
Collision-free path finding for dynamic gaming and
real time robot navigation

Roopam Bamal
Computer Science, UiT Tromsø, Tromsø, Norway

Email: roopam.bamal@uit.no

Abstract—Collision-free path finding is crucial for multi-agent
traversing environments like gaming systems. An efficient and ac-
curate technique is proposed for avoiding collisions with potential
obstacles in virtual and real time environments. Potential field is
a coherent technique but it eventuates with various problems
like static map usage and pre-calculated potential field map
of the environment. It is unsuitable for dynamically changing
or unknown environments. Agents can get stuck inside a local
minima incompetent in escaping without a workaround imple-
mentation. This paper presents efficient and accurate solutions
to find collision free path using potential field for dynamic
gaming and real time robot navigation. A surfing game in two
testing environments with a Gamecar and a physical robot
called Robocar is created with dynamic and solid obstacles.
Sensor like proximity, line and ultrasonic are used along with
the camera as different agents for path finding. The proposed
intelligent agent (IA) technique is compared with other path
planing algorithms and games in terms of time complexity, cost
metrics, decision making complexity, action repertoire, inter-
agent communication, reactivity and temporally continuous. It
traverses for 135 meters(m) in 55.8 seconds(s) covering 20 goals
and 419.3 m in 8.7 minutes while avoiding 10 local minimas
successfully. Proposed technique shows comparable results to
path finding with techniques using neural networks and A∗

algorithm. Experimental results prove the efficiency with run
time overload, time complexity and resource consumption of the
proposed technique.

Index Terms—Path finding, Potential field, Local minima,
Robocar, Gamecar.

I. INTRODUCTION

Path finding is an important problem while working with
navigation for mobile robotics. The basic agenda for path
finding algorithms is to search the most optimal path in an
efficient manner. Work in this field started in the second half
of last century but started to grow rapidly in the 80’s work
[1]. Many algorithms in the past 20 years with development
and improvement in this area. Path finding is the process of
avoiding collision into the obstacles by a moving robot. Path
finding algorithms provide this efficiency by calculating the
most optimal path to the goal so that the agent can move
along that path, avoiding obstacles if there are any, to reach
its goal destination to perform its designated actions/tasks. The
faster the path is calculated, the faster the agent can fulfill its
purpose.

Artificial intelligence (AI) is used in various types of games
in today’s technical era. A detailed survey for AI agent based
games and types is provided [2]. Adventure games involve
the players to move towards designation with solving puzzles

and clearing upcoming levels of provided story line. Strategy
games could be a mixture of fantasy, mythical, science fiction
and recreation of battle history, where player is in-charge of
military troops, weapons, game plans against the opponents.A
sub-goal graph method in eight neighbor grid map games to
find the shortest path with low memory is proposed [3]. Action
games are most popular category which extends from post-
apocalyptic Gamecar based carnage to conquering an alien
horde. Role playing games are adventurous games involving
things like dungeons or dragons. Similarly there are many
other AI games as well. The proposed game environment
transpire under adventure games.

In this paper an intelligence agent (IA) based collision
free path finding technique is proposed which is applicable
to any static, dynamic, virtual or real time robot navigation.
A multi-agent AI surfing game is designed and implemented
with Gamecar traversing through a virtual dynamic gaming
environment to visit several goals and adding game points
while avoiding various solid and dynamic obstacles in its
path within a certain time period until its final destination
is reached. The technique also has to account for the local
minima problem to get out of local minima traps. A self-
driving robotic car is constructed which can run while finding a
collision free path for real time implementation. The novelty of
the proposed technique is to use same technique with similar
agents for both real-time and virtual environments. Robocar
and a surfing game are created as examples to prove the
efficiency and accuracy of the proposed technique

The outlook of Gamecar and Robocar is shown in Figure 1

Fig. 1: Gamecar and Robocar, respectively.

This paper is structured as follows. Section II presents the
related work in potential field illustrating the major problems
with existing work. Proposed techniques are presented along
with the materials used in creating car robot in Section III.

1

Fig. 2: Dining table environment and Test scene map in Unity 3D.

Implementation of Gamecar and Robocar is presented in
section IV. Section V presents experimental results and dis-
cussions about the contributions of the paper. Finally, section
VI presents conclusions and future works.

II. RELATED WORK

Path finding can be explained in two different ways. The
first approach is where a collision free path is calculated while
the robot already have the knowledge of the environment.
The solution to such cases are evaluated by providing highly
complex scenarios. Rate of failure of such algorithms is high,
because of the changing environment models or even the
uncertainties of the robot itself. Rapidly exploring Random
Trees (RRT) Potential Field methods and Dijkstra or the A∗

algorithms fall under this category. A∗ is most commonly
used in path planning but is not good for dynamic set ups
and static map path finding techniques can also cause delays
and game freeze until the optimal path is found.Jump points
were introduced in grid maps as certain expanded nodes by [4]
for improving A∗. [5] proposed low time complexity for path
finding with A∗ technique but increased the cost metrics. [6]
also, explored the limitations of A∗ with low time complexity
using its flooding behaviour. AA∗ [7] gave collision-free path
planning algorithm with high performance working with multi-
agents. It finds the shortest path but not time efficient for all
the possible scenarios. Path finding on maps was optimized
in [8] with A∗ and IDA∗. It explores the problem of non re-
expansion of dead-ends and repair for IDA∗. [9] introduced
a goal oriented path finding algorithm using neural network
for dynamic environment. It tackled the problems with rigid
unrealistic movements. Second approach is based on sensors
i.e. reactive way of finding path. The robot does not have
the prior knowledge of environment map and deals with the
unknown situations. Decision of manoeuvre is taken in the
moment based on various factors fed to the robot by sensors.

The Velocity Obstacles approach, the Virtual Field Histogram
(VFH) [10] and its modification VFH+, the last two based
on the Potential Field (PF) method and Dynamic Window
Approach are the few examples. The proposed technique is
inspired by the combining both above stated approaches of
path finding and provides a solution to the robots with AI.

Potential field was introduced [11] as a real-time collision
avoidance module in the start, but it was later extended to
motion planning. Robotic motion is influenced by the force
field or an artificial potential field. Motion policy control law
is akin to gradient descent on the potential function. In 2D,
the gradient of a function f is defined as:

5f =

(
∂f
∂x

x̂+
∂f
∂y

ŷ

)
The largest value of the derivative and the gradient will

point in the same direction is checked i.e. the highest growth
rate of the f value. The minimum of the function is also
determined while searching the opposite direction. Similar
approach is followed by Potential field. The biggest problem
of the approach is the lack of performance guarantees with
the robot as it can become trapped in local minima [12].
Robots are generally modeled as a 2-D collection of point
agents, where the agents perform pair wise repulsive-attractive
interactions, phase transitions, emergent patterns and self-
organizing coherent patterns. Some implementations are done
by making meta agents [13], structural potential functions
and virtual leaders for object avoidance and desired pattern
formation. Such techniques can lead to the local minima
problem [14]. Approaches such as Local minima avoidance
and Local minima escape (LME) [15] are used earlier for
resolving this issue, which modifies the goal position by modi-
fying the potential field. Navigation functions, solenoidal field
and harmonic functions methods are good examples of these
approaches. But it could not be practical for partially known

2

Fig. 3: Direction vectors of Gamecar with respect to camera sensor agent and proximity sensor agent.

Fig. 4: The flowchart for the local minima work around logic that is used in the virtual system

environments and the real-time motion planning in dynamic.
The LME approach design the algorithms to escape out of the
local minima region. In the cases of several fields or multi-
level potential field method, different resolution potential maps
could be produced. The major disadvantage that still exist is
that the agent can come back again to a previously visited
local minimum configuration, which lead to the failure of the
algorithm. The Straight Line Select method was introduced as
well, by combining the straight line method and random walks,
to find a new direction for a robot. This approach is again
unsuitable for dynamic or for a real-time motion planning.
In the virtual obstacle method, a virtual obstacle is added
each time the agent faces a concave shaped obstacle, while
making a virtual polygon is made inside the concavity. This
leads to the drawback of the heuristic selection of the polygons
line lengths, failing with poor choice of polygon length and
destroying the performance.
The aim is to create an efficient architecture, design and
implementation for path finding using potential field, while
eliminating the possible drawbacks of the existing algorithms
in the dynamic virtual environment and real-time environ-
ment.The major problems that this implementation provides
solutions for are:

• Collision free path finding: The AI has to avoid obstacles
along the way to its goal destination in the environment.

• Dynamic path planning: The AI has no predefined path
calculated towards its goal. Path planning has to be done
at runtime continuously with the help of sensors.

• Local minima problem: Workaround for the local minima
problem of Potential Field technique has to be imple-

mented in order for the AI to move out of the local
minima areas.

III. PROPOSED TECHNIQUE AND MATERIALS USED

In the virtual implementation, a two-wheel Gamecar is
created using a custom-made 3D model and Unity Game
Engine’s own physics components. This Gamecar, using the
motors on its two wheels, is able to move forwards, backwards,
steer left, steer right and brake. However, the Gamecar can
only do one of the motor functions at a given time. This
is done to provide more precise control of the Gamecar.
Without those limitations the Gamecar behaved in a far more
unpredictable manner which made controlling it extremely
difficult. The Gamecar is controlled by proposed technique.
Gamecar traverses a given set of goal destinations within a
certain time limit. If it can visit all of the destinations within
the given time period, without any collisions with the obstacles
in the environment, the simulation run is considered a success.

Two distinct environments were created to run simulation
instances for the IA. The first environment is a more real life
like environment with depictions of real-life objects as the
solid and dynamic obstacles in the dining table environment
as shown in Figure 2. The second environment is filled with
more challenging and synthetic obstacles to highlight the
workarounds. Worst case scenarios are created like in the test
scene from Figure 2 by deliberately introducing direct local
minima situations like ”U” loops.

In order for the Gamecar to detect its surroundings, a virtual
proximity sensor agent was designed. This proximity sensor
agent can detect nearby objects in any horizontal direction

3

Fig. 5: a) Raspberry pi motor shield pin-structure. b) Ultrasonic sensor work-flow diagram. c) Raspberry pi outline.

from the Gamecar. This agent is able to find the distance and
the closest point from the Gamecar to all of the obstacles
within its proximity. Direction of movement of IA is calculated
after every move in similar mannner. Figure 3 displays behind
the scene forward movement decision by direction vectors of
Gamecar with IA as, camera sensor agent’s line of path is clear
without obstacles to the goal (blue ball) and the goal is in the
coverage area of proximity sensor agent. The agent contributes
to the proposed technique in finding a collision free path away
from the obstacles in proximity towards its goal destination.
This is done by the following steps:

1) Calculating a normalized direction vector from the
Gamecar’s current coordinates to the goal destination
coordinates and multiplying it with 2.

2) Determining if a detected obstacle is within a critical
distance for each obstacle that was detected at that point
in time.

3) Summing up the distances from the Gamecar to all of
the solid and dynamic obstacles within the critical range.

4) Calculating the inverse direction vectors from the critical
obstacles to the Gamecar.

5) Summing up all of the inverse direction vectors.
6) Calculating the average distance and normalizing it to

the range 0 to 1.
7) Multiplying the direction vector sum with the calculated

average distance value.
8) Adding the normalized direction vector of the goal (from

Step 1) and the final direction sum (from Step 7) to
the current coordinates of the Gamecar to determine an
arbitrary destination for the IA to follow to reach its
goal destination.

This custom path finding technique is heavily influenced
by the Potential Field [11] method. In this custom technique
the goal destination influences the arbitrary direction of the
path to point towards itself with a multiplier to make it more
influential, while the obstacles try to point the vehicle away
from themselves to provide a collision free path for the IA to
follow. This does however come with some of the problems
with Potential Field algorithm as well. The local minima
problem affects the custom path finding technique as well.

To work around this issue, a logic that follows the flowchart
that can be seen on Figure 4 was designed where, when the
IA detects a local minima, it marks that area virtually as
an obstacle which it must escape in order for it to progress
towards its goal destination. This design choice leads to an
issue where the IA, as it creates these virtual obstacles, can
cause more local minima areas to appear in the environment.
For most problem cases this issue does not cause a major loss
of functionality as the IA can still try to escape the new local
minima areas using the same method.

Phyical System Design of the model of the Robocar is
dependent on the working of its components acting as various
agents. Each agent has a specific functionality and play a
significant role.

• Motor shield: Pin structure of the Adafruit shield is as
shown in Figure 5 a). The two DC motors for the model
are connected and are controlled by the L293D chip. The
L293D is a 4-channel monolithic integrated motor driver
chip of high voltage and high current. L293D has two
pins.

• Raspberry pi: is a single board, tiny credit card sized
computer with the components shown in Figure 5 c).
In this model Raspberry Pi 3 is used that includes a
new Broadcom BCM2837 SoC with a 64-bit processor,
a 1.2GHz quad-core ARM Cortex-A53 CPU.

• Ultrasonic sensors: The transceivers, used for both send-
ing and receiving, also called transducers. The sensor
evaluates the attributes of a target by interpreting the
echoes from radio or sound waves respectively. In this
project, they are used to detect the distance of obstacle in
front of Robocar and helps in avoiding the collision.The
workflow of the sensor is as shown in Figure 5 b).

• Line sensor: DPI (Dots Per Inch) to describe the number
of little blobs of color (dots) the sensor can fit in a linear
inch is up to 4000 dpi and 3 settings of dpi for better
control. This line sensor enables the lift off distance
of less than 3mm. Maximum acceleration, maximum
tracking speed or the maximum linear velocity which the
sensor will accurately record and maximum polling varies
till 20G, 60 ips (Inches Per Second) and up to 1000Hz,

4

(a) Work-flow of the Robocar. (b) Game environment with camera perspective.

Fig. 6: Work-flow of Robocar and game arena for Gamecar

respectively.
• Camera: Camera is fully Compatible with many Rasp-

berry Pi cases with 5MP omnivision (5647 camera mod-
ule) clicking pictures of 2592 ∗ 1944 resolution, which
supports video having 1080p @ 30fps, 720p @ 60fps and
640 ∗ 480p 60/90 recording.

• Python: Most of the code is written in Python 3, a general
purpose, high level programming language.

IV. IMPLEMENTATION

Virtual System Implementation: The virtual system was
implemented in Unity Game Engine using C# as the program-
ming language. The two-wheel Gamecar is created using a
custom 3D model for the body of the car and its wheels. The
wheels main behaviour is provided by the WheelCollider com-
ponent of Unity Game Engine. The WheelColliders provide
basic wheel physics with publicly accessible functions and
variables to control torque of the wheels. On top, the Wheel
Collider component act as one of the agents and a custom C#
script was written which provides the Gamecar with ways to
control the inputs for the WheelColliders. The inputs being
go forwards and backwards, steer left and right and brake.
The IA uses this script to basically move Gamecar around
the environment. Another agent i.e. virtual proximity sensor,
was implemented by again creating a C# script which provides
obstacle detection and optimal path finding functionalities. The
obstacles in the environment are detected using agents called
Colliders provided by the Unity Game Engine. These Colliders
are used to determine the collision areas for different objects
in the environment. Whenever a new obstacle is detected in
proximity, it is added to a priority list of collisions to further
analyze during the path finding phase. When that obstacle is
no longer in proximity, it is removed from the list to avoid
unnecessary and unrealistic path finding calculations. Path
finding functionality was implemented using a public function
that returns a 3D vector to determine the arbitrary destinations
coordinates in the environment. This function takes the Game-
cars current coordinates and its goal destinations coordinates

then calculates the arbitrary path with respect to its current
obstacles in its proximity.

Finally, a C# script for the proposed technique was written.
This script has references to both agent scripts that controls
the wheels and the agent script that provides proximity ob-
stacle detection. Gamecar has control over its wheels and can
communicate with its proximity sensor at any given moment.
Gamecar has three states: Idle state, Goal state and Destination
state. In the surfing game, 100m after the last goal from the
first in first out list of the goals is called the destination state.
There could be any number of goals dispersed randomly in the
game environment, Gamecar picks the nearest goal and have
to reach all the goals before designation. Gamecar goes into
Idle state if it has finished its traversal around the environment
successfully, if it failed to traverse all goals and destination
in the environment within the given time period or if it has
nothing to do at all (default state). Gamecar goes into Goal
state if it has goals and destination that it still has to visit.
Gamecar is fed the destination coordinates before it can start
traversing the environment. During the Goal state, Gamecar
communicates with all of its agents including proximity sensor
to find the arbitrary path to its current goal destination. The
path is followed by giving commands to the wheel agents to
move and steer towards the arbitrary destinations. As Gamecar
is moving along the path, it continuously communicates with
the wheel manager agent script and its proximity sensor agent
to check its velocity and check if there are any obstacles
directly in front of it. If its current velocity is higher than
a given safety threshold and there is an obstacle directly in
front of it, the IA immediately pulls the brakes until a safer
velocity has been reached thus avoiding a head on collision.
Gamecar also checks for local minima areas during its traversal
and if it detects one, it immediately pushes the local minima
coordinates to its proximity sensor agent which can then
include that area while calculating the optimal path. In turn,
allowing the IA to get Gamecar out of local minima traps if
there are any in the current environment. The game arena of
Gamecar is shown in Figure 6 b).

5

Physical System Implementation: Robocar was assembled
using the components mentioned in Section III and the physi-
cal system scripts for all the agents including ultrasonic sensor
agent and camera sensor agent were written in Python 3
programming language. The Python scripts are executed on
the Raspberry Pi 3 which is running Raspian OS. The physical
model working and architecture of Robocar is as shown in
Figure 6 a).

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

Two separate test cases for the two systems were done
separately. For the virtual system, simulation runs for both
its environments were executed and observed. The AI was
able to successfully finish both runs without any collisions
and within the time limit. The physical system was also tested
on a smaller scale by putting an object directly in front of it to
make it move around the obstacle without any collisions. The
physical Robocar was able to finish its testing successfully as
well.

These results show that it is possible to implement a path
finding technique where there is dynamic environment. IA
game based Gamecar is tested for different maps and envi-
ronments. Following are the few advantages of the proposed
game and technique:
Maps: It can be implemented to many number of narratives,
environment and maps. Example for the maps is shown in
Figure 2.
Goal-oriented behaviour: Environments based on the pro-
posed technique will have IA working to fulfil the goals.
Fulfilling the goals and reaching the destination is the main
motive of agents.
Time distribution: Time is accountable and low according to
the distance covered. Number of goals also impact the time,
as distance is increased. Figure 7 presents the variation of
time and distance, when the number of goals covered by the
Gamecar is increased in Dining table environment of Figure 2
with dynamic 39 obstacles like cans, table legs, chair legs and
a cat. Time is directly proportional to distance and number of

Fig. 7: Observations of Gamecar without collisions in Dining
table environment with varying ”number of goals” on x-axis.

goals.
Autonomy : The agents in the Game car work on their own in
gathering the information and proceeding towards the goals.
Table I provides results for Test scene map shown in Figure 2
with dynamic 12 obstacles in yellow color and 5 goals(balls)
in blue color. Increase in the number of local minimas, directly
increase the distance and time.

TABLE I: Observations of Gamecar in Test scene from start
point to designation with 5 goals.

Distance(m) Time(s) Local Minima
139.29 84.239 0
150.879 140.765 1
176.150 162.835 1
165.218 180.028 1
190.746 198.380 2
181.986 212.868 2
197.062 224.809 2
194.399 210.570 2
214.717 246.319 3
279.089 362.383 6
419.319 522.326 10

High performance: Autonomy agent nature insures that there
is no performance sacrifice in the game engine interface and
the algorithm. Table II illustrates various popular games while
analyzing their agent characteristics.

TABLE II: Comparison and evaluation of various goal-
oriented and situatedness games for their agent characteristics.

Games [2] Meta DMC Action Inter React. Temp.
agent rep. agent cont.
sup. Comm.
sup. Vis.

Unreal None High High High High High
Tournament
Black/ Low High High Low Low High
White 2
Half Life 2 None Low High High High Low
Warcraft 3 High Low High Low Low High
Supreme High Low High Low Low High
Commander
Tomb Raider: None Low Low High Low Low
Anniversary
World of None Low Low Low Low Low
Warcraft
Gamecar High Low High Low High High
Robocar High High High Low High High

• Meta agent supervision (Meta agent sup.): When all of
the agents of the system report to one of the agents
and that agent agent has the decision making power,
that agent is called as meta agent. Most of the games
need meta agent supervision like Warcraft 3 and Supreme
Commander because each level of hierarchy of agents
have different complexity levels. Gamecar and Robocar
have high meta supervision as, proximity sensor agent
and camera sensor agent reports are need to make the
decision of the movement.

• Decision Making Complexity (DMC): Quality of deci-
sions fall under this mechanism. Some of the agents in
the game that follow deterministic finite state machines

6

TABLE III: Path finding techniques in video or robotic games stating comparable parameters.

Techniques Topology Agent Environment Typification Cost Time
type Metric Complexity

A∗ and IDA∗ Undirected, uniform-cost, Single Static Game ALTBestp, Manhattan, A∗ +ALTBestp

algorithms [8] square grid maps Agent development and ALT heuristics O(nlogn)1/7IDA∗+
with diagonal movement ALTBestpfaster

Improved A∗ Undirected, uniform-cost, Single Static Game Manhattan O(nlogn)1/2

algorithm [5] square grid maps Agent development
without diagonal movement

A∗, HPA∗ and JPS Undirected, uniform-cost, Single Static Game Manhattan JPS algorithm
algorithms [4] square grid maps Agent development O(nlogn)1/10

with diagonal movement
SUB, BlockA∗, CPD Undirected, uniform-cost, Single Static Game – SUB algorithm
-full/mbm, JPS-offline square grid maps Agent development O(nlogn)1/100

/online, PDH, with diagonal movement
PPQ and Tree [3]
A∗, FS, PBS and PRS Undirected, uniform-cost, Multi- Real-time Game Manhattan PRS algorithm
algorithms [6] square grid maps Agent development and O(nlogn)1/10

with diagonal movement Euclidean
AA∗ algorithm Visible graph Multi- Dynamic Robotics Euclidean –
[7] Agent development

Undirected, uniform-cost, Game/
Potential Field square grid maps Multi- Real time/ Robotic Euclidean O(n)2

with diagonal movement Agent Dynamic development

are never good in doing action substitutes. Proposed tech-
nique in Gamecar and Robocar follows non-deterministic
finite state machine to perform better as Black and White
2 does. DMC for Robocar is high as there are high
chances of randomly occurring dynamic damaging solid
obstacles as compared to non damaging virtual dynamic
obstacles of Gamecar.

• Action repertoire (Action rep.): It provides the agents
with variety in to-do-action options. This plays a sig-
nificant role in decision making for the agent. Action
repertoire in dynamic or real time set ups is highly
recommended.

• Inter agent Communication Visibility (Inter agent Comm.
Vis.): The level of autonomy is directly proportional to
the communication between the agents. Tomb Raider:
Anniversary have a variety in autonomy levels at hier-
archies.

• Reactivity (Rect.): Reactivity is the ability to respond
in useful reactive responses. In real time or dynamic
game systems, the situation tends to change rapidly. So, it
requires high reactive time without a simple program with
a bunch of percepted action rules or a production-rule
system. Gamecar and Robocar, both have high reactivity,
to avoid collisions.

• Temporally continuous (Temp. Cont.): Dynamic or real
time environment based agents in pursuit of its own
agenda, sense the surroundings and therefore, act on it
over time. As, all the action effect, the future sense. Robo-
car and Gamecar work on high temporally continuous
software.

Debugging: There are no pre-conditions and post-conditions
in the game. The technique can be modified to support the
debugging and development tools for the agents with the
following challenges:

• Resource management: Meta-agent starts off by gathering
local resources for the direction and movement in the pro-
posed technique. Management of the resources becomes
vital part of collision free path.

• Uncertainty in Decision making: Initially, at the start of
the game or movement by the cars, there is no awareness
of the obstacles or the map. A plausible hypotheses is
made according to the information from the agents and
actions are taken accordingly.

• Spatial and temporal reasoning: Understanding temporal
relations of reactivity and decisions is utmost important
in real or dynamic environment based games Static and
dynamic terrain. It should be clear why the decision is
made with reason.

• Real-time planning: Dynamic environment could be hos-
tile like Robocar could encounter any sort of obstacle
on its way towards the designation which can make it
collide or stop, if the abstractions is not found to allow
it to conduct forward searches its manageable abstract
space to provide the resultant solution.

Comparison with existing techniques: Table III shows vari-
ous techniques with single or multi-agents, static or dynamic/
real-time environment and specific typification from game
development and robotic development. ’–’ is used for unknown
results. Most of these techniques work as undirected behaviour
at uniform cost in square grid maps with or without diagonal
movements while AA∗ algorithm work with visible graph.
The comparison is between the algorithms being cost effective
and low time complexity. Proposed technique is cost efficient
with euclidean cost metric. Time complexity is calculated for
each N goals with M proximity objects,path away from the
obstacles is calculated, where if L is the number of local
minimas, path away from the local minimas is also calculated.
So, T (time taken) is assessed as the following:

7

T = N ∗ (M + L)

which, gives time complexity for the proposed technique as:

O(n)2

’n’ being the number of goals of the real time environment.
Another comparison is done in Table IV with [9] along time
taken by the neural network technique and the proposed
technique. Neural network technique varies a lot in time with
the number of layers, as it needs to find an appropriate number
of layers each time for each target set. The proposed technique
for the same map and static environment with static goals in 3
takes, showing different decision making each time with slight
difference in distance and time. Experimental results prove that
the proposed technique gives better results than the best layer
combination of the neural network technique.

TABLE IV: Comparison with [9] and Gamecar in test scene
with no obstacles

Algorithm Goals Time(s)
Neural network with 2 hidden layer neurons 20 230.1
Neural network with 3 hidden layer neurons 20 141.6
Neural network with 4 hidden layer neurons 20 83.5
Neural network with 5 hidden layer neurons 20 99.5
Neural network with 6 hidden layer neurons 20 101.9
Gamecar travelling 135.428m distance 20 56.5
Gamecar travelling 135.055m distance 20 55.8
Gamecar travelling 135.205m distance 20 56.9

Design: Architecture implementation and design of the pro-
posed Gamecar and Robocar are very efficient, low on resource
consumption, low-cost, flexible and better time complexity.

VI. CONCLUSION WITH FUTURE WORK

Path planning or finding is still an open area of research. In
dynamic gaming systems path finding and collision avoidance
becomes an important aspect to keep the game entertaining.
The robotic development along with the game with similar
technique is an untouched zone in existing related world. As,
physical implementation is very different from the virtual with
many foreign factors coming into play.

In this paper, a path finding technique is introduced with
multi-agents for the movement, avoiding obstacles if there are
any, to reach its goal destination to perform its designated
actions/tasks. A strong and coherent technique is applied in
a car game and a physical car robot. Proposed technique is
effective and accurate in avoiding obstacles, while avoiding the
biggest problem of local minima. Experimental results prove
that the setup is re-configurable, extensive, flexible, afford-
able, accurate and simple to use. Comparison with existing
techniques is done, showing better results than methods using
neural netwoks and A∗ algorithm. Surfing game was the test
case for the technique to prove the effectiveness and accuracy
in the performance but it can be applied anywhere as illustrated
by a minor prototype of Robocar.

Proposed IA technique can be expanded and used in the
drones to find and deliver onto particular designation. More-
over, a stronger physical car robot can be designed to move
in the snow, water and loess. This robot could be big in size
with large battery power and capable of performing various
functionalities like deploying parts and collecting data from
the observational units for the DAO project working in arctic
tundra for helping in preserving the ecosystem [16].

ACKNOWLEDGMENT

This project was carried out in UIT The Arctic University of
Norway in the project group with Yigit Candundar. A special
thanks to Øystein Tveito, who helped in engineering of the
Robocar.

REFERENCES

[1] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-
free paths among polyhedral obstacles,” Communications of the ACM,
vol. 22, no. 10, pp. 560–570, 1979.

[2] S. Yildirim and S. B. Stene, “A survey on the need and use of ai in game
agents,” in Proceedings of the 2008 Spring simulation multiconference.
Society for Computer Simulation International, 2008, pp. 124–131.

[3] T. Uras, S. Koenig, and C. Hernández, “Subgoal graphs for optimal
pathfinding in eight-neighbor grids,” in Twenty-Third International Con-
ference on Automated Planning and Scheduling, 2013.

[4] D. D. Harabor and A. Grastien, “Online graph pruning for pathfinding on
grid maps,” in Twenty-Fifth AAAI Conference on Artificial Intelligence,
2011.

[5] D. Harabor and A. Botea, “Breaking path symmetries on 4-connected
grid maps,” in Sixth Artificial Intelligence and Interactive Digital En-
tertainment Conference, 2010.

[6] S. Brand and R. Bidarra, “Multi-core scalable and efficient pathfinding
with parallel ripple search,” computer animation and virtual worlds,
vol. 23, no. 2, pp. 73–85, 2012.

[7] D. Šišlák, P. Volf, and M. Pechoucek, “Accelerated a* trajectory plan-
ning: Grid-based path planning comparison,” in 19th International Con-
ference on Automated Planning and Scheduling (ICAPS), Thessaloniki,
Greece, Sept. Citeseer, 2009, pp. 19–23.

[8] T. Cazenave, “Optimizations of data structures, heuristics and algorithms
for path-finding on maps,” in 2006 IEEE symposium on computational
intelligence and games. IEEE, 2006, pp. 27–33.

[9] R. Graham, H. McCabe, and S. Sheridan, “Neural networks for real-time
pathfinding in computer games,” The ITB Journal, vol. 5, no. 1, p. 21,
2004.

[10] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle
avoidance for mobile robots,” IEEE transactions on robotics and au-
tomation, vol. 7, no. 3, pp. 278–288, 1991.

[11] O. Khatib, “The potential field approach and operational space formu-
lation in robot control,” in Adaptive and Learning Systems. Springer,
1986, pp. 367–377.

[12] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Proceedings. 1991 IEEE
International Conference on Robotics and Automation. IEEE, 1991,
pp. 1398–1404.

[13] A. Håkansson and R. L. Hartung, “Autonomously creating a hierarchy
of intelligent agents using clustering in a multi-agent system.” in IC-AI,
2008, pp. 89–95.

[14] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” IEEE transactions on systems,
man, and cybernetics, vol. 22, no. 2, pp. 224–241, 1992.

[15] M. Peng, N. K. Gupta, and A. F. Armitage, “An investigation into the
improvement of local minima of the hopfield network,” Neural networks,
vol. 9, no. 7, pp. 1241–1253, 1996.

[16] I. Raı̈s, J. M. Bjørndalen, P. H. Ha, K.-A. Jensen, L. S. Michalik,
H. Mjøen, Ø. Tveito, and O. Anshus, “Uavs as a leverage to provide
energy and network for cyber-physical observation units on the arctic
tundra,” in 2019 15th International Conference on Distributed Comput-
ing in Sensor Systems (DCOSS). IEEE, 2019, pp. 625–632.

8

	Introduction
	Related Work
	Proposed Technique and Materials used
	Implementation
	Experimental Results and Discussions
	Conclusion with Future Work
	References

