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Abstract
The studies in this PhD thesis is focusedon someproblemsof general interest inappliedmathematics and engineering sciences. A very broad view is used; fromcontributions which can be directly used for solving some important structuralproblems in engineering sciences, to contributions which also are of interestin pure mathematics. The main body of the PhD thesis consists of five papers(Papers A – E).In Paper A a new presentation of themathematical theory of linear elasticityfrom a functional analytical standpoint is given. Moreover, a useful estimate ofthe Sobolev norm in Rn is given. Finally, the problem connected to non-linearbeams on elastic foundation is modelled and analyzed.In Paper B we present a new finite element method by using a simplifiedthree dimensional model to evaluate the sliding stability of flat slab buttressdams. Moreover, we investigate the possibility of utilizing safety capacityin neighbouring pillars within a section to show that the entire section hasadequate capacity against sliding in the dam-foundation interface.In Paper C we present some new thoughts on and a discussion of anoverview of different numerical methods that may be applied to evaluate thestability of dam structures. In particular, we discuss and compare with 14different case studies from the literature where numerical methods have beenused to study the behaviour of gravity and plate dams. Finally, we identify anddiscuss advantages and disadvantages of differentmethods ofmodeling failuremodes.In Paper D we prove and discuss some new Fourier inequalities in thegeneral frame of Lorentz-Zygmund spaces and in the case with unboundedorthogonal systems. The derived results generalize, complement and unifyseveral results in the literature for this general case.In Paper E we consider some mathematical aspects of the torsion problemfor anisotropic periodic plate-structureswhere the underlyingmaterial ismono-clinic. In particular, we show in detail how the weak formulation of the problemis derived and express the torsional rigidity in terms of its solution.These new results are put into a more general frame in an Introduction,where, in particular, a comparison with some new international research andbroad view of such interplay between applied mathematics and engineeringproblems is presented and discussed.
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Preface
This PhD thesis in Engineering Science is composed of five papers [A] – [E] anda matching Introduction. In the Introduction the papers [A] – [E] are discussedand put into a more general frame. The Introduction is also of independentinterest since it contains a brief discussion on the important interplay betweenapplied mathematics and engineering applications illustrated by comparingwith some relevant international research presented in this light.A very brief presentation of the main content of the five papers can befound in the Abstract above and a more complete description at the end ofthe Introduction.
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Chapter 1

Introduction
This PhD thesis in Engineering Science is mainly focused on some problems ofgeneral interest in engineering sciences. It contains a broad spectrum; fromcontributions which can be directly used for solving some important structuralproblems, to contributions which are of interest also in pure mathematics.

Such broad view of science and in particular the interplay between mathe-matics, applied mathematics and engineering sciences are increasingly impor-tant for several reasons, e.g. for the technical development. Correspondingly,nowadays there exists even some international Journals which invites paperson such a broad scale of science. As an important example let us here mentionthe Journal “Nonlinear Studies” with P.L. Lions and S. Sivasundaram as Editors-in Chiefs (see [60], www.nonlinearstudies.com).
Especially the last issue of this Journal (December 2019) was devoted to the75th anniversary of one of my supervisors and in the preface the Editors P.L.Lions, N. Samko and S. Sivasundaram wrote some motivation in this spirit, see[61] and c.f. also [66]. This Journal Issue contains 22 papers and as typicalexamples which especially well illustrates the spirit of this PhD thesis I mentionthe papers [3], [9], [11], [33], [36], [66], [98], [103], [104] and [109]. In particular,in the papers [33], [36], [103] and [109] important contributions to various typesof Fourier analysis are given. In paper [D] of this PhD thesis some other newcontributions in this area are given. All these contributions contain resultsof interest also in pure mathematics. The papers [98] and [104] are intendedto be able to be used for direct applications. The papers [B] and [C] of thisPhD thesis have mainly the same aims. Finally, the papers [A], [D] and [E] aretypical papers in what we call “Engineering Mathematics”, which means thatthey contain results of interest for concrete applications in engineering sciencesbut also in pure mathematics.

1.1 A short description of the results in papers A - E

1.1.1 Paper A

In Paper A, a new presentation of the mathematical theory of linear elasticityfrom a functional analytical standpoint is given. Some facts which have influ-enced our investigation are the following:

1. Advanced mathematical analysis based on nonlinear models seems tobe needed in order to obtain a better understanding of the complicatedstructures that are involved.
1



1. Introduction

2. Inmodern product development one often replaces testing activities withanalytical and numerical methods, where complex mathematical resultsand advanced models are used.
3. By using more advanced mathematical tools one may be able to developnew methods and algorithms that are useful in designing railway tracks,see e.g. [65] which have substantially influenced our results and way ofthinking.
The part of the paper devoted to beams on elastic foundation is deeplyinspired by the interesting ideas and results presented in [65], and the paper isintended to be a step further in this direction. Many of the results obtained in[65] are explained in a new and hopefully more pedagogical light in this paper,and the same extensions are presented.In order to make the paper readable to a broad audience, including engi-neers and scientists within the elasticity community, as well as pure mathe-maticians, we havemade an effort making the presentation as easy as possiblewithout leaving out any technicalities, which are important for the understand-ing of the contents. Still, those who are completely unfamiliar with functionalanalysis and theory concerning function spaces, are guided to look in standardliterature concerning such questions for complementary information.This paper is a typical paper in what we call engineering mathematics,i.e. that it contain results of interest for concrete applications in engineeringsciences but also in pure mathematics. The paper is dived into 5 sections. Afteran introduction we present in Section 2 some preliminary results connectedto the theory of linear and nonlinear monotone operators. In Section 3we give a new presentation of the mathematical theory of linear elasticityfrom a functional analytical point of view, and discuss how strong and weakformulations can be obtained and analyzed. The main result in Section 4 is atheorem, which gives an useful estimate of the Sobolev norm in Rn. Finally,Section 5 is reserved for modelling and analysis of some problems connectedto nonlinear beams on elastic foundation.

The results in Paper A are related to the following publications: [2], [8], [19], [20],[64], [65], [74], [94], [97], [110] and [111].
1.1.2 Paper B
In Paper B we present a new method to evaluate the sliding stability offlat slab buttress dams. Moreover, we investigate the possibility of utilizingsafety capacity in neighbouring pillars within a section to show that the entiresection has adequate capacity against sliding in the dam-foundation interface.We pronounce that within the field of dam-engineering the assessment ofthe safety of dams is govern by national guidelines and there is little roomfor new computation methods. This fact has influenced the content of thisengineering focused paper. In the case of buttress dams, the current practiceis to evaluate each pillar individually. A section of a flat-slab buttress dam
2



A short description of the results in papers A - E

with three different cases of inclination in the pillar-foundation interfaces isinvestigated. Furthermore, we preform a comparison of how the sliding safetyfactors of the whole section are affected if it is supported by pillars withboth satisfactory and unsatisfactory safety margins. The section was modelledwith shell elements using the finite element software ANSYS Mechanical v17.2,where the geometry is based on a typical flat slab buttress dam. Here, theMohr-Coulomb contact model was used in the dam-foundation interfaces. Thecombined sliding safety factor for all three pillars was computed from theresults obtained from the analysis.The sliding safety factor, Ssliding is defined by
Ssliding = ΣV

ΣH tan (φ+ α) ,

where φ is the friction angle, α is the inclination of the interface,∑V is the sumof forces in the vertical direction and∑H is the sum of forces in the horizontaldirection.In particular, the results show that for a section with one pillar with a slidingsafety factor of 1.1 and two pillars with a sliding factor of 1.4, the combinedsliding safety factor for the whole section is 1.4, which is the requirement inNorway [85]. This indicates that by considering the whole section an adequatesliding safety factor can be achieved and thereby we can reduce the need forrehabilitation of the unsatisfactory pillar. In this connection we suggest thatfurther investigation will be done in order to further verify this conjecture. Thiscan be of great interest for the industrial applications of this type related toapplied mathematics.
The results in Paper B are related to the following publications: [17], [27], [34],[37], [40], [44], [45], [70], [76], [79], [83], [84], [85], [86], [99], [101] and [106].
1.1.3 Paper C
In Paper C we present some new thoughts on and a discussion of an overviewof different numerical methods that may be applied to dam structures. First wemention that in Norway 95 % of the total power production is produced fromhydro-power [44]. Norway has the largest installed hydro-power capacity in Eu-rope with 31 626 MW [44]. The Norwegian Water Resources and Energy Direc-torate (NVE) is the governmental authority of dams in Norway and ensures thatthe owners of the dams complies with the dam safety regulation (Damsikkherts-forskriften) [86]. These facts were important when we started this investigationin collaboration with SINTEF Narvik.However, we wanted to put our investigation into a more scientific andglobal perspective. In particular, in this light we discuss and compare 14 differ-ent case studies from the literature, where numerical methods have been usedto study the behaviour of gravity and plate dams. These case studies are from 11different countries where 3 are from Norway. Hence, we have broaden our ap-proach when investigating dams in Norway to amore international perspective
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1. Introduction

to analyse, treat and solve similar problems worldwide. In particular, we identi-fied and discussed advantages and disadvantages of the following four proce-dures for evaluating the failure modes (overturning, sliding and overstressing)of concrete dams:
• Increasing the head water level until failure.
• Push-over.
• Reducing the friction angle.
• Resultant forces.

Summing up, we think that our paper can be very useful as a basis wheninvestigating such types of problems in engineering sciences.
The results in Paper C are related to the following publications: [1], [4], [5], [6],[7], [10], [12], [14], [15], [16], [18], [21], [22], [23], [24], [25], [28], [29], [30], [31], [32],[38], [39], [41], [42], [43], [44], [47], [50], [54], [55], [57], [56], [59], [62], [63], [70],[71], [75], [77], [81], [83], [84], [85], [86], [87], [88], [91], [92], [93], [95], [102], [105],[107], [108] and [112].
1.1.4 Paper D
In Paper D we prove some new Fourier inequalities. To shortly describe thebackground of such results we present the following results derived by Lars-Erik Persson in his PhD thesis from 1974 (see [89] and also [90]).
Theorem 1.1.1. Let 0 < p < ∞ and Φ =

{
e2πikt}+∞

k=−∞ be the trigonometrical
system.

a) If there exists a positive number δ > 0 so that ω (t) t−δ is an increasing
function of t and ω (t) t−( 1

2−δ) is a decreasing function of t, then( ∞∑
k=1

(a∗kω (k))p 1
k

) 1
p

≤ c14 ‖f‖Λp(ω) . (1.1)
b) If there exists a positive number δ > 0 such that ω (t) t− 1

2−δ is an increasing
function of t and ω (t) t−1+δ is a decreasing function of t, then

‖f‖Λp(ω) ≤

( ∞∑
k=1

(a∗kω (k))p 1
k

) 1
p

, (1.2)
where {a∗k}

∞
k=0 is the non-increasing rearrangement of the sequence

{|ak|}∞k=−∞ of Fourier coefficients of f with respect to the system Φ.

Here, as usual the generalized Lorentz spaceΛp (ω) consists of the functions
f on [0, 1] such that ‖f‖Λp(ω) <∞, where
4



A short description of the results in papers A - E

‖f‖Λp(ω) :=


(∫ 1

0 (f∗ (t)ω (t))p dtt
) 1

p for 0 < p <∞,
sup

0≤t≤1
f∗ (t)ω (t) for p =∞.

Remark 1.1.2. This result may be regarded as a unification and generalizationof several classical results e.g. those by Marcinkiewicz, Zygmund, Hausdorff,Young, Paley, Riesz, Pitt and Stein. A very good description of this prehistory ofTheorem 1.1.1 is given in the PhD thesis of Aigerim Kopezhanova from 2017 (see[51]).
Theorem 1.1.1 was generalized to the case with a general bounded orthogo-nal system (thismeans that |an| ≤ k <∞∀n) in [52] (see also [51]). However, it isnot known whether or not Theorem 1.1.1 can be generalized to the case with un-bounded orthogonal systems. But some results are known also for this case butin very restrictive cases e.g. for Lebesgue spaces, see for example various con-tributions byMarcinkiewicz and Zygmund [72], Kolyada [49] and Kirillow [48]. InPaper D we generalize and complement these results by considering the moregeneral case with so called Lorentz-Zygmund spaces as defied below:
Let q ∈ (1,+∞), r ∈ (0,+∞) and α ∈ R. Moreover, let Lq,r (logL)α denotethe Lorentz-Zygmund space, which consists of all measurable functions f on

[0, 1] such that

‖f‖q,r,α :=
{∫ 1

0
(f∗ (t))r (1 + |ln t|)αr · t

r
q−1dt

} 1
r

< +∞,

where f∗ is the non- increasing rearrangement of the function |f | (see e.g. [96]).
Ifα = 0, then the Lorentz-Zygmund spaces coincides with the Lorentz space:

Lq1,q2 (logL)α = Lq1,q2 . If α = 0 and q1 = q2 = q, then Lq1,q2 (logL)α spacecoincides with the Lebesgue space Lq [0, 1] (see e.g. [80]) with the norm

‖f‖q :=
(∫ 1

0
|f (x)|q dx

) 1
q , 1 ≤ q ≤ +∞.

We consider an unbounded orthogonal system {ϕn} in L2 [0, 1] such that
‖ϕn‖s ≤Mn, n ∈ N, (1.3)

and
µn = sup

{∥∥∥∥∥
n∑
k=1

ckϕk

∥∥∥∥∥ :
n∑
k=1

c2k = 1
}
, ρn =

( ∞∑
k=n
|ak|2

) 1
2 , (1.4)

for some s ∈ (2,+∞). HereMn ↑ andMn ≥ 1 (see [113], [72, p.313]).
Two main results in paper D reads as follows:
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1. Introduction

Theorem 1.1.3. Let 2 < q < s ≤ +∞, α ∈ R, r > 0 and δ = rs(q−2)
q(s−2) . If {an} ∈ l2

and

Ωq,r,α (a) =
{ ∞∑
n=1

(
ρrn − ρrn+1

)
µδn

(
1 + 2s

s− 2 lnµn
)αr} 1

r

< +∞,

where ρn and µn are defined by (1.3), then the series
∞∑
n=1

anϕn (x)

with respect to an orthogonal system {ϕn}∞n=1, which satisfies the condition (1.3),
converges to some function f ∈ Lq,r (logL)a and ‖f‖q,r,α ≤ CΩq,r,α.

Remark 1.1.4. For the case α = 0 Theorem 1.1.3 contains the previouslymentioned results of Kolyada [49] and Kirillow [48].
Theorem 1.1.5. Let s ∈ (2,+∞], s

s−1 < q < 2, r > 1, α ∈ R and δ = r(q−2)s
q(s−2) . If

f ∈ Lq,r (logL)a, then the inequality ∞∑
n=1

(
vn+1−1∑
k=vn

a2
k (f)

) r
2

(1 + logµvn
)rα µδvn

 ≤ C ‖f‖q,r,α
holds, where µvn

are defined by (1.4) and an (f) denote the Fourier coefficients of f
with respect to an orthogonal system {ϕn}∞n=1 satisfying condition (1.3).

Remark 1.1.6. Theorem 1.1.5 complements the previously mentioned results byMarcinkiewicz and Zygmund and in a more general frame.
Remark 1.1.7. Fourier analysis is an important tool for applications in signal andimage analysis. However, it has also in the last decades been used for variousproblems (crack analysis, strength capacity etc) connected to dams, bridges,and tunnels. This was the main motivation for me to study also this subjectand I hope to use also these theoretical results in my further research, wherealso applications of this type in our artic region is in focus.
The results in Paper D are related to the following publications: [13], [35], [46],[48], [49], [51], [52], [53], [58] [72], [73], [78], [80], [82], [90], [96], [100] and [113].
1.1.5 Paper E
In Paper E we consider a periodic plate structure. The plate structure isassumed to be a connected set bounded by an upper s+ and lower surface
s−, which are non-intersecting and periodic in the x-variable with period
2x0, see Figure 1 in Paper E. We investigate some mathematical aspects ofthe torsion problem for this anisotropic periodic plate structure, where theunderlyingmaterial is monoclinic. In particular, we show in detail how the weak
6



Additional paper

formulation of the problem is derived and express the torsional rigidity in termsof its solution. By an monoclinic material we mean that it has a stiffness matrixof a special form including some symmetry and zeros involved (see formula (1)in Paper E). Also this paper is a typical paper within engineering mathematics.
The results in Paper E are related to the following publications: [2], [26], [67],[68], [69] and [111].
1.2 Additional paper

In addition to the papers included in the main body of this PhD thesis thefollowing paper is related to this PhD thesis:
• A. Seger and D. Bista, Finite element analysis of a physical experiment ofa pillar in a flat slab buttress dam, Research Report 2019, UiT The ArticUniversity of Norway, Campus Narvik, 2019, 25 pages (submitted).
However, we have chosen not to include this paper into the main body ofthis PhD thesis since it does not contribute essentially to the main content.

7





Bibliography
[1] Abaqus. Theory manual. Abaqus 6.6. Simulia, Providence, RI, USA., 2006.
[2] Adams, R. Sobolev Spaces. Academic Press, 1975.
[3] Adiyeva, A. and Oinarov, R. “Weighted inequality and oscillatory proper-ties of a class of fourth order differential equations”. Nonlinear Studiesvol. 26, no. 4 (2019), pp. 741–753.
[4] Anderson, C. et al. Concrete Dams Case Histories of Failures andNonfailures

with Back Calculations. Tech. rep. DSO-98-05. U.S. Department of InteriorBureau of Reclamation, Dam Safety Office, 1998.
[5] Ansell, A. et al. Crack propagation in buttress dams Application of non-linear

models – Part II. Tech. rep. Elforsk AB, 2010.
[6] Ansell, A. et al. Spricktillväxt i lamelldamm Tillämpning av icke-linjära

modeller – Del I. Swedish. Tech. rep. Elforsk AB, 2007.
[7] ANSYS Inc. ANSYS Mechanical APDL Theory Reference 14.5. 2012.
[8] ASCE-AREA Special Committee on Stresses in Railroad Track. Bulletin of

the AREA, First Progress Report Vol 19,1918, Second Progress Report Vol 21,
1920. Tech. rep.

[9] Barza, S. and Nikolova, L. “Carleson– and Hardy–type inequalities insome Banach function spaces”. Nonlinear Studies vol. 26, no. 4 (2019),pp. 755–766.
[10] Bhattacharjee, S. S. and Léger, P. “Application of NLFMModels to PredictCracking in Concrete Gravity Dams”. Journal of Structural Engineeringvol. 120, no. 4 (1994), pp. 1255–1271.
[11] Birnir, B. “The turbulence problem”. Nonlinear Studies vol. 26, no. 4 (2019),pp. 767–781.
[12] Bjöström, J., Ekström, T., and Hassanzadeh, M. Spruckna betongdammar

- Översikt och beräkningsmetoder. Swedish. Vol. 06:29. Elforsk, 2006.
[13] Bochkarev, S. “The Hausdorff – Young – Riesz theorem in Lorentz spacesand multiplicative inequalities.” Tr. Mat. Inst. Steklova vol. 219 (1997),pp. 103–114. (Translation in Proc. Steklov Inst. Math. 219(1997), No. 4, 96 –107).
[14] Bolzon, G. et al. “Boundary element and finite element fracture analysisof dams by the cohesive crack model: a comparative study”. In: The

InternationalWorkshop onDam Fracture andDamage. Ed. by Bourdarot, E.,Mazars, J., and Saouma, V. Champery, France: A.A Balkema, 1994, pp. 69–78.
9



Bibliography

[15] Brand, B. et al. Selecting Analytic Tools for Concrete Dams Adressing Key
Events Along Potential Failure Mode Paths. Tech. rep. FEMA P-1016. FederalEmergency Management Agency, 2014.

[16] Bretas, E. M., Léger, P., and Lemos, J. V. “Analysis Of Gravity Dam Consid-ering The Application Of Passive Reinforcement”. In: Dam Maintenance
and Rehabilitation II. Ed. by García, R. R. et al. CRC Press, 2010, pp. 809–819.

[17] Bretas, E. M. “Discrete element modeling of concrete and masonrydams”. In: Workshop on numerical modeling and alternative computation
methods of concrete dams. Narvik, Norway, 2017.

[18] Bretas, E. M. and Jenssen, T. A. “A DEM-Based Tool For Safety Analysis ofGravity Dams Q. 99 – R. 25”. In: 25th ICOLD Congress. Stavanger, Norway,2015, pp. 331–348.
[19] Browder, F. E. “Nonlinear elliptic boundary value problems”. Bull. Amer.

Math. Soc. vol. 69 (1963), pp. 862–874.
[20] Browder, F. E. “Variational boundary value problems for quasi-linearelliptic equations I-III”. Proc. Nat. Acad. Sci.U.S.A. vol. 50 (1963), pp. 31–37,592–598, 794–798.
[21] Carpinteri, A. et al. “Cohesive crack model description of ductile tobrittle size-scale transition: dimensional analysis vs. renormalizationgroup theory”. Engineering Fracture Mechanics vol. 70, no. 14 (Sept. 2003),pp. 1809–1839.
[22] Carpinteri, A. et al. “Experimental and Numerical Fracture Modellingof a Gravity Dam”. In: Special Publication. Ed. by Bazant, Z. Vol. 143.Breckenridge, Colorado, 1992, pp. 351–360.
[23] Červenka, V., Jendele, L., and Červenka, J. ATENA Program Documentation

Part 1 - Theory. Prague,Czech Republic: Červenka Consulting s.r.o., 2018.
[24] Clough, R. W. The stress distribution of Norfork dam. Tech. rep. Institute ofEngineering Research University of California Berkeley, 1962, p. 133.
[25] Clough, R. W. and Wilson, E. L. “Stress Analysis of a Gravity Dam by theFinite Element Method”. RILIM Bull. vol. 19 (1963), pp. 45–54.
[26] Cook, R. D., Malkus, D. S., and Plesha, M. E. Concepts and applications of

finite element analysis. J. Wiley and Sons Inc., 1989.
[27] Creager, W. P., Justin, J. D. W., and Hinds, J. Engineering for Dams: Concrete

dams. Vol. 2. John Wiley & Sons, 1945.
[28] Cundall, P. A. “A Computer Model for Simulating Progressive, Large-Scale Movements in Blocky Rock Systems, Symposium Soc”. Internat.

Mechanique des Roches, Nancy, Paper II–8 (1971).
[29] Dassault Systemes. CAA V5 Encyclopaedia. Dassault Systemes, 2009.

10



Bibliography

[30] Elguedj, T. et al. “Abaqus user element implementation of NURBS basedisogeometric analysis”. In: 6th European Congress On Computational Meth-
ods In Applied Sciences And Engineering, Vienna, Austria. Vienna, Austria,Sept. 2012, pp. 10–14.

[31] Fallah, N. A. et al. “Comparison of finite element and finite volumemethods application in geometrically nonlinear stress analysis”. Applied
Mathematical Modelling vol. 24, no. 7 (2000), pp. 439–455.

[32] Fauchet, B. et al. “Poroplastic analysis of concrete dams and their foun-dations”. Dam engineering vol. II, no. 3 (1991), pp. 165–192.
[33] Feichtinger, H. “Classical Fourier analysis via mild distributions”. Nonlin-

ear Studies vol. 26, no. 4 (2019), pp. 783–804.
[34] FERC. Engineering Guidelines for the Evaluation of Hydropower Projects -

Chapter 10 - Other Dams. Federal Energy Regulatory Commission, 1997.
[35] Flett, T. “On a theorem of Pitt”. J. London Math. Soc. vol. 2, no. 7 (1973),pp. 376–384.
[36] Goginava, U. “Subsequences of spherical sums of double Walsh-Fourierseries”. Nonlinear Studies vol. 26, no. 4 (2019), pp. 821–830.
[37] Grøner, C. F. “Modern Techique Of Concrete Dams for wide Valleys andancillary works. Q. 26 – R. 21”. In: 7th ICOLD Congress. 1961.
[38] Hallquist, J. O., ed. LS-DYNA Theory Manual. Livermore Software Technol-ogy Corporation, 2006.
[39] Heitor, A. M. and Pedro, J. O. “Prestressed Piers For High Radial Gates –Fratel Spillweir Dam, Q.43 – R. 11”. In: 11th ICOLD Congress. Madrid, Spain,1973, pp. 1127–1142.
[40] Henny, D. “Stability of Straight Concrete Gravity Dams”. Transactions of

the American Society of Civil Engineers vol. 99 (1934), pp. 1041–1061.
[41] Hughes, T. J. R., Cottrell, J. A., and Bazilevs, Y. “Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement”.

ComputerMethods in AppliedMechanics and Engineering vol. 194, no. 39–41(Oct. 2005), pp. 4135–4195.
[42] ICOLD. B030A - Finite Elements Methods In Analysis And Design Of Dams.French and English. B030A. (115 pages). International Commission OnLarge Dams, 1987.
[43] ICOLD. B155 - Guidelines for use of numerical models in dam engineering.French and English. B155. (204 pages). International Commission OnLarge Dams, 2013.
[44] IHA. 2017 Hydropower Status Report, Retrived feb. 2019. The InternationalHydropower Association, 2017. URL: https://www.hydropower.org/2017-

hydropower-status-report.
[45] Jansen, R. B. Advanced dam engineering for design, construction, and reha-

bilitation. ISSN: 9780442243975. New York, USA: Van Nostrand Reinhold,1988.
11

https://www.hydropower.org/2017-hydropower-status-report
https://www.hydropower.org/2017-hydropower-status-report


Bibliography

[46] Johansson, H. Embedding ofHω
p in some Lorentz spaces, Research Report 6.Department of Mathematics, Umeå University, 1975.

[47] Juliani, M. et al. “Itaipu DamMonitoring ReevaluationOf InstrumentationControl Values, Q. 78 – R. 83”. In: 20th ICOLD Congress. Beijing, China,2000.
[48] Kirillov, S. “Normestimates of functions in Lorentz spaces”. Acta Sci. Math.vol. 65, no. 1–2 (1999), pp. 189–201.
[49] Kolyada, V. “Some generalizations of the Hardy – Littlewood – Paleytheorem”. Mat. Zametki vol. 54, no. 3 (1993), pp. 48–71. (Translation inMath. Notes 51(1992), No. 3–4, 908–922).
[50] Konow, T. Vurdering av bergrunnen. Gardemoen, Oslo, Norway, Apr. 2018.
[51] Kopezhanova, A. “Summability of Fourier Transforms of Functions fromLorentz Spaces”. PhD thesis. Department of Engineering Sciences andMathematics, Luleå University of Technology, 2017.
[52] Kopezhanova, A. and Persson, L. E. “On summability of the Fouriercoefficients in bounded orthonormal systems for functions from someLorentz type spaces”. Eurasian Math J. vol. 1, no. 1 (2010), pp. 76–85.
[53] Krein, S., Petunin, Y. I., and E.M, S. Interpolation of linear operators.Moscow: Nauka, 1978.
[54] Labuz, J. F. and Zang, A. “Mohr–Coulomb Failure Criterion”. Rock Mechan-

ics and Rock Engineering vol. 45, no. 6 (2012), pp. 975–979.
[55] Lacome, J. L. “Smooth particle hydrodynamics (SPH): a new feature inLS-DYNA”. In: 6th International LS–DYNA Users Conference, Dearborn, USA,2000, pp. 29–34.
[56] Léger, P. et al. “A progressive methodology for structural safety evalu-ation of gravity dams subjected to floods.” In: Proceedings of Canadian

Dam Safety Conference. Niagara Falls, Ontario, 1996, pp. 2–16.
[57] Léger, P. et al. “Failure Mechanism Of Gravity Dams Subjected To Hydro-static Overload: Influence Of Weak Lift Joints, Q. 75 – R. 2”. In: 19th ICOLD

Congress. Florence, Italy, 1997.
[58] Leindler, L. “Generalization of inequalities of Hardy and Littlewood”. Acta

Sci. Math. vol. 31 (1970), pp. 279–285.
[59] Lindemark, J. et al. “Sarvsfossen Dam – Design of a Norwegian ConcreteArch Dam”. In: Hydropower’15. June. Stavanger, Norway, 2015.
[60] Lions, P. L. and Sivasundaram, S. (Editors-in-Chiefs). Nonlinear Studies.www.nonlinearstudies.com. UK: I&S –Florida, USA: CSP-Cambrige.
[61] Lions, P. L., Samko, N. and Sivasundaram, S. (Editors). “Special Issue onharmonic analysis, applied mathematics and engineering problems. De-dicted to the 75th anniversary of Professor Lars-Erik Persson (Preface)”.

Nonlinear Studies vol. 26, no. 4 (2019), pp. 703–706.

12



Bibliography

[62] Liu, G. R. Mesh Free Methods: Moving Beyond the Finite Element Method.CRC Press, 2002.
[63] Love, A. E. H. A treatise on the mathematical theory of elasticity. 2. London:Cambridge University Press, 1906.
[64] Lu, S. “Real-time vertical track deflection measurement system”. ETD

collection for University of Nebraska - Lincoln. Paper AAI3331436 (Jan. 2008).
[65] Lukkassen, D. and Meidell, A. “Beams on nonlinear elastic foundation”.In: AIP Conference Proceedings 1637. Vol. 656. 2014.
[66] Lukkassen, D. and Meidell, A. “Lars-Erik Persson-the remarkable broadand innovative mathematician and unique Pers(s)on”. Nonlinear Studiesvol. 26, no. 4 (2019), pp. 707–722.
[67] Lukkassen, D., Meidell, A., and Wall, P. “Mathematical analysis and ho-mogenization of the torsion problem”. J. Funct. Spaces Appl. vol. 6, no. 2(2008), pp. 155–176.
[68] Lukkassen, D., Meidell, A., and Wall, P. “New methods for estimating thetorsional rigidity of composite bars”. International Journal of Engineering

Science vol. 47 (2009), pp. 524–536.
[69] Lukkassen, D. et al. “Symmetry–relations for elastically deformed pe-riodic rod-structures”. Math. Mod. Meth. Appl. Sci. vol. 19, no. 4 (2009),pp. 501–525.
[70] Malm, R. Guideline for fe analyses of concrete dams. Tech. rep. EnergiforskAB, 2016.
[71] Malm, R. et al. Load capacity of grouted rock bolts due to degradation. Tech.rep. Energiforsk AB, 2017.
[72] Marcinkiewicz, J. and Zygmund, A. “Some theorems on orthogonal sys-tems”. Fund. Math. vol. 28 (1937), pp. 309–335.
[73] Maslov, A. “Estimates of Hausdorff–Young type for Fourier coefficients”.

Vestnik Moscow Univ. Ser. I Mat. Mekh vol. 3, no. 19–22 (1982). (Russian).
[74] Minty, G. J. “On a "monotonicity" method for the solution of nonlinearequations in Banach spaces”. Proc. Nat. Acad. Sci. U.S.A. vol. 50 (1963),pp. 1038–1041.
[75] Moës, N., Bolbow, J., and Belytschko, T. “A Finite Element Method ForCrack Growth Without Remeshing”. International Journal For Numerical

Methods In Engineering vol. 46, no. 1 (1999), pp. 131–150.
[76] Møller, I. Norske dammer : B. 1 : Norske vannkraftdammer i Østfold, Ak-

ershus, Hedmark, Oppland, Buskerud, Telemark, Aust-Agder, Vest-Agder og
Rogaland. ISSN: 9788292931011 (Norwegian). Oslo, Norway: Energi forl.,2008.

[77] Munjiza, A. A. The Combined Finite-Discrete Element Method. Hoboken:Wiley, 2004.

13



Bibliography

[78] Mustahaeva, V. and Akishev, G. “On the Fourier coefficients in Lorentz– Zygmund space”. In: Modern Metods of the theory of functions and
problems. Voronezh, 2013, pp. 155–156.

[79] Nicholson, G. A. Design of gravity dams on rock foundations: sliding stability
assessment by limit equilibrium and selection of shear strength. Technicalreport GL-83-13. Vicksburg, Miss., USA: U S Army Corps of Engineers, Oct.1983.

[80] Nikol’ski, S. M. Approximation of classes of functions of several variables
and embedding theorems. Moscow: Nauka, 1977.

[81] Nonaka, M., Hara, T., and Kamimura, J. “Numerical Analysis On Dis-placement Behavior Of Concrete Gravity Dams Measured During Im-poundment, Q. 78 – R. 76”. In: 20th ICOLD Congress. Beijing, China, 2000,pp. 1235–1260.
[82] Nursultanov, E. D. “On the coefficients of multiple Fourier series from

Lp – spaces (Russian)”. Izv. Ross. Akad. Nauk. Ser. Mat. vol. 64, no. 1 (2000),pp. 95–122. (Translation in Izv. Math. 64(2000) , No. 1, 93–120).
[83] NVE. Damdatabasen SIV. 2017. URL: https://www.nve.no/damsikkerhet-

og - energiforsyningsberedskap / damsikkerhet / innrapportering - og -
damdatabasen-siv/.

[84] NVE. Retningslinje for laster og dimensjonering. Norwegian. 2003. URL:
https : / / www . nve . no / damsikkerhet - og - kraftforsyningsberedskap /
damsikkerhet/regelverk/retningslinjer-for-laster-og-dimensjonering/.

[85] NVE. Retningslinjer for betongdammer. Norwegian. 2005. URL: https : / /
www.nve .no/damsikkerhet - og- kraftforsyningsberedskap/damsikkerhet/
regelverk/retningslinjer-for-betongdammer/.

[86] Olje- og Energidepartementet. Forskrift om sikkerhet ved vassdragsanlegg
(damsikkerhetsforskriften). Ed. by Olje- og Energidepartementet. 2010.URL: https://lovdata.no/pro/SF/forskrift/2009-12-18-1600.

[87] Oñate, E. et al. “The Particle Finite Element Method. An Overview.”
International Journal of Computational Methods vol. 1, no. 2 (2004), pp. 267–307.

[88] Pan, Y. et al. “Fracture Analysis of Brittle Materials Based on NonlinearFEM and Application in Arch Dam with Fractures”. Journal of Applied
Mathematics vol. 2013 (2013), pp. 1–12.

[89] Persson, L. E. “Relations Between Summability of Functions and TheirFourier Series”. PhD thesis. Department of Mathematics, Umeå Univer-sity, 1974.
[90] Persson, L. E. “Relations between summability of functions and theirFourier series”. Acta Math. Acad. Sci. Hungar vol. 27, no. 3–4 (1976),pp. 267–280.

14

https://www.nve.no/damsikkerhet-og-energiforsyningsberedskap/damsikkerhet/innrapportering-og-damdatabasen-siv/
https://www.nve.no/damsikkerhet-og-energiforsyningsberedskap/damsikkerhet/innrapportering-og-damdatabasen-siv/
https://www.nve.no/damsikkerhet-og-energiforsyningsberedskap/damsikkerhet/innrapportering-og-damdatabasen-siv/
https://www.nve.no/damsikkerhet-og-kraftforsyningsberedskap/damsikkerhet/regelverk/retningslinjer-for-laster-og-dimensjonering/
https://www.nve.no/damsikkerhet-og-kraftforsyningsberedskap/damsikkerhet/regelverk/retningslinjer-for-laster-og-dimensjonering/
https://www.nve.no/damsikkerhet-og-kraftforsyningsberedskap/damsikkerhet/regelverk/retningslinjer-for-betongdammer/
https://www.nve.no/damsikkerhet-og-kraftforsyningsberedskap/damsikkerhet/regelverk/retningslinjer-for-betongdammer/
https://www.nve.no/damsikkerhet-og-kraftforsyningsberedskap/damsikkerhet/regelverk/retningslinjer-for-betongdammer/
https://lovdata.no/pro/SF/forskrift/2009-12-18-1600


Bibliography

[91] Randles, P. W. and Libersky, L. D. “Smoothed Particle Hydrodynamics:Some recent improvements and applications”. Computer Methods in
Applied Mechanics and Engineering vol. 139, no. 1 (1996), pp. 375–408.

[92] Roth, S.-N., Léger, P., and Soulaïmani, A. “A combined XFEM–damagemechanics approach for concrete crack propagation”. ComputerMethods
in Applied Mechanics and Engineering vol. 283 (2015), pp. 923–955.

[93] Rueda, F. et al. “Thermomechanical Analysis of La Breña II Dam Duringits Construction Process: Evaluation Of potential Thermal Cracking, Q.84– R. 31”. In: 22th ICOLD Congress. Barcelona, Spain, 2006, pp. 513–523.
[94] Sadeghi, J. and Barati, P. “Evaluation of conventional methods in Analysisand Design of Railway Track System”. Int. J. Civ. Eng. vol. 8, no. 1 (2010),pp. 44–56.
[95] Sas, G., Bretas, E. M., and Lia, L. “Advanced Sliding Assessment of MålsetDam: Tests and Numerical Analysis of Unbonded Joints, Q. 99 – R. 30”. In:

25th ICOLD Congress. Stavanger, Norway, 2015, pp. 331–348.
[96] Sharpley, R. “Counterexamples for classical operators on Lorentz-Zygmund spaces”. Studia Math vol. 58 (1980), pp. 141–158.
[97] Showalter, R. E.Monotone operators in Banach space and nonlinear partial

differential equations. Vol. 49. Providence, USA: American MathematicalSociety, 1997.
[98] Singh, H. and Grip, N. “Recent trends in operation model analysis tech-niques and its applications and its applications on a steel truss bridge”.

Nonlinear Studies vol. 26, no. 4 (2019), pp. 911–927.
[99] Stangvik, R. M. “Shear strength of the rock-concrete interface at Kalhovddam”. MA thesis. Department of Civil and Environmental Engineering,Norges teknisk-naturvitenskapelige universitet, 2017.
[100] Stein, E. “Interpolation of linear operators”. Trans. Amer. Math. Soc. vol. 83(1956), pp. 482–492.
[101] Stone and Webster Engineering Corporation. Uplift Pressures, Shear

Strengths and Tensile Strengths for Stability Analysis of Concrete Gravity
Dams. 1 EPRI TR-100345. Palo Alto, California, USA: Electric Power Re-search Insitute, 1992.

[102] Su, K. et al. “Mechanism of Cracking in Dams Using a Hybrid FE-MeshfreeMethod”. International Journal of Geomechanics vol. 17, no. 9 (2017), pp. 1–14.
[103] Tephnadze, G. “Convergence and strong summability of the two-dimensional Vilinkin-Fourier series”.Nonlinear Studies vol. 26, no. 4 (2019),pp. 973–989.
[104] Thieu, T. K. T., Colangeli, M., and Muntean, A. “Weak solvability of a fluid–like driven system for active-passive pedestrian dynamics”. Nonlinear

Studies vol. 26, no. 4 (2019), pp. 991–1006.

15



Bibliography

[105] Tucovis, M. “Djerdap 1 Dam Behaviour And Comparison With ProjectPredictions, Q. 78 – R. 9”. In: 20th ICOLD Congress. Beijing, China, 2000,pp. 121–131.
[106] USACE. Engineering and Design: Sliding Stability For Concrete Structures.Technical Letter 1110-2-256. Washington, D.C, USA: U.S. Army Corps ofEngineers, June 1981.
[107] USBR. State-of-Practice for the Nonlinear Analysis of Concrete Dams at the

Bureau of Reclamation, January 2006. U.S. Department of the Interior,Bureau of Reclamation, 2006.
[108] Wang, Y. and Jia, J. “Experimental study on the influence of hydraulicfracturing on high concrete gravity dams”. Engineering Structures vol. 132(2017), pp. 508–517.
[109] Weisz, F. “Hardy spaces with variable exponents and applications inFourier analysis”. Nonlinear Studies vol. 26, no. 4 (2019), pp. 1015–1026.
[110] Zarembski, A. and Choros, J. “On the measurement and calculationof vertical track modulus”. In: Proceedings American Railway Engineering

Association. Vol. 81. 1980, pp. 156–173.
[111] Ziemer, W. P. “Weakly Differentiable Functions”. Berlin: Springer, 1989.Chap. Sobolev Spaces and Functions of Bounded Variation.
[112] Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. The Finite Element Method:

Its Basis and Fundamentals. 6th. Elsevier Butterworth-Heinemann, 2005.
[113] Zygmund, A. Trigonometric series. Vol. II. Moscow: Izdat. "Mir", 1965.

16



Papers





Paper A

Some mathematical aspects on
linear and nonlinear elasticity

Andreas Seger
Submitted for publication.

A

Abstract

In this paper a new presentation of the mathematical theory of linearelasticity from a functional analytic standpoint is given. Moreover, an usefulestimate of the Sobolev norm inRn is given. Finally, the problem connectedto non-linear beams on elastic foundation is modelled and analyzed.

AMS classification: 74B05, 74B20,26D10,47A30, 46N20,35S99
Key words and phrases: Elasticity, operators, inequalities, partial differen-tial equations, Sobolev norm, modelling, applications.

A.1 Introduction

Structural analysis concerns the estimation and computation of the class ofeffects of loads on physical structures and their components. All structureswhich are designed to withstand loads are subject to this type of analysis,including buildings, dam structures, vehicles, furniture, train rails, prosthesesand biological tissues.It is impossible to have knowledge of all aspects of this field since it involvesall types of specialists from practical engineers to pure mathematicians. Inthis paper we will focus on somemathematical aspects connected to existencetheory in linear and nonlinear elasticity. In addition we will consider beamsresting on nonlinear foundations.Vertical deflections and rail bending moments are often determined by theWinkler model (1867). This model uses the wrong assumption that the deflec-tion in the rail, which is obtained by the weight of the train, is proportional tothe supporting forces under the rail. The linear ordinary differential equationswhich this assumption implies, can be solved by classical methods. However,the linear treatment neglects several important conditions. Experimental re-sults shows that there is a substantial increase in the deflection and bendingmoment due to the nonlinearity of the supporting system. Several researchers
19
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are therefore questioning the reliability of the Linear approach (c.f. [7], [1] and[9]). Advanced mathematical analysis based on nonlinear models seems to beneeded in order to obtain a better understanding of the complicated structuresthat are involved. In this connection it should be mentioned that in modernproduct development one often replace testing activities with analytical andnumerical methods where complex mathematical results and advanced mod-els are used. It has been pointed out by several authors (see e.g. [5]) thatby using more advanced mathematical tools one may be able to develop newmethods and algorithms that are useful in designing railway tracks. Moremath-ematical understanding of the models involved is important for getting bettermethods that provides more accurate analytical and numerical results in deter-mining deflections and bending moments. The part of the paper devoted tobeams on elastic foundation is deeply inspired by the interesting ideas and re-sults presented in [5], and is intended to be a small step further in this direction.Many of the results obtained in [5] are explained in a new and hopefully morepedagogical light, and even some extensions are presented. In particular amul-tidimensional generalization of an equivalent Sobolev norm is proved. This gen-eralization enable us to obtain similar results as those obtained in [5] for evenmore complicated structures, e.g. nonlinear plates on elastic foundation like iceon water. We aim to develop these ideas even further in forthcoming papers.In order to make the paper readable to a broader audience, including en-gineers and scientist within the elasticity community, as well as pure mathe-maticians, we havemade an effort making the presentation as easy as possiblewithout leaving out any technicalities which are important for the understand-ing of the contents. Still, those who are completely unfamiliar with functionalanalysis and theory concerning function spaces, might find some parts difficultto penetrate.We start in Section 2 with stating some preliminary results connected to thetheory of linear and nonlinear monotone operators. In Section 3 we give a newpresentation of the mathematical theory of linear elasticity from a functionalanalytical standpoint, and discuss how strong and the weak formulation can beobtained and analyzed. The main result in Section 4 is a theorem which givesan useful estimate of the Sobolev norm in Rn. Finally, Section 5 is reserved formodelling and analysis of problems connected to nonlinear beams on elasticfoundation.
A.2 Some preliminaries

In this paper X denotes a Banach space and its dual is denoted X∗. If f ∈ X∗and x ∈ X we usually write 〈f, x〉 instead of f(x) IfA is a single-valued operatorfrom X to X∗ we let R(A) denote the range of A, that is the set of all points
f of X∗ such that there exists x ∈ X satisfying Ax = f . Let us also recall thefollowing definitions:a) A is called monotone if

〈Ax1 −Ax2, x1 − x2〉 ≥ 0, for every x1, x2 ∈ X. (A.1)
20
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b) A is called strictly monotone if, in addition to (A.1),
〈Ax1 −Ax2, x1 − x2〉 = 0, where x1, x2 ∈ X, implies that x1 = x2.

c) A is called maximal monotone if for every pair (x, y) ∈ X ×X∗ satisfyingthe condition
〈y −Aξ, x− ξ〉 ≥ 0 for every ξ ∈ X,

it follows that y = Ax.d) A is called coercive if
lim
‖x‖→∞

〈Ax, x〉
‖x‖

= +∞.

e) A is called strongly monotone if there exists a positive constant c1 suchthat
〈Ax1 −Ax2, x1 − x2〉 ≥ c1 ‖x1 − x2‖2 , for every x1, x2 ∈ X. (A.2)

f) A is called hemicontinuous if
lim
t→0

A(x+ ty) = Ax

weakly inX∗ (i.e. limt→0 〈A(x+ ty), v〉 = 〈Ax, v〉 for all v ∈ X) for all x, y ∈ X .
Theorem A.2.1. LetX be a Banach space with norm ‖·‖ and assume thatA : X →
X∗ is monotone and hemicontinuous. ThenA is maximal monotone. If, in addition,
X is reflexive and A is coercive, then the range R(A) = X∗.

The last sentence of this theorem is usually referred to as the Browder-Mintytheorem, i.e. the main theorem concerning monotone operators. Browder-Minty theorem was proved by Browder [2] and Minty [6] (we also refer to [3]).For more detailed information we refer to e.g. in the book [8].
In the special case when X is a Hilbert space with scalar product ∗ and acorresponding norm ‖·‖X (defined as usual as ‖v‖X =

√
v ∗ v), the Browder-Minty theorem reduces to the Lax-Milgram Lemma, which we recall here, forcompleteness, in addition to somother basic results on the linear case. Assumethat a(., .) is a bilinear form on X and assume that L is a linear functional on

X. The following conditions may or may not be satisfied:
1. a(., .) is symmetric, i.e. a(φ, v) = a(v, φ), ∀φ, v ∈ X.

2. a(., .) is continuous, i.e. there is a constant γ > 0 such that |a(φ, v)| ≤
γ ‖φ‖X ‖v‖X ∀φ, v ∈ X.

3. a(., .) is V -elliptic, i.e. there is a constant α > 0 such that a(φ, φ) ≥
α ‖φ‖2X ∀φ ∈ X.

4. L is continuous, i.e. there is a constant Λ > 0 such that |L(φ)| ≤ Λ ‖φ‖X
∀φ ∈ X.
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We will now consider the following abstract minimization problem: Find
u ∈ X such that

F (u) = min
φ∈X

F (φ), (A.3)
where

F (φ) = 1
2a(φ, φ)− L(φ),

andwewill also consider the following abstractweak formulation problem: Find
u ∈ X such that

a(u, φ) = L(φ), ∀φ ∈ X. (A.4)
Theorem A.2.2. [Lax-Milgram Lemma] If the conditions 2, 3 and 4 are satisfied then
there exists a unique solution u ∈ V of the problem (A.4).

Moreover, we have the following useful result:
Theorem A.2.3. If the conditions 1, 2, 3 and 4 are satisfied then there exists a unique
solution u ∈ X of the problem (A.3). In addition, the problems in (A.3) and (A.4) are
equivalent, i.e. u ∈ X satisfies (A.3) if and only if u satisfies (A.4).

A proof of this result can be found in most books connected to functionalanalysis. Let us also recall the Friedrichs’s inequality: IfΩ is a bounded subset of
Rn with diameter d and u : Ω→ R is a member of the Sobolev spaceW k,p

0 (Ω),then
‖u‖Lp(Ω) ≤ d

k

∑
|α|=k

‖Dαu‖pLp(Ω)

1/p

.

In our beam-problem we will be interested in the case n = 1, k = 2 and p = 2.For this simple case we often use the notation H2
0 (Ω) instead ofW 2,2

0 (Ω). Thenorm of this space is defined as follows
‖u‖2H2(Ω) = ‖u‖2L2(Ω) + ‖u′‖2L2(Ω) + ‖u′′‖2L2(Ω) .

Throughout the paper ‖·‖ and ‖·‖2 denote the H2-norm and the L2-norm,respectively.
A.3 Mathematical aspects of linear elasticity

Let S denote the space of all symmetric 3 × 3 matrices and let a · b denotethe scalar product between two matrices a = {aij} and b = {bij} in S, whichis defined by a · b =
∑
ij aijbij . The norm |a| is correspondingly defined by

|a|2 =
∑
ij a

2
ij (here and in the rest of the paper ∑ij is used in place of the

more complicated symbol∑3
i=1
∑3
j=1). If a and b are vectors, then a · b will stilldenote the usual scalar product in R3.We usually characterize the state of an elastic body by the displacementvector, the strain and the stress. If the body is deformed, a fixed point x =
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(x1, x2, x3) of the body moves to a point x + u(x), where the vector function
u(x) = (u1(x), u2(x), u3(x)) is called the displacement vector, or simply the
displacement. The strain e(u) is a symmetric 3 × 3 matrix with elements eij =
eij(x) given by

eij = 1
2( ∂ui
∂xj

+ ∂uj
∂xi

).

We call u a rigid displacement if e(u) = 0. It can be shown that any rigiddisplacement u(x) = (u1(x), u2(x), u3(x)) has the form u1(x)
u2(x)
u3(x)

 =

 0 b12 b13
−b12 0 b23
−b13 −b23 0

 x1
x2
x3

+

 c1
c2
c3

 , (A.5)

where bij and ci are constants.In continuummechanics one considers two different kind of forces, namely
body forces and surface forces. Body forces are described by a density function
f(x) = [f1(x), f2(x), f3(x)] (e.g. gravity), defined in such a way that the totalforce applied to a given volume Q equals ∫

Q
f(x)dx. Surface forces which are

applied at the boundary of the bodymay course deformation. The deformationof the elastic body gives surface forces that act on points inside the body.These surface forces are called stresses and are characterized by a symmetricmatrix σ(u) with elements σij = σij(x). On every surface ∂Q of a givensubdomainQ with outward normal unit normal n = (n1, n2, n3) wemay definea vector function F(u) = (F1, F2, F3), the so-called stress vector, given by
Fi =

∑3
j=1 σijnj = σi · n, where σi = (σi1, σi2, σi3) . The components σij aredefined such that the total force acting on Q, from the rest of the body, equals∫

∂Q
F(u)(x)ds. By Gauss theorem (the divergence theorem) we have that∫

∂Q

Fi ds =
∫
∂Q

(σi · n) ds =
∫
Q

div σi dx. (A.6)
In state of equilibrium of forces, the following equality must be satisfied:∫

Q

f dx = −
∫
∂Q

F(u) ds.

Hence, by (A.6) we obtain that∫
Q

fi dx = −
∫
Q

div σi dx.

Since this holds for every subdomain Q in the elastic body, we may concludethat
div σi = −fi,

i.e.
∂σi1
∂x1

+ ∂σi2
∂x2

+ ∂σi3
∂x3

= −fi.
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In other words, taking into account the symmetry relation σij = σji, we obtainthe following three equations
∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3
= −f1,

∂σ12

∂x1
+ ∂σ22

∂x2
+ ∂σ23

∂x3
= −f2,

∂σ13

∂x1
+ ∂σ23

∂x2
+ ∂σ33

∂x3
= −f3.

In elasticity theory it is often convenient to introduce the ”divergence” of thestress, denoted div σ(u), as the vector (div σ1 ,div σ2,div σ3). Hence, the abovethree equations can be written on the following compact form:
div σ(u) = −f . (A.7)

The stress is related to the strain via the following relation, called the Hookslaw:
σij =

∑
kr

cijkrekr(u)

where {Cijkr} satisfies the following symmetry relations Cijkr = Ckrij , Cijkr =
Cjikr = Cijrk. Each coefficient Cijkr may be a function of x. For each matrix ξ,let Cξ denote the matrix with elements

(Cξ)ij =
∑
kr

cijkrξkr.

Using this notation, the Hooks law can be written as follows:
σ(u) = Ce(u). (A.8)

In addition to the above conditions, we will assume that there exists positiveconstants ν1 and ν2 such that
ν1 |ξ|2 ≤ ξ · Cξ ≤ ν2 |ξ|2 (A.9)

for all ξ ∈ S.The strain and stress can alternatively be represented as vectors:
e = [e11, e22, e33,γ12, γ23, γ13]T , γij = 2eij
σ = [σ11, σ22, σ33,σ12, σ23, σ13]T .

In this case the Hooks law takes the following form:
σ11
σ22
σ33
σ12
σ23
σ13

 =


C1111 C1122 C1133 C1112 C1123 C1113
C2211 C2222 C2233 C2212 C2223 C2213
C3311 C3322 C3333 C3312 C3323 C3313
C1211 C1222 C1233 C1212 C1223 C1213
C2311 C2322 C2333 C2312 C2323 C2313
C1311 C1322 C1333 C1312 C1323 C1313




e11
e22
e33
γ12
γ23
γ13

 .
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where γij = 2eij . In the case when the underlaying material is locallyorthotropic, the stiffness matrix reduces to

C =


C1111 C1122 C1133 0 0 0
C2211 C2222 C2233 0 0 0
C3311 C3322 C3333 0 0 0

0 0 0 C1212 0 0
0 0 0 0 C2323 0
0 0 0 0 0 C1313


The inverse of this matrix, called the compliance matrix, is a symmetric matrixof the form

C−1 =



1
E1

−ν12
E2

−ν13
E3

0 0 0
−ν21
E1

1
E2

−ν23
E3

0 0 0
−ν31
E1

−ν32
E2

1
E3

0 0 0
0 0 0 1

G12
0 0

0 0 0 0 1
G23

0
0 0 0 0 0 1

G13


.

Here, ’Ei ’ are the Young’s moduli, ’Gij ’ are the shear moduli and ’νij ’ are thePoisson’s ratios. Inverting this matrix we find that
C1111 = 1− ν23ν32

∆E2E3
, C1122 = ν21 + ν31ν23

∆E2E3
, C1133 = ν31 + ν21ν32

∆E2E3

C2222 = 1− ν13ν31

∆E1E3
, C2233 = ν32 + ν12ν31

∆E1E3
, C3333 = 1− ν12ν21

∆E1E2
(A.10)

C1212 = G12, C2323 = G23, C1313 = G13,

where
∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13

E1E2E3
.

In particular, if the material is isotropic, i.e. when E1 = E2 = E3 = E,
ν12 = ν21 = ν23 = ν32 = ν31 = ν13 = ν and G12 = G23 = G13 = E/2(1 + ν), weobtain that

C = E

(1− 2ν) (1 + ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2 − ν 0 0
0 0 0 0 1

2 − ν 0
0 0 0 0 0 1

2 − ν

 .

Note that if a = a(x) and b = b(x) belong to the space L2(Ω, R3×3)), consistingof all 3 × 3 matrixes with components belonging to L2(Ω), then it is possibleto prove the following version of Schwartz’ inequality (for a proof, see RemarkA.3.2 below):∣∣∣∣∫
Ω
a(x) · Cb(x) dx

∣∣∣∣ ≤ (∫
Ω
a(x) · Ca(x) dx

) 1
2
(∫

Ω
b(x) · Cb(x) dx

) 1
2

, (A.11)
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(which holds even if we drop the symmetry conditions Cijkr = Cjikr = Cijrk).In particular, if C is the identity mapping, i.e. the mapping defined by
cijkr =

{
1 if ij = kr,
0 if ij 6= kr,

we obtain that∣∣∣∣∫
Ω
a(x) · b(x) dx

∣∣∣∣ ≤ (∫
Ω
|a(x)|2 dx

) 1
2
(∫

Ω
|b(x)|2 dx

) 1
2

,

or equivalently,∣∣∣∣∣∣
∫

Ω

∑
ij

aij(x)bij(x) dx

∣∣∣∣∣∣ ≤
∫

Ω

∑
ij

a2
ij(x) dx

 1
2
∫

Ω

∑
ij

b2ij(x) dx

 1
2

. (A.12)

We are now ready to state the following useful result:
Proposition A.3.1. It yields that

a ∗ b =
∫

Ω
a(x) · Cb(x) dx. (A.13)

defines a scalar product on L2(Ω, R3×3)). Use this to prove (A.11).

Proof: A.3.1 In order to prove that ”∗" is a scalar product, we have to provethat for all a, b, c ∈ L2(Ω, R3×3)) and k ∈ R we have that

1. a ∗ b = b ∗ a

2. (ka) ∗ b = k (a ∗ b)

3. (a+ c) ∗ b = a ∗ b+ c ∗ b

4. a ∗ a > 0, if a 6= 0

5. a ∗ a = 0 only if a = 0.
Proof of 1):
a · Cb =

∑
ij

aij (Cb)ij =
∑
ij

aij(
∑
kr

cijkrbkr) =
∑
ij

(
∑
kr

cijkraijbkr) =

∑
kr

∑
ij

(cijkraijbkr) =
∑
kr

bkr
∑
ij

(cijkraij)

=
∑
kr

bkr
∑
ij

(ckrijaij) =
∑
kr

bkr (Ca)kr = b · Ca,
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i.e. a · Cb = b · Ca. Hence,
a ∗ b =

∫
Ω
a(x) · Cb(x) dx =

∫
Ω
b(x) · Ca(x) dx = b ∗ a.

Proof of 2):
(ka) ∗ b =

∫
Ω

(ka) · Cb dx =
∫

Ω

∑
ij

kaij (Cb)ij dx = k

∫
Ω

∑
ij

aij (Cb)ij dx =

k

∫
Ω
a · Cb dx = k (a ∗ b)

Proof of 3):
(a+ c) ∗ b =

∫
Ω

(a+ c) · Cb dx =
∫

Ω

∑
ij

(aij + cij) (Cb)ij dx

=
∫

Ω

∑
ij

aij (Cb)ij dx+
∫

Ω

∑
ij

cij (Cb)ij dx =
∫

Ω
a·Cb dx+

∫
Ω
c·Cb dx = a∗b+c∗b

Proof of 4) and 5): If a 6= 0 then |a| > 0. Using (A.9) we find that
ν1

∫
Ω
|a|2 dx =

∫
Ω
ν1 |a|2 dx ≤

∫
Ω
a · Ca dx ≤

∫
Ω
ν2 |a|2 dx = ν2

∫
Ω
|a|2 dx.

Hence
ν1

∫
Ω
|a|2 dx ≤ a ∗ a ≤ ν2

∫
Ω
|a|2 dx. (A.14)

This shows that a ∗ a = 0 if a = 0. On the other hand, if a 6= 0 then |a| > 0.Hence a ∗ a > 0 by the first inequality of (A.14). This shows that (A.13) defines ascalar product.
Remark A.3.2. Note that (A.11) follows by (A.13) and the general Schwartz inequal-ity,

|a ∗ b| ≤ (a ∗ a)
1
2 (b ∗ b)

1
2 .

A.3.1 Greens formula for elasticity problems
Let v be any vector valued function of the type v = (v1, v2, v3). If vi = vi(x)and each component of the stress matrix σij are sufficiently smooth, and Ω isa domain with sufficiently smooth boundary ∂Ω, we obtain from the Greensformula that∫

Ω
vi div σi dx = −

∫
Ω

(grad vi) · σi dx+
∫
∂Ω
vi (σi · n) ds.

Thus,∫
Ω

v·div σ(u) dx =
∫

Ω
(v1, v2, v3)·(div σ1 ,div σ2,div σ3) dx =

∫
Ω

3∑
i=1

vi div σi dx =
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3∑
i=1

∫
Ω
vi div σi dx =

3∑
i=1

(
−
∫

Ω
(grad vi)σi dx+

∫
∂Ω
vi (σi · n) ds

)
=

−
∫

Ω

3∑
i=1

(grad vi)σi dx+
∫
∂Ω

3∑
i=1

vi (σi · n) ds.

Hence, since
(grad vi) · σi =

(
∂vi
∂x1

,
∂vi
∂x2

,
∂vi
∂x2

)
· (σi1, σi2, σi3) =

3∑
j=1

∂vi
∂xj

σij

and
3∑
i=1

vi (σi · n) =
3∑
i=1

viFi = v · F,

where F is the stress vector on the surface ∂Ω, we find that∫
Ω

v · div σ(u) dx = −
∫

Ω

∑
ij

∂vi
∂xj

σij dx+
∫
∂Ω

v · F(u) ds. (A.15)
Moreover, since ∑

ij

∂vi
∂xj

σij =
∑
ij

∂vj
∂xi

σji

(due to the fact that the sum is not changed if i and j are interchanged), and
σij = σji, it is clear that

e(v) · σ(u) =
∑
ij

eij(v)σij =
∑
ij

1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
σij =

1
2
∑
ij

∂vi
∂xj

σij + 1
2
∑
ij

∂vj
∂xi

σij =
∑
ij

∂vi
∂xj

σji.

Thus, we obtain the following version of the Green formula:∫
Ω

v · div σ(u) dx = −
∫

Ω
e(v) · σ(u) dx+

∫
∂Ω

v · F (u) ds. (A.16)
Another version which also is useful is the following:∫

Ω

∑
ij

vi
∂σij
∂xj

dx = −
∫

Ω

∑
ij

∂vi
∂xj

σij dx+
∫
∂Ω

∑
ij

vi (σijnj) ds, (A.17)
which is valid even if σ is non-symmetric. This identity follows directly from(A.15) by using the facts that∑

ij

vi
∂σij
∂xj

= v · div σ(u) and ∑
ij

vi (σijnj) = v · F.
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A.3.2 Classical formulations of the Dirichlet and Neumann
problems

By (A.7) and (A.8) we obtain that div (Ce(u)) = −f . However, similarly asfor the conductivity problem, this equation does not provide us with enoughinformation to determine the strain e(u) (or the stress σ(u)) uniquely. Inorder to obtain uniqueness, we have to add some information concerning theboundary conditions on u and/or the stress vector F (u).The simplest case is when the elastic body, occupying a domain Ω, is fixedalong its boundary, i.e. when we have the following Dirichlet problem:{
div (Ce(u)) = −f in Ω,

u = 0 on ∂Ω. (A.18)
As we will see, the corresponding weak formulation of this problem gives aunique solution u if we only assume that the components of f belong to L2(Ω).If there are no boundary forces at ∂Ω we have the following Neumannproblem: {

div (Ce(u)) = −f in Ω,
F (u) = 0 on ∂Ω, (A.19)

Also here it turns out that the corresponding weak formulation gives a solution
u if Ω is sufficiently smooth (e.g. Lipschitz continuous), the components of
f belong to L2(Ω) and ∫Ω f · v dx = 0 for every rigid displacement v (fora physical intepretation of the latter property, see Proposition A.3.3 below).However, in contrast to the Dirichlet problem the solution is not unique, since
w = u + v also is a solution for any rigid displacement v. This follows fromthe fact that e(v) = 0 and F (v) = 0, thus e(w) = e(u + v) = e(u) and
F (w) = F (u + v) = F (u), which shows that div (Ce(w)) = −f in Ω and
F (w) = 0 on ∂Ω. In order to obtain a unique solution we have to search ina function space which do not contain any rigid displacements (except the zerodisplacement, which must be present since any vector space must contain the0-vector). We will come back to this issue. Next, we state the following:
Proposition A.3.3. The condition

∫
Ω f · v dx = 0, for every rigid displacement

v, simply means that the resultant force in each direction Fi =
∫

Ω fidx and the
resultant momentsM1 =

∫
Ω (x3f2 − x2f3) dx, M2 =

∫
Ω (x3f1 − x1f3) dx, M3 =∫

Ω (−x2f1 + x1f2) dx, applied to whole domain Ω, are all equal 0.

Proof Assume that ∫Ω f · v dx = 0 for all rigid displacements. Let v =
(v1, v2, v3) be a rigid displacement, i.e. of the form v1(x)

v2(x)
v3(x)

 =

 0 b12 b13
−b12 0 b23
−b13 −b23 0

 x1
x2
x3

+

 c1
c2
c3

 .
Setting c1 = 1 and all other constants equal to zero, i.e. v = v1 = (1, 0, 0), weobtain that ∫

Ω
f · v dx =

∫
Ω

(f1, f2, f3) · (1, 0, 0) dx =
∫

Ω
f1(x) dx,
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which shows that F1 =
∫

Ω f1(x) dx = 0. Similarly, we obtain that F2 =∫
Ω f2(x) dx = 0 and F3 =

∫
Ω f3(x) dx = 0.Setting e.g. b23 = 1 and all other constants equal to zero, i.e. v = v23 =

(0, x3,−x1), we obtain that∫
Ω

f · v dx =
∫

Ω
(f1, f2, f3) · (0, x3,−x1) dx =

∫
Ω
x3f2 − x1f3 dx.

Hence,M1 =
∫

Ω (x3f2 − x2f3) dx = 0. Similarly, by first setting b13 = 1 (and allother constants equal to zero), and next setting b12 = 1 (and all other constantsequal to zero) we obtain thatM2 = 0 andM3 = 0.Conversally, assume that the resultant forces and moments are zero. Let
v1, v2, v3, v12, v13, v23 denote the six rigid displacements considered above. Itis clear that any rigid displacement can be written in the form

v = c1v1 + c2v2 + c3v3 + b12v12 + b13v13 + b23v23.

Hence,∫
Ω

f · v dx =
∫

Ω
f · (c1v1 + c2v2 + c3v3 + b12v12 + b13v13 + b23v23) dx =

c1

∫
Ω

f · v1 dx+ c2

∫
Ω

f · v2 dx+ c3

∫
Ω

f · v3 dx+

b12

∫
Ω

f · v12 dx+ b13

∫
Ω

f · v13 dx+ b23

∫
Ω

f · v23 dx =

c1F1 + c2F2 + c3F3 + b12M3 + b13M2 + b23M1 = 0.

Therefore, ∫Ω f ·v dx = 0 for any rigid displacement v. This completes the proofthat the two statements are equivalent.Next we present the following example of application of Proposition A.3.3:
Proposition A.3.4. A flywheel is a rotating mass used to store energy mechanically
in the form of kinetic energy. Figure A.1 shows an example of a flywheel occupying a
domain Ω and rotating around the x3-axis. We assume that there are no boundary
forces present. Moreover, the density function f (the centrifugal force) points in the
radial direction with magnitude proposional to the distance from the x3-axis. More
precizely,

f(x) = (f1(x), f2(x), f3(x)) = (ω2ρx1, ω
2ρx2, 0),

where ω is the angular velocity and ρ is the density of the material. Then f
satisfies the conditions required to obtain a solution of the corresponding Neumann
problem.

Proof We see that fi(x) is bounded (i.e. fi(x) ≤ C < ∞ for some constant
C). Hence∫

Ω
f2
i (x) dx ≤

∫
Ω
C2 dx = C2

∫
Ω

1dx = C2(volume of Ω) <∞,
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Figure A.1: A flywheel occupying a domain Ω.

which shows that fi belongs to L2(Ω). In order to prove that ∫Ω f · v dx = 0 forevery rigid displacement v, it is enough to show that the resultant forces andmoments are zero (according to Proposition A.3.3). Due to the fact that Ω issymmetric in the x1-direction, and f1(x) is anti-symmetric in the x1-direction, itfollows thatF1 =
∫

Ω f1(x) dx = 0. Similarly we obtain thatF2 =
∫

Ω f2(x) dx = 0.The fact that F3 =
∫

Ω f3(x) dx = 0 is trivial. Of the same symmetry-reasons wefind that
M1 =

∫
Ω

(x3f2 − x2f3) dx = ω2ρ

∫
Ω
x3x2 dx = 0,

and
M2 =

∫
Ω

(x3f1 − x1f3) dx = ω2ρ

∫
Ω
x3x1 dx = 0.

Moreover, we obtain that
M3 =

∫
Ω

(−x2f1 + x1f2) dx =
∫

Ω

(
−x2ω

2ρx1 + x1ω
2ρx2

)︸ ︷︷ ︸
= 0

dx = 0.

This show that f satisfies the conditions required to obtain a solution of thecorresponding Neumann problem.
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A.3.3 Weak formulation of the Dirichlet problem
Let L2(Ω), W1,2(Ω), W1,2

0 (Ω), W1,2
per(Y ) denote the spaces of vector valued

functions u = (u1, u2, u3) with components in L2(Ω), W 1,2(Ω), W 1,2
0 (Ω),

W 1,2
per(Y ), respectively. The scalar product in these spaces are defined by

u ? v = (u1, u2, u3)?(v1, v2, v3) = u1 ∗ v1 + u2 ∗ v2 + u3 ∗ v3,

where "∗" on the right side denotes the scalar product between the compo-nents, which has been defined previously. Thus, the norm ‖u‖ is given by

‖u‖ =
( 3∑
i=1
‖ui‖2

) 1
2

.

More precisely, the norm in L2(Ω) is given by

‖u‖L2 =
( 3∑
i=1
‖ui‖2L2

) 1
2

=
( 3∑
i=1

∫
Ω
u2
i dx

) 1
2

=
(∫

Ω

3∑
i=1

u2
i dx

) 1
2

=
(∫

Ω
|u|2 dx

) 1
2

and the norm in the W-spaces is given by

‖u‖W1,2 =
( 3∑
i=1
‖ui‖2W 1,2

) 1
2

=

 3∑
j=1

(∫
Ω
u2
i dx+

3∑
i=1

∫
Ω

(
∂ui
∂xj

)2
dx

) 1
2

=

∫
Ω

3∑
j=1

u2
i dx+

∑
ij

∫
Ω

(
∂ui
∂xj

)2
dx

 1
2

=

∫
Ω
|u|2 dx+

∑
ij

(∫
Ω

(
∂ui
∂xj

)2
dx

) 1
2

.

Similarly as above we let C∞(Ω) and C∞0 (Ω) denote the spaces of vectorvalued functions u = (u1, u2, u3) with components in C∞(Ω) and C∞0 (Ω), re-spectively. Since we already know that Sobolev-functions can be approximatedby smooth functions in the scalar case, it is clear that this also is true in thevector-valued case.Assume that f ∈ L2(Ω). Bymuliplying both sides of the above equation withan arbitrary vector function v ∈W1,2
0 (Ω), and next integrating, we obtain that∫

Ω
v · div σ(u) dx = −

∫
Ω

v · f dx. (A.20)
By using Greens formula we find that∫

Ω
v · div σ(u) dx = −

∫
Ω
e(v) · σ(u) dx+

∫
∂Ω

v · F (u) ds︸ ︷︷ ︸
= 0, since v=0 on ∂Ω

= −
∫

Ω
e(v) · σ(u) dx = −

∫
Ω
e(v) · Ce(u) dx.
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Thus, (A.20) gives that ∫
Ω
e(v) · Ce(u) dx =

∫
Ω

v · f dx. (A.21)
Hence, the weak formulation of (A.18) takes the following form: Find
u ∈W1,2

0 (Ω) such that
a(u,v) = L(v) for all v ∈W1,2

0 (Ω), (A.22)
where

a(u,v) =
∫

Ω
e(v) · Ce(u) dx, L(v) =

∫
Ω

v · f dx.

We are now ready to state our next result.
Proposition A.3.5. It yields that a(u,v) =

∫
Ω e(v) ·Ce(u) dx defines a symmetric

bilinear form.

Proof It is clear that e(·) is a linear transformation, i.e. that e(u + v) =
e(u) + e(v) and e(kv) = ke(v), for all u,v ∈W1,2(Ω) and k ∈ R. Moreover,due to the fact that (A.13) defines a scalar product ∗, we know that
a(u,v) =

∫
Ω
e(v)·Ce(u) dx = e(v)∗e(u) = e(u)∗e(v) =

∫
Ω
e(u)·Ce(v) dx = a(v,u).

Hence, a(u,v) is symmetric. Similarly, we obtain that
a(u + v,w) =

∫
Ω
e(u + v)·Ce(w) dx = e(w)∗e(u + v) = e(w)∗(e(u) + e(v)) =

e(w)∗e(u)+e(w)∗e(v) =
∫

Ω
e(w)·Ce(u) dx+

∫
Ω
e(w)·Ce(v) dx = a(u,w)+a(v,w),

and
a(kv,w) =

∫
Ω
e(w)·Ce(kv) dx = e(w)∗e(kv) = e(w)∗(ke(v)) = k (e(w) ∗ e(v)) =

k

∫
Ω
e(w) · Ce(v) dx = ka(v,w).

This proves the linearity of a(u,v) in the first variable. The linearity of a(u,v) inthe second variable follows by the fact that a(u,v) is symmetric.By Proposition A.3.5 we observe that a(u,v) satisfies condition 1) in theabstract theory formulated in Theorem A.2.2 and Theorem A.2.3. Let us showthat a(u,v) and L(v) also satisfy the remaining conditions 2), 3), and 4). Forsimplicity we let ‖·‖ denotes the norm ‖·‖W1,2 . For the proof of condition 2) let
ϕ ∈W1,2(Ω). By (A.12) and the fact that∑

ij

(∂ϕi
∂xj

)2 =
∑
ij

(∂ϕj
∂xi

)2,
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(due to the fact that the sum is not changed if i and j are interchanged) weobtain that ∫
Ω

∑
ij

(∂ϕi
∂xj

∂ϕj
∂xi

) dx ≤

∫
Ω

∑
ij

(∂ϕi
∂xj

)2 dx

 1
2
∫

Ω

∑
ij

(∂ϕj
∂xi

)2 dx

 1
2

=
∫

Ω

∑
ij

(∂ϕi
∂xj

)2 dx.

Thus, ∫
Ω
|e(ϕ)|2 dx = 1

4

∫
Ω

∑
ij

(∂ϕi
∂xj

+ ∂ϕj
∂xi

)2 dx =

1
2

∫
Ω

∑
ij

(∂ϕi
∂xj

)2 dx+ 1
2

∫
Ω

∑
ij

(∂ϕi
∂xj

∂ϕj
∂xi

) dx (A.23)

≤ 1
2

∫
Ω

∑
ij

(∂ϕi
∂xj

)2 dx+ 1
2

∫
Ω

∑
ij

(∂ϕi
∂xj

)2 dx =
∫

Ω

∑
ij

(∂ϕi
∂xj

)2 dx,

i.e. ∫
Ω
|e(ϕ)|2 dx ≤

∫
Ω

∑
ij

(∂ϕi
∂xj

)2 dx. (A.24)
Moreover, by (A.11), (A.9) and (A.24) we obtain that

|a(u,v)| ≤
(∫

Ω
e(u) · Ce(u) dx

) 1
2
(∫

Ω
e(v) · Ce(v) dx

) 1
2

≤

(
ν2

∫
Ω
e(u) · e(u) dx

) 1
2
(
ν2

∫
Ω
e(v) · e(v) dx

) 1
2

=

ν2

(∫
Ω
|e(u)|2 dx

) 1
2
(∫

Ω
|e(v)|2 dx

) 1
2

≤

ν2

∫
Ω

∑
ij

( ∂ui
∂xj

)2 dx

 1
2
∫

Ω

∑
ij

( ∂vi
∂xj

)2 dx

 1
2

≤

ν2

∫
Ω
|u|2 dx+

∫
Ω

∑
ij

( ∂ui
∂xj

)2 dx

 1
2
∫

Ω
|v|2 dx+

∫
Ω

∑
ij

( ∂vi
∂xj

)2 dx

 1
2

= ν2 ‖u‖ ‖v‖ ,

i.e.
|a(u,v)| ≤ ν2 ‖u‖ ‖v‖ , (A.25)

which proves condition 2).
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For the proof of condition 3) we let we ϕ ∈ C∞0 (Ω) and use the Greenformula∫
Ω

∑
ij

vi
∂σij
∂xj

dx = −
∫

Ω

∑
ij

∂vi
∂xj

σij dx+
∫
∂Ω

∑
ij

vi (σijnj) ds,

(see (A.17)) first with vi = ϕi and σij = ∂ϕj/∂xi, next with vi = ∂ϕi/∂xi and
σij = ϕj . This yield the two equations∫

Ω

∑
ij

ϕi
∂ (∂ϕj/∂xi)

∂xj
dx = −

∫
Ω

∑
ij

∂ϕi
∂xj

∂ϕj
∂xi

dx+
∫
∂Ω

∑
ij

ϕi

(
∂ϕj
∂xi

nj

)
ds︸ ︷︷ ︸

= 0, since ϕi=0 on ∂Ω

,

∫
Ω

∑
ij

∂ϕi
∂xi

∂ϕj
∂xj

dx = −
∫

Ω

∑
ij

∂ (∂ϕi/∂xi)
∂xj

ϕj dx+
∫
∂Ω

∑
ij

∂ϕi
∂xi

(ϕjnj) ds︸ ︷︷ ︸
= 0, since ϕi=0 on ∂Ω

,

which, by using the fact that
∂ (∂ϕj/∂xi)

∂xj
= ∂ (∂ϕj/∂xj)

∂xi
,

reduce to the equations∫
Ω

∑
ij

ϕi
∂ (∂ϕj/∂xj)

∂xi
dx = −

∫
Ω

∑
ij

∂ϕi
∂xj

∂ϕj
∂xi

dx,

and ∫
Ω

∑
ij

ϕj
∂ (∂ϕi/∂xi)

∂xj
dx = −

∫
Ω

∑
ij

∂ϕi
∂xi

∂ϕj
∂xj

dx.

Observing that the left sides of these equations are identical, we obtain thatright sides also are identical, i.e. that∫
Ω

∑
ij

∂ϕi
∂xj

∂ϕj
∂xi

dx =
∫

Ω

∑
ij

∂ϕi
∂xi

∂ϕj
∂xj

dx.

Now, using that∑
ij

∂ϕi
∂xi

∂ϕj
∂xj

= (∂ϕ1

∂x1
+ ∂ϕ2

∂x2
+ ∂ϕ3

∂x3
)2 = (divϕ)2

,

the last identity and (A.23) we find that∫
Ω
|e(ϕ)|2 dx = 1

2

∫
Ω

∑
ij

(∂ϕi
∂xj

)2 dx+ 1
2

∫
Ω

∑
ij

(∂ϕi
∂xj

∂ϕj
∂xi

) dx =
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1
2

∫
Ω

∑
ij

(∂ϕi
∂xj

)2 dx+ 1
2

∫
Ω

(divϕ)2
dx ≥ 1

2

∫
Ω

∑
ij

(∂ϕi
∂xj

)2 dx =

1
2

∫
Ω

3∑
i=1
|gradϕi|2 dx = 1

2

3∑
i=1

∫
Ω
|gradϕi|2 dx ≥

1
2

1
C0 + 1

3∑
i=1
‖ϕi‖2W 1,2 = 1

2
1

C0 + 1 ‖ϕ‖
2
,

where C0 is a positive constant (the last inequality is due to Friedrich’s inequal-ity), i.e. ∫
Ω
|e(ϕ)|2 dx ≥ 1

2
1

C0 + 1 ‖ϕ‖
2
.

Using (A.9) we therefore obtain that
a(ϕ,ϕ) =

∫
Ω
e(ϕ) · Ce(ϕ) dx ≥ ν1

∫
Ω
|e(ϕ)|2 dx ≥ 1

2
ν1

C0 + 1 ‖ϕ‖
2
. (A.26)

Now, if u ∈ W1,2(Ω), then we can find functions ϕh ∈ C∞0 (Ω) such that
‖u− ϕh‖ → 0 as h→∞. Since (A.26) holds if ϕ is replaced by ϕh, i.e.,

a(ϕh, ϕh) ≥ 1
2

ν1

C0 + 1 ‖ϕh‖
2

we obtain that
a(u,u) ≥ 1

2
ν1

C0 + 1 ‖u‖
2
,

from the the convergences ‖ϕh‖ → ‖u‖ and a(ϕh, ϕh) → a(u,u). Hence,in order to complete the proof of condition 3) it just remains to prove theseconvergences. For the proof that ‖ϕh‖ → ‖u‖, we just use the reverse triangleinequality
|‖u‖ − ‖ϕh‖| ≤ ‖u− ϕh‖ .

In the same way we obtain that ‖u + ϕh‖ → 2 ‖u‖ (just use that
|‖2u‖ − ‖u + ϕh‖| ≤ ‖2u− (u + ϕh)‖ = ‖u− ϕh‖ → 0)

Hence,

|a(ϕh, ϕh)− a(u,u)| =

∣∣∣∣∣∣∣a(ϕh, ϕh) + a(ϕh,u)− a(u, ϕh)︸ ︷︷ ︸
= 0, due to symmetry

− a(u,u)

∣∣∣∣∣∣∣ =

|a(ϕh − u, ϕh + u)| ≤ ν2 ‖ϕh − u‖ ‖ϕh + u‖ → ν2 · 0 · 2 ‖u‖ = 0,
where the last inequality follows from (A.25). Hence, a(ϕh, ϕh)→ a(u,u).For the prove of condition 4) we use the Schwartz inequality and obtain that

|L(v)|=
∣∣∣∣∫

Ω
v · f dx

∣∣∣∣ ≤ (∣∣∣∣∫
Ω
|v|2 dx

∣∣∣∣) 1
2
(∣∣∣∣∫

Ω
|f |2 dx

∣∣∣∣) 1
2

≤
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∫
Ω
|v|2 dx+

∑
ij

(∫
Ω

(
∂vi
∂xj

)2
dx

) 1
2 (∣∣∣∣∫

Ω
|f |2 dx

∣∣∣∣) 1
2

= ‖v‖
(∣∣∣∣∫

Ω
|f |2 dx

∣∣∣∣) 1
2

.

Hence,.
|L(v)| ≤ Λ ‖v‖ ,

where
Λ =

(∣∣∣∣∫
Ω
|f |2 dx

∣∣∣∣) 1
2

.

This proves condition 4.
A.3.4 Weak formulation of the Neumann problem
Similarly as we use the Poincaré inequality in the proof of the coercivity for theconductivity problemwith Neumann boundary conditions, we use the so-calledKorn’s inequality in case of the elasticity problems. It takes the following form:∫

Ω
|e(ϕ)|2 dx ≥ c0 ‖ϕ‖2W1,2 , (A.27)

where c0 is some positive constant.However, it is easy to see that this inequalityis not valid in the whole spaceW1,2(Ω). For example, for any rigid displacement
ϕ (e.g. a constant vector), we have that e(ϕ) = 0, so (A.27) is clearly violated if
ϕ is a non-zero rigid displacement. On the other hand, it is possible to provethat if Ω be a bounded domain with Lipschitz continuous boundary and V isa closed (i.e. a complete) subspace of W1,2(Ω) that does not contain any rigiddisplacements except 0, then there exists a constant c0 > 0 such that (A.27)holds for all ϕ ∈ V.In almost the same way as we derived (A.22) we obtain the following weakformulation of the Neumann problem: Find u ∈W1,2

0 (Ω) such that
a(u,v) = L(v) for all v ∈W1,2(Ω), (A.28)

where a(u,v) and L(v) are given above. LetR denote the subspace of all rigiddisplacements and let V be the subspace
V =

{
ϕ ∈W1,2(Ω):

∫
Ω
ϕ · r dx = 0 for all r ∈ R

}
. (A.29)

It is clear that V does not contain any rigid displacements except 0. We havealready proved that a(u,v) and L(v) satisfy the conditions 1), 2) and 4) forall u,v ∈W1,2(Ω), hence, also for all u,v ∈ V. Moreover, by (A.9) and Korn’sinequality (A.27) we have that
a(ϕ,ϕ) =

∫
Ω
e(ϕ) · Ce(ϕ) dx ≥ ν1

∫
Ω
|e(ϕ)|2 dx ≥ ν1c0 ‖ϕ‖2W1,2 .
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for all ϕ ∈ V, which shows that condition 3) in Lax-Milgrams lemma is fullfilled.Hence, the problem
a(u,v) = L(v) for all v ∈ V, (A.30)

admits a unique solution u in V. It remains to prove that this solution also is asolution to the problem (A.28) provided that
L(r) = 0 (A.31)

for all r ∈ R. From (A.5) we see that R is a 6-dimensional space. It is easy tofind a basis for this space (v1, ...,v6) which is orthonormal with respect to thescalar product in L2(Ω) given by ϕ∗v =
∫

Ω ϕ · v dx. If ϕ ∈W1,2(Ω) we let ϕRdenote the orthogonal projection of ϕ ontoR, i.e. the function
ϕR =

6∑
i=1

(ϕ ∗ vi) vi.

Clearly, the function v = ϕ−ϕR belongs toV. Inserting this function into (A.30)we obtain that
a(u, ϕ)− a(u, ϕR) = L(ϕ)− L(ϕR)

for all v ∈W1,2(Ω). Since L(ϕR) = 0 by (A.31) and
a(u, ϕR) =

∫
Ω
e(ϕR)︸ ︷︷ ︸

= 0

· Ce(u) dx = 0,

this shows that
a(u, ϕ) =L(ϕ).

Hence, u is a solution of the problem (A.28). We complete this subsection withthe following useful information about the space V defined by (A.29):
Proposition A.3.6. The space V defined by (A.29) defines a closed subspace of
W1,2(Ω) so that, in particular, V is a Hilbert space with respect to the norm ‖‖W1,2 .

Proof: Let u,v ∈ V and let k ∈ R. Then,∫
Ω

(u + v) · r dx =
∫

Ω
u · r dx+

∫
Ω

v · r dx = 0

and ∫
Ω
ku · r dx = k

∫
Ω

u · r dx = 0

for all r ∈ R.Hence, u+v ∈ V and ku ∈ V. This shows thatV is a vector space.In order to see that V is closed in W1,2(Ω), let ϕh ∈ V such that ϕh → ϕ in
W1,2(Ω). We only have to show that ϕ ∈ V. By the Schwartz inequality,∣∣∣∣∫

Ω
(ϕ− ϕh) · r dx

∣∣∣∣ ≤ (∣∣∣∣∫
Ω
|ϕ− ϕh|

2
dx

∣∣∣∣) 1
2
(∣∣∣∣∫

Ω
|r|2 dx

∣∣∣∣) 1
2

38



On the Sobolev norm in Rn

≤ ‖ϕ− ϕh‖
2
(∣∣∣∣∫

Ω
|r|2 dx

∣∣∣∣) 1
2

→ 0,

i.e. ∫
Ω

(ϕ− ϕh) · r dx→ 0.

Hence,∫
Ω
ϕ · r dx =

∫
Ω
ϕ · r dx−

∫
Ω
ϕh · r dx︸ ︷︷ ︸

= 0, since ϕh∈V

=
∫

Ω
(ϕ− ϕh) · r dx→ 0,

which shows that ∫Ω ϕ · r dx = 0, i.e. ϕ ∈ V. This completes the proof that V isclosed in W1,2(Ω).

A.4 On the Sobolev norm in Rn

Let Ω ⊂ Rn be an open set and letHm(Ω) denote the usual Sobolev space withnorm ‖·‖ given by
‖u‖2 = ‖u‖22 +

m∑
r=1
‖Dru‖22 ,

where ‖·‖2 is the L2(Ω)-norm and Dru denotes the vector {Dαu}|α|=r . Werecall that Ω is called an open extension domain if there exists a bounded linearoperator F : Hm(Ω) → Hm(Rn) such that F (u)|Ω = u for all u ∈ Hm(Ω) (seee.g. [10, p. 63]). For example, if Ω is open and bounded with sufficiently smoothboundary (e.g. Lipschitz) it turns out to be of this type. It is possible to show(c.f. [10, p. 183]) that for any bounded open extension domain Ω, ε > 0 and
1 ≤ |α| ≤ m− 1, there exists a positive constant C(ε) <∞ such that

‖Dαu‖2 ≤ C(ε) ‖u‖2 + ε ‖Dmu‖2 (A.32)
for all u ∈ Hm(Ω). The purpose of this section is to show that this inequalityholds even for Ω = Rn.

Theorem A.4.1. The inequality (A.32) holds for all u ∈ Hm(Rn).

Proof. We may assume that 0 ≤ ε ≤ 1 (otherwise, just let C(ε) be equal tothat valid for the case ε = 1). If 0 < p ≤ q − 1, and x > 0 then the followinginequality holds
xp ≤ εxq + 1

εq−1 . (A.33)
This follows by observing that the the left side is less than the right side for
x ≤ 1/ε and that the same holds for its derivatives for x ≥ 1/ε.For all u ∈ L2(Rn) the Fourier transform Fu(ξ) = û(ξ) is given by

û (ξ) = 1
(2π)

n
2

∫
Rn

u (x) e−ixξdx, for all ξ ∈ Rn,
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where xξ is the scalar product of x with ξ. The Plancherel equation implies that
‖u‖22 = ‖Fu‖22 =

∫
Rn

|û (ξ)|2 dξ (A.34)
Replacing u withDβu in (A.34) and using the formula

F
(
Dβu

)
= i|β|ξβF (u) , (A.35)

where ξβ denotes the number ξβ1
1 · · · ξβn

n , we obtain that∥∥Dβu
∥∥2

2 =
∥∥F (Dβu

)∥∥2
2 =

∫
Rn

∣∣ξβ û (ξ)
∣∣2 dξ. (A.36)

We note that (A.35) and (A.36) are valid as long as |β| ≤ m and u ∈ Hm(Rn).Let |α| = r and let α[0], α[1], ..α[n] and β[1], ..β[n] be the multi-indices definedby α[0] = α, α[1] = (0, α2, α3, ...αn), α[2] = (0, 0, α3, ...αn) ,...α[n] = (0, 0, ..., 0)and β[1] = (α1 +m− r, α2, α3, ...αn) , β[2] = (0, α1 + α2 +m− r, α3, ..., αn),...
β[n] = (0, 0, , ..., 0,

∑n
k=1 αk +m− r) .Note that for each j themulti-indicesα[j],

α[j+1] and β[j+1] are equal except for the j + 1-th component which is
α

[j]
j+1 = αj+1, α[j+1]

j+1 = 0 and β[j+1]
j+1 =

(
j+1∑
k=1

αk

)
+m− r ≤ m,

respectively. This implies that
ξα

[j]
= ξα

[j+1]
ξ
α

[j]
j+1

j+1 and ξβ[j+1]
= ξα

[j+1]
ξ
β

[j+1]
j+1
j+1 . (A.37)

Replacing x with |ξj+1|, p with α[j]
j+1 and q with β[j+1]

j+1 in (A.33), we obtain that∣∣∣∣ξα[j]
j+1

j+1

∣∣∣∣ ≤ ε ∣∣∣∣ξβ[j]
j+1
j+1

∣∣∣∣+ 1

εβ
[j+1]
j+1 −1

≤ ε
∣∣∣∣ξβ[j]

j+1
j+1

∣∣∣∣+ 1
εm−1 .

Multiplying this inequality with ∣∣∣ξα[j+1]
∣∣∣

we obtain from (A.37) that∣∣∣ξα[j]
∣∣∣ ≤ ε ∣∣∣ξβ[j+1]

∣∣∣+
∣∣∣ξα[j+1]

∣∣∣ 1
εm−1 . (A.38)

Let aj+1 = mj . Replacing ε with εaj+1 in (A.38) and using that(
εm

j
)m−1

= εm
j+1

εmj

we obtain that ∣∣∣ξα[j]
∣∣∣ ≤ εmj

∣∣∣ξβ[j+1]
∣∣∣+
∣∣∣ξα[j+1]

∣∣∣ εm
j

εmj+1 ,
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i.e.
1
εmj

∣∣∣ξα[j]
∣∣∣ ≤ ∣∣∣ξβ[j+1]

∣∣∣+ 1
εmj+1

∣∣∣ξα[j+1]
∣∣∣ .

Iterative use of this inequality gives that
1
εm0

∣∣∣ξα[0]
∣∣∣ ≤ ∣∣∣ξβ[1]

∣∣∣+ 1
εm1

∣∣∣ξα[1]
∣∣∣

≤
∣∣∣ξβ[1]

∣∣∣+
∣∣∣ξβ[2]

∣∣∣+ 1
εm2

∣∣∣ξα[2]
∣∣∣ ≤ ∣∣∣ξβ[1]

∣∣∣+
∣∣∣ξβ[2]

∣∣∣+
∣∣∣ξβ[3]

∣∣∣+ 1
εm3

∣∣∣ξα[3]
∣∣∣ ≤ ....

≤
n∑
j=1

∣∣∣ξβ[j]
∣∣∣+ 1

εmn

∣∣∣ξα[n]
∣∣∣ .

Thus, using that ∣∣α[n]
∣∣ = 0, we obtain that
|ξα| =

∣∣∣ξα[0]
∣∣∣ ≤ ε n∑

j=1

∣∣∣ξβ[j]
∣∣∣+ 1

εmn−1

Bymultiplying both sides with û (ξ)we obtain by integration and theMinkowskiinequality that
‖ξαû (ξ)‖2 ≤ ε

n∑
j=1

∥∥∥ξβ[j]
û (ξ)

∥∥∥
2

+ 1
εmn−1 ‖û (ξ)‖2

Hence, using (A.34) and (A.36) (with β = β[j] and β = α) gives that
‖Dαu‖2 = ‖ξαû (ξ)‖2 ≤ ε

n∑
j=1

∥∥∥Dβ[j]
u
∥∥∥

2
+ 1
εmn−1 ‖u‖2 .

Accordingly, the Jensen inequality
1
n

n∑
j=1
|ai| ≤

 1
n

n∑
j=1
|ai|2

 1
2

together with the fact that ∣∣β[j]
∣∣ = m, implies that

‖Dαu‖2 ≤ ε
√
n ‖Dmu‖2 + 1

εmn−1 ‖u‖2 .

By replacing ε with ε/√n, we obtain that (A.32) holds for all u ∈ Hm(Rn). Theproof is complete.
Corollary A.4.2. It holds that

1√
s
‖u‖2 ≤

∫
R

u2dx+
∫
R

∣∣∣∣dsudxs
∣∣∣∣2 dx,

for all u ∈ Hs(R).
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Corollary A.4.2 follows from Theorem A.4.1. However, it can be proved inde-pendently by even easier arguments than for the general case. We thereforeoutline some details above its proof. which are of independent interest. Theideas are basically obtained from [5] with some small changes for pedagogicalpurposes.
Proof. We can find a sequence of smooth functions {ϕm} , converging to uwhere ϕm has support in the interval (−πm, πm) . These functions have Fourierseries representation of the form

ϕm(x) = a0,m

2 +
∞∑
l=1

al,m cos
(
l

m
x

)
+ bl,j sin

(
l

m
x

)
.

Let r ≤ s be a fixed integer. By differentiating we obtain that drϕm(x)/dxr hasa similar series representation with Fourier coefficients of magnitude
al,m

(
l

m

)r and bl,m
(
l

m

)r
.

Parseval’s theorem applied to the corresponding series gives that
1

2πm

∫ πm

−πm
(ϕm(x))2

dx =
(a0,m

2

)2
+
∞∑
l=1

c2l,m

and
1

2πm

∫ πm

−πm

(
drϕm(x)
dxr

)2
dx =

∞∑
l=1

(
l

m

)2r
c2l,m, (A.39)

where
c2l,j =

(al,j
2

)2
+
(
bl,j
2

)2
.

According to our assumtion r ≤ s. Thus we see, by adding the two inequalities,that
m∑
l=1

(
l

m

)2r
c2l,j ≤

m∑
l=1

(
l

m

)2s
c2l,j ≤

∞∑
l=1

(
l

m

)2s
c2l,j = 1

2πm

∫ πm

−πm

(
dsϕm(x)
dxs

)2
dx

and
∞∑

l=m+1

(
l

m

)2r
c2l,j ≤

∞∑
l=m+1

c2l,j ≤
∞∑
l=1

c2l,j ≤
1

2πm

∫ πm

−πm
(ϕm(x))2

dx,

so we obtain from (A.39) that∫ πm

−πm

(
drϕm(x)
dxr

)2
dx ≤

∫ πm

−πm
(ϕm(x))2 +

(
dsϕj(x)
dxs

)2
dx.
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Since ϕj has support in the interval (−πm, πm) , this gives that∫
R

(
drϕm(x)
dxr

)2
dx ≤

∫
R

(ϕm(x))2 +
(
dsϕm(x)
dxs

)2
dx. (A.40)

Using thatϕm → u inHs(R)wefind thatϕm and drϕm/dxr converges (inL2(R))to u and dru/dxr, respectively. Hence, it follows from (A.40) that∫
R

(
dru(x)
dxr

)2
dx ≤

∫
R

(u(x))2 +
(
dsu(x)
dxs

)2
dx.

Thus, ∫
R

u2dx+
s∑
r=1

∫
R

∣∣∣∣drudxr
∣∣∣∣2 dx ≤ s∫

R

(u(x))2 +
(
dsu(x)
dxs

)2
dx,

i.e.
‖u‖2 ≤ s ‖u‖21

and the proof follows.
Remark A.4.3. The above result shows that the norm ‖·‖∗ given by

‖u‖2∗ = ‖u‖22 + ‖Dmu‖22

is equivalent to ‖·‖ onHm(Rn).

A.5 Beams resting on nonlinear foundation

Let us now investigate the case of a straight beam of stiffness EI resting onsome nonlinear elastic foundation. We assume that the beam is subjected toa distributed force q(x) from above (an illustration is found in Figure A.2). Theletter y stands for the vertical deflection of the beam downwards. The slope
tan θ = dy/dx, is approximately equal to the angle of the slope θ, since we areassuming small deflection. Moreover, we only assume that vertical forces aretransmitted between the beam and the foundation. In addition, we ignore anyresultant tensile force in the beam. The function p = [p(y)] (x) denotes thedistributed load between the beam and the foundation and we assume that itis purely dependent of the deflection y(x). The linear model assumes a relationof the form p(y) = ky,where k is called themodulus of the foundation. Most ofthe previous analysis is based on this simplified model. In this paper we relaxthe linearity assumption. A much weaker assumption is to assume that

H(r)H(s)C1 (r − s)2 ≤ (p(r)− p(s)) (r − s) ≤ C2 (r − s)2 (A.41)
for some constantsC1, C2 ∈ 〈0,∞〉 for all r, s ∈ R.Here,H is the Heaviside stepfunction (which is zero for negative arguments and 1 for positive arguments).
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Figure A.2: Straight beam resting on an elastic foundation and subjected tosome distributed force q(x).

This criteria covers several interesting cases of practical importance. In the caseof rail bending, for example, experimental data indicates a cubic relation of theform p(y) = H(y)
(
k0y + k1y

3) , (see [4]), where k0 and k1 are positive constants.The presence of the Heaviside step function is often ignored, due to the factthat it makes the analysis more complicated. However, from a practical pointof view it is hard to explain why we ignore the fact that there are obviouslyno negative forces preventing the beam from being separated (lifted) fromthe foundation. This important obstacle with previous models of the problemhas never been discussed previously, not even in the paper [5]. The problemwith this generalization is that the corresponding partial differential operatorsdoes not satisfy the monotonicity assumption above. This makes the analysismuch harder. There are ways to overcome this hindrance, but for the sake oflimitation we will use the following more strict assumption on p:
C1 (r − s)2 ≤ (p(r)− p(s)) (r − s) ≤ C2 (r − s)2 (A.42)

In order to let the empirical formula p(y) = H(y)
(
k0y + k1y

3) fit our setting,we may replace H(y) by 1 and modify p(y) such that the expression becomeslinear for |y| ≥ r0 for a sufficiently large constant r0 > 0, e.g. by putting

p(y) =


0 for y < 0,

k0y + k1y
3 for 0 ≤ y ≤ r0,

p(r0)
r0

y for y > r0.

Replacing H(y) by 1 is certainly questionable, but necessary if to ensuremonotonicity. The last simplification is easier to except since we from experi-ence know that too large deflections can not happen before the beam structurecollapses of other reasons. In Figure A.2 we have illustrated an infinitely smallbeamelement enclosed between two vertical cross sections of distance dx fromeach other.The shear forceQ is often considered to be positive if it is acting upward onthe left side of the element. The momentM is considered to be positive if it isclockwise on the left side of the element. Using that the anticlockwise moment
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M+dM is equal to the sum of clockwise moments about any point on the rightside of the element, we obtain that
M + dM = M +Qdx+ (p(y)− q)dx1

2 (dx)2
.

By using that the resultant force is zero in the vertical direction we obtain
Q+ p(y)dx = Q+ dQ+ qdx.

Thus,
dM

dx
= Q and dQ

dx
= p(y)− q.

Accordingly, it yields that
d2M

dx2 = p(y)− q (A.43)
Using the beam bending equation

M = −EI
(
d2y

dx2

)
(A.44)

(valid for small deformations) this gives us the following fourth order equation
d2

dx2

(
EI

d2y

dx2

)
= −p(y) + q. (A.45)

Note that this equation is valid in regions free from concentrated forces andmoments only. Moreover, it is assumed that EI is a smooth function of x.Let us consider a single concentrated force P0, which is directed downwardacts at some point x = a. Moreover, assume that a concentrated clockwisemomentM0 is applied at that point as well. Now, the left and right parts of thebeam which are separated by the point x = a can be coupled together via thefollowing conditions for the shear force
Q+ −Q− = −P0 (A.46)

and the moment
M+ −M− = M0. (A.47)

Here, Q± andM± stands for the right and left limits, i.e.
Q± = lim

x→a±
Q andM± = lim

x→a±
M ,

respectively (see Figure A.3).As usual we obtain a corresponding weak formulation of this problem, bymultiplying (A.43) with a general smooth function v with compact support, andafterwords integrate as follows:∫
R

d2M

dx2 v dx =
∫
R

(p(y)− q) v dx. (A.48)
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Figure A.3: The figure illustates the shear force and moments on both sidesclose to the point x = a, at which the consentrated force P0 and momentM0are applied. This explains the discontinuity conditions given in (A.46) and (A.47).

By using the product rule we obtain that
d2M

dx2 v = M
d2v

dx2 −
(
M
dv

dx

)′
+
(
dM

dx
v

)′
= M

d2v

dx2 −
(
M
dv

dx

)′
+ (Qv)′ .

Assume first that a is the only point where we have concentrated forces andmoments. By adding the two integrals∫ a

−∞

d2M

dx2 v dx =
∫ a

−∞
M
d2v

dx2 dx−
(

lim
x→a−

M

)
dv

dx
(a) +

(
lim
x→a−

Q

)
v(a),

and∫ ∞
a

d2M

dx2 v dx =
∫ ∞
a

M
d2v

dx2 dx+
(

lim
x→a+

M

)
dv

dx
(a)−

(
lim
x→a+

Q

)
v(a),

we obtain that∫
R

d2M

dx2 v dx =
∫
R

M
d2v

dx2 dx+M0
dv

dx
(a) + P0v(a).

More generally we can consider several concentrated forces Pi and mo-ments Mi at points ai, for i = 0, 1, ...,K, (see Figure A.4), and obtain the fol-lowing: ∫
R

d2M

dx2 v dx =
∫
R

M
d2v

dx2 dx+
K∑
i=0

(
Mi

dv

dx
(ai) + Piv(ai)

)
.

∫
R

EI

(
d2y

dx2

)
d2v

dx2 dx =
∫
R

− (p(y) + q) v dx+
K∑
i=0

(
Mi

dv

dx
(ai) + Piv(ai)

)
.
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Figure A.4: The beam is subjected to some distributed force q(x), together withconcentrated forces Pi and momentsMi. The figure is borrowed from [5]

By (A.44) and (A.48) we then find that
∫
R

EI

(
d2y

dx2

)
d2v

dx2 dx+
∫
R

p(y)v dx =
∫
R

qv dx+
K∑
i=0

(
Mi

dv

dx
(ai) + Piv(ai)

)
.

(A.49)Let us consider the the usual Sobolev space Hs(R) on the real line R with thefollowing norm ‖·‖
‖u‖2 =

∫
R

u2dx+
s∑
i=1

∫
R

∣∣∣∣diudxi
∣∣∣∣2 dx.

According to a standard result (see e.g. the book [10, p. 56]) it holds that
Hs(R) = Hs

0(R) where
Hs

0(R) = {u : ∃ {ϕj} ⊂ D(R) such that ϕj → u} .

Above,D(R) denotes the space consisting of all smooth functions with compactsupport. If q ∈ L2(R) and y ∈ H2(R) the left side of (A.49)makes sense even forall v ∈ H2(R). Using the fact that every v ∈ H2(R) and its first order derivativeis continuous [10, p. 62] we obtain that the right hand side also makes sense forall v ∈ H2(R).If we also account for the weight (per unit length) of the beam w0, the valueof q must be replaced by q + w0. For simplicity we assume that w0 is constant.Letting u denote the function u = y− y0, where y0 is the (constant) deflectioncorresponding to the case when the beam is resting on the foundation under
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the influence of its own weight only, i.e. p(y0) = w0,we obtain from (A.45) theequation
d2

dx2

(
EI

d2u

dx2

)
= q − ρ′(u),

where
ρ′(u) = p(u+ y0)− p(y0).

Note that according to (A.42), ρ′ satisfies the following condition
C1 (r − s)2 ≤ (ρ′(r)− ρ′(s)) (r − s) ≤ C2 (r − s)2 (A.50)

for all r, s ∈ R.Moreover the last inequality implies that
|ρ′(r)− ρ′(s)| ≤ C2 |r − s| (A.51)

It might feel natural to just let the weight w0 be a part of the distributedload q, as we do for finitely long beams. However, for an infinitely long beam,
w0 is not a member of L2(R), and neither is the solution y. A slightly differentweak formulation is therefore needed. Let Ω be a connected open set ofR (notnecessarily bounded).The problem is stated is as follows: Find u ∈ H2

0 (Ω) suchthat

〈Au, v〉 = L(v) for all v ∈ H2
0 (Ω), (A.52)

where
〈Au, v〉 =

∫
Ω
EI

(
d2u

dx2

)
d2v

dx2 dx+
∫

Ω
ρ′(u)v dx

and
L(v) =

∫
Ω
qv dx+

K∑
i=0

(
Mi

dv

dx
(ai) + Piv(ai)

)
In [5] the mentioned weight issue was not addressed. Thus we consider themodified formulation to be one of the major contributions of this paper sinceit improves the presentation without making it significantly more complicated.The right side,L(v), defines a linear functional which turns out to be continuousonH2(Ω). In order to see this we consider each term separately. The first termis continuous due to the Schwartz inequality:∣∣∣∣∫

Ω
qv dx

∣∣∣∣ ≤ ‖q‖2 ‖v‖2 ≤ ‖q‖2 ‖v‖ , (A.53)
where ‖·‖2 denotes the L2(R)-norm. For the other terms, we extend v to zerooutside Ω and use that

v(a) = −
∫ ∞
a

(ea−xv(x))′dx =
∫ ∞
a

(ea−xv(x)− ea−xv′(x))dx
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and
v′(a) = −

∫ ∞
a

(ea−xv′(x))′dx =
∫ ∞
a

(ea−xv′(x)− ea−xv′′(x))dx.

Hence, by using Schwartz inequality, we obtain that
|v(a)| ≤ c ‖v‖ and |v′(a)| ≤ c ‖v‖ ,

where
c =

√∫ ∞
a

e2(a−x)dx.

Thus, we obtain that L(v) is a sum of finitely many continuous functionals on
H2(Ω) and is therefore continuous. Moreover, it is clear that A is continuousonH2(Ω), i.e. there exists a constant C > 0 such that

|〈Au1 −Au2, ϕ〉| ≤ C ‖ϕ‖ ‖u1 − u2‖ (A.54)
for all u1, u2, ϕ ∈H2(Ω). Indeed,
|〈Au1 −Au2, ϕ〉| ≤

∫
Ω

∣∣∣∣EI (d2 (u1 − u2)
dx2

)
d2ϕ

dx2

∣∣∣∣ dx+
∫

Ω
|(ρ(u1)− ρ(u2))ϕ| dx.

Hence, using the Schwartz inequality, (A.51), and the fact that the L2-norm of afunction (and its second derivatives) is less than theH2-norm, we obtain that
|〈Au1 −Au2, ϕ〉| ≤ (EI + C2) ‖ϕ‖ ‖u1 − u2‖ ,

all u and v in H2(R), i.e. A is continuous. If we use the following strongercondition on the monotonicity of p (compared with that given in (A.42))
C1 (r − s)2 ≤ (p(r)− p(s)) (r − s) ,

i.e.
C1 (r − s)2 ≤ (ρ′(r)− ρ′(s)) (r − s) , (A.55)

then the operator A becomes strongly monotone. To see this, let k0 be apositive constant less than EI and C1. Then by (A.55) we obtain that
〈Au1 −Au2, u1 − u2〉 ≥ EI

∥∥(u1 − u2)′′
∥∥2

2 + C1 ‖u1 − u2‖22 ≥ (A.56)
k0

(∥∥(u1 − u2)′′
∥∥2

2 + ‖(u1 − u2)‖22
)
≥ k0√

2
‖u1 − u2‖2 ,

where the last inequality is due to Proposition A.4.2. Thus, A is stronglymonotone. Wenote that continuity (ofA) implies hemicontinuity and the strongmonotonicity implies strict monotonicity and coercivity. The existence of asolution of (A.52) then follows by Theorem A.2.1. The uniqueness follows by thestrict monotonicity of A.
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Let us turn back to the weaker case when
H (r + y0)H (s+ y0)C1 (r − s)2 ≤ (ρ′(r)− ρ′(s)) (r − s) .

In this case the term C1 ‖u1 − u2‖22 in (A.56) may vanish. However, if Ω isbounded, then the operator A still becomes strongly monotone. In order toprove this, let Ωk = [−k, k] , where k is a positive integer. By Friedrichsinequality we have that
‖v‖2 ≤ (2k)2 ‖v′′‖2

and
‖v′‖2 ≤ 2k ‖v′′‖2 ,

for any v ∈ H2
0 (Ωk ), which implies that

‖v′′‖22 ≤ ‖v‖
2 ≤ C

(
‖v′′‖22

)
,

for some positive constantCN (e.g. Ck = 3 (2k)4). This proves that ∥∥(·)′′
∥∥

2 is anequivalent norm on H2
0 (Ω). Hence, we obtain the strong monotonicity of theoperator A from a weaker statement (compared with that given in (A.56)),

〈Au1 −Au2, u1 − u2〉 ≥ EI
∥∥(u1 − u2)′′

∥∥2
2 .
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Abstract 
The aim of this paper is to present the development of a new method to evaluate the 
sliding stability of flat slab buttress dams. The possibility of utilizing safety capacity in 
neighbouring pillars within a section to show that the entire section has adequate 
capacity against sliding in the dam-foundation interface is explored. Within the field of 
dam-engineering the assessment of the safety of dams is govern by national guidelines 
and there is little room for new computation methods. In the case of buttress dams, the 
current practice is to evaluate each pillar individually. A section of a flat-slab buttress 
dam with three different cases of inclination in the pillar-foundation interfaces is 
considered. A comparison of how the safety factor of the whole section is affected if it 
is supported by pillars with both satisfactory and unsatisfactory safety margins. The 
section was modelled with shell elements using a finite element software where the 
geometry is based on a typical flat slab buttress dam, Mohr-Coulomb contact model was 
used in the dam-foundation interfaces. The combined safety factor for all three pillars 
was computed from the results obtained from the analysis.  The results show that for a 
section with one pillar with the safety factor of 1.1 and two pillars with 1.4. The 
combined safety factor for the whole section is 1.4, which is requirement in Norway. 
This shows that by considering the whole section an adequate safe factor can be 
achieved by and thereby reduce the need for rehabilitation of the unsatisfactory pillar.  

Keywords: dam; stability; FEM; flat slab dam  

1 Introduction  
Norway has the largest installed hydropower capacity in Europe, hydropower accounts 
for 95 % of its total power production [1]. The country has many steep mountains and 
high rainfall, so its topography and climate are very well suited for hydroelectric 
generation. There is currently ca. 4000 registered dams in Norway of which 336 are 
buttress dams [2]. A buttress dam consists of a sloping upstream deck that restricts the 
flow of water and vertical walls (buttresses or pillars) that transfer loads from the deck 
to the foundation. The benefit of a sloping deck is that the weight of the water 
contributes to the dam’s stability. Flat slab dams are common in Norway. The reason is 
the low volume of concrete needed to build such dams when compared to that required 
for comparable gravity dams. Mainly because this helps alleviate the logistical problems 
caused by the remoteness of such dam sites [3]. Buttress dams are best suited for use 
where the dam site’s topography is characterized by a wide valley with limited variation 
in the height of the foundation. Due to the high stresses under the buttresses, these 
dams require strong foundations [4]. In Norway, there are many dams that incorporate 
buttress dam sections, typically combined with gravity dam sections close to the 
abutments or arch dams if there are large grooves in the foundation.  
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The International Commission on Large Dams (ICOLD) defines three types of buttress 
dam: flat slab dams, multiple arch dams, and massive head dams. This paper focuses 
solely on flat slab buttress dams; for information about the other types, the reader is 
referred to earlier publications [5], [6] and the references therein. The goal of this paper 
is present a simplified method for safety analysis of flat slab dams. The method is based 
on the gravity method which is assumed as a conservative approach. In this work the 
scenario of the dam sliding over the foundation plane is considered. In a general case, 
others sliding planes should be investigated trough out the foundation mass. 

2 Flat slab dams in Norway 
As mentioned above, flat slab dams consist of a relatively thin reinforced concrete slab 
supported by buttresses on the downstream side. The slab may be continuous in the 
cross-valley direction or divided into sections with a vertical joint between adjacent 
sections. An individual slab section may be supported by multiple buttresses or may just 
span the space between two adjacent buttresses. The buttress spacing depends on the 
slab’s thickness: thin slabs require closer spacing. The slab and buttresses may be 
integrated or independent, depending on how they were joined during construction. 
The oldest registered flat slab dam in Norway is at Møsvatn in the Telemark region. It 
was built in 1908 and partly decommissioned in 2004 [7]. Many other flat slab dams built 
between 1950 and 1970 are now being reassessed based on modern regulations.  
 
While this design is necessarily adapted on a case-by-case basis to account for the 
conditions at the site where the dam is to be located, all dams based on this design have 
some common structural principles. Notably, the vertical joints in the slab are placed at 
positions of zero moment, reducing the need for joint reinforcement. The slab thickness 
increases linearly with the depth, from about 30 cm at the crest and 3 cm/m vertically. 
Slabs span two or three pillars with a vertical joint between them, often strengthened 
where they connect to a pillar [3]. The distance between the vertical center lines of 
adjacent pillars is usually 5 m. The upstream slab has an inclination of 5:4, and an 
insulation wall is installed on the downstream side to reduce stresses induced by 
temperature changes. Figure 1 shows how the plates are connected, one resting on the 
other, and Figure 2 depicts a typical buttress profile.  
 

 
Figure 1: Plates of a typical Norwegian buttress dam. 
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Figure 2: Profile of a typical Norwegian flat slab dam. (a) Slab with variable thickness. 

(b) Insulating wall. (c) Buttress/pillar. (d) Footway. (e) Foundation.  

3 Stability analysis of buttress dams  
All registered dams in Norway have been classified based on the severity of the damage 
expected in the event of their failure, from class 0 to class 4  [8] Dams in consequence 
class 4 would cause severe damage upon failure, while a failure of dam in consequence 
class 0 would have minor consequences. There are 17 dams in consequence class 4, 43 
in class 3, 66 in class 2, 90 in class 1, and 96 flat slab dams in consequence class 0. 
Norwegian dams in consequence classes 2 to 4 are reassessed every 15 years. For class 
1 dams, assessments are performed every 20 years. Each assessment includes an 
evaluation of the dam’s stability based on the current regulations.  
 
Most Norwegian flat slab dams are less than 15 m tall. Such dams are normally found to 
be stable towards overturning but unstable towards sliding when evaluated according 
to Norwegian regulations [9]. The load case corresponding to the normal design 
reservoir elevation and ice load very often becomes the design load case. According to 
the Norwegian regulation, a flat slab buttress dam is required to achieve a sliding and 
overturning safety factors of at least 1.4 if cohesion is neglected in the calculation. If 
cohesion is assumed in the dam-foundation interface, the required safety factors are 3 
for serviceability and ultimate limit states, and 2 for accidental limit state, as in case of 
extreme flooding. If the cohesion at the interface has been assessed and proven to be 
adequate using reliable tests, these required safety factors are reduced to 2.5 and 1.5, 
respectively. In addition, the dam should be design according to the current national 
building standards [9]. 

3.1  Historical review of methods of dam sliding analysis 
Briefly reviewing current and historical methods for estimating the sliding stability of 
dams, the “sliding resistance method” was used from around 1900 and during 30 years 
to evaluate the sliding stability of gravity dams [10] This method is based on the 
experiences of early dam engineers, who found that the shear resistance of very sound 
foundation material did not need to be further investigated if the ratio of horizontal to 
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vertical forces acting on the dam was below 0.65 for static loading (and 0.85 for seismic 
loading). The “shear-friction method” was introduced by Henny in 1934 [11]. The 
original method only considered a single horizontal failure plane, but it was later 
extended to include inclined failure planes. The original method defined the safety 
factor as the ratio of the total resisting shear force acting along a horizontal failure plane 
to the maximum horizontal driving force. The assumptions made in the method’s 
development were:  

• The sliding of the dam is a two-dimensional problem.  
• Failure along the assumed failure plane is kinematically possible. 
• The Mohr-Coulomb failure criteria can be used to describe failure between 

the interfaces in the assumed failure plane. 

The safety factor for the shear-friction method is 

 SSFM = F
∑H

  (1) 

where ∑H is the sum of the horizontal forces acting on the dam and the resisting shear 
force acting along the horizontal plane, and F is given by the expression 

 F = cA
cosα(1−tanφtan α)

+ ∑V tan(φ + α) (2) 

where c is the cohesion, α is the inclination angle of the assumed failure plane, φ is the 
friction angle, A is the area of the failure plane and ∑V is the sum of the vertical forces 
acting on the failure plane.  
 
The “limit equilibrium method” was presented in 1981 by the U.S. Corps of Engineers 
[10] is a way to compute sliding safety factors. The method has its origin in soil 
engineering and is now commonly used in dam engineering. The sliding safety factor is 
defined as the ratio between the shearing strength and the applied shear stress. The 
method’s development was partly motivated by the need to include multiple sliding 
planes and to represent the effects of wedges (asperities) better than is done by the 
shear-friction method. The assumptions and simplifications of the limit equilibrium 
method are:  

• As the method’s name suggests, it is based on limit equilibrium, i.e. it assumes 
sliding will occur in the assumed failure plane if the applied shear is greater than 
the resting shear.  

• It is assumed  plane surfaces of failure. 
• Sliding must be kinematically possible in the assumed failure planes.   
• It assumed that the sliding of the dam is a two-dimensional problem.  
• Force equilibrium is satisfied, moment equilibrium is not used.  
• The method neglects displacements, so differences in rigidity between materials 

are not accounted for.  
• The relationship between the resisting shear stress and normal stress acting on 

the failure plane is assumed to be linear and described by the Mohr-Coulomb 
failure criterion.  
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Because of the last assumption, the shear strength is τa = c + σn tanφ . This gives the 
safety factor for the limit equilibrium method as, 

 SLEM = τa
τ

= c+σn tanφ 
τ

, (3) 

where τa is the shear strength of the plane, τ is the shear stress, c is the cohesion, σn is 
the normal stress acting on the plane and φ is the friction angle.  
 
Nicholson showed in [12] that for a given 𝑐𝑐 and 𝜑𝜑 and an inclined failure plane (i.e. one 
for which 𝛼𝛼 > 0), two cases are possible, as shown below:  

 if tanφ < ∑V
∑H

 then SLEM > SSFM, otherwise SLEM < SSFM (4) 

Hence if the failure plane is inclined and the friction coefficient (tanφ) is less than 
∑V /∑H, the shear-friction method will give a more conservative safety factor. If the 
friction coefficient is greater than ∑V /∑H, the limit equlibrim method gives a more 
conservative safety factor. Similarly, two cases exist for a downward-sloping failure 
plane (𝛼𝛼 < 0): 

 if tanφ < ∑V
∑H

  then SLEM < SSFM, otherwise SLEM > SSFM (5) 

Thus, when the failure plane is downward sloping and the friction coefficient is less than 
∑V /∑H, the limit equilibrium method will give the more conservative safety factor. If 
the friction coefficient is greater than ∑V /∑H, the shear friction method will give a 
more conservative safety factor.  
 
When numerical models are employed, the methodology of reducing the friction angle 
until failure [13] is a valid strategy. The main objective is to evaluate safety with respect 
to sliding in the dam-foundation interface or other known failure planes. The downside 
of this method is that it requires many runs of the analysis, one for each tested friction 
angle. This is an iterative method whereby the friction angle is reduced until the dam 
starts sliding. The safety factor is defined as the ratio between the lowest friction angle 
that do not cause sliding and the actual friction angle. This method can be used in 
numerical analyses (such as FEM or DEM analyses). 
 
Malm presented in [14] a “push-over method” to obtain the global failure modes of the 
dam, i.e. overturning and sliding. The driving loads acting on the dam are increased until 
failure, loads that act in a stabilising manner are kept constant. The safety factor is then 
defined as the ratio between the load that causes failure and the actual load case 
scenario under consideration. A drawback of this method is that is difficult to predict 
how changes in load will affect the results, since the stabilising loads are kept constant 
but the loads that are pushing the dam downstream is increased.  

3.2 The proposed method for sliding assessment of flat slab dams 
The current practice for checking the stability of flat slab dams is similar to that used for 
gravity dams, i.e. the stability of each pillar is evaluated separately with respect to 
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overturning and sliding. The pillar is assumed to be a rigid body, and the potential for 
overturning about the toe (and any other point about which the body can rotate) is 
checked. Sliding stability should be checked along all potential failure planes. The NVE 
stipulates that at least the dam-foundation interface should be checked for sliding [9]. 
For flat slab dams, the loads applied to a pillar are the loads acting on the dam plate that 
can be assumed to act on the pillar in question around its influence area, as showed in 
Figure 3a. The alternative approach proposed in this paper is illustrated in Figure 3b.  
 

 
Figure 3: Dam sections considered in (a) two- and (b) three-dimensional analyses of flat 

slab buttress dams. 
 
Basically the idea is to do the assessment of the entire plate composed by 3 pillars. The 
following steps should be implemented to apply successfully this method, considering a 
plate that comprises three pillars: 

• The 3 pillars are assessed independently as is done in the traditional practice; 
• If the 3 pillars are safe, the plate is assumed as safe, or if the 3 pillars are unsafe 

the plate is assumed as unstable; 
• If one or two of the pillars are not safe, the unbalance loads are transferred to 

the neighbour pillars belong to the same plate, and the pillars are reassessed; 
• If the new analysis gives a stable scenario the plate, as a set of pillars, a safe 

structure otherwise is considered unstable. 

The next section presents rigid body analyses (also known as gravity method analyses) 
for pillars in which the slope angle at the dam-foundation interface (α) is α = 0° and 
α = 10°. In addition, finite element analyses are presented for three multi-pillar 
sections with different inclinations at the dam-foundation interface. The goal of these 
3D finite element models is verify the level of stress in the plate, check if it is able to 
transfer the loads between the pillars, and then certify this simplify method as it was 
proposed. 
 
The results of these analyses are used to derive combined sliding safety factors for multi-
pillar sections of a flat slab buttress dam. The stability of every pillar supporting one 
plate segment is evaluated by performing finite element calculations to determine the 
load distribution between the pillars and then computing combined sliding safety 
factors for all three pillars in a way that accounts for potential load transfer between 
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pillars. The approach was tested by simulating the behaviour of a dam segment with 
three pillars under three different conditions, each involving different combinations of 
slope angles in the dam-foundation interface. 

4 Case study: Two-dimensional analysis of flat-slab buttress dams 
This section applies the current method for evaluating the stability of a section of a flat 
slab dam for cases in which α = 0° and α = 10° [6]. The pillar geometry considered in 
these studies is shown in Figure 4.  

 
Figure 4: The dimensions and loads acting on a pillar. 

4.1 Loads acting on the dam 
The hydrostatic pressure is the pressure exerted by the water on the dam in the 
direction normal to the dam’s surface. In this case, the headwater level was set to hw =
15 m. The density of water is ρw = 1000 kg/m3. The hydrostatic pressure varies 
linearly from zero at the headwater level to pw,15 = hwρw at the heel of the dam. In 
Norway, the ice load is specified as 100 kN/m acting 0.25 m below the head water level, 
or the pressure acting in the topmost 0.5 m (tice) of the headwater, according to the 
NVE [15] In both cases, it is assumed that the ice acts in the horizontal direction. The ice 
pressure is pice = 200 kPa. For flat slab dams, it is normally assumed that the uplift 
pressure acts only on the slab and not the pillars. This assumption is only valid if there is 
good drainage around the pillar and there is no accumulation of water around the pillar. 
In this paper, full uplift under the plate is assumed; the uplift pressure is set to pup =
147.15 kPa. This is a conservative assumption because it is often assumed that the uplift 
declines linearly from the headwater pressure on the upstream side to the tail water 
pressure on the downstream side [16]. In addition, gravity acts on the dam; the 
acceleration due to gravity is g = 9.81 m s2⁄ . The dam-foundation interface is modelled 
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using the Mohr-Column failure criteria. This contact model is currently used in both the 
shear friction and limit equilibrium methods to calculate sliding safety factors in dam 
engineering. The friction angle was set to φ = 45°, giving a friction coefficient of µ = 1. 
Finally, it was assumed that there was no cohesion between the dam and the 
foundation, i.e. c = 0.  

4.2 Sliding stability  
The safety against sliding (i.e. the sliding safety factor) was computed as  

 Ssliding = ∑V
∑H

tan(θ + α) (6) 

where ∑V and ∑H are the sums of the vertical and horizontal forces.  The vertical forces 
are  

 ∑V = Gpp + Ww − Ur (7) 

where Gpp is the combined weight of the pillar and the sections of the plate and crest 
that are assumed to influence the pillar. According to current practice, the plate and 
crest sections affecting a single pillar are sections of width equal to the distance between 
the centers of adjacent pillars. Ww is the weight of the water contained by a plate 
section, and U is the uplift force acting on a plate section. The weight of the pillar is 

 Gpp = Vpp ∙ ρc ∙ g, (8) 

where Vpp is the volume of the pillar and the plate and crest sections. The weight of the 
water is 

 Ww = Vw ∙ ρw ∙ g, (9) 

where Vw is the volume of water contained by a plate section and a crest section. The 
uplift force is: 

 U = cc ∙ tpb ∙ hw ∙ ρw ∙ g, (10) 

Because the uplift force acts in the upward direction, it has a negative sign. cc is the 
distance between the centers of adjacent pillars, and tpb is the plate’s thickness at the 
heel of the pillar. The sum of the horizontal forces is  

 ∑H = Pw + Fice, (11) 

where Pw is the resultant force of the horizontal water pressure and Fice is the ice force. 
The resultant force of the horizontal water pressure is  

 Pw = cc ∙ ρw ∙ g∫ (hw − y)hw
0 dy = cc∙ρw∙g∙hw2   

2
 (12) 

The ice force is 

 Fice = cc ∙ tice ∙ pice. (13) 
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4.3 Overturning 
A dam is considered safe against overturning if the position of the resultant force, xR, is 
in the middle third of the dam’s width, B. The dam is thus safe if  

 B
3

< xR < 2B
3

. (14) 

Where the position of the resultant force is  

 xR = ∑M
∑V

. (15) 

The moment, ∑M, is calculated about the toe of the pillar, with the positive direction 
being anti-clockwise. This results in the following expression: 

 ∑M = Gpp ∙ lpp + Ww ∙ lw−Pw ∙ hw,1 − Fice ∙ hice − U ∙ lup, (16) 

where lpp, lw, hw,1, hice and lup are the moment arms for the forces indicated by the 
subscripts (see Figure 4). The geometric properties used in these calculations are listed 
in Table 1, and the material properties are listed in Table 2.  
 

Table 1: Geometric properties used in the calculations. 
 𝛂𝛂 = 𝟎𝟎° 𝛂𝛂 = 𝟏𝟏𝟏𝟏° 

Vpp 109.61 m3 95.68 m3 

Vw 450 m3 
cc 5 m 

tpb 0.75 m 
lpp 9.25 m 8.77 m 
lw 13.78 m 12.84 m 

hw,1 5 m 2.16 m 
hice 14.75 m 11.91 m 
lup 17.41 m 16.46 m 
B 17.78 m 16.84 m 

Table 2: Material properties of linear elastic concrete. 
Young’s modules, Ec, 35 GPa 
Density, ρc, 2300 kg/m3 

Poisson’s ratio  0.2 
 
The typical crushing strength of concrete in dams is 20-30 MPa, but may be higher in 
some cases as demonstrated by recent tests on the Kalhovd dam in Norway, whose 
concrete exhibited a compressive strength of 41.2 MPa [17]. The sliding safety factor (6) 
for a pillar with an inclination of α = 0° is thus 

 Ssliding = 1.1. (17) 

The position of the resultant force (14) is 
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 xR = 11.59 m, (18) 

which is within the middle third of the base. For a pillar with an inclination of α = 10° 
the sliding safety factor (6) becomes  

 Ssliding = 1.4. (19) 

The poison of the resultant force (14) is 

 xR = 8.759 m (20) 

Which also is within the middle third of the base. The pillar with an inclination of α =
10°  is thus safe with respect to both sliding and overturning. Conversely, the pillar with 
an inclination of α = 0° is safe with respect to overturning but does not achieve the 
required sliding safety factor of 1.4. The inadequate sliding stability of the pillar when 
α = 0° suggested that it would be interesting to determine how sliding stability is 
affected when an otherwise unstable pillar is connected to a stable pillar by a concrete 
slab. The following section presents finite element analysis calculations conducted to 
evaluate sliding stability in three cases featuring different combinations of pillar 
inclination where the pillars are connected via a concrete slab.  

5 Case study: Three-dimensional finite element analysis model  
This section describes the model used in the three-dimensional analysis and the loads 
acting on the studied dam sections. Three cases are considered:  

• Case 1: All three pillars have zero inclination.  
• Case 2: One side pillar has an inclination 𝛼𝛼 = 10𝑜𝑜, the other two have 

zero inclination.  
• Case 3: The center pillar has zero inclination and both side pillars have 

inclinations of α = 10o.  

The details of the geometry in each case are shown in Figure 1 and Figure 4. The 
geometric properties and material properties used in the calculations are presented in 
Table 1and Table 2, respectively. 
 
To reduce the number of parameters affecting the sliding stability, the foundation is 
assumed to be rigid. For dams lower than 15 m, the foundation’s stiffness will not affect 
the stress distribution in the dam. Therefore, the foundation’s stiffness has a negligible 
effect on the normal stress distribution under the pillars. 
 
The finite element analysis was performed using ANSYS Mechanical APDL Release 17.2 
[18]. 

5.1 Loading and boundary conditions 
In addition to the hydrostatic pressure, gravity, ice pressure, and uplift, dam sections 
are subject to loads from neighbouring sections. As shown in Figure 1 the sections 
alternate in terms of how they rest upon one-another, and every other three-pillar 
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section supports two neighbouring sections. The transmitted load from a neighbouring 
section is approximated by considering a strip of the plate and assuming that the 
displacement is zero at the edge of the section. It is also assumed that there is no 
moment in the vertical joint. Finally, it is assumed that plate strip is fixed at the pillar in 
the neighbouring section. Therefore, the plate strip can be treated as a propped 
cantilever beam, and the transferred load can be determined by calculating the reaction 
force, RT, at the vertical joint, which is 

 RT  = 3
8

  (3.9 ∙ ρw ∙ g ∙ y) (21) 

This force acts normal to the plate where 0 ≤ y ≤ (hw − 0.5 m). The part on which ice 
pressure acts is also subject to an additional transmitted load acting in the horizontal 
direction: 

 RT,ice  = 3
8

  (3.9 ∙ pice) (22) 

for hw − tice ≤ y ≤ hw. 

5.2 Elements used in the analysis 
Information about element types was obtained from an earlier publication [19]. The 
dam body was modelled using a shell element called SHELL181. This is a 4-node 
structural shell element based on the Mindlin-Reissner shell theory. The quadratic form 
of the element was used, and nodes were placed in each corner, with an additional node 
in the middle of each of the element’s sides. Each node has six degrees of freedom 
corresponding to translation in the x, y and z directions, and rotation about the x, y and 
z-axes. The contact between the dam and rigid foundation was modelled using the 
contact element CONTA175 and the target element TARGE170. The CONTA175 element 
was placed at the bottom of the pillars and the plate to model Mohr-Coulomb contact, 
using the material properties defined for the underlying element to determine the 
contact stiffness. The rigid foundation was modelled using the quadratic form of 
TARGE170 with 4 nodes, one in each corner.  The calculations were performed with a 
uniform mesh, using the numbers of elements and nodes listed in Table 3.  

Table 3: Number of elements and nodes used in the FE-analysis for the different cases. 
 SHELL181 CONTA175 TARGE170 Total no. nodes 

Case 1 108255 805 15 108933 
Case 2 44812 526 127 45392 
Case 3 43452 521 240 44152 

 

5.3 Finite element analysis results  
Figure 5 shows the total deformation for all three cases. The maximum deformation in 
case 1 was 1.69 mm and occurred in the top of the section. In case 2, the maximum of 
2.13 mm occurred above pillar 1. In case 3, the maximum deformation was 1.5 mm and 
occurred above pillar 2. 
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Figure 5: The total deformation in cases 1, 2, and 3 [mm]. 

 
The first principal stresses are shown in Figure 6. The highest tension stress in case 1 was 
6.64 MPa and occurred in the plate perpendicular to the pillars. In case 2, the maximum 
tension stress was 6.37 MPa.  In case 3, the highest tension stress occurred over pillars 
1 and 3, and was 6.40 MPa. 

 
Figure 6: The principal tension stresses in cases 1, 2, and 3 [MPa]. 

 
Figure 7 shows the principal compression stresses in cases 1, 2 and 3. In case 1, the 
highest compression stress was -7.04 MPa and occurred in the toe of the pillars. In case 
2, the highest compression stress was -6.36 MPa, and occurred in the toe of pillar 1. In 
case 3, the highest compression stress was -6.39 MPa and occurred in the toe of pillars 
1 and 3. 

 
Figure 7: The principal compression stresses in cases 1, 2 and 3 [MPa]. 

 
Figure 8 shows the normal stress distributions under the pillars for cases 1, 2 and 3. In 
case 1, the maximum normal stresses in pillars 1, 2, and 3 were 1.32 MPa, 1.29 MPa, and 
1.32 MPa, respectively. The corresponding values for case 2 were 2.1 MPa, 1.63 MPa, 
and 1.82 MPa, respectively. In case 3, the maximum normal stresses in pillars 1 and 3 
were 1.87 MPa, while that in pillar 2 was somewhat lower (1.34 MPa). For all three cases, 
the maximum normal stress occurred in the toe of the pillars.  

66



13 
 

 
Figure 8: Normal stress distributions under pillar 1 (dashed lines), pillar 2 (solid lines) 

and pillar 3 (dash-dotted lines) in cases 1-3. 
 
The sliding safety factors for each pillar are shown in Table 4, Table 5 and Table 6, for 
cases 1, 2, and 3, respectively. The safety factors were calculated using the Shear Friction 
Method (SFM) and Limit Equilibrium Method (LEM) based on the stress distributions 
obtained from the FEA.  

Table 4: Safety factors for case 1. 
 Pillar 1: 𝛂𝛂 = 𝟎𝟎° Pillar 2: 𝛂𝛂 = 𝟎𝟎° Pillar 3: 𝛂𝛂 = 𝟎𝟎° 

Hi 5970 kN 5490 kN 5970 kN 
Vi 6620 kN 6090 kN 6620 kN 
Ni 6612 kN 6083 kN 6612 kN 
Ti 5967 kN 5488 kN 5967 kN 

SSFM 1.1 1.1 1.1 
SLEM 1.1 1.1 1.1 
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Table 5: Safety factors for case 2. 
 Pillar 1: 𝛂𝛂 = 𝟎𝟎° Pillar 2: 𝛂𝛂 = 𝟎𝟎° Pillar 3: 𝛂𝛂 = 𝟏𝟏𝟏𝟏° 

Hi 6014 kN 5306 kN 6086 kN 
Vi 6576 kN 6176 kN 6271 kN 
Ni 6563 kN 6163 kN 7236 kN 
Ti 6017 kN 5305 kN 4907 kN 

SSFM 1.1 1.2 1.4 
SLEM 1.1 1.2 1.5 

Table 6: Safety factors for case 3. 
 Pillar 1: 𝛂𝛂 = 𝟏𝟏𝟏𝟏° Pillar 2: 𝛂𝛂 = 𝟎𝟎° Pillar 3: 𝛂𝛂 = 𝟏𝟏𝟏𝟏° 

Hi 6170 kN 5060 kN 6160 kN 
Vi 6180 kN 6350 kN 6190 kN 
Ni 7142 kN 6337 kN 7148 kN 
Ti 5008 kN 5056 kN 4997 kN 

SSFM 1.4 1.3 1.4 
SLEM 1.4 1.3 1.4 

 
Table 4, Table 5 and Table 6 show that there was limited variation in the vertical and 
horizontal forces acting on the dam-foundation interface. In case 1, this variation was 
probably due to the transfer of applied loads from neighbouring plate sections, which 
would increase the load carried by the side pillars. In cases 2 and 3, this variation would 
be augmented by variation in the slope angle between the pillars. Furthermore, in cases 
2 and 3, it is clear that the safety factors obtained by considering complete sections 
differ from those obtained by considering individual pillars in isolation, as is done in rigid 
body analysis.  
 
In all cases, the compression stress in the pillars was less than the normal compressive 
strength of concrete. The highest compression stress (6.4 MPa) was observed in case 3. 
The tension stresses in the plate where it is in contact with the pillars are assumed to be 
taken up in the reinforcement (not included in the analysis). In addition, the capital in 
the plate-pillar joint is not included, so the peak stresses predicted in these analyses are 
higher than they would have been if the capital were included. It is therefore assumed 
that the risk of cracking in the slab is minimal.  
 
The normal stress distributions shown in Figure 8 deviate from the normal load 
distribution assumed in a rigid body analysis, where the normal stress increases linearly 
from the heel of the dam (or the end of the crack if there is cracking in the dam-
foundation interface). Consequently, a greater proportion of the sliding resistance is 
activated in the toe area when using a numerical method to compute the normal stress 
in the dam-foundation interface. These results indicate that if an asperity in the dam-
foundation interface is located near the toe of the pillar, it could significantly affect the 
pillar’s sliding stability because more of the normal pressure would act directly on the 
asperity.  
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Overall, the FE analysis shows that the studied section is structurally sound with respect 
to stresses under the given assumptions, loadings, and boundary conditions. 

6 The combined safety factor for all pillars in a section 
As demonstrated by the FEA results, there were some differences between the safety 
factors for individual pillars, making it unclear which safety factor should be used. This 
section therefore presents a method for computing safety factors for multi-pillar dam 
sections.  
 
Using the shear friction method, the safety factor for all three pillars can be calculated 
as 

 SSFM,tot = ∑ Vi∙tan(φi+αi)3
i=1

∑ Hi3
i=1

 , (25) 

where Hi is the sum of the horizontal forces acting on the bottom pillars and the index 
i denotes the pillar number. For the limit equilibrium method, the safety factor becomes  

 SLEM,tot = ∑ Ni tanφi3
i=1
∑ Ti3
i=1

 , (26) 

where  Ti is the shear force acting in the plane between the pillar and the foundation, 
Ni is the normal load acting from the dam on the foundation, and the index i denotes 
the pillar number. 
 
In both cases the only difference between the new method and the traditional single 
pillar approach is that the new method takes the sum of the stabilizing forces within a 
section and divides it by the sum of the resisting forces. The resulting combined sliding 
safety factors are listed in Table 7.  

Table 7: Combined sliding safety factors for cases 1, 2 and 3. 
 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒,𝐭𝐭𝐭𝐭𝐭𝐭 𝐒𝐒𝐋𝐋𝐋𝐋𝐋𝐋,𝐭𝐭𝐭𝐭𝐭𝐭 
Case 1 1.1 1.1 
Case 2 1.3 1.2 
Case 3 1.4 1.4 

 
In case 1, all the pillars have zero inclination and the benefit of the combined method is 
limited. Since it is assumed that concrete exhibits linear elastic behaviour, this method 
provides almost no information that cannot be obtained from a rigid body calculation 
performed by hand; the safety factors obtained from the rigid body calculation and the 
finite element analysis are identical. In case 2, one side pillar has an inclination of α =
10°. The safety factor for the all three sections is 1.2 but that for the weakest pillar is 
1.1. In this case, although treatment of the complete sector slightly increases the sliding 
safety factor, the calculated value remains well below the regulatory minimum of 1.4. 
Conversely, in case 3, a safety factor of 1.4 is attained when the finite element analysis 
is performed for all three pillars together. The compressive stresses in all three pillars 
under these conditions are lower than the typical compressive strength of concrete.  
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These results indicate that a dam section may have a satisfactory overall sliding stability 
even if some of its individual pillars would have inadequate sliding stability values if 
considered in isolation.  

7 Conclusions 
This paper briefly outlines the different methods used to calculate sliding safety factors 
for buttress dams, and presents a new method for computing combined sliding safety 
factors for dam segments spanning multiple pillars in typical Norwegian flat slab buttress 
dams. It is shown that if there are pillars with high capacity within a plate section of such 
a dam, it is beneficial to use this simplified three-dimensional method to compute the 
sliding safety factor if the slab has the capacity to transfer loads.  
 
Although the increase in safety factors achieved by using the new model is relatively 
modest, it may be enough to avoid expensive rehabilitation of the section.  
 
The new model could also be used to support further, more detailed analyses. Such 
analyses could, for example, consider the actual geometry of the plate foundation and 
fixation. Asperities in the pillar foundation, walkway openings, rock bolts, and 
reinforcement could also be considered, together with nonlinear concrete properties. 
The data needed to support such efforts could be obtained by performing an on-site 
survey of the dam to gather and test material samples and measure geometries. In 
general, the more information that is to be included in the analysis, the greater the need 
to document the dam’s current state. A natural first step in extending the model 
presented here would be to include the plate foundation in the analysis.  
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Abstract 
In this paper we present some new thoughts on and a discussion of an overview of different 
numerical methods that may be applied to dam structures. In particular, in this light we discuss 
and compare with 14 different case studies from the literature where numerical methods have 
been used to study the behaviour of gravity and plate dams. Finally, we show how different 
failure modes can be modelled. The main aim is that this paper can be an important basis when 
investigating dams not only in our research at NORUT Technologies in Norway but also 
worldwide to analyse, investigate and solve similar problems. 

Keywords: Numerical modelling, structural stability, Finite Element Method, failure modes, 
static loading, dams  

2010 AMS classification: 74S05, 74G99 

1. Introduction 
In Norway, 95 % of the total power production is produced from hydropower. Norway has the 
largest installed hydropower capacity in Europe with 31 626 MW [1]. The Norwegian Water 
Resources and Energy Directorate (NVE) is the governmental authority of dams in Norway and 
ensures that the owners of the dams complies with the dam safety regulation 
(Damsikkhertsforskriften) [2]. NVE has currently 4002 registered dams in Norway. Concrete 
dams accounts for 51.2 %, out of which 1220 are gravity dams, 322 are flat slab buttress dams , 
130 are arc dams and 376 are other types of concrete dams [3].  

The main aim is that this paper shall be an important basis when investigating dams not only in 
our research on stability assessment of typical Norwegian concrete dams under static loading 
conditions at NORUT Technologies but also worldwide to analyse, investigate and solve similar 
problems. 

To ensure the dam safety throughout the lifetime of the dams, the dam safety regulation 
requires that all dams are reassessed at a time interval of 15 - 20 year, depending on the 
consequence of failure. The safety regulations cover the stability demands and how the safety 
factors should be calculated. NVE also provides a set of guidelines [4] and [5] that gives a more 
detailed description of how the stability computation should be performed. These guidelines 
are based on a rigid body assumption (also called the limit equilibrium method).  
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Figure 1 shows a typical cross section of a gravity dam, and Figure 2 shows a typical flat slab 
buttress dam (plate dam). With the rigid body assumption, the dam body is assumed to be rigid 
and resting on a rigid foundation. When assessing the stability of a dam there are three failure 
modes that should be checked: Overturning, sliding and overstressing, shown in Figure 3. The 
last of which is a local failure such as cracking or crushing of the concrete dam or rock, while 
overturning and sliding are global failure modes. It is assumed that for overturning, the whole 
dam body rotates about the toe, see Figure 3a.  
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Figure 1: A typical cross-section of a gravity dam, with headwater, tail water and rock bolt. 
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Figure 2: The components of a flat slab buttress dam (plate dam). 

For sliding, it is assumed a failure plane in the dam-foundation interface and that the whole dam 
slides, using Mohr-Coulomb failure criteria for contact (a description of which can be found in 
[6]). It should be noted that overstressing might lead to a global failure of the dam, which for 
example is if a crack propagates through the dam body this may cause the whole dam to fail. 
There are two common situations when the strength/stability of a dam is computed; (1) when it 
is designed, and (2) when it is reassessed. A Norwegian dam that is reassessed should satisfy the 
current regulations. If the regulations have changed since the dam was designed 
(increased/change loading conditions, increased safety factors etc.), the dam might not meet 
the stability requirements when it is reassessed.  
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The cost of the corrective measures needed to satisfy the regulations might motivate a more 
detailed analysis of the dam. In recent history there are four known failures in concrete dams. In 
Norway [7], there have been no failures in dams built according to the 
“Damsikkerhetsforskriften” introduced in 2001. Numerical methods or more detailed and 
accurate analytical (mathematical) models can be useful tools in this process. Rock bolts are 
often used to improve the stability of the dam foundation, but in Norway these should not be 
included in the stability calculation if the dam is taller than 7 m (by the current guidelines [5]). 
The rock bolts are placed close to the upstream side on a gravity dam, and in a buttress dam the 
bolts are placed in the interface between the plate and foundation. In addition, there might be 
placed bolts along the pillars. 

We finish this introduction by shortly describing loads acting on gravity and flat slab buttress 
dams:  

Typical loading and boundary conditions are shown in Figure 3. Hydrostatic pressure is applied 
to the dam body, if there is water on the downstream (tail-water) side of the dam it applied 
there as well. The uplift pressure is assumed to have trapezoidal shape and is assumed as stress 
in tension in the dam-foundation interface. It is assumed to be a crack in the (interface between 
the foundation and) dam, the uplift pressure is assumed to be equal to the hydrostatic pressure 
at the heel of the dam. The uplift is then linearly decreasing towards the toe of the dam. The ice 
pressure is assumed to be 200 to 300 kPa and is acting at the top 0.5 m below the headwater 
level [4]. For a flat slab buttress dam, the loading is mostly the same as for a gravity dam. The 
main differences are that the uplift is usually assumed to act only under the plate and to be zero 
under the buttress. This is done if there is good drainage around the buttresses, and it is 
therefore assumed that there will be no build-up of uplift pressure. 

(a) (b) (c)  

Figure 3: The failure mechanism: (a) Overturning about the toe. (b) Sliding in the dam-
foundation interface. (c) Overstressing (cracking). 

The paper is organized as follows: In Section 2 we present, analyse and discuss both linear and 
non-linear models of and seven different numerical methods, which can be useful for 
investigating various dam constructions. In the same spirit, in Section 3 we focus on numeric 
analysis in design of new dams or reassessment of existing dams. Moreover, also some error 
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analysis and a first case study (the La Breña II dam) are included. Moreover, in Section 4 we 
present and discuss 13 more interesting case studies all over the world. Section 5 is reserved for 
presenting and analysing the important concept overstressing, procedures for evaluating 
stability and modelling of failure modes. Our final discussion together with some concluding 
remarks can be found in Section 6.   

2. Numerical analysis of dam structures: models and methods 
In this section we present and discuss different numerical models and methods that can be 
suitable for analysing and treating problems related to dams. 

2.1. Linear and non-linear numerical models 
A linear numerical model (such as finite element model) of a dam provides a more detailed and 
accurate stress distribution in the dam than a limit equilibrium analysis. But a linear numerical 
analysis is not suitable to model the redistribution of stress due to cracking or crushing in the 
dams. However, it can be used to assess where in the dam it is likely that tension and shear 
stresses above the capacity of the materials occur. A linear numerical model should also be used 
as a starting point if a nonlinear model of the dam should be developed. The results from the 
linear analysis can then be used as a reference in the nonlinear analysis. 

There are several types of nonlinear numerical models. One type of such model is a nonlinear 
material model that allows for cracking and crushing in the material. Another type is a nonlinear 
connection between the foundation and the dam, and can be applied for both linear and 
nonlinear material models. 

Brand et al. [8] showed by an example that the benefits of using numerical models are not 
always that great. In the example, a two-dimensional analysis of a gravity dam was carried out. 
If the model can be reduced to a rigid body analysis, such as a gravity dam with a planar base, 
then a limit equilibrium analysis, which gives the cheapest analyses to perform, can be adequate 
for the dam. On the other hand, if the base of the dam is not planar and/or has asperities, then 
the failure can be best modelled with a nonlinear contact model. When an irregular base 
surface was introduced in the same example, the nonlinear analysis of the dam gave a friction 
angle of 18.3 degrees in order for the dam to be stable. If the irregularities are ignored and a 
limit equilibrium analysis was used, the required friction angle was 51.6 degrees. It should be 
noted that the irregularity causes a very different distribution of the stress, and a four times 
higher peak normal stress, than the one assumed in the limit equilibrium analyses. The results in 
the report showed that the geometry in the dam-foundation interface was clearly influencing 
the results of the numerical analysis. 

Léger et. al. [9] showed that the similarity of the results between the ones obtained from the 
limit equilibrium analysis and a nonlinear finite element analysis (FE-analysis) might depend on 
how the dam-foundation interface was modelled in the FE-analysis and what was analysed. A 
gravity dam with the height of 52 meters and a typical cross section was considered. A two-
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dimensional plain stress FE-analysis was performed, and showed how the choice of dam-
foundation interface model affected the resulting crack length. Hydrostatic pressure (water 
level: 52 meters), gravity and a triangular uplift pressure were applied to the dam (updated 
according to crack development). A linear material model was used for both the dam and the 
foundation. The boundary conditions applied on the foundation was set to zero displacement in 
the normal direction to the boundary. First, the crack length was computed by the gravity 
method. Assuming no tension capacity in the concrete, the authors found that the crack 
expanded to 28 % of the base length. Furthermore, the authors performed the following two FE-
analysis: (i) The dam-foundation interface was bounded together. If the tensile stress exceed 
the strength of the concrete, then the elastic modulus in the normal direction to the interface 
was set to zero. By using this method, we obtain the same crack length as in the case mentioned 
above when the elastic modulus was changed equal to 28 % of the base. (ii) The dam-
foundation interface was modelled with a model that utilized a cracking criterion based on 
principal tensile stresses instead of normal tensile stresses as was used in the gravity method. 
The crack length obtained in this analysis was 83 % of the base length. This shows that the crack 
length is highly dependent on how the interface is modelled. 

Numerical models can be expensive to develop. In general, the more complex an analysis is, the 
more it costs. As indicated in the example above (with planar base), the nonlinear model will 
not give any more information about the stability of the dam than the limit equilibrium analysis. 
The level of details included in the model should be such that the real structure can be 
approximated in the best possible way for the analysis in question. Details that do not affect the 
results should not be included. The more complex an analysis is, the higher the potential 
sources of errors is. Therefore, a more complex model does not necessarily give a more 
accurate result. The following three sections summarizes some of the key aspects to consider 
when applying the different methods to dams. These key aspects are described in the bulletin 
B155 - Guidelines of use of numerical models in dam engineering [10]. We will give a brief 
overview of some of the different numerical methods used to analyse dam constructions. 

2.2. Numerical methods  
a) The finite element method (FEM) has its origin in structural engineering; it was used to 

perform approximate computation of the behaviour of trusses, beams etc. subjected to 
external loading. Today it is also a widely used method in many fields of engineering. The 
basic concept of FEM is that a continuous body is dived into a finite number of parts 
(elements) described through nodes with different behaviour. The behaviour of each of 
these elements is then described with a finite number of parameters. The solution of the 
complete system is the result of the assembly of each elements behaviour. A more precise 
and detailed description of the FEM can be found in e.g. [11] and the references therein. The 
basic assumption of a continuous body used in FEM is also a valid assumption for concrete 
dams. For other types of dams such as embankment or masonry dams, where the body is 
not continuous, this assumption may not be justifiable. Effects such as cracking in the 
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concrete that introduces discontinuity into the otherwise continuous domain can be 
accounted for by using nonlinear material models. Today there are several commercially 
available finite element (FE)-software, such as ANSYS [12], ATENA [13], ABAQUS [14], LS-
DYNA [15], Catia [16] and many others. 

b) The distinct element method (DEM) differs from the FEM by representing a discontinuous 
media as an assembly of blocks that mechanical interact with each other. The development 
of DEM was motivated by problems in rock mechanic to which the basic continuum 
assumption used in FEM was not applicable. The method was first proposed by Cundall in 
[17]. DEM might be used for concrete and masonry dams. During the last years, DEM has 
been further developed, and today there is a possibility to combine FEM and DEM. This 
“combination”, treats each block as deformable (FEM) and mechanical connected to each 
other (DEM), is described in details in [18]. Modelling of dams by using DEM is a good 
approach to evaluate the stability of dams, as shown in some examples later in this paper. 
There exists commercially available software that has the option of DEM, such as LS-DYNA 
[15]. 

c) The particle finite element method (PFEM) has shown to be useful when investigating 
problems relating to fluid - structure interaction. The nodes (in each element) are 
considered to be particles that can move freely and even be separate from the main domain 
of the analysis. An overview of the method can be found in [19], which also presents several 
examples where the PFEM is shown to be a more accurate tool when the different problems 
are considered. One of the examples presented involves large motion of free surface and 
splashing of waves. PFEM might be a good tool to examine the interaction between the 
water and embankment dams. 

d) The finite volume method (FVM) is mainly used to model the behaviour of fluids, but it has 
also been used to model structures, see [20] and the references given there. Modelling 
structures by using FVM is mainly motivated by its ability to model the fluid-structure 
interaction by using the same numerical methods for all parts of the model. This method 
might be of interest in dam engineering but it is depending on the capability of the FVM to 
model structures and what the aim of the analysis is. For example, if the analysis aim is to 
assess the multi-physics problem of water – dam interaction, then the FVM might be of 
interested. 

e) The extended finite element method (XFEM) is a numerical method that was developed to 
model the crack growth in an domain. A detailed description of the method can be found in 
[21]. XFEM is based on the framework of FEM by using discontinuous fields across the crack 
faces. This gives the possibility to model crack growth without re-meshing the domain. 

f) The smooth particle hydrodynamics (SPH) method was originally developed to solve 
astrophysical and cosmological problems. A detailed description of the method can be found 
in [22] and the reference within. As the name of the method suggests, the domain is 
discretized using particles. Furthermore, it is a mesh free method. This makes SPH capable 
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of handling large displacements and fractures in a better way than numerical methods that 
depend on a mesh, such as FEM. The SPH is implemented in some commercial available 
software, e.g. LS-DYNA [23]. Mesh free methods do not discretize the domain into 
elements/volumes to provide a relationship between the nodes as for example FEM does. 
Some of the benefits of this is that re-meshing of a domain if cracking occurs is not required, 
and errors due to element distortions are avoided [24]. 

g) The isogoemetric analysis (IGA) method was first proposed in 2005 [25]. The main concept 
of IGA is to create a model for the numerical analysis based on geometry created in a 
computer aided design tool. This can be achieved by constructing the mesh using for 
example Non-Uninform Rational B-Splines. This will give a better representation of the exact 
geometry in the numerical model. This might be of interest for dam engineering if more 
details of the geometry should be included in the models. There exists a plug-in called 
abqNURBS [26] that utilizes IGA with in ABAQUS. 

3. Numeric analysis in design of new or reassessment of existing dams 
3.1. Numerical analysis in design of new concrete dams 
It is not only the geometry of the dam body that should be considered in a numerical model. 
Also the foundation of the dam should be included in the analysis. For linear analysis with static 
loads the Saint - Venant principle [27] can be used as a guideline for how much of the 
surroundings that should be included in the analysis. This principle implies that the foundation 
that is included in the model should at least have the same dimensions as the characteristic 
dimensions of the dam body. Normal practice is to let the foundation be 1.5H high (H is the 
height of dam), and it should also be of H length on both the upstream and downstream side of 
the dam, see Figure 4. The modelling of the foundation should of course be more detailed if it is 
the behaviour of the foundation that is of interest in the analysis.  

Foundation block 

Hydrostatic
pressure

Hydrostatic
pressure

Uplift

Ice load 

G

 

Figure 4: Typical loading and boundary conditions for a gravity dam. 

The stress state in the dam that is caused by the hydration heat distribution should also be 
considered when modelling concrete dams. The initial stress-strain state in the dam is one of 
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the most complex problems to analyse for existing structures. The two main reasons for the 
complexity of the problems are; the lack of knowledge about the construction phase and the 
thermo-visco-mechanical parameters that can introduce stresses. For dams, it is also important 
to take into account that the dead load and stiffness are added to the structure during the 
construction phase. The effect of this is of great importance for the initial stress-strain state in 
the structure. When using numerical analysis in the design of a new dam there will always be a 
challenge with the calibration of the numerical model, and the geometry of the dam-foundation 
interface is often unknown until construction of the dam has begun. 

Case study 1: The La Breña II dam 
Rueda et al. [28], presented a preliminary result on how to conduct a detailed thermo-chemical 
study of a roller compacted concrete (RCC) gravity dam during the construction phase. The dam 
model in the analyses is the La Breña II dam, located in Spain. It is 124 meters high and the crest 
is 673 meters long, divided into 25 monoliths. The consecutive lifts between new layers of 
concrete were assumed to be fully bounded. The dam-foundation interface was modelled as 
adjacent surfaces, which allows them to slip and separate from each other. The software used 
to analyse the problem was the finite element method program ABAQUS/Standard [14]. The 
construction process was divided into 207 steps. First, the thermal dissipation in the dam was 
simulated by using transient heat transfer in the time domain. Second, the result from the first 
step was introduced as thermal loads in a mechanical analysis. The input air temperature was 
the averaged measured temperature at the site. The curve of heat used in the analysis was 
approximated as the heat generated of concrete setting. The thermal properties of the 
materials were assumed to be independent of time. In the mechanical analysis, the dam-
foundation interface was modelled as a friction contact. Small values of sliding were assumed. 
On the vertical sides of the monolith, the boundary conditions were defined such that the 
domain can contract in the cross valley direction, but cannot expand. The “underground” 
boundaries in the foundation could not move in the normal direction and was free in the other. 
The temperature distribution obtained in the thermal analysis was applied as thermal loads. 
They were applied stepwise according to the new concrete lift (layering of concrete) added and 
the magnitude was time-dependent (computed in the thermal analysis). The self-weight of the 
dam was also considered. The material properties of concrete were defined as a piecewise 
function of time in order to account for the fact that the concrete's properties change very 
much in the early stages of setting. Both the Poisson's ratio and the thermal expansion 
coefficient were assumed constant with respect to time. In this analysis, the authors were able 
to show that there were high tensile stresses near the base of the dam and at the exposed faces 
on both the upstream and downstream side. These tensile stresses may lead to cracks in the 
concrete, allowing water to penetrate into the crack and concrete (seepage) which causes uplift 
loads. As noted by the authors, this numerical analysis was done before the dam was built and 
that physical experiments in order to verify the numerical model were not carried out. 
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3.2. Numerical analysis in reassessment of existing concrete dams 
There are two commonly used approaches when applying numerical methods in the 
reassessment process of an existing dam. The first approach is to use the data obtained from 
measurements of the dams geometry and behaviour. Then the analysis is carried out as if the 
dam was new. By using this method, the safety factors for different load cases can be obtained. 
If the results of the analysis correspond with the observed behaviour of the dam, then it is likely 
that the results are accurate. This approach is useful if the calculation from the design phase of 
the dam is lost, or if the calculation method, loading conditions and criteria have changed since 
the dam was built. 

If for example, dams were constructed without considering the effect of uplift, or if the ice load 
was not considered designing the dam, then this method could be used. 

The second approach is the back-calculation method, which was performed on the Upper 
Stillwater Dam located in Northern Utah, USA. The dam failed during the initial filling the 
summer of 1988 [29]. The cause of the failure was horizontal shearing along a weak layer of 
rock in the foundation. Results from numerical analysis were compared with the observed 
behaviour during failure. The numerical analysis (linear elastic and plain strain) predicted larger 
displacement than the observed displacement of the dam before the failure, but after the 
failure occurred the numerical model showed less displacement of the dam than the real 
behaviour in the dam. The back calculation of the stability showed that it was the lowest 
strength measured in the foundation that could predict the shearing in the foundation. 

3.3. Limitation of numerical methods and common errors in numerical analysis of dams 
Numerical methods are often simplified and partial methods are often used to compute the 
behaviour of a real physical system [10]. The geometry is simplified by not including details. 
Often, finite boundaries are assumed and imposed. The material models used are 
approximations of the real behaviour of the material. It is difficult to include the space-wise 
variation of the material properties in the model. The displacements are assumed to follow 
some shape functions, usually of first or second degree. The loading of the structure is 
systemized with respect to both space and time. All of these simplifications and limitations of 
the numerical model are not limited to dam engineering. However, they are important to 
remember when evaluating the results obtained from the model. 

There are some common errors in numerical analysis of dams that are highlighted in the report 
[8]: 

• Unrealistic boundary conditions. Dams are large structures that may span over an entire 
valley. Therefore, to reduce the size of the model, often only a representative section of 
the dam can be considered in the numerical model. It should be considered if the section 
is allowed translation in the cross valley or in downstream (and upstream) direction. The 
same should be considered for rotation. If a connection/boundary in the dam is not rigid 
in the real world, then it should not be modelled as a fixed connection/boundary. Free 
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translations and rotations should not be assumed if the dam is constructed such that 
these movements are not possible. 

• Mesh density (FEM). If the geometry is poorly meshed, then stress concentrations may 
be missed. Sharp corners and edges often result in high stresses and it is important that 
the model is meshed such that these stress concentration areas are visible in the results. 

• Strength. It is often tempting to utilize the tensile strength of the concrete if the 
numerical analysis show that there are tension forces acting in the dam. During the 
construction of the dam, the construction sequencing, curing and cooling of the concrete 
and different foundations deformation may have caused stresses in the dam that are not 
included in the analysis. Because of these unknown stresses, the tensile strength of the 
concrete should not be utilized. It should be assumed that the concrete has no tensile 
strength. 

4. Further important case studies 
In this Section we present some case studies, where numerical methods have been used on 
gravity dams and plate dams. In additions to this, some cases where the aim of the analysis is to 
study the effect of passive anchors is also included. 

4.1. Concerning gravity dams 
A gravity dam which has a fairly constant cross section and that is long compared to the height 
of the dam can be modelled by using a two-dimensional numerical model. This will be a good 
simplification and approximation to use when computing the behaviour of the dam [10]. If the 
dam spans a narrow valley, and the support on the sides of the dam is assumed to influence the 
behaviour of the dam, then a three-dimensional model is required to create a good model of 
the dam. 

Case study 2: The Norfork dam in USA 
The analysis of the stress distribution in the Norfork dam in USA, presented in the paper [30] 
and the report [31], is one of the earliest applications of finite element method on problems 
concerning dams. The Norfork dam is a concrete gravity dam. Extensive cracking in the dam was 
discovered during the construction of the dam and over 18 years after the completion of the 
dam, an extensive survey of the size and distribution of principal cracks was carried out. In one 
of the monoliths (or sections) a vertical crack was discovered. It spanned almost the complete 
height of the cross section. This section is about 60 meters high (196 feet) and was considered 
in the analysis. The purpose of the analysis was to assess how the crack affected the stress 
distribution in the dam body. Plain stress in the cross section was assumed in the finite element 
(FE) analysis, and a unit length in the cross-valley direction was considered. Both an un-cracked 
and a cracked cross section were modelled with the following loads: hydrostatic pressure, 
temperature and gravity. The results showed a stress concentration around the top and bottom 
of the crack that was not present in the un-cracked cross section. The principal stresses in the 
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areas of stress concentration did not exceed 3.4 MPa (500 psi), and was concluded to be not 
severe. 

Case study 3: The Fratel spillweir dam 
The Fratel spillweir dam in Tagus River in Portugal was investigated in the paper [32]. The dam is 
approximately 147 meter long and has six gates(that can control the water flow) placed on 
spillways (part of the dam where the water can flow) 12 meter high, and piers that are 33 meter 
high support the gates. The spillway section of the dam is a gravity dam. Both a finite element 
analysis and an physical experiment using a three dimensional model (model made of plaster 
material in scale 1/75 ) was used to analyse the effect of pre-stressing needed in the piers to 
support the gates. A linear isotropic material model was used for the concrete. The spillway part 
of the dam was modelled with two-dimensional plain strain elements, and the pier was 
modelled with plain stress elements. In the FE-analysis the dead load, water load on the spillway 
dam and gate, and the pre-stressing forces were included. Furthermore, the concrete block that 
supports the axes of the gates was modelled using plain strain elements. It was found that the 
results from the FE-analysis and the plaster model have good agreement. 

Case study 4: The Djerdap 1 dam  
The displacement in the Djerdap 1 dam located on the Danube River on the common stretch 
between Yugoslavia and Romania was studied in the paper [33]. The dam has an extensive 
monitoring system and measurements over a 30-year period have been collected. The author 
used the measured displacements as a reference for the behaviour of the dam. A concrete 
overflow section of the dam was modelled in a two-dimensional FE-analysis. The displacements 
obtained from this numerical analysis were compared to the historical measurements. The 
horizontal displacement computed using the finite element method (FEM) was in good 
agreement with the recorded data. The vertical displacement computed with FEM was a bit 
larger than the actual historical displacement. Measurements taken in the construction phase 
and initial phase of operation of the dam showed that 70% of the deformation of the rock in the 
foundation occurred during that time. The remaining 30% of the deformation has occurred 
during the 30 years of operation. 

Case study 5: The Hiyoshi and the Urayama dams 
The behavior of Hiyoshi dam and Urayama dam in Japan during their first filling was studied in 
the paper [34]. The Hiyoshi Dam is a Roller Compacted (RC) gravity dam with the height 67.4 
meter. The Urayama is also a RC gravity dam, and it is 156 meter high. During the first filling, 
there were no issues with any of the dam's behaviour. The largest cross-section of both dams 
was used in the analysis. The temperature and displacement of both dams were measured 
during the first filling. The authors compared these measurements with the computations 
performed with a two-stepped FE-analysis. The first step was an analysis of the temperature 
distribution in the dam. The result from this analysis was then used in the second step as a 
temperature load in the concrete in addition to the hydrostatic pressure. In the thermal 
analysis, a two-dimensional FE-analysis was performed considering the air temperature and 
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temperatures in the water on-site. The heat of hydration of the concrete, sunshine and other 
weather effects were not considered. In the static analysis, a plane stress FE-analysis was used, 
and the loads applied were temperature (in air and water), hydrostatic pressure, uplift and 
gravity. A segment of the foundation was also included in the analysis. For both of the dams the 
authors achieved numerical results that corresponded well with the actual measured behaviour 
of the dam. Furthermore, how the temperature and hydrostatic loading individually affected the 
behaviour of the dam, were also investigated. The result closest to the actual measured 
behaviour was the result obtained by a computation that included temperature loads, 
hydrostatic loads and gravity. 

Case study 6: The Ternay dam 
The Ternay dam in France is a 41 meters high old (completed in 1864) gravity masonry dam. A 
numerical analysis of the Ternay dam was presented in the paper [35]. A two-dimensional FE-
analysis with an elastic foundation was performed with the FEM program FARC-DAM. The dam-
foundation interface was modelled using a Mohr-Coulomb contact model with the friction angle 
of 46 degrees and a cohesion of 81 kPa. A poro-fracture analysis with a smeared nonlinear 
fracture mechanic concrete model was used to compute the cracking. The fracturing process 
was described using a tensile strain softening law when the tensile stresses exceeded the 
strength of the concrete. The foundation was constrained at the dam edges by setting the 
displacement to zero in the normal direction to the edge. When the water level reached 35.6 
meters, an unstable crack developed. It was concluded that a water level of 35.6 meters gave 
the failure load, and the failure was overstressing. These results were compared to previously 
work presented in [36], which used a poro-plastic formulation, and the obtained failure load in 
that work gave a crack at water level 36.4 meters. The differences between the two studies 
were assumed to be some differences in the effective porosity coefficient and the evolution of 
internal water pressure. It was concluded that by comparing the failure water level to the 
normal operating water level, a safety margin can be obtained. Furthermore, the authors noted 
some important aspects of numerical modelling of concrete dams; e.g. that the possibility of a 
crack jumping from one lift joint to the next should be considered. Moreover, the benefit of a 
numerical analysis, compared with the limit equilibrium method, was that it can compute the 
critical cracking profile. The numerical analysis can also handle several cracks, voids in the dam, 
varying material properties in the cross-section, discontinuities in the dam/foundation or the 
interface between them, temperature effects, and other actions done to improve the 
performance of the dam. 

Case study 7: The Itaipu dam 
The Itaipu dam located on the Praná River between Brazil and Paraguay is 7.8 kilometres long 
and has a maximum height of 196 meters. The dam consists of a concrete hollow gravity, a 
concrete buttress, a concrete mass gravity, a rock fill and an earth fill section. In the paper [37] 
the authors used the measurements taken over 17 years, to calibrate the finite element models 
connected to some of the sections of the dam. Two-dimensional FE-analysis was performed on 
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10 different cross-sections of the dam. In addition, a three-dimensional FE-analysis of the whole 
dam was conducted. It was assumed a monolithic connection between the dam and foundation, 
i.e. the two parts acted as one body. Gravity, temperature and hydrostatic loads were applied to 
the dam. Based on the FEA, it was concluded that the evaluated sections of the dam have the 
necessary safety margins. 

4.2. Concerning plate dams 
A plate dam (or flat slab buttress dam) can be modelled in different ways. One approximation is 
a two part plain stress model. First, the plate can be modelled, and the stresses obtained from 
the analysis can then be used in an analysis of the pillar, see [38], as the second step. Another 
method is to model one pillar and a section of the plate using either shell elements or solid 
elements (one pillar and a section of a plate method). The analysis performed on the 
Storfinnforsen is an example of this, which is summarized below. 

Case study 8: The Målset dam 
In the paper [39], the finite element method was used to investigate the sliding stability of four 
sections in the Målset dam, located on Vikafjellet on the west coast of Norway. The dam was 
built in 1954. It has one buttress section (34 pillars with a distance of 5 meter) and two sections 
that are gravity dams. The buttress section is up to 17 meter high. The sliding stability of two 
relative low sections (5.7 meter and 6 meter) was assessed by using a two-dimensional 
numerical model in the FEM-software ATENA. The pillars were modelled with plain stress 
elements. The plate and the rock foundation were modelled using plain strain elements. A 
fracture-plastic constitutive model was used in the model in order to include cracking and/or 
crushing. The loads were hydrostatic pressure, see Figure 1b, gravity and ice load. The uplift 
pressure was modelled by reducing the gravitational load of the plate. The traditional method of 
computing the safety factor with FEM, both with a smooth planar inclined dam-foundation 
interface and an interface that was close to the actual one (asperities etc. was included) was 
compared. The results showed that the FEM analysis gave higher safety factors against sliding 
than the shear-friction method, for the planar interface. The actual interface has a lower safety 
factor than the planar interface, but it is still higher than what you get from the shear-friction 
method. 

Case study 9: The Storfinnforsen dam  
In this case, a numerical analysis of a buttress dam was performed to investigate the cause of 
crack development in the dam. The Storfinnforsen dam, located in Sweden, were completed in 
1954. The dam has a maximum height around 40 meters. In 1961, the first survey of cracks in 
the dam was completed, and a second one was done in 1981. During that time three times as 
many cracks had developed, and the length of the cracks had doubled. One of the hypotheses 
was that it was the temperature difference between the upstream side and downstream side 
that caused these cracks. This was described in the references [40]–[42], where numerical 
modelling of thermal expansion in buttress dams was used. The starting point in the papers was 
a linear model, which was further developed into to a nonlinear model. In the report [41], a 40-
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meter-high section of the dam was considered. The numerical model consisted of one pillar and 
a plate segment. A finite element analysis was performed using shell elements with the effect of 
steel reinforcement and the FEM-software Abaqus. The plate was rigidly connected to the pillar 
and free on the sides that are in contact with the plates of the adjacent pillars. Moreover, the 
pillar was rigidly connected to the rock foundation, see Figure 2. The rock foundation was 
modelled as a 2 meter thick plate. This was done to reduce the stress close to the foundation 
when it was modelled as rigid surface. This was done to avoid unrealistic stresses at the base of 
the pillar. Due to the lack of elasticity if the foundation it was modelled as a rigid foundation. A 
nonlinear material model based on plasticity theory (called concrete damaged plasticity) was 
used to model the concrete. Gravity, hydrostatic pressure and temperature loads were applied. 
The temperature load was time dependent. The seasonal variation in the air/water temperate 
was considered as one temperature cycle, and a total of five cycles was applied to the dam. The 
results of the analysis showed that the cracks from the analysis corresponded well with the ones 
observed in the dam, and that the 3D shell elements provided higher accuracy than a 2D FE-
analysis. This also showed that the placement of the insulation wall had a significant effect on 
how the stresses due to thermal loads were distributed in the dam. 

4.3. Concerning arch dams 
We also describe some concrete examples concerning numerical analysis of arc dams. 

Case study 10: Sarvsfossen dam 
In the design process of Sarvsfossen dam (completed in 2014), a 50 meter high double curved 
concrete arch dam located in Bykle, Norway, a FE-analysis was used to assess the capacity of the 
dam [43]. It was assumed that the concrete and bedrock are linear elastic isotropic materials, 
the interface between the concrete dam body and bedrock were modelled with contact 
elements, hence uplift and sliding in the interface were included in the model. The motivation 
for performing a FEA on the dam was to get a more accurate representation of the geometry in 
the model than the one used in the currently used analytical calculations. The FEA showed that 
the dam body was lifted at the heel when the water pressure was added. Therefore, sensors 
were installed during the construction, and after the first filling of the dam the measurements 
showed that the heel lifted 2.5 - 3.5 mm under the highest water pressure. These 
measurements were close to what the numerical model predicted. 

Case study 11: The Xiaowan concrete arch dam  
Y. Pan et. al. [44] implemented an unbalanced force method in a FE-model to study the crack 
development in the Xiaowan high concrete arch dam, located in China. It was an existing crack 
in the dam which was assumed to be the results of thermal induces stresses. Both numerical 
and physical experiments were conducted to study the stability of the dam, and to determine 
the most likely failure mechanism. Both the numerical and the physical experiments showed 
that the cracking at the heel of the dam should be of the greatest concern and that the existing 
cracks seemed to be stable. 
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4.4. Passive anchors 
Passive anchors (or rock bolts) are often used in a concrete dam. Below follows two different 
methods of implementing rock bolts in a numerical analysis of a dam. 

Case study 12: DEM used to assess passive anchors  
E.M. Bretas et al. [45] used a small gravity dam model located in Canada with passive anchors by 
using DEM as a case study. The dam is 2.9 meter high and has a base width of 3.65 meter. The 
section was reinforced with a passive anchor 0.6 meters from the upstream heel. The load case 
used in the analysis was a flooding scenario with a headwater of 4.81 meters on the upstream 
and 1.81 meters downstream. The hydrostatic pressure was applied on the upstream face of the 
dam, but discarded on the downstream side, since that would have a stabilizing effect on the 
dam. Uplift and gravity were also included. The dam-foundation interface was based on the 
Mohr-Coulomb contact model and the foundation “block” was fixed in place. Full uplift pressure 
was applied in a crack that was computed to be one meter from the upstream heel. A 
parametric study of both the strength of the anchor and friction angel was conducted. It was 
concluded that the parameter that had the largest effect on the shear load acting on the 
anchor, was the friction angle. The effect of multiple anchors was also studied and was found to 
increase the normal force and related shear force in the bolts; this was due to reduction in the 
distance from the bolt to the toe of the dam. 

Case study 13: A typical Swedish buttress monolith  
R. Malm et al. [46] performed a case study on a typical Swedish buttress monolith to examine 
how the rock bolts contributes to the stability of concrete dams. The height and width was 8 
meters, the thickness of the plate was 1.2 meter, and the buttress had a thickness of 3 meter. 
The monolith has 20 rock bolts as anchors (steel bars, with a diameter of 25 millimetres) which 
are drilled 2 meters into the concrete and 3 meters into the rock. The water level was 7.5 
meters. The geometry consisted of one pillar and the corresponding part of the plate. Four 
cases were assessed in this study, performed by FE-analysis; (1) Without bolts, (2) Bolts with 
maximum allowed stress level of 140 MPa, (3a) Bolts with a yield stress level of 370 MPa and no 
corrosion, and (3b) Bolts with yield strength of 370 MPa and considering corrosion. The used 
software was Abaqus. The dam body and rock foundation were modelled with a 8-noded linear 
brick element. The FE-model of the dam body consisted of 32640 elements with an average size 
of 0.2 meters. The rock foundation consisted of 40960 elements with the average size of 0.25 
meters. The rock bolts were modelled with a three-dimensional 2-noded linear Timoshenko 
beam element, with an element size of 0.035 meters. The loading considered in this analysis 
was gravity (i.e. dead load), hydrostatic pressure and uplift pressure. The dam-rock interface 
was modelled as a "hard contact" for compressive loads that allowed separation, and the 
friction coefficient was set to 1.0. The boundary conditions were applied to the rock foundation, 
except the top surface that was constrained in the normal direction. The rock bolts were 
defined in such a way that a 0.1 millimetre axial deformation was allowed before failure. A 
push-over procedure (described in more details later) was used in all cases. The hydrostatic 
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pressure and uplift were increased by increasing the density of water, i.e. only the horizontal 
component was increasing. The results showed a combined failure mode of sliding and 
overturning. The numerical safety factors (combined) for all cases are listed in Table 1, together 
with the safety factor obtained by analytical calculations (sliding and overturning).  

Table 1: The safety factors for the different load cases. 
Case Combined Sliding* Overturning* 

1 1.00 1.03 1.43 
2 1.98 1.49 2.02 
3 3.00 2.22 2.54 

*Analytical results  
 

The conclusion of the study was that the rock bolts have a significantly effect on the stability on 
concrete dams. In this study, it was included also a presentation of and a discussion on how 
degradation influence the strength of the rock bolts. 

Case study 14: The Nygårdsvatn dam 
E.M. Bretas et al., [47], used the discrete element method (DEM) in a case study of a two-
dimensional numerical analysis. The method of reducing the friction angle was used to evaluate 
the stresses in passive rock bolts instead of the more commonly known FEM that was based on 
joint elements to represent the bolts. The Nygårdsvatn dam located near Narvik in the northern 
part of Norway was used as a case study. The construction of the dam was completed in 1932. It 
is a small dam consisting of one arched section and two gravity dam sections. In 2002 the owner 
of the dam concluded that one of the sections needed to be rehabilitated. The 48 meter long 
gravity dam with the height of 5 meters, needed more grouting and reinforcement due to a 
horizontal crack of 2 meters below the crest of the dam. In the analysis, the rock bolts were 
included as one-dimensional elements. The dam was loaded with hydrostatic pressure and ice 
load. The friction angle was reduced from 55 degrees to 25 degrees, and the failure in the dam-
foundation interface occurred at 30 degrees. By using the DEM model, it was shown that for the 
selected method of rehabilitation forces acting on the anchors were well within the capacity of 
the selected solution for the anchors. 

5. Overstressing, procedures for evaluating stability and modelling of 
failure modes  

5.1. Overstressing 
In this section, a selection of case studies where the aim has been to assess overstressing in 
dams, is presented. One of the main concern within the field of dam engineering is how cracks 
that occur in the dam will affect the failure of the dams. 
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A gravity dam 
A. Carpinteri et al. [48] showed that is was a good correlation between the crack propagation in 
a FE-model and physical lab experiments conducted on a scaled down section of a gravity dam. 
In the FE-model triangular elements with 6 nodes together with quadratic shape functions were 
used. A cohesive crack model (see for example [49]) was used to allow for cracks to occur in the 
FEA. The physical experiments were conducted on scaled down sections (1:40) of a gravity dam 
with a notch on the upstream side to initiate the crack development (different notch depths 
were tested). FEA of these experimental tests showed that the FE-model was able to predict the 
crack trajectories in a satisfactory manner, while the peak load obtained in the FEA was a bit 
lower than the experimental results. 

Smeared crack analysis 
S. Bhattacharjee et al. [50] studied how well smeared crack analysis models predicted crack 
propagation. Both a coaxial rotating crack model (CRCM) and a fixed crack model with a variable 
shear resistance factor (FCM-VSRF) were implemented in a two-dimensional FEA. The results 
were compared with available experimental studies in the literature. For both methods (CRCM 
and FCM-VSRF) of smeared crack analysis, a satisfactory estimation of the crack propagation, 
when compared to the experimental data, was obtained. 

Crack propagation 
G. Bolzon et. al. [51] performed a comparative study of crack propagation in a two dimensional 
buttress dam. Two different formulations of the boundary element method and finite element 
method were compared with experimental data. It was shown that both of the boundary 
element methods were able to fairly close predict the actual peak load. The finite element 
analysis using a cohesive fracture model with linear springs was also predicting the peak load 
fairly good, but the method cannot be used to predict the crack propagation. The smeared crack 
method was also tested. This method gave a peak load approximate 1.4 higher than the 
experimental results. 

S.N. Roth et. al. [52] showed good results when simulating the crack propagation in concrete 
structures, such as dams, by combining XFEM with the damage mechanics approach. Both the 
crack paths and peak load correlated well with the experimental results. 

Y. Wang et. al. [53] investigated the hydraulic fracturing in high concrete dams both with 
physical and numerical experiments. The results from FEA were compared with physical 
experiments carried out, and showed good correlation between the results. Furthermore, the 
importance of considering hydraulic fracture in high concrete dams was shown. 

S. Kai et. al [54] used a hybrid finite element mesh-free method to investigate the cracking in 
concrete dams. The effect of the hydraulic pressure in the cracks was also considered. It was 
found that the crack surfaces increased and the crack paths were smoother. The numerical 
model without hydraulic pressure was validated by comparing the results to existing results 
from physical experiments. 
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In the next subsection some different procedures for modelling failure modes that have been 
identified in the reviewed case studies are presented. 

5.2. Four procedures for evaluating the stability of dams  
Procedure 1: Increasing the head water level until failure. 
As seen in the case study [35], a method for computing the capacity of the dam is to increase 
the headwater until failure. The safety margin can then be obtained by comparing the 
headwater level that causes failure with the normal operational headwater. 

Procedure 2: Push-over. 
A procedure called "push-over" to obtain the maximum capacity for a dam is described in 
Guideline for FE-Analysis of concrete dams [55]. This is an iterative procedure that has two main 
steps. Step one: Apply the normal loads. Step two: Increase the "driving" loads until failure 
occurs. The "driving" loads are the forces that decrease the stability of the dam, such as the 
horizontal component of the hydrostatic pressure, the ice load, the uplift etc. One way of doing 
this is to increase the density of the water. Loads that contribute to the stability, such as the 
weight of the dam or vertical competent of the hydrostatic pressure, should not be increased 
during the analysis. Both step one and two can be divided into the necessary sub-load steps. 
The main idea in this procedure is to keep the lever arm of the "driving" forces in the same 
location, and only increase the size of the loads. By doing this it is argued that the results 
obtained by this method can be compared with results obtained from a rigid body analysis of 
the dam. Figure 5 shows the steps in the procedure, the driving forces are increased until failure 
occurs (indexed with * in Figure 5). 
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Figure 5: The push-over method. 

Procedure 3: Reducing the friction angle. 
One method to examine/assess the sliding failure, is by reducing the friction angle (or 
coefficient of friction) until sliding occurs. This is an iterative process, starting with the actual 
friction angle between the dam and the foundation and stepwise reduce it until the dam start to 
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slide. The safety factor for sliding can then be obtained by comparing the lowest friction angle 
needed for the dam not to start sliding with the actual friction angle. The advantage with this 
procedure is that the loads are not manipulated. In both Procedures 1 and 2 the failure 
mechanism is not isolated. By reducing the friction angle the most likely failure is sliding. A 
disadvantage with this method is that it may require several analyses (one for each friction 
angle) depending on how close (assumed) to failure the iterative process was started. 

Procedure 4: Resultant forces. 
The resultant force can be used to compute the safety factor for overturning. The position of 
the resultant force can be computed from the results obtained from the numerical model. If the 
resultant force is within the kernel (see Figure 1a) of the dam base, then there will be no 
overturning. This method uses the same principles as the limit equilibrium method and can also 
be used for sliding. In this procedure, the contact is modelled by using a suitable contact model, 
such as the Mohr - Coulomb contact model. 

5.3. Numerical modelling of failure modes 
This subsection focuses on how the following three failure events can be modelled by using 
numerical methods: 

• overturning about the toe of the dam, 
• sliding in the connection between the dam and the foundation, 
• overstressing in the dam or foundation.  

In addition to this, some common procedures for loading the dam to failure are presented. 

Failure of a dam is often defined as an uncontrolled release of the reservoir. Two main events 
can cause this: overturning and sliding. Both of which can occur in any place and in any plane in 
the dam and foundation. For this to occur a third event is needed: overstressing that causes 
cracks or crushing in the structure. A numerical model that includes every possible failure plane 
is a complex model. Therefore, the numerical models can often by simplified by studying each 
failure mode one by one. This gives a motivation for modelling the different failure modes that 
is twofold: (1) Reduce the complexity of the model. (2) To fulfil the NVE regulation [5], which 
demands that the overturning (about the toe) stability, the sliding (dam-foundation interface) 
stability and the stress distribution must be checked. 

There is a difference in the level of details which are needed in this analysis. The material 
strength is not of importance for the stability against overturning of the dam about the toe and 
sliding between the dam and foundation. These failure modes depend only on the density of the 
material and the coefficient of friction. This justifies the use of linear material models when 
analysing these failure modes. Overstressing, on the other hand, is highly dependent on the 
material strength. Hence, a more detailed material model is required. It should be noted that if 
the dam-foundation interface is modelled using a model that depends on friction, some 
numerical software require that the contact pressure must be established in a load step before 
the loads that may cause friction stresses, are applied. For dams, this can easily be achieved by 
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applying forces in a natural order. In the first step, the gravity load is applied (this generates the 
contact pressure), and in the second step, the hydrostatic pressure, uplift, ice pressure etc., will 
gradually be applied. 

Overturning 
Overturning of the dam about the toe can be modelled by using Procedure 2 (push-over). If 
using the push-over procedure, there should be no slip between the dam body and the 
foundation. This is achieved by modelling the contact between the foundation and dam with 
vertical springs and horizontal springs [55]. The vertical springs are used to represent the 
deformability of the foundation and the extension stiffness is then set to zero, i.e. it can only be 
activated in compression. The stiffness of the horizontal springs is used to model the friction 
between the dam body and the foundation. The load that causes overturning is then compared 
to the actual load acting on the dam, and the safety factor is obtained. Procedure 4 (resultant 
force) can be used to compute the safety factor for overturning. The benefit of this method is 
that there is no need to load the dam to failure, hence the modelling algorithm/method 
requires fewer iterations compared with Procedure 2 (push-over). 

Sliding 
Sliding in the plane between the dam and foundation can be modelled by using the Procedure 2 
(push-over), Procedure 3 (reducing the friction angle), and procedure 4 (resultant forces.). 
Common for all procedures is that the contact should be modelled by using a contact model 
such as, e.g. a Mohr - Coulomb or others. As in the limit equilibrium method, it is common to 
assume a planar connection surface between the dam and the foundation. Both the push-over 
procedure and reduction of the friction angle procedure require several iterations to obtain the 
failure load or friction angle. The result can then be compared with the actual loads/friction 
angles, and the safety factor can be obtained. 

Similar as in the case for overturning one can obtain the safety factor by retrieving the normal 
stress and friction stress from the numerical model under normal loading, and compute the 
safety factor in the same way as when using the limit equilibrium method (Procedure 4). 
Procedure 3 will most likely produce a pure sliding failure. Procedure 2, on the other hand, 
might result in a combination of both overturning and sliding. 

Overstressing. 
Overstressing (or crushing) and cracking are local failure modes, which can occur if local stresses 
exceed the strength of the material. If it is of interest to study how a local failure progresses, 
then a nonlinear material model is often required. This will also make it possible to study the 
redistribution of stresses after a part of the dam is crushed or cracked. The contact between the 
foundation and the dam (dam-foundation interface) should be modelled by a contact model 
such as Mohr - Coulomb. Geometrical discontinuities, such as asperity and gallery openings, that 
can cause stress concentrations in the dam, should be included in the model [56]. These stress 
concentration areas are potential starting points for material failure. Therefore, the actual 
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shape of the dam-foundation interface should be modelled in some detail. If there is cracking in 
the dam on the waterside, there should be applied an uplift/hydrostatic pressure inside the 
crack. This should be done for both overturning and sliding analysis if there are areas in the dam 
where tension stress occurs (assumed crack). How to model the crack propagation in concrete 
structures, such as concrete dams, belongs to the research field fracture mechanics. The details 
of this is not the main scope of this paper. However, this is an important topic within the field of 
dam engineering and will be described and discussed in more detail in a forthcoming paper  

6. Final discussion and concluding remarks 
In this paper a review of how numerical methods can be used in dam engineering is given and 
discussed. Some of the case studies show that the results obtained by using numerical methods, 
such as FEM, are close to the measurements of the behaviour of the dam. In some cases, the 
numerical methods have been used to show that the dams are stable. It seems that FEM is the 
most commonly used numerical method to model concrete dams. 

In particular, the use of numerical analyses of dams in Norway has been motivated by the cost 
of rehabilitation (strengthening) of dams that appears to be stable but do not pass the 
reassessment calculations performed according to the current regulations and by using rigid 
body assumptions. This has motivated the dam owners to start looking for less conservative 
methods such as numerical methods. The goal is to develop better methods for computing the 
stability, and numerical analyses/methods might an especially suitable approach for doing this, 
but this requires that the assumptions used for the models are in fact correct. Numerical models 
that use the same assumptions that the rigid body method might not give any more information 
about behaviour of the dam. 

In some of the case studies presented here, it is often difficult to understand what the 
assumptions that are made for the numerical analysis, and what boundary conditions and loads 
that are applied on the model. Hence, the results are not easily repeatable and verifiable. This is 
a result of poor documentation of the numerical analysis. A better documentation would be 
very beneficial within the field of dam engineering. 

As shown in the example by Brand et al. [8] the geometry of the dam-foundation interface has a 
big impact on how the stresses are transferred from the dam body to the foundation. This 
interface might be difficult to check on site for a gravity dam, but for a buttress dam where the 
surrounding area of the pillar often is exposed, the interface geometry can be measured on site 
for an existing dam. For gravity dams this must probably be done before they are built. By 
including the geometry of the foundation asperities this might act as shear keys and will 
contribute to the sliding stability if the foundation is of a strong material, such as good rock. On 
the other hand, these shear keys might lead to stress concentration points that can lead to 
overstressing. 
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The Procedures 1 - 3, described in subsection 5.2, all try to obtain the maximum / minimum 
capacity of a dam. In Procedure 1, the water level is increased until failure. This will move the 
resultant force of the water further away from the toe (in the vertical direction) and accelerate 
the overturning movement in the dam. On the other hand, if the dam has a sloping upstream 
face, increasing water level will also increase the deadweight of water that will contribute to the 
stability. This is avoided in Procedure 2 (push-over), where only the horizontal component of 
the "driving" forces are increased. As seen from the last case study by Malm et al. [55], this 
procedure gives a combined failure of overturning and sliding. By using Procedure 3 (reducing 
the friction angle in the dam-foundation interface), the most likely failure to occur is sliding. This 
method does not alter the loads in any way. 

The main reason for all these procedures is to find the capacity of the dam, but for Procedures 1 
and 2 the loads are changed in a somewhat unnatural way. In Procedure 1, there is a risk for 
ending up with a headwater level far above the crest of the dam. In Procedure 2, the increase of 
the horizontal component can be viewed as increasing the density of the water, which might 
result in a very dense water. Both the water level and density of water are known parameters, 
but if unknown, it is easy to measure. Procedure 4 (the use of the resultant forces), does not 
require any changes in the loads. However, then the maximum capacity of the dams is not 
obtained. 

As shown by the reviewed case studies from the literature, several numerical methods can be 
used to assess the crack propagation in concrete dams. For an engineer considering these types 
of problems one important task will be to validate the numerical method which can be chosen 
to model the problem at hand. One of the main aims of this paper is that it can be used as a 
basis when doing this crucial choice.  

Finally we remark that another approach to tackle problems of the type described in this paper 
is to use Fourier based methods. A recent review article on this subject is that by A. Singh and N. 
Grip [57], where also a fairly complete list of references are included and a concrete case study 
from a bridge in Sweden is presented.  
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1 Introduction
Let q ∈ (1, +∞), r ∈ (0, +∞) and α ∈ R. Moreover, let Lq,r(log L)α denote the Lorentz–
Zygmund space, which consists of all measurable functions f on [0, 1] such that

‖f ‖q,r,α :=
{∫ 1

0

(
f ∗(t)

)r(1 + | ln t|)αr · t
r
q –1 dt

} 1
r

< +∞,

where f ∗ is a nonincreasing rearrangement of the function |f | (see e.g. [1]).
If α = 0, then the Lorentz–Zygmund space coincides with the Lorentz space:

Lq1,q2 (log L)α = Lq1,q2 . If α = 0 and q1 = q2 = q, then Lq1,q2 (log L)α space coincides with
the Lebesgue space Lq[0, 1] (see e.g. [2]) with the norm

‖f ‖q :=
(∫ 1

0

∣∣f (x)
∣∣q dx

) 1
q

, 1 ≤ q < +∞.

Moreover, L∞[0, 1] denotes the space, which consists of all measurable function on [0, 1]
such that

‖f ‖∞ := ess sup
x∈[0,1]

∣∣f (x)
∣∣ < ∞.

We consider an orthogonal system {ϕn} in L2[0, 1] such that

‖ϕn‖s ≤ Mn, n ∈ N, (1)

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.
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and

μn = sup

{∥∥∥∥∥
n∑

k=1

ckϕk

∥∥∥∥∥
s

:
n∑

k=1

c2
k = 1

}
, ρn =

( ∞∑
k=n

|ak|2
) 1

2

, (2)

for some s ∈ (2, +∞]. Here Mn ↑ and Mn ≥ 1 (see [3], [4, p. 313]).
An orthonormal system {un} is called uniformly bounded if there is a constant M > 0

such that ‖un‖∞ ≤ M, ∀n ∈ N . Note that any uniformly bounded system {un} satisfies
condition (1) but the reversed implication is false.

For one variable function Marcinkiewicz and Zygmund [4] proved the following theo-
rems.

Theorem A (see [4]) Let the orthogonal system {ϕn} satisfy the condition (1) and 2 ≤ p < s.
If the real number sequence {an} satisfies the condition

∞∑
n=1

|an|pM(p–2) s
s–2

n n(p–2) s–1
s–2 < +∞,

then the series

∞∑
n=1

anϕn(x)

converges in Lp to some function f ∈ Lp[0, 1] and

‖f ‖p ≤ Cp,s

( ∞∑
n=1

|an|pM(p–2) s
s–2

n n(p–2) s–1
s–2

) 1
p

.

Theorem B (see [4]) Let the orthogonal system {ϕn} satisfy the condition (1), and s
s–1 =

μ < p ≤ 2. Then the Fourier coefficients an(f ) of the function f ∈ Lp[0, 1] with respect to the
system {ϕn} satisfy the inequality

( ∞∑
n=1

∣∣an(f )
∣∣pM(p–2) s

s–2
n n(p–2) s–1

s–2

) 1
p

≤ Cp,s‖f ‖p.

Nowadays there are several generalizations of Theorems A and B for different spaces
and systems (see e.g. [5–8] and the corresponding references).

Here we just mention that Flett [8] generalized this to the case of Lorentz spaces and
that Maslov [5] proved generalizations of Theorem A and Theorem B in Orlicz spaces.

The problem concerning the summability of the Fourier coefficients by bounded or-
thonormal system with functions from some Lorentz spaces were investigated e.g. by Stein
[9], Bochkarev [10], Kopezhanova and Persson [11] and Kopezhanova [12] (cf. also Persson
[13]).

Moreover, Kolyada [6] proved the following improvement of Theorem A.
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Theorem C (see [6]) Let an orthogonal system {ϕn} satisfy the condition (1), let the se-
quence {an} ∈ l2 and ρn = (

∑∞
k=n |ak|2) 1

2 , 2 < q < s ≤ +∞. If

�q(a) =

[ ∞∑
n=1

μ
(q–2)s

s–2
n

(
ρq

n – ρ
q
n+1

)] 1
q

< +∞,

then the series
∑∞

n=1 anϕn(x) converges in the space Lq to some function f ∈ Lq and the
following inequality holds: ‖f ‖q ≤ Cq,s�q(a).

This result was further generalized by Kirillov [7] as follows.

Theorem D (see [7]) If 2 < q < s, r > 0, δ = r(q–2)s
q(s–2) and the sequence {an} ∈ l2 satisfies the

following condition:

�q,r(a) =

( ∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

) 1
r

< ∞
(

μn ≡ μ(s)
n , ρn =

( ∞∑
k=n

|ak|2
) 1

2
)

,

then the series
∑∞

n=1 anϕn(x) converges in space L2[0, 1] to some function f and the inequal-
ity ‖f ‖q,r ≤ Cq,r,s�q,r(a) holds. (Here μn and ρn are defined by (2).)

The following well-known lemma is used in our proofs.

Lemma E Let 0 < p < ∞, and {ak}∞k=0 and {bk}∞k=0 are non-negative sequences.
(i) If

∞∑
n=k

an ≤ Cak , k = 0, 1, 2, . . . , (3)

then

∞∑
n=0

an

( n∑
k=0

bk

)p

≤ Cpp
∞∑

n=0

anbp
n.

(ii) If

k∑
n=0

an ≤ Cak , k = 0, 1, 2, . . . , (4)

then

∞∑
n=0

an

( ∞∑
k=n

bk

)p

≤ Cpp
∞∑

n=0

anbp
n,

where C is a positive number independent of n.

In this paper we both generalize and complement the statements in Theorems A–D in
various ways and always to the case with Lorentz–Zygmund spaces involved. In partic-
ular, in Sect. 2 such a generalization of Theorem D (and, thus, of Theorems A and C) is
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proved (see Theorem 2.1). In Sect. 3 such a complement of Theorem B to the case q < 2 is
given (see Theorem 3.1). Finally, in Sect. 4 we present and prove some further results for
uniformly bounded systems and give some concluding remarks. In particular, we compare
our results with some other recent research. For the reader’s convenience we also include
a proof of Lemma E in the Appendix.

2 Generalization of Theorem D
In this section we state and prove the following generalization of Theorem D.

Theorem 2.1 Let 2 < q < s ≤ +∞, α ∈ R, r > 0 and δ = rs(q–2)
q(s–2) . If {an} ∈ l2 and

�q,r,α(a) =

{ ∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr
} 1

r

< +∞,

where ρn and μn are defined by (2), then the series

∞∑
n=1

anϕn(x)

with respect to an orthogonal system {ϕn}∞n=1, which satisfies the condition (1), converges to
some function f ∈ Lq,r(log L)α and ‖f ‖q,r,α ≤ C�q,r,α .

Corollary 2.2 For the case α = 0, Theorem 2.1 coincides with Theorem D.

Proof Since the sequence {μn} is increasing, let us define the sequence {νn} in the following
way (see [7]):

ν1 = 1, νn+1 = min{k ∈ N : μk ≥ 2μνn}, n = 1, 2, 3, . . . .

Then μνn+1 ≥ 2μνn , μνn+1–1 < 2μνn , n = 1, 2, . . . .

Let tn = μ
– 2s

s–2
n ,

uj(x) =
νj+1–1∑

k=νj

akϕk(x),

Sn(x) =
n∑

k=1

uj(x) and Rn(x) = f (x) – Sn(x).

Since tn ↓ 0 for n → +∞, by the property of nonincreasing rearrangement of the function
(see [14, p. 83]), we get

‖f ‖r
q,r,α =

∞∑
n=1

∫ tn

tn+1

(
f ∗∗(t)

)r(1 + | ln t|)αrt
r
q –1 dt

≤ C

[ ∞∑
n=1

∫ tn

tn+1

(
S∗∗

n (t)
)r(1 + | ln t|)αrt

r
q –1 dt

+
∞∑

n=1

∫ tn

tn+1

(
R∗∗

n (t)
)r(1 + | ln t|)αrt

r
q –1 dt

]
:= C[I1 + I2] (5)
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and, moreover,

S∗∗
n (t) ≤ 1

t

n∑
j=1

∫ t

0
u∗

j (y) dy.

By applying Hölder’s inequality we obtain

∫ t

0
u∗

j (y) dy ≤ t1– 1
s ρνjμνj+1–1.

Therefore,

S∗∗
n (t) ≤ t– 1

s

n∑
j=1

ρνjμνj+1–1.

By using this estimate we find that

I1 ≤
∞∑

n=1

∫ tn

tn+1

( n∑
j=1

ρνjμνj+1–1

)r(
1 + | ln t|)αrtr( 1

q – 1
s )–1 dt

≤ C
∞∑

n=1

( n∑
j=1

ρνjμνj+1–1

)r(
1 + | ln tn|

)αr(t
r( 1

q – 1
s )

n – t
r( 1

q – 1
s )

n+1
)
.

Thus, by taking into account the definition of tn, we can conclude that

I1 ≤
∞∑

n=1

( n∑
j=1

ρνjμνj+1–1

)r(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νn . (6)

Since for any ε > 0 the function t–ε ln t ↓ 0 for t → +∞, according to the definition of the
numbers νn, we see that

∞∑
k=n

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νk

≤
(1 + | 2s

s–2 lnμνn |
με

νn

)αr

μ
–r( 2(s–q)

q(s–2) –εα)
νn

∞∑
k=n

2–(k–n)r( 2(s–q)
q(s–2) –εα).

Now choose the number ε such that 2(s–q)
q(s–2) – εα > 0. Then

∞∑
k=n

2–(k–n)r( 2(s–q)
q(s–2) –εα) ≤

∞∑
l=0

2–lr( 2(s–q)
q(s–2) –εα) < +∞.

Hence,

∞∑
k=n

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νk ≤ C

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νn .
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Therefore, by Lemma E, we have

∞∑
n=1

( n∑
j=1

ρνjμνj+1–1

)r(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νn

≤ C
∞∑

n=1

(ρνnμνn+1–1)r
(

1 +
∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νn .

Thus, from (6) it follows that

I1 ≤ C
∞∑

n=1

(ρνnμνn )r
(

1 +
∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μδ
νn , (7)

where δ = r 2(s–q)
q(s–2) . Since ρn → 0 for n → +∞, it yields ρr

νn =
∑∞

k=n(ρr
νk

– ρr
νk+1

). Therefore,
by changing the order of summation, we get

∞∑
n=1

ρr
νn

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μδ
νn =

∞∑
k=1

(
ρr

νk
– ρr

νk+1

) k∑
n=1

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μδ
νn . (8)

Since δ > 0 and μνn+1 ≥ 2μνn , we have
∑k

n=1 μδ
νn ≤ Cμδ

νk
. Hence, by again using Lemma E,

from (8) it follows that

∞∑
n=1

ρr
νn

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μδ
νn ≤ C

∞∑
k=1

ρr
νk

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μδ
νk

. (9)

By now combining inequalities (7) and (9) we obtain

I1 ≤ C
∞∑

k=1

ρr
νk

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μδ
νk

. (10)

Next we estimate I2. By using Hölder’s inequality we find that R∗∗
n (t) ≤ Ct– 1

2 ‖Rn‖2. There-
fore,

I2 ≤ C
∞∑

n=1

∥∥Rn
∥∥

2

∫ tn

tn+1

(
1 + | ln t|)αrtr( 1

q – 1
2 )–1 dt

≤ C
∞∑

n=1

∥∥Rn
∥∥

2

(
1 + | ln tn|

)αr
∫ tn

tn+1

tr( 1
q – 1

2 )–1 dt

≤ C
∞∑

n=1

ρr
νn+1

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn+1

∣∣∣∣
)αr

μδ
νn+1 . (11)

Next, by repeating the proof of Eq. (9) we obtain

∞∑
n=1

ρr
νn+1

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn+1

∣∣∣∣
)αr

μδ
νn+1 ≤ C

∞∑
k=1

ρr
νk

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μδ
νk

. (12)
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By combining the inequalities (11) and (12) we have

I2 ≤ C
∞∑

k=1

ρr
νk

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μδ
νk

. (13)

Moreover, in view of inequalities (10) and (13), from (5) it follows that

‖f ‖r
q,r,α ≤ C

∞∑
k=1

ρr
νk

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μδ
νk

(14)

in the case α > 0. Since α > 0 and μn ↑, we see that

∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

=
∞∑

k=1

νk+1–1∑
n=νk

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

≥
∞∑

k=1

μδ
νk

(
1 +

2s
s – 2

lnμνk

)αr νk+1–1∑
n=νk

(
ρr

n – ρr
n+1

)

=
∞∑

k=1

μδ
νk

(
1 +

2s
s – 2

lnμνk

)αr(
ρr

νk
– ρr

νk+1

)
.

Hence, from the inequality (14) it follows that

‖f ‖r
q,r,α ≤ C

∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

(15)

in the case α > 0.
Let α < 0. Then, for any number ε > 0, the function yε(1 + ln y)rα increases on (1,∞).

Therefore, by taking into account that μn ↑, we obtain

∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

=
∞∑

k=1

νk+1–1∑
n=νk

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

≥
∞∑

k=1

με
νk

(
1 +

2s
s – 2

lnμνk

)αr νk+1–1∑
n=νk

(
ρr

n – ρr
n+1

)
μδ–ε

n . (16)

Choose ε > 0 such that δ – ε > 0. Since μδ–ε
n ↑, according to the inequality (16), we have

∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

≥
∞∑

k=1

μδ
νk

(
1 +

2s
s – 2

lnμνk

)αr νk+1–1∑
n=νk

(
ρr

n – ρr
n+1

)

in the case α < 0. Therefore (15) holds also for case α < 0 and the proof is complete. �
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Corollary 2.3 Let {ϕn}∞n=1 be an uniformly bounded orthogonal system and let 2 < q < +∞,
α ∈ R and r > 0.

If

�q,r(a) =

( ∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr

) 1
r

< ∞,

where ρn are defined by (2), then the series
∑∞

n=1 anϕn(x) converges to some function f ∈
Lq,r(log L)α and ‖f ‖q,r,α ≤ C · �q,r,α .

Proof Since {ϕn}∞n=1 is an uniformly bounded orthogonal system, we have s = +∞. There-
fore

lim
s→+∞

rs(q – 2)
q(s – 2)

=
r(q – 2)

q
.

Now, given that Mn ≤ M, μn ≤ √
nM, n ∈ N, we have

∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

≤ C
∞∑

n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr (17)

if α ≥ 0.
If α < 0, then we choose a number ε such that 0 < ε < (q–2)

q . Then, by considering the
function (1 + ln t)αtε ↑ on [1, +∞), we can verify that the inequality (17) holds also for
α < 0. Consequently, by Theorem 2.1, the statement is true. �

3 A complement of Theorem B. The case q < 2
In this section we prove a result which was formulated but not proven in [15]. It may be
regarded as a complement of Theorem B relevant for a more general situation.

Theorem 3.1 Let s ∈ (2, +∞], s
s–1 < q < 2, r > 1, α ∈ R and δ = r(q–2)s

q(s–2) . If f ∈ Lq,r(log L)α ,
then the inequality

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

] 1
r

≤ C‖f ‖q,r,α

holds, where μνn are defined by (2) and an(f ) denote the Fourier coefficients of f with respect
to an orthogonal system {ϕn}∞n=1 satisfying condition (1).

Remark 3.2 Theorem 3.1 was formulated, but not proved, in [15]. Here we present the
details of the proof.

Proof Choose an increasing sequence {νn} of natural numbers such that ν1 = 1, νn+1 =
min{k : μk ≥ 2μνn}, n = 1, 2, 3, . . . . Then μνn+1 ≥ 2μνn , μνn+1–1 < 2μνn . Since the system
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{ϕn} is orthogonal we have

∣∣∣∣
∫ 1

0
f (x)g(x) dx

∣∣∣∣ =

∣∣∣∣∣
∞∑

k=1

ak(f )bk(g)

∣∣∣∣∣

for any function g ∈ Lq′ ,r′ (log L)–α , 1
r + 1

r′ = 1 and 1
q + 1

q′ = 1. Let

bk :=

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

]– 1
r′

×
(

νn+1–1∑
k=νn

∣∣ak(f )
∣∣2

) r–2
2

(1 + logμνn )rαμδ
νn ak(f ) (18)

for k = νn, . . . ,νn+1 – 1, n = 1, 2, . . . , and consider a function g ∈ Lq′ ,r′ (log L)–2 with Fourier
coefficients bk(g) = bk . Then

∣∣∣∣
∫ 1

0
f (x)g(x) dx

∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1

νn+1–1∑
k=νn

ak(f )bk(g)

∣∣∣∣∣

=

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

] 1
r

. (19)

Taking into account that rr′ = r + r′, by Theorem 2.1 and (18), we have

‖g‖q′ ,r′ ,–α ≤ C

{ ∞∑
n=1

(
νn+1–1∑
k=νn

b2
k(g)

) r′
2

(1 + logμνn )–r′αμ

s(q′–2)
(s–2)q′ ·r′
νn

} 1
r′

= C

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

]– 1
r′

×
{ ∞∑

n=1

(
νn+1–1∑
k=νn

a2
k(f )

) r′
2
(

νn+1–1∑
k=νn

a2
k(f )

) r′
2 (r–2)

× (1 + logμνn )–r′αμ

s(q′–2)
(s–2)q′ ·r′
νn (1 + logμνn )rr′αμ

s(q–2)
(s–2)q rr′
νn

} 1
r′

= C

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

]– 1
r′

×
[ ∞∑

n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

] 1
r′

= C.
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Thus, the function g0 := C–1g ∈ Lq′ ,r′ (log L)–α and ‖g0‖q′ ,r′ ,–α ≤ 1. Next, by the property of
the norm in the Lorentz–Zygmund space and using equality (19), we get

‖f ‖q,r,α � sup
g∈Lq′ ,r′ (log L)–α

‖g‖q′ ,r′ ,–α≤1

∣∣∣∣
∫ 1

0
f (x)g(x) dx

∣∣∣∣ ≥
∣∣∣∣
∫ 1

0
f (x)g0(x) dx

∣∣∣∣

= C–1

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

μδ
νn

] 1
r

.

The proof is complete. �

4 Further results and concluding remarks
In this section we first prove some results which are closely related to but not covered
by the results in the previous sections (Propositions 4.1 and 4.2). After that, we present
some results of a similar kind (see [11, 12] and Theorem F) and in remarks we point out
how these results can be compared with our results in some special cases when such a
comparison is possible.

Proposition 4.1 Let {ϕn}∞n=1 be an uniformly bounded orthogonal system and 2 < q < +∞,
α ∈ R and r > 1. If

�q,r,α(a) =

( ∞∑
n=1

|an|rnr(1– 1
q – 1

r )(1 + ln n)αr

) 1
r

< ∞,

then the series
∑∞

n=1 anϕn(x) converges to some function f ∈ Lq,r(log L)α and ‖f ‖q,r,α ≤
C�q,r,α(a).

Proof Since ρn ↓ 0 when n → +∞, we can choose numbers n1 = 1,

nk+1 = min

{
n ∈ N : ρnk+1 ≤ 1

2
ρnk

}
, k = 1, 2 . . . .

Therefore, if α ≥ 0, it yields

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr =

∞∑
k=2

(nk – 1)
r(q–2)

2q (1 + ln nk)αr(ρr
nk–1

– ρr
nk

)
. (20)

For any numbers k = 2, 3, . . . , the following inequality holds:

ρr
nk–1

– ρr
nk

≤ ρr
nk–1

≤ 2r(ρ2
nk –1

) r
2 . (21)

Since ρnk+1 ≤ 1
2ρnk ≤ 1

2ρnk –1, we have

ρ2
nk –1 – ρ2

nk+1
≥ ρ2

nk –1 –
(

1
2
ρnk –1

)2

=
3
4
ρ2

nk –1. (22)
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By using (21) and (22), we can obtain the following inequality:

ρr
nk–1

– ρr
nk

≤ 2r
(

4
3

) r
2
(nk+1–1∑

n=nk –1

|an|2
) r

2

. (23)

Therefore, from (20) it follows that

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr ≤ Cr

∞∑
k=2

(nk – 1)
r(q–2)

2q (1 + ln nk)αr

(nk+1–1∑
n=nk –1

|an|2
) r

2

(24)

when α ≥ 0.
If α < 0, then we can choose a number ε which satisfies 0 < ε < q–2

2q . We note that (1 +
ln n)αnε ↑ and we obtain the following inequality:

nk –1∑
n=nk–1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr

=
nk –1∑

n=nk–1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q –rε((1 + ln n)αnε

)r

≤ (nk – 1)
r(q–2)

2q –rε((1 + ln(nk – 1)
)α(nk – 1)ε

)r
nk –1∑

n=nk–1

(
ρr

n – ρr
n+1

)

= (nk – 1)
r(q–2)

2q
(
1 + ln(nk – 1)

)αr(
ρr

nk–1
– ρr

nk

)
. (25)

By now combining the inequalities (20), (23) and (25), we conclude that (24) holds also for
the case α < 0.

If r > 2, then, by using Hölder’s inequality with θ = r
2 , 1

θ
+ 1

θ ′ = 1, we obtain

nk+1–1∑
n=nk –1

|an|2 ≤
(nk+1–1∑

n=nk –1

|an|rnr(1– 1
q )–1

) 2
r
(nk+1–1∑

n=nk –1

nθ ′( 1
θ

–2(1– 1
q ))

) 1
θ ′

. (26)

Since 2 < q, we have 1 + θ ′( 1
θ

– 2(1 – 1
q )) = θ ′( 2

q – 1) < 0. Therefore,

nk+1–1∑
n=nk –1

nθ ′( 1
θ

–2(1– 1
q )) ≤ Cr,q

∫ nk+1

nk –1
tθ ′( 1

θ
–2(1– 1

q )) dt

≤ Cr,q

θ ′(2(1 – 1
q ) – 1

θ
) – 1

(nk – 1)1+θ ′( 1
θ

–2(1– 1
q )) (27)

for k = 2, 3, . . . . From inequalities (26) and (27), we can derive the following inequality:

nk+1–1∑
n=nk –1

|an|2 ≤ C(nk – 1)
1
θ ′ + 1

θ
–2(1– 1

q )

(nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1

) 2
r

(28)

for k = 2, 3, . . . , in the case of 2 < r < ∞.
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Now, by combining (26) and (28), we obtain the following inequality:

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr

≤
∞∑

k=2

(nk – 1)
r(q–2)

2q (1 + ln nk)αr(nk – 1)
r
2 (1–2(1– 1

q ))
nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1 (29)

in the case of 2 < r < ∞, 0 < α < ∞.
Since

r(q – 2)
2q

+
r
2

(
1 – 2

(
1 –

1
q

))
= 0,

it follows from (29) that

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr ≤ C

∞∑
k=2

nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1(1 + ln n)αr (30)

in the case 2 < r < ∞, 0 < α < ∞.
Furthermore,

∞∑
k=2

nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1(1 + ln n)αr

≤
∞∑

k=2

nk –1∑
n=nk–1

|an|rnr(1– 1
q )–1(1 + ln n)αr +

∞∑
k=2

nk+1–1∑
n=nk

|an|rnr(1– 1
q )–1(1 + ln n)αr

≤ 2
∞∑

n=1

|an|rnr(1– 1
q )–1(1 + ln n)αr (31)

in the case 2 < r < ∞, 0 < α < ∞.
If α < 0, then we choose a number ε which satisfies 0 < ε < q–2

2q . By using the Hölder
inequality, we obtain (θ = r

2 , 1
θ

+ 1
θ ′ = 1)

nk+1–1∑
n=nk –1

|an|2 ≤
(nk+1–1∑

n=nk –1

|an|rnr(1– 1
q )–εθ–1

) 2
r
(nk+1–1∑

n=nk –1

nθ ′( 1
θ

–2(1– 1
q )+ε)

) 1
θ ′

. (32)

According to the choice of the number ε it shows that

1 + θ ′
(

1
θ

– 2
(

1 –
1
q

)
+ ε

)
= θ ′

(
2
q

– 1 + ε

)
< 0.

Therefore (as in the case of α > 0) we obtain the following inequality:

nk+1–1∑
n=nk –1

nθ ′( 1
θ

–2(1– 1
q )+ε) ≤ Cr,q

∫ nk+1

nk –1
tθ ′( 1

θ
–2(1– 1

q )+ε) dt

≤ Cr,q

θ ′(2(1 – 1
q ) – 1 – ε)

(nk – 1)1+θ ′( 1
θ

–2(1– 1
q )+ε) (33)
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for k = 2, 3, . . . . Thus, in view of (32) and (33), the following inequality holds:

nk+1–1∑
n=nk –1

|an|2 ≤ C(nk – 1)1+θ ′( 1
θ

–2(1– 1
q )+ε)

(nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–εθ–1

) 2
r

for the case of 2 < r < ∞, α < 0. Hence, we can consider the function (1 + ln n)αn ε
2 ↑, and

from the inequality (24), we obtain the following inequality:

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr

≤ C
∞∑

k=2

(
1 + ln(nk – 1)αr(nk – 1)

r
2 ε

) nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1

≤ C
∞∑

k=2

nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1(1 + ln n)αr (34)

for the case of 2 < r < ∞, α < 0. Thus, it follows from inequalities (30), (31) and (34) that

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr ≤ C

∞∑
n=1

|an|rnr(1– 1
q )–1(1 + ln n)αr

and the proof is complete. �

Our next result reads as follows.

Proposition 4.2 Let {ϕn}∞n=1 be an uniformly bounded orthogonal system, 2 < q < +∞, α ∈
R and r > 0. If |an| ↓ 0, n → ∞, {an} ∈ l2 and

∞∑
n=1

|an|rnr(1– 1
q )–1(1 + ln n)αr < +∞,

then the series
∑∞

n=1 anϕn(x) converges to some function f ∈ Lq,r(log L)α and

‖f ‖q,r,α ≤ C

{ ∞∑
n=1

|an|rnr(1– 1
q )–1(1 + ln n)αr

} 1
r

.

Proof It is easy to see that

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + log n)αr

≤ C
∞∑

k=1

2k r(q–2)
2q (1 + k)αr(ρr

2k–1 – ρr
2k

)

= C
∞∑

k=1

2k r(q–2)
2q (1 + k)αr

( ∞∑
ν=k

2ν–1∑
l=2ν–1

|al|2
) r

2

. (35)
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Since 2 < q < ∞, we have

ν∑
k=1

2k r(q–2)
2q (1 + k)αr ≤ C2ν

r(q–2)
2q (1 + ν)αr , ν = 1, 2 . . . .

Therefore, by Lemma E, we obtain

∞∑
k=1

2k r(q–2)
2q (1 + k)αr

( ∞∑
ν=k

2ν–1∑
l=2ν–1

|al|2
) r

2

≤
∞∑

k=1

2k r(q–2)
2q (1 + k)αr

( 2k –1∑
l=2k–1

|al|2
) r

2

. (36)

Moreover, since |an| ↓ 0, n → ∞, it yields

( 2k –1∑
l=2k–1

|al|2
) r

2

≤ (
2k–1) r

2 |a2k–1 |r , k = 1, 2, . . . .

Thus,

∞∑
k=1

2k r(q–2)
2q (1 + k)αr

( 2k –1∑
l=2k–1

|al|2
) r

2

≤ C
∞∑

k=1

2kr(1– 1
q )(1 + k)αr|a2k–1 |r . (37)

Furthermore, since the sequence {|an|} is monotonic, we can easily verify that

2k–1–1∑
n=2k–2

|an|rnr(1– 1
q )–1(1 + n)αr ≥ C|a2k–1 |r2kr(1– 1

q )(1 + k)αr , k = 2, 3, . . . .

Therefore, it follows from inequality (37) that

∞∑
k=1

2k r(q–2)
2q (1 + k)αr

( 2k –1∑
l=2k–1

|al|2
) r

2

≤ C

{
|a1|r +

∞∑
n=1

|an|rnr(1– 1
q )–1(1 + n)αr

}
. (38)

Now, from the inequalities (35), (36), and (38) we can deduce that

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + log n)αr ≤ C

∞∑
n=1

|an|rnr(1– 1
q )–1(1 + n)αr .

Therefore, in view of Corollary 2.3, the statement in the proposition holds. �

Remark 4.3 We may ask wether it is possible to generalize the results obtained in
this paper to more general Lorentz–Zygmund type spaces by replacing the weight
(1 + | ln t|)αrtr/q–1 by a more general weight λ(t). Of course, we must still have some con-
trol of the growth properties of the weight. Below we will just briefly describe one such a
possibility namely the quasi-monotone weights, used in recent work of Kopezhanova and
Persson (see [11, 12]).
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Let 0 < r < ∞, 0 < β < ∞ and λ = λ(t) be a positive function defined on (0,∞). Consider
all functions f for which

‖f ‖�β (λ) :=
{∫ 1

0

(
f ∗(t)tλ

(
1
t

))β dt
t

} 1
β

< +∞.

Note that if λ(y) = y1– 1
q (log(2y))α , α ∈ R, then, for t ∈ (0, 1], the function tλ( 1

t ) = t
1
q (1 +

log 1
t )α . Therefore

‖f ‖�β
=

{∫ 1

0

(
f ∗(t)

)β t
β
q

(
1 + log

1
t

)αβ dt
t

} 1
β

so that �β is just the Lorentz–Zygmund space Lq,β (log L)α .
We consider the following classes of functions B =

⋃
δ>0 Bδ and A =

⋃
δ>0 Aδ :

Bδ =
{
λ : λ(y)y– 1

2 –δ ↑ and λ(y)y–1+δ ↓ on [1,∞)
}

,

Aδ =
{
λ : λ(y)y– 1

2 –δ ↑ and λ(y)y–1+δ ↓ on [1,∞)
}

.

The following result was proved by Kopezhanova and Persson (see [11, Theorem 2] and
[12, p. 45]).

Theorem F Let 0 < β < ∞, and assume that the orthonormal system 
 = {ϕk}∞k=1 is uni-
formly bounded.

(a) If λ(t) belongs to the class A, then

( ∞∑
n=1

(
a∗

nλ(n)
)β 1

n

) 1
β

≤ c1‖f ‖�β (λ),

where {a∗
n} is the nonincreasing rearrangement of the sequence {|ak|}∞k=1 of Fourier

coefficients of f with respect to the system 
.
(b) If λ(t) belongs to the class B and f a.e.=

∑∞
n=1 anϕn, then

‖f ‖�β (λ) ≤ c2

( ∞∑
n=1

(
a∗

nλ(n)
)β 1

n

) 1
β

. (39)

Here the constants c1 and c2 do not depend on f .

In the case of λ(y) = y1– 1
q (log(2y))α , α ∈ R, from part (b) of Theorem F we obtain the

following assertion.

Corollary 4.4 Let 0 < β < ∞, and assume that the orthonormal system 
 = {ϕk}∞k=1 is
bounded. If 2 < q < ∞, 0 < β < ∞, and f a.e.=

∑∞
n=1 anϕn, then

‖f ‖q,β ,α ≤ C

( ∞∑
n=1

(
a∗

n
)βnβ(1– 1

q )–1(1 + ln n)αβ

) 1
β

.
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Proof For the function λ(y) = y1– 1
q (log(2y))α ∈ B there exists a number δ > 0 such that

λ(y) ∈ Bδ . If 1
2 – 1

q – δ > 0, then λ(y)y– 1
2 –δ = y

1
2 – 1

q –δ(1 + log y)α ↑ on the interval [1,∞).
Hence 2 < q < ∞.

Further, the function λ(y)y–1+δ = yδ– 1
q (1 + log y)α ↓ on the interval [1,∞) if δ – 1

q < 0.

Thus, there is a number δ ∈ (0, min{ 1
q , 1

2 – 1
q }) such that the function λ(y) = y1– 1

q (1 +
log y)α ∈ Bδ . Therefore, by using (39), we see that the statement holds. �

Remark 4.5 Obviously, Proposition 4.2 is more general than Corollary 4.4. We also note
that in the case when the sequence {an}∞n=1 is non-negative and decreasing the assertions
of Proposition 4.2 and Corollary 4.4 coincide.

Remark 4.6 In [12] (see Theorem 2.1, Theorem 2.3), theorems on the convergence of se-
ries of the Fourier coefficients of a function from the generalized Lorentz space �β (λ)
with respect to regular systems are proved. It is known that a regular system is uniformly
bounded (see [16, p. 117]). Therefore, the assertions of Theorem 2.1 and Theorem 3.1
of this paper do not follow from the results of [12]. Since ‖f ‖s ≤ ‖f ‖∞, for the functions
f ∈ L∞[0, 1], if orthogonal system {ϕn} satisfies the condition (1), then {ϕn} is uniformly
bounded.

Appendix: Proof of Lemma E
The proof of Lemma E is a consequence of a well-known inequality of Leindler [17]. For
the reader’s convenience we present a proof which is similar to but simpler than that in
the research report [18] by Johansson.

(i) If 0 < p < 1, then

( n∑
k=0

bk

)p

≤
n∑

k=0

bp
k .

By using this inequality, changing the order of summation and taking into account the
condition (3) we get

∞∑
n=0

an

( n∑
k=0

bk

)p

≤
∞∑

n=0

an

n∑
k=0

bp
k =

∞∑
k=0

bp
k

∞∑
n=k

an ≤ C
∞∑

k=0

akbp
k ,

in the case 0 < p < 1.
Let 1 ≤ p < ∞. The following inequalities are proved in [17]:

∞∑
n=0

an

( n∑
k=0

bk

)p

≤ pp
∞∑

n=0

a1–p
n

( ∞∑
k=n

ak

)p

bn, (40)

∞∑
n=0

an

( ∞∑
k=n

bk

)p

≤ pp
∞∑

n=0

a1–p
n

( n∑
k=0

ak

)p

bn. (41)

Now it is easy to verify that condition (3) and inequality (40) imply statement (i) also in
the case of 1 ≤ p < ∞.
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(ii) If 0 < p < 1, then

( ∞∑
k=n

bk

)p

≤
∞∑

k=n

bp
k .

Using this inequality, changing the order of summation and taking into account the con-
dition (4), we obtain

∞∑
n=0

an

( ∞∑
k=n

bk

)p

≤
∞∑

n=0

an

∞∑
k=n

bp
k =

∞∑
k=0

bp
k

k∑
n=0

an ≤ C
∞∑

k=0

akbp
k

in the case 0 < p < 1.
If 1 ≤ p < ∞, then statement (ii) follows from (4) and (41).
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Abstract. We consider some mathematical aspects of the torsion problem for anisotropic periodic plate structures where the
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express the torsional rigidity in terms its solution.
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INTRODUCTION

We consider a periodic plate structure of the type principally illustrated in Figure 1. The plate structure is assumed
to be a connected set bounded by an upper s+ and lower surface s− which are non-intersecting and periodic in the
x-variable with period 2x0. In Figure 1 we have included a period of the structure in the xz-plane, denoted Y , given by

Y =
{
(x,z) : −x0 ≤ x ≤ x0,s−(x) ≤ z ≤ s+(x)

}
.

The boundary ∂Y of Y can be divided into the upper and lower surface denoted ∂Yf and the vertical sides denoted
∂Yv. In order to find the effective stiffness parameters of the plate we may deform the structure in such a way that the
corresponding displacement-vector u = u(x,y,z) takes the form

u = v+w,

where w = w(x,y) is quasiperiodic in the x variable and v is a predescribed function which describes the averaged
(or homogenized) displacement corresponding to the particular effective parameter we want to compute. Then, by
comparing the resultant forces or moments per unit length with the average elongation, curvature or relative twist
angle, we find the corresponding effective stiffness parameters.

In this paper we focus on the torsion rigidity per unit length Dxy, which is found by twisting the structure as
illustrated in Figure 1 and comparing the torsion moment per unit length with the relative twist angle τ . In this case
the predescribed function v takes the form v = [−τyz,−τxz,τxy] and w = [0,τω(x,z),0].

10th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences
AIP Conf. Proc. 1637, 976-981 (2014); doi: 10.1063/1.4904671
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FIGURE 1. The periodic plate-structure.

SOME REMARKS ON MONOCLINIC MATERIALS

We recall that the stress-strain relation for a general anisotropic linear elastic material can be expressed in matrix form
as follows: 



σ11
σ22
σ33
σ12
σ23
σ13




︸ ︷︷ ︸
σ

=




C1111 C1122 C1133 C1112 C1123 C1113
C2211 C2222 C2233 C2212 C2223 C2213
C3311 C3322 C3333 C3312 C3323 C3313
C1211 C1222 C1233 C1212 C1223 C1213
C2311 C2322 C2333 C2312 C2323 C2313
C1311 C1322 C1333 C1312 C1323 C1313




︸ ︷︷ ︸
C




e11
e22
e33
γ12
γ23
γ13




.

︸ ︷︷ ︸
e

Here, the indices 1, 2 and 3 refers to the x, y and z direction, respectively. The stiffness matrix C is symmetric. Let us
now consider an orthonormal coordinate system with basis vectors

n1 = [n11,n12,n13]

n2 = [n21,n22,n23]

n3 = [n31,n32,n33] .

A vector with coordinates x = (x1,x2,x3) (relative to the usual coordinate system) will then have coordinates x′ =
(x′

1,x
′
2,x

′
3) (relative to the new coordinate system) given by the relation




x′
1

x′
2

x′
3


 =




n11 n12 n13
n21 n22 n23
n31 n32 n33







x1
x2
x3


 .

It is possible to show that the following relation holds between the strain e = [e11,e22,e33,γ12,γ23,γ13]
T , γi j = 2ei j (in

the usual coordinate system) and e′ =
[
e′

11,e
′
22,e

′
33,γ ′

12,γ ′
23,γ ′

13

]T
, γ ′

i j = 2e′
i j (in the new coordinate system):

e′ = Tee,

where

Te =




n2
11 n2

12 n2
13 n11n12 n12n13 n11n13

n2
21 n2

22 n2
23 n21n22 n22n23 n21n23

n2
31 n2

32 n2
33 n31n32 n32n33 n31n33

2n11n21 2n12n22 2n13n23 n11n22 +n21n12 n12n23 +n22n13 n11n23 +n21n13
2n21n31 2n22n32 2n23n33 n21n32 +n31n22 n22n33 +n32n23 n21n33 +n31n23
2n11n31 2n12n32 2n13n33 n11n32 +n31n12 n12n33 +n32n13 n11n33 +n31n13




.
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Moreover, we can obtain a similar relation between the corresponding stresses σ and σ ′ :

σ ′ = Tσ σ ,

where Tσ is obtained from Te by changing the factors of 2 in Te symmetrically about the diagonal, i.e.

Tσ =




n2
11 n2

12 n2
13 2n11n12 2n12n13 2n11n13

n2
21 n2

22 n2
23 2n21n22 2n22n23 2n21n23

n2
31 n2

32 n2
33 2n31n32 2n32n33 2n31n33

n11n21 n12n22 n13n23 n11n22 +n21n12 n12n23 +n22n13 n11n23 +n21n13
n21n31 n22n32 n23n33 n21n32 +n31n22 n22n33 +n32n23 n21n33 +n31n23
n11n31 n12n32 n13n33 n11n32 +n31n12 n12n33 +n32n13 n11n33 +n31n13




.

Moreover, it can be shown that T−1
σ = TT

e . Concerning these facts we refer to e.g. [1, p. 212]. Letting

σ ′ = C′e′,

denote the stress-strain relation in the new coordinate system, we therefore obtain the following relation between the
new and old stiffness matrix:

C = TT
e C′Te =




C′
1111 C′

1122 C′
1133 C′

1112 C′
1123 C′

1113
C′

2211 C′
2222 C′

2233 C′
2212 C′

2223 C′
2213

C′
3311 C′

3322 C′
3333 C′

3312 C′
3323 C′

3313
C′

1211 C′
1222 C′

1233 C′
1212 C′

1223 C′
1213

C′
2311 C′

2322 C′
2333 C′

2312 C′
2323 C′

2313
C′

1311 C′
1322 C′

1333 C′
1312 C′

1323 C′
1313




.

In particular, if the new coordinate system is a reflection of xz plane, i.e.

n1 = [1,0,0] ,

n2 = [0,−1,0] ,

n3 = [0,0,1] ,

then

Tσ =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1




.

Hence,

C = TT
e C′Te =




C′
1111 C′

1122 C′
1133 −C′

1112 −C′
1123 C′

1113
C′

2211 C′
2222 C′

2233 −C′
2212 −C′

2223 C′
2213

C′
3311 C′

3322 C′
3333 −C′

3312 −C′
3323 C′

3313
−C′

1211 −C′
1222 −C′

1233 C′
1212 −C′

1223 C′
1213

−C′
2311 −C′

2322 −C′
2333 −C′

2312 C′
2323 C′

2313
C′

1311 C′
1322 C′

1333 C′
1312 C′

1323 C′
1313




.

From this we see that C is invariant under this transformation (meaning that C = TT
e CTe) provided that C is of the

form

C =




C1111 C1122 C1133 0 0 C1113
C2211 C2222 C2233 0 0 C2213
C3311 C3322 C3333 0 0 C3313

0 0 0 C1212 C1223 0
0 0 0 C2312 C2323 0

C1311 C1322 C1333 0 0 C1313




. (1)

978
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Materials with this property is called monoclinic. The set of all monoclinic materials is closed under pure rotation
about the y-axis. Indeed, putting

n1 = [cosθ ,0,sinθ ]

n2 = [0,1,0]

n3 = [−sinθ ,0,cosθ ] ,

we obtain that

Te =




n2
11 0 n2

13 0 0 n11n13
0 1 0 0 0 0

n2
31 0 n2

33 0 0 n31n33
0 0 0 n11 n13 0
0 0 0 n31 n33 0

2n11n31 0 2n13n33 0 0 n11n33 +n31n13




,

and by performing matrix multiplication, we easily find that the zero-elements of (1) are kept under the transformation
C = TT

e C′Te.

THE TORSION PROBLEM FOR MONOCLINIC MATERIALS

In the modelling of the torsion problem we assume that the material is locally monoclinic of the form of (1). As
mentioned in the introduction, we assume that the displacement is of the form

u = [u1,u2,u3] = [−τzy,τφ(x,z),τxy], (2)

where φ(x,z) = ω(x,z)−xz. Moreover, we assume that no body forces are present, i.e. that the following equations of
elastic equilibrium are satisfied (see also [2], [3] and [4]):

∂σ11

∂x
+

∂σ12

∂y
+

∂σ13

∂ z
= 0,

∂σ12

∂x
+

∂σ22

∂y
+

∂σ23

∂ z
= 0, (3)

∂σ13

∂x
+

∂σ23

∂y
+

∂σ33

∂ z
= 0.

Both the upper and lower surface of the plate are free from external stresses. This implies that all three components of
the stress vector on these surfaces vanish, i.e. we get the following boundary conditions

σ11n1 +σ12n2 +σ13n3 = 0,

σ12n1 +σ22n2 +σ23n3 = 0, (4)
σ13n1 +σ23n2 +σ33n3 = 0,

where (n1,n2,n3) is the outward normal of the boundary. By (2) the components of the strain vector are: e11 =
∂u1/∂x = 0, e22 = ∂u2/∂y = 0, e33 = ∂u3/∂ z = 0,γ12 = ∂u1/∂y + ∂u2/∂x = −τz + τ∂φ/∂x, γ23 = ∂u2/∂ z +
∂u3/∂y = τx+τ∂φ/∂ z and γ13 = ∂u1/∂ z+∂u3/∂x = −τy+τy = 0. Using that the underlying material is monoclinic
we therefore obtain from the stress strain relation that

σ11 = σ22 = σ33 = σ13 = 0.

Hence, (3) and (4) are satisfied if
div [σ12,σ23]

T = 0

and
[σ12,σ23]

T ·n = 0, (5)
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on the upper and lower side ∂Yf , where n = (nx,nz) is the two dimensional outward normal of the surface and

[σ12,σ23]
T = τA

(
gradφ +([−z,x]T

)
,

where A is the out-of-plane shear stiffness matrix

A =

[
C1212 C1223
C2312 C2323

]
.

We will also assume that the average value of the stress vector [σ12,σ23]
T · n on any plane with normal vector

n = (nx,nz) = (1,0) vanish (otherwise there would be non-zero average shear deformations in the xy-plane), i.e. that
∫

∂Yv

σ12dz = 0. (6)

Since, φ = ω − xz where ω = ω(x,z) is quasiperiodic in the x-variable (with period 2x0) the above partial differential
equation can be written as

divA
(

gradω +([−2z,0]T
)

= 0,

on Y together with the boundary condition

A
(

gradω +([−2z,0]T
)

·n = 0 (7)

on the set ∂Yf and the condition (6), i.e.
∫

∂Yv

(
A

(
gradω +([−2z,0]T

)
·n

)
dz = 0 (8)

on the vertical sides of ∂Y . This problem can only be understood in classical sense in parts of Y where the shear
stiffness matrix A = A(x,z) is sufficiently smooth. More generally, we have to use the following weak problem:

∫

Y
A

(
gradω +[−2z,0]T

)
·gradv dxdz = 0, ∀v ∈ W, (9)

where W denotes the space of quasiperiodic functions, i.e. the completion, in usual Sobolev space H1(Y ), of the set of
smooth functions v of zero average (

∫
Y v(x,z) dxdz = 0) of the form v(x,z) = w(x,z)+kx, where k is a constant and w

satisfies the periodicity property w(x0,z) = w(−x0,z).
This formulation can be derived from the classical formulation e.g. when Y is divided into open connected subsets

Si, ∪m
i=1Si = Y, with sufficiently smooth boundaries (e.g. Lipschitz), such that the shear modulus matrix A = A(x,z) is

x-periodic and possesses smooth components on each set Si. In this case

div [σ12,σ23]
T = 0 on Si, (10)

in classical sense. Moreover, on a point of the common boundary between Si and Sk with normal ni (pointing out of
Si), the normal component ([σ12,σ23]

T ) ·ni on the set Si, denoted
[
[σ12,σ23]

T ·ni
]

i
, equals that on the set Sk, which is

the negative value of the normal component [σ12,σ23]
T ·nk on the set Sk where nk = −ni (the normal is pointing out of

Sk), i.e. [
[σ12,σ23]

T ·ni
]

i
= −

[
([σ12,σ23]

T ·nk
]

k
on ∂Si ∩∂Sk. (11)

Multiplying the equation (10) with an arbitrary function v, which is smooth on Y, we obtain by the Green formula that
∫

Si

[σ12,σ23]
T ·gradv dxdz =

∫

∂Si

(
[σ12,σ23]

T ·ni
)

v ds.

Using this and (11) we find that
∫

Y
[σ12,σ23]

T ·gradv dxdz =
m

∑
i=1

∫

Si

[σ12,σ23]
T ·gradv dxdz =

980
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∫

∂Y

(
[σ12,σ23]

T ·ni
)

v ds.

The latter integral vanishes. In order to see this, we first note that
∫

∂Y f

(
[σ12,σ23]

T ·ni
)

v ds = 0,

by (5). Moreover, [σ12,σ23]
T is periodic since it is constructed by partial derivatives of a quasiperiodic function. Since
(
[σ12,σ23]

T ·n
)

v =
(
[σ12,σ23]

T ·n
)

kx+
(
[σ12,σ23]

T ·n
)

w

and ∫

∂Yv

((
[σ12,σ23]

T ·n
)

kx
)

dz = kx
∫

∂Yv

(
[σ12,σ23]

T ·n
)

dz = 0

by (8) and
(
[σ12,σ23]

T ·n
)

w has opposite value on opposite sides of the boundary ∂Yv (due to the periodicity), we see
that

m

∑
i=1

∫

∂Si

(
[σ12,σ23]

T ·ni
)

v dxdz = 0.

Thus we conclude that
∫

Ω
[σ12,σ23]

T ·gradv dxdy =
m

∑
i=1

∫

Si

[σ12,σ23]
T ·gradv dxdy = 0,

which gives (9).
The problem (9) admits a unique solution within an arbitrary additive constant (this fact is easily seen by the Lax-

Milgram Lemma), under the assumption that A : Y → R2×2 has Lebesgue measurable components and that there exist
constants α > 0 and β < ∞ such that

α |ξ |2 ≤ ξ ·A(x,y)ξ ≤ β |ξ |2 (12)

for all ξ ∈ R2.

The total moment per unit length Mxz about the y-axis of the stress vector [σ12,σ22,σ23]
T applied to the surface Y,

is given by

Mxz =
1

2x0

∫

Y
(−σ12z+σ23x)dxdz.

Finally, we have found the expresion for the torsion rigidity per unit length Dxy in terms of the solution ω :

Dxy =
Mxz

τ
=

1
2x0τ

∫

Y

(
(σ12,σ23)

T (−z,x)T
)

dxdz =

1
2x0

∫

Y

(
A

(
gradω +([−2z,0]T

)
(−z,x)T

)
dxdz.

REFERENCES

1. R. D. Cook, D. S. Malkus and M.E. Plesha, "Concepts and applications of finite element analysis," J. Wiley and Sons Inc.,
1989.

2. D. Lukkassen, Annette Meidell, A. Piatnitski and A. Shamaev, "Symmetry-relations for elastically deformed periodic
rod-structures," Math. Mod. Meth. Appl. Sci. 19, 4, 501-525 (2009).

3. D. Lukkassen, A. Meidell and P. Wall, "New methods for estimating the torsional rigidity of composite bars," Internat. J. Engrg.
Sci. 47, 524-536 (2009).

4. D. Lukkassen, A. Meidell and P. Wall, "Mathematical analysis and homogenization of the torsion problem," J. Funct. Spaces
Appl. 6, 2, 155-176 (2008).

5. R. Adams, Sobolev Spaces, Academic Press, 1975.
6. W. P. Ziemer, "Weakly Differentiable Functions", Sobolev Spaces and Functions of Bounded Variation. Springer, Berlin, 1989.

981

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

46.162.89.182 On: Sun, 14 Dec 2014 10:27:36

129


	forside
	PhD_thesis_v8
	Abstract
	Preface
	Acknowledgements
	Introduction
	A short description of the results in papers A - E
	Additional paper

	Bibliography
	Papers
	Some mathematical aspects on linear and nonlinear elasticity
	Introduction
	Some preliminaries
	Mathematical aspects of linear elasticity
	On the Sobolev norm in Rn
	Beams resting on nonlinear foundation
	References

	A simplified three-dimensional method for stability assessment of buttress dams
	New thoughts on and discussion of numerical methods for assessing concrete dams under static loading
	Some Fourier inequalities for orthogonal systems in Lorentz–Zygmund spaces
	On the Torsion Problem for Anisotropic Periodic Plate Structures


