
ar
X

iv
:0

81
2.

13
51

v1
  [

m
at

h.
D

G
] 

 7
 D

ec
 2

00
8

Feedback Equivalence of 1-dimensional Control

Systems of the 1-st Order

Valentin Lychagin

Department of Mathematics, University of Tromso

&

Institute of Control Science , Russian Academy of Science

December 9, 2008

Abstract

The problem of local feedback equivalence for 1-dimensional control

systems of the 1-st order is considered. The algebra of differential invari-

ants and criteria for the feedback equivalence for regular control systems

are found.

1 Introduction

In this paper we study the problem of local feedback equivalence for 1-dimensional
control systems of 1-st order.

As in paper ([8]) we use the method of differential invariants. To this end
we consider control systems as underdetermined ordinary differential equations.
This gives a representation of feedback transformations as a special type of Lie
transformations, and we study and find differential invariants of these represen-
tation.

Remark also that from the EDS point of view the case of control systems
considered here is equivalent to the case of second order systems considered
in ([8]), but from ODE point of view they have different algebras of feedback
differential invariants.

To find a structure of the algebra of feedback differential invariants we first
find 3 feedback invariant derivations. Then the differential invariants algebra
is generated by two basic differential invariants J and K of orders 2 and 3
respectively and by all their invariant derivations.

This description allows us to find invariants for the formal feedback equiva-
lence problem.

To get a local feedback equivalence we introduce a notion of regular control
system and connect with such a system a 3-dimensional submanifold Σ in R

14.

The main result of the paper states that two regular control systems are
locally feedback equivalent if and only if the corresponding 3-dimensional sub-
manifolds Σ coincide.
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2 Representation of Feedback Pseudogroup

Let
·
x = F (x, u,

·
u), (1)

be an autonomous 1-dimensional control system of the 1-st order.
Here the function x = x (t) describes a dynamic of the state of the system,

and u = u (t) is a scalar control parameter.
We shall consider this system as an undetermined ordinary differential equa-

tion of the first order on sections of 2-dimensional bundle π : R
3 → R , where

π : (x, u, t) 7−→ t.

Let E ⊂ J1 (π) be the corresponding submanifold. In the canonical jet
coordinates (t, x, u, x1, u1, ....) this submanifold is given by the equation:

x1 = F (x, u, u1) .

It is known (see, for example, [6]) that Lie transformations in jet bundles
Jk (π) for 2-dimensional bundle π are prolongations of point transformations,
that is, prolongations of diffeomorphisms of the total space of the bundle π.

We shall restrict ourselves by point transformations which are automor-
phisms of the bundle π.

Moreover, if these transformations preserve the class of systems (1) then
they should have the form

Φ : (x, u, t) → (X (x) , U (x, u) , t) . (2)

Diffeomorphisms of form (2) is called feedback transformations. The cor-
responding infinitesimal version of this notion is a feedback vector field, i.e. a
plane vector field of the form

Xa,b = a (x) ∂x + b (x, u) ∂u.

The feedback transformations in a natural way act on the control systems
of type (1):

E 7−→ Φ(1) (E) ,

where Φ(1) : J1 (π) → J1 (π) is the first prolongation of the point transformation
Φ.

Passing to functions F, defining the systems, we get the following action on
these functions:Φ̂ : F 7−→ G, where the function G is a solution of the equation

Xx G = F (X, U, UxG + Uuu1) . (3)

The infinitesimal version of this action leads us to the following representa-
tion Xa,b 7−→ X̂a,b of feedback vector fields:

X̂a,b = a ∂x + b ∂u + (u1bu + f bx) ∂u1
+ ax f ∂f . (4)
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In this formula X̂a,b is a vector field on the 4-dimensional space R
4 with

coordinates (u, u, u1, f) , and this field corresponds to the above action in the
following sense.

Each control system (1) determines a 3-dimensional submanifold LF ⊂ R
4,

the graph of F :
LF = {f = F (x, u, u1)} .

Let At be the 1-parameter group of shifts along vector field Xa,b and let Bt :

R
4 → R

4 be the corresponding 1-parameter group of shifts along X̂a,b, then
these two actions related as follows

LcAt(F )
= Bt (LF ) .

In other words, if we consider an 1-dimensional bundle

κ : R
4 → R

3,

where κ((u, u, u1, f)) = (u, u, u1), then formula (4) defines the representation

X 7−→ X̂ of the Lie algebra of feedback vector fields into the Lie algebra of
Lie vector fields on J0 (κ) , and the action of Lie vector fields X̂ on sections of
bundle κ corresponds to the action of feedback vector fields on right hand sides
of (1)

3 Feedback Differential Invariants

By a feedback differential invariant of order ≤ k we understand a function
I ∈ C∞

(
Jkκ

)
on the space of k-jets Jk(κ), which is invariant under of the

prolonged action of feedback transformations.
Namely,

X̂a,b

(k)
(I) = 0,

for all feedback vector fields Xa,b.

In what follows we shall omit subscript of order of jet spaces, and say that a
function I on the space of infinite jets I ∈ C∞ (J∞κ) is a feedback differential
invariant if

X̂a,b

(·)
(I) = 0,

where X̂a,b

(·)
is the prolongation of the vector field Xa,b in the space of infinite

jets J∞κ.

In a similar way one defines a feedback invariant derivations as combinations
of total derivatives

∇ = A
d

dx
+ B

d

du
+ C

d

du1
,

A, B, C ∈ C∞ (J∞κ) ,
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which are invariant with respect to prolongations of feedback transformations,
that is,

[X̂a,b

(·)
,∇] = 0

for all feedback vector fields Xa,b.

Remark that for these derivations functions ∇ (I) are differential invariants (
of order, as a rule, higher then order of I) for any feedback differential invariant
I. This observation allows us to construct new differential invariants from known
ones only by the differentiations.

Recall the construction of the Tresse derivations in our case. Let J1, J2, J3 ∈
C∞

(
Jkκ

)
be three feedback differential invariants, and let

d̂Ji =
dJi

dx
dx +

dJi

du
du +

dJi

du1
du1

be their total derivatives.
Assume that we are in a domain D in Jkκ, where

d̂J1 ∧ d̂J2 ∧ d̂J3 6= 0.

Then, for any function V ∈ C∞
(
J lκ

)
over domain D, one has decomposition

d̂V = λ1d̂J1 + λ2d̂J2 + λ3d̂J3.

Coefficients λ1, λ2 and λ3 of this decomposition are called the Tresse derivatives

of V and are denoted by

λi =
DV

DJi

.

The remarkable property of these derivatives is the fact that they are feedback
differential invariants (of higher, as a rule, order then V ) each time when V is
a feedback differential invariant.

In other words, the Tresse derivatives

D

DJ1
,

D

DJ2
and

D

DJ3

are feedback invariant derivations.

4 Dimensions of Orbits

First of all, we remark that the submanifold {f = 0} is a singular orbit for
the feedback action in the space of 0-jets J0κ. The generating function of the
feedback vector field X̂a,b has the form:

φa,b = axf − afx − bfu − (u1bu + fbx) fz,

and the formula for prolongations of vector fields ([6]) shows that in the space
of 1-jets J1κ, in addition, we have one more singular orbit {fu1

= 0} . In similar
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way, we have one more singular orbit {fu1u1
= 0} in the space of 2-jets. There

are no more additional singular orbits in the spaces of k-jets, when k ≥ 3.

We say that a point xk ∈ Jkκ is regular, if f 6= 0, fu1
6= 0, fu1u1

6= 0 at this
point.

In what follows we shall consider orbits of regular points only.
It is easy to see, that the k−th prolongation of the feedback vector field X̂a,b

depends on (k + 1)-jet of function a (x) and (k + 1)-jet of function b (x, u) .

Denote by V k
i and W k

ij the components of the decomposition

X̂a,b

(k)
=

∑

0≤i≤k+1

a(i) (x)V k
i +

∑

0≤i+j≤k+1

∂i+jb

∂xi∂uj
W k

ij .

Then, by the construction, the vector fields V k
i , 0 ≤ i ≤ k + 1, and W k

ij , 0 ≤
i+j ≤ k+1, generate a completely integrable distribution on the space of k-jets,
integral manifolds of which are orbits of the feedback action in Jkκ.

Straightforward computations show that there are no non trivial feedback
differential invariants of the 1-st order.

Let Ok+1 be a feedback orbit in Jk+1κ, then the projectionOk = κk+1,k (Ok+1) ⊂
Jkκ is an orbit too, and to determine dimensions of the orbits one should find
dimensions of the bundles: κk+1,k : Ok+1 → Ok. To do this we should find

conditions on functions a and b under which X̂a,b

(k)
= 0 at a point xk ∈ Jkκ.

Assume that X̂a,b

(k−1)
= 0 at the point xk−1 ∈ Jk−1κ . Then the vector

field X̂a,b

(k)
is a κk,k−1-vertical over this point.

Components
dkφ

dxiduj

∂

∂fσij

of this vector field, where σij = (x, ...., x︸ ︷︷ ︸,
i-times

u..., u︸ ︷︷ ︸
j-times

), i + j = k, and components

dkφ

dxidujdu1

∂

∂fτij

,

where τ ij = (x, ...., x︸ ︷︷ ︸,
i-times

u..., u︸ ︷︷ ︸
j-times

), i + j = k − 1 depend on

∂k+1b

∂xi∂uj
,

and
dk+1a

dxk+1

respectively.
All others components

dkφ

dxrdusdut
1

∂

∂fσ
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are expressed in terms of k-jet of b (x, u) and k-jet of function a (x) .

It shows that the bundles: κk,k−1 : Ok → Ok−1 are (k + 3)-dimensional,
when k > 1.

Feedback orbits in the space of 2-jets can be found by direct integration
of 12-dimensional completely integrable distribution generating by the vector
fields V 1

i , 0 ≤ i ≤ 3, and W 1
ij , 0 ≤ i + j ≤ 2. Summarizing, we get the following

result.

Theorem 1 1. The first non-trivial differential invariants of feedback trans-

formations appear in order 2 and they are functions of the basic invariant

J =
f2 fu1u1

(u1fu1
− f) f2

u1

.

2. There are
k (k + 1)

2
− 2

independent differential invariants of pure order k.

3. Dimension of the algebra of differential feedback invariants of order k ≥ 2,

is equal to
k3

6
+

k2

2
−

5k

3
+ 1.

4. Dimension of the regular feedback orbits in the space of k-jets, k ≥ 2, is

equal to

(k + 1)
2

2
+

23k

3
+

5

2
.

5 Invariant Derivations

We’ll need the following result which allows us to compute invariant derivations.
Assume that an infinitesimal Lie pseudogroup g is represented in the Lie

algebra of contact vector fields on the manifold of 1-jets J1 (Rn) .

Moreover, we will identify elements g with the corresponding contact vector
fields , i.e. we assume that elements of g have the form Xf (see [6]), where f is
the generating function.

Lemma 2 Let x1, .., xn be coordinates in R
n, and let (x1, ..., xn, u, p1, .., pn) be

the corresponding canonical coordinates in the 1-jet space J1 (Rn) .

Then a derivation

∇ =

n∑

i=1

Ai

d

dxi

is g-invariant if and only if functions Ai ∈ C∞ (J∞
R

n) , j = 1, .., n, are solu-

tions of the following PDE system:

Xf (Ai) +

n∑

j=1

d

dxj

(
∂f

∂pi

)
Aj = 0, (5)
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for all i = 1, ..., n, and Xf ∈ g.

Proof. We have ([6]):

X•
f = Ef −

n∑

i=1

∂f

∂pi

d

dxi

,

where

Ef =
∑

σ

d|σ|f

dxσ

∂

∂pσ

is the evolutionary derivation, σ is a multi index and {pσ} are the canonical
coordinates in J∞

R
n.

Using the fact that evolutionary derivations commute with the total ones
and the relation

[∇, X•
f ] = 0,

we get

0 =




n∑

j=1

Aj

d

dxj

,Ef −

n∑

i=1

∂f

∂pi

d

dxi




= −
∑

j

Ef (Aj)
d

dxj

+
∑

i,j

(
−Aj

d

dxj

(
∂f

∂pi

)
d

dxi

+
∂f

∂pi

dAj

dxi

d

dxj

)

= −
∑

s


X•

f (As) +
∑

j

Aj

d

dxj

(
∂f

∂ps

)
 d

dxs

.

In our case we expect three linear independent feedback invariant deriva-
tions. To solve PDE system (5) we first assume that the unknown functions
are functions on the 1-jet space J1

R
3. Then collect terms in (5) with a, a

′

, a′′

and b, bx, bu, bxx, bxu and bu u we get the system of 8 differential equations for
3 unknown functions. Solving the system we found two independent invariant
derivations. The last one we get in a similar way by assuming that the unknown
functions are functions on the 2-jet space J2

R
3.

Finally, we have 3 feedback invariant derivations:

∇1 =
u1fu1

− f

fu1

d

du
+

f − u1fu1

f2
u1

fu

d

du1
,

∇2 =
f

fu1

d

du1
,

∇3 = f
d

dx
+

f

fu1

d

du
+

(
fxfu1

+ fu − zfu u1
− fxu1

fu1u1

+
u1fu1

− f

f2
u1

fu

)
d

du1
.
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These derivations obey the following commutation relations

[∇2,∇1] = J ∇1

[∇3,∇1] = K ∇2

[∇3,∇2] = −∇3 + J ∇1 + L ∇2

where K and L are some differential invariants of the 3rd order (see below).

6 Differential Invariants of the 3-rd Order

Theorem 1 shows that there are four independent differential invariants of the
3-rd order. We get three of them simply by invariant differentiations:

∇1 (J) ,∇2 (J) ,∇3 (J) .

The symbols of these invariants contain:

• symbol of ∇2 (J) depends on fu1u1u1
,

• symbol of ∇1 (J) depends on fu1u1u1
and fuu1u1

,

• symbol of ∇3 (J) depends on fu1u1u1
,fuu1u1

and fxu1u1
.

It shows that these differential invariants are independent.
The similar observation shows that the differential invariant L, which ap-

pears in the commutation relations, is a function of J,∇1 (J) ,∇2 (J) ,∇3 (J) ,

and the differential invariant K is the forth independent invariant. It has the
following form:

K = −u1fxu + 2u1
f2

u

ffu1

− 2
f2

u

fu1

2

+
f uuu1 − 2 fufx + ffxu

fu1

− u1
(f uuu1 − 2 fufx)

f

+
c1

fu1
fu1u1

2 +
c2

ffu1u1

2 +
c3

fu1u1

2 +
c4

ffu1u1

+
c5

fu1
fu1u1

+
c6

fu1u1

,

where
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c1 = −ffufxu1
fu1u1u1

− u1fufuu1
fu1u1u1

+ f2
ufu1u1u1

,

c2 = u1

(
fufu1

fuu1u1
− f2

ufu1u1u1
− fxfufu1

fu1u1u1
+ fxfu1

2fuu1u1

)

+u1
2fuu1

(−fu1
fuu1u1

+ fufu1u1u1
) ,

c3 = ffxu1
fuu1u1

+ fxfufu1u1u1
− fufuu1u1

− fxfu1
fuu1u1

+u1 (fufxu1
fu1u1u1

− fu1
fxu1

fuu1u1
+ fuu1

fuu1u1
) ,

c4 = −u1

(
2 fu1

fxfuu1
− fu1

fufxu1
+ fufuu1

+ fu1
f uu + fu1

2fxu

)

+u1
2
(
fu1

f uuu1
− fufuu1u1

+ fuu1

2
)
,

c5 = ffufxu1u1
− ffxu1

fuu1
+ fufuu1

+ u1

(
fufuu1u1

− fuu1

2
)
,

c6 = f uu − fufxu1
+ 2 fxfuu1

+ fu1
fxu − ff xuu1

+u1 (fu1
f xuu1

− f uuu1
+ fxu1

fuu1
− fufxu1u1

) .

7 Algebra of Feedback Differential Invariants

By regular orbits we mean feedback orbits of regular points.
Counting the dimensions of regular feedback orbits shows that the following

result is valid.

Theorem 3 Algebra of feedback differential invariants in a neighborhood of a

regular orbit is generated by differential invariant J of the 2-nd order, differential

invariant K of the 3-rd order and all their invariant derivatives.

8 The Feedback Equivalence Problem

Consider two control systems given by functions F and G. Then, to establish
feedback equivalence, we should solve the differential equation

F (X, U, UxG (x, u, u1) + Uuu1) − Xx G (x, u, u1) = 0 (6)

with respect to unknown functions X (x) and U (x, u) .

Let us denote the left hand side of (6) by H. Then assuming the general
position one can find functions X, Xx, U, Ux, Uu from the equations

H = Hu1
= H(2)

u1
= H(3)

u1
= H(4)

u1
= 0.

Remark, that the above general conditions are feedback invariant, depends
on finite jet of the system and holds in a dense open domain of the jet space.
Therefore, it holds in regular points.

Assume that we get

U = A (x, u, u1) , Ux = B (x, u, u1) ,

Uu = C (x, u, u1) , X = D (x, u, u1) ,

X ′ = E (x, u, u1)

9



Then the conditions

Au1
= Bu1

= Cu1
= Du1

= Eu1
= 0,

Du = Eu = 0

and
B = Ax, C = Au, E = Dx

show that if (6) has a formal solution at each point (x, u, u1) in a domain then
this equation has a local smooth solution.

On the other hand if system F at a point p = (x0, u0, u0
1) and system G at a

point p̃ = (x̃0, ũ0, ũ0
1) has the same differential invariants then, by the definition,

there is a formal feedback transformation which send the infinite jet of F at the
point p to the infinite jet of G at the point p̃.

Keeping in mind these observations and results of theorem 3 we consider
the space R

3with coordinates (x, u, u1) and the space R
14 with coordinates

(j, j1, j2, j3, j11, j12, j13, j22, j23, j33k, k1, k2, k3) .

Then any control system, given by function F (x, u, u1), defines a map

σF : R
3 → R

14,

by

j = JF , k = KF ,

ji = (∇i(J))
F

, ki = (∇i(K))
F

,

jij = (∇i∇j(J))
F

,

where i, j = 1, 2, 3, and the subscript F means that the differential invariants
are evaluated due to the system.

Let
Φ : R

3 → R
3

be a feedback transformation.
Then from the definition of the feedback differential invariants it follows that

σF ◦ Φ = σbΦ(F ).

Therefore, the geometrical image

ΣF = Im (σF ) ⊂ R
14

does depend on the feedback equivalence class of F only.
We say that a system F is regular in a domain D ⊂ R

3 if

1. 4-jets of F belong to regular orbits,

2. σF (D) is a smooth 3-dimensional submanifold in R
14, and

3. three of five functions j, j1, j2, j3, k are coordinates on ΣF .
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Assume, for example, that functions j1, j2, j3 are coordinates on ΣF . The
following lemma gives a relation between the Tresse derivatives and invariant
differentiations ∇1,∇2,∇3.

Lemma 4 Let
D

DJ1
,

D

DJ2
,

D

DJ3

be the Tresse derivatives with respect to differential invariants Ji = ∇i (J) .

Then the following decomposition

∇i =
∑

j

Rij

D

DJj

(7)

with feedback differential invariants Rij of order ≤ 4 is valid.

Proof. Applying both parts of (7) to invariant Jk we get

∇i (Jk) = Rik

which is a feedback differential invariant of order ≤ 4.

Theorem 5 Two regular systems F and G are locally feedback equivalent if and

only if

ΣF = ΣG. (8)

Proof. Let us show that the condition 8 implies a local feedback equivalence.
Assume that

JF = jF (J1, J2, J3) , JF
ij = jF

ij (J1, J2, J3) ,

KF = kF (J1, J2, J3) , KF
i = kF

i (J1, J2, J3)

on ΣF , and

JG = jG (J1, J2, J3) , JG
ij = jG

ij (J1, J2, J3) ,

KG = kG (J1, J2, J3) , KG
i = kG

i (J1, J2, J3)

on ΣG.

Then condition 8 shows that jF = jG, jF
ij = jG

ij , k
F
i = kG

i and kF = kG.

Moreover,as we have seen the invariant derivations ∇1,∇2,∇3 are linear
combinations of the Tresse derivatives with coefficients which are feedback dif-
ferential invariants of order ≤ 4.

In other words, the above functions jF , kF , jF
ij , k

F
i and their partial deriva-

tives in j1, j2, j3 determine the restrictions of all differential invariants.
Therefore, condition 8 equalize restrictions of differential invariants not only

to order ≤ 4 but in all orders, and provides formal and therefore local feedback
equivalence between F and G.
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