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Abstract 59 

Cognitive control is a mental process, which underlies adaptive goal-directed decisions. 60 

Previous studies have linked cognitive control to electrophysiological fluctuations in the 61 

theta band and theta-gamma cross-frequency coupling (CFC) arising from the cingulate 62 

and frontal cortices. Yet, to date the behavioral consequences of different forms of theta-63 

gamma CFC remain elusive. Here, we studied the behavioral effects of the theta-gamma 64 

CFC via transcranial alternating current stimulation (tACS) designed to stimulate the 65 

frontal and cingulate cortices in humans. Using a double-blind, randomized, repeated 66 

measures study design, 24 healthy participants were subjected to three active and one 67 

control CFC-tACS conditions. In the active conditions, 80 Hz gamma tACS was coupled 68 

to 4 Hz theta tACS. Specifically, in two of the active conditions, short gamma bursts 69 

were coupled to the delivered theta cycle to coincide with either its peaks or troughs. In 70 

the third active condition, the phase of a theta cycle modulated the amplitude of the 71 

gamma oscillation. In the fourth, control protocol, 80 Hz tACS was continuously 72 

superimposed over the 4 Hz tACS, therefore lacking any phase-specificity in the CFC. 73 

During the 20-minute of stimulation, the participants performed a Go/NoGo monetary 74 

reward- and punishment-based instrumental learning task. A Bayesian hierarchical 75 

logistic regression analysis revealed that relative to the control, the peak-coupled tACS 76 

had no effects on the behavioral performance, whereas the trough-coupled tACS and, to 77 

a lesser extent, amplitude-modulated tACS reduced performance in conflicting trials. Our 78 

results suggest that cognitive control depends on the phase-specificity of the theta-79 

gamma CFC.   80 
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Statement of significance 81 

This study investigated the behavioral effects of different forms of theta-gamma cross-82 

frequency coupling in cognitive control. To this aim, we delivered cross-frequency 83 

transcranial alternating current stimulation over the cingulate and frontal cortices in 84 

humans. We found that when gamma tACS was coupled to the trough of theta tACS, the 85 

stimulation worsened the ability of healthy participants to employ cognitive control. Our 86 

findings highlight the role of theta-gamma cross frequency coupling in complex goal-87 

directed behavior in humans.   88 
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1. Introduction 89 

In goal-directed behavior, contextual and reward-related information should be 90 

effectively linked to form action plans in order to accomplish goals and perform decisions 91 

in a flexible and prospective manner (Helfrich & Knight, 2019). In humans, at least three 92 

main behavioral control systems influence the decisions: The Pavlovian system, the 93 

model-free and the model-based instrumental systems (Guitart-Masip et al., 2014). The 94 

Pavlovian system is responsible for automatic, reflexive response tendencies that 95 

depend on the valence of the stimulus. It facilitates approaching behavior for rewarding 96 

stimuli and response inhibition for unrewarding ones (Guitart-Masip et al., 2014). The 97 

model-free system gradually incorporates the behavioral consequences of actions by 98 

computing the difference between the predicted and received outcome. The model-99 

based system creates an internal world model, which enables flexible, prospective 100 

planning. Therefore, decisions do not exclusively rely on the outcome history (Helfrich & 101 

Knight, 2019).  102 

Conflict can arise between the Pavlovian and instrumental behavioral control 103 

systems, when the evolutionary hard-wired, valence-response associations do not 104 

support adaptive behavior. This situation occurs when approaching rewards is 105 

maladaptive, or when rewards can be secured by response inhibition rather than by 106 

approach (Guitart-Masip et al., 2012). Cognitive control is a mental process for resolving 107 

this conflict between the behavioral control systems (Guitart-Masip et al., 2014; Shenhav 108 

et al., 2017).  109 

The oscillatory activity in the theta and gamma frequency bands and their interaction 110 

may play a crucial role in cognitive control (Cavanagh & Frank, 2014; Cohen, 2014). 111 

Theta-gamma, phase-amplitude cross-frequency coupling (CFC) is one form of such 112 
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interaction, where the phase of the theta oscillation modulates the amplitude of the 113 

gamma oscillation (Canolty & Knight, 2010). Human intracranial electrophysiological 114 

recordings revealed that theta-gamma, phase-amplitude CFC in the anterior cingulate 115 

cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) emerges during cognitive 116 

control (Smith et al., 2015). E.g., Smith and colleagues found that the amplitude of the 117 

high gamma oscillation was highest in a specific phase range of the theta oscillation (ca. 118 

0° - 60°) during a cognitive control task (Smith et al., 2015).  119 

To study how participants learn to overcome the Pavlovian bias by utilizing cognitive 120 

control mechanisms, we used a probabilistic Go/NoGo instrumental learning task 121 

(Cavanagh et al., 2013). We tested the behavioral relevance of theta-gamma cross-122 

frequency coupling in humans via transcranial alternating current stimulation (tACS), 123 

which can externally generate oscillating electric fields in the brain (Peterchev et al., 124 

2012). We utilized three CFC-tACS protocols delivered in the theta and gamma 125 

frequency bands: Peak- and trough-coupled tACS and amplitude-modulated tACS 126 

(Alekseichuk et al., 2016; Amador de Lara et al., 2017; Minami & Amano, 2017). In the 127 

context of the present study, the notion of peak and trough refers to the local maximum 128 

and minimum of the amplitude of the delivered theta tACS wave, to which the short 129 

gamma tACS burst was coupled. In the amplitude-modulated protocol, the amplitude of 130 

the gamma oscillation was modulated by the phase of the theta wave.  131 

We hypothesized that the peak-coupled tACS would improve the accuracy and/or the 132 

speed of learning relative to the control stimulation. We based this hypothesis on the 133 

notion that these protocols mimic the phase-specificity of theta-gamma CFC when 134 

signaling the need for cognitive control (Smith et al., 2015). Moreover, we also 135 

anticipated that the trough-coupled tACS would impair behavioral performance because 136 
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this pattern is contrary to that activity naturally occurring during the successful 137 

implementation of cognitive control (Smith et al., 2015). Third, we expected that 138 

modulating the CFC between the ACC and DLPFC via CFC-tACS protocols should 139 

affect the amount of Pavlovian bias. In particular, facilitating the CFC between the ACC 140 

and DLPFC via the peak-coupled tACS would be thought to increase the efficacy of the 141 

ACC to signal the need for cognitive control and thereby increase the degree of model-142 

based control implemented by the DLPFC (Smith et al., 2015). This, in turn, might lead 143 

to a decreased amount of Pavlovian bias. On the other hand, disrupting the CFC 144 

between the ACC and the DLPFC via the trough-coupled tACS should decrease the 145 

efficacy of signaling the need for cognitive control. This may impair the efficacy of 146 

implementing model-based control and therefore lead to a higher degree of Pavlovian 147 

bias. Fourth, we expected that amplitude-modulated tACS would improve behavioral 148 

performance by entraining the ongoing theta oscillation by the envelope of the high 149 

frequency stimulation (Negahbani et al., 2018). The amplitude-modulated tACS protocol 150 

would increase the theta synchrony in the cingulate and frontal cortices (Negahbani et 151 

al., 2018), which in turn would improve the ability of the participants to apply cognitive 152 

control.   153 

 154 

2. Methods 155 

2.1. Participants  156 

Twenty-four healthy, native German-speaking adult volunteers (12 female, mean age 157 

± SD: 23.0 ± 3.26 years, age range from 18 to 30 years) joined the study. This number 158 

of participants was chosen to allow a complete randomization of the order of the four 159 

tACS protocols (i.e., three active and one control protocols), and is calculated as four 160 



 

8 
 

factorial or 24. The mean number of years of education (± SD) was 16.30 ± 3.05 (range 161 

from 12 to 22.5 years). Before entering the study, the participants were informed about 162 

possible adverse effects of tACS, and all of them gave their written informed consent. 163 

The exclusion criteria were history or presence of current medical, neurological or 164 

psychiatric illnesses including epilepsy, drug and/or alcohol addiction and the presence 165 

of metal implants in the head, neck and chest. In addition, the participants were 166 

examined by neurologists at the Department of Clinical Neurophysiology, University 167 

Medical Center Göttingen. The study neurologist evaluated whether any of the exclusion 168 

criteria were met. None of the participants reported any neurological or psychiatric 169 

disorders, drug-dependency, or medication acting on the central nervous system prior to 170 

or during the experiment.  171 

 172 

2.2. Code accessibility, data availability and ethic statement 173 

The Ethics Committee of the University Medical Center Göttingen approved the 174 

study, the study protocols, and all methods used therein. We performed the study in 175 

accordance with relevant guidelines and regulations. The study was registered under the 176 

study approval number 20/5/15. The study materials, code/software and pseudonymized 177 

raw data described in the paper is freely available online at 178 

https://github.com/ihrke/2020_cfc_tacs.  179 

 180 

2.3. Experimental design  181 

The study used a double-blind, within-subject design. The participants underwent five 182 

experimental sessions, starting with an initial training session to familiarize themselves 183 

with the behavioral paradigm. During the training session, the participants received no 184 
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stimulation. This initial session was followed by the four tACS sessions, the order of 185 

which was counterbalanced across participants to reduce between-session learning 186 

effects. Of the four stimulation sessions, three employed the main stimulation protocols 187 

and one the control protocol. The inter-session interval between the stimulation sessions 188 

was at least 48 hours. 189 

 190 

2.4. Behavioral Paradigm 191 

The behavioral paradigm consisted of a learning phase and a subsequent transfer 192 

phase, which was adapted from Cavanagh and colleagues (2013). The task was 193 

introduced as a card game for the participants (Figure 1). Stimuli presentation was 194 

controlled by PsychoPy (version number: 1.83.01), a free, open-source application built 195 

on the Python programming language (Peirce, 2007, 2009). For the presentation of the 196 

behavioral paradigm, we used a Dell computer with Windows 7 Enterprise 64 bit 197 

operating system, Intel (R) core i3-3220, 3.30 GHz and 4 GB RAM and a 21.5 inch Dell 198 

screen with a 1920 × 1080 resolution and 60 Hz refresh rate.   199 

During the learning phase the participants performed a Go/NoGo instrumental 200 

learning task. Here, they had to learn action (two levels: Go/NoGo) and monetary 201 

outcome (three levels: win, no win/lose or lose) contingencies. For each card, the goal 202 

was to find the better of the two possible action choices (Go/NoGo) resulting in the 203 

highest monetary outcome (getting reward or avoiding losing) and therefore maximize 204 

their earnings.  205 

One key feature of the task was that the action choices and monetary outcomes 206 

were orthogonal. As such, the four unique cards covered all the combinations between 207 

actions choices and monetary outcomes ('Go to win', 'NoGo to avoid losing', 'Go to avoid 208 
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losing' and 'NoGo to win'). Due to the Pavlovian bias, i.e., approach to appetitive and 209 

withdrawal from aversive stimuli, the cards could be split into congruent and conflicting 210 

cards. For the Pavlovian congruent cards (henceforth the congruent cards; 'Go to win' 211 

and ‘NoGo to avoid losing’) the action selection under the automatic, Pavlovian bias was 212 

advantageous for the participants and hence easier to learn. For the Pavlovian 213 

conflicting cards (henceforth the conflicting cards; 'NoGo to win' and 'Go to avoid 214 

losing'), the action selection under the automatic, Pavlovian bias was disadvantageous 215 

for the participants and therefore harder to learn (Guitart-Masip et al., 2012).  216 

The action outcomes were probabilistic such that 65% of correct responses led to a 217 

better outcome: Neutral monetary outcomes (no loss) for the lose cards and monetary 218 

reward for the win cards. Consequently, 35% of the correct responses led to neutral 219 

monetary outcomes for the win cards and monetary loss for the lose cards. On the other 220 

hand, wrong responses inverted this ratio, i.e. 65 % of incorrect responses led to neutral 221 

monetary outcomes for the win cards and monetary loss for the lose cards. Previous 222 

studies used 80% vs. 20% or 70% vs. 30% action-outcome contingencies, which 223 

renders the present version of the probabilistic learning task slightly more difficult 224 

compared with previous versions (Cavanagh et al., 2013; Csifcsák et al., 2020; Guitart-225 

Masip et al., 2012).  226 

For illustrative purposes, we describe possible action-outcome scenarios. Suppose 227 

card A was a ‘Go to Win’ card, a fact unknown to the participant. In case the participant 228 

decided to take the card, there was a 0.65 probability to receive the feedback indicating 229 

monetary reward. Consequently, there was a 0.35 probability to receive no reward. In 230 

case the participant did not take the ‘Go to Win’ card, the feedback probabilities were 231 
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reversed. That is, the probability of receiving monetary reward was 0.35 and the 232 

probability of receiving no reward was 0.65.   233 

Each card was presented 20 times in a random order. Independent sets of five cards 234 

were used and randomly chosen for each session from a pool of six sets of cards. We 235 

created six card sets for the scenario that one session has to be repeated. Therefore, 236 

participants performed 80 trials in each session (20 trials × four cards) and 400 trials in 237 

total (80 trials × five sessions).  238 

The presentation of the stimuli was performed in full screen mode. We set the 239 

background color of the screen to white. At the beginning of each trial, a black fixation 240 

cross (10 or 11 s) was presented (see Figure 1A, Trial flow). Note that we used a 241 

relatively long duration of fixation cross in the present study compared with previous 242 

studies (e.g., Guitart-Masip et al., 2012). Also, during this time the participants were 243 

instructed to blink and swallow. This was a necessary step to increase the comparability 244 

of the present results with our other experiments using pre-stimulus intermittent tACS 245 

(manuscript in preparation) and scalp electroencephalogram recordings.  246 

Then a card cue (1 s; original image size 199 × 279 pixels, presentation size 0.3 × 247 

0.5) was presented to the participants. We used white cards and distinguished them with 248 

a black capital letter (B, C, D, F, G, H, J, K, R, S, T, V, A, E, O, U, L, M, P, Q, W, X, Y, Z) 249 

printed in the middle of the card (see Figure 1A, Trial flow). We decorated the cards by 250 

adding four pieces of simple shapes around the letter. We used rhombus, circle and 251 

rectangle shapes and filled them with blue, gray, green, pink, orange or yellow colors. In 252 

each set, we used the same shape and color for each card.  253 

The target detection stimulus (black circle; original image size 225 × 220 pixels, 254 

presentation size 0.35 × 0.45) was shown until a response occurred, or 1 s passed. The 255 
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target detection stimulus indicated to the participants that they could take the card (Go) 256 

or not (NoGo), upon which the monetary outcome depended. The feedback was 257 

displayed (original image size 402 × 205 pixels, presentation size 0.6 × 0.4) for 2 s: A 258 

green '+€' sign indicated a monetary reward, a red '-€' symbol indicated a monetary loss 259 

and a black horizontal bar indicated neutral monetary outcome (neither win nor loss). 260 

The next trial started 0.5 s after feedback.  261 

In the subsequent transfer phase of the task (Figure 1B), the participants performed 262 

a two-alternative, forced-choice (2AFC) task where each card from the learning phase 263 

was paired with one of the three other cards following the order (e.g., 'Go to win' vs. 264 

'NoGo to avoid losing', 'NoGo to avoid losing' vs. 'Go to win', etc.). Each of the 12 card 265 

pairs was presented four times until a response occurred, or 3 s passed.  266 

The dependent variable in this study was accuracy. We defined accuracy as 267 

choosing the response category (Go/NoGo) that led with a higher probability to the 268 

better monetary outcome; hence, monetary reward for the win cards and neutral 269 

monetary outcome for the losing cards.  270 

The participants were paid 8 EUR/hour and received an additional performance 271 

dependent bonus of 12 EUR if their mean performance calculated over all sessions was 272 

above 75 %. We used the monetary bonus to encourage our participants to perform as 273 

well as possible in each session. Unknown to the participants, everybody received the 274 

monetary bonus at the end of the experiment.  275 

 276 
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 277 

Figure 1. The structure and the trial flow of the behavioral paradigm for the learning (A) 278 

and the transfer phase (B). 279 

 280 

2.5. Transcranial alternating current stimulation 281 

The stimulation was delivered by a CE-certified NeuroConn® multichannel stimulator 282 

(neuroConn GmbH, Ilmenau, Germany) during the learning phase of the task. The 283 

electrode positions were chosen according to the international 10-20 EEG system. The 284 

electrode montage was centered over the Fpz electrode location with three return 285 

electrodes positioned over the Cz, F10 and F9 positions (Figure 2A).  286 

The following standardized steps ensured minimal stimulation-induced cutaneous 287 

sensations. After determining the electrode locations, the corresponding skin surface 288 

was gently cleaned with OneStep® abrasive gel (H + H Medizinprodukte GbR, 289 

Germany), which was removed with 0.9 % saline solution (B. Braun Melsungen AG, 290 

Germany). After removing the residual saline solution with paper tissue a local 291 

anesthetic cream (Anesderm®, Pierre Fabre Dermo-Kosmetic GmbH, Germany) was 292 
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applied for 20 min to numb the skin (25 mg/g lidocaine, 25 mg/g prilocaine). It was wiped 293 

off first with paper tissue followed by a skin antiseptic spray (Kodan Tinktur Forte®, 294 

Schuelke & Mayr GmbH, Germany). The latter was necessary to remove the anesthetic 295 

cream, which would otherwise prevent the conductive paste from adhering to the skin. 296 

Homogenous layers of Ten20® conductive paste (Waever and Company, Colorado, 297 

USA) were then applied to the skin and the electrode surfaces. Each of the four round, 298 

conductive rubber electrodes with 2 cm diameter (neuroConn GmbH, Germany) was 299 

affixed to the head. The impedance was kept below 10 kΩ. The maximal current density 300 

under the main electrode was 0.50 mA/cm². The electrode montage was prepared in a 301 

double-blind fashion.  302 

We used four different CFC-tACS protocols, including amplitude-modulated CFC-303 

tACS (AM), CFC over the peak, trough and control tACS (Figure 2B). Each protocol 304 

started with a 20s fade-in period, followed by a 20-min stimulation with the maximum 305 

stimulation intensity, and ended with a 10s fade-out period. The total stimulation duration 306 

was 20 min and 30 s. 307 

The protocols, peak-coupled, trough-coupled tACS and control, consisted of a 4 Hz, 308 

1 mA (=2 mA peak to peak) sinusoidal waveform coupled with a 0.6 mA (=1.2 mA peak 309 

to peak) 80 Hz sinusoidal waveform. These stimulation protocols had a maximum 310 

intensity of 1.6 mA. In the peak-coupled tACS protocol, the short 80 Hz burst (50 ms) 311 

was coupled over the peak (38-88 ms) of each theta cycle. In the trough-coupled tACS 312 

protocol, the short 80 Hz burst was coupled over the trough (163-213 ms) of each theta 313 

tACS cycle. In the control stimulation, both waveforms were overlaid continuously. The 314 

control stimulation lacked any phase-specificity of gamma relative to theta oscillations 315 

but used a highly matched intensity range and identical stimulation duration with respect 316 



 

15 
 

to the real protocols. The control protocol served as the reference to which we compared 317 

the effects of the three main CFC-tACS protocols. 318 

In the AM protocol, the amplitude of the gamma frequency (80 Hz) was modulated by 319 

the phase of the theta frequency (4 Hz). In all protocols, the amplitude of the theta 320 

frequency was constant. Consequently, the AM protocol employed lower peak 321 

stimulation intensities (Figure 2C, left) compared with the remaining protocols, which led 322 

to a slightly higher electric field strength (Figure 2C, right). However, this was a 323 

necessary step in order to match the amplitude of the envelope frequency in the 324 

amplitude modulation protocol to the amplitude of the theta frequency in the remaining 325 

protocols.  326 

In order to estimate the magnitude of the induced electric field in the brain, we ran 327 

simulations using the free software package Simulations for Non-invasive Brain 328 

Stimulation (SimNIBS; version 3.0.2) (Thielscher et al., 2015). To this aim, we conducted 329 

electric field calculations on an anatomically realistic, six-compartment template head 330 

model (almi5.msh) available in SimNIBS. We used default conductivity values [S/m] that 331 

were set to 0.465 for the scalp, 0.01 for skull, 1.654 for cerebrospinal fluid, 0.275 for 332 

gray matter and 0.126 for the white matter. The simulation accounted for volume-333 

normalized anisotropy in the brain. We observed peak electric field magnitudes up to 0.3 334 

mV/mm in the medial frontal cortex (Figure 2C, right).  335 
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 336 

Figure 2. Stimulation parameters including electrode montage (A), cross-frequency-337 

coupling tACS waveforms (B) and estimated electric field magnitudes in the gray matter. 338 

Electric field simulations were performed with SimNIBS version 3.0.2 on a template head 339 

model. The peak absolute electric field strength reached 0.3 mV/mm in the medial frontal 340 

cortex. Abbreviations: AM – amplitude-modulated; CFC – cross-frequency coupling.  341 

 342 

2.6. Procedure 343 

At the start of each session, the participants filled out a short questionnaire. We 344 

asked our participants to report the quality of sleep during the previous night. Further, 345 

we assessed the level of arousal (“How are you feeling right now?”) with a 10-point 346 

Likert-scale where value 1 corresponded to very tired and 10 to completely awake. We 347 
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also assessed the presence and intensity of headache (“Do you have a headache right 348 

now?”) with an initial yes-no answer and an optional 10-point Likert-scale for yes 349 

responses. Here, value 1 corresponded to low and 10 to very strong headache. We 350 

assessed the intake of medication, coffee or alcohol consumption in the 24 hours before 351 

the session. The purpose of these assessments was to avoid the possibility that irregular 352 

sleep patterns in the previous night, headache or mental fatigue due to alcohol would 353 

corrupt the possible behavioral findings of tACS. Theoretically, a new session was going 354 

to be scheduled if the participant had consumed more than two alcoholic beverages in 355 

the previous day, however, arranging a new session was not necessary.  356 

All participants received detailed written instructions about the task. Before the 357 

training session, we asked them to perform a practice session to familiarize themselves 358 

with the task and to ensure that they were able to operate the response box (RB-740, 359 

Cedrus Corporation, USA) comfortably. We used an independent set of cards in the 360 

practice session. Before the start of the learning task, the participants filled out a 361 

questionnaire to ensure that they understood the tasks correctly. The questionnaire 362 

assessed whether the participants understood i) the meaning of the three feedback 363 

types (win, no win/no loss, loss) and ii) the probabilistic nature of the feedback. 364 

In the following stimulation sessions, the short questionnaire was followed by the 365 

electrode preparation, the application of the topical anesthetic cream, and the 366 

impedance measurements. This preparation phase took approx. 35-40 minutes during 367 

which the participants watched documentary movies to maintain their vigilance. 368 

Following the preparatory phase, the participants performed two short practice 369 

tasks. The practice tasks contained 16 trials for the learning and 12 trials for the transfer 370 

phase.  371 
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Following the practice task and directly before the start of the learning task, the 372 

data collector opened the sealed envelope containing the information about that day’s 373 

stimulation condition. After opening the envelope, the data collector selected the 374 

protocol on the stimulator and informed the participants about the start of the stimulation. 375 

Following this moment, the data collector initiated no further communication. The 376 

learning phase began directly after the fade-in period. After the end of learning phase 377 

and following a 5-minute break, the participants completed the transfer phase of the 378 

task, during which no stimulation was applied.  379 

At the end of each session, we assessed the level of self-reported arousal, the 380 

presence and intensity of headache and secondary perceptual adverse effects 381 

associated with the application of tACS. We focused on cutaneous (i.e., itching, tingling 382 

and burning) and visual flickering sensations (i.e., phosphenes). First, the participants 383 

were asked to indicate the presence of secondary adverse effects (yes or no question). 384 

In case of a positive answer, we assessed the subjective level of discomfort using a 10-385 

point Likert scale. On the Likert scale, “1” indicated the lowest noticeable discomfort and 386 

“10” indicated an amount of discomfort the participants would not be able to endure 387 

during the experiment. The participants were informed that they could discontinue the 388 

study at any time without having to give any reason for terminating the study.  389 

At the end of each session, we asked our participants to recall the card types and 390 

provide an internal ranking of the cards. We focused on whether the participants were 391 

able to correctly recall the cards’ valence-action contingency. 392 

 393 
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2.7. Statistical analysis 394 

All statistical analyses were performed using the R statistical programming 395 

environment (version 3.5.1) and the RStudio integrated development environment 396 

(version 1.1.456) (R Core Team, 2018; R Studio Team, 2016). For the data analysis, we 397 

used a Precision 7920 Rack computer, Debian GNU/Linux 9.9 operating system, 2 × 398 

Intel Gold 6152, 2.1GHz, 22 cores and 512 GB RAM.   399 

We applied Bayesian methods, and we report our results in terms of the mean of the 400 

posterior distribution and their associated 95% highest-density intervals (HDIs). These 401 

intervals are derived from the posterior distribution of the model-parameters or a 402 

combination of parameters (e.g., differences) by finding the interval that contains 95% of 403 

the posterior mass while also satisfying the criterion that all points within the interval 404 

have a higher probability density than points outside the interval (Kruschke, 2014). The 405 

interpretation of the Bayesian 95% HDI is that it gives the range in which the estimated 406 

parameter is located with a probability of 0.95. We consider effects to be statistically 407 

reliable, if the 95% HDI excludes zero.  408 

In order to model accuracy on the single-trial level, a dichotomous dependent 409 

variable, we used hierarchical Bayesian logistic regression. For these regression 410 

analyses, we used the R package brms (Bayesian Regression Models using Stan; 411 

Bürkner, 2018) with default, uniform priors for all regression coefficients. This package 412 

uses Hamiltonian Monte-Carlo (HMC) techniques implemented in Stan (Carpenter et al., 413 

2017) to fit the models. We used four chains, where each chain had a warm-up period of 414 

1,000 samples and 1,000 post warm-up samples resulting in a total of 4,000 posterior 415 

samples. We used the Gelman-Rubin diagnostic (Gelman & Rubin, 1992) to ensure that 416 

all reported results had an ܴ̂ ≤ 1.05. For model comparison, we used the Leave-One-417 
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Out Information Criterion (LOOIC), where lower scores of the LOOIC suggest a better 418 

model fit (Vehtari et al., 2017). Specifically, a model was considered better if the LOOIC 419 

score were lower, and if the ߂LOOIC score were at least double the corresponding 420 

LOOIC standard error. 421 

 422 

2.8. Computational modelling 423 

The orthogonal Go-NoGo task used in our study usually allows one to fit 424 

computational reinforcement learning (RL) models to the data collected during the 425 

experiment (e.g., Cavanagh & Frank, 2014; Csifcsák et al., 2020). These models 426 

assume that each time a certain stimulus is encountered, an internal value 427 

representation of the stimulus-action pair (known as Q-value) is updated according to 428 

the reward received after taking an (in-) action. Furthermore, the decision on which 429 

action to take is based on this internal value-representation, and thus, as the Q-value 430 

gets close to the actual value with repeated encounters of a stimulus, performance 431 

becomes more accurate. The orthogonalized nature of the Go-NoGo task typically also 432 

allows the estimation of Pavlovian influences on this RL process by biasing Go-433 

responses for rewarding stimuli and NoGo-responses for punished stimuli. We used 434 

Bayesian hierarchical modeling to fit a series of these models to our data using a 435 

strategy identical to that presented in Csifcsák and colleagues (2020), and we refer the 436 

reader to this paper and the data-repository for this paper at 437 

https://github.com/ihrke/2020_cfc_tacs for technical details of the RL model. The model-438 

code was based on a the hBayesDM toolbox (Ahn et al., 2017). 439 

The described computational models were implemented using the R-package rstan 440 

(Stan Development Team, 2018). We used eight parallel chains with a total of 8,000 441 
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post-warm up samples from the posterior distribution. The convergence diagnostics 442 

were identical with the other models as described above. 443 

 444 

3. Results 445 

3.1. Computational modeling 446 

We fitted models of increasing complexity to the data from our experiment. First, we 447 

fitted a model without any session-specific terms (null-model) as a baseline. Next, we 448 

modeled separate learning-rates ߙ, temperature parameters ߚ, Pavlovian bias 449 

parameters ߨ and go-biases ܾ for each of the tACS sessions (tACS-model). 450 

Furthermore, we included a model that let each of the four core-parameters depend on 451 

the session order (order-model) and, finally, a model where separate parameters were fit 452 

for each tACS session and each parameter depended on session-order (full model). 453 

Diagnostics of the HMC chains indicated that all models converged successfully. 454 

We calculated the LOOIC for each of these models (see Table 1). Even though the 455 

model that only modeled the RL parameters as a function of session order received the 456 

lowest LOOIC, the differences between all four models were small compared to their 457 

standard errors (see Table 1) and model selection was therefore inconclusive. We 458 

conducted posterior predictive checks and simulated 1,000 random datasets from the 459 

posterior distribution of the parameters. Unfortunately, while some general 460 

characteristics of our participants’ performance was captured by the model, it failed to 461 

properly account for the complex changes across sessions, trials and card types. Given 462 

that the computational models were unable to capture our participants’ behavior, we 463 

chose not to interpret or report changes in model parameters across sessions but to 464 

focus on the more descriptive logistic regression models reported below. The reason for 465 
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our failure to model our participants’ performance with these established models is 466 

puzzling and deserves further investigation. 467 

 468 

Table 1. Results of the model selection procedure for the computational models. All 469 

differences in LOOIC are small compared to their standard errors and model selection is 470 

therefore inconclusive. 471 

 472 

Model LOOIC ߂LOOIC SE(߂LOOIC) 

Order 10598.3 – – 

Full 10607.8 9.6 30.2 

tACS 10608.5 10.2 39.4 

Null 10615.3 17.0 33.2 

 473 

 474 

3.2. Accuracy and learning 475 

To assess learning performance across sessions, we fitted a series of hierarchical 476 

Bayesian logistic regression models, treating accuracy as the dependent variable. All of 477 

the models received a random intercept for each participant and for sessions nested 478 

within participants. Furthermore, we included various combinations of the following 479 

predictor variables: Card-type (four levels: Go-to-Win, NoGo-to-Avoid, Go-to-Avoid and 480 

NoGo-to-Avoid), tACS session (five levels: Training, Control, AM, Peak and Trough), 481 

Trial (Z-transformed trial number during each experimental session), Session order 482 

(continuous predictor coding for the order in which the tACS sessions were conducted) 483 

as well as their interactions. All of these 20 models were compared according to their 484 
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out-of-sample predictive performance using the LOOIC (Vehtari et al., 2017). Based on 485 

this criterion, we calculated model weights using two different techniques: Based on 486 

Akaike weights (Wagenmakers & Farrell, 2004) using the LOOIC instead of the AIC and 487 

using Bayesian model averaging (BMA; Yao et al., 2018). Both of these techniques 488 

resulted in posterior probabilities quantifying how likely it is that each of the models was 489 

the best one. 490 

After calculating these model selection criteria, we found converging evidence that 491 

the model that encompassed all predictors, including all two-way and three-way 492 

interactions between Card, tACS session and Trial, as well as a main effect of Session 493 

order outperformed the other models (Akaike weight ݌ = 0.63, next best model ݌ = 0.34; 494 

BMA weight ݌ = 0.47, next best model ݌ = 0.23).  495 

We therefore based our conclusions on that winning model and investigated it in 496 

detail. First, we checked that the model captured the trends in the data well. In Figure 3, 497 

we plotted the raw data and overlaid predictions from the winning logistic regression 498 

model (posterior predictive check). The model captured the trends in the data well and 499 

the uncertainty (95% HDIs) around the model-predictions was sufficiently broad relative 500 

to the fluctuations in the data. The Bayesian ܴଶ value for this model was ܴଶ = 0.23 501 

HDI[0.22,0.24]. 502 

 503 



 

24 
 

 504 

Figure 3. Posterior predictive checks for the final logistic regression model. The model 505 

predictions (solid lines) captured the main trends in the data (dashed lines) well. Colored 506 

ribbons are 95% HDIs. Abbreviations: AM – amplitude-modulated.   507 

 508 

We focused on two separate aspects of the data: First, we investigated how the 509 

general accuracy level varied across cards and sessions. In the presence of the three-510 

way interaction of Card × tACS session × Trial, we quantified and compared the 511 

accuracy level in the middle of each session. Second, we were interested in the learning 512 

rate with which accurate responding increased. In our model, this was manifested in the 513 

tACS session × Trial, Card × Trial and Card × tACS session × Trial interactions that 514 

allowed us to investigate the rate with which the correct way to respond to each of the 515 

cards was learned across the sessions. 516 

 517 

3.3. Average accuracy 518 

The accuracy levels as estimated by the model in the middle of each session are 519 

displayed in Figure 4. There was a significant amount of variation both between the 520 

cards and sessions. As expected, responses to the Go-to-Win card were generally most 521 

accurate (ܾீ௢஺௩௢ = −.88[−1.24,−0.54], ܾே௢ீ௢஺௩௢ = −1.02[−1.39,−0.68], ܾே௢ீ௢ௐ௜௡ =522 
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−1.25[−1.63,−0.90]) while the NoGo-to-Win card was most difficult with the other two 523 

cards being situated between. 524 

Furthermore, we found a learning effect between the Training session (which was 525 

always the first session each participant was exposed to) and the other sessions (which 526 

were randomized): Performance was better in all tACS sessions and for all cards, the 527 

only exception being the Go-to-Win card in the Trough session (ܲ(ܶ݃ݑ݋ݎℎ > ݃݊݅݊݅ܽݎܶ (ܹ݊݅݋ܩ 528∨ = 0.23). This learning-effect was not surprising given that this task is known to 529 

exhibit between-session learning effects (Csifcsák et al., 2020). However, after the initial 530 

effect of learning from the Training session to the second one, there was no clear further 531 

effect of Session order, ܾ௢௥ௗ௘௥ = −0.08[−0.26,0.10]. 532 

 533 

Figure 4. Estimated accuracy levels in the middle of the experimental session for each 

session and card. The colors represent the four card types, with the experimental 

sessions shown on the horizontal axis. Note that the participants received no tACS 

during the training session. Abbreviations: AM – amplitude-modulated tACS; control – 

control tACS.  
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We were interested in how general accuracy changed between the different tACS 534 

sessions. A summary of the results is presented in Figure 5, upper row. Here, each entry 535 

in the matrix documents the posterior probability that accuracy was increased from one 536 

session (A) to the next (B). High values close to 1 (red) indicate that session A was 537 

highly likely to show increased accuracy relative to session B while low values close to 538 

zero indicate the opposite. Intermediate values (grey) mean that the results are 539 

inconclusive for that particular comparison. For example, in the ‘Go to win’ card the 540 

value of 0.95 in the middle row, right column suggests that it is highly probable that the 541 

average accuracy was higher in the control tACS (session A) compared to the trough-542 

coupled tACS (session B).  543 

We start by comparing the three active tACS sessions AM, Peak and Trough with 544 

the Control session. The ݌-values given here represent the posterior probability that the 545 

active session showed higher accuracy compared with the Control session (i.e., the 546 

probability that the difference ܾ is positive) and are not to be confused with frequentist p-547 

values.  548 

There was no clear difference between the AM and the Control session for 549 

congruent cards (GoWin: ܾ = ݌,[0.47,0.87−]0.21 = 0.73, NoGoAvo: ܾ = ݌,[0.54,0.75−]0.06 =550 0.58) with possibly a small performance decrease for conflicting cards (GoAvo: ܾ ݌,[1.09,0.19−]0.43− 551= = 0.10, ܾ = ݌,[0.85,0.38−]0.25− = 0.22) though the HDIs for these 552 

effects did not exclude zero. The Peak session did not result in a change in general 553 

accuracy compared with Control for congruent (GoWin: ܾ = ݌,[0.86,0.47−]0.15− = 0.32, 554 

NoGoAvo: ܾ = ݌,[0.52,0.76−]0.11 = 0.63) or conflicting cards (GoAvo: 555 ܾ = ݌,[0.84,0.47−]0.19− = 0.28, NoGoWin: ܾ = ݌,[0.32,0.95−]0.31 = 0.84). Finally, the 556 
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Trough session showed reduced accuracy particularly for the easiest Go-to-Win cards, 557 ܾ = ݌,[1.18,0.11−]0.56− = 0.05 (but not for NoGo-to-Avoid, ܾ = ݌,[0.55,0.74−]0.11 = 0.62) 558 

and reduced accuracy for both conflicting cards (GoAvo: ܾ = −0.70[−1.33,−0.04], ݌ = 0.02, 559 

NoGo-to-Win: ܾ = ݌,[0.95,0.29−]0.34− = 0.14). Direct comparisons between the active 560 

stimulation sessions are also shown in Figure 5 (upper row). 561 

 562 

Figure 5. Comparison of average accuracy (top row) and learning rate (bottom row) 

between tACS sessions for each of the four cards. Colors and numbers in the matrices 

indicate the probability that the session indicated by the column showed a stronger 

effect compared with the session indicated by the row of each matrix. Abbreviations: AM 

– amplitude-modulated.   

 

3.4. Learning rate analysis  563 

Next, we supplemented the analysis of the general accuracy with a parallel analysis 564 

regarding the learning rate, i.e., Card and tACS session interactions with the Trial term 565 

in the model. In Figure 5 the lower row shows a summary of this analysis. AM and 566 
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Control sessions did not differ clearly for congruent cards (GoWin: 567 ܾ = ݌,[0.30,0.52−]0.10 = 0.68, NoGoAvo: ܾ = ݌,[0.47,0.31−]0.09− = 0.32), but learning 568 

was decreased for conflicting cards (GoAvo: ܾ = ݌,[0.13−,0.88−]0.50− = 0.01, 569 

NoGoWin: ܾ = ݌,[0.69,0.02−]0.33− = 0.04). For the Peak session, the results are 570 

similar but less clear, with a possible small improvement for Go-to-Win cards (ܾ ݌,[0.14,0.58−]0.24 571= = 0.89) but not NoGo-to-Avoid (ܾ = ݌,[0.51,0.28−]0.11− = 0.29) and 572 

possibly a weak decrease for Go-to-Avoid cards (ܾ = ݌,[0.61,0.18−]0.21− = 0.14) but 573 

not for the NoGo-to-Win cards (ܾ = ݌,[0.30,0.44−]0.08 = 0.66). For the Trough session, 574 

we found no clear differences for congruent cards (GoWin: ܾ = ݌,[0.41,0.31−]0.07− =575 0.36, NoGoAvo: ܾ = ݌,[0.22,0.59−]0.21 = 0.84) but clear learning decreases for the 576 

conflicting cards (GoAvo: ܾ = ݌,[0.01,0.74−]0.36 = 0.02, NoGoWin: 577 ܾ = ݌,[0.11,0.80]0.49 = 0.00). 578 

 579 

3.5. Perceptual adverse effects  580 

Most participants reported no cutaneous sensations during tACS, possibly due to the 581 

application of the topical anesthetic cream. However, we also inspected the amount of 582 

perceptual adverse effects, such as itching, tingling, and burning sensations, and 583 

phosphenes that were reported following each tACS session. A careful inspection of the 584 

subjectively reported perceptual adverse effects did not reveal any substantial 585 

differences between the stimulation sessions. 586 

 587 

4. Discussion 588 

In this study, we investigated the behavioral effects of three active theta-gamma 589 

CFC-tACS protocols in a cognitive control task. In the peak- and trough-coupled tACS 590 
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conditions, we coupled the short bursts of 80 Hz gamma tACS to the local maximum, 591 

i.e., peak, or minimum, i.e., trough, of the 4 Hz theta tACS. In the amplitude-modulated 592 

tACS condition, we modulated the amplitude of the 80 Hz gamma tACS by the phase of 593 

the 4 Hz theta tACS. In the fourth condition, which served as a control, we continuously 594 

coupled the 80 Hz gamma tACS to the 4 Hz theta tACS.  595 

As we had hypothesized, we found that the trough-coupled tACS condition impaired 596 

behavioral performance, in particular in the more challenging, conflicting trials. We 597 

speculate that this protocol likely interfered with the phase-dependent theta-gamma 598 

coupling between the cingulate (e.g., ACC) and the prefrontal cortices (e.g., DLPFC) 599 

(Smith et al., 2015). In a previous study using a Stroop-like interference task, information 600 

transfer analysis (Granger causality) showed that the feedback-related information 601 

travels from the ACC to the DLPFC in the theta band (Smith et al., 2015). These findings 602 

may suggest that the ACC presumably signals the need for cognitive control, whereas 603 

the DLPFC processes this information and influences ongoing behavior by exerting 604 

model-based behavioral control (Smith et al., 2015). Thus, the modulation of the 605 

information flow from the cingulate to prefrontal cortex via theta-gamma CFC could have 606 

impaired the model-based control in the trough-coupled tACS condition. 607 

The observed behavioral effects in the present study may be due to the direct 608 

stimulation of the frontal and cingulate cortices or to indirect network effects. It has been 609 

shown in primates that there are monosynaptic connections between the frontal cortex, 610 

including the ventromedial prefrontal and cingulate cortices, to the subthalamic nucleus 611 

(Haynes & Haber, 2013). This pathway is called the hyperdirect pathway, which 612 

supposedly exerts a strong top-down control on ongoing decisions: It influences whether 613 

an action is performed or not (Frank, 2006). One of the proposed functional relevancies 614 
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of the hyperdirect pathway is to slow down the initial actions in cognitive control 615 

situations, when it is crucial to quickly evaluate the expected outcome of different 616 

behavioral alternatives (Frank, 2006). It is possible that the observed behavioral findings 617 

in the present study are due to the notion that the trough-coupled tACS condition 618 

indirectly interfered with the neural oscillation in the hyperdirect pathway.   619 

At the same time, the trough-coupled tACS condition did not impair the average 620 

accuracy but it may even have slightly improved the learning rate in one of the 621 

congruent trials, i.e., ‘NoGo to Avoid’. We note, however, that the statistical analysis 622 

provided only inconclusive evidence for the improvement effect in the learning rate. We 623 

therefore interpret this finding that the trough-coupled tACS condition had only negligible 624 

effect if any on the ‘NoGo to Avoid’ decisions and that the main effect of the trough-625 

coupled tACS condition was interferential in nature.  626 

Unexpectedly, the amplitude-modulated tACS condition slowed the learning rate for 627 

the conflicting trials, which is reminiscent of the behavioral effects of the trough-coupled 628 

tACS condition. However, its diminishing behavioral effect was less pronounced when 629 

compared with the trough-coupled tACS condition. In the amplitude-modulated tACS 630 

protocols, the slow, i.e., the theta frequency, might have played an important role in 631 

producing the cognitive effects of tACS (Minami & Amano, 2017). As increased power of 632 

theta-range oscillations leads to better performance during cognitive conflict (Cavanagh 633 

et al., 2013), we would expect behavioral improvement under this protocol. Previous 634 

studies with single-frequency theta tACS showed beneficial behavioral effects in 635 

cognitive control tasks, including reduced reaction time or facilitated behavioral accuracy 636 

(Hsu et al., 2017; Lehr et al., 2019).   637 
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Contrary to our expectations, we found no clear and consistent behavioral effects for 638 

the peak-coupled tACS protocol. In a previous study, Alekseichuk and colleagues (2016) 639 

observed behavioral improvement in the sensitivity index of a spatial working memory 640 

task during the peak-coupled tACS. Since the peak-coupled tACS protocol mimics the 641 

phase-specificity of theta-gamma CFC when signaling the need for cognitive control 642 

(Smith et al., 2015), we expected that it would increase the efficacy of the cingulate 643 

cortex to signal the need for cognitive control and thereby increase the degree of model 644 

based control implemented by the prefrontal cortex.  645 

The lack of the behavioral effects could also have been due to the thorough 646 

instructional procedure we used in the present study. The exhaustive instructional 647 

procedure might have produced a ceiling effect, which could diminish the ability of the 648 

stimulation to further improve the performance of our volunteers. We expect that the 649 

peak-coupled tACS condition may improve the behavioral performance in groups of 650 

participants who do not reach the ceiling effect, e.g., in elderly participants or in 651 

individuals with mild cognitive impairment.  652 

One of the limitations of the present study is that the computational modelling results 653 

were inconclusive given that the model was unable to capture our participants’ behavior. 654 

Therefore, we can neither confirm nor falsify our third hypothesis concerning the 655 

underlying cognitive processes (i.e., Pavlovian bias parameter). We speculate that the 656 

lack of fit of our computational models could be, at least partially, due to the instructional 657 

procedure we used in this study. Specifically, our participants received very thorough 658 

instructions about the task including reading the written instruction, listening to the verbal 659 

explanation of the experimenter, performing the short practice, filling out the 660 

questionnaire about the task, and performing the training session. By this procedure, we 661 
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initially intended to minimize the probability that the participants would misunderstand 662 

the task and make their decisions in a random fashion. However, the exhaustive 663 

instructional procedure likely affected the strategy of the participants, who performed 664 

very well on the task. In fact, even though our task was more difficult than that used in 665 

previous studies (e.g., in Cavanagh et al., 2013), the overall accuracy level in the tACS 666 

sessions was higher in our study indicating that the participants were potentially able to 667 

exploit the task structure to improve their reward rate. 668 

Evidence exists that the task instruction can indirectly influence how humans perform 669 

an instrumental learning task. This phenomenon is known in the literature as the 670 

behavioral rule-governing effect (Doll et al., 2009). It is possible that after the 671 

instructional phase at least some participants were able to infer the correct structure of 672 

the task, even before the direct experience. This may have facilitated the learning 673 

process through the mechanism of confirmation bias (Doll et al., 2009); participants 674 

learned quickly to amplify those outcomes that were consistent with their internal model 675 

of the task and discarded the incompatible ones. Given the relatively difficult reward 676 

contingency probabilities (0.65 vs 0.35), we expected much more exploration in the 677 

initial phase of the task (e.g., Csifcsák et al., 2020).  678 

This argument is further supported by the results of the qualitative analysis we 679 

performed about the explicit knowledge of the card types. We found that all participants 680 

were able to correctly identify both the valence and the action value of the cards in the 681 

overwhelming majority of the cases (approx. 91%). Occasionally, the participants made 682 

mistakes when identifying the correct action to the valence (approx. 8%). Other error 683 

types were very rare. We interpret these findings as a further indirect support that the 684 

participants had explicit, rule-based knowledge about the structure of the task.  685 
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By using a less thorough instructional procedure, future studies may use 686 

computational modeling (e.g., in Csifcsák et al., 2020) to explore the hidden parameters 687 

that may be influenced by the CFC-tACS protocol. Because these models assume that 688 

participants do gradually learn the expected value of the stimulus (Cavanagh et al., 689 

2013; Csifcsák et al., 2020), we were not able to utilize them fruitfully in the present 690 

study.  691 

Another possible limitation of the present study is the lack of a sham tACS protocol. 692 

Because real tACS can induce both cutaneous and visual perceptual adverse effects 693 

during the entire stimulation period, we preferred using a control tACS protocol, instead 694 

of a sham tACS protocol (Turi et al., 2013). The conventionally used fade-in, short-695 

stimulation, fade-out sham protocols, may not be able to maintain effective blinding for 696 

the real intervention due to their shortness, as has been shown for transcranial direct 697 

current stimulation (Greinacher et al., 2019; Turi et al., 2019).  698 

According to an alternative explanation, the control condition might have improved 699 

the behavioral performance to a similar extent to the peak-coupled tACS condition but 700 

slightly stronger than in the amplitude-modulated tACS condition. Given that the theta 701 

and gamma tACS were continuously superimposed in the control condition, this protocol 702 

had equal chance to improve or impair the behavioral performance. Therefore, this 703 

alternative explanation does not explain why the control stimulation would have 704 

improved, rather than impaired the performance. Second, a previous study applying a 705 

closely matched control protocol found no cognitive effect on a cued-recall task, even 706 

when comparing the cognitive performance before and after the intervention (Amador de 707 

Lara et al., 2017). Therefore, we find this alternative explanation to be less likely. 708 
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Taken together, CFC-tACS protocols can extend single-frequency tACS protocols by 709 

enabling the testing of CFC phenomena intrinsic to endogenous network oscillations 710 

(Alekseichuk et al., 2016; Bächinger et al., 2017; Minami & Amano, 2017). In this study, 711 

we showed that trough-coupled tACS, i.e., when gamma tACS was coupled over the 712 

trough of theta tACS, and amplitude-modulated tACS decreased the behavioral 713 

performance and the use of cognitive control in healthy participants. These findings 714 

suggest that the phase of coupling between theta and gamma frequencies may play an 715 

important role in cognitive control.  716 

 717 

Extended Data 1 - Extended data 1 contains all materials, pseudonymized raw data 718 

and analysis scripts used in this study that are freely available at our repository. 719 
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