRF)
implying that the precision matrix Q will be sparse.

The final stage of the model formulation specifies priors
for the hyperparameters which here include § = (H,o0,).
Assuming independent priors, the probability density function is
p(0) = p(H)p(o,) where both parameters are assigned penalized
complexity priors (Simpson et al., 2017). This is a recently
developed class of priors which introduces a framework to
compute priors for hyperparameters based on specific principles.
For scaling parameters such as o, the PC prior can be computed
to equal the exponential distribution. The PC prior for the Hurst
exponent is computed numerically as explained in Sorbye and
Rue (2018). Using Bayes theorem, the posterior joint distribution
of the latent field and the hyperparameters is expressed as:

pO.x1y) oc [ [ p(yi | %, 0)p(x | O)p(HDp(oe).  (6)

i=1

The main aim of the current analysis is to find the posterior
marginal distributions p(b | y), p(H | y) and p(oe | y).
These distributions are then used to find summary statistics
for the parameters. Especially, significance of warming trends
are assessed by the probability of b > 0 according to the
density p(b | y). More generally, posterior marginal distributions
for all components of x and the hyperparameters in § might
be of interest. Theoretically, such marginals are expressed by
integrating out all other variables in Equation (6), but this is
not a computationally feasible approach. Posterior samples from
the posterior marginals can be obtained using Markov chain
Monte Carlo approaches (Gamerman and Lopes, 2006), but
this is computationally slow as such approaches are simulation-
based. The INLA methodology (Rue et al., 2009) represents an
accurate and computationally superior alternative as it estimates
the posterior marginals without any simulations, combining
numerical approximations with numerical interpolation and
integration (see Rue et al., 2017) for a recent review. In order
for INLA to be computationally fast, the latent field x needs to
be a GMRF having a sparse precision matrix Q in Equation (5).
This is not the case when the noise term € is f{Gn having an
LRD structure, but the precision matrix of an ARl process
is tridiagonal. In Serbye et al. (2019), the fGn process is
approximated using a weighted sum of ARI processes where
the weights and the first-lag autocorrelation coefficients of the
approximation are optimized such that the covariance function
of the approximation matches the exact covariance function of
fGn defined in Equation (4). The latent field x is extended to
include the AR(1) components that make up the approximation.
This implies that full Bayesian inference is obtained for these as
well. For the time scales of interest, the approximation is very
accurate using a sum of only four AR1 processes. This speeds
up the model fitting of Equation (3) considerably, see section 4
for results.

3. USING HISTORICAL FORCING TO
SPECIFY NOISE MODELS

The alternative approach to trend detection that we present in
this paper makes use of the historical global data of radiative
forcing F(t) (an updated version of the forcing in Hansen et al.,
2011). This is done to validate the results of the approach in
section 2 which does not account for information about radiative
forcing. For the EBM in Equation (2), the forced temperature
response is:

t t
AT(W) = - / e I E(s)ds + ”%U / e =97 4B(s).
—00 —00

Expressed as in (1) we get that e(¢) is an OU model with
characteristic correlation length t and,

1 t
m(t) = — / eI/ R(5)ds
CJ-x

is a convolution of the exponential kernel e~*/7 with the
historical forcing.
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Rypdal and Rypdal (2014) proposed an LRD modification of
this model in discrete time where & in Equation (3) is an fGn
process with Hurst exponent H, variance UEZ, and mean function:

ti

m(t) =op Y (ti— )T (Fo+F(s), i=1,..,n (7)

§=—00

The parameter Fj is introduced to make sure that the forcing
records F(t;) have the correct mean as this a relative measure,
while o7 is an additional scaling parameter. Myrvoll-Nilsen et al.
(submitted) extend the methodology described in section 2 to
analyse models where the fGn process has mean defined by
Equation (7). This approach is more computationally demanding
as it introduces the additional hyperparameters oy and Fy, such
that = (H, 0., 0y, Fo). Here, Fy is assigned a vague Gaussian
prior, while the other hyperparameters are assigned penalized
complexity priors.

Figure 1 shows surface temperature anomalies from two grid
points, one located around the city of Moscow (55N, 37E), and
one location in the tropical Pacific ocean (33S, 120W). The dotted
blue lines show the estimated linear trend m(t;)) = a + bt;
using the methods described in section 2, and the solid black
curves are the estimated forced responses in Equation (7). Using
historical forcing implies that we are imposing a global warming
signal, and hence estimates of increasing functions m(t;) can
not be considered as detection of warming trends. However,
our purpose is not to obtain estimates of m(t;), but rather to
estimate the parameters in the noise term & when the forced
response is modeled more realistically than a linear function.
Hence, our second method for trend detection is to use a linear
model m(t;) = a + bt; together with a noise model &, where
the parameters o, and H are fixed and equal to the posterior
marginal mean values obtained from the model where m(t;) is
given by Equation (7).

4. RESULTS

In this section we present results for 2° x 2° gridded data from
the GISS Surface Temperature Analysis. Annual data is used
and parameter estimates are given for those time series that
have no more than 5% missing values. We have used the two
different methods described in sections 2 and 3, respectively.
Figure 2 shows maps of estimates for the trend parameter
b, and the noise parameters o, and H for the time period
1900-2015. The presented estimates are the posterior means
obtained from the estimated posterior marginal distributions.
The method described in section 2 is used to obtain the estimates
in Figures 2A,C,E, and the method described in section 3 is used
to obtain the estimates in Figures 2B,D,F. It is well-known that
the Hurst exponents are higher for sea-surface temperatures than
for land temperatures (Fraedrich and Blender, 2003; Monetti
et al,, 2003; Fredriksen and Rypdal, 2016), and this is confirmed
in this study. We also observe stronger warming trends in the
Arctic compared with the rest of Earth’s surface, consistent with
polar amplification. Of the 11,997 grid points that are analyzed,
11,883 and 11,906 had positive estimates for the trend parameter
b for the two methods, respectively.

The two methods presented do give quite similar results
for the parameters b, o,, and H, indicating that the method
described in section 2 produces reasonable estimates of the noise
parameters. However, Figure 3 shows that the root mean square
error, defined by:

RMSE — Y i— ﬁ’l(ti))z, ®)
n

where #(t;) is the posterior marginal mean of m(t;), is generally
higher when a linear trend is used. Hence, the noise processes
need to account for more variability in the models described
in section 2 than in the models described in section 3. This
effect can also be seen in Figure 4, which summarizes the main
findings of this work, but the effect is very subtle. Figures 4A,C,E
show the posterior probability of a positive linear trend given
the observed temperature time series for each grid point
using the method described in section 2, and Figures 4B,D,F
show the same numbers obtained using the method described
in section 3. Figures 4A,B show results for the years 1900-
1950, Figures 4C,D show results for the years 1900-1985, and
Figures 4E,F show results for the time period 1900-2015. Using
data up to the year 1950 we find Prob[b > 0 | y] > 0.95 for
3571 and 4,606 out of the 11,997 analyzed grid points, for the
two methods, respectively. These numbers increase to 5,140 and
6,223 is the time period extends to year 1985. And to 10,121 and
10,683 when the analysis includes all years from 1900 to 2015.
Figure 4 shows that there are large areas in the oceans where the
sea-surface temperature warming signal has become detectable
over the last 30 years.

Fitting the model in Equation (3) where the linear trend and
the parameters of the fGn model are estimated simultaneously,
required on average 2.7 s per time series. This gives a total
elapsed computation time of ~9 h for all 11,997 grid points.
Using the approach described in section 3, we first fit an fGn
process where the mean is specified by Equation (7). The average
run time to fit this model to a single time series was almost 8
s, giving a total run time of ~25.9 h. The second step of the
method in section 3 fits the linear trend combined with the
fGn noise term using fixed parameters. Fitting of this model
required on average 1.5 s for individual time series, giving a
total elapsed computation time of ~5 h for all grid points. The
main reason for the increased computation time of the approach
described in section 3 compared with the method in section 2
is the increased number of hyperparameters. Also, fitting of
the model including radiative forcing required extensions to
existing software, see Myrvoll-Nilsen et al. (submitted) for
further details.

5. DISCUSSION AND CONCLUSIONS

The main contribution of this paper is to present a
computationally efficient Bayesian method for trend-detection
under the assumption of LRD noise, and to apply the method
to detection of global warming in gridded temperature data.
By considering two different methods, where the second
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FIGURE 1 | (A) Shows surface temperature anomalies for a grid point located around the city of Moscow (55N, 37E). The dotted blue line shows the estimated linear
trend m(t) = a + bt estimated using the method described in section 2, and the solid black curve is the estimated forced responses in Equation (7). (B) As in (A), but
for a location in the tropical Pacific ocean (33S, 120W). For both panels the black vertical line show the 95% credible intervals at year 2015.
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FIGURE 2 | Shows maps of estimates for the trend parameter b, and the noise parameters o, and H for the time period 1900-2015. The presented estimates are the
posterior means obtained from the estimated posterior marginal distributions. (A) Estimates of b using the methods described in section 2. (B) Estimates of b using
the methods described in section 3. (C) Estimates of H using the methods described in section 2. (D) Estimates of H using the methods described in section 3. (E)
Estimates of o using the methods described in section 2. (F) Estimates of o, using the methods described in section 3.
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FIGURE 3 | The root mean square error (RMSE) as defined in Equation (8), measuring a standardized difference between the observed temperature signal and the
trend model. (A) The RMSE for the model defined in section 2. (B) The RSME for the model defined in section 3.
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FIGURE 4 | The posterior probability of a positive linear trend given the observed temperature time series for each grid point. (A) For the time period 1900-1950 using
the method described in section 2. (B) For the time period 1900-1950 using the method described in section 3. (C) For the time period 1900-1985 using the method
described in section 2. (D) For the time period 1900-1985 using the method described in section 3. (E) For the time period 1900-2015 using the method described in
section 2. (F) For the time period 1900-2015 using the method described in section 3.

uses historical data for global radiative forcing, we validate  produce biased estimates of o, and H, which again affect the
that the inaccuracy of a linear trend model does not affect  trend detection.

the specification of the trend model to such a degree that it The results presented in this paper imply that even by the
significantly affects the trend-detection results. Hence, we avoid ~ most conservative estimates, more than 84% of the analyzed grid
a situation where the presence of non-linear temperature trends  points show significant warming at the 0.05-level. This ratio is
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higher than the 80% ratio that Lovsletten and Rypdal (2016)
obtained after making a model selection between AR1 and fGn
for each grid point, and much higher than what they obtain for
a pure f{Gn model. Our results also show a striking difference for
the time period 1900-2015 compared to 1900-1985, and clearly
demonstrate that even locally, the warming signal has emerged
from the noise over the last 30 years.

The limitations of the approach presented here is that noise
models are restricted to the class of f{Gns. Whereas LRD models
are highly accurate on decadal time scales in GMST, local
temperatures exhibit modes of internal variability that are not
well-approximated by scale invariance. The most prominent
example being the El Nifio Souther Oscillation (ENSO). We
therefore believe that future work on trend detection in surface
temperature data should be based on more flexible models,
with more free parameters. The introduction of more flexible
models must be weighed against the risk of statistical overfitting
for the relatively short instrumental temperature record. An
alternative approach is to characterize internal variability as
the fluctuations around ensemble means in historical runs
in ESMs. Using randomization of phases one can then run
Monte-Carlo simulations without specifying parametric models.
However, since spatial patterns of internal variability vary
between models it is difficult to ensure that the unforced
fluctuations in a particular grid point is a good representation
of the unforced fluctuations of this grid point in the real
climate system.
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