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Abstract

Information about snow covered area is important for several purposes, and this
information can be found by detecting reflection of optical waves using optical
sensors or by using active radars such as SAR.

This thesis is explaining how information from the measurements are used to
make snow maps. Optival sensors cannot detect snow when the area is covered by
clouds, and this is a problem in the melting season in Norway. Microwaves can
penetrate clouds, and detect wet snow. It cannot detect dry snow, but we will
make snow maps based on the probability of dry snow. When we combine snow
maps made from an optical instrument (MODIS) and a SAR (ENVISAT ASAR)
we are able to get improved snow cover maps in times when the optical instrument
cannot see the surface because of clouds.

We will study a moving average filter and the Kalman filter. These filters are
used to be able to filter the information about the snow cover to get an estimate of
the snow covered area for each day. When comparing the results from the moving
average filter with the Kalman filter, the results indicate that the Kalman filter
gives a better estimation based on the measurements.

We will also study relation between measured snow cover and the topography,
and also if there are any relation between land cover and snow cover. The results
indicate that the data from the optical sensors is underestimating the snow cover
in northern slopes. The results also indicates that the melting of snow is correlated
to the elevation.
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Chapter 1

Introduction

In the northern hemisphere there is an average area of 30 to 40 million km2 covered
with snow during the winter. This snow mass is equivalent to between 2000 to
3000 km3 of water. About 50% of the precipitation in the mountains in Norway
fall as snow. All this snow affects processes that interacts between atmosphere
and surface, and information about the snow covered area (SCA) is important for
climatology, weather forecast, hydrology, flood warning, ecology, flora and fauna
etc [20].

Since half the percipitation fall as snow in Norway, over half the annual runoff
is happening in the melting season. Observation of the snow covered area will
contribute to valuable information about runoff, and with this information it is
possible to improve the prediction of flood. Flood is a risk both in areas with
stable winter snow coverage and in areas where snow only occasionally covers the
land. Hydroelectic power stations also need some information about how far the
runoff has come to be able to calculate how much water they will get in their
reservoirs.

Global warming is a problem that affects the snow covered area. Snow reflects
radiation more effective than bare soil, and with less snow covered area because
of global warming, more radiation will be absorbed by the bare ground and we
get a positive feedback effect. Monitoring snow covered area could provide early
evidence of a possible change in the climate [4].

Remote sensing as a technology started with the first photographs in the early
nineteenth century. Under World War 1, cameras was mounted on airplanes or
handheld by aviators, and provided invaluable information for military reconnais-
sance. Remote sensing above the atmosphere originated at the dawn of Space Age.
The first satellite which returned images was the Corona mission 9009 in 1959, and
the motivation in the beginning was to get information about the enemy during
the cold war, but things changed. The development of sensors and digital image
processing algorithms to extract important information about the land cover from
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remote sensed data has been devoted significant effort since the cold war. Exam-
ples of the development is multispectral images to get more specified information
from the land cover, and better resolution on the ground.

Snow cover has been monitored from space using images from optical sensors
since 1966 [17]. Many papers are written about optical remote sensing sensors
ability for mapping the snow covered area, but they are limited by clouds and lack
of daylight. In Norway, lack of daylight is a big problem for optical sensors, not
only where there are polar night, but it is also a problem on the shadow-side of
mountains early in the season when the sun is low. Clouds are also very common
in the melting season [2, 18].

Already in the 1970’s, ground based signature research clearly revealed the ca-
pabilities of X-band and C-band Syntetic Aperture Radar (SAR) for detecting wet
snow [13], and since 1978 passive microwave images has been used to monitor the
snow cover [17]. SAR can look through clouds, and does not need any daylight,
but the C-band SAR-sensors are only sensitive to wet snow. The backscattering
coeffisient is not changed much by dry snow compared to bare ground, and since
SAR-images has problems with speckle and geometric distortion due to layover,
foreshortening and shadowing, we can not measure dry snow directly. Several pa-
pers [3, 11, 14] has shown that it is possible to map wet snow by SAR because of
the lower backscattering coeffisient of wet snow compared to bare ground. Norwe-
gian Computing Center (NR) and Norut have together tried to combine the use of
optical and SAR seonsors to get the best from both worlds. They used SAR-based
maps to update the SCA maps when they were missing optical observations, and
this combination gave a clearly better SCA-maps than using a single-sensor only
[20].

What we will do in this thesis is to look at how SCA-maps are made from
satellite measurements, and try to improve the work of NR and Norut further. We
will study new ways of filtering the SCA-maps to obtain better estimates. We will
especially study the Kalman filter for this purpose. We will also investigate some
additional information such as meteorological measurements of the temperature,
snow depth and precipitation to see if our results corresponds with the in situ
measurements. Land cover maps and digital elevation models will also be used
to see if there are any corrolation between snow melting and elevation and land
cover.

We will also take a investigate existing problems with the algorithms that
makes the SCA-maps, and topographical influence on the measurements.

1.1 Structure of this thesis

This thesis is divided into 9 chapters.
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• Chapter 2 introduce the basic concept of electromagnetic waves, and how
they interact with different matter. How snow interacts with electromagnetic
waves is especially important.

• Chapter 3 presents the instruments used to acquire the images we will look
more into.

• Chapter 4 explain the concept of the Kalman filter. A detailed description
of both simple and extended Kalman filter is given, and an example of how
it is used.

• Chapter 5 explains how the images from the instruments are used to obtain
snow cover maps. Some problems about them are also discussed.

• Chapter 6 presents other data used in this thesis.

• Chapter 7 presents the main algorithm and the methods used to filter the
snow maps.

• Chapter 8 presents and discusses the results found using the different filter
and background data.

• Chapter 9 concludes this thesis and suggest some work that may be done in
the future.
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Chapter 2

Electromagnetic Radiation
Principles

To understand how electromagnetic radiation is created, travel through space and
interacts with other matter, we will describe the processes using two different
models; the wave model and the particle model.

2.1 Wave Model of Electromagnetic Energy

A electromagnetic wave consists of an electric and a magnetic fluctuating field.
These two fields are orthogonal to each other, and both are perpendicular to the
travel direction. The relationship between the wavelength and the frequency of
the wave is

c = λν, (2.1)

where c is the speed of light, λ is the wavelength and ν is the frequency.
Electromagnetic energy is emitted from all objects with a temperature above

absolute zero (−273oC or 0 K). This includes water, soil, rock, vegetation and
the surface of the sun. The sun is the source of most of the electromagnetic
energy recorded by remote sensing systems, including MODIS. A black body is a
theoretical object that absorbs all electromagnetic radiation that falls onto it, and
re-emitts the energy at maximum possible rate per unit area at each wavelength
λ for a given temperature. The Sun can be thought of as a black body with a
temperature of 5770− 6000 K. The total emitted radiation from a black body can
be expressed as

Mλ = σT 4, (2.2)

where σ is the Stefan-Boltzmann constant, 5.6697× 10−8Wm−2K−4, and T is the
temperature measured in kelvin (K). To calculate the dominant wavelength (λmax)
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Figure 2.1: Black body radiation for different temperatures. The Sun has an
approximated temperature of 5880 K, while the earth has a temperature of 288 K.
Illustration borrowed from [24].

we use Wien’s displacement law:

λmax =
k

T
, (2.3)

where k is a constant equal to 2898µm K. From this equation we find that the
dominant wavelength for the Sun is 0.493µm, which is blue/green light, while the
Earth has a dominant wavelength of 10.1µm, which is in the thermal infrared
region.

2.2 Particle Model of Electromagnetic Energy

Albert Einstein found that when light interacts with electrons, it could not be
explained as a wave. He concluded that light had mass that he called photons,
which has an energy and momentum. The electrons in an atom is located in
different energy levels, and if a photon is absorbed by the atom, the electron will
be excited to a higher energy level. After 10−8 seconds the electron falls back to
a lower empty energy level, and it emitts a new photon. The difference between
the energies in the two levels is the same as the energy of the photon absorbed or
emitted. If the electron falling to a lower energy level do this in several steps, it
will send out a photon every time, and the sum of the energy will be the same as
the difference between the excited and the normal energy levels.
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The relationship between the wavelength (λ) and the energy (Q) in the photon
is

Q = hν, (2.4)

where h is the Planck constant, 6.626 × 10−34Js. When we substitute ν with
equation 2.1 we get

Q =
hc

λ
(2.5)

or

λ =
hc

Q
(2.6)

From equation 2.6 we see that the wavelength (λ) is inversely proportional with
the enerqy (Q). This implies that it is harder to detect radiation with longer
wavelength than radiation with shorter.

2.3 Reflectance of Electromagnetic Energy

When energy from the sun strikes an object, there are five possible interactions.
The energy can be [25]:

• Transmitted. The energy passes through the object with a change of velocity
determined by the index of refraction for the two media in question.

• Absorbed. The object takes the energy through an electron or molecular
reaction.

• Reflected. The object works like a mirror and returns the energy unchanged
with the angle of reflection equal to the angle of incidence. Reflectance is
the ratio between reflected energy and the incident energy on the body. The
reflected wavelength determines the color of the object.

• Scattered. The direction of energy propagation is randomly changed. Rayleigh-
and Mie-scatter are the most important types of scatter in the atmosphere.

• Emitted. The energy which is absorbed is later re-emitted, usually at longer
wavelegths. The object also heats up.

There are several types of reflecting surfaces. When the surface where the
radiation is reflected is smooth we get specular reflection. We can often see this
phenomena when we look at calm water and see the reflection in the water. If
the surface is more rough, the reflected radiation goes in several directions, and
we get a diffuse reflectation or scattering. A perfect diffuse reflector is called a
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Figure 2.2: The surface spectral imprint is reflected in the specter of the reflected
waves. Illustration borrowed from [5].

Lambertian surface, and the radiant flux leaving the surface is constant for any
angle of reflectance [8].

The characteristics of the reflected radiant flux is very importnant in remote
sensing. If we know how much and which wavelength is absorbed and reflected,
we can get important information about the terrain we are measuring. The total
amount of radiant flux Φ(λ) in a specific wavelength (λ) has to be accounted for
by taking the sum of the total amount of reflected radiant flux, Φr(λ), absorbed
radiant flux, Φa(λ), and transmitted radiant flux, Φt(λ);

Φ(λ) = Φr(λ) + Φa(λ) + Φt(λ) (2.7)

We can see an example of this in figure 2.2. The reflected spectrum is different
from the source spectrum because some of the frequencies are absorbed or trans-
mitted more than others. The hemispherical reflectance (ρλ) is defined as the ratio
between reflected radiant flux from the surface and the radiant flux incident to it;

ρ(λ) =
Φr(λ)

Φ(λ)
(2.8)

This can also be expressed as a percent:

ρ%(λ) =
Φr(λ)

Φ(λ)
× 100 (2.9)
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Figure 2.3: Spectral reflectance curves of four different targets. Illustration bor-
rowed from [25].

This is often used in remote sensing research to describe the spectral reflectance
characteristics of various phenomena. If we look at figure 2.3, we see that the red
sand pit reflects about 60% of the energy at about 0.6µm, while the other three
only reflects about 10− 20%. Silty water is just as easy to distinguish with a low
reflectance for all wavelengths. Pinewoods and grasslands has more similar curves,
but if we measure the reflectance at 0.85µm and 1.0µm we should be able to see
the differance.

2.4 Radiant Flux Density

Equation 2.8 does not provide any information about the direction the reflected
energy is exiting. To be able to do that we need to specify the amount of radiant
flux leaving a surface per unit area, also called exitance:

M(λ) =
Φr(λ)

A
, (2.10)

where A is the area of the reflecting surface. Even if we include information about
the size of the surface we still don’t know the radiant flux in any direction from
the surface.

Radiance (L) is the radiant intensity per unit of projected source area in a
specified direction. We are only interested in the radiance in one direction, so we
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Figure 2.4: The concept of radiance leaving a specific projected source area on
the ground, in a specific direction and within a specific solid angle. Illustration
borrowed from [8].

evaluate the figure 2.4. We are only after the radiance from the projected source
area (Acosθ) in the solid angle Ω:

L(λ) =
Φr(λ)

Ω

Acosθ
(2.11)

The radiance we measure from a satellite will be different than this theoretical L
because of atmospherical interactions, such as scattering.

2.5 Electomagnetic reflectance of snow

Compared to most vegetation, soil and water, snow have a much higher reflectance
in the visible wavelengths. The reason for the high reflectance lies in the dielectric
properties of ice and in the fact that snow is composited by ice in a very highly
divided form of the order 109 particles per cubic meter. The high reflectance in
all visible band compared to other land covers makes it relatively straightforward
to classify snow based on optical instruments.

The problem in classification snow is clouds. The reflectance spectre of snow
and clouds can be seen in figure 2.5, and we can see they have a similar reflectance
in the visible wavelength. To be able to distinguish the two, we can either use
several images taken within a relatively short period, and look for movements since
clouds moves and snow does not, or we can check the reflectance in a wavelength
where snow and clouds are very different from eachother. At about 1,6 µm clouds
has a reflectance at about 50% while snow has a reflectance near 0%, and this
difference will make the classification easier.
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Figure 2.5: Reflactance of clouds and snow in the the wavelength interval 0,4 to
2,5 µm. Illustration borrowed from [8].

The ASAR instrument use the C-band channel to retrieve information about
the snow cover. The reflection of radiation from a planar snow surface is deter-
mined by the difference in the dielectric constant of the snow and the external
medium (air) and the angle at which the radiation strikes the snow. The greater
difference in dielectric constand, the greater reflection coeffisient.

The scattering from any surface is depending on the dielectric constant of the
surface, its roughness properties and the geometry of the scattering. The real
part of the dielectric constant of ice is practically constant for all frequencies in
the microwave region. The degree of absorption is determined of the imaginary
part of the dielectric constant, and for dry snow it is very small. Since there is
a low degree of absorption in dry snow, propagation of microwaves are generally
dominated by scattering. Visible wavelength are shorter than the grain size, and
that makes them scatter in a high degree, and the snow seems white for our eyes.
But microwaves are much longer than the grain size, and this make the attenuation
lenght fairly long. As a consequence of this, dry snow can be almost transparent
unless they are deep, giving a backscattering coefficient that is essentially that of
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Figure 2.6: Typical variation of copolarized backscattering coefficient with inci-
dence angle for wet snow (schematic). Illustration borrowed from [17].

the underlaying surface.
The backscatter of wet snow containes contributions from both surface and

volume scattering. Figure 2.6 show the typical relation between backscattering
coefficient and the incidence angle. The backscatter is dominated by scatter from
the surface for incidence angles below 17◦, and volume scatter for angles greater
than this. Volume scatter has little variation with incidence angle, and since C-
band SAR are typically measuring the backscatter at an incidence angle of 23◦

we can see from figure 2.6 that the backscatter coefficient is very low [17]. A low
backscatter coefficient is a clear indication of wet snow, and can be used to extract
information about the snow cover as we will look more into in section 5.2.
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Chapter 3

Instruments

3.1 Advanced Synthetic Aperture Radar (ASAR)

The ENVISAT Advanced Synthetic Aperture Radar (ASAR) is one of the 10
instruments on board of ENVISAT (Environmental Satellite). It was launched on
March 1, 2002. It has a Sun synchronous polar orbit at height 790 km, and orbits
the earth in 101 minutes, with a repeat cycle of 35 days. The ASAR on board of
ENVISAT extends the mission of the Active Microwave Instrument (AMI) Syntetic
Aperture Radar (SAR) instruments flown on the ERS-1 and ERS-2 satellites.

ASAR use an active phased-array antenna with possible incidence angles be-
tween 15 and 45◦, and it operates in the C-band. We use output from the Wide
Swath mode, which give us a swath width of 400km and a spatial resolution of 150
× 150 meters.

The pulse sent by the ASAR is a chirp to allow the pulse to be much longer.
A long pulse allow more energy to be emitted, and hence recieved. I longer pulse
usually hinders range resolution, but a chirp has a frequency shift during the pulse,
and when this pulse is returned it must be correlated with the sent pulse.

The chirped pulse from the ASAR antenna will be broad because a narrow
beam needs a large antenna. The pulse will hit the terrain beneathe the antenna,
and the reflected beam will return to the antenna. If the terrain is flat, the pulse
will not hit the terrain at the same time since it will need to travel further to hit the
terrain at a bigger incidence angle, and therefore the pulses from different distances
from the flight track may be distinguished. To distinguishe points along the ground
track, we can use the doppler shift. A point ahead of the ASAR returns a Doppler
upshifted signal, while a point behind the ASAR returns a Doppler downshifted
signal.
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3.2 Moderate Resolution Imaging Spectroradiome-

ter (MODIS)

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a scientific in-
strument which is a payload on board of NASA’s EOS Terra (10:30 a.m. de-
scending node) and Aqua (1:30 p.m. ascending node). Terra was launched on
Desember 18, 1999, and the first image from MODIS was recieved the February
24, 2000. Aqua was launched on May 4, 2002. MODIS was designed to provide
measurements in large-scale global dynamics including changes in Earth’s cloud
cover, radiation budget and processes occurring in the oceans, on land, and in the
lower atmosphere.

MODIS is in a 705 km sun-synchronous orbit, and has a double-sided scan
mirror to scan a ±55◦ scanning pattern, with a 20,3 rpm cross track. which gives
a swath width of 2330 km cross track and a 10 km swath width along track at
nadir. This means the whole surface of the earth is covered every one or two
days in 36 discrete spectral bands [26]. As we see in table 3.1, the bands spatial
resolution ranges from 250 × 250 m to 1 × 1 km. Although other imaging systems
such as the Landsats Enhanced Thematic Mapper Plus has a higher resolution
(30 × 30 m), this system can only image a given area every 16 days. This is too
infrequently to capture many of the rapid biological and meteorological changes
that MODIS observes.
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Table 3.1: Overview over the characteristics of the MODIS onbord of the Terra
satellite.

Band Wavelength (nm) Resolution (m)
1 620 - 670 250 × 250 m
2 841 - 876 250 × 250 m
3 459 - 479 500 × 500 m
4 545 - 565 500 × 500 m
5 1 230 - 1 250 500 × 500 m
6 1 628 - 1 652 500 × 500 m
7 2 105 - 2 155 500 × 500 m
8 405 - 420 1000 × 1000 m
9 438 - 448 1000 × 1000 m

10 483 - 493 1000 × 1000 m
11 526 - 536 1000 × 1000 m
12 546 - 556 1000 × 1000 m
13 662 - 672 1000 × 1000 m
14 673 - 683 1000 × 1000 m
15 743 - 753 1000 × 1000 m
16 862 - 877 1000 × 1000 m
17 890 - 920 1000 × 1000 m
18 931 - 941 1000 × 1000 m
19 915 - 965 1000 × 1000 m
20 3 660 - 3 840 1000 × 1000 m
21 3 929 - 3 989 1000 × 1000 m
22 3 929 - 3 989 1000 × 1000 m
23 4 020 - 4 080 1000 × 1000 m
24 4 433 - 4 498 1000 × 1000 m
25 4 482 - 4 549 1000 × 1000 m
26 1 360 - 1 390 1000 × 1000 m
27 6 535 - 6 895 1000 × 1000 m
28 7 175 - 7 475 1000 × 1000 m
29 8 400 - 8 700 1000 × 1000 m
30 9 580 - 9 880 1000 × 1000 m
31 10 780 - 11 280 1000 × 1000 m
32 11 770 - 12 270 1000 × 1000 m
33 13 185 - 13 485 1000 × 1000 m
34 13 485 - 13 785 1000 × 1000 m
35 13 785 - 14 085 1000 × 1000 m
36 14 085 - 14 385 1000 × 1000 m

15
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Chapter 4

The Kalman filter

The Kalman filter is a set of mathematical equations that estimate the state of
a dynamic system from a series of incomplete and noisy measurements. It was
developed by R. E. Kalman in 1960, but has been further developed since then.
The filter supports estimations of past, present and future states, and it can do this
even without knowing the precise nature of the modeled system. This makes the
Kalman filter very powerful. The literature about the Kalman filters are covered
by bib:kalman, bib:ekf and bib:kalman2.

4.1 Simple Kalman filter

Kalman’s original formulation is now called simple Kalman filter. The filter tries
to estimate the state x ∈ <n of a discrete time controlled process. The equation
describing the state xk is

xk = Axk−1 + Buk−1 + wk−1, (4.1)

where A is a n× n matrix which relates the previous state xk−1 to the new state,
B is a n× l matrix and is the control-input model which is applied to the optional
control vector uk−1 and wk−1 is the process noise. The equation describing the
measurement z ∈ <m is

zk = Hxk + vk, (4.2)

where H is a m× n matrix which maps the true state vector xk into the observed
vector zk. vk is the measurement noise. The matrices A and H might change with
each step, but in simple Kalman filter we assume they are constant.

The process noise and the measurement noise are assumed to be independent,
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white Gaussian noise with probability distributions

p(w) ∼ N(0, Q),

p(v) ∼ N(0, R).
(4.3)

In real life, the process noise covariance Q and the measurements noise covari-
ance R matrices can change for each time step or measurement, but in the simple
Kalman filter we assume they are constant. The measurement noise covariance R
is usually measured before we run the filter, while the process noise covariance Q
usually is very difficult to measure, since we usually cannot directly observe the
process. It is often possible to ”tune” both parameters by choosing them rationally
and run the filter a few times to test.

x̂−k ∈ <n is the a priori state estimate at the step k, when we have knowledge of
the process prior to step k. x̂k ∈ <n is defined to be the a posteriori state estimate
at step k when we have the measurement zk. The a priori and a posteriori estimate
errors are defined as

e−k ≡ xk − x̂−k , and

ek ≡ xk − x̂k.
(4.4)

The estimated a priori error covariance and a posteriori error covariance is then

P−
k = E[e−k e−T

k ], and

Pk = E[eke
T
k ].

(4.5)

The predicted measurement ẑk based on the a priori estimate is

ẑk = E[Hx̂−k + vk]

= E[Hx̂−k ] + E[vk]

= Hx̂−k ,

(4.6)

where E[ẑk] is the expected value of ẑk

To derive the equations for the Kalman filter, we start with an equation that
computes the a posteriori state estimate x̂k as a linear combination of an a priori
estimate x̂−k and a weighted difference between an actual measurement zk and the
measurement prediction Hx̂k;

x̂k = x̂−k + K(zk −Hx̂−k ). (4.7)

The difference between the measurement and the predicted measurement (zk −
Hx̂−k ) is called the innovation or residual. We can justify equation 4.7 by looking
at the a priori estimate x̂−k , which is based on all prior measurements zk. For now
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let it suffice to point out that the Kalman filter maintains the first two moments
od the state distribution,

E[xk] = x̂k (4.8)

E[(xk − x̂k)(xk − x̂k)
T ] = Pk. (4.9)

If the conditions in equations 4.3 are met, the a posteriori state estimate in equation
4.7 reflects the mean of the state distribution. The state estimate error covariance
in equation 4.5 reflects the variance of the state distribution. In other words;

p(xk|zk) ∼ N(E[xk], E[(xk − x̂k)(xk − x̂k)
T ])

= N(x̂k, Pk)
(4.10)

The K in equation 4.7 is a n×m matrix. It is called the Kalman gain and is
a blending factor that minimizes the a posteriori error covariance in equation 4.5.
One form of the resulting K that minimizes the a posterioeri error covariance is
given by [22]

Kk = P−
k HT (HP−

k HT + R)−1. (4.11)

If we look at equation 4.11, the residual is more importent the smaller the mea-
surement error covariance R is;

lim
R→0

Kk = H−1. (4.12)

That means the measurement zk is trusted more the smaller the measurement
error covariance R is. If R � P−

k or the a priori error covariance estimate P−
k is

approaching zero, the gain K weights the residual less;

lim
P−k →0

Kk = 0. (4.13)

That means the measurement zk is trusted less the smaller the a priori esitmate
error covariance P−

k is.

4.1.1 Time update (”predict”)

The Kalman filter cycles between the time update and the measurement update.
The first stop is the time update, which use the current state to estimate the a
priori state and covariance. Equation 4.1 is used to predict the a priori state x̂−k .
Since E[wk−1] = 0, we get

x̂−k = Ax̂−k−1 + Buk−1. (4.14)

The predicted covariance estimate P−
k is updated with the process noise covariance

Q;
P−

k = APk−1A
T + Q, (4.15)

where A is taken from equation 4.1.
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4.1.2 Measurement update (”correct”)

The measurement update updates the state when a new measurement is done
based on the measurement. There are three equations in this update;

Kk = P−
k HT (HP−

k HT + R)−1, (4.16)

x̂k = x̂−k + K(zk −Hx̂−k ), and (4.17)

Pk = (I −KkH)P−
k . (4.18)

The equation 4.16 estimates the Kalman gain, 4.17 estimates the a posteriori state
and 4.18 estimates the a posteriori error covariance. Equation 4.16 is the same as
equation 4.11 and equation 4.17 is the same as equation 4.7.

Since the Kalman filter is a cycle, the process is repeated after the measurement
update. It will go on until there are no more measurements.

4.1.3 Problems with the simple Kalman filter

The problem with the simple Kalman filter is that there are several fixed parame-
ters. The covariance matrix of the measurement noise, R can change with time, or
with the instrument. If we measure the same thing with two different instruments
like MODIS and ASAR, the two measurements can have different R. Also the
process noise covariance Q can vary with time. An example of this could be that
the process noise Q when measuring the position of a car travelling on a straight
road (x(t) ∈ < and Q ∈ <), is smaller when the velocity of the car is smaller. The
relation between last and new state, A, might neither be constant. An example of
this is the position of a car which is accelerating.

4.2 Extended Kalman filter

The extended Kalman filter solves some of the problems with the simple Kalman
filter. It can handle a process with a non-linear stochastic difference equation by
linearizing about the current mean and covariance. To be able to do this we have
to modify our equations.

The state x ∈ <n is now given by the non-linear stochastic difference equation

xk = f(xk−1, uk−1, wk−1). (4.19)

The function f is non-linear, and relates the previous state xk−1 to the new state
xk. uk is an optional control-input as in the simple Kalman filter.

The measurement z ∈ <m is now described by

zk = h(xk, vk). (4.20)
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The function h is a non-linear function which relates the actual state xk with the
measurement zk. wk and vk still represent the random process and measurement
noise with zero means, but the noise covariances are dependent on k;

p(wk) ∼ N(0, Qk),

p(vk) ∼ N(0, Rk).
(4.21)

Since E[wk] = 0 and E[vk] = 0, we can approximate the states and measure-
ments as

x̃k = f(x̂k−1, uk−1, 0), and (4.22)

z̃k = h(x̃k, 0). (4.23)

x̂k−1 is the a posteriori state estimate from the previous step.
We have to linearize the equations 4.19 and 4.20 to be able to estimate the

non-linear process. We get

xk ≈ x̃k + A(xk−1 − x̂k−1) + Wwk−1, and (4.24)

zk ≈ z̃k + H(xk − x̃k) + V vk, (4.25)

where

• A is the Jacobian matrix of partial derivatives of f with respect to x;

A[i,j] =
∂f[i]

∂x[j]

(x̂k−1, uk−1, 0),

• W is the Jacobian matrix of partial derivatives of f with respect to w;

W[i,j] =
∂f[i]

∂w[j]

(x̂k−1, uk−1, 0),

• H is the Jacobian matrix of partial derivatives of h with respect to x;

H[i,j] =
∂h[i]

∂x[j]

(x̃k, 0), and

• V is the Jacobian matrix of partial derivatives of h with respect to v;

V[i,j] =
∂h[i]

∂v[j]

(x̃k, 0).
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All these quantities are varying with each step k, but for simplisity, the k-dependency
has been supressed.

From equation 4.19 and 4.22 we can calculate the prediction error as

ẽxk
= xk − x̃k, (4.26)

while the measurement error, or residual will be

ẽzk
= zk − z̃k. (4.27)

It is not possible to calculate the prediction error in equation 4.26 since we have
no information about xk. We know the measurement zk, and with this we can
rewrite equation 4.26 and 4.27 into

ẽxk
≈ A(xk−1 − x̂k−1) + εk, (4.28)

ẽxk
≈ Hẽxk

+ ηk, (4.29)

where εk and ηk are independent random variables with distributions

p(εk) ∼ N(0, WQkW
T ), and (4.30)

p(ηk) ∼ N(0, V RkV
T ). (4.31)

Since we cannot calculate the actual prediction error, we can calculate the a pos-
teriori prediction error êxk

using the a posteriori state x̂k instead;

êxk
= x̂k − x̃k. (4.32)

This can also be written by using the Kalman gain Kk;

êxk
= Kkx̃zk

. (4.33)

If we substitute equation 4.33 into 4.32 we get

x̂k = x̃k + Kkx̃zk

= x̃k + Kk(zk − z̃k),
(4.34)

which can be used for the measurement update in the extended Kalman filter. x̃k

and z̃k is taken from equation 4.22 and 4.23 respectively.
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4.2.1 Time update (”predict”)

We have now got all equations needed to run the extended Kalman filter. As in
the simple Kalman filter we have a time update and a measurement update which
runs in a cycle until there are no more measurements. To get the a priori state
estimate we use equation 4.22 but substitute x̂−k for x̃k to keep the same notation
as in the simple Kalman filter. The equations for the time update is

x̂−k = f(x̂k−1, uk−1, 0), and (4.35)

P−
k = AkPk−1A

T
k + WkQk−1W

T
k , (4.36)

where P−
k is the predicted covariance estimate.

4.2.2 Measurement update (”Correct”)

The measurement zk is used in the measurement update to correct the state and
covariance estimates. These three equations is very siminar with the ones for the
measurement update for the simple Kalman filter;

Kk =
P−

k HT
k

HkP
−
k HT

k + VkRkV T
k

(4.37)

x̂k = x̂−k + Kk(zk − h(x̂−k , 0)) (4.38)

Pk = (I −KkHk)P
−
k (4.39)

4.3 Example of the Kalman filter

An example where the Kalman filter can be used is when measuring the velocity
of a car moving straight forward at constant speed. We measure the velocity with
a corrupt instrument, which add a white Gaussian noise with mean 0 and variance
1 to the actual value. This example can be solved using a simple Kalman filter
with the state xk ∈ <. Our process can be explained by the equation

xk = Axk−1 + Buk−1 + wk−1

= xk−1 + wk−1

(4.40)

Since the car is moving with a constant velocity, the relation between new and
previous state A = 1. We use no control input so u = 0. w is the process noise
(w ∼ N(0, Q)). The measurements zk ∈ < can be explained by the equation

zk = Hxk + vk

= xk + vk.
(4.41)

Our noisy instrument measure the state directly, so H = 1. vk is the measurement
noise which is given by vk = N(0, 1).
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4.3.1 The filter equations and paramters

The time update for this example can be written as

x̂k = x̂−k−1, and (4.42)

P−
k = Pk−1 + Q. (4.43)

The equaion for the measurement update is

Kk = P−
k (P−

k + R)−1 (4.44)

x̂k = x̂−k + Kk(zk − x̂−k ) (4.45)

Pk = (1−Kk)P
−
k (4.46)

We presume the process variance is small Q = 0, 005. We could presume it is
zero, but a small process noise will give us more flexibility in tuning the filter.

The initial values needs to be set, and since we from equation 4.41 have that
E[xk] = zk, we set the initial state x̂0 = z0. We also need to choose the initial
value for P0. If we were absolutley certain that our initial state estimate x̂0 = zk

was correct we could set P0 = 0, but if we look at equation 4.44 and 4.45 we see
that the filter always will believe that x̂k ≈ z0. The selection of P0 is not that
important, because P0 will converge to it’s actual value over time. We start our
filter with P0 = 1.

4.3.2 Simulation of the filter

To get some data to simulate we choose the actual velocity of the car to be x =
1m/s. 60 measurements zk are simulated with the measurement noise vk ∼ N(0, 1)
added. The measurements noise variance is set to R = 1 since that is what the
actual measurement error variance. To show why this is a good choice we will also
run the same measurements with a filter with R = 5 and R = 0, 1.

Figure 4.1 shows the result from the first simulation with R = 1 and and
P0 = 1. As said, the selection of P0 is not important, and figure 4.2 shows that Pk

converge towards approximately 0,07. Figure 4.3 shows the same simulation when
we choose P0 = 0, 07. It is easy to see it is slower in the beginning, but after about
50 seconds it is at the same level as figure 4.1.

Equation 4.12 tells us that the filter trusts the measurement zk more when the
measurement noise variance R is small. If the measurement noise variance R is
larger, the measurements will be trusted less. Figure 4.4 shows the filter simula-
tions with a higher measurement noise variance R = 5 with a calibrated P0. If we
compare this figure with figure 4.3 we see that the filter with higher measurement
noise variance is slower, and does not react as much on each measurement. Figure
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Figure 4.1: The simulation with R = 1 and and P0 = 1. The true value of the
velocity is x = 1. We see the filter estimate alternate around the actual state.

Figure 4.2: The simulated error variance with R = 1 and P0 = 1. We see the error
variance has settled at about 0,07 after 60 iterations.
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Figure 4.3: The simulation with R = 1 and P0 = 0.07.

4.5 shows the filter with a measurement noise variance R = 0, 1 and a calibrated
P0. This filter is very fast and reacts very fast on each measurement. It is evident
that a lot of the noise is not removed, and that the estimator not will relaxate
towards the right value.
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Figure 4.4: The simulation with R = 5. P0 is calibrated for the specific R. The
filter resonds slower to the measurements.

Figure 4.5: The simulation with R = 0, 1. P0 is calibrated for the specific R. The
filter responds quickly to the measurements.
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Chapter 5

Snow cover retrieval algorithms
applied

5.1 Optical algorithm

The basis of the optical snow covered area algorithm is the reflectance-to-snow-
cover model [2, 18]. The model uses MODIS data to retrieve the SCA for each
pixel. Calibration areas are used to get training data for both snow free areas and
areas with full snow cover as shown in the bottom of figure 5.1. The training data
is used to make a linearization between the two mean values as we see in the top
of figure 5.1.

5.1.1 Cloud detection

Clouds has been a problem in the optical algorithm. We do not want clouds
to be detected as snow covered area. Norwegian Computing Center (NR) has
experimented on detecting clouds. An algorithm based on K Nearest Neighbour
(KNN) is currently the best cloud detection algorithm. The algorithm uses training
data from a set of partially cloudy images from a melting season. The KNN uses
a multidimensional space <n, where n is the number of bands, and computes the
distance from the pixel value to all training values. The pixel is classified to the
class which is most common among the K closest training data values in <n.

A way to mask out clouds and detect snow is written in [17]. The band 2,
4 and 6 from MODIS is used to determine if snow is present by calculating the
Normalized Difference Snow Index (NDSI) defined as

NDSI =
r4 − r6

r4 + r6

, (5.1)
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Figure 5.1: Top: The Norwegian Linear Reflectance-to-Snow-Cover (NLR) algo-
rithm. The intensity level in the pixel is lineary transformed to a snow covered
percentage for the pixel. Bottom: The training data for both snow free area and
full snow covered area. Figure borrowed from [20]

.

where ri is the reflectance in band i. In areas with no dense forest, the criterion
for snow cover is

NDSI ≥ 0, 4 AND r2 ≥ 0, 11 AND r4 ≥ 0, 10. (5.2)

The threshold in band 2 and 4 helps to eliminate other areas which can show high
values of NDSI such as water [17].

5.1.2 From satellite image to snow cover map

The algorithm used to retrieve snow cover maps from the MODIS measurements
are shown in figure 5.2. The image downloaded is a Level 1 product from KSAT.
The downloaded data is converted to an internal format, and the cloud detected
is performed as descriebed above. The image is then geocoded using the image
product. Training data for both snow free and snow covered area are extracted
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Figure 5.2: Snow cover algorithm for optical data. Figure borrowed from [20]
.

for the image. When the training data is extracted for the image we want to
classify we do not need to correct for atmospheric effects, since this will remain
constant for the hole scene. Pixel values statistics is calculated for each area,
and this statistics are used to detect remaining clouds if there are any, or snow
in the snow-free calibration areas. Areas with clouds and areas with snow in the
snow-free calibration area are discarted. The accepted calibration areas are used
to determine the intensity level for the bare ground and the full snow cover as we
see in the bottom of figure 5.1. The snow covered area fraction is now a linear
relationship between the intensity level and the two training datas. The SCA is
retrieved based on the intensity level, and the result from this is transformed to a
raster product with metadata and stored.

5.2 SAR algorithm

The basis of the classification of snow maps is the low backscattering coeffisient (σo)
of melting snow. A reference image made from images taken when the ground is
free of snow, or when it is covered with dry snow is needed. The difference between
the σo in the melting season compared to the reference images is a clear indication
of melting snow [14]. The images are made in two steps. The first step finds the
wet snow, while the second step predicts dry snow based on where we finds wet
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snow.

5.2.1 Wet snow cover algorithm

To get a map over wet snow a good reference image is needed. The reference image
should not consist of data from only one scene because of temporal variations in
the backscattering, speckle and noise. The amount of moisture in the top layer
soil affects the backscattering in a high degree. A reference image that is made
by averaging several images will reduce this problem, and also reduce the problem
related to speckle [14].

In Norway we can have climate and weather condition that can make it difficult
to find a single reference scene that is working well over the whole area we want
to make a reference image for. The melting seasons starts in early spring, and can
last until the beginning of the autumn. The result is that the reference images
have to be obtained between late autumn and mid winter. To be sure that there
is none wet snow in the reference image, a mask has been made using temperature
measurements in the area and a Digital Elevation Model (DEM). The DEM and a
constant lapse rate of 6oC/km were used to interpolate the surface air temperature
between the weather stations. Only the weather stations within a 70 km radius
were used, and the temperature was then calculated based on the distance from
each weather station. In this way, the areas with temperature above the freezing
point were masked out since it likely contained wet snow [21]. In the end, the
reference image is made by averaging all unmasked measurements in each pixel.
The reference image should have the same spatial resolution as the image we want
to check for wet snow.

The image we want to run through the algorithm (the snow image) is first
geocoded so each pixel in the snow image will be compared to the same pixel in
the reference image. The ratio between the backscattering coefficient of the snow
image (σo

ws) and the reference image (σo
ref ) is then calculated pixel by pixel. The

DEM and information about the orbit and image paramteres are then used to
calculate a map with radar shadow (RS), and a map of local incidence angle. Also
a land mask (LM) with information about the land is used to mask out sea and
lakes. The next step is to use the backscatter ratio (σo

ws/σ
o
ref ) to make a map over

wet snow. This is done by setting a threshold for the ratio, and a binary snow
map is made by the following algorithm:

if (RS = TRUE or LM = TRUE) then snow mapping not possible
else if (σo

ws/σ
o
ref < TR) then wet snow

else then snow free or dry snow

Nagler and Rott [14] found that σo
ws/σ

o
ref was typically -5 to -7 dB for wet snow
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Figure 5.3: Left: The dots represents all weather stations in South Norway. The
map is a temperature field map made by interpolating the measurements from the
weather stations with a 100 × 100 meter resolution DEM and a constant lapse
rate of 6oC/km. The map is for March 10, 2003 at 10am. Right: SAR backscatter
reference image covering a small part of South Norway. The image is taken the
same day, and the pixels with temperature over the freezing point is masked out.
Illustration borrowed from [21].

areas and +2 to 0 dB for snow free areas. The threshold was therefore set to TR
= -3 dB.

5.2.2 Dry snow cover algorithm

Since the backscatter coeffisient of the dry snow is approximately the same as
the backscatter coeffisient for bare ground σo

ds ≈ sigmao
ref , it is not possible to

derive dry snow directly from the backscatter intensity difference between the
ASAR scene and the reference scene. We can however make a map over dry
snow by calculating the probablility of dry snow based on the wet snow cover
map, temperature in the area and the DEM. Our algorithm is a refinement of
the method suggested in [12] and prescribes snow in areas fulfilling the following
requirements:

1. the altitude of the pixel is above the mean altitude of the identified wet snow
pixels within a sliding 20× 20 km2 box centered at the pixel;

2. at least 2% of the pixels in the sliding box must contain wet snow;
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Figure 5.4: Diagram showing the steps involved in produsing the SCA maps from
repeat pass ASAR wideswath data. Illustration borrowed from [21].

3. the temperature in the air in the pixel is below the freezing point.

The last two points prevent erroneous calculation of dry snow at higher eleva-
tions late in the season [21].

To be able to use these images more easily we need a resolution of 250 × 250
meters instead of 100 × 100 meters. This is easily done by resampling the image.

5.2.3 Confidence flags

Confidence flag maps are made in addition to the snow covered area-maps and
reference image. This flag is the probability of classifying the pixel correct. The
confidence flag map of the reference image are based on the air temperature. Since
the algorithm for detecting SCA are based on probability, some pixels have a
higher probability of being classified correct than others. The confidence flag maps
contain an estimate of this percentage probability. The confidence are calculated
differently for the pixels with wet and dry snow. For wet snow, the satellite
geometry, the confidence value of the reference image and the difference between
threshold value decide the confidence value. The elevation difference between the
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wet snow mean altitude and the air temperature contribute in addition to these
for calculating the confidence of dry snow [15].

5.2.4 Problems with the SAR algoritm

There are several problems with this SAR algorithm. The biggest problem is
probably the prediction of dry snow. One problem with this algorithm is that it
is necessary to have wet snow in the area to predict the dry snow. This problem
is hence larger early in the melting season.

An example of this error can be seen in figure 5.5. The mean temperature in
Røros on the 4th of April 2008 was 3, 6oC with a maxima of 8, 9oC. There was
no registred precipitation at Røros Aiport between the 22nd of March and 4th
of April 2007 [23]. The days before the 4th of April 2007 it was colder, so most
of the snow was dry on the 4th at noon when the image was taken. Because of
the temperature the day before, more snow had become wet on the 5th, and the
SAR algorithm detected much higher snow covered area (SCA). If we compare the
resulting SCA from the MODIS measurement in the bottom left in figure 5.5 and
the resulting SCA from the ASAR measurement in the upper left, we can see a big
difference even though some of the area on the MODIS measurement are covered
with clouds.

Changes in surface roughness and wetness can also create temporal changes of
σo and therefore problems with the classification algorithm over e.g. agricultural
surfaces and wetlands.
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Figure 5.5: Upper left: ASAR image after running through the algorithm. The
image is from the area around Røros taken on the 4th of April 2007. White colour
represents SCA while dark red is bare ground and blue is lakes. The brighter
red spot in the middle is the centre of Røros. Upper right: ASAR image run
through the algorithm, from the same location taken on the 5th of April 2007.
Bottom left: MODIS image from the same area on the 4th of April 2007. White
colour represents SCA, while black is no information (clouds). Bottom right: Mean
temperature at Røros Airport the days before the images was taken.
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Chapter 6

Other input data

In addition to the SCA-measurements we will use some additional information
about the environment.

6.1 Land cover masks

The land cover masks contain information on what kind of land cover the pixel
contain. We use two different masks, and both have the same spatial resolution as
the MODIS measurements, 250m. The first mask is only used to mask out pixels
which needed needed to be treated differently. As we see from table 6.1 these are
sea, lakes and glaciers.

The second land cover mask contain more detailed information about what
kind of land cover and vegetation is present. The map was made from a total of
45 Landsat TM/ETM+ images with a ground resolution of 30 × 30 meters. The
images were processed in six operational stages; spectral classification, spectral
similarity analysis, generation of classified image mosaics, ancillary data analysis,
contextual correstion and standardization of the final map products. The map has
a total of 35 different classes plus one for unclassified land cover, as we can see in
table 6.2. The map was later interpolated to get a 250 × 250 meter resolution [9].

Table 6.1: Overview over values for different content in the first mask.
Value Type

20 Sea
21 Lake
70 Glacier
0 Other
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Table 6.2: Overview over values for each type of classes in the second mask.
Value Type of land cover

0 Unclassified
1 Spruce forest
2 Coniferous forest - dense canopy layer
3 Coniferous forest - matured danopy layer
4 Coniferous forest - open canopy layer
5 Pine forest
6 Open pine forest
7 Lichen birch woodland
8 Mountain birch forest
9 Empetrum birch forest

10 Bilberry birch forest
11 Tall herb forest
12 Low herb forest
13 Hummock bogs
14 Lawn and carpet mire complex
15 Tall sedge fen
16 Wooded mire complex
17 Mud-bottom fens and sedge marches
18 Exposed ridges - scarcely vegetated
19 Open heather communities
20 Heather communities
21 Lichen heaths
22 Dwarf shrub heaths
23 Fresh heaths and grey-willow thickets
24 Grass heaths
25 Tall herb meadows
26 Low herb meadows
27 Moderate snowbed communities
28 Snowbeds
29 Mid-alpine ridge communities
30 Bare rocks and high-mountain gravel fields
31 Snow and glaciers
32 Water
33 Cultivated areas
34 Town, cities
35 Impediment
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Table 6.3: Overview over the scale for SCA from weather stations.
Scale Meaning Our interpretation

0 No snow 0%
1 Mostly snow free, but some snow spots 25%
2 About 50% snow cover 50%
3 Mainly snow, some free spots 75%
4 100% snow cover 100%

Table 6.4: Overview over the weather stations used.
Name Elevation Location (UTM 33) Pixel

Oppdal - Sæter 604 metres 312611(E) 6943791(N) (1210,3956)
Røros Airport 625 metres 226441(E) 6952817(N) (1554,3993)

Tingvoll - Hanem 69 metres 159145(E) 6985586(N) (941,3825)

6.2 Meteorological measurements

To be able to check the results we get, it is nice to have something to compare the
results with. The Norwegian Meteorological Institute has a lot of measurements
open for everyone online, so we got our information from them. The information we
are after are temperature, snow depth and precipitation. We also get information
about the snow cover, but there is a big uncertainty of how accurate this number
is. The snow cover data had a scale from 0-4 as we can see in table 6.3. These
observations are based on the snow cover 1 km around the weather stations [23].

We selected three weather stations based on location, elevation, and climate.
One of them is at low elevation by the sea (Tingvoll - Hanem), one in a valley
(Oppdal - Sæter) and the last one on a gently sloping plateau with a cold climate
(Røros Lufthavn). Information about these stations can be found in table 6.4.

6.3 Digital Elevation Model (DEM)

A Digital Elevation Model (DEM) is a digital representation of the elevation. It
will be used to compare the snow covered area with the elevation. Our DEM is
made by Statens kartverk and had originally a resolution of 25 × 25 meters. The
DEM is based on contour curves, terrain points, water from N50 maps and also
roads from Vbase (a digital road database for Norway) [27]. The original DEM is
interpolated to get new DEMs with resolution of 100 × 100 and 250 × 250 meters
to fit our data. The DEM with resolution of 100 × 100 is used in the calculation
of the probability of dry snow in the ASAR algorithm.
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Chapter 7

Methods for calculating snow
covered area

In this chapter we will explain the methods we use in our experiments. There
are several possible ways to think about this problem. One way we will look
into is hindcasting of the snow covered area, to be able to fill in data where
we have no measurements. Another way we will look into is nowcasting, where
we try to predict the current snow covered area based on the past and current
measurements. A third method is forecasting, but we will not look into this in this
thesis. Forecasting of snow covered area is difficult since we would need to predict
snow fall too.

Figure 7.1 is showing the measurements for one pixel. As we see, there are
many days without measurements (e.g. day 111-114 and 146-149). On day 110 a
MODIS-measurement of 100% snow covered area (SCA) was done, but five days
later a ASAR-measurement of 0% SCA was done. What was happening in between
these measurements is a problem we will look more into.

7.0.1 Hindcasting

If we only want to hindcast past data, we will need to fill in data for the days
with no measurements, and a simple interpolation can be used. The data on the
missing days will then be dependent on both past and future measurements. A
problem with this kind of approach is what happens in practice. Snow usually do
not cover a bigger area little by little over several days. The snow covered area
usuelly get bigger very suddenly when it is snowing. Also the melting does not
happen in a linear way. The SCA usually decreases faster in the middle of the
melting period than in the beginning and in the end, since peaks melts very early,
while some piles of snow may stay for a long while. The result is that this approach
can give output that changes before the change actually happened. This approach
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Figure 7.1: Measurements for one pixel, 17 km north east of the centre of Oppdal
at 918 meters above sea level, made from data from spring of 2007. The pixels
location is the third x from the left in figure 7.2. The pluses is measurements done
by MODIS, while the x’es is measurements done by ASAR. The x-axis denotes the
day after new year 2007, while de y-axis is percentage snow covered area.

Figure 7.2: Image taken over the area we are looking at. The four red x’es repre-
sents interesting areas. The x’es represents (from left to right) the weather station
at Tingvoll - Hanem, the weather station in Oppdal - Sæter, the location of the
pixel used in several figures, such as 7.1 and the last x represents the weather
station at Røros Airport. The image is taken by Landsat, and the bands used are
4 (near infrared), 5 (middle infrared) and 3 (red). The colours are false.
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will work well for filling in data from missing days for past data set.
An example of filling in missing data is described in section 7.2, but we will

also test the performance of the Kalman filter in section 7.3 for this purpose.

7.0.2 Nowcasting

Another approach in snow cover estimation is to always try to predict the present
SCA based on both past and current data. If we know how high the snow covered
area was in the past days, we should be able to predict the snow melt for the next
days as well. The problem areas is the areas not covered by the new image because
of clouds etc. These areas needs to be predicted based on past data only, which
can be a problem. Present or future snow fall can never be predicted based on past
SCA-maps only, and since this approach only is based on past SCA-measurements,
”expected” changes will only change the output when a new measurement implies
that this change has happened. This approach should work well if we have real
time data, and we want to find out what the snow covered area is at present.

This approach to the problem will be described better in section 7.3.

7.1 Main Algorithm

In figure 7.3 we can see the flowchart from the main algorithm. The algorithm can
be explained point by point:

1. The algorithm starts by reading the mask which contained the information
over sea, lakes and glaciers.

2. The value of the line number l is set. Together with the sample m it gives a
coordinate to each pixel.

3. The measured SCA is read from the files, but only line l from every data
file. The reason for this is that if all lines are read, the SCA-array will
contain about 10 billion values, or allocate about 10 GB of memory, and
the algorithm will be slow since the computer we use typically have 2 GB
available memory. Virtual memory using the harddisk as swap-space makes
the process run very slowly. Instead it read only one line from each image
file, and the memory use is down to 1,5 MB.

4. The value of the sample number m is set.

5. The algorithm test what value the mask has in pixel (m,l). The test has four
possible outcome.
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Figure 7.3: Flowchart over the algorithm used to calculate snow covered area.

6. The value of the mask can be;

• a) 20 - The pixel is in the sea, and the output is set to 20;

• b) 70 - The pixel is in a glacier, and the output is set to 200;

• c) 21 - The pixel is in a lake, and a filter predicts the lake ice status;

• d) else - The pixel is in any other land cover, and a filter predicts the
SCA.
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Table 7.1: Overview over possible values for the predicted SCA.
Value Type

20 Sea
21 Lake
255 Ice on lake

100-200 0-100% SCA
30 No information

We will explain more about the filters we use later in this chapter. The
outcome of the predicted SCA from the filters is listed in table 7.1. As we
see, the values for sea and lake are the same as the mask used.

7. The sample number m is updated.

8. A test check if it is at the end of the current line. If we are not at the end
of the line, the algorthm will go back to point 5. If we are at the end of the
line, the algorithm will continue to point 9.

9. The predicted SCA is written to the files, one file for every day (t), but a
different temporal resolution could also be used of desirable.

10. The line l is updated.

11. The algorithm checks if we are on the last line. If not, it will go back to
point 3 and starts all over with the next line. If we are on the last line, the
algorithm terminates.

7.2 Moving average filtering

The easiest method we have looked into for filtering the data is simply smoothing
the data with a moving average filter, and then interpolate the result from the
smoothing. This is a method that fill in missing data, and the output will be
dependent on both past, current and future measurements as we see in the equation
for the moving average filter;

x(k) =
1

ω

k+ω−1
2∑

j=k−ω−1
2

y(j), (7.1)

where y is the measurements and ω is how many measurements we want to smooth.
We have used a window of size 5, which mean that x(k) will be the average of
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the two past, the current and the two next measurements. The result from the
moving average filter x(k) is then interpolated into x̂(t), where k is the time of the
measurements, while t is the time every day at noon (12 p.m.). The interpolation
is done by using the least squares quadratic fitting method. The method use the
4 neighbours xk−1, xk, xk+1 and xk+2, where k ≤ t < k + 1, to find the best fit to
the equation z = a + bx + cx2. The curve is found by minimizing

R2 =
k+2∑

i=k−1

[xi − z]2. (7.2)

The moving average filtering method has been used mainly to show the dif-
ference between a simple filter where every measurement count equally and the
result from our Kalman filter, which tend to put more weight on the current mea-
surement, at least for SCA-data with relative high signal noise.

7.3 Kalman filtering

In chapter 4 we explained the theory behind the simple and the extended Kalman
filter. The Kalman filter we use is an extended Kalman filter. It uses only the
past and the current measurements to calculate the current SCA-maps. We also
want to make it possible to predict current snow covered area where we have no
current measurements, and the Kalman filter is a good choice for this purpose.

The state x ∈ < the Kalman filter will try to predict is the snow covered
area (SCA). The model we use for x(t) is a sigmoid. The reason for this is our
experience from the typical temporal development of snow covers. The equation
for x(t) can be written as

x(t) = 100− 100

1 + e−β(t−T0)
, (7.3)

which also can be written as

x(t) =
100e−β(t−T0)

1 + e−β(t−T0)
. (7.4)

The measurement z ∈ < is described as

z(t) = h(x(t), v(t)). (7.5)

The h for MODIS and ASAR measurements are assumed to be linear and equal
to 1, so we get

z(t) = x(t) + v(t), (7.6)
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Figure 7.4: Example of the measured snow covered area for a pixel. The pluses
are measurements done by MODIS, the x’es are measurements done by ASAR and
the red line is the best fit for equation 7.3 for the MODIS-measurements. This
pixel is the same as figure 7.1.

where v(t) is the measurement noise. As we see this is much simpler than the
extended Kalman filter described in chapter 4.

β and T0 are derived by finding the minimum mean squared error (MMSE) for
each year 2003 to 2007. The MMSE was found by minimizing the mean squared
error (MSE), which is given by

MSE(x(β, T0)) = (y(t)− x(t, β, T0))
2, (7.7)

where y(t) is the actual measurement and x(t, β, T0) is the equation 7.3 at the
time of the measurements y(t). The result of this is five curves x2003(t), x2004(t),
x2005(t), x2006(t) and x2007(t) that fits our measurements best. We only use MODIS
measurements for this, since they give better information about the exact SCA.
The important thing here is to find the curve from the whole melting season, and
the MODIS measurements are much better at this than the ASAR. We find one
value for β and T0 for every pixel and every year from 2003 until 2007 where
we have a minimum of 5 MODIS measurements in the melting season. We are
interested in the mean curve xmean(t) from these 5 years, which is given by

xmean(t) =
2007∑

i=2003

xi(t)

5
(7.8)
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Since we want a curve that is given by the parameters β and T0 only, like in
equation 7.3, we need to minimize the MSE of xmean(t);

MSE(x(β, T0)) = (xmean(t)− x(t, β, T0))
2, (7.9)

which will give us an approximate curve x̂mean(t) for the mean SCA as a function
of time with a resulting βmean and T0mean .

We have now 6 values of both β and T0. 5 of them are the values for each year,
and one mean value. If we run the measurements from 2007 through the filter, we
will of course get a better result when using β2007 and T02007 than e.g. β2003 and
T02003 . But if we choose to run the measurements from 2008 though the filter we
have no β and T0 which are calibrated for this year. The soultiuon we choose for
this is to check which of the curves x2003(t), x2004(t), x2005(t), x2006(t), x2007(t) and
xmean(t) fits our measurements best. The equation for this is the same as equation
7.7, where x(t, β, T0) is x2003(t), x2004(t) etc.

To find the value x(t+∆t) we have to differenciate x(t). If we take the derivative
of equation 7.3 we get

dx

dt
=
−100βe−β(t−T0)

(1 + e−β(t−T0))2
, (7.10)

which we can write as

dx

dt
=

1002e−2β(t−T0)

(1 + e−β(t−T0))2

−β

100
eβ(t−T0). (7.11)

This is the same as
dx

dt
= −x(t)2 β

100
eβ(t−T0), or (7.12)

∆x

∆t
= −x(t)2 β

100
eβ(t−T0). (7.13)

It is now easy to calculate x(t + ∆t) as

x(t + ∆t) = x(t) + ∆x∆t

= x(t)− x(t)2 β

100
eβ(t−T0)∆t.

(7.14)

Since we typically are choosing ∆t = 1 we get

x(t + ∆t) = x(t)− x(t)2 β

100
eβ(t−T0). (7.15)

To get this on the same form as equation 4.35 we may write this as

x̂−k = f(x̂k−1, uk−1, w)

= x̂k−1 − x̂2
k−1

β

100
eβ(tk−1−T0)

(7.16)
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where x̂−k is the a priori state estimate, while x̂k is the a posteriori state estimate.
We are not using any control-input in our Kalman filter, so uk = 0. The pro-
cess noise w and the measurement noise v(t) are both white Gaussian noise with
probability distributions

p(w) ∼ N(0, Q), and

p(v(t)) ∼ N(0, R(t)),
(7.17)

where Q is the process noise variance and R(t) is the measurement noise variance.
Note that the process noise is constant.

To calculate the relation between the past step and the current step A ∈ <,
we need to look at equation 4.2. To calculate A we use this equation

A =
∂f(x̂k−1, 0, 0)

∂x

=
∂(x̂k−1 − x̂2

k−1
β

100
eβ(tk−1−T0))

∂x

= 1− 2x̂k−1
β

100
eβ(tk−1−T0)

(7.18)

7.3.1 Time update (”predict”)

The time update of our extended Kalman filter is simpler than the extended
Kalman filter explained in the theory part. But in our filter, the time update
is done once every day independently if there are a measurement this day or not.
The equations for the time update is

x̂−k = x̂k−1 − x̂2
k−1

β

100
eβ(tk−1−T0), and (7.19)

P−
k = A2

kPk−1 + Q. (7.20)

The process noise was set to Q = 0.072 since it seemes to fit the model. β and
T0 in equation 7.19 is selected as the minimum mean squared error from the six
possible variables described earlier. β and T0 does not vary with each step, but
are decided in the beginning depending on the MODIS measurements. The time
tk−1 in equation 7.19 has to be calculated using equation 7.3;

tk−1 = −
log( 100

100−x̂k−1
− 1)

β
+ T0 (7.21)

The predicted SCA is based on the SCA the day before. In this way we always
predict the snow to melt based on how far the melting has gone, and not on what
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date it is. When we look closer at equation 7.21 we see that if x̂k−1 = 100, tk−1 will
not get a value, since log(∞) is not possible to calculate. Because of this we have
choosen to force the algorithm by putting on a test that set x̂k = 100 if x̂k > 95
and x̂k = 0 if x̂k < 5.

7.3.2 Measurement update (”correct”)

The time is updated every day, and this creates a problem in the measurement
update. There are two possibilities how the measurement update is handled.

No measurement

If there are no measurement this day we use these formulas;

x̂k = x̂−k , and (7.22)

Pk = P−
k . (7.23)

Equation 7.22 set the a posteriori state equal the a priori estimated state, and
equation 7.23 set the a posteriori estimate error variance equal to the a priori
estimate error variance. As long as there is no measurement for some days, the
cyclus would cycle between the time update and the no measurement-measurement
update, and the estimate error variance will get higher and higher, since A in
equation 7.21 is close to 1.

One or more measurements

The days there are measurements the equations we use are these;

Kk =
P−

k

P−
k + R′ (7.24)

Pk = (1−Kk)P
−
k (7.25)

x̂k = x̂−k + Kk(z
′ + x̂−k ). (7.26)

The measurement error variance R′ in equation 7.24 is depended on how many
measurements it is that day, and with what instrument. The equation for calcu-
lating R′ is

1

R′ =
1

R1

+
1

R2

+ · · ·+ 1

Rn

,

R′ =
1∑n

i=1
1
Ri

(7.27)
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where n is the number of measurements this day. To calculate the measurement
error variance Ri of a measurement we use this equation;

Ri = (Si ×
250− 2 ∗Rm

1000
)2, (7.28)

where Si = 1 if the measurement is done by MODIS and Si = 2 if the measurement
is done by SAR. Rm ∈ [0, 100] is the calculated confidence from the confidence flag-
input. Equation 7.28 is chosen because it fits our purpose well. The measurement
error variance is higher when the value from the confidence flag is low, and the
error variance is smaller for MODIS-measurements than for ASAR-measurements.

The measurement z′ we use in equation 7.26 does also need some extra cal-
cultaions if there are more than one measurement this day. The equation for z′

is

z′ =

∑n
i=1

zi

Ri∑n
i=1

1
Ri

=
n∑

i=1

zi

Ri

R′
(7.29)

Equation 7.29 emphasize the measurements with low measurement error variance
by taking a weighted mean of all measurements where the variances of the other
measurements are the weights.

If there are none measurements for some days, the estimate error variance will
be high, and the new measurement will be emphasized.

7.3.3 Initial settings

We need some initial settings for our Kalman filter as we saw in the example in
section 4.3. The initial state estimate x̂0 is the estimated snow covered area on
January 1, and we estimate this to be x̂0 = 100%. Even if this is wrong, it is not
that important, since the values we are after is the melting season, which starts
later. We assume the process variance is small Q = 0, 005.

The initial value of the estimate variance P0 is harder to estimate. In the
example in section 4.3 Pk converged to one value, but our xk and Rk changes for
every step k, so Pk will not converge. But as we have said earlier, the value P0

is not that important. We have therefore choosen to set P0 = 0. Since we have
set Q = 0, 005, the process will not believe x̂k ≈ x̂0 = 100, and Pk will change for
every step k. In the example in section 4.3 we saw that Pk converged after about 30
steps, and since we are only after what happens from April 1 (day 90), we assume
Pk will have its ”correct” estimate variance by then. This is assumed that we have
measurements earlier than April 1, something we do not have with MODIS. But
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we have measurements for ASAR earlier than April 1, so the assumtion are not
incorrect.
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Chapter 8

Results

8.1 Introduction

In this chapter we will perform ”experiments” where we study the temporal and
spatial development of SCA by using the methodology developed in chapter 7.
We will also explain the results from these ”experiments”. We have analyzed the
existing data using two filters, a moving average filter and an extended Kalman
filter, and we will give some examples on the results they gave us. We will further
discuss these results, and compare the two filters. We will also look at the re-
sults and compare them with the vegetation map from section 6.1 and the digital
elevation model (DEM) in section 6.3.

The area we have looked into is an area about 75 × 200 km in the middle
of Norway. The area streches from Åndalsnes in the west, Soknedal in the north,
Tynset in the south and about 10 km east of Røros. This area was selected because
of its variety in topography and climate.

8.2 Moving average filtering

The moving average filter fills in the missing data, and figure 8.1 show us a re-
sult from this. The measurements are taken from the same location as figure
7.1 in 2007. All MODIS measurements until day 136 (May 17, 2007) indicate
that the snow covered area (SCA) was at least 90% before day 136. The ASAR-
measurements are divided into 5 measurements at 100% and 2 measurements close
between 75 and 90%, and 5 measurements at 0%. This is a clear indication that
the ASAR-measurements are not as reliable as the MODIS-measurements. But
the moving average filter is weighting the measurements equally no matter what
instrument that did the measurements, and the result is what we can see in figure
8.1. The filter estimating the SCA too low, as low as 50% while the SCA probably
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Figure 8.1: Result from using a moving average filter on the MODIS and SAR
measurements. The pluses are measurements done by MODIS, the x’es are mea-
surements done by ASAR and green line is the result from the moving average
filter. The location of the pixel is the same as in figure 7.1.

was approximately 100% at this time.

The melting seems to start around day 130 (May 11, 2007), and compared
to the MODIS-measurements, the estimation seems to show too low SCA all the
time, except two measurements. The measurement of 23% SCA at day 136 seems
to be errorous since MODIS the day before measured the SCA to be 98%. There
were a lot of clouds this day, so this might have disturbed the measurement. A
visual inspection of the MODIS data for this day confirms that this can be the
issue. Since the pixel is in between other pixels classified as clouds, and the value
of a pixel next to it had an estimated SCA-measurement of 92% we can assume
the cloud detection algorithm did an errorous classification for this pixel.

8.3 Results from the Kalman filter

In chapter 7 we said we wanted to look into two possible ways to solve this problem.
One is hindcasting, or filling in missing data, and the other one is nowcasting, which
means to predict current data based on the past and current measurements. Our
Kalman filter may do both, although both approches only take old and current
measurements into account when estimating the SCA. We will show the results
from both these approches and see the difference between them.
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Figure 8.2: Result from using an extended Kalman filter on the MODIS and SAR
measurements. The pluses are measurements done by MODIS, the x’es are mea-
surements done by ASAR and green line is the result from the extended Kalman
filter using x2007(t). The location of the pixel is the same as in figure 7.1 and 8.1.

8.3.1 Hindcasting

To fill in the missing data using our extended Kalman filter, we have to use the
β and T0 obtained from the same dataset as we will filter. β and T0 are obtained
using equation 7.9. The resulting estimation of the SCA is shown in figure 8.2.
This is the same location as in the example from the moving average filter in figure
8.1.

There is a big drop in the estimated SCA around day 115-118 (April 26-29,
2007). As explained before, when there has been no measurements for some days,
the next measurement will be weighted heavily. There is a measurement done by
MODIS on day 110 (April 21, 2007) with 100% SCA, but after that there were 4
days without a measurement for that area. When ASAR measured 0% SCA on
day 115, and later at day 118, these made the estimated SCA drop down to about
35%.

If we compare the result from the extended Kalman filter in figure 8.2 with the
result from the moving average filter in figure 8.1, we can see the extended Kalman
filter generally predicts a higher snow covered area than the moving average filter,
and estimate the SCA to be closer to the MODIS measurements.

Another example of this behaviour of the Kalman filter can bee seen in figure
8.4. Here we are looking towards west in the area around Oppdal. The twelve
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Figure 8.3: Temperature and precipitation for the area in figure 8.4. The temper-
ature in green is the temperature in ◦C, measured at the meteorological weather
station in Oppdal - Sæter. The black line represent the temperature at the plateau
in the upper left in the images in figure 8.4. The red histogram represents the pre-
cipitation in mm measured at Oppdal - Sæter. The temperature at the plateau is
derived from the measurements at the weather station by subtracting the elevation
difference multiplied with a lapse rate of 6◦C/km. The x-axis denotes the week
number in figure 8.4, such that the image taken on April 15, 2007 is at week 1, all
the way to July 2, 2007, which is week 12.

images are taken one week apart in the period April 15 until June 4, 2007. Magenta
represents snow covered lakes, blue is lakes without snow cover, dark green is bare
ground, white is 100% snow cover, while the colours between white and green
represents snow covered area between 100% an 0%.

If we take a look at Gjevilvatnet (the lake in the upper right), we can see that
it is fully covered with snow until May 21, 2007, but the snow is not gone until
the next image on May 28, 2007. Svarthaugen is the name of the small hill in the
middle of the valley. It is partially covered with snow until May 7, 2007, when
only the top is partially covered. All snow from the top is not gone until May 28,
2007. It is also easy to see that the snow is melting earlier in the valley than on
the mountains.

Figure 8.3 tells us what the temperature in the area was in the period of the
twelve images in figure 8.4. The green plot is the temperature at the weather
station in Oppdal - Sæter, which is in the middle of each image in figure 8.3, while
the black line represents the calculated temperature at the plateau on the upper
left, Soløyfjellet. If we take a look at the temperature between week 1 and 2, we can
see the temperature was below zero for both places. If we compare the two images
from week 1 and 2 (April 16 and April 23, 2007) we can see the last image has a
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Figure 8.4: SCA-maps from the area around Oppdal. The pictures is made by
putting the estimated SCA for each day on a digital elevation model. The centre
of Oppdal is in the middle of these images, while Gjevilvatnet is the lake we can
see on the upper right. We are looking towards west so we can see both southern
and northern slopes. The images is the estimate one week apart from each other.

higher SCA. The days with temperature below zero had some precipitation, so we
can assume it fell as snow, making the snow covered area bigger. The temperature
on the plateau of Soløyfjellet was well above zero between week 2 and 4 (April 23
and May 7, 2007), and we can see the melting in the area has reduced the SCA in
the same period. The temperature the next two weeks was lower, and we cannot
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Figure 8.5: Results from the hindcasting of the measurements from 2007. The
images are the estimated SCA for the first of April, May, June, July and August.
Dark green is bare land, blue is water, magenta is lakes with snow cover and
different shades of white is snow covered land, where white is 100% SCA.
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Figure 8.6: Result from using an extended Kalman filter on the MODIS and SAR
measurements. The pluses are measurements done by MODIS, the x’es are mea-
surements done by ASAR and green line is the result from the extended Kalman
filter using x2006(t). The location of the pixel is the same as in figure 8.2.

see much melting from these pictures. From week 6 (May 21, 2007) and until week
9 (June 11, 2007) we can see the temperature again was very high, and the SCA
decreased. But from week 9 to 10 (June 11 to June 18, 2007) the SCA increased on
Soløyfjellet again. The temperature was again low, and the measured precipitation
at Oppdal - Sæter probably fell as snow on the mountains. The period after this
had high temperature, and the SCA decreased rapidly.

Figure 8.5 give us a overview over the estimated SCA for the whole area we are
looking at for April 1 to August 1, 2007, with one month between every picture.
We can see the snow in the western mountains stays longer than the snow in the
east. Almost all lakes had ice cover on May 1, but a month later most lakes were
ice free. Some noise can be seen on the two last images. More about this in section
8.6.

8.3.2 Nowcasting

It would be really interesting to be able to predict the present SCA values for all
areas, not only areas where we have actual measurements. The way we tried to
predict the current values for the SCA was to predict the SCA for the pixel in
figure 7.1 without having the information about x2007(t). The algorithm used the
values for past years x2003(t), x2004(t), x2005(t), x2006(t) and xmean(t) and checked
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Figure 8.7: Result from using an extended Kalman filter on the MODIS and SAR
measurements. The pluses are measurements done by MODIS, the x’es are mea-
surements done by ASAR and the lines are the result from the extended Kalman
filter using xi(t). The location of the pixel is the same as in figure 8.2.

which of them fitted the MODIS measurements from the same pixel in 2007. For
this exact pixel, the estimate x2006(t) was the best fit. We see the result in figure
8.6, and if we compare it with figure 8.2 where the estimated function was based on
the same measurements, there is no big difference. The estimation using x2006(t)
is a little higher, and the snow seems to melt a little bit slower when we use
x2006(t) compared to x2007(t). If we look at figure 8.7 we can see the result from
the estimation using all the different xi(t). The differences is not big between these
estimations, the only difference is that the estimation based on x2007(t) estimates
the snow to melt faster than the estimation based on x2006(t).

The reason for this can be found if we look at the assumed functions x2006(t)
and x2007(t). A figure with all xi(t) for this pixel can be seen in figure 8.8. x2007(t)
have a much faster melting compared to x2006(t). Figure 8.9 give an overview over
the estimated SCA for each year 2003-2007. It is clear from these figures that the
snow dissapeared early in 2004, while 2005 was a year with snow laying for a long
time. xmean(t) in figure 8.8 is also clearly an approximately mean function of the
other. The estimated SCA in 2004 has two jumps in the end. This is probably
because of a problem with the cloud detection, and we will look more into this in
section 8.6.

Figure 8.8 shows that 2007 was the year with fastest melting, while 2004 was
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Figure 8.8: A overview over all xi(t). From this we can see that 2004 was a year
where the snow dissapeared early but slowly, while the year after, 2005, the snow
lasted for a long time. In 2007 the snow started to melt very late, but dissapeared
very fast. The location of the pixel is the same as in figure 8.2.

the year with slowest melting. This explains why the estimated SCA in figure 8.7
is decreasing fastest when we are using x2007(t) and slowest when we are using
x2004(t).

8.3.3 Spatial difference in estimating snow covered area

Our filter does not use any information about the pixels in the neighbourhood
when estimating the snow covered area, only the measurements for that pixel. It
is interesting to see how big difference there is in the snow covered area from one
pixel to the surrounding pixels. The area we picked out to test this is an area
close to the pixel used in figure 7.1. This area is relatively flat in an elevation
of 940 ± 100 m. We looked at the estimated SCA in the pixel itself, the mean
of the 9 closest pixels (mean SCA in an area of 750 × 750 meters), the mean of
the 25 closest pixels (1250 × 1250 meters) and the mean of the 49 closest pixels
(1750× 1750 meters).

The result of these averages can be seen in figure 8.10. The difference between
the estimated SCA for the middle pixel and the surrounding area is not very big.
We can see the error early in the melting season is about 20% when averaging
over an area of 1750 × 1750 meters, while it decreases to approximately 0% in
the end. The error is smaller the smaller area we take the average over. It seems
like the spatial difference in the estimated SCA is small, and there is no need for
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Figure 8.9: A overview over the estimated SCA for one pixel for the years 2003-
2007. From this we can see 2004 was a year where the snow dissapeared early but
slowly, while the year after, 2005, the snow lasted for a long time. In 2007 the
snow started to melt very late, but dissapeared very fast.The location of the pixel
is the same as in figure 8.2.

smoothing the result in the spatial domain.

8.4 Land cover and elevations influence on the

snow covered area

The land cover mask with 36 different land cover described in section 6.1 can be
used to see if there are any differences in how the snow covered area acts during the
melting season. The digital elevation model (DEM) can also be used to see if the
elevation has significance on how and when the snow is melting. We use all pixels
in our area of 75 × 200 km where we have more than 5 MODIS measurements
each year to check this. This is a total of 228397 pixels out of 241101, or 94,7%
of the total area. The last 12704 pixels, or 5,3% or the area, are seas, lakes or
glaciers, and as we explained in section 7.1 these pixels are treated differently. In
other words; there are no pixels with less than 5 MODIS measurements for any of
the years 2003 to 2007.
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Figure 8.10: Mean estimation for SCA for 4 different sizes of area. The red line
represents the estimated SCA with our extended Kalman filter for the middle pixel,
while the other three lines represents the mean SCA for a larger area surrounding
this pixel. The measurements represents the measurements done for the middle
pixel.

If we set t = T0 in equation 7.3 we get

xi(t = T0) = 100− 100

1 + e−β(T0−T0)

= 100− 100

1 + e0

= 100− 100

2
= 50.

(8.1)

This mean that T0 can be used to see when the snow is covering 50% of the area.
Figure 8.11 shows the T0 as a function of types of land cover. The types of

land covers can be found in table 6.2. We can see the same pattern for every year
which seems to indicate that there is a connection between the type of land cover
and the timing of the snow melt. But if we take a look at figure 8.12, which show
us the relation between T0 and elevation we can see the same pattern. If we put
these two in the same plot as in figure 8.13 we see a clear correlation.

To check this out more we may look at figure 8.14. This figure shows the mean
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Figure 8.11: Mean T0 for all vegatation types for the years 2003-2007 .

Figure 8.12: Mean elevation for all of the 36 vegetation types.

T0 for every year for every elevation. This figure shows that T0 is increasing as a
function of the elevation. The higher a location is, the later will 50% of the snow
have melted. The vegetation has small or none influence on when the melting
happens.

The fluctuation in the lower and higher elevations can be explained by figure
8.15. There are few pixels at these elevations, making the T0 being an average over
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Figure 8.13: Mean elevation (green line) and T0 for the year 2007 (black line) for
each vegetation type. They are plotted together with a fictional y-axis just to see
the corrolation between them.

Figure 8.14: Mean T0 for all elevations for the years 2003-2007.

less pixels and therefore being more endangered of locale variations and noise.

Some types of land cover is more common than others. Figure 8.16 shows
how common each land cover is, and the least common vegetation types are type
34 (Town, cities) with 144 pixels (0,06% of the area), type 0 (Unclassifed) with
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Figure 8.15: The number of pixels per elevation. The elevation is in discrete 10
meter-steps.

Figure 8.16: The number of pixels per vegetation type.

158 pixels (0,07%), type 1 (Spruce forest) with 879 pixels (0,38%) and type 27
(Moderate snowbed communities) with 1050 pixels (0,46%). The most common is
type 19 (Open heather communities) with 22532 pixels (9,87%).

The β in equation 7.3 decides how fast the melting happens. The larger β,
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Figure 8.17: Mean β for all vegetation types for the years 2003-2007.

the faster does the melting happen. Figure 8.17 shows the mean β for all land
cover types for the years 2003-2007. We see little or none correlation between each
year. Only land cover type 27 (Moderate snowbed communities), 28 (Snowbeds),
31 (Snow and glaciers) and 35 (Impediment) have a generally low β. Land cover
type 30 (Bare rocks and high-mountain gravel fields) has a relatively higher β
than these four. Figure 8.12 indicate that all these five land cover types are found
at higher elevations, and the reason for the difference in snow melting speed is
probably because of the topography. Snowbeds (type 28), are usually found in
areas with a lot of snow in winter time, while bare rocks and high-mountain gravel
fields (type 30) usually has little snow in the winter time. It is probably not the
vegetation types that make the snow melt faster, but the behavior of the snow
cover which decides what kind of land cover is present.

In figure 8.18 we have plotted the mean β for all elevations for the years 2003-
2007. It is not easy to see if the elevation has any impact on how fast the snow
is melting, but it seems like the snow is melting slower on higher elevations. The
mean β for elevations over 1700 meters are fluctuating because there are very few
pixels in these elevations.
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Figure 8.18: Mean β for all elevations for the years 2003-2007.

8.4.1 Problems with terrain slopes

From the perspective of an observer in middle part of Norway, the winter sun has
a lower altitude in the sky than the summer sun. This means the sun will not
shine as early on the northern slopes, as it will on the southern slopes. This may
affect how the optical algorithm can detect snow from the MODIS images. Figure
8.19 shows the result from plotting T0 and β for northern and southern slopes. A
pixel is classified as a northern slope if the elevation of the pixel to the south is at
least 10 meters higher than the pixel itself, and a southern slope if the elevation
of the pixel to the south is at least 10 meters lower than the pixel itself.

The figure tells that the time when 50% of the snow is gone T0 is generally
lower for nothern slopes than southern slopes. The plots for 2003-2005 was similar
to the ones from 2006 and 2007 as we can see in figure 8.19. This is an unexpected
result, since it is known that snow melts earlier in southern slopes because of less
shadows and higher radiation per area from the sun. The reason why we got this
result is probably because the optical algorithm calculates too low snow covered
area because of the shadow, making the area darker compared to other areas with
the same snow fraction.

The two plots in the bottom of figure 8.19 shows how β is affected by the
slopes. In both plots β has a generally lower value for the northern slopes, and the
plots from 2003-2005 have the same trend. This tells us the melting takes longer
time in nothern slopes than in the southern slopes. This seems to be a correct
observation, since less energy will reach the northern slopes compare to southern
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Figure 8.19: Upper left: Mean T0 for southern slopes (black) and northern slopes
(red) for all elevations for the year 2006. Upper right: Mean T0 for southern slopes
(black) and northern slopes (red) for all elevations for the year 2007. Lower left:
Mean β for southern slopes (black) and northern slopes (red) for all elevations
for the year 2006. Lower right: Mean β for southern slopes (black) and northern
slopes (red) for all elevations for the year 2007.

slopes because of the low altitude of the sun.

8.5 Comparing the results with meteorological

measurements

In section 6.2 we presented some meteorological measurement stations in the area
we are looking at. These stations will give us information about temperature,
precipitation, snow depth and in situ snow covered area-estimates, and can help
us to evaluate the results we have got.

Figure 8.20 is showing the estimated SCA from our extended Kalman filter,
the temperature measured at the station, snow depth, precipitation and in situ
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Figure 8.20: Measurements and estimates from Oppdal - Sæter measurement sta-
tion. The estimated SCA is done by our extended Kalman filter. The estimations
of SCA is in %, Temperature is in ◦C, precipitation is in mm and snow depth is
in cm.

SCA estimate from the measurement station in Oppdal - Sæter. Our estimated
SCA seems to fit the temperature measurements. The mean temperature is above
zero from day 101 (April 12, 2007), and the estimated SCA is decreasing fast
from day 103 (April 14, 2007). The reason for this delay is that there were no
measurements the days before, but the mean temperature is also low the days
before, so the melting would have been slow. On day 109 (April 20, 2007) the
temperature was again below zero, and the precipitation fell as snow. The day
after (April 21, 2007), MODIS estimated the SCA to be 99%, and our extended
Kalman filter estimated the snow cover to be much higher again. On the next
days the temperature was high again, and the snow melted fast, but our filter
estimated the snow to be higher than what it was according to the meteorological
observations. The main reason for this was few measurements these days.

Figure 8.21 shows the estimated snow from the measurement station in Tingvoll
- Hanem. It is a measurement station close to the sea, and as we see in the
figure, there were not much snow, and the temperature is generally higher than
in Oppdal - Sæter in figure 8.20. There are only in two short periods there are
any meteorological observations of snow cover, and in these periods there are only
one MODIS measurement and one ASAR measurement in each. MODIS did not
measure 100% SCA in any of these periods, even when it was 21 cm snow depth in
the first period. The result from this is an estimate with less snow than measured
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Figure 8.21: Measurements and estimates from Tingvoll - Hanem measurement
station. The estimated SCA is done by our extended Kalman filter. The estima-
tions of SCA is in %, Temperature is in ◦C, precipitation is in mm and snow depth
is in cm.

in situ, and a longer melting period since there are few measurements.

Figure 8.22 shows the measurements and estimates from Røros Airport. Røros
is about the same elevation as Oppdal, but in a dryer and generally colder climate.
The days when the temperature is above zero correspond very well with the days
when our filter estimates the snow to melt.

The in situ SCA estimate is not something that should be fully trusted. The
observations are subjective but probably based on experience and there are only 5
SCA-steps which make the error high. What is better to trust is the temperature
and the precipitation. It can give us valuble information on how the SCA evolves
over time.

8.6 Problems with detection of clouds with MODIS

The snow retrieval algorithm used for MODIS has a problem with detecting clouds.
In figure 8.23 we can see an example of this. On July 9, 2007, we can see that
there are very little snow in the whole area. There is only some remaining snow
on the mountains in the west. The next day, on July 10, 2007, there has appeared
several squared areas with some snow, and even a lake with partially snow cover in
the west. The reason for this weird result can be found by looking at the measured
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Figure 8.22: Measurements and estimates from Røros Airport measurement sta-
tion. The estimated SCA is done by our extended Kalman filter. The estimations
of SCA is in %, Temperature is in ◦C, precipitation is in mm and snow depth is
in cm.

snow cover done by MODIS on July 10, 2007 in the bottom of figure 8.23. The
whole area is covered with clouds, only some small spots has gone through the
cloud detection algorithm as no-clouds. These spots has got a relativelly high
snow cover fraction from the snow cover algorithm, which is very unlikelly at
these places in the middle of July. The weather measured by the Norwegian
Meteorological Institute in Oppdal this day was a middle temperature of 11,3◦C
and 13,7 mm of precepitation in form of rain. Also at Rorøs the temperature was
11,7◦C with 21,4 mm of precepitation, so the chance of this actually being snow is
very low.
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Figure 8.23: Top: Map over estimated snow covered area on July 9, 2007. Blue
is water, magenta is water with snow cover (must likelly erroneous), dark green is
bare ground, and lighter green up to white is snow covered area. The more light
green, the higher percent SCA. Middle: Map over estimated snow covered area on
July 10, 2007. Bottom: Measurement done by MODIS on July 10, 2007. Black is
clouds masked out, while white is snow covered area.
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Chapter 9

Conclusion

In this thesis we have studied how SCA-maps are made from satellites using two
different instruments. We have described the pros and cons for each instruments.
We have filtered these maps using two different filters, and especially studied the
Kalman filter for this purpose. We have also studied the relation between elevation
and snow covered area and a land cover map and snow covered area. We found that
the extended Kalman filter gave a clear improvement when compared to the simple
moving average filter. We also found that the extended Kalman filter worked well
for both hindcasting and nowcasting of snow covered area, even in areas with no
measurements the last days.

The spatial difference in the estimations seems small, and the vegetation does
not seem to influence the way snow are melting. The elevation has a high influence
on when the snow is melting. We tried to study differences in melting at north
and south slopes, but found that the data were not good enough. The error was
created in the optical images because of shadows in the northern slopes. Since the
snow calibration areas with 100% snow is located on top of glaciers plateaus, which
are horizontal, shadows will make the optical algorithm underestimate the snow
covered area. The snow cover in southern slopes are melting faster than the snow
cover in the nothern slopes, and this is correct since the sun radiate more energy to
southern slopes, and therefore melting the snow faster. The filtered estimation of
the snow cover fits the measured temperature and precipitation on nearby weather
station very well as long as there are regular measurements.

The biggest problems with the estimation of SCA was the erroneous input from
the snow cover retrieval algorithms. The ASAR sensors has problems detecting
dry snow, while the MODIS sensors cannot see through clouds, and the algorithm
applied on the measurements is misinterpreting the clouds as no clouds some times.

75



9.0.1 Further work

Some issues that should be developed further are:

• In thesis we used satellite measurements only to estimate the snow covered
area. Since clouds are common in the melting season and the ASAR does
not cover all areas every day, we may have several days without new input.
This makes the error in the estimation high. Additional input is needed,
and the two most obvious is temperature and precipitation. Both can be
obtained from weather station all over the country, and temperature maps
like the one in figure 5.3 can be used to find out if the snow is melting or
not. The precipitation together with the temperature map can be used to
predict an increased SCA.

• The dry snow cover algorithm can be improved as well. One way is to
compare the snow cover with earlier measurements as well as information
about temperature in the same period.

• The detection of clouds in MODIS measurements does also need improve-
ment. A solution can be to compare the snow cover with the earlier mea-
surements as with the problems with the dry snow cover algorithm.

• Even if the spatial difference in SCA does not seem big, it may be an idea
to see if this will improve the SCA-maps even more.

• As showed, the optical algorithm has problems detecting snow correctly in
nothern slopes. The slopes has high influence on the melting of snow, and it
may be worth to take a look into solution for compensating for this.
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