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Abstract

Track geometry is a fundamental subject in railway construction. With
the demand for increased capacity in terms of load and speed, the need for
suitable transitions between consecutive track sections is highly relevant.
Properly constructed transition curves lead to improved travel comfort,
increased safety, and reduced wear. The well known clothoid curve is
widely used as a transition curve; however, the linear curvature is not suf-
ficiently smooth to meet the requirements for railways carrying high speed
trains or heavy hauls. Blending spline curves are flexible spline construc-
tions possessing favourable smoothness properties at the end points, which
makes them considerable for use as transition curves. This paper demon-
strates some selected blending splines applied as transition curves between
two existing circular arc segments selected from the Ofotbanen railway.
The main results in this paper are related to the smoothness at the end
points and the behaviour of the curvature of the curves, where the new
transition curves were shown to be smoother than the original clothoid.
Another new result is the observation that the proposed method allows for
the improvement of existing railways without forcing extensive changes to
the original track. Some representative examples are included to highlight
the flexibility of this first instance of blending splines as transition curves.
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1 Introduction

Transition curves are an important development in the railway industry. They were
introduced to create easements between straight and curved railway sections, and
between curved sections of different radii. Properly constructed transition curves in-
creased safety and comfort while travelling, and reduced wear on the rail [1, 2]. Various
curves have been recommended as transition curves over the years, among them, the
clothoid [3, 4], which has become the most used to this day. The search for new types
of transition curves for railways is still relevant and ongoing, due to new knowledge
related to curve properties [5], where the linear curvature of the clothoid is not smooth
enough in the end regions to be optimal. Both in relation to passenger comfort, for
speeds above 120 km/h [6], and in relation to wear on the tracks with heavy haul
traffic.

The recent research on transition curves can be divided into linear- and non-
linear curvature curves. The most common topic of the two is non-linear curvature
curves, since the problem of increasing curvature smoothness has received attention.
Some examples are a remodelling of the cubic parabola [7], a new design of the Bloss
curve [8], sinusoid transition curves [9], and the Wiener Bogen curves [10]. Under
the topic of linear curvature curves, two types of curves have been analysed: log-
aesthetic curves [6], which are identified to give equal properties as clothoids, and
Symmetrically Projected Transition Curves [11], which are simpler and more accurate
curves compared to the clothoid and cubic parabolas, and are meant as a better option
in cases where the cubic parabola is preferred over the clothoid.

In addition, experiments have been performed on hybrid solutions, e.g., curves
with linear middle parts and non-linear ends. Two examples are parametric transition
curves [12] and smoothed transition curves [13, 14]. All of the previously mentioned
curves are curves that replace a single element in the railway. However, there is also
research where multiple elements are replaced. General transition curves [15, 16] and
universal transition curves [17, 18] are curves that replace the segments: first transition
curves–circular arc–second transition curve, or first transition curves–second transition
curve. Multiple element transition curves are not investigated in this paper, but are
interesting for future work.

A common denominator with the research on transition curves is that there is
rarely a connection between research and industry, as can be observed in [19]. A
challenge here is replacing segments in an already existing railway. Recent research
does not take into account the layout of the new transition curves and the effects they
will have on the existing railway, in regard to the horizontal alignment of the rail.

A blending spline curve [20] is a spline construction where local functions are
blended together by Ck-smooth blending functions. Blending splines were introduced
[21] as an additional tool in computer-aided geometric design (CAGD) with emphasis
on user interactivity via the editing capabilities. Due to the flexibility in the blending
process, when connected to possible local functions and blending functions, the authors
suggest that the spline may be suitable as a transition curve.

The scope of this study was to find a new railway transition curve, with better
properties than the clothoid in regard to the smoothness between segments, that can
replace the clothoid in an already existing railway without making changes to the orig-
inal alignment. The need to be able to increase smoothness without making extensive
changes to the alignment is relevant for existing railways where large modifications
may be invasive or impossible. One example is Ofotbanen, a Norwegian railway line,
essential in the transportation of ore from Kiruna in Sweden, and goods between the
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northern and southern parts of Norway [22]. Ofotbanen is known for its challenging
railway geometry, which is vulnerable to wear. Making extensive changes to the align-
ment of Ofotbanen requires considerable intervention and is impossible in some places
due to the mountainous terrain the railway ventures through.

The aim of the study was to reveal the suitability of blending splines as a transition
curve, replacing one segment (a clothoid) in an already existing railway. A focus was
given to making the least amount of intervention to the existing railway by considering
the segments attached to the clothoid static, and only allowing the length of the
transition curve to increase by moving the entry points along the adjacent segments.
In this paper, blending splines of various forms were implemented and analysed as
transitions between two circular arc segments of dissimilar radii. The new transition
curves were compared to the replaced clothoid by analysing their curvature functions
against each other, and drawing conclusions based on the smoothness and value of the
curvature derivatives. This is the first time blending splines have been considered as
transition curves, and, to the best of the authors’ knowledge, the first time adjacent
railway segments remained fixed.

The remainder of the paper is organised as follows: Section 2 gives a short ex-
planation of blending splines and transition curves. In Section 3, the methods are
described. Section 4 presents the obtained results, together with a discussion on the
data. Lastly, Section 5 draws a conclusion and gives recommendations for future work.

2 Preliminaries

The preliminaries section provides an overview of the relevant theory connected to
the work. A short presentation of the blending spline is given, together with a brief
overview of transition curves in railway.

2.1 Blending Spline

A blending spline is a collective term of the family of blending-type spline constructions
originating from research conducted since 2003. The initial blending spline, called
Expo-rational B-spline (ERBS), was presented for the first time in [23] and within two
years published in [20, 24]. After that the family grew, with new splines derived from
the ERBS, including generalized expo-rational B-splines [25] and logistic expo-rational
B-splines [26]. The blending spline is a construction where local functions at the knots
are blended together by Ck-smooth basis functions, see Figure 1. It is defined in [21]
as

f(t) =

n∑
k=1

lk(t)Bk(t), t ∈ (t1, tn], (1)

where the coefficients lk(t) are scalar-, vector-, or point-valued local functions defined
on (tk−1, tk+1). t = {tk}n+1

k=0 is an increasing knot vector, and Bk(t) are the blending
functions (B-functions). The B-functions can be any function possessing the following
set of properties:

1. B : I → I(I = [0, 1] ⊂ R),

2. B(0) = 0,

3. B(1) = 1,
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4. B′(t) ≥ 0, t ∈ I,

5. B(t) +B(1− t) = 1, t ∈ I.

The last property is optional and specifies the point symmetry around the point
(0.5, 0.5). Figure 2 shows a plot of possible B-functions meeting the properties. In this
paper, we considered a subset of ERBS called the scalable subset, proposed in [21],
that used a specific B-function (the ERB-function), which is C∞-smooth,

Bk(t) =


Sk−1

∫ ωk−1(t)

0
ψk−1(s)ds if tk−1 < t ≤ tk,

Sk
∫ 1

ωk(t)
ψk(s)ds if tk < t < tk+1,

0 otherwise,

(2)

where Sk = (
∫ 1

0
ψ(s)ds)−1, ωk(t) = t−tk

tk+1−tk
, and ψk(s) = e

−β |s−λ|
α(1+γ)

(s(1−s)γ )α with the

intrinsic parameters restricted to α > 0, β > 0, γ > 0, and 0 ≤ λ ≤ 1. We also note
that the ERBS shares the minimal support and partition of unity properties of the
linear B-spline, which means that only two functions are blended together in every
knot interval (i.e., between two knots) and that the two B-functions in the interval
sum up to 1 for a given t. By applying the two previous properties, the simplified
formula of (1), over one knot interval, becomes

f(t) = Bk(t)lk(t) +Bk+1(t)lk+1(t)

= (1−Bk+1(t))lk(t) +Bk+1(t)lk+1(t)

= lk(t) +Bk+1(t)(lk+1(t)− lk(t)).

(3)

For the experiments in this paper, we use parametric curves as local functions lk(t).
The specific choices are presented and explained in Section 3.2.
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railway curve example, relevant parameters for creating the blending spline transition curve and how128

they are modified, and an explanation of the criteria for comparing the blending spline against the129

clothoid from the original railway track.130

3.1. The original railway curve131

The original railway curve consists of two arc segments, of different radii, connected by a clothoid132

transition curve. The example is extracted from the Norwegian railway line, Ofotbanen. Parameters133

for the segment are presented in Table 1, with the layout plotted in Figure 3.134
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2.2 Transition Curves

In railway design, the transition curves fulfill the role of connecting straight sections to
curved sections, and curved sections of different radii [27]. The task of the transition
curve is to gradually decrease/increase the radius of the curvature from radius R1 to
R2, and to provide a change in superelevation following the same behaviour as the
curvature, usually by linear, Bloss, sine, or cosine functions. These properties are
important in order to counteract a sudden jerk in the centrifugal forces, and instead
gently introduce them over the course of the transition curve. The main advantages
of using transition curves are [28, 29]:

• Providing a comfortable ride for passengers.

• Providing a safer ride for passengers.

• Enabling the vehicle to drive at a higher speed.

• Reducing the wear and tear on wheels and rails, thus, decreasing the mainte-
nance and repair costs.

As mentioned in the introduction, the clothoid is the most used transition curve to-
day. One of the first discoveries of the clothoid as a transition curve in railways was
by Arthur Talbot in [30], who was among the first to approach the transition prob-
lem mathematically. A clothoid (of length l and end radius r) is a spiral defined
parametrically as (

x

y

)
=

(
C(t)

S(t)

)
, (4)

where C(t) and S(t) are the Fresnel integrals,

C(t) =
1

a
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with a =
√

1
πrl

being a scaling factor, and t̂ = at, −∞ < t < ∞. A main reason for

the clothoid’s popularity as a transition curve is its curvature, which changes linearly
with the curve length.

3 Method

This section describes the parameters and equations used in setting up the original
(existing) railway curve example, the relevant parameters for creating the blending
spline transition curve and how they are modified, and an explanation of the criteria
for comparing the blending spline against the clothoid from the original railway track.

3.1 The Original Railway Curve

The original railway curve consists of two arc segments, of different radii, connected
by a clothoid transition curve. The example is extracted from the Norwegian railway
line, Ofotbanen. Parameters for the segment are presented in Table 1, with the layout
plotted in Figure 3.

Table 1: Segment parameters.

Arc 1 Clothoid Arc 2

Start Radius (m) - 401 315
End Radius (m) 401 315 -

Length (m) 135.335 60 103.481
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Figure 3. Layout of the original railway curve. Two circular arc segments (solid) connected by a
clothoid segment (dotted).

C(t) =
1
a

∞
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so that future work can include replacement of multiple clothoid segments.148
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with three criteria. They must have the correct curvature in one end, be possible to connect to adjacent151

segments with a smoothness equal to or higher than the clothoid, and be scalable in length. The most152

Figure 3: Layout of the original railway curve. Two circular arc segments (solid)
connected by a clothoid segment (dotted).

The clothoid is implemented by exploiting a power series expansion of the integrals
in (5), given in [31] as,

C(t) =
1

a

∞∑
i=0

(−1)i(π
2

)2it̂4i+1

(2i)!(4i+ 1)
,

S(t) =
1

a

∞∑
i=0

(−1)i(π
2

)2i+1t̂4i+3

(2i+ 1)!(4i+ 3)
,

(6)

where the variable a is set up for the clothoid to join two arcs, instead of an arc and
a line.

3.2 Blending Spline Fitting

The blending spline curve is created for one knot interval, using expression (3), in order
to preserve the maximum flexibility over the entire transition curve. It is relevant to
adjust three parameters in this study: entry points, local curves, and B-functions.

3.2.1 Entry Points

The entry points for the blending spline on the adjacent circular segments were tested
for three positions: [p1, q1], [p2, q2], and [p3, q3], as shown in Figure 4. [p1, q1] is the
same entry point as the clothoid, [p2, q2] is placed 1

4
of the circular segment’s curve

length from [p1, q1], and [p3, q3] is in the middle of the circular segment. The motivation
for choosing entry points only on half of the circular segments is to account for the
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possibility of also creating blending splines on both sides of the example segments, so
that future work can include the replacement of multiple clothoid segments.
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Figure 4. The three entry points for the blending spline transition curve on the circular segments.
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Figure 5. An example of two local arc curves (dashed and dotted) starting in [p3, q3].
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segments, given by154

c(t) = (R sin(t), R(1− cos(t))), 0 < t < 2π, (7)

with the same radius R as the original railway arcs (401 and 315 in this case). They have the correct155

curvature and smoothness in at least one end, are easy to scale in size, and easy to place correctly156

against the adjacent segments. An example of two local arc curves starting at entry point [p3, q3] is157

shown in Figure 5.158

In addition to the circular arcs, Bézier curves are also tested as local curves in the blending spline.159

Bézier curves are industry standard representations of free-form shapes, and are available in most160

design and CAD software. They are expressed as161

c(t) =
n

∑
i=0

cibi,n(t), (8)

where ci are control points, and bi,n(t) are Bernstein polynomials of degree n. Compared to the arcs,162

the Bézier curves are more flexible since their shapes can be altered through control points. The Bézier163

Figure 4: The three entry points for the blending spline transition curve on the
circular segments.

3.2.2 Local Curves

The curves that can be used as local curves in a blending spline transition curve have
to comply with three criteria. They must have the correct curvature for one end, be
possible to connect to adjacent segments with a smoothness equal to or higher than
the clothoid, and be scalable in length. The most intuitive curves to use as local curves
in the blending spline, for this transition case, are circular arc segments, given by

c(t) = (R sin(t), R(1− cos(t))), 0 < t < 2π, (7)

with the same radius R as the original railway arcs (401 and 315, in this case). They
have the correct curvature and smoothness for at least one end, are easy to scale in
size, and easy to place correctly against the adjacent segments. An example of two
local arc curves starting at entry point [p3, q3] is shown in Figure 5.

In addition to the circular arcs, Bézier curves are also tested as local curves in
the blending spline. Bézier curves are industry standard representations of free-form
shapes, and are available in most design and CAD software. They are expressed as

c(t) =

n∑
i=0

cibi,n(t), (8)

where ci are control points, and bi,n(t) are Bernstein polynomials of degree n. Com-
pared to the arcs, the Bézier curves are more flexible as their shapes can be altered
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Figure 5: An example of two local arc curves (dashed and dotted) starting in
[p3, q3].

through control points. The Bézier curves in this research are created by approximat-
ing the previously described arcs via performing a Taylor expansion of a point and
d derivatives in the entry points (which becomes the start of the Bézier curves). To
achieve sufficient smoothness at the entry points, while also having the opportunity
to manipulate the control point at the opposite end, the degree of the Bézier curves
should be at least four (d > 3). For the local Bézier curve examples in this paper, the
number of derivatives extracted in the start point is 4, which means that d = 4 and 5
control points are placed.

To maintain a smooth connection to the adjacent circular arc segments, while at
the same time experimenting with the placement of the local curves, the first four
control points, from the start of the curves, are fixed and the last control point is
moved to the start of the local curve in the opposite end. A visual explanation is
given in Figure 6. This is expected to give different results compared with using arcs
as local curves, and to show if placing the local curves closer to the original clothoid
has a significant effect on the curvature.
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Figure 6. An example of how the last control point cpl is moved to the start of the local curve in the
opposite end cpn, for the left side local Bézier curve starting in p1. The dashed curve is the first Bézier
approximation of the arc, and the solid curve is the one used in the blending.
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points.192

Figure 6: An example of how the last control point cpl is moved to the start
of the local curve in the opposite end cpn, for the left side local Bézier curve
starting in p1. The dashed curve is the first Bézier approximation of the arc,
and the solid curve is the one used in the blending.

3.2.3 B-Function

The B-funtion used in the study is the one presented in (2), an ERB-function. This
function can be varied through the following parameters: α > 0, β > 0, γ > 0, and
0 ≤ λ ≤ 1, where α, γ ∈ N and β, λ ∈ R. The default ERB-function is given by
α = 1, β = 1.0, γ = 1, and λ = 0.5, as seen in Figure 7. α and γ are called the
asymmetric tightening parameters. Increasing them tightens the function so that its
shape goes toward a linear function on parts of the domain. Figure 8 shows plots of
ERB-functions with varying tightening values. β is called the slope parameter. This
adjusts the steepness of the function.

Figure 9 shows ERB-functions with varying slope values. λ is called the balance
parameter. Varying this moves the function along the x-axis. Figure 10 gives plots
of ERB-functions with varying balance values. For the comparisons in this paper,
the parameters were adjusted independently, modifying one while keeping the default
values for the rest. The tested values for each parameter are given in Table 2. They
are selected based on the shape differences that they bring to the B-function, so that
a range of contrasting blending functions are tested.
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Table 2: Expo-rational blending function parameter values used in the compar-
isons.

α γ β λ

Default 1 1 1.0 0.5
Tightening 1 4 1 1.0 0.5
Tightening 2 10 1 1.0 0.5

Slope 1 1 1 8.0 0.5
Slope 2 1 1 50.0 0.5

Balance 1 1 1 1.0 0.2
Balance 2 1 1 1.0 0.8
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function has β = 10, and the dashdotted
function has β = 50.
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3.3 Comparison Criteria

To evaluate the blending spline as a transition curve it was compared against the
original clothoid with the following criteria, presented in [6].

1. Common connection point: the coordinates of the two curves must be equal in
the connection points.

2. Common tangent: the tangents of the two curves must be equal in the connection
points.

3. Equal radius of curvature: the radii of the two curves must be equal in the con-
nection points (eliminates discontinuities in the form of jumps in the curvature
diagram).

4. Common tangent of curvature functions: the first derivative of the curvature
functions of the two curves must be equal in the connection points (eliminates
discontinuities in the form of breaks in the curvature diagram).

5. Equal radius of curvature of curvature functions: the second derivative of the
curvature functions of the two curves must be equal in the connection points
(needed for extremely high-speed railways).
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The clothoid fulfills criterion 1 to 3, which means that it has discontinuities in the
form of breaks in the curvature diagram, see Figure 11. The reason for considering
only the curvature, as an evaluation criteria, is the close connection it has to the jerk
of the railway wagon, for instance through Lateral change of acceleration (LCA) [5].

Version June 15, 2020 submitted to Appl. Sci. 9 of 18

Table 2. ERB-function parameter values used in the comparisons.

α γ β λ

Default 1 1 1.0 0.5
Tightening 1 4 1 1.0 0.5
Tightening 2 10 1 1.0 0.5

Slope 1 1 1 8.0 0.5
Slope 2 1 1 50.0 0.5

Balance 1 1 1 1.0 0.2
Balance 2 1 1 1.0 0.8

2. Common tangent: the tangents of the two curves must be equal in the connection points.193

3. Equal radius of curvature: the radii of the two curves must be equal in the connection points194

(eliminates discontinuities in the form of jumps in the curvature diagram).195

4. Common tangent of curvature functions: the first derivative of the curvature functions of the two196

curves must be equal in the connection points (eliminates discontinuities in the form of breaks in197

the curvature diagram).198

5. Equal radius of curvature of curvature functions: the second derivative of the curvature functions199

of the two curves must be equal in the connection points (needed for extremely high-speed200

railways).201

The clothoid fulfils criterion 1 to 3, which means that it has discontinuities in the form of breaks in the202

curvature diagram, see Figure 11. The reason for considering only curvature, as an evaluation criteria,203

is the close connection it has to the jerk of the railway wagon, for instance through Lateral change of204

acceleration (LCA) [5].205

Arc 1 Clothoid Arc 2

Figure 11. Curvature diagram of a clothoid connected to two arc segments of different radii.

3.4. Experimental set-up206

The experiments are conducted via computer programming utilizing the in-house software library207

GMlib [32,33]. Geometric descriptions of the existing railway are implemented with GMlib to provide208

a reference for comparison of the new results with the original data. All curves are implemented as209

parametric curves and data is extracted by evaluating the curves uniformly from start to end. The210

curve properties that are of interest in this paper are curvature, and the first- and second derivative211

of the curvature. These properties are analysed and compared by visual examination of the graphs212

plotted from the evaluated data, and the focus is on the behaviour of the graphs and values at the213

end points. Comparisons are made between the curvatures of the existing railway segments and the214

Figure 11: Curvature diagram of a clothoid connected to two arc segments of
different radii.

3.4 Experimental Set-Up

The experiments were conducted via computer programming utilizing the in-house
software library GMlib [32, 33]. Geometric descriptions of the existing railway were
implemented with GMlib to provide a reference for comparison of the new results
with the original data. All curves were implemented as parametric curves and the
data were extracted by evaluating the curves uniformly from start to end. The curve
properties that were of interest in this paper were the curvature, and the first and
second derivative of the curvature. These properties were analysed and compared by
visual examination of the graphs plotted from the evaluated data, and the focus was
on the behaviour of the graphs and values at the end points. Comparisons were made
between the curvatures of the existing railway segments and the blending splines, and
in addition, the curvatures of the various blending splines were compared against each
other.

4 Results and Discussions

This section shows the results of the method applied to the Ofotbanen example de-
scribed in Section 3.1. The results are divided in two, based on the type of local curves
used in the blending spline: arcs and Béziers. For each of the local curves, the cur-
vature plots of the blending splines were analysed and discussed, and compared with
the clothoid, for varying entry points and ERB-function parameters. The curvature is
presented as κ in the figures, and κ-der represents the first and second derivatives of
the curvature.

4.1 Arc as Local Curves

Curvature plots for the clothoid and three blending spline transition curves (with entry
points [p1, q1], [p2, q2], and [p3, q3]), using circular arcs as local curves and a default

13



ERB-function for blending, can be seen in Figure 12. The dashed function is the
clothoid curvature, while the solid functions are blending spline curvatures ([p1, q1] in
blue, [p2, q2] in red, and [p3, q3] in black). From the figure, it can be seen that changing
the entry points did not have a great impact on the behaviour of the blending spline.
The main difference was the length of the curves (L = 60 m for [p1, q1], L = 120 m for
[p2, q2], and L = 180 m for [p3, q3]), which arose from the selection of entry points.
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Figure 12. Curvature plots of the clothoid with parts of the circular segments (dashed) and default
ERB-function blending splines, with local arc curves, for the three entry points [p1, q1] (blue), [p2, q2]

(red), and [p3, q3] (black).
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characteristics of the blending splines is that they go smoothly towards the end points, where the234

clothoid has a discontinuity in connection to the constant curvature of the adjacent segments, as235

described in Figure 11. This leads us to believe that the blending spline, at least with a default236

ERB-function, satisfies additional criteria (4 and 5 presented in Section 3.3) when compared to the237

clothoid. To test our hypothesis, graphs of the first and second derivatives of the curvature for the238

blending spline in [p3, q3] are printed. Since the behaviour is fairly familiar for the three blending239

splines in the end points only one is checked. The result can be seen in Figure 13, where the constant240

first derivative of the clothoid’s curvature (dashed) is plotted against the first (solid) and second241

(dotted) derivatives of the blending spline’s curvature. From the figure it can be observed that the first242

Figure 12: Curvature plots of the clothoid with parts of the circular segments
(dashed) and default ERB-function blending splines, with local arc curves, for
the three entry points [p1, q1] (blue), [p2, q2] (red), and [p3, q3] (black).

Compared to the clothoid’s linear curvature, the blending splines have five inflec-
tion points in their curvature graphs, which is not optimal and should be attempted
smoothed out. A positive characteristic of the blending splines is that they go smoothly
towards the end points, where the clothoid has a discontinuity in connection to the
constant curvature of the adjacent segments, as described in Figure 11. This leads us
to believe that the blending spline, at least with a default ERB-function, satisfies the
additional criteria (4 and 5 presented in Section 3.3) when compared to the clothoid.

To test our hypothesis, graphs of the first and second derivatives of the curvature
for the blending spline in [p3, q3] were printed. As the behaviour was fairly familiar
for the three blending splines in the end points only one was checked. The result can
be seen in Figure 13, where the constant first derivative of the clothoid’s curvature
(dashed) is plotted against the first (solid) and second (dotted) derivatives of the
blending spline’s curvature. From the figure, it can be observed that the first and
second derivatives of the blending spline go to zero in the ends. These conditions
are exactly what is needed to fulfill criteria 4 and 5. Hence, the blending spline is
better than the clothoid when it comes to smoothness in the connection points to the
adjacent segments.

14



Version June 15, 2020 submitted to Appl. Sci. 11 of 18

and second derivatives of the blending spline go to zero in the ends. These conditions are exactly what243

is needed to fulfil criteria 4 and 5. Hence, the blending spline is better than the clothoid when it comes244

to smoothness in the connection points to the adjacent segments.245

0 90 180

0

L (m)

κ
-d

er

Figure 13. Plots of the 1st derivative of the curvature for the clothoid (dashed) and default ERB-function
blending splines, with local arc curves, in [p3, q3] (solid), and the 2nd derivative of the curvature for
the blending spline, scaled by 1

10 (dotted).
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Figure 13: Plots of the first derivative of the curvature for the clothoid (dashed)
and default ERB-function blending splines, with local arc curves, in [p3, q3]
(solid), and the second derivative of the curvature for the blending spline, scaled
by 1

10 (dotted).

From the previous results, an assumption can be made that any blending spline
with a smoother curvature diagram towards the end points, than the default ERB-
funtion blending spline, will meet all the criteria in Section 3.3. Thus, the focus of
the discussion when varying the ERB parameters will be on smoothing the curvature
along the blending spline. In the adjustment of the ERB parameters, the curves that
are studied have entry points [p3, q3].

By varying the tightening parameters, α and γ, as described in Table 2, the re-
sulting curvature diagrams, of the blending splines, become as shown in Figure 14.
From the plots, it can be observed that by increasing α, the smoothness in the end
points increased and the bumps became more prominent, with higher amplitudes of
the extreme values. By varying the slope parameter, β, as described in Table 2, the
resulting curvature diagrams, of the blending splines, became as plotted in Figure 15.
From the plots, it can be observed that by increasing β, the bumps were shifted toward
the middle of the graph and the smoothness increased in the end points. By varying
the balance parameter, λ, as described in Table 2, the resulting curvature diagrams,
of the blending splines, became as plotted in Figure 16. From the plots, it can be ob-
served that by moving the balance of the ERB-function left or right, the smoothness
increased in one end and decreased in the other. The same was true for the bumps:
in one end they were smoothed, while in the other they became more prominent.

Attempting to smooth the curvature by varying the ERB parameters was not
straightforward. It seems that the slope parameter can dampen the fluctuations to
some extent, which was also the case in one end when varying the balance parame-
ter. However, overall, the ERB parameters did not change the characteristics of the
curvature, they only affected the extreme values and shifted the amplitude of the
bumps.
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default), α, γ = 4, 1 (blue), and α, γ = 10, 1
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Figure 15. Curvature plots of the clothoid
with parts of the circular segments (dashed)
and blending splines in [p3, q3] for slope
parameters β = 1.0 (black, default), β = 8.0
(blue), and β = 50.0 (red).
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Figure 16. Curvature plots of the clothoid
with parts of the circular segments (dashed)
and blending splines in [p3, q3] for balance
parameters λ = 0.5 (black, default), λ = 0.2
(blue), and λ = 0.8 (red).

Figure 14: Curvature plots of the clothoid with parts of the circular segments
(dashed) and blending splines in [p3, q3] for tightening parameters α, γ = 1, 1
(black, default), α, γ = 4, 1 (blue), and α, γ = 10, 1 (red).

Version June 15, 2020 submitted to Appl. Sci. 12 of 18

L (m)

κ

Figure 14. Curvature plots of the
clothoid with parts of the circular segments
(dashed) and blending splines in [p3, q3] for
tightening parameters α, γ = 1, 1 (black,
default), α, γ = 4, 1 (blue), and α, γ = 10, 1
(red).

L (m)

κ

Figure 15. Curvature plots of the clothoid
with parts of the circular segments (dashed)
and blending splines in [p3, q3] for slope
parameters β = 1.0 (black, default), β = 8.0
(blue), and β = 50.0 (red).

L (m)

κ

Figure 16. Curvature plots of the clothoid
with parts of the circular segments (dashed)
and blending splines in [p3, q3] for balance
parameters λ = 0.5 (black, default), λ = 0.2
(blue), and λ = 0.8 (red).

Figure 15: Curvature plots of the clothoid with parts of the circular segments
(dashed) and blending splines in [p3, q3] for slope parameters β = 1.0 (black,
default), β = 8.0 (blue), and β = 50.0 (red).
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Figure 16: Curvature plots of the clothoid with parts of the circular segments
(dashed) and blending splines in [p3, q3] for balance parameters λ = 0.5 (black,
default), λ = 0.2 (blue), and λ = 0.8 (red).
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4.2 Bézier as Local Curves

Using Bézier curves as local curves and starting with a default ERB-function for blend-
ing, the curvature for the three blending spline transition curves together with the
clothoid, and the blending spline in [p3, q3] from Figure 12, can be seen in Figure
17. As before, the dashed function is the clothoid curvature, while the solid functions
are blending spline curvatures. In addition, a blending spline (dotted) with local arc
curves in [p3, q3] was plotted for comparison. From the figure, it can be seen that using
Bézier curves as local curves, instead of arcs, yielded blending splines with curvatures
that lay closer to the clothoid, while still having a smooth transition to the end points.
With this observation, we concluded that the three first criteria from Section 3.3 were
fulfilled, and that there is a possibility that more criteria are met.

Version June 15, 2020 submitted to Appl. Sci. 13 of 18

using Bézier curves instead of arcs, as local curves, yields blending splines with curvatures that lie273

closer to the clothoid, while still having a smooth transition to the end points. With this observation274

we conclude that the three first criteria from Section 3.3 are fulfilled, and that there is a possibility that275

more criteria are met.276

0 60 120 180

2.49

3.17

·10−3

L (m)

κ

Figure 17. Curvature plots of the clothoid with parts of the circular segments (dashed) and default
ERB-function blending splines, with local Bézier curves, for the three entry points [p1, q1] (blue), [p2, q2]

(red), and [p3, q3] (black). In addition, the curvature of a blending spline with local arc curves, in
[p3, q3], is plotted (dotted).

In Figure 18 the first (solid) and second (dotted) derivative of the curvature for the blending spline277

in [p1, q1] are plotted, together with the first derivative of the curvature for the clothoid (dashed). From278

the figure it can be observed that the first derivative of the blending spline goes to zero in the ends,279

while the second derivative ends a little above and below zero in the two end points. This means that280

criterion 4 is fulfilled but not criterion 5, since there will be a small jump in the connection points for281

the second derivative function. However, the blending spline with local Bézier curves is still better282

than the clothoid when it comes to smoothness in the connection points to the adjacent segments. One283

way of increasing the smoothness, so that it also fulfils criterion 5 could be to raise the degree of the284

Bézier curves from d = 4 to d = 5, and fixing the first four control points.285

The same assumption is made here, as in the discussion with arc curves, that any blending spline286

with a smoother curvature diagram towards the end points, than the default ERB-function blending287

spline, will fulfil criteria 1− 4 in Section 3.3. Thus, the focus when varying ERB parameters will be288

on smoothing the curvature along the blending spline. In the variation of the ERB parameters, the289

curves that are studied have entry points [p1, q1], because the curvature lies closest to the clothoid in290

Figure 17. The parameters are varied in the same manner as with the blending spline with local arc291

curves, described in Table 2. In Figure 19 the tightening parameters are varied, in Figure 20 the slope292

parameter is varied, and in Figure 21 the balance parameter is varied. The results that emerge are very293

similar to the results obtained for the blending spline with local arc curves: by varying the tightening294

parameters, the smoothness in the end points increases and the bumps become more prominent, with295

higher extreme values; by varying the slope parameter, the bumps are shifted towards the middle and296

the smoothness increases in the ends; and by varying the balance parameter, the smoothness increases297

in one end and decreases in the other, and the bumps are smoothed in one end, while becoming more298

prominent in the other.299

So, with these results a conclusion can be drawn, again, that the ERB parameters do not change the300

behaviour of the curvature, they only affect the extreme values and shift the amplitude of the bumps.301

Figure 17: Curvature plots of the clothoid with parts of the circular segments
(dashed) and default ERB-function blending splines, with local Bézier curves,
for the three entry points [p1, q1] (blue), [p2, q2] (red), and [p3, q3] (black). In
addition, the curvature of a blending spline with local arc curves, in [p3, q3], is
plotted (dotted).

In Figure 18 the first (solid) and second (dotted) derivative of the curvature for the
blending spline in [p1, q1] are plotted, together with the first derivative of the curvature
for the clothoid (dashed). From the figure, it can be observed that the first derivative
of the blending spline went to zero in the ends, while the second derivative ended a
little above and below zero in the two end points. This indicates that criterion 4 was
fulfilled, but not criterion 5, as there will be a small jump in the connection points
for the second derivative function. However, the blending spline with local Bézier
curves was still better than the clothoid for smoothness in the connection points to
the adjacent segments. One method of increasing the smoothness, so that it also fulfills
criterion 5, could be to raise the degree of the Bézier curves from d = 4 to d = 5, and
fix the first four control points.
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Figure 18. Plots of the 1st derivative of the curvature for the clothoid (dashed) and default ERB-function
blending splines, with local Bézier curves, in [p1, q1] (solid), and the 2nd derivative of the curvature for
the blending spline, scaled by 1

10 (dotted).

However, a new result is obtained here showing that by re-shaping the local curves the characteristics302

of the curvature can be changed, causing smaller fluctuations along the function.303

5. Concluding remarks304

In this paper a family of splines, blending splines, have been applied and analysed as transition305

curves in an already existing railway. Three segments from the Ofotbanen railway were extracted, two306

circular arcs connected by a clothoid. The goal was to make the least amount of intervention to the307

existing railway, by keeping the placement of the arcs unchanged and only allowing the transition308

curve entry points to move. Under this constraint, the blending splines were compared to the clothoid309

with regards to smoothness in the end points and the shape of the curvature graph. The main findings310

in the paper can be summarized as follows:311

• the blending spline transition curves have a higher degree of curvature smoothness (≥ G1) in312

the connection points compared to the clothoid which is G0;313

• the blending spline yields the possibility of replacing transition curves in an existing railway314

without moving the adjacent segments;315

• the choice of blending function and local curves has a large impact on the curvature of the curve,316

and on the degree of smoothness in the connection points.317

The results showed that the blending splines, with appropriately selected local curves, were smoother318

than the clothoid in the ends. However, the curvature plots of the blending splines had fluctuations319

along its length, which may not be optimal in a transition case if the fluctuations are large. An320

observation was made that the choice of ERB parameters and local curves had a large impact on these321

fluctuations. The choice of local curve type and shape had even larger impact. By using Bézier curves322

as local curves, with a default ERB-function, the fluctuations were relatively small, as can be observed323

in Figure 17, and the curvature function was close to a monotonically increasing function, which324

seems to be the norm for transition curves, although there exists at least one transition curve that is325

not, the Wiener Bogen [10]. The Wiener Bogen uses a non-monotonically increasing curvature curve326

together with a monotonically increasing superelevation ramp, which gives better transition properties327

than the clothoid. Whether the blending spline curves can be used in the same manner as the Wiener328

Bogen remains to be tested, and may yield interesting results if it works since the blending splines are329

smoother in the end points than the clothoid. A different approach, which is very relevant for future330

work, is to test other local curves that may dampen the fluctuations more (or even remove them). From331

Figure 18: Plots of the first derivative of the curvature for the clothoid (dashed)
and default ERB-function blending splines, with local Bézier curves, in [p1, q1]
(solid), and the second derivative of the curvature for the blending spline, scaled
by 1/10 (dotted).

The same assumption is made here, as in the discussion with arc curves, that any
blending spline with a smoother curvature diagram towards the end points, than the
default ERB-function blending spline, will fulfill criteria 1–4 in Section 3.3. Thus, the
focus when varying the ERB parameters will be on smoothing the curvature along the
blending spline. In the variation of the ERB parameters, the curves that were studied
had entry points [p1, q1], because the curvature lay closest to the clothoid in Figure 17.
The parameters were varied in the same manner as with the blending spline with local
arc curves, described in Table 2. In Figure 19, the tightening parameters were varied;
in Figure 20, the slope parameter was varied; and in Figure 21, the balance parameter
was varied.

The results that emerged were very similar to the results obtained for the blending
spline with local arc curves: by varying the tightening parameters, the smoothness in
the end points increased and the bumps became more prominent, with higher extreme
values. By varying the slope parameters, the bumps were shifted toward the middle
and the smoothness increased in the ends. By varying the balance parameter, the
smoothness increased in one end and decreased in the other, and the bumps were
smoothed in one end, while becoming more prominent in the other.

Thus, with these results, a conclusion can be drawn, that the ERB parameters
did not change the behaviour of the curvature, they only affected the extreme values
and shifted the amplitude of the bumps. However, a new result was obtained here,
showing that by re-shaping the local curves, the characteristics of the curvature can
be changed, causing smaller fluctuations along the function.
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Figure 19. Curvature plots of the clothoid
(dashed) and blending splines in [p1, q1] for
tightening parameters α, γ = 1, 1 (black,
default), α, γ = 4, 1 (blue), and α, γ = 10, 1
(red).
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Figure 20. Curvature plots of the clothoid
(dashed) and blending splines in [p1, q1] for
slope parameters β = 1.0 (black, default),
β = 8.0 (blue), and β = 50.0 (red).
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Figure 21. Curvature plots of the clothoid
(dashed) and blending splines in [p1, q1] for
balance parameters λ = 0.5 (black, default),
λ = 0.2 (blue), and λ = 0.8 (red).

Figure 19: Curvature plots of the clothoid (dashed) and blending splines in
[p1, q1] for tightening parameters α, γ = 1, 1 (black, default), α, γ = 4, 1 (blue),
and α, γ = 10, 1 (red).
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Figure 19. Curvature plots of the clothoid
(dashed) and blending splines in [p1, q1] for
tightening parameters α, γ = 1, 1 (black,
default), α, γ = 4, 1 (blue), and α, γ = 10, 1
(red).

L (m)

κ

Figure 20. Curvature plots of the clothoid
(dashed) and blending splines in [p1, q1] for
slope parameters β = 1.0 (black, default),
β = 8.0 (blue), and β = 50.0 (red).
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Figure 21. Curvature plots of the clothoid
(dashed) and blending splines in [p1, q1] for
balance parameters λ = 0.5 (black, default),
λ = 0.2 (blue), and λ = 0.8 (red).

Figure 20: Curvature plots of the clothoid (dashed) and blending splines in
[p1, q1] for slope parameters β = 1.0 (black, default), β = 8.0 (blue), and β =
50.0 (red).
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Figure 19. Curvature plots of the clothoid
(dashed) and blending splines in [p1, q1] for
tightening parameters α, γ = 1, 1 (black,
default), α, γ = 4, 1 (blue), and α, γ = 10, 1
(red).
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Figure 20. Curvature plots of the clothoid
(dashed) and blending splines in [p1, q1] for
slope parameters β = 1.0 (black, default),
β = 8.0 (blue), and β = 50.0 (red).

L (m)

κ

Figure 21. Curvature plots of the clothoid
(dashed) and blending splines in [p1, q1] for
balance parameters λ = 0.5 (black, default),
λ = 0.2 (blue), and λ = 0.8 (red).

Figure 21: Curvature plots of the clothoid (dashed) and blending splines in
[p1, q1] for balance parameters λ = 0.5 (black, default), λ = 0.2 (blue), and
λ = 0.8 (red).
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5 Concluding Remarks

In this paper, a family of splines (blending splines) were applied and analysed as
transition curves for an already existing railway. Three segments from the Ofotbanen
railway were extracted as two circular arcs connected by a clothoid. The goal was to
make the least amount of intervention to the existing railway, by keeping the placement
of the arcs unchanged and only allowing the transition curve entry points to move.
Under this constraint, the blending splines were compared to the clothoid with regard
to the smoothness of the end points and the shape of the curvature graph. The main
findings in the paper can be summarized as follows:

• the blending spline transition curves had a higher degree of curvature smoothness
(≥ G1) in the connection points compared to the clothoid, which was G0;

• the blending spline yielded the possibility of replacing transition curves in an
existing railway without moving the adjacent segments;

• the choice of blending function and local curves had a large impact on the
curvature of the curve, and on the degree of smoothness in the connection points.

The results showed that the blending splines, with appropriately selected local curves,
were smoother than the clothoid for the ends. However, the curvature plots of the
blending splines had fluctuations along the lengths, which may not be optimal in a
transition case if the fluctuations are large. An observation was made that the choice
of ERB parameters and local curves had a large impact on these fluctuations. The
choice of local curve type and shape had an even larger impact. By using Bézier curves
as local curves, with a default ERB-function, the fluctuations were relatively small,
as can be observed in Figure 17. The curvature function was close to a monotonically
increasing function, which seems to be the norm for transition curves. However, there
exists at least one transition curve that is not, the Wiener Bogen [10].

The Wiener Bogen uses a non-monotonically increasing curvature curve together
with a monotonically increasing superelevation ramp, which provides better transition
properties than the clothoid. Whether the blending spline curves can be used in the
same manner as the Wiener Bogen remains to be tested, and may yield interesting
results if the blending splines are smoother in the end points when compared with
the clothoid. A different approach, which is very relevant for future work, is to test
other local curves that may dampen the fluctuations more (or even remove them).
From the results on local Bézier curves, it will be of interest to raise the degree of the
Bézier so that more than one control point in the ends can be manipulated. There are
strong indications that these extra degrees of freedom can be utilized to smooth the
curvature function more than for fourth degree Bézier curves where only one control
point is manipulated.

In this work, the control point was moved manually in order to test the hypothesis.
However, there are indications that it would be possible to develop an algorithmic
solution for the placement of the control points in the local Bézier curves, under
the constraints of a given optimal curvature. This, together with inspecting ERB-
functions where several parameters are modified, with respect to the characteristics
of the resulting curvature, is out of scope in the current paper and is considered for
future work.

From a technical point of view, the local curves of the proposed transition curves
can be represented in already existing software, as circular arcs and Bézier curves
are fundamental elements in CAD. Utilizing blending spline transition curves with
established workflows and software tools can then be performed in several ways. For
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example, the blending spline evaluator can be implemented as a stand alone tool
(requiring export, processing, and import of the data), as a plug in, or integrated into
an existing software package.

The new transition curves were developed from a geometric point of view. The
analysis was conducted by utilizing pure geometric comparison criteria, as outlined in
Section 3.3. The maintenance and modification of existing railways provides certain
additional challenges. As pointed out in [34], one would have to consider additional
mechanical parameters, such as the wheel–rail conditions, to deal with track cant
transitions. Kaewunruen et al. [35, 36] demonstrated that wheel–rail contact forces
relate to the curvature distribution, and that rail surface defects, or squats, com-
monly appear along the transition arc length [36, 37]. The smoothness of the spline
construction yields extra derivatives, which may assist track cant transition design.
For this reason, it would be interesting to investigate the performance of practical
blending spline transition curves with respect to the relation between track geometry
and wheel–rail interface problems; however, it would be important to optimize the
curvature fluctuations to avoid disadvantageous rail squat development.
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