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“Cryptography is typically bypassed, not penetrated.”
—Adi Shamir

“Yo I might be wrong, definitely trust the thesaurus over this dinosaurus”
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Abstract

Increases in data production and growing demands for more computing power
leads to the current trend of outsourcing data and computation services to
cloud providers. With data breaches and cases of data misuse becoming in-
creasingly common, there is a high demand for secure systems. This, however,
conflicts with the current data trust models. A solution to this that is becoming
more common is the use of Trusted Execution Environment (TEE), aimed at
guaranteeing code and data integrity and confidentiality.

However, it has been shown that TEEs such as Intel’s Software Guard Exten-
sions (SGX) are susceptible to several types of side-channel attacks where an
adversary may gain information of the code and data within a secure environ-
ment, breaking the confidentiality property. There are some ways to counter
this, such as using oblivious primitives to hide access patterns which may
leak information, but these are inefficient and add performance overhead to
computation.

Another way to ensure data confidentiality while simultaneously retaining
the ability to perform computations on the data is through the use of Fully
Homomorphic Encryption (FHE). FHE allows computing on encrypted data,
preserving confidentiality and allowing outsourced computations to untrusted
parties such as cloud providers. However, this type of encryption is malleable
and lacks integrity protection, making it susceptible to integrity breaches where
an adversary could modify the data resulting in a corrupt or incorrect plaintext
after decryption.

This thesis implements a library for performing FHE in SGX, written in a
memory-safe programming language to strengthen the internal safety of soft-
ware in SGX and reduce its attack surface. We evaluate our design and show
that one can feasibly combine these concepts while providing stronger security
guarantees with a minimal development effort.
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Introduction

The rise of cloud computing has introduced new ways to design systems.
Cloud providers deliver both computational power and storage as a service to
consumers, which allows outsourcing computations to a higher degree than
before. Data confidentiality and security become increasingly important as
consumers process more sensitive data in cloud settings. However, with the
systems’ current design, a malicious actor such as the cloud provider could
access a consumer’s data and even alter it and the running program.

Fully Homomorphic Encryption (FHE) is a way to process data while main-
taining data confidentiality through encryption. Research in the area exploded
after the 2009 doctoral thesis of Craig Gentry [1] showed the first technique
for achieving FHE, after nearly 30 years of research since the idea’s conception
[2]. The concept is compelling, as it allows an untrusted party to compute
on confidential, encrypted data, meaning one can securely outsource compu-
tations to an untrusted party. The technique allows a plethora of previously
in-house computation settings to be outsourced to cloud providers, such as
health data processing, financial processing, genome research, and more. The
reality is a bit more complicated, as the computing party might still maliciously
alter results, since all Homomorphic Encryption (HE) schemes are malleable
by design. An altered result is theoretically indistinguishable from a correctly
processed result. This situation is something non-homomorphic encryption
schemes do not have to worry about, as their primary purpose is providing
confidentiality. The actual computations performed on data encrypted using
HE are also public, which might be unacceptable in some situations as the
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operations themselves might be secret. FHE partially solves the problem of
security in a cloud computing setting, in terms of data confidentiality, but
leaves certain problems such as data integrity unsolved.

Another advancement in the field of trusted computing is the concept of a
Trusted Execution Environment (TEE). A TEE is the concept of an environ-
ment that provides both data and code confidentiality. Additionally, it provides
security guarantees such as data and code integrity, which resists attacks from
unauthorized parties, both in software and hardware. It should provide these
guarantees even against a malicious Operating System (0S) or hypervisor. As
such, a TEE should, in theory, provide stronger security guarantees than FHE.
However, as always, reality is more complicated. TEEs have had troubles with
their implementation, as multiple works have found security flaws that breach
security guarantees it by definition should provide. A prominent example is In-
tel’s Software Guard Extensions (SGX), which is an attempt to utilize hardware
and software support to isolate an environment away from the surrounding
system. Several publications demonstrate attacks on Intel’s processors and on
SGX that breach confidentiality guarantees of the system, sometimes requiring
hardware changes to mitigate the attacks [3], [4], [5], [6].

As Intel’s SGX requires some hardware interaction in software, programs for
the TEE are often written in systems programming languages such as C and
C++. These languages are not memory safe, meaning they do not prevent a
developer from introducing memory-related bugs that may be exploited by an
attacker. Examples of these bugs are memory corruption errors, buffer over-
flows, uninitialized memory, data races, dereferencing pointers to unallocated
memory (e.g., null-pointer dereferencing), or dereferencing a pointer causing
an access violation, and much more. These types of errors are among the top-
most dangerous security errors [7], and are in some cases the most common
security vulnerabilities [8]. These errors might lead to worse results within
SGX as they might cause unintended referencing of untrusted memory, cause
data leakage to unauthorized parties, or allow a malicious host to hijack the
process inside SGX [9]. A programming language that is memory safe disables
the opportunity to make these mistakes, leading to stronger security.

In this thesis, we investigate the intersection between these three concepts, by
combining the techniques of FHE, an implementation of a TEE, and a program-
ming language that is memory safe. FHE provides cryptographically secure
data confidentiality while lacking integrity guarantees, and its weaknesses
align with the strengths of SGX, which is data and code integrity. At the same
time, we mitigate the potential confidentiality weaknesses that SGX has. By
also using a programming language that is memory safe, our design excludes
another class of security-vulnerabilities that are memory-safety related. Specif-
ically, we compare the relative performance metrics of a program using FHE
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outside and within SGX, all written in a memory-safe programming language.
By comparing the relative performance difference, we can determine if the
hybrid system is feasible in terms of performance while retaining more robust
security and safety guarantees than the alternative of using FHE or SGX on
its own. To the best of our knowledge, this is the first work that combines a
TEE with FHE to cover integrity weaknesses of FHE. Nor do we know of work
that emphasizes on memory safety through compile-time guarantees relating
to FHE. There exists earlier work using FHE schemes in a TEE, but for the
sake of removing the need for the expensive bootstrapping operations that
common FHE schemes require [10], by storing secret keys in a TEE. There
exists other work which uses Partially Homomorphic Encryption (PHE) inside
a TEE, though PHE is limiting in comparison to FHE, as we will show.

1.1 Thesis Statement

The integrity weaknesses of Homomorphic Encryption schemes are mitigable
using a Trusted Execution Environment. Programming languages that are
memory safe provide stronger security guarantees and can mitigate substantial
classes of security vulnerabilities.

This thesis shall investigate the feasibility of developing a system for perform-
ing fully homomorphic encryption in a trusted execution environment, using a
memory-safe programming language.

To investigate whether such a hybrid design is feasible or not, this thesis
will build a prototype and compare its performance to a system using Fully
Homomorphic Encryption outside the boundaries of a Trusted Execution Envi-
ronment.

1.2 Scope and Assumptions

The underlying foundation of our system is bipartite by design. First, we
rely on the mathematics and computational hardness assumptions behind the
TFHE [11] FHE scheme to provide confidentiality of data encrypted with it.
At the same time, this scheme, and as we show, any other FHE scheme, has
weaknesses related to security, notably data integrity and malleability. Secondly,
we rely on Intel SGX as a provider of a TEE, to guarantee both code and data
confidentiality and integrity. However, as we show, this system also has several
weaknesses, some of which entirely break the data confidentiality guarantees.
Our focus in this thesis is a hybrid approach, where we combine the two
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concepts to cover each of the weaknesses they entail. As such, we conjecture
that the hybrid approach should be a safer alternative than using either system
separately, as SGX provides data and code integrity, and TFHE provides data
confidentiality. We also conjecture that the hybrid system will be relatively
slow in execution time, as FHE is known for requiring a substantial amount of
processing power. We will implement a prototype for performing FHE using
the TFHE scheme within SGX, and evaluate the performance and compare the
relative performance change of our hybrid system to a system using only FHE,
at the loss of certain security guarantees.

To achieve this, we need to ensure we can perform homomorphic operations
on ciphertexts from the TFHE schemes while using SGX. Ensuring memory
safety is important, as one can still mistakenly experience memory corruption
vulnerabilities considering most SGX software is still developed using unsafely
typed languages such as C and C++. In security-related software, it is vital to
ensure the validity and correctness of programs and the absence of security-
related vulnerabilities, which often arises with languages that are not memory-
safe. Thus we will explore the use of a memory-safe programming language in
our construction while having a secondary focus that our construction does not
present significantly reduced performance characteristics than a non-memory
safe language would. Using this type of language will not only allow but also
enforce stronger security guarantees at the application layer.

We will not perform a detailed security analysis of our design, as it is a com-
plex and complicated task. It also requires comprehensive work and in-depth
knowledge of security analysis techniques, which we do not have at hand nor
do we have enough time.

1.3 Context

This thesis is written in the context of the Corpore Sano center?, which conducts
research in the convergence of computer science, sports science, and medical
research.

As part of this work, Corpore Sano has conducted research projects into secure,

distributed computation, including the Diggi [12] framework, and has come
up with performance principles for Intel SGX [13].

1. https://corporesano.no/
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1.4 Method and Approach
The Task Force on the Core of Computer Science presented in their final report
a way to divide the discipline of Computing into distinct paradigms [14]. The

three major paradigms are:

Theory which is rooted in mathematics and consists of four steps, followed in
the development of a coherent and valid theory:

1. First, one characterizes the objects of study, or definition.

2. Then, hypothesize possible relationships between them, or theorem.
3. Further, determine whether the relationships are true, or proof.

4. Lastly, interpret the results.

A mathematician expects to iterate on these steps, as they encounter
errors or inconsistencies.

Abstraction which is rooted in the experimental scientific method and follows
four steps when investigating a phenomenon:

1. Form a hypothesis on the phenomenon.

2. Construct a model to make a prediction.

3. Design an experiment to collect data.

4. Analyze the results.
A scientist expects to iterate these steps, as they encounter problems
such as when a model’s predictions disagree with experimental evidence.

Modeling is another word for this paradigm.

Design which is rooted in engineering and consists of four steps, followed in
the construction of a system to solve a problem:

1. State the requirements.
2. State the specifications.

3. Design and implement the system.
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4. Test and evaluate the system.

An engineer expects to iterate on these steps, as they encounter issues
such as the system not upholding requirements to a satisfactory level.

In this thesis, we work within the last paradigm, design. We state the require-
ments and specifications of the system associated with our conjecture. Further,
we present a design for a system, implement the requirements needed for our
system, and then create a prototype based on the design. We then evaluate
our prototype through a series of experiments and benchmarks, to assert the
conformity to the requirements and specifications set.

1.5 Contributions

This thesis contributes by providing an implementation of the TFHE [11]
cryptosystem, a FHE scheme, written in Rust. The library uses pure Rust
and has few dependencies. Since the primary goal of this thesis is to create
a safe way to perform FHE in SGX, the library works within SGX without
modification. The library is open-source, continuously maintained, and made
available online through a repository at the owner’s GitHub account?, and is
additionally appended to this thesis as part of the source files.

1.6 Outline

The remainder of this thesis is structured as follows:

Chapter 2 on page 9 details the background of HE and FHE and its limita-
tions, specifically through the TFHE scheme [11]. It further details the
concept of a TEE, specifically Intel SGX [15], and its problems and weak-
nesses. It further describes the attractiveness of combining these concepts
to achieve a more secure system. Additionally, it outlines some related
work to our thesis.

Chapter 3 on page 25 details our choice of porting the existing TFHE [16]
library, and the reasoning behind choosing the Rust programming lan-
guage to implement this. Further, it describes the design of our system.

Chapter 4 on page 35 describes our implementation of the FHE library and

2. https://github.com/IsakSundeSingh/tfhe
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the choices made to ensure it meets the requirements of execution within
SGX.

Chapter 5 on page 47 details the setup of our experiments and systems, and
the methodology behind the experiments. If further goes on to present
and describe the results of our experiments.

Chapter 6 on page 61 details the findings of our experiments, possible reasons
for the observed behaviors, the security aspects of our design, and choices
and alternatives that could benefit our system.

Chapter 7 on page 73 summarizes this thesis and provides concluding re-
marks on our findings. Additionally, the chapter poses areas for improve-
ment, and thoughts and possibilities for future work.






Background

Section 2.1 details how and what Homomorphic Encryption (HE) is and Sec-
tion 2.2 on page 16 outlines a Trusted Execution Environment (TEE) and its
weaknesses. Section 2.3 on page 22 describes related work. Finally Section 2.4
on page 23 summarizes this chapter.

2.1 Homomorphic Encryption

Homomorphic encryption allows performing computations on ciphertexts, out-
putting another ciphertext where the decryption of it is the same result as if
one performs the computation to the unencrypted plaintext itself. HE is useful
as it makes it possible for an untrusted party to perform operations on data
while retaining the confidentiality of the data. Homomorphic properties of
encryption functions are common and are seen in ElGamal [17], unpadded RSA
[2], Paillier [18] and more. These encryption schemes, as with most encryption
schemes, are homomorphic within some space. As an example, we can have a
simple homomorphic system:

E(a)®E(D) =E(a+b) mod g (2.1)

Where & is some encryption function, a and b are some integer plaintexts, so
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&(a) is the encryption of a. q is the modulus of the ciphertext space, meaning
a ciphertext is always in the range [0, q) and g € Z, or written as Z,. @ is a
binary operation on two ciphertexts, in this case, homomorphic to the plaintext
addition operator. This ciphertext space has implications that affect compu-
tations, meaning a ciphertext that overflows this modulus and wraps around
loses information. The example in equation 2.1 on the preceding page is an
encryption system which is homomorphic under addition. As this system is
homomorphic under a single operator, it is known as a Partially Homomorphic
Encryption (PHE) system. These encryption systems are useful, but as it is
homomorphic under a single operator, they are only instrumental in certain
circumstances. PHE under addition can be used for encrypted summation sys-
tems, encrypted vote counting and more, but are not more generally applicable.
If an encryption system is homomorphic under more than one operator, such
as both addition (+) and multiplication (-), they are called Somewhat Homo-
morphic Encryption (SHE) systems. Research articles often conflate PHE and
SHE systems erroneously. SHE systems are a lot more applicable as one can
do any Boolean operation if using integer arithmetic modulo 2, that is in the
B space. The set arithmetic operators + and - in this space can be considered
the logic operators exclusive-or (XOR) and conjunction (AND). The set of
these two operators conjoined with a constant value of 1, {AND, XOR, 1},
is functionally complete, also called a universal set because it can generate
one. If a set of operators is functionally complete, it means that all possible
truth tables are expressible using a combination of the members of the set.
That is, any logical circuit is constructible using this set. That means that if an
encryption system is homomorphic under both addition and multiplication, it
is functionally complete and can express any circuit. A complete guide to HE
and its surrounding terms are found in [19].

As seen in equation 2.1 on the previous page, the ciphertexts are in some
integer space, in this case Z,. This space leads to some limitations on the
computations that are achievable. That is, say the encryption of two plaintexts,
the plaintexts represented as two numbers a and b, are added together. That
is: E(a) + &(b) = &E(a + b). The resulting encryption is only correct if the
encrypted sum &E(a + b) is less than the modulus g. Otherwise the result will
wrap around, and information is lost, similarly to integer overflow in computers.
The wrap-around leads to some limitations with SHE as only a finite amount
of computations can be performed on a ciphertext before losing information
or producing incorrect results. This problem is inherent with the way these
cryptosystems work, so a different technique is required to perform more than
the limited amount of computations.



2.1/ HOMOMORPHIC ENCRYPTION 11

2.1.1 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is another step up from SHE where
there is no finite limit to the number of operations permitted on a ciphertext,
allowing an arbitrary amount of computations. Gentry [1] proposed in 2009
the first method to create a FHE scheme by converting SHE schemes to FHE
schemes through a process known as bootstrapping. There is also another
type of HE known as Leveled Homomorphic Encryption (LHE), which is less
powerful than FHE, but more efficient as it does not require the expensive
bootstrapping procedure. LHE schemes allow computation up to a certain
limit, usually depending on parameters such as the key size. SHE and LHE
are often mistaken to be the same, but there are differences. A LHE scheme
has the advantage of not having to perform the bootstrapping operation, so
it has a fast evaluation but requires one to know the depth of a circuit to
perform in advance to estimate the parameters of the setup. A FHE scheme, on
the other hand, has slow evaluation times, due to requiring the bootstrapping
procedure, but can evaluate any circuit, no matter the depth of it. There is also
the matter of Leveled Fully Homomorphic Encryption (LFHE), which is a small
step in-between LHE and FHE and often conflated with LHE. We do not detail
LFHE further as it is not relevant to our work. A more detailed explanation
and comparison between SHE, LHE, LFHE, and FHE is found in [19].

Bootstrapping

Explaining the bootstrapping process in the mathematical and technical sense
is challenging, and the process also varies from different encryption schemes.
It may also be confusing to see how processing data without having access to
it even would work. Thus it is useful to look at a physical analogy. The analogy
is paraphrased from [20].

Consider Alice, which owns a jewelry store. She has valuable materials that
she makes jewelry from and wishes that her workers can make the jewelry
for her. However, she distrusts her workers and does not wish them to have
access to the materials or finished products. Alice has an idea for how to ensure
her workers can produce jewelry without risking them stealing it. She locks
her materials in a transparent impenetrable glovebox and locks it with a key
for which only she has access. She gives the box to the workers and allows
them to assemble jewelry using the gloves. As the box is impenetrable, the
worker has no reason not to return it with the finished jewelry inside. Alice
can then unlock the box with her secret key. This process is analogous to
homomorphic encryption, where the glovebox with the materials locked inside
is the encryption of some data. The glovebox with the finished jewelry inside
is analogous to the encrypted result, which Alice decrypts using her secret key.
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The gloves represent the homomorphism, i.e., the operations performable on
the encrypted data. A lack of access to the data one computes defines HE. In
this analogy, the lack of physical access to the materials inside the impenetrable
box represents this.

The gloveboxes that Alice has defects and the gloves become stiff and useless
after a certain amount of time when worked. Importantly, the gloves stiffen be-
fore the workers finish making the jewelry pieces. The gloveboxes do, however,
have a one-way slot to insert things, allowing her to insert one box into another.
Alice realizes she could have a worker complete a whole set of jewelry using
several boxes and some keys. She gives a worker a glovebox, b;, containing the
required materials, while also handing them several additional boxes. These
additional boxes contain keys, where the second box, b,, contains the key to
the first box, ki, the third contains the key to the second (k»), and so forth.
A worker can then assemble the jewelry until the gloves become unusable,
insert the box into the second, unlock it, extract the partly assembled jewelry
and materials, and then continue the process, inserting b; into b;;; and then
unlocking it with the key k; contained within it. The process continues until
the worker has finished producing the jewelry. One thing to notice is that this
process does not work if the action of opening a glovebox within another box
takes more than or equal to the time it takes for the gloves to stiffen.

The analogy of Alice’s jewelry store is not perfect and has some flaws. Mainly,
a worker may effortlessly determine if a glovebox contains a particular set
of materials, so it lacks semantic security. Additionally, the input plaintexts,
my, my, ..., may be larger than the output after computing a function f on
the inputs, f(my, my,...). Moreover, it is highly unlikely that the boxes would
physically fit within one another.

The process of opening a glovebox within another glovebox is analogous to
evaluating the cryptosystem’s decryption function while itself is encrypted.
Any cryptosystem that has the self-referential property of being capable of
handling its decryption function is called bootstrappable. If some system is
bootstrappable, one can use it to construct a FHE scheme.

The old bootstrapping procedure proposed by Gentry [1], seen in Figure 2.1
on the facing page, is improved by work such as [21] and furthermore in
FHEW [22], which TFHE builds upon, improving asymptotic time complexity
of the decryption procedure in the security parameter to quasi-quadratic. An
overview of the revised bootstrapping procedure is seen in Figure 2.2 on the
next page.
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Figure 2.1: The original bootstrapping idea. The box with solid line around the mes-
sage m represents the encryption of m with key k1, the same contraption
inside a box with dotted outline represents the layered encryption of it with
respect to the key k3. The dotted-line box with k; inside represents the
encryption of key ki with respect to key k,. These encryptions are passed
through the decryption circuit, resulting in an encryption of the original
message m with respect to key kj. Security is preserved throughout the
decryption circuit as the message m is encrypted by the second layer of
homomorphic encryption.

Figure 2.2: A new and revised bootstrapping procedure. Instead of re-encrypting noisy
ciphertexts by adding an additional layer of homomorphic encryption, it
evaluates the decryption circuit directly on the ciphertext’s bits by using
the encryption of the key k; with respect to key k.

2.1.2 TFHE

This work focuses on TFHE [11], or Fast Fully Homomorphic Encryption over
the Torus, a symmetric lattice-based FHE scheme. It works by representing
polynomials with coefficients over T, the set of real numbers modulo 1, or R/Z.
The original library implementation, also called TFHE [16], is mainly designed
to work with computing on bits, in contrast to the other popular schemes
Homomorphic Encryption Arithmetic of Approximate Numbers (HEAAN) (also
commonly called Cheon-Kim-Kim-Song (CKKS), after the authors) [23] and
Brakerski-Gentry-Vaikuntanathan (BGV) [24], named after the authors. The
HEAAN scheme is designed for working with approximate numbers, as the
plaintext space is within the complex numbers, C. An implementation of the
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HEAAN scheme can be found in the HEAAN library!. The BGV scheme is more
appropriate than the others for use with integer arithmetic. The scheme is
applicable for building circuits with, but is more complex in use and requires
the developer to have considerable knowledge of the inner workings to establish
an efficient HE program. An implementation of the BGV scheme can be found in
Microsoft’s Simple Encrypted Arithmetic Library (SEAL) library2 and in HElib3,
both of which also implements the HEAAN scheme. All of these schemes build
on the Learning With Errors (LWE) problem or the ring-variant, Ring Learning
With Errors (RLWE). LWE is theorized to be post-quantum safe, meaning
there are no known strong attacks using quantum computing, unlike other
common encryption schemes such as RSA which are based on the prime number
factorization problem, which can be solved easily on a quantum computer using
Shor’s algorithm [25].

2.1.3 Integrity Weakness

A homomorphic encryption scheme can be described more generally as:

Ei(x) ® Ex(y) = Ex(x *y) (2.2)

In Equation 2.2 Ex(x) is the encryption of the plaintext x with the key k.
is some binary operation between plaintexts, and ® is a lifted version of *,
operating in the ciphertext space. Note that the lifted operator ® does not
necessarily involve the same operations as the * operator, meaning it may
have a higher complexity. Assume an attacker knows x and y in addition to
their encryptions Ej (x) and Ex(y), and there exists some pair (x, y) such that
x *y ¢ {x,y}. The attacker can then compute Ej(x) ® Er(y) to obtain a
ciphertext C, that corresponds to the encryption of x * y, which beforehand
was assumed to be different than x and y. Because of this, the attacker has
obtained a ciphertext that corresponds to a plaintext, x *y, they know, but whose
ciphertext they have not observed previously. An encryption system is malleable
when some attacker can transform a ciphertext into another ciphertext, and
then decrypting it to a related plaintext. Thus, any HE system is, by definition,
malleable, as opposed to non-malleable cryptosystems [26].

As HE allow processing encrypted data, they require a publicly known evalua-
tion key to process the data. With this key, even symmetric HE schemes such as
TFHE have similarities to asymmetric schemes in that one can publicly create
ciphertexts using the evaluation key. Allowing the creation of ciphertexts by

1. https://github.com/snucrypto/HEAAN
2. https://www.microsoft.com/en-us/research/project/microsoft-seal/
3. https://github.com/homenc/HE1lib
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a publicly known key means an attacker can use this to generate multiple
ciphertexts and thus extract information about which plaintexts some cipher-
texts encrypt (if they are encrypted using the same key). Thus an attacker
could eventually break an encryption system by cracking the decryption key
(using the information of the ciphertexts’ similarity). To prevent this situation,
a minimum required security notion is required. Semantic security is a notion
which implies that only a negligible amount of information can be extracted
from a ciphertext without access to the decryption key [27]. Semantic security
implies that the encryption scheme is probabilistic, meaning two encryptions
of the same plaintext are inequal. A further class of security notions is Indis-
tinguishability under Chosen-Plaintext Attack (IND-CPA). This security means
that if an adversary chooses two messages of the same length and sends them
to an encryption oracle, and a ciphertext is returned, the adversary should not
be able to guess which plaintext was encrypted with a higher probability than
if the adversary randomly guessed. This means semantic security implies the
encryption scheme is IND-CPA. It is a difficult concept to understand, but it
means that semantically secure, but malleable encryption schemes are secure
under standard IND-CPA but not secure under Indistinguishability under Adap-
tive Chosen-Ciphertext Attack (IND-CCA2) [28]. It has been shown that some
encryption schemes that are IND-CPA become insecure when they encrypt
their own decryption key, called circular security [29]. As HE schemes encrypt
their decryption key as part of the bootstrapping process, they have circular
security. The implications of circular security properties of HE schemes and
their relation to the different notions of security are not fully understood, but
a full explanation of different security notions and their implications are seen
in [30] and [28]. By processing ciphertexts within a TEE, an adversary cannot
modify nor even read the ciphertext, eliminating the issue of malleability and
thus providing stronger security.

2.1.4 Circuits

For programs to be evaluable on homomorphically encrypted data, homo-
morphic primitives are required to represent them. As mentioned, having a
functionally complete set of operations means any circuit is expressible. In this
sense, a circuit, specifically a boolean circuit, is the mathematical model behind
digital logic circuits used in integrated circuits. However, all data processed
through this circuit is homomorphically encrypted. That all data is encrypted
means that when a gate operates on a value or values, it does not know the
values before processing, nor the result.

As a consequence of this, we cannot perform actions dependant on the result-
ing computation, or Data-Dependent Branching (DDB). That means it cannot
perform unbounded loops or any conditional evaluation. Unfortunately, and
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fortunately, in terms of security, this disallows an executor of a circuit with ac-
companying data to perform more than a single branch of a program. It makes
it a lot harder to convert general programs into a circuit for use in HE and is
limiting for the user. A possible way to handle this is to evaluate all branches
of an execution path and transform the code accordingly. Transforming code
in this matter is, however, challenging at best, if not impossible. It is also a
manual process.

Although it may seem too limiting for anything to compute on homomorphically
encrypted data, specific techniques are possible to use to achieve a higher
degree of functionality. An example is string matching, file retrieval, and even
sorting encrypted data, although relatively slowly [31]. As an example, Figure
2.3 depicts a circuit for comparing two bits homomorphically. A single circuit
like this can have the input r;_; = 1 to calculate a; < b;, where q; and b; are
two bits. One can then chain these circuits together to account for the number
of bits in a bit-string to compare.

T
L

Figure 2.3: Circuit diagram for homomorphic comparison circuit. a; and b; are the
current bits being compared, while r;_; is the carried result (starting value
1), and r; the new carried result. After a chain of these r; will be 1 if B is
greater than or equal to A.

2.2 Trusted Execution Environments

Trusted computing is a definition of systems that aid in achieving secure com-
putations, privacy, and data protection. A Trusted Platform Module (TPM) is
an example of a trusted computing component in hardware. It provides an
interface that presents evidence if someone tampered with cryptographic keys
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or some other data stored within it. A TPM only supplies a predefined API and
does not provide an isolated execution environment, thus reducing its practi-
cality. Later work in hardware introduces the concept of a TEE, reinforcing the
definition of trusted computing. A TEE is an isolated environment guarantee-
ing to protect both code and data loaded within it in terms of confidentiality.
Various definitions of TEEs have been given, that contradict each other in some
areas, but are comparable in others [32], [33], [34], [35]. Sabt et al. compares
these definitions and formalizes a description for TEEs by building on the
notion of a separation kernel, first described by Rushby [36] and defines four
main security policies:

Data (spatial) separation Data within one partition cannot be read or modi-
fied by other partitions.

Sanitization (temporal separation) Shared resources cannot be used to leak
information to other partitions.

Control of information flow Communication between partitions cannot oc-
cur unless explicitly permitted.

Fault isolation Security breach in one partition cannot spread to other parti-
tions.

Building on these definitions, they define a TEE as “[...] a tamper-resistant pro-
cessing environment that runs on a separation kernel”. A TEE should guarantee
the authenticity of the executed code, including the integrity of the runtime
state, such as Central Processing Unit (CPU) registers. It guarantees the confi-
dentiality of code, data and runtime state persisted to secondary memory, e.g.
through encryption. Moreover, a TEE should have the possibility of providing
remote attestation, proving trustworthiness for third-parties. Contents within
a TEE should be able to be updated securely. They should resist against all
software attacks and physical attacks that are performed against main mem-
ory too. Attacks performed through backdoor security flaws are not possible.
Consequently, a TEE should be secure in a way that even an Operating System
(0s) is separated and cannot access nor modify it.

These conditions warrant that tasks can be sent to third-parties and executed
within a TEE, without requiring trust in that party. Not requiring trusting the
computing party allows for data-sensitive tasks to be outsourced, given they
provide a TEE.
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2.2.1 Arm TrustZone

Arm TrustZone [37] is a TEE implemented in Arm’s processors. These TEES
are designed and targeted at embedded computing as they produce chipsets
mostly for embedded platforms. TrustZone separates execution of code into
two separate groups: the non-secure normal execution environment, or world,
and a secure execution environment, that is trusted and certifiable. TrustZone
provides isolation of separate hardware components while adding only a
low impact on system performance. It allows securing a software library or
an entire OS within the secure execution environment. TrustZone blocks
software running in the non-secure environment from accessing the secure
environment and any of its resources. Tasks that require the transmission of data
or operations across the border between secure and non-secure environments
must pass through monitor software, called secure monitor or core logic (in
Cortex-A or Cortex-M processors, respectively). TrustZone also provides a
secure boot sequence to verify secure boot images, and can be authenticated
using cryptographic keys. An illustration of TrustZone’s architecture overview
can be seen in Figure 2.4.

Normal world Secure world

Secure world
user mode

Normal world
user mode

A

v

Normal world
privileged modes

A

v

Secure world
privileged modes

Monitor mode |«

bttt e

Figure 2.4: Arm TrustZone schema, with user-modes and privileged modes in both
the normal and secure worlds, figure taken from [38, p. 38].

2.2.2 Intel SGX

Intel Software Guard Extensions (SGX) [15] is an implementation of a TEE
in Intel’s processors. SGX TEEs has execution environments which Intel refers
to as enclaves. Intel’s SGX is architecturally different from Arm’s TrustZone,
as TrustZone has execution split into two environments that are secure and
non-secure, while an Intel CPU supporting SGX may have several enclaves at
once. The support for multiple enclaves makes SGX more relevant to cloud
computing in contrast to Arm TrustZone, in addition to Intel’s narrower focus
towards server and workstation processors.
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One of the more essential features of SGX is known as remote attestation. By
utilizing remote attestation, an enclave may prove its identity and authenticity
to the user, that it has not been tampered with, that it is executing on genuine
Intel hardware and is running the latest version of the software. When an
enclave performs remote attestation, it communicates through an authenticated
channel with some service provider which then verifies the enclave through an
attestation service.* The attestation service is at the time of writing provided
by Intel, but more recent work allows third-parties to provide such a service
[39].

SGX needs to ensure that memory cannot be read nor modified by other
processes, kernel threads and not any hypervisor either. To achieve this, SGX
locks memory through a system called Protected RAM (PRAM) which can
only be accessed by the owning enclave. Additionally, Intel provides a memory
encryption engine that supports encrypted paging when memory requirements
exceed the limits of PRAM, storing pages in a specific region of physical memory
known as the Enclave Page Cache (EPC). SGX enables the OS to virtualize the
EPC and page its encrypted contents securely to other storage.

2.2.3 SGX's Weaknesses

A TEE such as SGX provides several mechanisms to protect the contents within
the enclaves, however many are rooted in hardware. Hardware modules such
as the TPM are designed to be tamper-resistant, but work shows that they
might still be susceptible to physical attacks, such as the cuckoo attacks where
an adversary tries to gain access to hardware encryption keys [40]. There are
several ways for an adversary to physically attack hardware components to
extract information, through power-monitoring (or power-tweaking) attacks
such as Plundervolt [41], acoustic cryptanalysis attacks such as in [42] where
they placed microphones in the vicinity of a computer, electromagnetic attacks,
optical attacks and more. We do not consider these types of physical hardware
attacks in this thesis.

In addition to physical attacks, several software-based attacks exists. For-
mally, these software and physical attacks are known as side-channel attacks.
These software-based side-channel attacks range from page-fault-based attacks,
cache-based attacks and interface-based attacks [3], [4], [5], all of which im-
pair the confidentiality of SGX. Some of these attacks are not specific to SGX
and are general enough to work against processors supporting Simultaneous
Multithreading (SMT) [43]. Many researchers focus on finding defences or

4.A complete explanation of this process can be found at https://api.
trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
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counters to these types of attacks, such as Déja Vu [44], which tries to detect
side-channel attacks conducted by a privileged attacker (such as a malicious
0s or virus-infected 0S).

Even when one does not consider these side-channel attacks possible, one still
has to place trust in Intel, Arm, or another company, as the manufacturer of
the TEE. In the case of Intel SGX, the TEE comprises of several hardware
mechanisms in addition to software systems and a Software Development Kit
(SDK). Trusted Computing Base (TCB) is introduced by Rushby in [36], who
defines it as the set of all software- and hardware-critical components to some
system’s security. It is sensitive in that bugs and vulnerabilities might lead to
a system failure, leak private information, or allow unprivileged individuals
access. Essentially, a trusted computing base is an attack surface for malicious
adversaries; hence one would want to minimize it if possible. As mentioned,
SGX’s TCB consists of the hardware and the enclave SDK. A TCB is frequently
measured in terms of Source Lines of Code (SLOC), being the number of lines
of actual code (excluding comments and insignificant white-space) a codebase
contains. The Intel SGX Linux SDK consists of around 200 k SLOC at the time
of writing.

2.2.4 Countermeasures to SGX Weaknesses

Some types of side-channel attacks that exploit access-pattern information
leakage can be protected against using techniques such as Oblivious RAM
(ORAM). ORAM [45] can be seen as a compiler that transforms memory accesses
of a program into a program where the distribution of memory accesses differs
(is independent) from the original program while preserving the semantics of
the program. It may add accesses to external memory to hide real accesses.
One can implement an Abstract Data Type (ADT) as an oblivious data structure.
An example can be a balanced binary tree, where a lookup for an element
usually would instantly be returned and has time complexity O(log n) (with n
elements). An early return will leak the location of the element within the tree,
either which node or which block of memory it is within, as the last fetched
node contains the element. In an oblivious implementation, one could scan
the entire tree before returning the element, which would access all nodes,
hiding the element’s location within the tree. However, this implementation is
inefficient and turns the time complexity to O(n) instead. ORAM hides memory
accesses in a similar, but more general way.

Path ORAM [46] improves upon regular ORAM and has a low space overhead
and in some cases, asymptotically improved performance compared to ear-
lier work. Circuit ORAM [47] further improves the techniques and gives an
implementation with a complexity near the theoretical lower-bound.
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An example of oblivious primitives in action is seen in ZeroTrace [48], which
strengthens security against access-pattern side-channel attacks in SGX. It
provides an efficient block-level memory controller to hide access patterns.
Both Path ORAM and Circuit ORAM are implemented and gave in some situ-
ations only a logarithmic overhead in bandwidth costs between enclave code
and ORAM servers. ZeroTrace mitigates considerable weaknesses in SGX as it
protects against shared resource and page-fault related attacks by converting
programs into oblivious representations.

Another example of oblivious memory primitives in SGX is Oblix [49], an
oblivious search index. The authors introduce something they call doubly-
oblivious techniques. They call it doubly-oblivious as it ensures that accesses
to external servers as well as the ORAM clients internal memory are oblivious.
An ORAM client is a program which accesses an external resource (an ORAM
server) through oblivious techniques. These doubly-oblivious techniques ensure
that even if an adversary were to observe accesses to a client’s internal memory,
it could learn no information on the data. Oblix additionally designs oblivious
algorithms that are more efficient than earlier work and implements a contact
number discovery service akin to Signal’s service implemented in SGX as a
demonstration [50]. They use different techniques than Signal, but achieve
speedups ranging from ~ 9X to ~ 140X faster while strengthening security, by
utilizing the doubly-oblivious techniques, at the same time.

Although researchers always find some way to mitigate parts of attacks on
SGX, there is always someone else finding a new way to breach the security
guarantees. The CacheOut [6] attack, which exploits the fact that hardware-
cache that is flushed and overwritten still can be recovered. Their attack can
even selectively choose parts of data to leak with relatively high efficiency, unlike
previous attacks where the attacker could only observe the leaked data the cpPU
enclave was currently accessing. This attack requires hardware fixes and proves
once again that SGX enclaves do not fully protect the confidentiality of data
and code in enclaves, and that other protective measures are required.

Another attack on SGX which build upon the CacheOut attack is SGAxe [51].
SGAxe exploits the CacheOut attack to compromise both the confidentiality
but also the integrity of an enclave’s memory. The attack extracts the secret
attestation key used by enclaves to prove that they are genuine, meaning a
malicious attacker such as a malicious cloud vendor could pass a fake enclave
for a real one, tricking the client. This attack compromises many security
guarantees needed in our hybrid TEE and FHE solution, but most importantly,
it compromises the integrity guarantees required for our system to work.

Also very recently, a new class of attacks against Intel CPUs was discovered,
with the attack known as IVI (Load Value Injection) [52]. The attack builds
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on the Meltdown [53] attack to inject the attacker’s data into the victim’s
data stream. This vulnerability breaches the data integrity guarantees that
SGX should provide as it opens the possibility for the victim’s code to execute
on the attacker’s data, breaking all the correctness guarantees of the user’s
code. Additionally, it might lead to a denial-of-service attack by injecting data
structured in a way the user’s code did not expect, leading to software crashes.
The performance impact that software mitigations to this attack impose is
potentially up to 19x.

2.3 Related Work

Drucker and Gueron [54] state that most secure cloud database solutions tend
to provide confidentiality and integrity of data use either a TEE, encrypting
data before sending it to the cloud or encrypt it using HE. They show that
combining a TEE and using HE is feasible and does not need to rely on the
TEE for confidentiality purposes. For security, they consider two attack types;
attackers from outside the cloud server, or attackers from within, usually with
administrator privileges. HE is malleable and is thus susceptible to integrity
attacks. They compare their work to CryptDB [55] and MrCrypt [56] which both
use PHE, but lack integrity security for both code and data. Drucker and Gueron
combine the PHE scheme Paillier [18] (allows the addition of ciphertexts and
multiplication of ciphertexts with plaintexts) and SGX, where SGX provides
integrity of code and data (in addition to some confidentiality guarantees,
side-channel attacks aside). The Paillier cryptosystem ensures data is private
and provides confidentiality, even within the enclave. The combination allows
the system to place less trust in Intel, as the Paillier cryptosystem guarantees
confidentiality for the encrypted data while allowing some computations. They
experiment with an employee salary database where the Paillier cryptosystem
encrypts salaries. By selecting the sum of the encrypted salaries in the database,
they only experience around 1.7X performance slowdown compared to not
running in SGX with PHE. Execution time grows linearly with the number of
summed entries, as expected. They present a potential electronic voting system
with the combined model that ensures the anonymity of voters, at most once
voting, the integrity of voting results, prevents vote duplication and can ensure
the legitimacy of inputs. Additionally, they present other example usages for
the combined model, with a similar ability (in terms of the complexity and
scale of the system).

SAFETY [57] is a system which combines PHE and SGX to securely process
genome data to identify genetic risk factors for diseases. This data is quite sen-
sitive and often comes with strict regulations on how to process and store it. By
combining Paillier encryption with SGX they created a system which achieved
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a 4.8x speedup compared to existing secure computing techniques.

TEEFHE [10] is an example of combining FHE with SGX by performing the
bootstrapping step within SGX. They use the BGV [24] scheme implemented in
SEAL and modify the library to run within SGX. They distribute the work into
several nodes, where some nodes process the ciphertexts using homomorphic
operations in untrusted environments, and when they require the bootstrapping
procedure, the processing nodes transmit them to a node which has the SEAL
library running within SGX. The enclaves in these nodes have the secret
key to decrypt and encrypt ciphertexts, so they first decrypt the incoming
ciphertexts and re-encrypt them on the way out, and they are sent to the
processing nodes to be further processed, that then can be transmitted back to
the user when computations are complete. SGX enclaves perform encryption
and decryption, preserving data and code integrity and confidentiality, as they
do not consider side-channel attacks. Decrypting and encrypting a ciphertext
removes the encoded noise and refreshes the ciphertext, effectively doing the
same as a bootstrapping operation, but at a lower cost. As the untrusted
compute servers perform computations on the encrypted data, they do not
preserve data integrity in the case of an attack.

2.4 Summary

This chapter looks into the foundations of HE and more specifically, how to
achieve FHE. It mentions the advantages of the technique, and the integrity
weaknesses it entails that is malleability. Further, we explain the concept of a
TEE, mention Arm’s TrustZone and detail on Intel’s SGX. SGX does have some
weaknesses regarding data confidentiality as multiple attacks have shown. We
mention how using a TEE such as SGX could cover the integrity weakness
of FHE, which simultaneously provides stronger confidentiality guarantees to
SGX. As TrustZone aims for embedded systems which frequently concentrate
for the field of Internet of Things (I0T), microcontrollers or other embedded
systems, this thesis focuses on Intel SGX.






Design

This chapter gives insight into some of our design choices. Section 3.1 lays out
the various Fully Homomorphic Encryption (FHE) libraries that are available,
their use-cases, and which we chose. Section 3.2 on the following page argues
for our reasoning behind choosing to port the library, and Section 3.3 on page 28
follows by underpinning reasons for choosing Rust as a programming language.
Finally, Section 3.4 on page 34 summarizes this chapter.

3.1 Homomorphic Encryption Library

There are several implementations of FHE schemes in libraries, most notably
Simple Encrypted Arithmetic Library (SEAL) [58], HElib [59], Homomorphic
Encryption Arithmetic of Approximate Numbers (HEAAN) [23] and TFHE
[16]. The first two implement the Brakerski-Gentry-Vaikuntanathan (BGV)
schemes and HEAAN [23] scheme. HEAAN implements the latter scheme, and
TFHE implements a variation of the Gentry-Sahai-Waters (GSW) [60] scheme.
HEAAN aims for and is most appropriate for approximate number calculations,
similar to floating-point computations or numerical computations. The BGV
scheme allows creating circuits and encoding programs with high performance,
but at the same time, requires a substantial amount of domain-knowledge of
Homomorphic Encryption (HE) and the scheme itself. Misusing it leads to large
performance penalties as their library documentation also emphasizes. TFHE
aims to be a simple library and has a very simple Application Programming
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Interface (API), while still providing very fast bootstrapping times. Because
of this, this work focuses on the TFHE scheme and library as it is flexible for
prototyping without extensive research into the BGV scheme.

The TFHE library is written in a combination of C and C++. It has some
external dependencies for a Fast Fourier Transform (FFT) implementation. As it
dynamically loads libraries at runtime, it is unsuitable for use in Software Guard
Extensions (SGX). Dynamically loading libraries is the responsibility of the
Operating System (0S) and is thus not suitable in SGX, although work such as
DynSGX [61] achieves loading functions dynamically. Thus, it is appropriate to
rework the library to ensure it is statically linked, to allow running it within SGX
without requiring contact with anything outside the enclave. However, due to
the unsafe nature of C and C+ +, as we will further show, this allows a large class
of software vulnerabilities to exist. C and C++ are languages without memory
safety, meaning they allow the execution of several operations that cause
dangerous Undefined Behavior (UB). Memory-safety disallows several security
risks such as null-pointer dereferencing, leading to an adversary potentially
hijacking an enclave, data leakage, or other out-of-enclave bugs [9]. Furthermore,
it allows memory corruption errors, buffer overflows, accessing uninitialized
memory, dereferencing pointers causing access violations (segmentation faults),
data races and more. Memory safety in SGX is important as UB might lead to
a breach of enclave security guarantees, and is why research into using Rust (a
memory-safe language) in SGX is a studied area [62]. Thus, to achieve a higher
degree of security, reworking the TFHE library to link dependencies for use in
SGX statically is insufficient and still allows the user to write code that performs
operations that are not memory safe and might cause security violations. We
wish to prevent as much insecure behavior in SGX as possible.

3.2 Porting the TFHE Library for Homomorphic
Encryption

The original TFHE library is written in C+ + with C header files, so it seems to
be easy enough to use in SGX. Unfortunately, it is not. The library has several
dynamically linked libraries, which is problematic in SGX, as one needs to
trust the OS since the kernel is responsible for loading and linking dynamic
libraries.

Another reason is that the existing Software Development Kit (SDK) for SGX is
difficult to use without extensive knowledge of how SGX works. As SGX is dis-
entangled from any OS it requires the code to be non-dependent on OS-specific
features. Additionally, SGX enclaves have a limited Protected RAM (PRAM), SO
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the code should have a small or non-existent runtime. Specifically, as program-
ming languages with runtimes often require an underlying OS to function, any
language with a runtime is practically out of the question. The programming
language should probably not be garbage-collected as these languages often
have a significant memory overhead, and paging is an expensive operation in
SGX as pages need to be encrypted. Even though work such as Se-Lambda
[63] use a garbage-collected language, specifically JavaScript, within SGX and
with impressing efficiency, we argue that our language should not be garbage-
collected. The reason is that FHE is very performance and resource-heavy, as
an example can a single binary gate perform in around 13 ms in the TFHE
library using hand-optimized assembly code [64], a relatively high number
considering the effort. Using any language that applies costly abstractions or
gives a large runtime overhead is infeasible.

C and C++ do not have memory safety, meaning it is up to the programmer
to not make mistakes. Memory safety issues such as dangling pointers, double
free, use after free, accessing uninitialized memory and dereferencing null
pointers are common mistakes in C and C+ +. These issues are dangerous in
SGX as it is easy to mistake enclave-pointers to non-enclave memory, potentially
leading to a breach of confidentiality. Garbage-collected languages are often
memory-safe, as they allocate memory for the user and track references to
allocated memory, they will eventually deallocate unused memory, and ensures
that code will not dereference unallocated memory, though in some languages
it may be uninitialized. Garbage-collectors do, however, often have a signifi-
cant memory-overhead, often requires multithreading to intercept threads and
perform collection. They also use techniques of collection, leading to unpre-
dictable performance spikes. In some cases this can lead to garbage-collection
pauses of up to minutes or seconds, depending on the collection strategy and
memory usage of a program, which is not at all negligible in situations where
responsiveness or performance is critical [65].

Additionally, C is not developer-friendly with regards to adding higher-level
abstractions. Writing in C often requires one to write performant, but slightly
unreadable code, or more readable code with abstractions and several levels
of indirection while sacrificing performance, though with more possibilities for
unsafe code. It also skews developers to develop leaky abstractions, in some
cases. C++ is better in this regard, allowing performant abstractions. However,
since we want to explore a memory-safe language, they will not suffice.
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3.3 Choosing a Programming Language

Rust! [66] is a strongly and statically typed systems programming language
designed with a focus of C interoperability. A core principle of Rust is memory
safety without garbage collection. Other memory-safe languages handle mem-
ory safety through garbage collection but impose a large runtime overhead.
Rust has (close to, similar to C’s runtime) no runtime overhead and manages
memory through a borrow-checking- and lifetime-system. A value that can be
de-allocated cannot be used after de-allocation, also known as an affine type
(sometimes erroneously called a linear type), a type that can be used at most
once. Each reference to some variable in Rust has an owner and variables are
immutable by default. To be able to mutate a variable, it must be explicitly
marked as mutable. References can be shared or exclusive. The borrow checker
in Rust ensures that there can be only one owner of a variable at any time,
any number of shared references at a time without any exclusive references,
or only one exclusive reference without any shared reference at any point in a
program. By doing this, the borrow checker ensures that memory is not read
while being mutated, as well as ensuring only one thread can mutate while no
one can read. Coincidentally, these properties ensure that the borrow-checker
and type system of Rust fulfills what is known as Bernstein’s Conditions [67].
These conditions state that if u and v are some operations on some memory
regions, M(v) is the set of memory regions mutated by v and R(v) is the set of
memory regions being read by v, we have the following equation:

M(v) N M(u) = R(v) N M(v) = R(u) N M(u) =0 (3.1)

If Equation 3.1 holds, then the operations v and u are safe to parallelize or run
concurrently, with “safe” in this context meaning without modifying program
results. Rust’s borrow checker enforces this equation, leading to the next core
principle of Rust: fearless concurrency. Because the borrow checker ensures
the equation holds, any Rust program using the safe part of it (unsafe Rust is
opt-in) is free of data-races such as Read-After-Write (RAW), Write-After-Read
(WAR) or Write-After-Write (WAW), something the RustBelt project formally
proved [68].

The last core principle of Rust is “abstraction without overhead”, also known as
zero-cost abstractions. This principle takes from C++ and essentially means
that one should not pay for features one do not use and what one do use one
could not hand-code any better oneself. Rust’s traits are an example of this.
Traits are equivalent to interfaces in many languages, but Rust’s monomorphiza-
tion strategy generates a single implementation for each type implementing a

1. https://www.rust-lang.org/
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trait, permanently erasing the abstraction, leading to just as fast code as if the
abstraction was not there.

A simple example shows the benefit of this. Consider a function checking if a
given value is in an array of values, returning a boolean value. In C-style Rust
this could be written as:

fn number_in(numbers: &[i32], value: i32) -> bool {
for i in O..numbers.len() {
if numbers[i] == value {
return true;
+
}
return false;

}

Line 1 in the example is the function signature, with fn declaring a function,
numbers_in the function name, numbers: &[i32] being the first argument,
a value with the type slice (pointer to part of an array) of 32-bit integers,
value: i32 the argument to look for, and -> bool specifying the return
value. The rest of the function body should be relatively easy to understand
and is quite similar to C. In idiomatic Rust, the code snippet can be written
as:

fn number in(numbers: &[i32], value: i32) -> bool {
numbers.iter().any(|x| *x == value)

3

The signature is the same, but the body creates an iterator over the slice, uses
the any -method which takes a closure applied to every element in the iterator,
returning a boolean when the first closure returns true, otherwise false. In
Rust, the last expression of a block is returned, so the return keyword can
be omitted. This example is more concise, shorter and faster. The abstractions
compile away, and a simple microbenchmark on the author’s laptop showed
that for a million integers where the number searched for is at the end of
the array, the first example completes in 96 ms while the last example takes
64 ms. While not being a thorough benchmark, it shows how abstractions
do not impose a high cost in Rust. The second version has a dereferencing
operation in the closure ( *x ), while the first does not. This is because the
first example is automatically dereferenced in the for-loop, while it is not in
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the closure as .iter() returns an iterator that returns shared references
to the values. This example is slightly contrived, as the same is achievable
with numbers.contains(&value) which is implemented identically to our
example?, rendering the function unnecessary.

It has been shown that memory safety issues cause a large percentage of
security bugs and vulnerabilities, up to 70% in Microsoft’s products [8] and
around 70% in the Chromium projects [69], so any attempt to mitigate these
by ensuring memory safety is useful. Rust mitigates almost all of these as it is
memory-safe by design, which the RustBelt project [68] formally proved for
a subset of the Rust standard library. Thus, the fact that Rust provides these
guarantees is vital, considering the broad range of security vulnerabilities it
eliminates.

Rust libraries are known as crates. A crate consists of several modules, where
each module contains the types, traits, functions, and submodules it might
need. A crate that is published as a library is called a package, where the
package contains the crate. We use the terms package, crate and library
interchangeably in this thesis. Rust statically links all crates. Except for the
C library implementation, which can be statically linked if one uses musl3,
all crates are statically linked, compiling down to a single, portable binary.
Statically linking libraries allows for easy use in a multitude of platforms,
including SGX.

3.3.1 Undefined Behavior

In C and C++, there are many cases where common code is UB. UB means
that it is up to the compiler to handle the case, and various compilers make
different decisions. Having UB in the code implies that code can execute quite
differently than the developer expects, such as optimizing parts of the code
away, a computation being optimized into a single constant value, or change
execution flow [70]. Much of common code qualifies as UB, as there are lots
of operations defined as undefined behavior. Examples of these are integer
overflow and underflow, out of bounds accesses, dereferencing NULL pointers,
dereferencing pointers to allocated memory of size zero, shifting values by
amounts that are greater than or equal to the number of bits in the value,
modifying a string literal, using a variable before assigning it, preprocessor
numeric values which cannot be represented by long int and more. As cases
of UB are so vast, it means that simple code examples like the ones below cause

2. https://doc.rust-lang.org/stable/src/core/slice/mod.rs.html#
1399-1404
3. https://musl.libc.org/
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UB:

ali] = i++;

int64_t i = 1;
i <<= 65;

int j;
printf ("%d", j);

Furthermore, the order in which function parameters evaluate is unspecified
behavior, with the only requirement being that all parameters must evaluate
completely before calling the function. The nonspecificity in evaluation order
means that a simple example like this:

some_function(functionl(), function2());

Can be evaluated as either of the following two examples:

auto first value = functionl();
auto second_value = function2();
some_function(first_value, second_value);

auto second_value = function2();
auto first value = functionl();
some_function(first_value, second_value);

Reordering of function calls means that if the two functions have side-effects,
the program may produce different results based on what the compiler does.
Producing differing results also holds with all the cases of UB as well, where
some functions may return early with a hard-coded value, loops may be opti-
mized away, and many other strange, unexpected things may happen. These
are unintuitive, and the programmer may not discover these as most do not
inspect the assembly or machine code after compilation.
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In Rust, several of the behaviors that are UB in C and C+ + is well-defined to
ensure that code is as safe as possible. Incidents such as integer overflow are
defined behavior, where signed integers overflow to their minimum (negative)
value in release mode, but panic in debug mode, so that the developer may
notice behavior that may not be intentional. It wraps in release mode as bound
checks may become prohibitively expensive, and normal Rust code optimizes
for speed. For explicit wrapping behavior the numeric types have explicit
methods for all normal integer operations such as 2.wrapping_add(3) for

addition, 2.wrapping_sub(3) forsubtraction, etc. Additionally, Rust provides
explicit methods for different behavior such as saturating operations (saturating
the value at the numeric bounds), checked operations (for explicit handling
of the overflow case), and overflowing operations, which returns the value
and a boolean value determining if the value overflowed. Additionally, if all
integer operations require the wrapping behavior, Rust provides wrapper types
Wrapping<T> 4 for generic types T where all numeric binary operations
wrap.

The original TFHE library [16] has a lot of integer manipulation, such as
exploiting integer over- and underflow, expecting the integer to wrap around.
This is UB in C and C++ but is quite commonly implemented as wrapping
overflow by compilers. Converting this behavior to Rust is simple enough, as one
could either use Wrapping<i32> for the int32_t type or use the explicit
wrapping methods. Using explicit wrapping methods in Rust allows being
explicit in integer overflow behavior while it also stops depending on UB for
correctness. Furthermore, the original library uses a lot of typecasts between
numeric types. In C, casting a floating-point value to an integer will result
in truncating the decimal part, and the integral part represents the integer.
However, if the integral part does not fit, the operation is UB. Potentially, a cast
from a floating-point value to an integer may result in UB, which again, may
produce varying results on different platforms and compilers.

3.3.2 Disambiguating Types and Self-Referential Structures

Rust is a language which heavily encourages the use of types and has a strong,
static type system. C on the other hand, does not. C++ has classes, but they
are not really used in the original TFHE library. This includes types such as
standard library collections, such as vectors for dynamically-sized arrays. Due to
this, it is difficult to disambiguate between pointers to values and actual arrays
and one needs inspect use-cases and allocation-sites to figure out the type it
should be converted to in Rust. Or even, double pointers may be interpreted
as an optional pointer to an array, leading to more confusion.

4. https://doc.rust-lang.org/stable/core/num/struct.Wrapping.html
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Furthermore, the original library uses structures where some fields point to
specific parts of another fields in the same structure. These are called self-
referential structures. Self-referential structures are not a problem in a language
like C and C++ as they manage the memory manually, but Rust uses lifetimes
to declare how long a value should live and self-referential structures cause
problems for the borrow-checker and are quite difficult to model in Rust. Self-
referential structures are possible to model in Rust using the Pin<P> API5,
designed for memory that cannot be moved in memory, although this is difficult
to use. Moreover, one can utilize the unsafe keyword to escape from some
memory-safety restrictions and allow more functionality, such as calling unsafe
functions, performing Foreign Function Interface (FFI) calls, and dereferencing
raw pointers. However, it is not necessary in this case and will sometimes allow
cases of UB.

Most of these types in the original library are there to model two-dimensional
vectors as a one-dimensional vector in row-major order, but having the second
field accessing the next row within the flattened array. They are strictly not
needed and are there mostly for convenience. In the Rust port, these two-
dimensional vectors are modeled as such: two-dimensional vectors. That is
vectors within vectors, Vec<Vec<T>> . Additionally, three-dimensional vectors
flattened in the original library are three-level nested vectors in Rust, mostly
done due to wishing for correctness before performance. However, it might give
a substantial performance dip due to cache locality, where iterating through
values of an inner vector will not update the cache with values from the next
vector as they are spatially distant. Additionally, it might reduce performance
due to creating more allocations, one for each vector, in comparison to a
flattened, contiguosly allocated array. However, the port was designed for
a proof-of-concept, not directly performance, as one can extrapolate some
performance characteristics from the original library’s performance.

3.3.3 Choices and Alternatives

To summarize, Rust is a programming language that is memory-safe, has
strong type safety, is data race-free, and it is statically ahead-of-time compiled
with a minimal runtime (similar to C’s runtime, mostly used for handling
program panic and abort) and no garbage-collection. Furthermore, it builds
on abstractions that are zero-cost and encourages the use of these. It has a
low memory footprint, akin to C++ and C, and targets bare-metal, meaning
it can be used for low-level programming such as device drivers, OS kernels or
programming for embedded systems. At the same time it provides performance
that is on par with C and C+ +.

5. https://doc.rust-lang.org/std/pin/index.html
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A possible alternative to the library is keeping it in the language it is (a mix of
C and C++), but reworking it to work within SGX. This is possible, but Rust
enables safe parallelization, without data races, something C and C+ + does
not. Additionally it provides better user ergonomics while keeping a strong type
safety. To conclude, writing it in Rust seems like the best alternative.

3.4 Summary

This chapter discussed the properties of a few FHE libraries and outlined our
argumentation for using the TFHE scheme. Further, it described our reasoning
behind porting the library to another language, to provide better memory
safety. The chapter further arguments for choosing Rust as a programming
language, by describing several cases where conventional code in C and C+ +
is actually UB, and how Rust avoids several of these potential errors.



Implementation

This chapter describes the implementation of the Fully Homomorphic Encryp-
tion (FHE) library port which we will use in conjunction with Intel Software
Guard Extensions (SGX) to evaluate our system. Section 4.1 describes choices
made to allow certain concepts to translate into Rust. Further, Section 4.2
on page 37 outlines the external dependencies used in the implementation
and why they are needed. Section 4.3 on page 40 describes the general lay-
out and module structure of the code. Finally, Section 4.4 on page 43 details
how Rust and the library implementation is integrated into SGX. We then
outline our implementation of the Partially Homomorphic Encryption (PHE)
Paillier cryptosystem, and finally summarize this chapter in Section 4.6 on
page 44.

4.1 Porting TFHE to Rust

The implementation process of porting the TFHE library! from C++ to Rust
began with describing data types. In the original library, many structures had
fields that were strictly pointers to another struct type. In C and C+ +, this is
indistinguishable from an array pointer, unless one looks at the initialization
site. Dynamically allocated arrays such as these are equivalent in function-

1. Our port builds entirely on the code at this commithttps://github.com/tfhe/tfhe/
commit/76db530cf736a25115ea0b0ccdb9267b401bb9a7
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ality to the std::vec::Vec 2 type, and are unambiguous in contrast to the
original library’s implementation. Structures with pointer-fields in the original
library do not specify if they own the data they reference or if it references
memory given to it in initialization, e.g., struct Data { val: Vec<i32>}
versus struct Data { val: &mut [i32]} (lifetime annotations elided for
brevity). This distinction is necessary for Rust, as it tracks ownership, but not
C++. In the implementation, we chose the former, as it is more manageable
than the latter, and it seems the original library chose this solution as well, based
on their usage. Integer and floating-point data types have direct equivalents
in Rust, and are thus translated directly.

The original library source code has some structures where a field is a pointer
to values within a dynamically-allocated array that a different field in the same
structure references. Referencing a field within the same structure is known as
a self-referential structure. These are disallowed by the type system in Rust, and
are challenging to attain without more advanced lifetime and type annotations.
They are inherently dangerous and unsafe when it comes to memory safety
due to Rust’s move-semantics when taking ownership. When one moves a value
in memory, the referenced value in the self-referential structure is invalidated,
hence the unsafety. Because of this, the implementation chose to remove these
fields and access these values directly, at the loss of some readability.

The TFHE library also has some occurrences of void pointers meant to be
specialized by a Fast Fourier Transform (FFT) implementation. These are
in the original library somewhat equivalent to Rust’s trait system as they
allow multiple implementations while providing a stable interface. In this
implementation, we do not use the trait system for this as we do not aim to
allow multiple implementations of the FFT.

The original library provides specific functions for serializing and deserializing
data, including one set of functions for reading or writing a file, and another for
streams. This set of functions is quite limiting and does not allow the developer
to specify the serialization format. In our implementation, all data structures
that might need to transmitted somewhere are serializable and deserializable,
using the Rust package Serde3. Serde designs serialization and deserialization
so that any data structure that implements one of two traits can be serialized
or deserialized to one of the tens of different serialization formats supported.
A macro allows deriving the implementation automatically, such as (line 3
highlights derive macro):

2. https://doc.rust-lang.org/stable/std/vec/struct.Vec.html
3. https://crates.io/crates/serde or their homepage https://serde.rs/
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use serde::{Deserialize, Serialize};

#[ derive(Deserialize, Serialize) ]
struct Ciphertext {
data: Vec<i32>,

}

Implementing these traits allows the user of the library implementation to
choose the serialization format that fits the use-case best. As ciphertexts are
quite large and contain many integers, a binary format might be best suit-
able.

Our implementation is written entirely in the safe subset of Rust, and will not
compile if the unsafe keyword is used in our codebase. This is enforced by a
crate diagnostics attribute, forbid(unsafe_code) , which also prevents over-
riding the attribute in our crate. However, some of our external dependencies
require the use of the unsafe part of Rust to interact with low-level operations,
such as providing randomness through assembly instructions.

4.2 External Libraries

When implementing our FHE library specifically to allow use in SGX, it is crucial
to ensure that we use no dependencies that are incompatible with running
in an enclave, such as requiring Input/Output (I0) access or use libraries
that assume properties of the underlying hardware. Luckily, the cryptographic
system does not require any specific software or hardware that SGX does not
support. As the TFHE scheme is a semantically secure cryptosystem, it requires
a source of randomness to function. However, this only applies in the encryption
phase to generate secure ciphertexts. The evaluation and bootstrapping phase
is entirely deterministic and computational and can thus function within SGX.
Either way, the instructions RDRAND and RDSEED are available in SGX as a source
of randomness if needed. Rust does not provide random number generation as
part of its standard library, so the package Rand+ is used instead, and it works
within SGX if it should be required for some reason.

Homomorphic ciphertexts in the TFHE scheme rely on a polynomial represen-
tation of integers, and the implementation uses mostly integer arithmetic to
perform the homomorphic operations between ciphertexts. The addition and

4. https://crates.io/crates/rand
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subtraction of polynomials are simple and require only pairwise addition or
subtraction of elements. Polynomial multiplication, on the other hand, requires
a more complex implementation. A naive implementation of the multiplication
of two polynomials is possible in O(nz) operations. However, as these opera-
tions execute in a tight loop, they become a bottleneck. The complexity of the
multiplication can be improved upon by utilizing FFT. The multiplication step
of two polynomials P(x) and Q(x) can be divided into three steps:

* Take the coefficient representation of each of the polynomials and rep-
resent it as a vector of coefficients, with increasing order (e.g. P(x) =
1+2x+3x%2 = p =[1,2,3]), and perform a forward FFT transform on
both these vectors. Each of these operations are O(nlogn).

 Multiply the results’ coefficients pairwise so that p = [1,2,3],§ =
[4,5,6] = F=[1-4,2-5,3-6]. This operation is O(n).

* Perform the inverse FFT transform on 7 to get the coefficients of the
polynomial representing the product of P(x) and Q(x). This operation
is O(nlogn).

The resulting time complexity is then O(nlogn) + O(n) + O(nlog n) or simply
O(nlog n). Changing from the naive implementation to a FFT-based multiplica-
tion procedure improves performance greatly on large polynomials. Achieving
secure encryption using the TFHE scheme requires these polynomials to be on
the order of 219 = 1024, so the improvement is substantial, with a relatively low
increase in code complexity. Changing the implementation to use FFT-based
multiplication gained an overall performance increase in our library, something
which we will discuss in-depth in the coming chapter. This implementation
uses the RustFFT> package for the FFT implementation.

Most operations in the TFHE library operates on 32-bit signed integers, to
exploit the fact that wrapping behavior is the default on integer over- and
underflow (although it is technically Undefined Behavior (UB) in C/C+ +). This
port uses the Rust equivalent of i32 and explicit wrapping-methods where
an overflow could happen, instead of the Wrapping<T> -type which requires
explicit packing and unpacking of values, and loses ergonomic value. A few parts
of our implementation have generic functions to allow differentiating between
polynomials of integers and polynomials of integers that represent numbers
in the torus space, T, even though their implementation is the same. These
polynomial implementations also exploit Rust’s trait system and macros for
code generation used to implement the polynomials. However, when working
with generic types that are numeric, Rust’s standard library does not provide

5. https://crates.io/crates/rustfft
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traits for numeric types, so we use an external package Num® for its numeric
traits to mark generic type bounds in generic functions. Additionally, for FFT
implementations, which operate on complex numbers, we use Num’s complex
number type. Complex numbers are also not in the Rust standard library.

Most of the operations performed in the library implementation are simple oper-
ations performed on sequences of integers (in our implementation, dynamically-
sized arrays, or the Rust Vec<i32> type). Other than the FFT-based polyno-
mial multiplications, most of the other operations are of simple pairwise arith-
metic. The Rust compiler builds on LLVM” and allows the use of many of the
LLVM optimizations. One of these optimizations is auto-vectorization, where
the compiler inserts Single Instruction, Multiple Data (SIMD) instructions in
place of code that apply simple arithmetic operations to elements of arrays.
It applies optimizations if the arrays are of a compatible length, that is, often
a multiple of 4. It can replace scalar operations with vector operations, often
achieving great performance benefits if the hardware supports it. If the proces-
sor supports instruction set vector extensions such as AVX-512, as much as 16
ordinary instructions for 32-bit integers could be replaced with one instruction
that operates on 512 bits, or 16 32-bit integers at once — achieving a speedup
of potentially 16Xx.

Most of the arrays used in our implementation are 1024 elements in length, de-
pending on the parameters used, but we determine the length and allocate these
at runtime. Because of this, the Rust compiler does not apply auto-vectorization
optimizations to our codebase. Relying on the compiler to auto-vectorize code
for performance optimizations is flaky, so our code is better suited with a man-
ual implementation of SIMD usage where appropriate. However, polynomial
multiplication takes most of our runtime, and the RustFFT package performs it
so the benefits might vary. Additionally, the time cost of implementing SIMD
instructions is extensive, which is why we have not approached this optimiza-
tion.

4.2.1 Development Tools

The library implementation uses the Criterion® package as a developer depen-
dency, only used for benchmarking purposes. It is a statistic-driven benchmark-
ing library that generates reports on performance changes from a previous run.
The benchmarks performed are microbenchmarks, meaning they primarily test
speeds for small portions of the library’s functionality. We use these benchmarks

6. https://crates.io/crates/num
7.https://1lvm.org/
8. https://crates.io/crates/criterion
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throughout development to assert that small changes do not negatively affect
performance, as a form of performance regression testing.

During development, Cargo Flamegraph?, a tool to generate flamegraphs [71]
based on performance metrics from the Linux tool Perf!® was used. These
graphs are used to analyze which parts of the library that spent the most time
during execution, to find parts to optimize. Flamegraphs allows one to easily
determine which functions take up the most time, by showing the cumulative
proportion of time spent in each function, and their nested calls. The generated
graphs allowed us to determine that polynomial multiplication alone took up
an overwhelming majority of the time (70%) in both an example that encrypts
and then decrypts data and in an example where we apply a homomorphic gate
to a ciphertext, and that if we were to optimize, this would be the place to start.
The results of these improvements are detailed in the evaluation chapter.

4.3 Code Makeup

The original TFHE library has 4400 Source Lines of Code (SLOC)!! of mostly
C++, but also some C and header files. These numbers do not include the
FFT implementation. Additionally, it consists of 5743 SLOC of mostly C++
code for testing, but also some C code to test the C bindings of the library.
Furthermore, it uses preprocessor directives for code generation, and these
numbers do not include the expanded code. Our port of the library ends up on
2267 sLoc of Rust, including unit tests and documentation test examples, but
integration tests add another 164 s1.oC of Rust, although it has code generation,
so integration tests expand to around 316 lines. Additional microbenchmark
code and examples add another 100 SLOC, ending up at a total sum just below
2700 sLoc of Rust.

A lot of test code in the original library tested things that are unnecessary in
Rust, such as ensuring an allocated array is not NULL , and that values are
zeroized. Because the code has the style of mutating input arguments (caller
allocation-style) instead of allocating a new result to return, it tests that certain
specific input arguments are not mutated. Additionally, it has some tests which
test implementation details, which is something one should not do, so we omit
these in our port, thus contributing to our lower SLOC count.

Our implementation has more than 35 unit and integration tests, several

9. https://crates.io/crates/flamegraph
10. https://github.com/torvalds/linux/tree/master/tools/pert
11. All SLOC counts are counted using Tokei https://github.com/XAMPPRocky/tokei
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benchmark programs and a few examples to show a user how to use the
library. These tests acted as regression tests when we contiguously transformed
our code into more idiomatic Rust. We used the benchmarks as performance
regression tests to ensure our transformations did not hurt performance. The
documentation tests ensure that the code’s documentation conforms to the
Application Programming Interface (API) in case we change any function or
method signatures. Tests, documentation tests, code style (formatting) and lint
checks, and benchmarks have been running in a continuous integration system
on GitHub'2, where we have stored our project during implementation.

4.3.1 Module Structure

The port of the original library is structured somewhat differently from the orig-
inal. As the original library implementation writes C-style C+ +, it structures
files accordingly. It does this with a high degree of separation (declaration, allo-
cation, initialization, and functions that operate on these types are separated)
to not clutter namespaces as a header-file import includes all declarations. It
could have used C+ +’s namespace system but does not, for the most part.
Rust’s module system allows importing specific items from modules instead of
requiring a glob import, so we place data structure declarations next to their
implementation and functions that operate on them.

1ib The root module of the library. It is mostly empty except for crate doc-
umentation and re-exports encryption, bootstrapping, and homomor-
phic gate functions. It also re-exports each of the following modules:
bootstrapping, circuits, encryption, gates, and numerics.

encryption Publicly exposes functions for encrypting and decrypting cipher-
texts. It also exposes functions and types for generating encryption param-
eters and encryption keys with different levels of security. Additionally,
it exposes the ciphertext type.

gates Publicly exposes functions that represent the basic homomorphic logical
gates. Exposes all the logical gates that the original library exposes. That
is, the normal logic gates not, and, xnor, xor nand, or, nor, and mux.
Additionally, it exposes some specialized gates where one of the inputs is
negated, andny, andyn, orny, and oryn. It also exposes the constant -
function for bootstrapping a ciphertext with a publicly known constant.

bootstrapping Publicly exposes functions for performing the bootstrapping
operation if the user requires control over when to perform this operation.

12. https://github. com/
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circuits Publicly exposes more complex circuits such as a comparison circuit
for comparing encrypted sequences of bits. This is a new module that
does not have an equivalent in the original library. It exposes more
complex circuits such as an equality circuit (eq) for two n-bit numbers, a
comparison circuit (compare) for determining if @ < b is true (where a
and b are n bits), a half-adder, a full-adder and a circuit for adding two
n-bit numbers.

numerics Publicly exposes functions for encoding and decoding values into a
torus-representation for manual use of the library’s encryption functions.

polynomial Contains types and implementations for ergonomically working
with integer polynomials. For internal use.

lwe Contains types and methods for working with the ciphertext representa-
tion. For internal use.

tlwe Contains types and methods for working with the torus version of the
Learning With Errors (LWE) ciphertexts used within the TFHE scheme.
For internal use.

tgsw Contains types and methods for working with the torus version of the
Gentry-Sahai-Waters (GSwW) ciphertexts used within the TFHE scheme.
For internal use.

The implementation supports creating keys of different security levels. Choos-
ing parameters for encryption schemes based on LWE is complicated, as choos-
ing a parameter set with incompatible values might lead to an insecure system
or a secure but less performant one. It is not as simple as measuring the secu-
rity level of commonly used symmetric encryption systems such as AES, as it
depends on different mathematical security assumptions. Our implementation
currently supports the two parameter-sets defined in the original library, which
have estimated security levels of 80-bits and 128-bits, known as bit security
[72]. However, the key size is not directly proportional to the security level, as
in AES, where a security level of 128-bit security equates to a 128-bit binary
key. In TFHE, a security level of 128-bit equates to a ~ 24 MB bootstrapping
key [11]. The default parameter set in our library is the 128-bit security version
as cryptographers do at the time of writing recommend 128-bit security to be
safe until theoretically the year 2090 [72], but proper interpretations indicate
safety for a few more decades, whereas 80-bit security was deemed safe until
the year 2018 based on the same equations. These are based on encryption
systems where a cryptographic break is not known, and a brute-force attack is
the best known attack.
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Figure 4.1: Fortanix’s Enclave Development Platform architecture overview. Source:
https://edp.fortanix.com/docs/concepts/architecture/

4.4 Executing Code in SGX

Executing programs in an SGX enclave is not straightforward. Programs need to
be signed; enclaves require specifying stack size, heap size, and the number of
threads beforehand. These requirements arise from the complexity of ensuring
the security of enclaves and its design in hardware and software. SGX allows
an enclave to exceed the memory limits of Protected RAM (PRAM), currently
at 128 MB as of version 1 of SGX, by specifying the heap size before entering
an enclave. However, an enclave with a large heap size will require the memory
manager to page out encrypted data to regular Random-Access Memory (RAM)
more often, resulting in a performance loss. Thus, one should investigate the
memory requirements of a program before executing it within SGX, to limit
memory specifications to just the needed memory.

Writing software to run within SGX is a difficult task and requires the developer
to have some knowledge of how to use it properly. Additionally, Intel develops
the sGx Software Development Kit (SDK) for use with C and C++, which
requires us to deal with Foreign Function Interface (FFI) in Rust if we were
to use it directly. Helpfully, there are projects in Rust to work with Intel SGX.
Most notably, Rust SGX SDK13, initially developed by Baidu, and Fortanix’s Rust
EDP14. The former is at the time of writing the most popular project in terms
of stars on GitHub, and has published a paper on it [62], but aims for more
advanced use-cases of SGX, where developers need a large degree of control of
the SGX sDK. However, the latter aims for an easy way to write programs for
SGX by being a platform compilation target, while the former is a library.

Additionally, Fortanix’s project is recognized by Rust as a supported target
platform and has at the time of writing an official tier 2 status!®. Tier 2 support
means code is guaranteed to build on the platform and is part of the language

13. https://github. com/apache/incubator-teaclave-sgx-sdk

14. https://github.com/fortanix/rust-sgx or their homepage https://edp.
fortanix.com/

15. https://forge.rust-lang.org/release/platform-support.html
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continuous build testing system. As such, regular Rust programs that do not
use multiple processes or rely on Operating System (0S) functionality should
work out of the box. These guarantees allow us to easily integrate our FHE
library into a program that runs within an SGX enclave and is why we chose
using Fortanix Rust EDP for working with SGX.

The architecture of Fortanix’s Rust EDP is seen in Figure 4.1 on the previous
page. As seen, it wraps the Rust standard library and intercepts user-calls
through its enclave runner, making the experience for developers as simple as
writing a normal Rust program.

Our example program using our ported library implementation and the Fortanix
Rust EDP requires no special handling other than specifying the stack and heap
size required for the program. The lack of special handling means that users
of our ported library can easily use the hybrid solution of FHE and SGX in the
cloud.

4.5 Paillier PHE Implementation

Most earlier work focuses on using PHE instead of FHE within a Trusted
Execution Environment (TEE) such as SGX. They also commonly use the Paillier
encryption scheme [18], a PHE scheme. This scheme allows the homomorphic
functionality of the addition of ciphertexts. In contrast to most other PHE
schemes, however, the Paillier cryptosystem also allows multiplication between
ciphertexts and plaintexts. Having this feature makes it slightly more useful,
however as it only allows multiplication with a publicly known plaintext, it
is rather limited. We wished to see the efficiency of such a solution and its
possible use-cases. Thus, we implemented a version of the Paillier PHE scheme
in Rust. It functions in SGX using the Fortanix Rust EDP, similarly to our TFHE
implementation. We did not take this any further as PHE proved to be quite
limiting.

The implementation consists of 283 SLOC of Rust, while the tests are at just over

60 sLocC. The tests use property-based testing to generate values for testing a
larger amount of the input space to find mistakes.

4.6 Summary

In this chapter, we described the process of translating the original library to
Rust. We describe how we solved the challenges of translating parts of the
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original library that relied on UB in their implementation, such as integer
overflow behavior. Additionally, we described how we cleaned up some parts
of our implementation to avoid self-referential structures that existed in the
original library implementation. We described which external libraries we use
and why, as we want to minimize the Trusted Computing Base (TCB) of our
implementation and reduce memory consumption in SGX. We also give insight
to an implementation optimization detail that improve performance, but in-
creases code complexity. We mention the optimizations that we have not done
but that we are aware of, such as using the Lagrange half-complex representa-
tion internally for polynomials, using SIMD instructions, and multithreading
for dividing work onto several threads. These optimizations are out-of-scope
for this thesis work, in terms of the development time needed to implement
them.

Furthermore, we describe our implementation in terms of module structure,
lines of code, tests, benchmarks, and examples of how to use our library. We
also describe our additional module providing easy access to premade circuits,
which the original library does not provide. Later, we describe the use of and
choice of Fortanix Rust EDP to allow the use of our library within an SGX enclave.
Lastly, we mention how we initially implemented the Paillier cryptosystem to
be compatible with SGX, but have not further built on this idea as using PHE
is limiting.






Evaluation

Section 5.1 describes our experimental hardware and software setup. Then,
Section 5.2 on the next page describes the performance characteristics of our
implementation of the TFHE scheme. Later, Section 5.3 on page 53 outlines how
the methods of evaluating and choosing our experiments. Further, Section 5.4
on page 56 describes the results of our experiments and evaluate them. Finally,
we give a summary of our evaluation findings in Section 5.5 on page 59.

5.1 Experimental Setup

We execute all our experiments, evaluations of these, and benchmarks on the
same hardware while ensuring minimal interference by other processes. The
computer has an Intel® Xeon® E3-1270 v6 Central Processing Unit (CPU), with
8 hardware threads, at 3.80 GHz, and 62 GiB Random-Access Memory (RAM).
The Operating System (0S) running is Ubuntu 18.04.3 LTS with the Linux 4.15.0-
58-generic kernel. All examples are evaluated using the following version of
the Rust compiler (rustc): 1.46.0-nightly (118b50524 2020-06-06).

47
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5.2 Library Evaluation

We continuously monitored our library implementation’s performance through-
out the porting process, to ensure we had no performance regressions when
refactoring and cleaning up code to transform it to more idiomatic Rust. Be-
cause of this, we have detailed measurements of the performance of the different
procedures of our library implementation.

5.2.1 Encryption and Decryption

Figure 5.1 depicts the performance of the encryption and decryption procedures
in our library implementation. In particular, it represents the relationship
between the running times of the encryption procedure versus the decryption
procedure. As one can see from the plot, the encryption procedure is slower than
the decryption procedure. The higher execution time is because the encryption
procedure includes random number generation and allocation, whereas the
decryption procedure is simply some cases of simple arithmetic. The encryption
procedure takes an average of 1.65450 us, but the decryption takes 797.620 ns,
or 0.79762 pus (to compare in the same units), meaning the encryption running
time is just over 2X the decryption running time.

Encryption and decryption: Violin plot

Encryption and decryption/decrypt bit |-

Encryption and decryption/encrypt bit (—

06 08 1 12 14 1.6 18 2 22

Average time (us)

Figure 5.1: Violin plot of the encryption and decryption speeds of our implementation.
The blue regions indicate the PDF of our implementation of the encryption
and decryption procedures, estimated and smoothened using a kernel
density estimator. The horizontal axis indicates the average time of the
operation in microseconds (us or us).

The encryption running time and its estimated Probability Density Function
(PDF) can be seen more accurately in Figure 5.2 on the facing page, which
also shows each of the samples’ running times. As the encryption procedure
encrypts individual bits in our setup, because of how we encode values (other
setups are possible in the TFHE scheme), the execution time equates to an
encryption throughput of 591.33 Kib/s (note bits, not bytes), or 73,916 KiB/s
(using the binary prefix, so kibibytes).

A more accurate view of the decryption running time and its estimated PDF is
seen in Figure 5.3 on page 50. The decryption procedure has an execution time
which equates to a decryption throughput of 1.1903 Mib/s, or 148,79 KiB/s.
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Figure 5.2: Detailed view of the estimated PDF of the encryption procedure. The
mean estimate is 1.6545 us and the median is 1.6467 us with a standard
deviation of 45.062 ns. As our encryption procedure encrypts individual
bits, this equals a throughput rate of 591.33 Kib/s, or 73,916 KiB/s (note
the binary prefix).

Both Figure 5.2 and Figure 5.3 on the next page used Tukey’s fences to calculate
outliers (k = 1.5 for mild outliers and k = 3 for severe outliers). The outliers
in Figure 5.2 are not that far from the mean. However, the plot shows a severe
outlier near the 2.1 mark. A probable reason for this is interactions between
other processes running at the time of execution. Even though we tried to
isolate our experiment as well as possible, and limit the number of processes
running while testing, the test is not perfect. The single worst outlier is severe
to such an extent that it can be disregarded. The same holds for the results seen
in Figure 5.3 on the next page, where a larger amount of outliers occur. These
are also most likely due to interactions with different threads running at the
same time. Additionally, because the execution times are on such a small scale,
small perturbances may affect measurements in a more significant way.

5.2.2 Key Generation

The key generation procedure generates the secret and symmetric key used
for encrypting and decrypting data in the TFHE scheme. In addition to this, it
creates the bootstrapping key and the key-switching keys required during the
bootstrapping process. We collectively name these the bootstrapping key for
brevity, as it is the only process using them. As seen in Figure 5.4 on page 51,
the key generation uses an average of 527.67 ms to generate the keys. As
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Figure 5.3: Detailed view of the estimated PDF of the decryption procedure. The
mean estimate is 797.62 ns and the median is 790.77 ns with a standard
deviation of 26.452 ns. As our decryption procedure decrypts individual
bits, this equals a throughput rate of 1.1903 Mib/s or 148,79 KiB/s (note
the binary prefix).

this process depends heavily on random number generation, it is affected by
fluctuations in time used to generate numbers.

5.2.3 Bootstrapping

Figure 5.5 on page 52 shows the performance characteristics of the bootstrap-
ping procedure. The average execution time of a single bootstrapping procedure
is 1.1937 s, significantly higher than the implementation of the original paper
taking around 53 ms on similar hardware [11] and improved work leading
to around 13 ms [16]. However, the original implementation implements the
Lagrange half-complex representation, which reduces the number of multiplica-
tions required in the bootstrapping procedure by nearly a third. It also reduces
the number of external products required, the expensive operation performed
in the bootstrapping procedure. Additionally, the original implementation uses
Fast Fourier Transform (FFT) processors based on Single Instruction, Multi-
ple Data (SIMD) instruction sets such as AVX, providing large speedups. The
outliers seen in the figure are, similarly to the outliers in the decryption and
encryption procedures, related to interactions with other processes using the
CPU. As most of the samples fall in a near-identical spot, it is reasonable to
assume most results will lie in this range. Additionally, this procedure is de-
terministic and was benchmarked using the same inputs, so it is natural to
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Figure 5.4: Detailed view of the estimated PDF of the key generation procedure. The
mean estimate is 527.67 ms and the median is 514.85 ms with a standard
deviation of 24.269 ms. The key generation procedure generates both
the secret symmetric key, the keyswitching key and the bootstrapping key
(which combined result in the cloud key).

assume that the outliers are disregardable and that the mean can be used as
an estimate.

Comparison Between Optimized and Non-Optimized
Implementation

For comparison, we compare the performance differences between our naive
polynomial multiplication procedure, with time complexity of O (nz) ,tothe FFT-
based implementation. Figure 5.6 on page 53 shows that the FFT-based imple-
mentation provided a change in execution time of a 74.408% decrease.

One thing to note is that changing to the other parameter set we allow the
user to generate keys from, the bootstrapping operation performs ~ 2X faster
while using the FFT-optimized implementation. This result shows that the
parameter set used in encryption has a substantial impact on performance. The
user should consider using the parameter set guaranteeing 80-bit security for
performance increases if they allow the lower security guarantees.
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Figure 5.5: Detailed view of the estimated PDF of the bootstrapping procedure. The
mean estimate is 1.1937 s and the median is 1.1969 s with a standard
deviation of 13.234 ms. The bootstrapping procedure takes an Learning
With Errors (LWE) sample as input, along with an output message encoded
in the message space, and the bootstrapping and keyswitching keys.

Performance Comparison to the Original Library

We compare our version to the original library implementation on the same
hardware using the original library’s benchmarks. They perform 50 samples
and compute the arithmetic mean as the measure of the bootstrapping opera-
tion. They provide several different FFT processors, including FFTW which is
remarked as the fastest free FFT implementation available!. As noted in the
previous chapter, we depend on the RustFFT crate which does not currently
use any SIMD instructions, but pure Rust. Thus the most natural comparison
would be to compare the original library’s implementation when linked with
the Nayuki project’s portable C implementation2. They also provide two bench-
marks, where one uses the Lagrange half-complex representation internally,
and the other does not. We use the latter benchmark as our implementation
does not use the Lagrange representation.

Executing the original library’s benchmark using the FFT implementation
written in C without SIMD instructions gives us an average of 614.47 ms for
a single bootstrapping operation. Compared to our implementation, this is
only ~ 2x faster, which is not too bad considering our objective was not to

1. http://www.fftw.org/
2. https://wuw.nayuki.io/page/fast-fourier-transform-in-x86-
assembly
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Figure 5.6: The execution time of the bootstrapping operation in our implementation
with and without the polynomial multiplication based on FFT. The Naive
red region marks the naive implementation of the polynomial multiplica-
tion, while the FFT blue region marks the optimized version.

implement a fast implementation, but rather an implementation that was safe
in terms of memory safety, easy to use, and would easily allow execution within
Software Guard Extensions (SGX).

We also performed the benchmark of the original implementation with all their
optimizations included. We use the FFT processor they name spqlios with the
FMA instruction set extensions and achieved an execution time of 14.771 ms.
This number is similar to their findings. This result should not be compared to
our’s as it implements several more optimizations.

5.3 Evaluation Methodology

To evaluate our hybrid system is complicated. Many factors come into play,
and one can measure performance in various ways. Firstly, the parameter set
used in the TFHE encryption scheme significantly affects the performance of
the homomorphic operations performed on data. Secondly, Fully Homomor-
phic Encryption (FHE) has a multitude of different use-cases, as one can use
it for virtually any situation where secure data processing is needed. This
variation means use-cases range from performing simple arithmetic operations
on encrypted data, such as in electronic voting systems, to processing-heavy
programs such as processing genome data, to more complex programs. How-
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ever, more complex programs need to be represented as a logical (boolean)
circuit to be processable using the TFHE scheme. Due to the clear limitations
of computing circuits on encrypted data, this eliminates circuits which include
Data-Dependent Branching (DDB) as the executor cannot and should not be
able to determine the result of a comparison resulting in a branch. These
limitations make it very difficult to perform general-purpose programs using
FHE.

Furthermore, working with SGX is not straightforward, either. An SGX pro-
gram needs to specify the heap size and stack size before entering an enclave.
Additionally, it requires specifying the number of threads available to it. These
requirements mean the user has to know the program’s memory usage charac-
teristics before executing it in SGX, else resulting in an error. Specifying a too
large heap may lead to performance loss.

For our purposes, we wish to discover the relative performance changes when
using our hybrid solution to a version which only uses FHE, as covering in-
tegrity weaknesses in FHE schemes while retaining performance is our main
objective. As such, it is sufficient to evaluate a simple program. This is because
performance of other programs can be extrapolated to some degree as we have
to know the full circuit and execution flow of a program for it to be encodable
for homomorphic evaluation, as long as we know the circuit used in our simple
program.

5.3.1 Yao’'s Millionaires’ Problem

Andrew Yao introduced a Secure Multi-Party Computation (SMPC) (computa-
tions performed by multiple parties with private inputs) problem in 1982 known
as Yao’s Millionaires’ Problem [73]. The problem is simple and considers two
millionaires, Alice and Bob, wishing to figure out which of them is wealthier.
However, they wish to find the answer to this problem while at the same time
keeping their actual wealth private. That is, Alice or any other party should not
learn of Bob’s wealth, and vice versa. Essentially, the problem aims to calculate
the following: a < b, where a represents the wealth of Alice in some monetary
unit, and b represents Bob’s wealth in the same unit, while remaining private
for the computing party.

The problem has several solutions, with techniques ranging from oblivious trans-
fer methods [74] to private set intersections with Homomorphic Encryption
(HE) [75]. We solve this problem using FHE with our library implementa-
tion of the TFHE scheme, by protecting the confidentiality of a and b using
encryption.
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5.3.2 Socialist Millionaire Problem

The socialist millionaire problem is a modification of Yao’s Millionaires’ Problem,
presented in [76]. In this variant, two millionaires wish to compare their wealth
and figure out if it is equal or not, while not disclosing information about their
actual wealth to each other. Essentially it aims to calculate the following: a = b,
where a and b represent the wealth of the two parties, respectively, and are
private.

5.3.3 Fused Millionaire Problem

Yao’s Millionaires’ Problem and the socialist millionaire problem are both
problems that seem simple in practice, but they operate under conditions that
make them more challenging to solve than one might think. Thus, they are
good to use as proofs that a particular system can solve problems in the domain
of SMPC. To increase the computational load in our experiments, we consider
a fused problem of Yao’s Millionaires’ Problem and the socialist millionaire
problem. In this problem, we aim to figure out the total ordering of two parties’
wealth while keeping their actual wealth’s private. That is to say when a
represents party A’s wealth, and b party B’s, and both are private, we want to
figure out which one of the three cases is true:

¢ A is wealthier than B
¢ B is wealthier than A
* A and B have equal wealth

We solve this problem by encrypting the values using the TFHE scheme. Tech-
nically, this requires two parties to compute on encrypted data jointly using a
multi-key setup. Multi-key HE is possible, as shown in [77], which conveniently
turns the TFHE scheme we use into a multi-key scheme, leading to a multi-key
FHE scheme. Multi-key FHE may be used for spooky encryption, leading to
round-efficient SMPC [78], hence it has several additional use-cases.

Using the multi-key TFHE scheme, the two parties would encode and encrypt
their respective amount of wealth, transmit them to a computing node, where
their partial evaluation keys are combined, and then the comparisons com-
puted. Our implementation of the TFHE scheme does not support multi-key
setups as we based it on an implementation that also did not support it, but
implementations exist?® and the only other operation required for such a setup

3. https://github.com/ilachill/MK-TFHE
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is the key combination step, which is not too expensive as it scales linearly
with the number of parties, which in our case is two.

Implementation of the Fused Millionaire Problem

In our experiment, we start by producing the binary decomposition of the two
values. We use two 32-bit signed integers for this purpose. For each of the values,
we decompose them into bytes in big-endian order, then decompose those into
the individual bits. We use big-endian as we implemented the circuits we use
to work on big-endian values. Then each bit is individually encrypted with our
TFHE implementation. We now have two pairs of 32 ciphertexts representing
the encryption of the two values. In a multi-key setup, the two parties perform
these actions separately after completing a key-exchange protocol.

After this, the setup phase is complete. We then perform the comparison circuit
equivalent to computing a < b and the equality circuit equivalent to a = b,
both computing on a list of encrypted bits (two pairs of 32-bits) producing
encrypted results. These two circuits are independent and are thus evaluable
in parallel, although our implementation performs them sequentially.

5.4 Experiment Evaluation

We evaluated our hybrid FHE and sGX implementation and the FHE-only
version with 25 runs each, timing only the relevant sections. Running with 80-
bit security, the hybrid solution finished with an arithmetic mean of 90.504 s
and a standard deviation of 0.60286 s while the FHE-only solution finished
in 116.08 s and a standard deviation of 2.3548 s. These results indicate that
the hybrid solution is faster than the FHE-version using our implementation
of the TFHE library. The FHE-version is around 28% slower. We did not expect
this result due to several reasons an SGX enclave should perform slower, such
as memory encryption and paging.

To investigate this discrepancy, we looked into possible reasons this might
occur. The most significant difference between the two programs is how an SGx
enclave handles memory, so we profiled our non-SGX program using the 128-bit
security parameter set (as it uses the most memory) to look into its memory
usage characteristics. Figure 5.7 on the next page shows the program’s memory
usage and the number of allocations and deallocations per second. From 5.7a
on the facing page we see that the program constantly uses around 100 MiB
of memory. Additionally, it has around 100 k allocations per second and the
same number of deallocations per second, seen in Figure 5.7b on the next page
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and Figure 5.7c. These allocations are small, usually around a few kibibytes
each, correctly relating to the small vectors allocated for numeric processing
in our homomorphic library. Memory usage is measured and visualized using
an open-source memory profiler4.
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Figure 5.7: Memory usage characteristics of the program using FHE and the default
system allocator. Usage is shown in Figure 5.7a, allocations per second in
Figure 5.7b and deallocations in 5.7c.

The significant result of memory profiling is that the program does a lot of
allocations and deallocations. Regular Rust code relies on the system allocator,
which is libc’s malloc® allocator on Linux, the platform we tested on. However,
after consulting with one of the core developers and researcher on the Fortanix
Rust EDP platform, we learned that in SGX, Rust uses the dimalloc® allocator,
and that it might be the culprit accounting for some of the faster execution
time. It emphasizes to minimize memory usage and fragmentation, something
that would occur when a program regularly allocates and deallocates memory,
which our program does. To see if the allocator could account for the 28%
slower execution time, we modified our FHE program to use the dlmalloc
allocator and performed the tests again.

The FHE-only program finished faster with the dimalloc allocator instead of the
system allocator. In this test, the average is 93.556 s with a standard deviation
of 1.4932 s for the program with 80-bit security and an average of 160.61 s and
3.9251 s. While this result is only around 3% slower than the hybrid solution,

4. https://github.com/koute/memory-profiler

5. https://www.gnu.org/software/libc/manual/html_node/The-GNU-
Allocator.html

6. http://gee.cs.oswego.edu/d1l/html/malloc.html
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it is still slower. All the combined results represented in Table 5.1 and visualized
in Figure 5.8.

80-bit security | 128-bit security
. . Execution time (s) 90.504 156.17
Hybrid solution Standard Deviation (s) 0.60286 0.31911
FHE program Execution time (5) 116.08 196.58
progr Standard Deviation () 2.3548 0.60422
. Execution time (s) 93.556 160.61
FHE program with dlmalloc Standard Deviation (s) 1.4932 3.9251

Table 5.1: Execution time means and standard deviations from the fused millionaire
problem experiments. Measurements are calculated from 25 samples.

Fused Millionaire Problem

196.58, = FHE program
3 FHE program with dimalloc

160.61
156.17

Execution time (s)

80-bit security 128-bit security

Figure 5.8: Execution times of our fused millionaire problem. Experiments were per-
formed 25 times and respective standard deviations are represented by
the vertical error bars.

As is seen from the figure and the table, using 128-bit security significantly
impacts performance. The hybrid program executes roughly 72.5% slower,
and the FHE-only using dlmalloc for allocation is 71.7% slower than the ones
with 80-bit security. As mentioned, this is because ciphertexts in the TFHE
scheme grow substantially in size with increased security and thus increases
the required computation.

As for the performance difference between the hybrid solution and the solution
using only FHE, the execution time difference of only 3% is low. Thus, a
user would benefit from using the hybrid solution, which covers the integrity
weaknesses of the FHE.

Why the hybrid solution is faster than the program using only FHE is unclear.
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However, the standard deviations measured for the FHE-only program are also
higher than the hybrid solution, as seen in Table 5.1 on the preceding page,
meaning the performances could be more similar than they appear. Another
reason the hybrid solution executes faster than the other program could be
because of the automatic frequency scaling of the cCPU. However, we turned
this off, capping the CcPU clock frequency at around 4.0 GHz, and used a
performance setting on the CPU and reran the experiments to receive the same
results. We also used strace?, a diagnostic utility tool, to monitor system calls
performed by our program. We witnessed no behavior such as Input/Output
(10) that could imply performance differences between an SGX enclave and
standard userspace programs. The system calls mostly consisted of memory
allocation calls, which are handled by the enclave memory manager. Our
program is single-threaded; it does not use any SIMD instructions, nor include
randomness during the measured execution times. If the program performed
randomness, it could affect performance as the SGX Software Development Kit
(SDK) tries the RDRAND instruction up to ten times if it cannot get a random
number successfully on the previous tries. However, this is not the case for our
program. Thus we are unsure of what causes this behavior. The performance
increase in the enclave might lie in implementation details of the SGX SDK
optimizing some situations that are normally not possible to optimize, due to
the complex nature of an 0S and process interactions.

5.5 Summary

In this chapter, we evaluated the performance of our implementation of the
TFHE scheme in Rust. We found that the bootstrapping procedure, the most
expensive operation of computing on encrypted data in the TFHE scheme, exe-
cutes at 1.1937 s or only about 2X slower than the original library’s equivalent
implementation. This result is decent, as our main focus was not implementing
a fast implementation, but one that would allow execution within SGX while us-
ing a memory-safe language and enabling easy use of this system. The original
library also has a specialized implementation that utilizes several optimizations
such as various internal representations of data and hand-optimized assembly
versions of FFT processors, decreasing execution times to around 15 ms at
best, but at the cost of increased code complexity.

The following sections introduced the millionaires’ problem, a SMPC problem,
which we combined with another version of the same problem to get a more
complex experiment. We implement a solution to this problem using the
hybrid approach of performing FHE with our TFHE implementation within

7.https://strace.io/
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an SGX enclave, and a solution where we only use FHE. We then evaluated
these experiments and found that the hybrid solution was, in fact, faster. After
investigating reasons for this, we tested the solution using only FHE again
with the dlmalloc allocator, and found it was only 3% slower than the hybrid
solution, compared to the original 28% slowdown. We are still unsure as to
why the hybrid solution is slightly faster, but the error in our measurements
might account for some of this difference, and the answer might lie in the SGX
SDK implementation. Overall, this is a positive result, as our hybrid solution is
both more secure and faster.



Discussion

This chapter details discussions on our thesis work. Section 6.1 discusses the
reality of our experiment and how real-life examples compare to it. Further,
Section 6.2 on page 63 goes on to list several possible improvements we can
make to our implementation of the TFHE scheme, both to make it faster in
general, but also fit more in line to Intel Software Guard Extensions (SGX)
perfomance semantics and limitations. Section 6.3 on page 67 goes on to list
some recent attacks on SGX that appeared during our thesis work, and our
stance on them in relation to our thesis. Moreover, Section 6.4 on page 68
describes techniques one could use to optimize homomorphic circuits for use
in our setup. Eventually, Section 6.5 on page 69 details the possibility for
improving our hybrid design by using another platform than the one provided
by Fortanix. Lastly, Section 6.6 on page 70 discusses some correctness properties
of our implementation of the TFHE scheme and the potential to improve these.
Finally, Section 6.7 on page 71 summarizes this chapter.

6.1 Experiment Design Versus Real-World
Programs

The fused millionaire problem experiments in our evaluation is an experiment
designed to show execution performance characteristics and the relative differ-
ences of a hybrid solution to running the program outside SGX. However, this
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experiment is not representative of all situations. The experiment manages to
stay within the memory limits of the enclave memory bounds. Though, another
program might not be able to do this. In the accompanying experiment code
to this thesis, we have added a demonstrative program that shows the effects
of exceeding the memory limits of the version of SGX we use. It uses around
900 MiB Random-Access Memory (RAM) and executes in around 800 ms.
However, the same program, when executed within an SGX enclave with a
preallocated heap of 900 MiB, executes in around 4. s. This result shows that
paging from the Enclave Page Cache (EPC) Protected RAM (PRAM) (currently
limited to around 128 MiB) to non-protected regions, and back, greatly affects
performance. This overhead occurs because the enclave memory manager has
to encrypt and decrypt pages and maintain integrity checks to ensure confiden-
tiality for data stored in non-protected RAM. We have not experimented further
with varying memory sizes as the way this affects performance varies greatly
depending on peculiarities such as memory access patterns, which are highly
domain- and program-specific, and compiler implementations may also affect
these. Thus it is challenging to draw general conclusions from any experiments
we perform on this matter.

The enclave memory manager does not know that data is already encrypted
using the TFHE scheme, so data is redundantly double-encrypted when paged
out, even though it need not be. Research such as VAULT [79] has shown that
this overhead is reducible with more advanced integrity verification structures.
However, a more straightforward and probably more performant solution to
our hybrid approach of Fully Homomorphic Encryption (FHE) and SGX is to
reduce memory overhead and ensure the enclave program does not exceed
PRAM limits, if possible. Sometimes this is not possible, as programs require
access to many streams of data at once, but in cases where data can fit or
rarely exceeds the memory limits of PRAM, a solution where one continuously
streams required data to the enclave is preferable. As our experiments showed,
a hybrid solution where memory usage falls short of the PRAM limit has
similar or negligible performance overhead so that the only real cost would
be the transfer to and from an enclave. An interactive system where one
continuously transfers data to and from an enclave may also be more viable if
the program is particularly memory intensive. However, copying data across
enclave boundaries is costly, and one should avoid it if possible, as shown by
the cohesion principle in [13], an investigation into performance principles
when using SGX and the care one must design their system with to ensure
efficiency. This overhead might be diminished by the overhead of exceeding
enclave memory limits, however. Thus, more experimentation is required to
conclude anything more meaningful here.
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6.2 Improvements to TFHE Implementation

There are several ways to improve our implementation of the TFHE scheme.
In terms of performance and the internal workings of the library, we discuss
some of these possible techniques in the sections below.

6.2.1 Internal Representation

The internals of the TFHE scheme relies on structuring data as matrices and
polynomials. Most of the internal operations when performing homomorphic
operations on ciphertexts are linear transformations of matrices. As such, it
would be beneficial to represent data differently than our current implementa-
tion does. We store data as nested vectors. Flattening this representation to a
one-dimensional vector would be an improvement in terms of memory usage,
as a flattened representation implies a single allocation. In contrast, e.g., a two-
dimensional vector of size m X n currently performs at least 1 + m allocations
in our implementation — one for the top-level vector and one for each of the
internal vectors, of which we have m. The number of allocations increases poly-
nomially with an increased number of dimensions (if n = m = .. .). Reducing
the number of allocations should theoretically reduce memory fragmentation,
which is critical to minimize in SGX due to the performance penalty when
having to page out memory to unprotected RAM.

Furthermore, as the internal operations perform calculations on matrices, a
linear algebra library would improve the readability of the code. Potentially,
it could also improve performance by making optimizations that are easy
to miss when manually implementing. Most linear algebra libraries often
come with specialized implementations of common operations such as matrix
multiplication, where a library can implement complex algorithms developers
do not implement due to development costs or lack of knowledge. Rust has
a few different and sophisticated libraries for linear algebra already, such as
nalgebra! and ndarray2. Using such a library internally could both improve
code clarity and performance.

Of course, the opposite could also possibly be real, where our use-case is so
specialized that using a generalized linear algebra library would penalize per-
formance. As evidence against this, we have not encountered implementation
details that are complicated enough for a general-purpose linear algebra library
not to provide the required functionality. Thus, we stand by the point that using
such a library would be an improvement. If one uses strong types for different

1. https://nalgebra.org/
2. https://crates.io/crates/ndarray
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types of matrices (e.g., a type for diagonal matrices, symmetric matrices, or
other matrices with special properties), one might even spot situations where
one can optimize an operation due to there existing several ways to transform
matrices to produce the desired result. A linear algebra library would increase
the chances of such a phenomenon.

6.2.2 Memory Management

One way to improve our implementation of the TFHE scheme is to make memory
management internally more advanced. As we have seen in our experiments,
the way the program uses memory impacts performance in SGX substantially.
Rust more easily allows functions to return objects allocated in memory to the
caller than C as it moves the object to the caller. It also does not require the caller
to explicitly free them, as the ownership and lifetime system alleviates the need
for this by dropping (deallocating) the object and its memory when it falls out
of scope. This style means that idiomatic Rust may have more allocations and
deallocations than in C. This, in turn, affects our system when executing within
an SGX enclave, as memory allocations may be more expensive, depending on
whether the situation requires paging to untrusted RAM or not. As most of
the code in the original TFHE library mostly uses a C-style C++, it uses the
style of having functions returning void (indicating the function cannot fail)
and accepting the result pointer as an argument, and the caller is responsible
for both allocation and deallocation. Writing in this interior mutability-style
instead of the more functional, immutable style we wrote our implementation
in, is more challenging to follow in terms of control-flow but may improve
memory management. In Rust, writing much code in this way results in more
explicit lifetime management, which will also increase code complexity. The
original TFHE library also consistently reuses allocated structures to minimize
the need for deallocation and allocation. This reuse along with the fact that
C and C++ do not explicitly show which functions mutate raw pointers and
which does not makes the code difficult to follow due to implicit mutation
of values. Rust excels in readability at this point, due to its compile-time
guarantees of no implicit mutation.

6.2.3 SIMD and Parallelization

A benefit of the fact that our current implementation of the TFHE scheme is in a
functional style where data is mostly immutable is that it is easily convertible to
a parallelized version. Many of the operations we perform are embarrassingly
parallelizable. A simple approach would be to spread the necessary work among
the available hardware threads, so we looked into where this is most appealing.
The bootstrapping process performs what the authors of the TFHE scheme call
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the external product between the TGSW and TLWE samples used internally,
where the TGSW ciphertext is an intermediate encryption of the encryption key
[64]. These multiplications are with the default parameter sets only performed
12 times, closely relating to a typical amount of hardware threads available to
processors using Simultaneous Multithreading (SMT) today (logical cores), at
around 8. We also perform these multiplications relatively high up in the call
stack, something our flamegraphs made easy to identify. That these operations
are performed high in the call stack is advantageous as it reduces the potential
overhead of thread intercommunication and synchronization compared to
spawning threads at a leaf-level function call. Unfortunately, the way we have
implemented this specific functionality is through an aggregative function (a
functional fold-style), and thus it is a serialized and sequential process. This
part will require some work to unfold to allow for safe concurrency. There
should be other places to parallelize code from; however, it will require more
investigation and testing to determine if it is worth it.

Rust is propitious with regards to parallelization as one of its mottos is to
ensure fearless concurrency®. The ownership and lifetime part of the type
system ensures that code that is unsafe to parallelize is unable to compile.
This safety has fueled the growth of efficient and easy to use parallelization
libraries for Rust such as Rayon4. They base their techniques on the results
of the Cilk Project5, and dynamically handles task scheduling through work-
stealing. Our implementation of the TFHE scheme does not use any primitives
for interior mutability, and all types are thread-safe (implements the Send and
Sync marker traits®), so using Rayon in our code should be a simple matter
to implement. However, in SGX, thread synchronization is more expensive,
and parallelizing our implementation using multithreading will require some
testing to ensure we do not impose a greater overhead than the time we cut
by parallelization. As our bootstrapping operation takes just over a second to
complete, it seems the implementation has much to gain, considering thread
synchronization takes a substantially lower amount of time.

Furthermore, considering many of the internal operations are only element-
wise binary operations applied to vectors of integers, using Single Instruction,
Multiple Data (SIMD) instruction sets should be able to speed up performance
quite considerably. Most internal vectors are at least 1024 elements in length,
depending on the encryption parameters used, so they are also aligned to the
width of the data lanes used in many instructions. In the current implementa-
tion, we represent the values (coefficients of matrices) as signed 32-bit integers,

3. https://doc.rust-lang.org/book/ch16-00-concurrency.html
4. https://crates.io/crates/rayon
5.http://supertech.csail.mit.edu/cilk/

6. https://doc.rust-lang.org/nomicon/send-and-sync.html
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so using a 512-bit wide instruction should theoretically improve performance
by around 16X, but there are several caveats. Not all SIMD instructions that
offer processing 512 bits handle 16 32-bit integers, but rather 8 64-bit inte-
gers, or some other setup. Furthermore, which SIMD instruction set a Central
Processing Unit (CPU) offers depends on which manufacturer one uses (e.g.,
Intel versus AMD), which SIMD extensions are supported (e.g., if one uses
older processors), and more. Implementing SIMD support requires a lot of
internal conditional compilation (or runtime intrinsics identification) to en-
sure the current processor architecture supports the instruction set extensions
used. This manual handling of different CPU architectures leaves room for
many bugs, as conditional compilation is hard to manage, especially with the
various architectures available. If our implementation should be available for
general use, it should handle all of those conditions internally, so users need
not worry.

Additionally, using SIMD instructions in Rust is unsafe, as it involves directly
handling CPU instructions and is hardware-specific, something the compiler
does not necessarily have control over as one might compile for a different plat-
form than the one compiles on. When using unsafe Rust, the developer needs
to ensure that the code is actually safe, lest they risk introducing Undefined
Behavior (UB). Thus, introducing SIMD instructions as means of paralleliz-
ing code might be beneficial, but at the cost of considerably increased code
complexity, reducing internal code clarity and readability.

6.2.4 Ciphertext Packing

The TFHE scheme has had several improvements since its inception, and
the original authors revisit the scheme and improve it in [64]. It brings a
way to do circuit bootstrapping in the scheme, which in turn improves the
Leveled Homomorphic Encryption (LHE) functionality of the scheme, providing
speedups to arithmetic functions. Our current implementation does not support
the LHE mode of the scheme. Furthermore, it presents new techniques for
packed ciphertexts, which can improve upon a homomorphic Lookup Table
(LUT). Ciphertext packing is when a ciphertext encrypts more than one piece
of data so that homomorphic operations can operate on packed ciphertexts
to, in a sense, provide SIMD operations on encrypted data. They use this
ciphertext packing technique to create a LUT over a function’s inputs (multiple
bits), and use techniques they call horizontal and vertical packing to speed
up the evaluation of such a function, evaluating all of its outputs at once.
Mainly, using ciphertext packing and encoding functions as a homomorphic
LUT can speed up the evaluation of those functions linearly, by up to a factor
of n when packing n values. If we were to implement this functionality in our
implementation along with support for LHE, we could support larger circuits
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and the circuit bootstrapping technique they present. However, implementing
this functionality is more complicated than some of the other improvements we
can make, as this relies more on the paper’s cryptographic reasoning, something
the author of this thesis does not have extensive knowledge of. Additionally,
the original library does also not implement this functionality yet, a testament
to its inherent developmental complexity.

Ciphertext packing would bring more benefits than the performance gain, with
regards to our hybrid solution. Packing ciphertexts also implies a smaller mem-
ory footprint, which is highly advantageous as exceeding SGX enclave memory
limits is expensive. A lower memory usage equates to a more substantial pro-
portion of programs that can efficiently execute in our hybrid solution as they
can access more memory in a sense. Thus, it is a compelling long-term im-
provement even though it requires more effort than some of the other changes
we mention.

6.3 Recent Attacks on SGX

Throughout the later parts of when we worked on this thesis, three new
attacks to SGX were published, namely the LVI [52], CacheOut [6], and SGAxe
[51] attacks. We do not consider these attacks in our design, as both IVI and
CacheOut break integrity guarantees that our hybrid construction relies on, and
we do not have enough time to investigate the impact this has on our work. The
SGAxe attack builds on the weaknesses exploited in CacheOut and allows an
untrusted party to remotely (and falsely) attest that they are an authenticated
SGX enclave. Our hybrid solution exists only to cover the integrity weaknesses
a FHE scheme such as TFHE has, mainly allowing data injection or ciphertext
manipulation. Mitigating these attacks is difficult, and some parts require
hardware changes to cover them without imposing substantial performance
penalties.

Intel’s guidance” on mitigating the LVI attack relies on compilation changes,
inserting LFENCE instructions to serialize memory accesses, possibly after every
memory load [52]. These changes can significantly affect performance, depend-
ing on the program’s memory access patterns, imposing overheads of up to
potentially 19%x. We performed our experiments using a Rust version which
does not apply the software mitigations for the LVI attack. However, we reran
our hybrid experiment program with 128-bit security using a Rust version

7. https://software.intel.com/security-software-guidance/insights/
deep-dive-load-value-injection
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that applies this patch unconditionally®, released relatively close to the end
of our thesis work. In this situation, the evaluation takes around 3.3X longer
than without the mitigations. This result shows that the mitigations impose
significant overhead on our use-cases.

Nevertheless, we also consulted a security researcher at Fortanix and the
author of the software patches to Rust. We discussed the implications of the
mitigations to the LVI attack and concluded that future hardware changes
would mitigate these attacks entirely, probably without imposing as substantial
performance penalties as the current software patches do. Hence, we pretend
their nonexistence in our work.

6.4 Circuit Optimization

As the TFHE scheme requires one to represent homomorphic programs as
boolean circuits, a logical step forward would be to look at the optimization
techniques known for boolean and logical circuits. Optimizing boolean logic
has been researched for a long time, with famous techniques such as Karnaugh
maps [80] from the mid 20th century. Karnaugh maps allow easy identification
of inefficient circuits and their simplification through pattern recognition. They
also enable simple identification and elimination of race hazards. Karnaugh
maps are simple for human use, while the Quine-McCluskey algorithm is
more friendly for computer use through its tabular form, which allows easy
identification of if the circuit optimized to its minimal form [81].

Circuit optimization is highly relevant in Homomorphic Encryption (HE) as
circuits are nearly prohibitively expensive in terms of whether it is worth using
or not. Thus, performing an optimization before execution will most likely
significantly outweigh the costs of the non-optimized circuit’s execution costs.
HE has the property that the noise growth function of ciphertext multiplication
is higher than the noise growth function of ciphertext addition, meaning one
can perform more additions than multiplications as the noise grows slower
than with multiplication. This noise-growth relationship is one of the reasons
homomorphic circuits are measured using the term multiplicative depth to
measure the number of multiplication operations permitted on a ciphertext
before reaching the noise limit [1]. As such, optimization techniques for opti-
mizing homomorphic circuits to a more efficient form exists, where one notable
example is the cone rewrite operator [82]. Using a specialized operator, one can
focus both on minimizing circuit size and reducing multiplicative depth, which
positively affects performance.

8. https://github.com/rust-lang/rust/pull/72655
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We have not looked into or used circuit optimization techniques in our evalua-
tion, as we only compared relative performance metrics between using pure
FHE and our hybrid design, and it is out of scope. As such, the circuits we
used in our evaluation experiments are inefficient and unoptimized. As an
example, our circuits module exposes an adder circuit based on the ripple-
carry adder. This circuit is known to be a relatively slow adding circuit, and
we could have improved this by using a parallel carry-lookahead circuit such
as the Lynch-Swartzlander spanning tree adder [83], or even by only using an
improved ripple-carry adder [84]. Needless to say, there are many techniques
one can use from the digital logic circuit research to improve homomorphic
circuits. We leave this as future work.

6.5 Rust-SGX SDK

We use the Fortanix Rust Enclave Developer Platform (EDP) in our implemen-
tation, but another Software Development Kit (SDK) for SGX is available in
Rust at the time of writing, the Rust-SGX project, now a part of the Apache
Software Foundation®, but formerly a project by Baidu. The Rust-SGX project
has published research on its design and compared it to the Fortanix alternative
in [62]. They perform a small set (5 programs) of macrobenchmarks, where
the Fortanix version has a normalized overhead compared to the Rust-SGX
version ranging from 8% to 54% slower at the most. However, they do note
that the example benchmarks are heavily using the ECALL/0CALL instructions,
which the Fortanix Rust EDP replaces with usercalls. Furthermore, they note
that Fortanix’s design uses Rust’s standard library while their design wraps the
Intel SDK and optimizes certain parts with more unsafe code and interaction
with assembly code [62, Sec. 3.3].

These benchmarks indicate that our hybrid design could, in theory, perform
better if we used the Rust-SGX SDK instead of the Fortanix Rust EDP it currently
uses. It does seem that this approach would lose some benefits, however. The
Fortanix Rust EDP is an easy-to-use platform where the user can run unmodified
programs within SGX. Using Fortanix’s platform with our library means a user
only needs to create a new project, add our library as a dependency and set
up the Fortanix platform as a compile target, and they are ready to use FHE
through the TFHE scheme within SGX. The Rust-SGX SDK approach is to build
upon Intel’s SDK and provide bindings to a set of trusted APIs. This means
the Rust-SGX approach requires more work to achieve functional software, but
it might simultaneously provide better performance. However, they do focus
on application layer memory safety, though without providing mechanisms to

9. https://github.com/apache/incubator-teaclave-sgx-sdk
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mitigate side-channel attacks such as [3] and [85], something Fortanix’s Rust
EDP does to some extent (such as the LVI attack mitigation). However, with the
time we have at hand, we have not investigated and compared these solutions
any further and leave it as future work.

6.6 Implementation Correctness

Cryptographic software is different from other types of software in that it often
mostly manipulates numbers using arithmetic. In general-purpose software,
the programs often handle many different classes of data, which may allow
general-purpose programs to use static typing to a greater extent. That is,
general-purpose programs may comprehensively utilize the type systems, e.g.,
using different types for valid data versus unvalidated data. In cryptographic
software, the different numbers often have unique intrinsic properties that may
be hard to model in the type system without losing performance or increasing
code complexity. As an example, numbers may be part of a particular quotient
group, such as Z/47Z (the set of integers modulo 4), a value of a bounded
set such as N<10 (the natural numbers less than 10), or a matrix of shape
m X n. These might be difficult to model in type systems that do not have fully
dependent types, such as Idris [86] or Agda [87], without losing performance
due to runtime checks. As such, cryptographic software is challenging to
type statically and provide meaningful, informative types while remaining
performant. For example, the original library uses the signed 32-bit integer for
most of the computations, but in some cases, the numbers represent a number
in a torus representing up to 32-bit sized numbers. However, they are declared
using a typedef , but this only creates an alias, not a distinct, nominal type
(often called a newtype). This use means that implicit conversions from the
torus type to the regular signed integer type occur, which is correct according
to the C++ specification, leading to a loss of type safety.

Our implementation of the TFHE scheme tries to be strict with typing and
to leverage the type system where we can, but falls short in some cases.
Rust has, at the time of writing, experimental support for const generics19, or
functions and values that are generic over constant values. This functionality is
a subset of fully dependent types and could help improve some compile-time
guarantees.

We are currently aware of an issue where our implementation is unsound. The
bootstrapping operation we have implemented fails in some circumstances.

10. https://github.com/rust-lang/rfcs/blob/master/text/2000-const-
generics.md


https://github.com/rust-lang/rfcs/blob/master/text/2000-const-generics.md
https://github.com/rust-lang/rfcs/blob/master/text/2000-const-generics.md

6.7 / SUMMARY /1

Encryption in the TFHE scheme is semantically secure, meaning it involves
random sampling to encrypt data. In some cases, we experience an incorrect
result after performing the bootstrapping operation. Ciphertexts in the TFHE
scheme have noise limits, meaning that if a ciphertext’s noise exceeds the noise
limit specified by the encryption parameters, its decryption may result in an
incorrect value. We have spent a significant amount of time investigating this,
and have carefully investigated our implementation for algorithmic correct-
ness. We found that our implementation performs the correct operations, so
the error must lie in an incorrect noise handling or subtleties such as integer
overflow semantics. The original library relies on what is technically UB, so
their compiled library might operate differently than the Rust equivalent, as
the same operations in Rust are not UB. We have not investigated assembly
output differences as this is difficult due to the sheer amount of output and the
limited amount of time at hand. However, as we found that our implementation
performs the same number of operations as it should, and does not exhibit this
incorrect behavior in all situations, we have decided to rely on our evaluation
in the preceding chapter, as it tests performance characteristics and not cor-
rectness properties of the HE operations. That is, the implementation performs
equivalently if the inaccuracy issue is there or not, and as it probabilistically
appears most likely due to semantic security properties or the fact that the
original library relies on UB and may have this incorrectness property itself,
we can still perform our evaluation without inaccurate performance results.
Future work and effort will most likely discover the source of this inaccuracy
and fix it.

6.7 Summary

In this chapter, we discussed several aspects of our thesis and the potential for
improving it. We discussed our experiments and how it relates to real-life usages,
where real-life programs might have a higher memory usage. We discussed
techniques such as interactivity for minimizing memory usage, although it
seems impractical.

Furthermore, we discussed several techniques for improving our implemen-
tation of the TFHE scheme. We mentioned techniques such as changing the
internal representation to decrease memory allocations and potentially reduce
memory fragmentation, using linear algebra libraries to improve performance
and readability and using more internal mutability to reduce allocations. We
also discussed parallelizing the implementation through SIMD intrinsics and
multithreading, and finally using more advanced techniques such as ciphertext
packing to enable homomorphic SIMD behavior.
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Next, we mentioned the recent LVI, CacheOut, and SGAxe attacks published
during our thesis work. We discuss some of their impact and our decision on
how we do not consider them in this thesis.

Further, we discussed the possibility of optimizing homomorphic circuits and
the potential benefits they bring. They are engaging in terms of the performance
benefits they provide and a smaller memory footprint, something which would
improve overall performance in our hybrid design.

Eventually, we discussed the potential performance benefits from using the
Rust-SGX sDK instead of the Fortanix Rust EDP. However, we note that this
requires more development work as it is more complicated to use than the
Fortanix Rust EDP.

Lastly, we discussed the correctness properties of our implementation of the
TFHE scheme. We noted that we could improve our implementation could
by further work investigating in the nondeterministic bootstrapping failure
we probabilistically experience, but that it does not affect our evaluation as
it is an orthogonal problem regarding performance. We also mention how
a dependent type system could improve parts of our program for stronger
compile-time guarantees, and that experimental features in Rust are worked
on to provide similar functionality.



Conclusion

This thesis has combined the techniques of Fully Homomorphic Encryption
(FHE) for computing on encrypted data, and performing operations within a
Trusted Execution Environment (TEE). This combination was done to alleviate
integrity weaknesses of FHE schemes while covering up flawed confidentiality
guarantees of an implementation of a TEE, specifically Intel Software Guard
Extensions (SGX). As such, the combined solution achieves a greater degree
of security, with both data and code confidentiality and integrity guarantees.
Additionally, we have used a memory-safe programming language to provide
compile-time guarantees against a multitude of potential errors, which could
lead to security vulnerabilities.

7.1 Concluding Remarks

For us to achieve the aforementioned goals, this thesis implemented and evalu-
ated a library for performing FHE, specifically the TFHE [11] scheme, written
in pure Rust, call it TFHE-rs. Our TFHE-rs implementation was based on an
existing library written in a mix of C and C++ [16], call it TFHE-c. Compared
to TFHE-c, TFHE-rs is around 2X slower at the worst, although TFHE-rs’ per-
formance is still reasonable considering we implemented it with correctness in
mind, not performance. The performance of TFHE-rs is acceptable, and could
with further work prove to be on par with TFHE-c.

/3
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The central aspect of this thesis was to evaluate TFHE-rs’ relative performance in
conjunction with Intel SGX and without it, running as a standalone executable
outside the confines of SGX. Our evaluation in Chapter 5 on page 47 found
that one can use TFHE-rs within an SGX enclave feasibly. The evaluation
showed that the hybrid solution using TFHE-rs and SGX is 3% faster than the
version using only TFHE-rs without SGX. This result is not in line with what we
conjectured, which was that the hybrid solution with TFHE-rs and SGX should
be slower. However, the measured standard deviation does account for most of
the performance difference, and the benchmarks themselves take long enough
for this discrepancy to be due to environmental factors in our experimental
setup (i.e., due to system load). Thus, we concluded that our hybrid solution
with TFHE-rs inside an SGX enclave has a negligible overhead and is a feasible
design while simultaneously providing more reliable security guarantees. We
did find that the way memory is managed greatly affects performance. The
default system allocator on Linux (libc’s malloc) was near 28% slower than
the dlmalloc allocator we used in the SGX setup. As such, a system with a
similar setup to ours should emphasize low memory usage and experiment
with different allocators to ensure that they stay within the memory limits
imposed by SGX to the utmost extent.

To summarize, our thesis presented TFHE-rs, a library for performing the TFHE
FHE scheme, written in Rust, a memory-safe language. It embeds in SGX as a
single dependency by using the Fortanix Rust EDP. There is no user-required
configuration apart from the minimum required for creating an SGX enclave.
TFHE-rs provides pre-made circuits to make it easy for users to create common
circuits and built-in serialization and deserialization support for easy transfer
to and from enclaves. Further, our thesis evaluated our system by measuring
the performance characteristics of TFHE-rs with and without an SGX enclave
and found that performance overhead is negligible. Thus, we conclude that
using FHE operations within SGX, written in the memory-safe language Rust,
is both feasible and provides several additional security guarantees, given that
the developer ensures a reasonable memory usage. Moreover, our discussion in
Chapter 6 on page 61 provides several possible improvements and optimizations
for TFHE-rs and users of the hybrid setup, which could further improve this
design.

7.2 Future Work

As we saw in our experimental implementation of the TFHE scheme in Chapter
5 on page 47, our current implementation is up to 2x slower than the original
TFHE implementation using the bootstrapping operation. As our implemen-
tation was mostly an experimental implementation for use in SGX, it leaves
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some room for improvement. As we detailed in the discussion in Chapter 6
on page 61, we already know of a few ways to improve it. The most obvious
implementation would be to use the Lagrange half-complex representation
described in [64], representing numbers internally as the complex roots of
unity. Further, another noticeable improvement would be parallelization using
multithreading, as our implementation is conveniently written to be easily
parallelized. Other possible improvements include Single Instruction, Multiple
Data (SIMD) instructions, linear algebra libraries, managing memory with a
higher granularity to reduce allocations, and implement support for ciphertext
packing and encoding functions as a Lookup Table (LUT).

In addition to improving our implementation of the TFHE scheme, a step
toward building a more easy-to-use framework for FHE is to add support
for circuit netlist compilation. A netlist is a description of the connectivity
within a circuit. Netlists for large, well-known circuits are available online,
and a compiler could compile these into a representation our library could
execute. Support for this has some precedence as the authors of the original
TFHE library has shown that their implementation can support automatically
generated circuits. Supporting compiling circuit netlists and their evaluation
in our library could substantially improve the ease-of-use of our library.
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