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HARDY-TYPE INEQUALITIES OVER BALLS IN RN FOR SOME

BILINEAR AND ITERATED OPERATORS

PANKAJ JAIN, SAIKAT KANJILAL AND LARS-ERIK PERSSON

Abstract. Some new multidimensional Hardy-type inequalites are proved
and discussed. The cases with bilinear and iterated operators are considered

and some equivalence theorems are proved.

1. Introduction

The one-dimensional weighted Hardy inequality(∫ ∞
0

(
HF (x)

)q
W (x) dx

) 1
q

≤ C
(∫ ∞

0

F p(x)V (x) dx

) 1
p

, F ≥ 0 (1.1)

where HF (x) :=

∫ x

0

F (t) dt is the Hardy operator, is characterized for various

choices of indices p and q. A fairly complete description both of the prehistory (until
Hardy [4] proved the first result in 1925), the fascinating continued development
and current status can be found in the books [9], [11], [12], [14] and the references
therein.

In this paper, we shall continue to study a variant of Hardy-type inequalities,
which was not discussed in the books above and we do so even in a multidimensioanl
setting. First we mention that Cañestro et al. [1] considered the weighted bilinear
Hardy operator

H2(F,G)(x) := HF (x) ·HG(x) (1.2)

and characterized the corresponding inequality
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(∫ ∞
0

(
H2(F,G)(x)

)q
W (x) dx

) 1
q

≤ C
(∫ ∞

0

F p1(x)V1(x) dx

) 1
p1

×
(∫ ∞

0

Gp2(x)V2(x) dx

) 1
p2

, F, G ≥ 0

(1.3)

for various combinations of the indices p1, p2, q. Recently, a simpler proof was given
by Krepela [10] who made use of the information about one-dimensional inequality
(1.1) iteratively.

The N -dimensional analogue over balls of the operator (1.2) is given by

HN
2 (f, g)(x) := HNf(x) ·HNg(x) =

∫
B(0,|x|)

f(t) dt

∫
B(0,|x|)

g(t) dt.

Very recently in [2], the authors studied the N-dimensional version of the inequality
(1.3), i.e.,(∫

RN

[
HN

2 (f, g)(x)
]q
w(x) dx

) 1
q

≤ C
(∫

RN

fp1(x)v1(x) dx

) 1
p1

×
(∫

RN

gp2(x)v2(x) dx

) 1
p2

(1.4)

and obtained its weight characterization for several choices of indices p1, p2 and q.
The authors followed the strategy of Krepela [10] by using iteratively the informa-
tion about the inequality(∫

RN

[
HNf(x)

]q
w(x) dx

) 1
q

≤ C
(∫

RN

fp(x)v(x) dx

) 1
p

, (1.5)

which is already well known in the literature, see, e.g., [3] and [16]. In this strategy,
depending upon the relationship among the indices p1, p2 and q, different proofs
are required.

One of the main aims of the present paper is to reinvestigate (1.4) in a more direct
way. For a complete description of standard Hardy-type inequalities in this case,
see Chapter 3 of the recent book [12] and the references therein. In particular, in
Section 2, we show that the N -dimensional inequality (1.4) is equivalent to the one-
dimensional inequality (1.3) regardless of the relationship among the indices p1, p2, q
(see Theorem 2.1). Moreover, in Section 3, we then use the weight characterization
of (1.3) and obtain the corresponding characterization of (1.4). We also remark
that a similar equivalence between (1.1) and (1.5) was proved in [16].

We will point out that the equivalence of (1.3) and (1.4) also holds if the Hardy
operators H2 and Hn

2 are replaced by the corresponding Hardy-Steklov operators.
We recall that the standard one-dimensional Hardy-Steklov operator is given by

SF (x) :=

∫ b(x)

a(x)

F (t) dt,

where a and b are strictly increasing differentiable functions on [0,∞] satisfying
a(0) = b(0) = 0; a(x) < b(x) for 0 < x < ∞ and a(∞) = b(∞). The Lp − Lq
boundedness of S has been proved in [5] while the corresponding compactness was
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proved in [6]. Our corresponding main results are presented as Theorem 2.2 and
Theorem 3.2.

Moreover, in this paper, certain N -dimensional iterated Hardy type operators
are studied and one of them TN is defined as follows:

TNf(x) :=

(∫
RN\B(0,|x|)

(∫
B(0,|y|)

f(z) dz

)q
w(y) dy

) 1
q

. (1.6)

We show that the inequality(∫
RN

(
TNf(x)

)r
u(x) dx

) 1
r

≤ C
(∫

RN

fp(x) v(x) dx

) 1
p

(1.7)

can be proved for any N ∈ Z+ by just proving the corresponding one-dimensional
result for T ≡ T 1. More exactly, we prove that the inequalities (1.7) and(∫ ∞

0

(
TF (x)

)r
U(x) dx

) 1
r

≤ C
(∫ ∞

0

F p(x)V (x) dx

) 1
p

, (1.8)

where

TF (x) :=

(∫ ∞
x

(∫ y

0

F (z) dz

)q
W (y) dy

) 1
q

.

are equivalent. We remark that the inequality (1.8) has been investigated in [15].
Moreover, in Section 4, we state this equivalence result not only for the operator
TN but also for three other iterated operators (see Theorem 4.1).

In order to avoid confusion and ambiguity, let us agree on some notations. All
the functions in this paper are measurable and non-negative. The symbols F and G
are used for one-dimensional functions while f and g are used for functions defined
on RN . One-dimensional weights are denoted by the symbols W , U , V , V1 and V2

and the corresponding weights in RN are denoted by w, u, v, v1 and v2, respectively.
We do not use separate symbols for arguments of one-dimensional functions and
higher dimensional functions since it will be clear from the context, e.g., in F (x),
x ∈ (0,∞) and in f(x), x ∈ RN .

2. Equivalence theorems concerning Hardy-type inequalities for
bilinear operators

A crucial point in the proofs in this paper is to use polar coordinates, i.e., for
x ∈ RN , we write x = tτ , where t ∈ (0,∞) and τ ∈ ΣN , the surface of the unit ball
in RN .

The first main result of this section is the following:

Theorem 2.1. Let 0 < q < ∞, 1 < p1, p2 < ∞ and w, v1, v2 are weight functions
defined on RN . The inequality (1.4) holds for all f, g ≥ 0 if and only if the inequality
(1.3) holds for all F,G ≥ 0 with

W (t) :=

∫
ΣN

w(tτ) tN−1 dτ, (2.1)

Vi(t) :=

(∫
ΣN

v
1−p′i
i (tτ) tN−1 dτ

)1−pi
, i = 1, 2, t > 0, τ ∈ ΣN . (2.2)

Moreover, the constant C in (1.3) and (1.4) is the same.
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Proof. Let us first assume that the inequality (1.3) holds. For fixed f and g, we
define

F (t) :=

∫
ΣN

f(tτ) tN−1 dτ,

G(t) :=

∫
ΣN

g(tτ) tN−1 dτ.

By using Hölder’s inequality, we get that

F (t) =

(∫
ΣN

f(tτ) v
1
p1

+
1−p′1
p′1

1 (tτ) tN−1 dτ

)

≤
(∫

ΣN

fp1(tτ) v1(tτ) tN−1 dτ

) 1
p1
(∫

ΣN

v
1−p′1
1 (tτ) tN−1 dτ

) 1
p′1

=

(∫
ΣN

fp1(tτ) v1(tτ) tN−1 dτ

) 1
p1
(
V1(t)

) 1
p′1(1−p1)

=

(∫
ΣN

fp1(tτ) v1(tτ) tN−1 dτ

) 1
p1
(
V1(t)

)− 1
p1
. (2.3)

Similarly,

G(t) ≤
(∫

ΣN

gp2(tτ) v2(tτ) tN−1 dτ

) 1
p2
(
V2(t)

)− 1
p2
. (2.4)

By changing to polar coordinates x = sτ , y = s1σ, z = s2γ, s, s1, s2 > 0, τ, σ, γ ∈
ΣN and using the inequalities (1.3), (2.3) and (2.4), we obtain that(∫

RN

[
HN

2 (f, g)(x)
]q
w(x) dx

) 1
q

=

(∫
RN

(∫
B(0,|x|)

f(y) dy

)q (∫
B(0,|x|)

g(z) dz

)q
w(x) dx

) 1
q

=

{∫ ∞
0

∫
ΣN

(∫ s

0

∫
ΣN

f(s1σ) sN−1
1 dσ ds1

)q
×
(∫ s

0

∫
ΣN

g(s2γ) sN−1
2 dγ ds2

)q
w(sτ) sN−1 dτ ds

} 1
q

=

(∫ ∞
0

(∫ s

0

F (s1) ds1

)q (∫ s

0

G(s2) ds2

)q
W (s) ds

) 1
q

=

(∫ ∞
0

[
H2(F,G)(s)

]q
W (s) ds

) 1
q

≤ C
(∫ ∞

0

F p1(s)V1(s) ds

) 1
p1
(∫ ∞

0

Gp2(s)V2(s) ds

) 1
p2

≤ C
(∫ ∞

0

∫
ΣN

fp1(sτ) v1(sτ) sN−1 dτ ds

) 1
p1
(∫ ∞

0

∫
ΣN

gp2(sτ) v2(sτ) sN−1 dτ ds

) 1
p2
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= C

(∫
RN

fp1(x)v1(x) dx

) 1
p1
(∫

RN

gp2(x)v2(x) dx

) 1
p2

,

which means that (1.4) holds.
Conversely, assume that the inequality (1.4) holds. For fixed F and G, we set

f(tσ) := F (t)v
1−p′1
1 (tσ)

(
V1(t)

) 1
p1−1

,

g(tγ) := G(t)v
1−p′2
2 (tγ)

(
V2(t)

) 1
p2−1

,

where t > 0, σ, γ ∈ ΣN . This gives that

F (t) =

∫
ΣN

f(tσ) tN−1 dσ,

G(t) =

∫
ΣN

g(tγ) tN−1 dγ.

Therefore, by using the inequality (1.4), we get(∫ ∞
0

[
H2(F,G)(s)

]q
W (s) ds

) 1
q

=

(∫ ∞
0

(∫ s

0

F (s1) ds1

)q (∫ s

0

G(s2) ds2

)q
W (s) ds

) 1
q

=

{∫ ∞
0

(∫ s

0

∫
ΣN

f(s1σ) sN−1
1 dσ ds1

)q
×
(∫ s

0

∫
ΣN

g(s2γ) sN−1
2 dγ ds2

)q
W (s) ds

} 1
q

=

{∫ ∞
0

(∫ s

0

∫
ΣN

f(s1σ) sN−1
1 dσ ds1

)q
×
(∫ s

0

∫
ΣN

g(s2γ) sN−1
2 dγ ds2

)q ∫
ΣN

w(sτ) sN−1 dτ ds

} 1
q

=

(∫
RN

(∫
B(0,|x|)

f(y) dy

)q (∫
B(0,|x|)

g(z) dz

)q
w(x) dx

) 1
q

=

(∫
RN

(
HN

2 (f, g)(x)
)q
w(x) dx

) 1
q

≤ C
(∫

RN

fp1(x) v1(x) dx

) 1
p1
(∫

RN

gp2(x) v2(x) dx

) 1
p2

= C

(∫ ∞
0

∫
ΣN

fp1(sτ) v1(sτ) sN−1 dτ ds

) 1
p1

×
(∫ ∞

0

∫
ΣN

gp2(sτ) v2(sτ) sN−1 dτ ds

) 1
p2

= C

(∫ ∞
0

∫
ΣN

v1(sτ) sN−1
[
F p1(s)v

p1(1−p′1)
1 (sτ)

(
V1(s)

) p1
p1−1

]
dτ ds

) 1
p1
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×
(∫ ∞

0

∫
ΣN

v2(sτ) sN−1
[
Gp2(s)v

p2(1−p′2)
2 (sτ)

(
V2(s)

) p2
p2−1

]
dτ ds

) 1
p2

= C

(∫ ∞
0

F p1(s)

(∫
ΣN

v
1−p′1
1 (sτ) sN−1 dτ

)(
V1(s)

) p1
p1−1

ds

) 1
p1

×
(∫ ∞

0

Gp2(s)

(∫
ΣN

v
1−p′2
2 (sτ) sN−1 dτ

)(
V2(s)

) p2
p2−1

ds

) 1
p2

= C

(∫ ∞
0

F p1(s)
(
V1(s)

) 1
1−p1

(
V1(s)

) p1
p1−1

ds

) 1
p1

×
(∫ ∞

0

Gp2(s)
(
V2(s)

) 1
1−p2

(
V2(s)

) p2
p2−1

ds

) 1
p2

= C

(∫ ∞
0

F p1(s)V1(s) ds

) 1
p1
(∫ ∞

0

Gp2(s)V2(s) ds

) 1
p2

,

which means that (1.3) holds and so the proof is complete. �

Next, we consider the bilinear Hardy-Steklov operator

S2(F,G)(x) :=

∫ b1(x)

a1(x)

F (t) dt

∫ b2(x)

a2(x)

G(t) dt, (2.5)

where ai and bi are the functions as the functions a and b for the operator S defined
in Section 1. For the operator S2, the inequality

‖S2(F,G)‖Lq
W
≤ C ‖F‖Lp1

V1

‖G‖Lp2
V2

(2.6)

has been characterized for various choices of the indices p1, p2, q in [7], [8]. Here,
we consider the N-dimensional analogue over the balls of the operator (2.5) given
by

SN2 (f, g)(x) :=

∫
a1(|x|)<|y|<b1(|x|)

f(y) dy

∫
a2(|x|)<|z|<b2(|x|)

g(z) dz, x, y, z ∈ RN

and thereby consider the inequality(∫
RN

(
SN2 (f, g)(x)

)q
w(x) dx

) 1
q

≤ C
(∫

RN

fp1(x)v1(x) dx

) 1
p1

×
(∫

RN

gp2(x)v2(x) dx

) 1
p2

. (2.7)

Our equivalence result for this case reads:

Theorem 2.2. Let 0 < q < ∞, 1 < p1, p2 < ∞ and w, v1, v2 are weight functions
defined on RN . The inequality (2.7) holds for all f, g ≥ 0 if and only if the inequality
(2.6) holds for all F,G ≥ 0 with W , V1, V2 as given by (2.1) and (2.2), respectively.
Also the constant C in (2.6) and (2.7) is the same.

Proof. The proof is completely similar to that of Theorem 2.1. Hence, we leave out
the details. �
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3. Weight characterizations of some multidimensional Hardy-type
inequalities

In this section, we give the precise weight characterizations of the inequalities
(1.4) and (2.7) for a great variety of parameters q, p1 and p2. Let us recall the
following result proved in [1], [10]:

Theorem A. Let 0 < q < ∞, 1 < p1, p2 < ∞. The inequality (1.3) holds for all
F,G ≥ 0 if and only if

(i) for 1 < max(p1, p2) ≤ q <∞,

B1 := sup
0<x<∞

(∫ ∞
x

W (y) dy

) 1
q
(∫ x

0

V
1−p′1
1 (y) dy

) 1
p′1
(∫ x

0

V
1−p′2
2 (y) dy

) 1
p′2
<∞,

(ii) for 1 < p1 ≤ q < p2 <∞, 1
r2

= 1
q −

1
p2

,

B2 := sup
0<x<∞

(∫ x

0

V
1−p′1
1 (y) dy

) 1
p′1

(∫ ∞
x

(∫ ∞
y

W (z) dz

) r2
p2

×
(∫ y

0

V
1−p′2
2 (z) dz

) r2
p′2
W (y) dy

) 1
r2

<∞,

(iii) for 1 < p2 ≤ q < p1 <∞, 1
r1

= 1
q −

1
p1

,

B3 := sup
0<x<∞

(∫ x

0

V
1−p′2
2 (y) dy

) 1
p′2

(∫ ∞
x

(∫ ∞
y

W (z) dz

) r1
p1

×
(∫ y

0

V
1−p′1
1 (z) dz

) r1
p′1
W (y) dy

) 1
r1

<∞,

(iv) for 0 < q < min(p1, p2) < ∞, min(p1, p2) > 1, 1
q ≤

1
p1

+ 1
p2

and 1
ri

= 1
q −

1
pi

,
i = 1, 2,

B4 := sup
0<x<∞

(∫ x

0

V
1−p′1
1 (y) dy

) 1
p′1

(∫ ∞
x

(∫ ∞
y

W (z) dz

) r2
q

×
(∫ y

0

V
1−p′2
2 (z) dz

) r2
q′

V
1−p′2
2 (y) dy

) 1
r2

<∞,

and

B5 := sup
0<x<∞

(∫ x

0

V
1−p′2
2 (y) dy

) 1
p′2

(∫ ∞
x

(∫ ∞
y

W (z) dz

) r1
q

×
(∫ y

0

V
1−p′1
1 (z) dz

) r1
q′

V
1−p′1
1 (y) dy

) 1
r1

<∞,
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(v) for 0 < q < min(p1, p2) < ∞, min(p1, p2) > 1, 1
q >

1
p1

+ 1
p2

, 1
k = 1

q −
1
p1
− 1

p2

and 1
ri

= 1
q −

1
pi

, i = 1, 2,

B6 :=


∫ ∞

0

(∫ ∞
x

(∫ ∞
y

W (z) dz

) r2
q
(∫ y

0

V
1−p′2
2 (z) dz

) r2
q′

V
1−p′2
2 (y) dy

) k
r2

×
(∫ x

0

V
1−p′1
1 (y) dy

) k
r′2
V

1−p′1
1 (x) dx

} 1
k

<∞,

and

B7 :=


∫ ∞

0

(∫ ∞
x

(∫ ∞
y

W (z) dz

) r1
q
(∫ y

0

V
1−p′1
1 (z) dz

) r1
q′

V
1−p′1
1 (y) dy

) k
r1

×
(∫ x

0

V
1−p′2
2 (z) dz

) k
r′1
V

1−p′2
2 (x) dx

} 1
k

<∞.

Concerning the inequality (1.4), our main result reads:

Theorem 3.1. Let 0 < q < ∞, 1 < p1, p2 < ∞ and w, v1, v2 are weight functions
defined on RN , N ∈ Z+. The inequality (1.4) holds for all f, g ≥ 0 if and only if

(i) for 1 < max(p1, p2) ≤ q <∞,

BN1 := sup
0<α<∞

(∫
|x|≥α

w(x) dx

) 1
q
(∫
|x|≤α

v
1−p′1
1 (x) dx

) 1
p′1
(∫
|x|≤α

v
1−p′2
2 (x) dx

) 1
p′2

<∞,

(ii) for 1 < p1 ≤ q < p2 <∞, 1
r2

= 1
q −

1
p2

,

BN2 := sup
0<α<∞

(∫
|x|≤α

v
1−p′1
1 (x) dx

) 1
p′1

∫
|y|≥α

(∫
|x|≥|y|

w(x) dx

) r2
p2

×

(∫
|x|≤|y|

v
1−p′2
2 (x) dx

) r2
p′2

w(y) dy


1
r2

<∞,

(iii) for 1 < p2 ≤ q < p1 <∞, 1
r1

= 1
q −

1
p1

,

BN3 := sup
0<α<∞

(∫
|x|≤α

v
1−p′2
2 (x) dx

) 1
p′2

∫
|y|≥α

(∫
|x|≥|y|

w(x) dx

) r1
p1

×

(∫
|x|≤|y|

v
1−p′1
1 (x) dx

) r1
p′1

w(y) dy


1
r1

<∞,

(iv) for 0 < q < min(p1, p2) < ∞, min(p1, p2) > 1, 1
q ≤

1
p1

+ 1
p2

and 1
ri

= 1
q −

1
pi

,
i = 1, 2,

BN4 := sup
0<α<∞

(∫
|x|≤α

v
1−p′1
1 (x) dx

) 1
p′1

∫
|y|≥α

(∫
|x|≥|y|

w(x) dx

) r2
q
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×

(∫
|x|≤|y|

v
1−p′2
2 (x) dx

) r2
q′

v
1−p′2
2 (y) dy


1
r2

<∞,

and

BN5 := sup
0<α<∞

(∫
|x|≤α

v
1−p′2
2 (x) dx

) 1
p′2

∫
|y|≥α

(∫
|x|≥|y|

w(x) dx

) r1
q

×

(∫
|x|≤|y|

v
1−p′1
1 (x) dx

) r1
q′

v
1−p′1
1 (y) dy


1
r1

<∞.

(v) for 0 < q < min(p1, p2) < ∞, min(p1, p2) > 1, 1
q >

1
p1

+ 1
p2

, 1
k = 1

q −
1
p1
− 1

p2

and 1
ri

= 1
q −

1
pi

, i = 1, 2,

BN6 :=

∫
RN

∫
|y|≥|x|

(∫
|z|≥|y|

w(z) dz

) r2
q
(∫
|z|≤|y|

v
1−p′2
2 (z) dz

) r2
q′

v
1−p′2
2 (y) dy


k
r2

×

(∫
|z|≤|x|

v
1−p′1
1 (z) dz

) k
r′2

v
1−p′1
1 (x) dx


1
k

<∞,

and

BN7 :=

∫
RN

∫
|y|≥|x|

(∫
|z|≥|y|

w(z) dz

) r1
q
(∫
|z|≤|y|

v
1−p′1
1 (z) dz

) r1
q′

v
1−p′1
1 (y) dy


k
r1

×

(∫
|z|≤|x|

v
1−p′2
2 (z) dz

) k
r′1

v
1−p′2
2 (x) dx


1
k

<∞.

Proof. In view of our equivalence Theorem 2.1, it is sufficient to show that the
conditions BNi are equivalent to the conditions Bi of Theorem A, i = 1, 2, · · · , 7.
We prove only the equivalence of BN1 and B1 since the proofs of all other cases are
completely similar. By using polar coordinates x = sτ , s > 0, τ ∈ ΣN and using
(2.1) and (2.2), we have that

BN1 = sup
0<α<∞

(∫
|x|≥α

w(x) dx

) 1
q
(∫
|x|≤α

v
1−p′1
1 (x) dx

) 1
p′1
(∫
|x|≤α

v
1−p′2
2 (x) dx

) 1
p′2

= sup
0<α<∞

(∫ ∞
α

∫
ΣN

w(sτ) sN−1 dτ ds

) 1
q
(∫ α

0

∫
ΣN

v
1−p′1
1 (sτ) sN−1dτ ds

) 1
p′1

×
(∫ α

0

∫
ΣN

v
1−p′2
2 (sτ) sN−1dτ ds

) 1
p′2

= sup
0<α<∞

(∫ ∞
α

W (s) ds

) 1
q
(∫ α

0

V
1

1−p1
1 (s) ds

) 1
p′1
(∫ α

0

V
1

1−p2
2 (s) ds

) 1
p′2
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= sup
0<α<∞

(∫ ∞
α

W (s) ds

) 1
q
(∫ α

0

V
1−p′1
1 (s) ds

) 1
p′1
(∫ α

0

V
1−p′2
2 (s) ds

) 1
p′2

= B1

and the assertion follows. �

Let us choose a function σi such that ai(x) < σi(x) < bi(x) and∫ σi(x)

ai(x)

v
p′i
i =

∫ bi(x)

σi(x)

v
p′i
i , x > 0.

Moreover, let a−1
i , b−1

i , σ−1
i be the inverse functions of ai, bi, σi, respectively.

Denote

∆i(t) := (ai(t), bi(t)),

∆−1
i (t) := (a−1

i (t), b−1
i (t)),

δi(t) := (b−1
i (σi(t)), a

−1
i (σi(t))),

δ−1
i (t) := (a

(
iσ
−1
i (t)), bi(σ

−1
i (t))), i = 1, 2.

On the similar lines as in the proof of Theorem 3.1, using the information for the
bilinear Hardy-Steklov inequality in [7], [8] and applying Theorem 2.2, the following
equivalence theorem can be proved:

Theorem 3.2. Let 0 < q < ∞, 1 < p1, p2 < ∞ and w, v1, v2 are weight functions
defined on RN , N ∈ Z+. The inequality (2.7) holds for all f, g ≥ 0 if and only if

(i) for 1 < max(p1, p2) ≤ q <∞,

BSN1 := sup
t,s>0

(∫
δ1(|t|)∩δ2(|s|)

wq

) 1
q
(∫

∆1(|t|)
v

1−p′1
1

) 1
p′1
(∫

∆2(|s|)
v

1−p′2
2

) 1
p′2

<∞,

(ii) for 1 < p1 ≤ q < p2 <∞, 1
r2

= 1
q −

1
p2

,

BSN2 := sup
t>0

(∫
∆1(|t|)

v
1−p′1
1

) 1
p′1

∫
δ1(|t|)

(∫
δ1(|t|)∩δ2(|s|)

wq

) r2
p2

×

(∫
∆2(|s|)

v
1−p′2
2 (x) dx

) r2
p′2

wq(s) ds


1
r2

<∞,

(iii) for 1 < p2 ≤ q < p1 <∞, 1
r1

= 1
q −

1
p1

,

BSN3 := sup
s>0

(∫
∆1(|s|)

v
1−p′2
2

) 1
p′2

∫
δ2(|s|)

(∫
δ1(|t|)∩δ2(|s|)

wq

) r1
p1

×

(∫
∆1(|t|)

v
1−p′1
1 (x) dx

) r1
p′1

wq(t) dt


1
r1

<∞.
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Remark. In Theorem 3.2, the remaining cases, namely 0 < q < min(p1, p2) <∞,
min(p1, p2) > 1, 1

q ≤
1
p1

+ 1
p2

and 0 < q < min(p1, p2) < ∞, min(p1, p2) > 1,
1
q >

1
p1

+ 1
p2

can also be handled as the other cases but since it requires introducing

additional and cumbersome notations, we therefore leave out the formulation of
these cases.

4. An equivalence theorem for iterated Hardy-type operators

Here we consider the N -dimensional iterated Hardy type operators TN1 , TN2 , TN3
and TN4 defined by

TN1 f(x) :=

(∫
RN\B(0,|x|)

(∫
B(0,|y|)

f(z) dz

)q
w(y) dy

) 1
q

,

TN2 f(x) :=

(∫
B(0,|x|)

(∫
RN\B(0,|y|)

f(z) dz

)q
w(y) dy

) 1
q

,

TN3 f(x) :=

(∫
RN\B(0,|x|)

(∫
RN\B(0,|y|)

f(z) dz

)q
w(y) dy

) 1
q

,

TN4 f(x) :=

(∫
B(0,|x|)

(∫
B(0,|y|)

f(z) dz

)q
w(y) dy

) 1
q

which are the N -dimensional analogues of the corresponding one-dimensional op-
erators T1, T2, T3 and T4 defined, respectively, by

T1F (x) :=

(∫ ∞
x

(∫ y

0

F (z) dz

)q
W (y) dy

) 1
q

,

T2F (x) :=

(∫ x

0

(∫ ∞
y

F (z) dz

)q
W (y) dy

) 1
q

,

T3F (x) :=

(∫ ∞
x

(∫ ∞
y

F (z) dz

)q
W (y) dy

) 1
q

,

T4F (x) :=

(∫ x

0

(∫ y

0

F (z) dz

)q
W (y) dy

) 1
q

.

Our main result in this section reads:

Theorem 4.1. Let 0 < r <∞, 1 < p <∞ and u, v be weight functions defined on
RN . The Hardy-type inequality(∫

RN

(
(TN1 f)(x)

)r
u(x) dx

) 1
r

≤ C
(∫

RN

fp(x) v(x) dx

) 1
p

(4.1)

holds for all f ≥ 0 if and only if the inequality(∫ ∞
0

(
(T1F )(s)

)r
U(s) ds

) 1
r

≤ C
(∫ ∞

0

F p(s)V (s) ds

) 1
p

(4.2)
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holds for F ≥ 0 with W given by (2.1) and U , V given by

U(t) :=

∫
ΣN

u(tτ) tN−1 dτ, (4.3)

V (t) :=

(∫
ΣN

v1−p′(tτ) tN−1 dτ

)1−p

, t > 0, τ ∈ ΣN . (4.4)

Proof. Let us first assume that the inequality (4.2) holds. Let us fix f and choose

F (t) :=

∫
ΣN

f(tτ) tN−1 dτ.

By using Hölder’s inequality, we find that

F (t) ≤
(∫

ΣN

fp(tτ) v(tτ) tN−1 dτ

) 1
p
(∫

ΣN

v1−p′(tτ) tN−1 dτ

) 1
p′

=

(∫
ΣN

fp(tτ) v(tτ) tN−1 dτ

) 1
p (

V (t)
)− 1

p

(4.5)

Changing to polar coordinates x = sτ , y = s1σ, z = s2γ , s, s1, s2 > 0, τ, σ, γ ∈ ΣN
and using the inequalities (4.2) and (4.5), we get(∫

RN

(
(TN1 f)(x)

)r
u(x) dx

) 1
r

=

∫
RN

(∫
RN\B(0,|x|)

(∫
B(0,|y|)

f(z) dz

)q
w(y) dy

) r
q

u(x) dx

 1
r

=

{∫ ∞
0

∫
ΣN

(∫ ∞
s

∫
ΣN

(∫ s1

0

∫
ΣN

f(s2γ) sN−1
2 dγ ds2

)q
w(s1σ) sN−1

1 dσ ds1

) r
q

× u(sτ) sN−1 dτ ds

} 1
r

=

(∫ ∞
0

(∫ ∞
s

(∫ s1

0

F (s2) ds2

)q
W (s1) ds1

) r
q

U(s) ds

) 1
r

=

(∫ ∞
0

(
(T1F )(s)

)r
U(s) ds

) 1
r

≤ C
(∫ ∞

0

F p(s)V (s) ds

) 1
p

≤ C
(∫ ∞

0

∫
ΣN

fp(sτ) v(sτ) sN−1 dτ ds

) 1
p

= C

(∫
Rn

fp(x) v(x) dx

) 1
p

which means that (4.1) holds.
Conversely, assume that the inequality (4.1) holds. Let us fix F and choose

f(tγ) := F (t)v1−p′(tγ)
(
V (t)

) 1
p−1

,
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where t > 0, γ ∈ ΣN . That gives that

F (t) =

∫
ΣN

f(tγ) tN−1 dγ. (4.6)

Now, by using (4.6) and the inequality (4.1), we obtain that(∫ ∞
0

(
(T1F )(s)

)r
U(s) ds

) 1
r

=

(∫ ∞
0

(∫ ∞
s

(∫ s1

0

F (s2) ds2

)q
W (s1) ds1

) r
q

U(s) ds

) 1
r

=

{∫ ∞
0

(∫ ∞
s

(∫ s1

0

∫
ΣN

f(s2γ) sN−1
2 dγ ds2

)q ∫
ΣN

w(s1σ) sN−1
1 dσ ds1

) r
q

×
∫

ΣN

u(sτ) sN−1 dτ ds

} 1
r

=

∫
RN

(∫
RN\B(0,|x|)

(∫
B(0,|y|)

f(z) dz

)q
w(y) dy

) r
q

u(x) dx

 1
r

=

(∫
RN

(
(TN1 f)(x)

)r
u(x) dx

) 1
r

≤ C
(∫

RN

fp(x) v(x) dx

) 1
p

= C

(∫ ∞
0

∫
ΣN

fp(sτ) v(sτ) sN−1 dτ ds

) 1
p

= C

(∫ ∞
0

∫
ΣN

[
F (s)v1−p′(sτ)

(
V (s)

) 1
p−1
]p
v(sτ) sN−1 dτ ds

) 1
p

= C

(∫ ∞
0

F p(s)

(∫
ΣN

v1−p′(sτ) sN−1 dτ

)(
V (s)

) p
p−1

ds

) 1
p

= C

(∫ ∞
0

F p(s)
(
V (s)

) 1
1−p
(
V (s)

) p
p−1

ds

) 1
p

= C

(∫ ∞
0

F p(s)V (s) ds

) 1
p

,

so (4.2) holds. The proof is complete. �

Remark. Theorem 4.1 can also be proved if TN1 in (4.1) is replaced by any of the
remaining operators TN2 , TN3 , TN4 and correspondingly in (4.2), T1 is replaced by
any of the operators T2, T3 and T4, respectively.

Remark. Weight characterization for the inequality (4.2) can be obtained on the
similar lines as in Theorems 3.1 and 3.2, as soon as the corresponding weight
characterization of the one-dimensional case has been derived (c.f. (4.2)).
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