
INF-3996
Master thesis in

Telemedicine and E-health

Preventing Information Leakage in the

Search Engine

by

Joseph Hurley

January 23, 2009

Faculty of Science
Department of Computer Science

University of Tromsø

Abstract

This thesis covers the design, implementation, and evaluation of a search engine which
can give each user a customized index based on the documents they are authorized
to view. A common solution available today for this situation is to filter the results
of a query based on the list of documents a user has access to. In this scenario, it is
possible for information to leak from the search engine because the filtering takes place
after the results are ranked. Ranking algorithms are usually based on information which
considers characteristics of the entire corpus when calculating the score a document will
receive. This type of information in the index must be cleaned before it is used to judge
the relevant documents for a user query, otherwise data leakage is possible. Cleaning
this information at query time might have a dramatic effect on query performance
which would discourage use. The work presented here takes this sensitive information
and calculates it for every user authorized to view the documents at index time. At
query time, the search engine uses a filtered global index for selecting relevant results,
but ranks the results using the information stored for the individual user’s authorized
view of the index. Different designs are compared, but the same concept is present in
all implementations. An open source index, Apache’s Lucene, was used as a starting
point for this work. All modifications were made to Lucene and then compared to an
unmodified Lucene for performance evaluations. The findings are that it is feasible
to include access control in a basic search engine without incurring dramatic loss in
performance.

iii

Acknowledgements

I would like to thank my advisors Åge Kvalnes, and Dag Johansen for their encourage-
ment, support and productive discussions. In addition, Håvard Johansen was frequently
involved as well. His interest and suggestions were quite helpful and encouraging.

The rest of the iAD group also deserve my thanks. Their support and encouragement
was invaluable.

Finally, I would like to thank my girlfriend Conny Tümmler for her support through this
time.

v

Contents

Contents vii

1 Introduction 1

1.1 Background . 1
1.2 Problem Definition . 2

1.2.1 A Brief Experiment . 2
1.3 Method and Approach . 4

2 Related Work 5

2.1 Inverted Indexing . 5
2.2 TFxIDF Ranking . 6
2.3 Other Ranking Techniques . 6
2.4 Distributed Search . 6
2.5 Desktop Search . 7
2.6 Enterprise Search . 8
2.7 Summary . 8

3 Requirements 9

3.1 System Overview . 9
3.2 Functional Requirements . 10

3.2.1 Client Application . 10
3.2.2 Search Engine . 10
3.2.3 Security Authority . 10

3.3 Non-functional Requirements . 11

4 Design and Implementation 13

4.1 The Inverted Index . 13
4.2 The Sensitive Index . 14

4.2.1 Ranking Search Results . 15
4.3 Access Control List . 16
4.4 Handling Queries . 17
4.5 Inserting Documents . 17
4.6 Two Different Implementations . 17

4.6.1 PrivaSearch1 . 17

vii

viii

4.6.2 PrivaSearch2 . 18
4.7 Separate Indexes . 18

5 Evaluation 19

5.1 Test Collections . 19
5.2 Index Characteristics . 19

5.2.1 Disjoint document distribution 20
5.2.2 Overlapping Distribution . 20
5.2.3 Hierarchical organization . 22

5.3 No Change in Search Quality . 23
5.4 Index Size . 23

5.4.1 Case 1: Disjoint distribution with worst case hierarchy 23
5.4.2 Case 2: Disjoint distribution with no hierarchy 24
5.4.3 Case 3: Overlapping distribution with few unique pieces 25
5.4.4 Case 4: Overlapping distribution with many unique pieces 25

5.5 Acceptable query performance . 25
5.6 Indexing performance . 27
5.7 Evaluation Environment . 28
5.8 Summary . 28

6 Discussion 29

6.1 Functional Requirements . 29
6.2 Non-Functional Requirements . 29

6.2.1 No Change in Search Quality . 29
6.2.2 Acceptable Query Performance 29
6.2.3 Acceptable Indexing performance 30
6.2.4 Security . 30

6.3 PrivaSearch1 vs. PrivaSearch2 . 30
6.4 Additional Uses . 30

7 Conclusion and Future Work 33

7.1 Conclusion . 33
7.2 Future Work . 34

References 35

List of Figures 37

A CD-ROM 39

Chapter 1

Introduction

1.1 Background

Search has become a ubiquitous tool in today’s world. People are comfortable inputting
2-3 terms [15] which should distinguish a document they are after. Typically, they are
given a list of ranked results, and from this list, they can access the document they are
searching. If the query was not successful enough, the list of results might help the user
to reformulate it, and try again until they find the document in question. This technique
is great for cases where the user knows or suspects a document’s existence, but is not
sure where to find it [14]. In some cases, the user may know where to find it, but
chooses the search interface as a quicker means of accessing the document. In other
cases, the user may not even know what they are searching for, but interaction with the
search engine can help lead them down the path to satisfying their needs [2].

Search became familiar to most people with the recent boom of Internet connectivity.
Internet search engines are typical entry points for many users accessing the web. But
search can be used in many other contexts. Enterprise search engines are designed
to hold a smaller set of documents, usually specialized to the nature of a particular
organization. The content is quite different from those indexed on the web [12].

There are many contexts where a search engine would be an ideal means for users to
locate documents. The enterprise falls into this category as resources are heterogeneous
and often scattered across many different servers at various locations [7]. Some of these
resources may have limited visibility to the members of their organization as defined by
an access control policy. In these cases the search engine as is cannot be used to index
all documents because some content or even a document’s existence must be hidden
from unauthorized users or the access control policy may be violated [4].

1

2

The easiest solution to use search in this situation is to add a filter to the search engine
which obeys an access control list and removes any sensitive documents from the results
returned to a user. This approach leaves much room for improvement as it is possible
to leak information from this type of index [4]. This is the starting point for the work
presented in this thesis.

There is a strong theoretical base in data security, particularly regarding the reverse
engineering of information sources to extract information which would be otherwise
hidden. [6] presents findings that hidden information can be extracted from databases
with clever queries. This and other research in this field are the theoretical inspiration
for this work.

1.2 Problem Definition

This thesis shall cover the design and evaluation of a search engine that is resistant to
data mining techniques, specifically the reverse engineering of the ranking algorithm.
This particular problem arises in the context where the indexed documents are protected
by a security model. The search index is optimized for speedy lookups and a near
instantaneous response to user queries. The proposed solution’s performance must be
evaluated to verify that it is not violating these characteristics of the search engine.

1.2.1 A Brief Experiment

To demonstrate this problem, a short experiment was conducted. There has been much
research in the recent years about search. A standard metric for measuring different
aspects of search performance was necessary. Since document-query relevance is mostly
subjective, it is difficult to say that some search techniques are better than others
at retrieving the relevant documents. To address this lack of consistency, different
researchers gathered small document collections, created a set of queries and asked
experts in the fields of the document contents to judge which documents should be
retrieved by each query. To compare search techniques between researchers, the
different collections were exchanged. Today it is possible to evaluate a search engine
using many of the so-called TREC1collections on metrics such as precision and recall.

For this experiment, 7 different TREC collections were used (ADI, CACM, CISI, CRAN,
MED, NPL and TIME). These range from 82 documents to 11429 documents. Each
collection represents a different user or group level access. All possible combinations of
the collections were combined and indexed in separate indexes. The provided queries
for each collection were then submitted to the indexes which contained the collection in

1http://trec.nist.gov/

3

question. Any documents in the result set which did not belong to this collection were
filtered out of the results. The response of each index can then be evaluated to see if the
hidden documents had an effect on the visible documents. The ranking algorithm used
is based on TFxIDF, see Chapter 2.

The aim is to determine the effect the hidden documents have on search quality, and
to verify that simply filtering these documents away is not completely hiding their
presence in the index. The trec-eval tool is used to analyze the results of the queries to
TREC collections. The tool reports on many different metrics. The metric used in this
experiment is mean average precision (MAP). This accounts for document relevance as
well as document order. In the ideal result ordering, MAP would be 1. All possible
collection combinations were used in this experiment. This resulted in 127 different
indexes. 7 of these indexes contained only a single collection. These indexes, once
evaluated, produced the baseline MAP value. The data presented in Figure 1.1 is the
difference between the baseline MAP value and the MAP values for the same collection
in each of the indexes where it is indexed. Each collection exists in 64 indexes (63
in addition to the baseline). So there are 441 data points plotted below. Each point
indicates the change in MAP from the baseline case and the percentage of the index
which is hidden.

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ch
an

ge
 in

 M
A

P

% of index that is hidden

results

Figure 1.1: Hidden Documents affecting Search Quality.

One thing is certain from this graph: hidden documents do affect the order of results.
This is indicated by a change in MAP value calculated by trec-eval. In some cases,
the MAP actually increased due to the hidden documents. This was unexpected.
However, in most cases, the effect was negative. The only conclusion that can be drawn
from this experiment is that the ordering of results can be altered by indexing extra
documents and then filtering them out of the result set. [4] presents some techniques

4

which can be used to exploit filtered search results to extract information about the
hidden documents. In addition to this conclusion it seems that the trend is that search
quality is more negatively affected when the visible documents are composing a smaller
proportion of the index. This needs to be explored further with more TREC collections
before it can be generalized, but it is nonetheless an interesting observation. One likely
explanation is that the effect is dependent on the amount of similar terms, and the query
terms, which contained in the collection documents sharing an index.

1.3 Method and Approach

The method used here is following the design paradigm [5]. A system is designed
to address a problem, or satisfy a set of requirements which are written to address a
problem. It is implemented, and then evaluated based on the design requirements. In
this case, a few different implementations are presented. This was possible because of
the use of open source software. The use of existing, well established code as a starting
point greatly reduces the implementation time, and allows for concentration on the
key concerns. The necessary modifications are applied to the existing software. The
unmodified version of the software serves as a nice benchmark to compare with to see
the cost of the modifications during the evaluation phase.

Chapter 2

Related Work

There have been some concentrated efforts to address this problem. There are certainly
many approaches. Some search basics are reviewed here first, before looking deeper to
the existing work related to this problem.

2.1 Inverted Indexing

Text-based search centers around the idea of isolating a set of documents from a larger
collection based on an input query. The query can contain a number of terms. Each term
is used by the search engine to decide which indexed documents should compose the
result set. The inverted index is the structure typically used to achieve this functionality
[18]. Very quick responses to queries over very large indexes are possible with this
structure. All the way from the smallest search appliance to Google1and other Internet
search engines, there is an inverted index playing a key role in almost any kind of search.

The inverted index is named so because it is mapping terms to information about the
documents which contain the term. Thus, unique terms can be parsed out of an input
query string and used to select all indexed documents which contain each term with
little processing time, and few lookups in the index. This allows for an efficient response
to most queries even in very large indexes.

1http://www.google.com/

5

6

2.2 TFxIDF Ranking

The inverted index, while crucial to text-based search, is not the only component.
It allows for selecting documents which are potentially relevant to the query, but it
does not provide a means for determining the order which the documents should be
presented to the user. The most relevant document should be presented first. There are
a few different approaches for ranking. One of the more traditional approaches is known
as TFxIDF [17]. TF is term frequency, and IDF is inverse document frequency. The
TF component to the function gives some importance to documents which have many
occurrences of the term in question, assuming that this is an indicator for relevance.
The IDF component gives a higher weight to documents containing a term which is very
specific to that document.

2.3 Other Ranking Techniques

In addition to TFxIDF ranking, other techniques can be used in place or in addition
to TFxIDF. A technique known as normalization attempts to diminish the affect of TF
components of ranking functions. That is to not give preference to documents which
happen to be longer, and probably contain more repeating terms simply due to their
length, rather than their relevance. Term boosting is another technique which can give
a special weight to specific terms. This is usually applied in specific search applications.

In addition to the various ways of determining a document’s rank based on the terms,
there is also the technique of determining its value based on the other resources which
link to it. PageRank [13] is the most famous of these techniques. This is mostly an
Internet specific technique.

The ranking function is applied after the relevant documents are selected out of the
inverted index. The ranking results in a specific ordering of indexed documents. This
ordering can be reverse engineered to determine characteristics about the indexed
documents. One solution is to add a boost factor to the ranking function based on
user credentials. This could effectively wash the results to avoid data leakage.

2.4 Distributed Search

Distributed search is a concept related to combining multiple indexes under a single
search interface. Results from a query would be executed on each index simultaneously
and then be aggregated before being presented to the user. The collective index consists
of many pieces or fragments. This fragmentation could be configured to reflect the

7

different users and groups of an access control scheme [10]. For each unique set of
documents, one index fragment would be required. Then a user’s access rights would
determine which set of index fragments they would actually search through. This is
a legitimate way to hide data leakage through ranking schemes because the hidden
documents would not be considered when ordering the visible documents. However,
with each index comes a certain amount of overhead. Also query performance may
decrease as the number of indexes to query increases. In an environment with many
users and groups or those that change somewhat frequently, this solution may not be
realistic.

Using a peer 2 peer (p2p) structure for searching through separate indexes based
on access control is a plausible solution to this problem. This is promising as an
architecture, but is realistic only for a manageable amount of groups. To support
a group-object access control, as well as a user-object access control would require
a separate peer for every group. This would allow users to search in the subset of
peers which represent the groups of documents they are authorized to view, but there is
still the case of users being granted access to a specific document which does not hold
true for an entire group. Perhaps the cost of setting up a separate peer to handle this
case as if it were a new group is too expensive for the gain. Perhaps handling these
cases separately from the p2p structure is too expensive at query time. In addition to
this shortcoming there is also the issue of search quality. Generating precise results
is dependent on communication between the different indexes. To reconstruct a user
specific view of the index from a given set of indexes requires that the ranking algorithm
is aware of all the index contents. This could be handled outside of the indexes or
wherever the ranking takes place, but as the index scales up, this aggregation of data
may become too visible at query time [8].

Distributed search is a promising architecture which may be valuable for introducing
access control to search. However, it is not explored further here.

2.5 Desktop Search

Desktop search is a very relevant topic when discussing access controlled search because
it is operating in an environment which should already have some form of ownership
and document visibility defined for its corpus and the users of the system. Different
techniques for respecting this access control exist in this realm. The most simple solution
is to maintain a separate index for each user of the system. This is a viable solution for
systems with few users, but it is wasteful of disk resources when it indexes the public
or shared documents in every user index. Often in this setting, disk resources are of
the highest concern. For that reason, this concept has been given some attention, but
the focus on minimizing the index size is not necessarily the most important concern in
other environments, such as enterprise search.

8

The Wumpus2desktop search engine is a good example of this case. It attempts
to support user level access control to documents on a single machine by keeping
information about the corpus in memory at all times. At query time, the information
is included in the ranking calculation only if the user has access to the document it
relates to. This allows the mechanism to scale only with the number of documents,
it does not matter how many users use the system. A problem might exist when the
index grows large enough so the document term information can no longer be held in
memory, waiting to be combined in the exact way which represents the user’s index. It
hides secrets between users. The computation time is acceptable for situations where
there are a manageable amount of documents. It will not scale to large amounts of
documents, but it will still give acceptable query performance

2.6 Enterprise Search

There have been some efforts made to solve this problem in the enterprise domain as
well. Aside from efforts from various commercial products, [1] presents an attempted
solution to the problem. The solution is to check the user’s access to each document
before presenting the results to the user. The evaluation of this solution shows that
query response time becomes unacceptable as the unfiltered result set increases. Then
it is shown that collection level security is possible for this solution. This reduces the
number of lookups to the access control list. However, it imposes a restriction on
the organization as to how they should define their access policies. It also may be
susceptible to the security issues presented in [4].

2.7 Summary

There are many different options when search is the goal. Some characteristics are
almost always the same. Users want their results now. They do not want to wait. Trying
to incorporate access control checks at query time may be realistic for some situations,
but it most certainly affects query performance.

2http://www.wumpus-search.org/

Chapter 3

Requirements

3.1 System Overview

In this thesis, the classic text retrieval search engine is modified to abide by access
control lists presenting each user with a personalized index. The search engine for text
retrieval is illustrated in Figure 3.1. Users can query the index through an interface.
The search engine maintains the index for each user based on the access control lists
presented by the security authority. When a user queries the index, the results will be
presented to the user as if the user had a completely personalized index consisting of
only those documents which they are authorized to view. The result order is the same
order they would be returned in from a personal search engine.

Figure 3.1: System Overview

A user inputs a query string to the search engine (1). This query is processed so it
can be used to select documents from the inverted index (2). After this step, a ranking

9

10

algorithm is applied to the documents selected from the index (3). The ranking function
produces a score for each document based on the query string and the information
extracted from the index. This score is used to order the results with the intention of
putting the most relevant documents first.

3.2 Functional Requirements

3.2.1 Client Application

The client application is a familiar interface for users. A textbox and a search button
allow users to issue a query to the search engine. The client application also displays
the query response to the user.

Query the index

The client application shall provide an interface which enables users to query
the index.

3.2.2 Search Engine

The search engine is the part of the system that consults the index to select documents
which are relevant to a query input. The selected documents are ranked based on a
similarity algorithm comparing the query terms to the terms contained in a document.

Respond to queries

The search engine must respond to queries, considering only the documents
the querying user is authorized to view.

3.2.3 Security Authority

The security authority maintains the access control lists for users and groups on the
corpus.

ACL version control

The security authority needs to keep track of changes to both user and group
ACLs. Whenever a change is made to an ACL, the corresponding version
trackers need to be incremented.

11

3.3 Non-functional Requirements

No change in Search Quality

Searching in this index should produce the same results in the same order
as searching in a personal index.

Acceptable query performance

Query performance should be comparable to search engines without access
control. Response time should be under one second, better if it is faster.

Acceptable Indexing performance

The process of indexing documents can slow down, but not to a point which
would render the search engine unusable.

Security

Users cannot extract information about a document’s existence or content
which is not on their ACL.

Chapter 4

Design and Implementation

Many components have to function together to meet the requirements of this system.
Each of the major components are described below. Interesting functionality of the
components are also included here.

4.1 The Inverted Index

The inverted index used in this solution is borrowed from the open source
Lucene1project from the Apache Software Foundation2. It uses an inverted structure
to locate documents which contain specific terms. The key for the index is the term
itself, and the value is information about the documents which contain the key. The
information stored as the value of this structure is used in the ranking algorithm.
Namely, this is the document ids coupled with the corresponding term frequency (TF),
or the amount of times this term occurs in this document. Also stored in this structure
is the document frequency (used to calculate IDF) for each term. This value counts the
number of documents in the corpus which contain this term. From these two pieces of
information alone, a ranking scheme can be used to determine how similar a document
in the index is to a given query. There are other factors which can yield improved
results but these two pieces of information are at the heart of TFxIDF ranking, and they
are retrieved from this piece of the index.

Lucene implements the inverted index in an efficient way. There is a term dictionary
loaded into memory when the index is opened. Each element in this structure contains
data pertaining to a particular indexed term. The document frequency is stored in
this structure, as well as pointers to the location of this term in the term position and

1http://lucene.apache.org/
2http://www.apache.org/

13

14

term frequency files, see Figure 4.1. Term frequencies and term position information is
necessary for ranking. The pointers must be followed, and disk must be read to find the
appropriate data. The term frequencies are written in sorted order based on the internal
document id. This was the inspiration for the implementation of the sensitive index.

Figure 4.1: Inverted Index

4.2 The Sensitive Index

The sensitive index is the component of the system which ensures that secrets are kept
secret. It is a replication of the parts of the inverted index which are potentially revealing
secrets. For the ranking algorithm used in this implementation, the IDF value for each
term needs to be available for scoring the documents and producing a ranking which
does not have the potential to reveal information from the hidden documents. When a
set of selected documents are ready to be ranked, the system will read the document
specific information (TF values) from the shared index described in the previous section,
and read the user specific information (IDF values) from the sensitive index.

Determining how to calculate the values stored in the sensitive index is an implementa-
tion detail. The number of instances of this value has an effect on disk size. Determining
which information should be included in each value also has implications for indexing,
maintaining the index and query time. The goal is to minimize the effect on all of these.

The sensitive index has the potential for increasing the size of the index. To minimize
this effect, the stored IDF values do not relate to specific users or groups. Rather they
relate to a unique document set from the corpus. If all document viewing rights are
mapped down onto the corpus, any documents which end up in the same group can be
stored in the same piece of the sensitive index. Each user then has their own sensitive

15

index consisting of a selection of these pieces. This imposes more processing at query
time, but that is a trade-off for minimizing this system’s index size.

Figure 4.2: Sensitive Index

The implementation of the sensitive index follows the Lucene lookup mechanism for
term frequencies and term position information. The in-memory term dictionary was
modified to include a pointer to a new file: the sensitive index, as well as information
about how many values are stored at the referenced location, see Figure 4.2. This
structure is storing sensitized document frequencies for a subset of the corpus. It stores
them in the same way as the term frequencies are stored. The component of the solution
which talks to the ACL is calculating the necessary document sets for the corpus, and
giving them an integer id. This id is written followed by the count of how many
documents from this set are containing at least one instance of this term. before the data
is flushed to disk, it is sorted to facilitate quick lookups at query time. The document
frequency loaded into memory is ignored when a sensitive search is performed, but it
was left in to support accurate global search. The superuser’s search experience will be
very similar to the unmodified version of the index as the sensitive index will never be
accessed.

4.2.1 Ranking Search Results

The ranking scheme used in this system is based around TFxIDF. This considers two
things when determining how similar a document is to a particular query. It considers
how many times the term occurs in a document (term frequency or TF) and how specific
a term is to a document (inverse document frequency or IDF). The TF value identifies
documents containing terms, and assumes that documents with the most occurrences

16

of a specific term are the most relevant for that term. It does not consider that some
documents are longer than others, and maybe the term is very common among all
documents indexed. To address these shortcomings of the TF value, IDF is used as well.
This is a count of how many indexed documents contain the term in question. This helps
the ranking algorithm to determine how specific a term is to a particular document. The
average query is two or three terms in length, so there must be some discrimination.
With this formula, a score can be given to documents which are suspected to be
relevant, and used to order them when presented to the user. There are other scoring
techniques in use here, but the IDF value is the only bit of information which is aware
of something external to the document in question. Anything which says something
pertaining only to one document, such as the TF value, does not need to be sensitized
because authorized users are authorized to have this information. Information of this
nature can be shared between all users of the system, as the hidden documents will be
filtered away. Advanced ranking techniques, such as query expansion based on global
data [16] or document boosting based on global inputs are not supported. As a rule,
anything considered in the ranking must be either pertaining only to the document in
question, or it must be sensitized to the querying user’s view of the corpus. In this
implementation only IDF is sensitized. This could of course be expanded to include
other inputs to the ranking function, allowing for more complex ranking.

4.3 Access Control List

The access control list should be an arbitrary component. It should not matter which
system is used to maintain access to documents. In this implementation, A system called
Kasai3was employed because it provides almost all of the necessary functionality, and it
has a Java4API which allowed it to be easily integrated with Lucene. Kasai is written in
Java and based on a MySQL5backend for storing user, group and object policies. Minor
modifications where made to allow for easy integration with the other components of
the system.

A cached copy of all access control lists are stored close to the index. A version control
mechanism is used to detect when a change occurs. Other techniques could have been
used, but this was added to Kasai to enable a simpler implementation of the rest of the
system. When a user is created, their version value is 0. With each update to their ACL
including when a group they belong to gains or loses access to a document, the version
number is incremented. This way it is very easy to know if something has changed
about a particular user in the ACL. It only requires that the cached copy remembers
which version they are storing for each user.

3http://kasai.manentiasoftware.com/
4http://java.sun.com/
5http://www.mysql.com/

17

The caching mechanism is not only providing fast access to the ACL for the search
engine. It is also managing what documents are to be included in which sets. The index
uses this information when building and searching in the sensitive index so it needs to
be readily available.

4.4 Handling Queries

Queries to the system need to be processed in an acceptable amount of time without
revealing the existence of any hidden documents to the users. To ensure the cached
copy of the access control list is consistent with the real one, a quick check to Kasai is
executed before each query is processed. If the user’s access rights have changed, the
change would have to be reconciled in the sensitive index before the query is processed.
In this case, the query time is affected, but no secrets are revealed. To avoid this effect,
the index could be adjusted after the ACL is updated, rather than waiting for the user
to query the system.

4.5 Inserting Documents

When a document is inserted to the index, Kasai is contacted to check the status of the
cached access control list. Then the cached version is used to populate the sensitive
index with the correct term-document information depending on which document sets
it needs to be included in at that point in time.

4.6 Two Different Implementations

Two different implementations of this design were built. They use a slightly different
approach to interpreting the ACL.

4.6.1 PrivaSearch1

This implementation follows the design explained above. The complete ACL for the
corpus is used to calculate unique document groups based on all policies stored in the
ACL. The document frequencies are then maintained for each of the resulting pieces.
A user is then authorized to view a certain set of these pieces to compose their custom
view of the corpus. This new value is substituted into the ranking function in place

18

of the global value. The result order is not based on information about any hidden
documents. Therefore, no secrets can be learned from the result set.

4.6.2 PrivaSearch2

This is very similar to privaSearch1 except the document groups are calculated
differently. In privaSearch2, each unique user view is assigned a piece of the sensitive
index. If users belong to a group and all users in this group have the same authorization,
they will all be using the same single piece of the sensitive index. Each unique view of
the index is tracked separately. So the same document could be tracked in multiple
sensitive index pieces. Most users will then only need to read one value from the
sensitive index at query time to get the correct ranking.

4.7 Separate Indexes

The requirements for this design demand that each user be given a personalized view
of the corpus based on an ACL. It is only natural then to consider providing a separate
index for each user. This was also implemented and used for comparisons with the other
implementations. It does not need any special mechanisms other than a multiplexer for
updating the correct indexes. When a user queries the index, he also needs to be routed
to the correct index. With these two features in place, an ACL aware search solution is
possible.

Chapter 5

Evaluation

Evaluation of the system was quite straightforward. Since all of the work on this solution
was completed as modifications to existing software, there is an obvious way to evaluate
the capability of the solution. In all tests a comparison is made. An unmodified version
of Lucene is the baseline for comparisons in every test. Making Lucene aware of access
rights does impact the performance of the software. The evaluation is intended to
investigate the effects of adding these modifications. The effects are discussed briefly
here, but also again in the following chapter.

5.1 Test Collections

The documents used in the evaluation are the same documents used in the experiment
described in Chapter 1. There are seven separate collections from TREC which are
indexed together in the index to be evaluated. User level ACLs are decided on differently
for the different test cases, but common to all cases is the existence of one user per
collection who is authorized to view the documents of only their collection. To simulate
different situations, alternate ACL configurations are described below for each case.

5.2 Index Characteristics

In this thesis an extra level of complexity was added to the index to handle data access
concerns. This additional feature, like the inverted index, will perform differently for
different situations. Before discussing an evaluation of the solution, some characteristics
about different possible cases need to be discussed. Then the evaluation can be

19

20

presented in the terms of these cases. This will help to justify some of the design
decisions as well as show potential weaknesses of the solution.

5.2.1 Disjoint document distribution

In this case no documents are shared amongst different user groups. This case is
illustrated in Figure 5.1. The union of the three groups is equal to the corpus, and
the intersection of any combination of the groups is the null set.

If this were the case, and it were a manageable number of groups, it might make sense
to keep a separate index for each group. However, there is always the person at the top
who might benefit from the ability to search in all indexes transparently. Whether the
access controlled solutions apply to this case or not, it is still useful to explore merely to
show the performance of an edge case, and to contrast with the other cases.

Figure 5.1: Disjoint Corpus Access Rights.

5.2.2 Overlapping Distribution

The main characteristic of the other case is when the documents appear in different
user access control lists where those lists are not identical. In Figure 5.2 the same three
groups are shown, only this time they have many overlapping regions. In this case,
G1∪G2∪G3 = C, the complete corpus. However, all of the possible intersections of the
different sets are not the null set. In this case, indexing each group in a separate index
is possibly a more appropriate solution. However, the documents which constitute any
of the intersections will be indexed more than once. Also labeled in Figure 5.2 are the
individual unique sections of the corpus which emerge after projecting all access control
policies onto the corpus. This demonstrates how the document sets are calculated for
PrivaSearch1.

21

Figure 5.2: Overlapping Corpus Access Rights.

For the PrivaSearch1 implementation, the index must store corpus-wide information
about each piece (P1 - P7) rather than each group (G1 - G3). When a particular view
of the corpus is requested (G1 - G3) the appropriate pieces are combined to present
a customized view of the corpus. For instance, for a user with access rights to G3,
the query would be processed only considering the sum of the data contain in P4, P5,
P6 and P7. In this manner, all necessary views on the index can be handled without
indexing the same documents more than once. If the number of pieces grows, this may
become problematic both with index size and with query processing time. This is highly
determined by the number of users and groups and the type of access rights they have
to the corpus. Exploring this characteristic of the access controlled corpus is the goal of
the next cases.

22

5.2.2.1 Overlapping with few unique pieces

This is the case where a small percentage of the users may require access to a set of
documents existing inside a separate existing document group. The result is very similar
to Case 1, however the intersection of user views is no longer the null set.

5.2.2.2 Overlapping with many unique pieces

There is a worst case when considering the amount of partitioning the ACL projections
create over the corpus. Case 4 represents the worst case and those configurations which
are close to the worst case. The worst case can be calculated by looking at the number
of unique user views on the corpus, n. A user view is considered unique if it contains
at least one document which is unique to this view. Any number of users can share a
unique user view. If the views are disjoint then the index can consist of n pieces. When
overlapping occurs between views, extra pieces become necessary. The greatest possible
number of unique views to the index is P(n) where

P(n) = 1 +

n∑

i=2

(i − 1)2

This is the worst case for PrivaSearch1, but it seems like a highly unlikely situation. It
should be noted that the worst case for PrivaSearch2 is n, the number of unique user
views.

5.2.3 Hierarchical organization

This is the final index characteristic explored in this chapter. Typically organizations
have some type of hierarchy in place. This hierarchy may determine what resources
a given member has access to. To consider the index organized in this structure, it
may help to view the hierarchy as a tree, where each node represents a unique user
view. There is at least one user who only has access to the documents represented by a
node. The rights of all child nodes are inherited up the tree. There can be hierarchical
organization with little to no overlap, and there can be hierarchical organization with
much overlap. When there is no overlap, the case will resemble case 1, the disjoint
distribution. That is the low level users will be searching using only a single piece of the
sensitive index, but the higher level users will search using multiple pieces. They will
be combined to compose the larger view of the corpus. With PrivaSeach2, each node of
the tree would have it’s own piece.

23

5.3 No Change in Search Quality

To verify this requirement is satisfied, a TREC evaluation is made on two indexes.
The first index is the unmodified Lucene index containing all documents of a single
collection. The second index is the access controlled version containing the same TREC
collection along with additional TREC collections. The other collections are hidden to
the evaluation by the access control mechanism. Satisfying this test means that the
TREC output will be identical for both indexes. Further inspection of the individual
results for each query was made to be certain there was no data leakage. The search
quality and results are identical to the baseline in both implementations.

5.4 Index Size

The index must scale with respect to disk size. Since PrivaSearch adds an extra
dimension to the index, the size of the index will increase. The following experiments
show how the index size is affected in the different circumstances explained earlier.

5.4.1 Case 1: Disjoint distribution with worst case hierarchy

Figure 5.3(a) shows how each solution performs in the case where there is no overlap
between groups, but there is at least one user for every possible combination of the
groups. PrivaSearch2 is not performing well in this case because it tracks every unique
user separately. The change in disk requirements between both PrivaSearch implemen-
tations is more visible in Figure 5.3(b), a zooming of Figure 5.3(a). So there are g!
document sets, where there is actually only g unique sets of documents. PrivaSearch1
is only tracking information about the unique sets. Real world scenarios would have
some hierarchy in the organization, but this is the extreme case. Nevertheless, it helps
to show a benefit of PrivaSearch1, and a weakness of PrivaSearch2. The multiplexing
solution is also not well suited for this case. Like PrivaSearch2, it treats every unique
user view of the corpus independently from the others, only it is creating a complete
separate index for each view. This implementation is very costly in terms of disk size
and not realistic for scaling in a case like this, or even one simply meant to serve many
users. Privasearch1 seems to follow the trend of the unmodified index, with the added
overhead of storing extra document frequencies for each of the unique index pieces.
While they will all scale to some extent regarding disk size, PrivaSearch1 is the best
approach for this type of environment. It is able to grow to hold more documents than
the other approaches.

24

(a) Case 1 (b) Case 1 (Zoomed)

Figure 5.3: Index Size: Case 1

5.4.2 Case 2: Disjoint distribution with no hierarchy

In 5.4 both PrivaSearch solutions are nearly equal regarding disk size. This is due to the
fact that there are the same amount of unique users as there are document groupings.
The two implementations are storing roughly the same amount of data to provide the
secured index to the users. It is also noteworthy that the effect of the multiplexing
solution is greatly reduced here. In situations where data security is of the highest
concern, and the user rights are organized in this way, in moderate amounts, this should
at least be considered as an option.

Figure 5.4: Index Size for Case 2

25

5.4.3 Case 3: Overlapping distribution with few unique pieces

The following graph shows how the different solutions perform in this case. The number
of unique document groups and unique user views of the corpus are equal in this
configuration. Whenever this is the case, both PrivaSearch solutions will have roughly
the same disk space requirements.

(a) Case 3 (b) Case 4

Figure 5.5: Index Size

5.4.4 Case 4: Overlapping distribution with many unique pieces

Here there are more unique index pieces than user views of the corpus. When this is the
configuration of the access control lists, PrivaSearch2 is appropriate if disk space is the
main concern.

There is going to be at least a little bit of hierarchy in an organization. Even if there
is a fair amount of overlap, the effects of the hierarchical organization will offset the
benefits PrivaSearch2 has with overlapping access rights. Both PrivaSearch solutions
are roughly equivalent regarding their disk requirement in a realistic case. The worst
cases were explored in this section to show exactly which characteristics would cause
the indexes to require more disk.

5.5 Acceptable query performance

In order for a search engine to be useful to its users, it must respond to queries in a
reasonable amount of time. This is usually on the order of hundreds of milliseconds

26

with modern search technology and hardware. There are many approaches to add
access control to the search engine. The approaches which may have a dramatic effect
on query performance are not acceptable. This graph shows a baseline test issued to
indexes with the same amount of documents. One of the indexes is unmodified and
the others are supporting access control. The returned results for the queries are not
identical between the unmodified version and the others. Between the ACL supporting
indexes, the query results returned in the test were identical. This compares query time
between the different implementations operating on the same cases as the previous
section’s tests.

In all of the cases, both of the PrivaSearch solutions experience an increase in query
processing time as the number of documents increase. This is a bit discouraging because
both the unmodified and multiplexing solution are constant for the index sizes tested.

In Figure 5.6(c) The average query time for PrivaSearch2 was much higher than for
PrivaSearch1. This can be attributed to the characteristics of the case.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 5.6: Query Performance

27

At some point, the query time will become unacceptable, and the PrivaSearch solutions
will have met their limit for scaling. This is determined both by the number of
documents, the number of unique users and the type of access they have to the corpus,
as shown here. Once this point is met, there are many techniques for distributing an
index [3, 10]. Especially in this case, the PrivaSearch query overhead could be reduced
dramatically by splitting the index into pieces based on the document groups stored in
the sensitive index.

5.6 Indexing performance

Indexing performance is less important than query performance, but it is still a concern.
The tests presented in Figure 5.7 shows that indexing performance degrades slightly,
but at an acceptable amount.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 5.7: Indexing Performance

28

5.7 Evaluation Environment

The experiments in this chapter were run on an HP nc8430 laptop with the following
specifications:

CPU: Intel Centrino Duo T7200, 2.00 GHz
RAM: 2 GB 533 MHz DDR2 SDRAM
HDD: 80GB 5400RPM 8MB SATA/150 2.5” 9.5mm HDD
OS: Ubuntu 8.10

experiments were repeated 5 times each and the range of values are plotted on the
graphs along with the average for each measured index.

5.8 Summary

These experiments show that the solutions explored are mostly feasible for the cases
tested. Multiplexing is only realistic for a small number of users, or in cases where the
necessary hardware is abundant, but it is clearly very wasteful. More experiments with
larger indexes and different user/group arrangements need to be explored before it can
be determined to be a scalable solution.

Chapter 6

Discussion

6.1 Functional Requirements

Both PrivaSearch implementations satisfy the functional requirements. That is that
they can operate as a normal search engine with the added awareness of which user
is actually searching.

6.2 Non-Functional Requirements

6.2.1 No Change in Search Quality

As demonstrated in Chapter 1, search quality can be affected by the existence of extra
documents in the index. Information about these hidden documents make it into the
ranking algorithm, and this can have negative, neutral or sometimes positive effect on
search quality. The existence of this effect is what can be exploited by a clever user.
Removing this effect is a defense against this type of attack.

6.2.2 Acceptable Query Performance

Of the cases evaluated, the query time remained very close to the unmodified index.
This was due to the design strategy of moving the computationally intense operation,
calculating the correct document score for a given user, mostly to the indexing phase.
This minimized the effect on the query time critical path, which is arguably the most
important

29

30

6.2.3 Acceptable Indexing performance

As discussed in the previous section, the solution is optimized for query time, not
indexing. While there may be some environments where indexing speed is the main
concern, the overhead introduced to indexing by PrivaSearch is largely transparent to
the user. The evaluation shows that even in the worst cases, the overhead is reasonable.

6.2.4 Security

The danger of leaking information through the ranking function was sealed with
PrivaSearch, but there may be other vulnerabilities which were not addressed here.
To say that it is completely secure of data leakage may be to overlook something.

6.3 PrivaSearch1 vs. PrivaSearch2

PrivaSearch2 was designed with the intention of storing the least possible amount
of information while still being able to respond to any user’s query in a secure
way. PrivaSearch2 was implemented as an afterthought. It is a relatively simple
implementation after PrivaSearch1 was complete. It seemed that PrivaSearch1 would
give much better indexing performance, at the cost of a slight drop in query performance
compared to PrivaSearch2’s approach. The evaluation doesn’t show that there is a great
benefit of PrivaSearch1, except in the worst case for PrivaSearch2.

PrivaSearch2 does track the same documents in different places in the index. This
means that updates would be more complex than with PrivaSearch1, which only has
one document set containing a given document. PrivaSearch1 is perhaps superior in
that respect. However, this is not implemented fully, and was therefore not evaluated.
Perhaps the effect is something similar to the indexing performance. In that case, the
more simplistic PrivaSearch2 is superior. But it also depends on the structure of the
organization as the different cases in the evaluation have revealed.

6.4 Additional Uses

Securing information leakage is a key benefit to PrivaSearch. However, there may
be other side effects that such an index provides. Consider how valuable enterprise
search is to a given organization. Its effects have been determined to greatly boost
productivity, among other things. With the emergence of virtual organizations and
the temporary interoganizational relationships that come with this trend [11], there

31

comes a time for cooperation between organizations. With such an index in place all of
the internal documents relevant to the cooperation could be shared through the search
interface simply by creating a temporary access policy for the partner organization. This
minimizes the overhead for setting up special arrangements for the partnership. The
idea of the search engine as a valuable shared resource is presented from a distributed
search perspective in [10].

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The user experience is arguably the most important determinant of a search engine’s
success. In this thesis, a solution was presented to defend a basic search engine
against the extraction of hidden information. With most implementations, this means
a significant drop in query performance. The design evaluated here was able to
maintain reasonable performance measures with a small index. The structures behind
PrivaSearch are designed to scale. However, every extra lookup and computation at
query time means a drop in the user experience. It is a promising design, nonetheless.

Filtering search results is not a sufficient solution for providing access control to the
search index. In order to respect document access policies, the results from a search on
the complete corpus must be adjusted so they match exactly the results of the same
search on an index containing only the visible documents. Washing the results of
a shared index after the search completes is computationally expensive and perhaps
difficult to manage. To maximize query performance while respecting document access
policies, a separate sensitive index is maintained alongside the normal, global index.
The contents of this index are used to accurately score and rank the documents selected
from the global index. This introduces extra disk reads which slightly decrease query
performance compared to the same index without these modifications. It also increases
the disk requirements of the index. These are acceptable trade-offs for an access
controlled search engine which does not reveal secrets contained in hidden documents.
The solution presented in this thesis will scale to handle more indexed documents. How
well it will scale is highly dependent on the configuration of the user access rights,

33

34

7.2 Future Work

The design chosen for this system were made so it can operate in an enterprise
environment, as opposed to desktop search, or Internet search. Some more work could
be done by looking into common enterprise access control mechanisms to see how they
could fit into the scheme presented here. This would make it a more realistic option for
deployment in such a setting.

Exploring the possibilities of applying this solution to the desktop environment might
also be worthwhile, as the evaluation showed the disk overhead to be quite reasonable
except for the worst cases. Perhaps the worst cases are less likely to occur in a desktop
environment.

The first experiment presented in this thesis exposed some potential trends. Exploring
this thread further may lead to some interesting results.

There are many different approaches to ranking search results. PageRank [13] or SALSA
[9] consider links between documents as an indicator of a particular document’s value,
for instance. It would be exciting to investigate how these schemes might fit in with the
PrivaSearch approach.

Document updates are an important capability of search engines, particularly in the
enterprise environment. This needs to be implemented and evaluated, as it is suspected
that the PrivaSearch sensitive index could allow for efficient updates to not only
documents, but user and group access rights as well. This would be great if it could
happen without re-indexing the document(s) in question, or rebuilding the index.

References

[1] BAILEY, P., HAWKING, D., AND MATSON, B. Secure search in enterprise webs:
tradeoffs in efficient implementation for document level security. In CIKM ’06:

Proceedings of the 15th ACM international conference on Information and knowledge

management (New York, NY, USA, 2006), ACM, pp. 493–502.

[2] BELKIN, N. J. Helping people find what they don’t know. Commun. ACM 43, 8
(2000), 58–61.

[3] BUTLER, M. H., AND RUTHERFORD, J. Distributed lucene : A distributed free text
index for hadoop. Tech. rep., HP Labs, 2008.

[4] BÜTTCHER, S., AND CLARKE, C. L. A. A security model for full-text file system
search in multi-user environments. In FAST’05: Proceedings of the 4th conference

on USENIX Conference on File and Storage Technologies (Berkeley, CA, USA, 2005),
USENIX Association, pp. 13–13.

[5] COMER, D. E., GRIES, D., MULDER, M. C., TUCKER, A., TURNER, A. J., AND

YOUNG, P. R. Computing as a discipline. Commun. ACM 32, 1 (1989), 9–23.

[6] DENNING, D. E., AND SCHLÖRER, J. A fast procedure for finding a tracker in a
statistical database. ACM Trans. Database Syst. 5, 1 (1980), 88–102.

[7] HAWKING, D. Challenges in enterprise search. In ADC ’04: Proceedings of the

15th Australasian database conference (Darlinghurst, Australia, Australia, 2004),
Australian Computer Society, Inc., pp. 15–24.

[8] KLAMPANOS, I. A., AND JOSE, J. M. An architecture for peer-to-peer information
retrieval. In SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR

conference on Research and development in informaion retrieval (New York, NY,
USA, 2003), ACM, pp. 401–402.

[9] LEMPEL, R., AND MORAN, S. Salsa: the stochastic approach for link-structure
analysis. ACM Trans. Inf. Syst. 19, 2 (2001), 131–160.

[10] MEIJ, E., AND RIJKE, M. D. Deploying lucene on the grid, 2006.

35

36 REFERENCES

[11] MOWSHOWITZ, A. Virtual organization. Commun. ACM 40, 9 (1997), 30–37.

[12] MUKHERJEE, R., AND MAO, J. Enterprise search: Tough stuff. Queue 2, 2 (2004),
36–46.

[13] PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number = SIDL-WP-1999-0120.

[14] ROSE, D. E., AND LEVINSON, D. Understanding user goals in web search. In WWW

’04: Proceedings of the 13th international conference on World Wide Web (New York,
NY, USA, 2004), ACM, pp. 13–19.

[15] SILVERSTEIN, C., MARAIS, H., HENZINGER, M., AND MORICZ, M. Analysis of a
very large web search engine query log. SIGIR Forum 33, 1 (1999), 6–12.

[16] XU, J., AND CROFT, W. B. Query expansion using local and global document
analysis. In SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR

conference on Research and development in information retrieval (New York, NY,
USA, 1996), ACM, pp. 4–11.

[17] YUWONO, B., AND LEE, D. L. Search and ranking algorithms for locating resources
on the world wide web. In ICDE ’96: Proceedings of the Twelfth International

Conference on Data Engineering (Washington, DC, USA, 1996), IEEE Computer
Society, pp. 164–171.

[18] ZOBEL, J., AND MOFFAT, A. Inverted files for text search engines. ACM Comput.

Surv. 38, 2 (2006), 6.

List of Figures

1.1 Hidden Documents affecting Search Quality. 3

3.1 System Overview . 9

4.1 Inverted Index . 14
4.2 Sensitive Index . 15

5.1 Disjoint Corpus Access Rights. 20
5.2 Overlapping Corpus Access Rights. 21
5.3 Index Size: Case 1 . 24
5.4 Index Size for Case 2 . 24
5.5 Index Size . 25
5.6 Query Performance . 26
5.7 Indexing Performance . 27

37

Appendix A

CD-ROM

All source code and experiment scripts can be found on the included CD-ROM. There is
also a readme file with more detailed information about the contents.

39

