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Abstract—One of the thorny problems perplexing the maritime 

industry is to comply with existing and soon-to-be-enacted 

regulations towards emissions reduction from shipping. This 

problem has been discussed in this study under three viewpoints: 

i) the marine engine efficiency, ii) the decision-making process for 

selecting the technologies for reducing air emissions from shipping 

and iii) the challenges in the shipping industry during the era of 

digitalization. In the section of the marine engine efficiency, the 

fundamental laws of thermodynamics in relation to a Carnot 

cycle/heat engine have been illustrated to show the maximum 

efficiency that an engine can achieve within its operational 

temperature range. In the section of the decision-making process, 

the selection of technologies for reducing emissions from shipping, 

a variety of possible options has been discussed: e.g. using 

compliant fuels with low sulphur content in the current 

machinery; integrating an emission abatement technology such as 

marine scrubber as an after-treatment device; opting for 

alternative fuels such as Liquefied Natural Gas (LNG) or 

Methanol and future ship propulsion with an array of alternatives. 

Nevertheless, it can be a challenge for decision-makers 

(shipowners and operators) to select the most suitable alternatives 

for regulatory compliance in reducing emissions from shipping. It 

involves with multiple criteria decision making (MCDM) in which 

a number of alternative options are assessed with regard to 

multiple factors and sub-factors as described in this study. In the 

section of the challenges for the shipping industry in the era of 

digitalization, Advanced Data Analytics for ship performance 

monitoring is considered to overcome the handling challenges in 

large-scale ship performance and navigation data sets.  

Keywords—Emissions control, alternative options, energy 

efficiency, data analytics.  

I. INTRODUCTION 

Shipping industry has been considered as the life blood of 
global economy, transporting around 90% of international trade 
[1]. Although the shipping industry is the most fuel-efficient 
mode of cargo transportation, it has been criticized for the 
contributor of roughly 3% of total global carbon dioxide (CO2) 
emissions [2]. Furthermore, it is also responsible for producing 
global sulphur oxides (SOx) and nitrogen oxides (NOx) 
emissions at the figure of 5-10% and 15-30%, correspondingly 
[3]. Air emissions from ships are addressed in the Annex VI of 
the International Convention for the Prevention of Pollution 
from Ships (MARPOL). As regards the concerted effort for 
reducing greenhouse gas (GHG) emissions which CO2 is the 
main pollution contributor, the International Maritime 

Organization (IMO) has introduced two mandatory mechanisms 
from both technical and operational aspects namely Energy 
Efficiency Design Index (EEDI) and Ship Energy Efficiency 
Management Plan (SEEMP), which took effect from 1 January 
2013. The former is the technical standard which applies for 
new-built vessels while the latter is an energy efficient 
improvement plan required onboard existing vessels during its 
life-cycle operation [4]. In order to confirm their commitment 
on decreasing the GHG emissions from international shipping, 
the IMO has also adopted a resolution to at least halve GHG 
emissions by 2050 in comparison with 2008 while striving for 
phasing them out entirely [5]. 

As regards the effort for the emissions reduction of air 
pollutants such as SOx, NOx and indirectly particulate matter 
(PM), the Emissions Control Areas (ECAs) have been 
introduced. The vessels operating within ECAs are required to 
use fuel oil with the level of sulphur content of 0.1%. It should 
be noted here that the upcoming global sulphur cap that requires 
sulphur content limit of 0.5% will go into effect from 1 January 
2020 [6]. With the view of ensuring a consistent enforcement 
and implementation of this limit, the carriage ban on non-
compliant fuel has been adopted by the IMO, entering into force 
from March 2020 [7]. In addition, Tier III NOx emission limits 
apply for marine diesel engines installed on new-built vessels 
constructed on or after 1 January 2016 ECAs except for the 
Baltic Sea and the North Sea. Nevertheless, the IMO approved 
these areas as NOx-ECA, taking effect from 1 January 2021 [8]. 
Given that the afore-mentioned emissions control regulations, 
this paper will discuss three perspectives: i) the marine engine 
efficiency, ii) the decision-making process for selecting the 
technologies for reducing air emissions from shipping and iii) 
the challenges in the shipping industry during the era of 
digitalization. Those are discussed in the following sections. 

II. MARINE ENGINE EFFICIENCY 

Marine engines can be considered as the center of ship 
energy efficiency, where adequate measures to reduce their 
emissions due to operational conditions should be considered. 
There are various theories that have been considered towards 
improving energy efficiency in marine engines. Firstly, the most 
important and fundamental theory, i.e. the second law of 
thermodynamics is further illustrated in this section. This law 
presents a possible upper limit of the engine efficiency, therefore 
that can also be a measure of energy efficiency in the respective 
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ships. The second law of thermodynamics in relation to the 
Kelvin-Plank Statement can be formulated as: 

‘It is impossible for any device that operate on a cycle to 
receive heat from a single reservoir and produce a net amount 
of work.’ [9]. 

One should note that marine engines are operating in a 
Diesel and/or Otto cycles. Therefore, these engines are governed 
by the Kelvin-Plank Statement, where that should have more 
than a single reservoir to produce the respective mechanical 
energy. The concept of a heat source and sink to supply and 
absorb energy during an engine cycle can be introduced for the 
same reason. That is further illustrated in Figure 1, where the 
heat, QH , is transferred from the high-temperature heat source 
to the low-temperature heat sink as the heat, QL, through the heat 
engine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A general representation of a heat engine. 

The Kelvin-Plank statement illustrates that a heat engine 
should operate between a heat source and sink. Therefore, a 
considerable amount of heat should be absorbed by the heat 
engine to produce work, Wnet, out, (= 𝑄𝐻 − 𝑄𝐿 ) , and a portion 
of the same heat should be released into the heat sink as waste 
heat. Since a portion of the absorbed heat should release to 
produce the respective work by the heat engine, no heat engine 
can have the thermal efficiency of 100%. Therefore, the next 
step is to quantify the respective amount of heat should be 
released and absorbed into the heat source and sink, 
respectively. The same outcome can be used to calculate  the 
maximum efficiency of the respective heat engine.  

To quantify the efficiency of a marine engine, the concept of 
a heat engine should be further investigated. The thermal 
efficiency, 𝜂𝑡ℎ, of a heat engine (reversible or irreversible) can 
be categorized as: 

   𝜂𝑡ℎ = 1 −
𝑄𝐿

𝑄𝐻
   (1) 

It has been shown that ratio between the heat absorbed and 
released by a heat engine relates to the temperature ratio between 
the heat sink and source for a reversible heat engine [9]. An 
idealized heat engine that operates on a reversible Carnot cycle 
can be categorized as a Carnot heat engine. Therefore, the 
efficiency of a Carnot heat engine, or any reversible heat engine 
can be categorized as: 

   𝜂𝑡ℎ,𝑟𝑒𝑣 = 1 −
𝑇𝐿

𝑇𝐻
   (2) 

One should note that (2) is an ideal case, therefore that can 
be the maximum efficiency a marine engine can achieve in a 
theoretical level. That shows: if the operational temperature 
(TH), i.e. combustion temperature, can be increased then the 
efficiency of the marine engine can be improved. The complete 
burning of bunker fuel due to high combustion temperature can 
increase the engine efficiency. However, marine engines can 
produce a considerable amount NOx under high temperature 
conditions. Therefore, not only can the high operational 
temperature increase the engine efficiency but it also increases 
NOx emissions. On the other hand, if the environmental 
temperature (TL), can be decreased, then the efficiency of the 
marine engine can also be improved. It is well known that when 
marine engines operate in cold environments, its efficiency is 
higher. However, unburned fuel in marine engines can be 
resulted under low combustion temperature conditions. As a 
conclusion, the energy efficiency that a marine engine can 
achieve is limited to these upper and lower temperature bounds, 
i.e. Carnot engine efficiency under its operational temperature 
range. Even under any modern technological advancements, this 
engine efficiency level cannot be exceeded. Therefore, these 
efficiency levels in marine engines can play an important role 
while selecting the technology alternatives to reduce ship 
emissions under the regulatory pressure from the maritime 
authorities. 

III. TECHNOLOGY DECISION-MAKING PROCESS 

There are various operational alternatives to meet the 
requirements for emissions reduction from marine engines. One 
of the options is to use compliant fuels with lower sulphur 
content. The second option is to operate on heavy fuel oil (HFO) 
along with the installation of exhaust gas cleaning systems (e.g. 
maritime scrubbers). Alternative fuels such as Liquefied Natural 
Gas (LNG) or Methanol can also be considered as other options. 
Future marine engines would be the utilization of Liquefied 
petroleum gas (LPG), Compressed Natural Gas (CNG), biofuel 
(e.g. Liquefied Bio Gas – LBG), hydrogen, solar power, wind 
power or fuel cells. 

When it comes to evaluating these alternative options for 
regulatory compliance to reduce emissions from ships, there are 
numerous factors should be taken into consideration. Generally, 
these factors have been explained from economic and 
environmental point of view. However, each alternative solution 
will also exert a social impact [10]. The integration of social 
factor into the evaluation process has been addressed by several 
scientific studies [11, 12]. These factors (economic, 
environmental and social) are regarded as three pillars of 
sustainability [13]. Furthermore, technical and political factors 
have been also incorporated into the sustainability evaluation for 
selecting alternative compliance solutions [14]. Other factors 
such as safety, logistics, security and ethics factors can be 
considered in the decision-making process for future marine 
fuels [15]. 

Under these dimensional factors, ship owners and operators 
(decision-makers) also consider a wide range of sub-factors. 
Capital cost, operational cost, life-cycle cost and fuel price are 
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Fig. 2. Decision-making hierarchy of the selection of technologies for reducing emission from shipping

sub-factors that can be listed under the economic factor. There 
are several sub-factors that can be listed under the environmental 
factor, including the reduction of air emissions (GHG, SOx, 
NOx, and PM emissions). In terms of social-political factor, the 
sub-factors can be governmental & industry support and 
externalities. In terms of technical factor, the sub-factors can be 
technology availability, technology reliability, and engine 
adapting. Apart from that, some sub-factors that are hard to be 
categorized such as the vessel age and primary trading regions 
need to be carefully considered by decision-makers. Therefore, 
conducting this evaluation based on aforementioned dimension 
is multiple criteria decision making (MCDM) analysis that 
involves multi criteria or factors evaluation from the views of 
experts for selecting rational alternative solutions as 
demonstrated in Figure 2. The ultimate goal of this approach is 
to select the best alternative option among others. In other 
words, after factor and sub-factor evaluations, the alternative 
options are prioritized from the best to the worst. 

Another concern should be emphasized is that the MCDM 
analysis is conducted under trade-off environment, where 
factors or sub-factor are normally of conflicting nature [16]. 
Indeed, the respective sub-factors within the technical domain 
should have substantial impacts on the economic and 
environmental factors. Likewise, the sub-factors within the 
social-political domain should have considerable influences on 
the economic, environmental, and technical domains. For 
example, regulations given by maritime authorities may have 
great impacts on economic development, environmental 
protection and technology advances [14]. Further challenges on 
this analysis are the inconsistent and vague information 
problems. The inconsistent problem refers to the fact that it is 

not easy to arrive at conclusions from the literature regarding the 
values of alternative options with respect to sub-factors. For 
example, some studies concluded the reduction of 75-90% PM 
emissions when using scrubbers meanwhile other studies 
indicated that there is no reduction. Taking the economic sub-
factors as an example for the vague problem, the capitol cost, 
operational cost and fuel price are not fixed due to the 
unpredictable oil market. Besides, the values of environmental 
sub-factors (e.g., the reduction of GHG, NOx and SOx) with 
respect to alternative options are represented as intervals rather 
than crisp values. Furthermore, there are several sub-factors that 
are unquantifiable (e.g., government & industry support, 
primary trading region).   

There are several approaches to address the MCDM problem 
are considered. In the classical MCDM methods, the important 
weights of factors and the ratings of alternatives are normally 
represented as crisp values. Nonetheless, it is inadequate to use 
crisp values to stimulate the decision-making problem under 
fuzzy environment due to vague and imprecise information. 
Since the MCDM analysis involves the views of experts and 
decision-makers, some methods have experienced the difficulty 
in handling the uncertainties and ambiguity of human judgments 
on the priority weights of factors and the ratings of alternatives. 
Fuzzy set theory or fuzzy logic, firstly was proposed by [17] is 
an effective tool to surmount the respective problems. The fuzzy 
set theory was incorporated in above decision-making process 
to expresses the human preferences towards factors and 
alternatives evaluation by means of linguistics variables and 
fuzzy numbers. In literature, several studies have applied fuzzy 
set theory into their techniques in order to overcome the MCDM 
problem especially for the assessment of air pollution prevention 
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measures under compliance with emissions control regulations. 
A generic model, which incorporates the fuzzy Analytic 
Hierarchy Process (AHP) and VIKOR (VIseKriterijumska 
Optimizacija I Kompromisno Resenje) techniques for selecting 
the emissions reduction alternative technologies for ships, was 
presented in [12]. [18] presented an integrated method 
combining fuzzy logarithmic least squares and fuzzy Technique 
for Order Preference by Similarity to Ideal Solution (TOPSIS) 
for measuring the sustainability of alternative marine fuels. The 
MCDM method that combines Dempster-Shafer theory and the 
trapezoidal fuzzy AHP for the selection of sustainable 
alternative energy source for shipping was carried out [14]. The 
integration of Fuzzy Quality Function Deployment (FQFD) and 
fuzzy TOPSIS method for prioritizing mechanism of low-
carbon shipping measures was undertaken in the research work 
[19]. The fuzzy AHP method was applied to prioritize the weight 
of ship energy efficiency measures in accordance with SEEMP 
[20]. The improved Gaussian fuzzy AHP method was conducted 
by [21] for investigating the selection of shipping technology by 
dynamic capabilities theory.  

Each of above approach has its strengths and weaknesses. In 
addition, those studies have only applied either the fuzzy AHP 
or TOPSIS technique. The fuzzy integrated MCDM approach 
proposed by [11] has integrated the fuzzy AHP in combination 
with the fuzzy TOPSIS for selecting technological alternatives 
for regulatory compliance towards emission reduction from 
shipping. Several advantages of this integrated fuzzy MCDM 
include as follows: (i) the fuzzy AHP technique with the 
utilization of the fuzzy comparison ratio can be able to deal with 
the ambiguity in the model by precisely resembling the human 
thinking; (ii) in the fuzzy TOPSIS technique, the computation 
process might be programmed easily; human choices are 
embodied in the logical way; the number of stages remains the 
same irrespective of the number of factors and it reveals a scalar 
value that represents simultaneously the most and the least 
alternatives. Taking three domains of sustainability (economic, 
environmental and social) into account simultaneously, this 
study analyzed nine sub-factors with four feasible alternatives 
for the purpose of ranking these alternatives from the most 
preferable to the worst preferable. In order to exemplified the 
proposed fuzzy MCDM approach, a real case study was 
conducted with the interactions from vessel owners as decision 
makers. Firstly, after identifying and evaluating factors, sub-
factors and feasible alternatives, they were required to assign the 
important weights of different factors and sub-factors by 
pairwise comparison. In this phase, the fuzzy AHP was deployed 
to obtain the factors and sub-factors weightings as the inputs for 
the next phase. Secondly, they were requested to rate each 
performance of alternatives with regard to each sub-factor. In 
this phase, alternatives were prioritized with the help of the 
fuzzy TOPSIS. Due to the fact that this research has fuzziness in 
its nature, during the evaluation process given by vessel owners, 
the linguistics variables were deployed and then converted into 
fuzzy numbers.  

According to the outcomes of the above study, Low-sulphur 
fuels have been recognized as the most suitable alternative for 
regulatory compliance followed by Methanol. The third and  
fourth in the ranking results were Scrubbers and LNG 
respectively. Economic factor, among other factors, attached the 

most interest from decision-makers when it comes to investment 
in emissions reduction measures. Sensitivity analysis has been 
undertaken to reveal that that capital cost was of paramount 
importance in the decision-making process. Not only does the 
outcome reflects the current situation of the maritime industry in 
which inertia and financial issues are taken into consideration, 
but it is also in-line with some studies in the literature [12, 22]. 
In order to abide by the environmental regulations, Low sulphur 
fuels are likely to be a mainstream resolution in the short-term. 
It is envisaged that the legislation on emissions from shipping 
will be stricter in the future. Therefore, in the medium and long 
run, vessel owners and operators should consider regulatory 
changes and their actual conditions to make rational decisions. 
In this regard, they can add or remove the factor and sub-factor 
based on their preferable interests in the proposed decision-
making process. This proposed method can be extended to the 
future scenario which has numerous factors, sub-factors and 
potential alternatives. It might be potentially applicable to other 
research areas that involve decision-making process under 
vague conditions. 

IV. INDUSTRIAL DIGITALIZATION 

A. Challenges of big data in the shipping industry 

The shipping industry is standing on the brink of the fourth 
industrial revolution (as known as Shipping 4.0 or Cyber-
shipping) which provides numerous possibilities for online 
control and off-line analytics [23]. The rapid development of 
Internet of things (IoT) with the utilization of sensor 
technologies as well as data acquisition systems can facilitate 
maritime operations by means of real-time monitoring and 
control systems onboard. Nevertheless, the problem arising 
from this development is the explosive growth of data. The data 
generated from above systems onboard is very large in volume, 
complex to process and analyze by conventional data processing 
methods. The large-scale data is regarded as “Big Data” [24] 
when the shipping sector is moving into the imminent era of 
digitalization. Therefore, it is essential that new methods and 
tools should be developed for handling the big data. Those tools 
and techniques are parts of big data analytics for the purpose of 
grasping the meaning of data. Another challenge that the 
shipping industry will encounter in the future of industrial 
digitalization is environmental legislation compliance. Taking 
the ambitions to minimize the GHG emissions from shipping, 
there are two data-oriented regulations called Data Collection 
System (DCS) and Monitoring, Reporting and Verification 
(MRV) introduced by the IMO and the European Union (EU) 
respectively. Both regimes are mandatory and aim to collect and 
analyze emissions data from ships. The first regime that will 
enter into force on 1 January 2019 covers emissions from 
shipping globally [25] while the second that entered into force 
on 1 January 2018 focuses CO2 emissions from shipping 
activities to, from and within EU waters [26]. 

It should be noted here that the quality of full-scale data sets 
may play prominent role under these afore-mentioned 
regulations. In this sense, it relates to the data veracity which is 
one of the four major features of big data, referred to as the four 
V’s: data volume, data velocity, data variety, and data veracity 
[27]. Data veracity refers to the data accuracy and 
trustworthiness or uncertainty of data. It is a common issue in 
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the automation and sensor systems that data can sometimes be 
of dubious or erroneous format. This is due to the fact that the 
sensor has failed or there is an abnormal event within the 
systems [23, 28]. The data will not be carried out the quality 
checks which leads to the uncertainty of how much the output 
data is incorrect. It may disturb the analytical processes and 
result in erroneous interpretation. The U.S. economy has to pay 
about $3.1 trillion a year because of poor data quality [27]. Data 
scientists spend much of their time for cleaning up the data, 
accounting for 75-80% [29]. Therefore, data veracity should be 
properly addressed when performing big data analytics. Big data 
analytics is believed increasingly important and exerting 
profound impacts on maritime operations such as environmental 
compliance and vessel performance monitoring. 

B. Data analytics for energy efficient ship operations and 

performance management 

In the literature, a number of data analysis studies with 
different methods has been conducted with the aim of achieving 
energy efficient ship operations and performance management. 
A theoretical model was proposed by [30] for the simulation of 
ocean vessels for operational optimization. On the other hand, 
statistical models were undertaken by several studies. [31] 
presented data analysis on ship energy efficiency of inland river 
ships then compared them with that of ocean-going ships. In the 
research work of [32] preliminary analysis was undertaken for 
establishing trends and exploring data products in order to 
improve vessel performance towards fuel efficiency. [33] 
presented data analysis for evaluating ship behavior in a case of 
a bulk carrier. Data analysis for determining the fuel efficient 
performance of a ship was presented by [34]. Due to the recent 
development of sensor technologies and data acquisition 
systems, several statistical models have been presented: 
artificial neural network [35, 36], multiple linear regression [37] 
and kernel methods [38]. Recently, there are some researches 
proposing various applications of big data analysis in the 
maritime domain. [39] developed a decision support system for 
vessel speed optimization using weather archive big data. [40] 
proposed a big data analysis for optimizing vessel energy 
efficiency. The marine engine centered data analytics was 
undertaken to improve energy efficiency in [41] and understand 
marine engine operating regions with respect to vessel 
navigation in [42]. Another approach with statistical analysis 
and visualization technique was proposed by [43] to observe 
vessel speed power performance under apparent wind profile.  

C. Advanced Data Analytics 

It can be observed from the recent literature that various 
conventional mathematical models have been used for data 
analysis. However, these models have not addressed properly 
the big data challenges such as erroneous data conditions, 
system-model uncertainty, estimation algorithm failures, data 
visualization challenges and high computational power. It may 
lead to the deterioration of the quality of information derived 
from the respective data sets. In order to overcome such 
problems,  a big data analytics approach, so called Advanced 
Data Analytics that includes tools and techniques based on 
Machine Learning (ML), Artificial Intelligence (AI) and 
statistical data analysis is proposed to deal with the large-scale 
data sets for ship performance monitoring towards energy-

efficient and environmental-friendly maritime operations in the 
future. 

The overview of the proposed Advanced Data Analytics is 
represented in Figure 3. Advanced Data Analytics should 
include the domain knowledge (e.g., the vessel operation & 
navigation conditions, ship dynamics & hydrodynamics, 
automation & navigation systems). A number of marine engine 
modes of data flow path for ship performance monitoring has 
been entailed with several appropriate analytics such as the 
development of data driven digital models, descriptive analytics, 
diagnostic analytics, visual analytics, predictive analytics and 
decision analytics. First of all, the data sets that are attained from 
onboard sensors and data acquisition systems can be grouped in 
a high dimensional space as the clusters of vessel performance 
data. These data clusters indicate navigational and operational 
information of vessel in respective scenarios (e.g., engine-
propeller operating modes and trim-draft combination). The 
structure of each data cluster can be identified by data digital 
models [28]. Hence, the development of these data digital 
models plays pivotal role in the data handling process. In this 
regard, the statistical techniques (e.g., histograms and principal 
component analysis) are conducted in order to observe the data 
clustering relationship among parameters such as engine power, 
shaft speed and fuel consumption. These parameters will be 
visualized in order to capture the proper and abnormal regions 
that represent the vessel performance conditions and data 
anomalies correspondingly. The digital models then interact 
respectively with descriptive and diagnostic analytics.  

As regards descriptive analytics, the data sets are transferred 
through two anomaly data filters to identify missing data points 
as preliminary data anomalies (filter 1) and sensor faults and 
system abnormal events as secondary anomalies (filter 2). The 
first anomaly data filter may detect the max-min values while 
the second anomaly data filter may detect the outliers of digital 
models. However, the interpretation of these data will not be 
well-executed without the domain knowledge as previously 
mentioned. The digital models may be further improved by such 
expertise. A significant amount of data anomalies can be 
removed and recovered in the diagnostic analytics. Therefore, 
the instantaneous data sets of vessel performance can be at a 
higher level of accuracy and trustworthy. Afterwards, the 
improved data sets of ship navigation and operation are 
visualized properly within visual analytics. In the process of 
predictive analytics, vessel navigation and ship system operation 
behavior can be predicted. It should be noted that the visual 
analytics and predictive analytics are also supported by the same 
data driven digital models. Ultimately, the processed data are 
utilized under decision analytics and appropriate Key 
Performance Indicators (KPIs) with respect to propulsion power 
and engine emissions  are expected to be set. As a result, the 
decision-making process can be strengthened.  

By way of analyzing the data sets with proper techniques, 
the proposed Advanced Data Analytics can reflect and learn 
from the past data. For example, it will gain the capability to 
self-learn (i.e. the data structure can learn itself), self-clean (i.e. 
data anomalies can be detected, filtered out and recovered). 
Moreover, it will assist vessel operators in monitoring in real-
time of vessel operational performance. For instance, the 
respective data structures can provide vessel operators with  
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Fig. 3. Representation of Advanced Data Analytics

useful visualization in terms of vessel and ship systems 
performance. Future work may include emerging analytics 
methods that are promising to help vessel operators with 
predicting its performance based on current observations (e.g. 
what-if scenarios). The proposed approach would be a smart big 
data analytics that has the ability to overcome the respective 
challenges of the future shipping industry under industrial 
digitalization. Furthermore, it would be also a decision support 
for vessel operators to comply with environmental legislation 
and achieve optimized and energy efficient vessel operations. 

V. CONCLUSION 

The shipping industry is now dealing with the regulatory 
turbulence towards achieving the respective objectives in energy 
efficiency and emissions control. In this paper, the challenges of 
the respective regulatory compliance have been discussed from 
theoretical and operational point of views. In the theoretical 

point of view, the concept of  the marine engine efficiency has 
been illustrated, based on the second law of thermodynamics in 
connection with a Carnot cycle. In this matter, the maximum 
efficiency that a marine engine can achieve is limited to the 
Carnot engine efficiency, i.e. within its operational temperature 
range. Hence, the concept should be taken into consideration 
while selecting technological alternatives for emissions 
reduction from ships.  

In the operational point of view, the selection of alternative 
options for reducing emissions from shipping has been 
evaluated under multiple factors and sub-factors. It would be a 
challenge for vessel owners or operators to select the most viable 
alternatives because it involves a wide variety of factors within 
several dimensional domains and the technologies can vary, 
rapidly. Furthermore, the trade-off nature that attaches to this 
analysis may make it more complicated. Another barriers when 
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conducting this analysis are the inconsistency and vagueness of 
information. The fuzzy-based approach which integrated the 
fuzzy AHP and the fuzzy TOPSIS was proposed by [11] to 
overcome these problems. The outcomes of this study have 
noted that Low sulphur fuels would be the most suitable option 
in near future of regulatory compliance for emissions reduction. 
Since the capitol cost has the most impact on the proposed 
method, it is the most important concern for decision-makers 
when selecting technologies to reduce air pollution from 
shipping. Finally, the Advanced Data Analytics for ship 
performance monitoring was discussed to handle the big data 
challenges in ship operational manners. The proposed Advanced 
Data Analytics [44] along with the limitations in marine engine 
efficiency concepts and decision-making process can be a state-
of-the-art approach to achieve an optimized vessel performance 
towards energy-efficient and environmental-friendly maritime 
operations in the future. 
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