

Faculty of Science and Technology

Department of Mathematics and Statistics

A study of generative adversarial networks to improve classification of

microscopic foraminifera

Eirik Agnalt Østmo

Master’s thesis in mathematics and education, year 8-13 – MAT-3907 – June 2020

Cover image: The cover image displays artificial planktic foraminifera that are generated
by the generative adversarial network (GAN) of section 4.5. The smooth transitions between
samples is one of the many interesting properties a GAN can learn unsupervised.

ii

Abstract

Foraminifera are single-celled organisms with shells that live in the marine en-
vironment and can be found abundantly as fossils in e.g. sediment cores. The
assemblages of different species and their numbers serves as an important source of
data for marine, geological, climate and environmental research.

Steps towards automatic classification of foraminifera using deep learning (DL)
models have been made (Johansen and Sørensen, 2020), and this thesis sets out to
improve the accuracy of their proposed model. The recent advances of DL models
such as generative adversarial networks (GANs) (Goodfellow et al., 2014), and
their ability to model high-dimensional distributions such as real-world images, are
used to achieve this objective.

GANs are studied and explored from a theoretical and empirical standpoint to
uncover how they can be used to generate images of foraminifera. A multi-scale
gradient GAN is implemented, tested and trained to learn the distributions of four
high-level classes of a recent foraminifera dataset (Johansen and Sørensen, 2020),
both conditionally and unconditionally. The conditional images are assessed by
an expert and a deep learning classification model and is found to contain mostly
valuable characteristics, although some artificial artifacts are introduced. The
unconditional images measured a Fréchet Inception distance of 47.1.

From the conditionally learned distributions a total of 10 000 images are sam-
pled from the four distributions. These images are used to augment the original
foraminifera training set in an attempt to improve the classification accuracy of
(Johansen and Sørensen, 2020). Due to limitations of computational resources, the
experiments were carried out with images of resolution 128× 128. The synthetic
image augmentation lead to an improvement in mean accuracy from 97.3± 0.4% to
97.4± 0.7% and an improvement in best achieved accuracy from 97.7% to 98.5%.

iii

CHAPTER 0. ABSTRACT

iv

Acknowledgements

First and foremost I would like to express my sincerest gratitude to my supervisors:
To PhD Thomas Haugland Johansen for answering my questions and pointing me
in the right direction during my exploration of the field of study. Thank you for the
technical support you have provided and for our valuable discussions. To professor
Fred Godtliebsen for giving me the opportunity to write this thesis and for your
motivational and valuable feedback.

I also want to thank the two marine geologists that has contributed to this thesis:
Steffen Aagaard Sørensen for qualitatively assessing my synthetic foraminifera, and
Christine Tømmervik Kollsgård for our useful discussions and your feedback on
the sections concerning foraminifera.

To my fiancee Ingeborg, thank you for the love, support and patience you have
shown me during the work of this thesis.

I wish to thank my classmates at UiT for the fellowship and good times we have
had these past five years. A special thanks goes to Idunn that joined me when I
wanted to change my secondary subject from chemistry to physics during freshman
year, and has been my study companion ever since.

To my friends and family, thank you for your support. and to my housemate
Kristine, thank you for cheering me all the way to the finish line.

Lastly, I dedicate a special thanks to my childhood friend Edvard, for your support
and regular video calls during the months of home office during the corona pandemic.

This would not be possible without any of you.

Eirik Agnalt Østmo
Tromsø, May 2020

v

CHAPTER 0. ACKNOWLEDGEMENTS

vi

Contents

Abstract iii

Acknowledgements v

List of Tables xi

List of Figures xiii

Notation xv

1 Introduction 1
1.1 What are foraminifera? . 1

1.1.1 Importance in research . 2
1.2 Classification of foraminifera . 2

1.2.1 Improving classification using generative models 3
1.3 Contributions . 4
1.4 Motivation and hypothesis . 4
1.5 Thesis outline . 5

2 Background theory 7
2.1 Machine learning basics . 7

2.1.1 Maximum likelihood . 8
2.1.2 Gradient descent . 9
2.1.3 Momentum and Adam . 10
2.1.4 Overfitting and underfitting . 11
2.1.5 Image data . 12

2.2 Neural networks . 13
2.2.1 The perceptron . 13
2.2.2 Feedforward neural network . 15
2.2.3 Learning the parameters . 17

vii

CONTENTS

2.3 Convolutional neural networks . 18
2.3.1 The biology of computer vision 18
2.3.2 The convolutional operator . 19
2.3.3 Convolutional layers . 20
2.3.4 Motivation . 21
2.3.5 Pooling . 21
2.3.6 Variations of convolutional layers 22
2.3.7 Learning the filters . 22
2.3.8 Transposed convolutions . 24

2.4 Regularization . 25
2.4.1 Early stopping . 25
2.4.2 Dropout . 26
2.4.3 Batch normalization . 26

2.5 Classification of foraminifera using a CNN 27

3 Generative adversarial networks 31
3.1 Challenges of generative models . 31

3.1.1 The curse of dimensionality . 31
3.1.2 Creating multi-modal outputs 33

3.2 Generative adversarial networks . 33
3.2.1 The GAN framework . 34
3.2.2 Learning in the GAN framework 34
3.2.3 Learning the distribution of a circle 37
3.2.4 Interpolation in latent space 40

3.3 Challenges of generative adversarial networks 42
3.3.1 Training instability . 42
3.3.2 Mode collapse . 43
3.3.3 Addressing the challenges of GANs 46

3.4 Deep convolutional GANs . 46
3.4.1 Early deep convolutional GANs 46
3.4.2 DCGAN architecture . 48
3.4.3 Architectural guidelines . 49
3.4.4 Challenges of the DCGAN architecture 50

3.5 Wasserstein GAN . 50
3.5.1 Wasserstein distance . 50
3.5.2 Advantages of the Wasserstein distance 53
3.5.3 Towards a Wasserstein loss function 53
3.5.4 From discriminator to critic . 54
3.5.5 Gradient penalty on Wasserstein GANs 55

3.6 Progressively growing GANs . 55
3.6.1 ProGAN architecture . 56

viii

CONTENTS

3.6.2 Normalization and a remedy to mode collapse 56
3.6.3 Restricting the discriminator 58

3.7 Multi-scale gradient learning in GANs 58
3.8 Final notes on GANs . 61
3.9 Evaluating generative models . 62

3.9.1 Inception Score (IS) . 62
3.9.2 Fréchet inception distance (FID) 63

4 Experiments 65
4.1 Preliminary experiments with a deep convolutional GAN 66

4.1.1 Datasets . 66
4.1.2 Experiment setup and implementation details 66
4.1.3 Results . 67
4.1.4 Discussion . 67
4.1.5 Closing remarks . 69

4.2 Method and setup of the multi-scale gradient GAN 69
4.2.1 Implementation details of the MSG-GAN model 70
4.2.2 Implementation of the training loop 72
4.2.3 Technical details . 75

4.3 Model validation and testing on real-world images 77
4.3.1 The CIFAR-10 dataset . 77
4.3.2 Experiment setup . 79
4.3.3 Results . 79
4.3.4 Discussion . 84
4.3.5 Closing remarks . 85

4.4 Generating synthetic foraminifera unconditionally 85
4.4.1 The foraminifera dataset . 86
4.4.2 Experiment setup . 86
4.4.3 Results . 88
4.4.4 Discussion . 88
4.4.5 Closing remarks . 93

4.5 Generating foraminifera conditionally 93
4.5.1 Hypothesis and experimental setup 93
4.5.2 Results . 94
4.5.3 Discussion . 94
4.5.4 Closing remarks . 101

4.6 Underfitting and overfitting in GANs 101
4.6.1 Experiment setup . 102
4.6.2 Results . 102
4.6.3 Discussion . 102
4.6.4 Closing remarks . 105

ix

CONTENTS

4.7 Assessment of conditionally generated foraminifera 105
4.7.1 Experiment setup . 105
4.7.2 Results . 107
4.7.3 Discussion . 107
4.7.4 Closing remarks . 108

4.8 Improving classification of foraminifera using synthetic data 108
4.8.1 Experimental setup . 109
4.8.2 Results . 110
4.8.3 Discussion . 110
4.8.4 Closing remarks . 111

5 Final discussion and concluding remarks 113
5.1 Final discussion . 113
5.2 Future work . 114

5.2.1 Direct extensions of this thesis 114
5.2.2 Towards the goal of an automatic foraminifera classifier 115

5.3 Concluding remarks . 115

Bibliography 117

A Source code 125

B Implementation details of a basic GAN 127

Index 132

x

List of Tables

2.1 High-level summary of the foraminifera classifier. 28

4.1 A detailed description of the MSG-GAN generator architecture. . . . 73
4.2 A detailed description of the MSG-GAN discriminator architecture. . 74
4.3 Evaluation of GAN models on the CIFAR-10 dataset. 84
4.4 An overview of the foraminifera dataset 86
4.5 FID of conditionally trained foraminifera 94
4.6 Form used for expert assessment of synthetic foraminifera 106

xi

LIST OF TABLES

xii

List of Figures

1.1 Specimen from the foraminifera dataset 1

2.1 Illustration of overfitting . 11
2.2 A gray-scale image represented as a matrix. 12
2.3 The three layers of an RGB image. 13
2.4 The mathematical operations of a basic perceptron. 15
2.5 Model of a multilayer perceptron. 16
2.6 Illustration of the convolution operation. 20
2.7 Illustration of convolutional filters and a pooling function. 21
2.8 An illustration of strides and padding 23
2.9 The operations of a valid convolution transpose. 25
2.10 Early stopping . 26
2.11 A neural network with and without dropout applied. 27
2.12 The foraminifera classifier . 29

3.1 The curse of dimensionality. 32
3.2 The overall structure of a simple generative adversarial network. . . 35
3.3 Mini-max game vs. non-saturating game for GANs 37
3.4 The GAN architecture of a learning example. 38
3.5 The predictions of the discriminator during training. 39
3.6 A visualization of what a simple GAN learns during training. 40
3.7 The nonlinear mapping learned by the generator. 41
3.8 Why convergence of a mini-max game can be challenging. 44
3.9 Exponential moving average with different decay rates 45
3.10 An illustration of why modes are dropped in mode collapse. 47
3.11 Model of the generator of a DCGAN. 48
3.12 Two example distributions for the Wasserstein distance example. . . 51
3.13 The optimal trainsportation plan as a joint distribution. 52
3.14 How it looks when the optimal transportation plan is applied. . . . 52
3.15 The conceptual architecture of progressively growing GANs. 57

xiii

LIST OF FIGURES

3.16 A multi-scale gradient GAN based on the ProGAN architecture. . . 59

4.1 Results from DCGAN trained on the MNIST dataset 67
4.2 Mode collapse in DCGAN . 68
4.3 Mode collapse and exploding activations in DCGAN 68
4.4 A detailed model of the MSG-GAN used in the experiments. 71
4.5 The computational graph used in the MSG-GAN experiments. . . . 76
4.6 144 real images from the CIFAR-10 dataset. 78
4.7 Generated images from model A on the CIFAR-10 dataset 80
4.8 Generated images from model B on the CIFAR-10 dataset 81
4.9 Interpolations in latent space after training on CIFAR-10 82
4.10 MSE between images of consecutive epochs on the CIFAR-10 exper-

iment . 83
4.11 Agglutinated, benthic, planktic foraminifera and sediments 87
4.12 Random selection of synthetic images of foraminifera 89
4.13 Images evaluated at different scales during training of MSG-GAN . 90
4.14 Interpolations between random points in the foraminifera latent space 91
4.15 Stability of unconditional training on the foraminifera dataset. . . . 92
4.16 Conditionally generated foraminifera and sediment grains. 95
4.17 Interpolation of synthetic agglutinated foraminifera and sediments. 96
4.18 Interpolation of synthetic planktic and bentich foraminifera 97
4.19 Grid artifact in some synthetic images. 101
4.20 Over- and underfitting in conditional foraminifera GAN 103
4.21 Interpolation in latent space on over- and underfit GANs 104
4.22 Some interesting cases assessed by the expert 108

xiv

Notation

This section provides a concise reference describing notation used throughout
this document. The typesetting is done in LATEXwith notation template from
(Goodfellow, 2016a).

Numbers and Arrays
a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by
context

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with
a 1 at position i

diag(a) A square, diagonal matrix with diagonal entries
given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

xv

LIST OF FIGURES

Sets
A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the
elements of A that are not in B

Indexing
ai Element i of vector a, with indexing starting

at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a

Linear Algebra Operations
A> Transpose of matrix A

A+ Moore-Penrose pseudoinverse of A

A�B Element-wise (Hadamard) product of A and
B

A ∗B Convolution of the kernel A over the matrix
B

det(A) Determinant of A

xvi

LIST OF FIGURES

Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with respect
to X

∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm

∇2
xf(x) or H(f)(x) The Hessian matrix of f at input point x∫

f(x)dx Definite integral over the entire domain of x∫
S
f(x)dx Definite integral with respect to x over the set

S

Probability and Information Theory
a⊥b The random variables a and b are independent

a⊥b | c They are conditionally independent given c

P (a) A probability distribution over a discrete vari-
able

p(a) A probability distribution over a continuous
variable, or over a variable whose type has not
been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

H(x) Shannon entropy of the random variable x

DKL(P‖Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and
covariance Σ

xvii

LIST OF FIGURES

Functions
f : A→ B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Sometimes
f(x) is used but the argument θ is omitted to
lighten the notation)

log x Natural logarithm of x

σ(x) Logistic sigmoid,
1

1 + exp(−x)

||x||p Lp norm of x

||x|| L2 norm of x

x+ Positive part of x, i.e., max(0, x)

1condition is 1 if the condition is true, 0 otherwise

Sometimes a function f whose argument is a scalar is used but applied to a vector,
matrix, or tensor: f(x), f(X), or f(X). This denotes the application of f to the
array element-wise. For example, if C = σ(X), then Ci,j,k = σ(Xi,j,k) for all valid
values of i, j and k.

Datasets and Distributions
pdata The data generating distribution

p̂data The empirical distribution defined by the train-
ing set

X A set of training examples

xi The i-th example (input) from a dataset

yi or yi The target associated with xi for supervised
learning

X The m × n matrix with input example xi in
row Xi,:

xviii

Chapter 1

Introduction

1.1 What are foraminifera?

Foraminifera are single-celled organisms (figure 1.1) that live in the marine
environment. Although they are single-celled they often produce a shell (test)
with one or multiple chambers encapsulating the organism. The shells of the
foraminifera are made of minerals from the environment of the species, commonly
calcium carbonate (CaCO3) or agglutinated sediment particles. If the conditions
are right (e.g. not too acidic), the shells of the foraminifera are preserved as
fossils. These fossils can be found in the sediment of the sea floor, and are
today an important source of information for scientists reconstructing the ancient
environment of our planet and for petroleum exploration (O’neill, 1996).

Most marine foraminifera are benthic and thus live on or within the sediment of
the sea floor, while a smaller variety are planktic which live and float in the water
column at different depths. In total there are over 50 000 recognized species and
subspecies of foraminifera, both living (10 000) and fossilized (40 000) (Hayward
et al., 2020). Sizes usually vary from 0.05 mm to 0.5 mm, although some species

(a) Calcareous benthic (b) Planktic (c) Agglutinated benthic (d) Sediment grain

Figure 1.1: Specimen of foraminifera and sediment grains that are extracted from sediment
cores. The images are from the foraminifera dataset of (Johansen and Sørensen, 2020)

1

CHAPTER 1. INTRODUCTION

can grow up to several centimeters (Marshall, 2010).

1.1.1 Importance in research

Foraminifera are present in most marine sediment and have become the most
studied group of fossils worldwide (Hayward et al., 2020). The study of preserved
foraminifera shells are of great importance in e.g. biostratigraphy, paleoenviron-
mental studies and isotope geochemistry.

The utility of foraminifera comes from the information that can be obtained from
studying the foraminifer assemblages in e.g. sediment cores. A sediment core
is a cross section of the seabed that reveal the layers of sediment that has been
deposited over millions of years. One cubic centimeter of sediment may contain
hundreds of foraminifera (Sabbatini et al., 2014) making them the most abundant
shelled organism in many marine environments (Hayward et al., 2020). As different
species thrive in different living conditions, the relative numbers of e.g. benthic and
planktic species, the ratio of shell types or shell chemistry may provide important
information regarding e.g. salinity and temperature (Sabbatini et al., 2014).

To illustrate the utility of foraminifera in the context of climate research, one may
consider the ratio of different isotopes in the chemical composition of foraminifera
shells. The isotope ratios in the shell is thought to reflect the chemistry of the
water in which the foraminifera grew (Sabbatini et al., 2014). This ratio may thus
reveal important information about the environment at the time. Calcareous shells
of some foraminifera contain carbonate (CO−3) that was formed from e.g. carbon
dioxide (CO2) from the atmosphere, that was dissolved in the water at the time of
formation of the shell. Analyzing the ratios of stable carbon isotopes in foraminifera
shells may therefore give information about the amount of carbon and CO2 in the
atmosphere at the time. In a similar manner, the ratios of oxygen isotopes found
in the chemical bonds of the shell can give an indication of how much of earths
water that was trapped in ice (Riebeek, 2005). As the amount of ice gives strong
evidence of the global temperature scientists can use information from foraminifera
to estimate the global temperature millions of years back in time.

1.2 Classification of foraminifera

Due to the information that can be deduced from assemblages of foraminifera,
statistical counting and classification of species is an important source of data.
The work of picking, counting, identifying and classifying foraminifera is very time
consuming and demands great resources. This job is performed manually using
microscopes by trained expertise, as the foraminifera species are often difficult to tell

2

CHAPTER 1. INTRODUCTION

apart. In classification different species are recognized due to their morphological
differences, such as shape, texture and gloss. Often they must be examined from
different sides to determine their correct class, or even distinguish them from grains
of sand.

Machine learning models based on deep learning has shown promising results in the
progress of automating this manual classification process. Johansen and Sørensen
(2020) provided a new labeled dataset (see figure 1.1) of four high-level classes:
sediment grains, calcareous benthic, planktic and agglutinated benthic foraminifera.
Using a large convolutional neural network (CNN) they managed to classify the
samples with an accuacy of 98.5 %. Through Monte Carlo dropout the researchers
uncovered the difficult cases in the dataset, and found that there were two scenarios:
(1) The model was uncertain about the prediction, or (2) the model was certain,
but the prediction was incorrect. A goal moving forward in this area of research is
to improve the overall classification accuracy and to improve edge case classification
and confidence.

1.2.1 Improving classification using generative models

As classification of foraminifera is of great importance to researchers steps towards
an automatic classification procedure is highly desirable. Improvements to the
current deep learning models could be an increase of classification accuracy and a
reduction of edge case uncertainty. In addition to extending the domain of current
classifiers to include e.g. foraminifera subspecies or micro plastics.

To succeed in the aforementioned improvements two possible strategies are proposed:
(i) to fine tune, improve and extend the current classification models and (ii) to get
access to more numerous and diverse training data. It is likely that the solution
involves a combination of these two strategies. This thesis will follow the strategy
of (ii) and try to synthetically produce relevant training data that could be used to
improve the existing classification model of Johansen and Sørensen (2020).

In the recent years a new type generative model, and training approach, has had
huge success and was described by Facebook’s AI research director Yann LeCun as
"[...] the most interesting idea in the last 10 years in ML" (LeCun, 2016). The
novelty was the generative adversarial network (Goodfellow et al., 2014) where two
deep learning models are trained as opponents to produce synthetic data from a
given distribution. This approach is called adversarial training and is used in this
thesis to create synthetic images of foraminifera that could be used to augment the
foraminifera dataset and thus improve classification.

This approach has in recent years been used to improve CNN-based classification
of medical images where numerous and diverse training data are known to be

3

CHAPTER 1. INTRODUCTION

scarce. Concrete applications that have yielded good results are e.g. liver lesion
classification (Frid-Adar et al., 2018), detection of brain tumors from MRI-images
(Bowles et al., 2018) and generation of synthetic PET images of Alzheimer’s decease
at different stages (Islam and Zhang, 2020).

1.3 Contributions

This thesis sets out to contribute to the research towards developing an automatic
foraminifera classifier by exploring GANs and their ability to synthetically generate
images. The key contributions of this thesis are:

• An in-depth review of the recent advances in the field of generative adversarial
networks.

• Novel insights on the utilization of GANs to synthetically generate images of
foraminifera and sediments.

• Improved accuracy on the classification of foraminifera by GAN-based image
augmentation.

• An expert assessment of synthetically generated images of foraminifera.

• Visualization of over- and underfitting in a GAN, and artifacts that may
occur on images of foraminifera.

• Experimental results that suggest the instability of Fréchet Inception distance
for evaluation of GAN images produced from small datasets.

• A novel implementation in Tensorflow 2.1 of a multi-scale gradient GAN
(Karnewar and Iyengar, 2019) based on the progressively growing architecture
(Karras et al., 2017).

1.4 Motivation and hypothesis

The motivation for this thesis emerges from the recent advances in the field of deep
learning, particularly the models referred to as generative adversarial networks
(GANs). Promising results from e.g. medical applications have suggested GANs
have the ability to improve CNN-based classification models by generating additional
synthetic training data. This approach seems promising to further improve the
classification of fossil foraminifera.

In addition, as this is a thesis in education, another aim is to explore a subject that
is relevant for the Norwegian school system. In Norway from the fall of 2020 a new

4

CHAPTER 1. INTRODUCTION

curriculum takes effect, and with it comes a new focus on algorithms and program-
ming in mathematics education. Students are to have insight to how mathematics
are used in a day to day basis, in society, science and technology (Norwegian
Ministry of Education and Research, 2019). They shall have knowledge to judge
how algorithms are used in society in a critical manner. As deep learning systems,
and application of GANs such as deepfakes1, are becoming more integrated in
technology and society, knowledge about this topic is of relevance to the Norwegian
school system.

With this motivation in mind the threefold objective of this thesis is presented.

1. To explore and study the branch of deep learning models concerning generative
adversarial networks (GANs), by presenting the key aspects and challenges
of these models and how these challenges can be addressed.

2. To create synthetic images of foraminifera by using a generative adversarial
network to learn the distribution of the foraminifera image dataset.

3. To improve the accuracy of the classification model proposed in (Johansen
and Sørensen, 2020) by using synthetic images retrieved through adversarial
training.

With this in mind the following hypothesis is proposed for the main experiment in
this thesis:

Augmenting the training set of the foraminifera classifier (Johansen and
Sørensen, 2020) with synthetic images from a generative adversarial
network will improve the classification accuracy of the model.

1.5 Thesis outline

This thesis consists of five chapters: 1 Introduction, 2 Background theory, 3 Gener-
ative adversarial networks, 4 Experiments and 5 Final discussion and concluding
remarks.

Chapter 1 presents the context, research task, motivation and objectives of this
thesis.

Chapter 2 gives the reader an introduction to the field of deep learning, image
data, the task and techniques of computer vision and the research that this thesis
builds on. This background is essential prerequisite knowledge for chapter 3 that

1Deepfakes are synthetic media where a person in an image or video is replaced with someone
else using deep learning algorithms. The result is e.g. a highly realistic video of a president saying
or doing the actions of another person: https://youtu.be/cQ54GDm1eL0

5

https://youtu.be/cQ54GDm1eL0

CHAPTER 1. INTRODUCTION

aims to study and explore the generative adversarial networks that are used in the
experiments.

Chapter 3 addresses the first objective of this thesis by reviewing and exploring
the advances in the field of GANs. The study is conducted from a mainly theoretical
and technical point of view and covers GANs from their introduction in 2014 to
the modern state-of-the-art models. The chapter presents some key insights and
challenges of the models, as well as how some of these challenges can be addressed.
The chapter closes by presenting some of today’s popular techniques of evaluating
GAN images. This chapter constitutes large parts of the methodology that is used
in the experiments.

Chapter 4 is built up by conducting subsequent experiments that on their own
address the objectives of this thesis, as well as serving as intermediate steps towards
testing the final hypothesis of this thesis. Each experiment is introduced with their
own intermediate objective or hypothesis, before the experimental setup and results
are described. Each experiment is rounded off with a discussion and some closing
remarks that constitute the foundation for the succeeding experiment.

The experiments begin with a continuation of the study and exploration of GANs,
but now from a more empirical standpoint. Section 4.1 illustrates the rise and fall
of the first popular deep convolutional GAN architecture, before several experi-
ments using a more robust multi-scale gradient GAN (MSG-GAN) are conducted.
Section 4.2 describes the implementation of the MSG-GAN in Tensorflow 2.1
that is used in the following experiments. Section 4.3 aims at finding the best
configuration of the MSG-GAN by testing it on a familiar dataset from the GAN
literature. The experiment in section 4.4 use the MSG-GAN to generate synthetic
images of foraminifera unconditionally, while experiment 4.5 aims at generating
synthetic images of foraminifera class conditionally. This experiment leads to
valuable insights of the reliability of GAN evaluation measures. Thereafter two
experiments are then conducted to investigate the artifacts (section 4.6) and qual-
ity (section 4.7) of the generated images. All experiments lead up to the final
experiment in section 4.8 that will test the main hypothesis.

Chapter 5 provides a summary and final discussion of the experiments, suggestions
for future work and some concluding remarks.

6

Chapter 2

Background theory

Before the objectives of this thesis can be addressed, and experiments to test the
hypothesis can be conducted, it is essential with a solid theoretical background.
This chapter presents some key insights to the field of deep learning and provides
the theoretical background needed to explore generative adversarial networks in
chapter 3 and 4.

This chapter of theoretical background starts off with some basic principles of
machine learning. The statistics and machine learning basics presented in this
chapter will not be a complete walk-through, but rather a reminder of some of the
important intuitions and results. Proceeding in the chapter the fundamentals of
deep learning are presented before the task of computer vision is introduced. The
background theory of deep learning and computer vision will provide the necessary
prerequisites for working with images, classification and generative adversarial
networks.

2.1 Machine learning basics

Machine learning (ML) is the study of computer algorithms that improve auto-
matically by processing data or through experience (Mitchell et al., 1997). It is
considered a subfield of artificial intelligence (AI) and builds on mathematical
and statistical methods. Common problems for machine learning algorithms are
related to classification, inference, prediction, segmentation and automatic decision
making. A common strategy of machine learning is to analyze a set of observed
samples, often referred to as training data, with a pattern recognizing model that
gain insight to solve the specific problem. More advanced machine learning tech-
niques use complex models of deep learning to solve problems of e.g. computer

7

CHAPTER 2. BACKGROUND THEORY

vision, natural language processing or image generation. More on these models
later.

2.1.1 Maximum likelihood

To introduce the notation and some important concepts the principle of maximum
likelihood is briefly introduced. Maximum likelihood is an important principle
when the objective is to find a function that are can estimate a data generating
distribution pdata(x).

Consider a set X = {x1,x2, . . . ,xn} of independent variables sampled from pdata.
Using these observed values one wishes to approximate the data generating dis-
tribution pdata using a parameterized model pmodel(x;θ). The objective is that
the model shall estimate the true probability of any observed variables x, so
pmodel(x;θ)→ pdata(x). A suitable model can solve this problem given the right
parameter values.

The principle of maximum likelihood suggests to choose values of θ so the probability
of observing the samples in X are maximized given the model that is chosen. This
gives the maximum likelihood parameters θML

θML = arg max
θ

pmodel(X;θ) (2.1)

= arg max
θ

n∏
i=1

pmodel(xi;θ) (2.2)

In practice θML is often found using an optimization algorithm to solve the equivalent
log-transformed problem, so the product of the probabilities conveniently are
transformed to the sum of log-probabilities.

θML = arg max
θ

n∑
i=1

log pmodel(xi;θ) (2.3)

Scaling the optimization problem by 1
n
does not change the solution, but lets us

express it as an expectation with respect to the observed distribution p̂data from X
(Goodfellow et al., 2016), so

θML = arg max
θ

Ex∼p̂data [log pmodel(x;θ)] (2.4)

The optimization problem of maximum likelihood can be interpreted as minimizing
the dissimilarity between the empirical distribution p̂data and the model distribution

8

CHAPTER 2. BACKGROUND THEORY

pmodel, when the dissimilarity is measured by the Kullback-Lieber (KL) divergence1.

DKL(p̂data‖pmodel) = Ex∼p̂data [log p̂data(x)− log pmodel(x)] (2.5)

By convention optimization problems in machine learning are often formulated as
a minimization of a loss or cost function. Following this convention the problem of
finding the maximum likehood estimator of equation 2.4 is the same as minimizing
the cost function

J(θ) = −Ex∼p̂data [log pmodel(x)] (2.6)

2.1.2 Gradient descent

The principle of maximum likelihood can be applied to obtain a cost function
to minimize when the goal is to fit a model f(x;θ) to a training set. Machine
learning algorithms often use gradient based methods to find the minimum of a
cost function J(θ). Given that the derivative exists local extrema can be found by
solving ∂J(θ)

∂θ
= 0.

Often these solutions must be found iteratively using an optimization algorithm.
A simple optimization algorithm that tries to find a minimum of J is gradient
descent that use the average gradient of the cost function, evaluated at all training
samples, with respect to the parameters θ.

In practice it is more suitable to compute the average gradient of a loss function
L evaluated on small subsets of samples B = {xi}b1 of training data, with respect
to the parameters θ of the model. This method is known as stochastic gradient
descent (SGD), and each subset of samples is known as a minibatch. The loss
is the cost function evaluated on a minibatch of training samples. The gradients
of the loss function gives the slope of L, and hence map out the local topology of
the loss surface. Following the gradients in the negative direction usually gives a
reasonable path down towards a minimum of the cost function. The parameters
θ of the model are updated by adding a fraction µ of the gradients of the loss
function. The parameter updates of SGD are given by

ĝ =
1

b

b∑
i=1

∇θ(t)L(f(xi;θ
(t))) (2.7)

θ(t+1) = θ(t) − µĝ (2.8)

where ĝ is the estimated gradient of iteration t of the minibatch B, and µ is the
learning rate which give how large step the algorithm should take in the negative
direction of the gradients.

1Minimizing the KL divergence is the same as minimizing the cross-entropy between the
distributions (Goodfellow et al., 2016).

9

CHAPTER 2. BACKGROUND THEORY

2.1.3 Momentum and Adam

Optimization and learning of the parameters using SGD can often be slow and
unstable. Common culprits are the stochasticity introduced by the random sampling
of minibatches and small or vanishing gradients of the loss function.

To improve the optimization equation 2.8 can be modified to speed up conver-
gence. Some common measures are adaptive learning rate and momentum
(Qian, 1999). Conceptually adaptive learning rate adjusts µ during optimization
so bigger steps are taken when the algorithm performs well (Theodoridis and
Koutroumbas, 2008). Momentum accelerates learning by adding a fraction of the
previous parameter update to the current update, so oscillations in optimization
are dampened.

These principles for faster convergence have been improved and adopted in more
advanced optimizing algorithms such as adaptive gradient algorithm AdaGrad
(Duchi et al., 2011) and root mean square propagation RMSProp (Tieleman and
Hinton, 2012).

The optimizer algorithm that has become one of the most popular is the adaptive
moments estimation optimizerAdam (Kingma and Ba, 2014). The Adam optimizer
calculates the running average of the first moment (mean) and the second moment
(uncentered variance) of the gradients (equation 2.7), performs correction of bias
before updating the parameters. Optimization through Adam is summarized by
the following operations performed elementwise on each minibatch:

Estimating the first and second moment

m(t+1) = β1m
(t) + (1− β1)ĝ (2.9)

v(t+1) = β2v
(t) + (1− β2)ĝ � ĝ (2.10)

performing correction of bias

m̂(t) =
m(t)

1− β(t)
1

(2.11)

v̂(t) =
v(t)

1− β(t)
2

(2.12)

and updating the parameters

θ(t+1) = θ(t) − µ m̂(t)

√
v̂(t) + ε

(2.13)

10

CHAPTER 2. BACKGROUND THEORY

0 1 2 3

x

−2

−1

0

1

2

y

Underfitted (degree 1)

0 1 2 3

x

Good fit (degree 5)

0 1 2 3

x

Overfitted (degree 15)

Model

True function

Training samples

Figure 2.1: Polynomial regressions of different degrees are used to model the function
y = cos(3π4 x). Degree 1 have too low, and degree 15 have too large capacity, so it underfits
and overfits to the training data. The result is a model that will not generalize well. A
polynomial of degree 5 is suitable and models the true function well.

Where β1 and β2 are the exponential decay rates for the moment estimates m and
v in the range [0, 1), and ε is a small constant for numeric stability. Kingma and
Ba (2014) suggest the values β1 = 0.999, β2 = 0.9 and ε = 10−8 as default for the
Adam algorithm.

2.1.4 Overfitting and underfitting

Though a model is optimized using a training set it is not guaranteed that it will
generalize well to unseen data. If a model has too large capacity chances are
that the model learns the training data, and not the underlying structure that it is
supposed to model (figure 2.1). This is a common problem in machine learning and
is referred to as overfitting. If the model has too small capacity or is not trained
sufficiently it will not be able to model the underlying structure and is underfit.

The problem of overfitting can be discovered by calculating the generalization
error also known as test error by testing the model’s performance on data samples
than was collected separately from the training data. When one dataset is used for
training it is often separated into a training split and test split to reliably test
the model’s performance on separate samples. Some popular training techniques
require an additional validation split, but more on this later (section 2.4.1).

11

CHAPTER 2. BACKGROUND THEORY

[[0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 82 187 26 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 179 240 237 255 240 139 83 64 43 60 54 0 1]
 [0 0 0 0 0 0 0 0 0 1 0 0 1 0 58 239 222 234 238 246 252 254 255 248 255 187 0 0]
 [0 0 0 0 0 0 0 0 0 0 2 3 0 0 194 239 226 237 235 232 230 234 234 233 249 171 0 0]
 [0 0 0 0 0 0 0 0 0 1 1 0 0 10 255 226 242 239 238 239 240 239 242 238 248 192 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 172 245 229 240 241 240 241 243 243 241 227 250 209 0 0]
 [0 0 0 0 0 0 0 0 0 6 5 0 62 255 230 236 239 241 242 241 242 242 238 238 242 253 0 0]
 [0 0 0 0 0 0 0 0 0 3 0 0 255 235 228 244 241 241 244 243 243 244 243 239 235 255 22 0]
 [0 0 0 0 0 0 0 0 0 0 0 246 228 220 245 243 237 241 242 242 242 243 239 237 235 253 106 0]
 [0 0 3 4 4 2 1 0 0 18 243 228 231 241 243 237 238 242 241 240 240 240 235 237 236 246 234 0]
 [1 0 0 0 0 0 0 0 22 255 238 227 238 239 237 241 241 237 236 238 239 239 239 239 239 237 255 0]
 [0 0 0 0 0 25 83 168 255 225 225 235 228 230 227 225 227 231 232 237 240 236 238 239 239 235 251 62]
 [0 165 225 220 224 255 255 233 229 223 227 228 231 232 235 237 233 230 228 230 233 232 235 233 234 235 255 58]
 [52 251 221 226 227 225 225 225 226 226 225 227 231 229 232 239 245 250 251 252 254 254 252 254 252 235 255 0]
 [31 208 230 233 233 237 236 236 241 235 241 247 251 254 242 236 233 227 219 202 193 189 186 181 171 165 190 42]
 [77 199 172 188 199 202 218 219 220 229 234 222 213 209 207 210 203 184 152 171 165 162 162 167 168 157 192 78]
 [0 45 101 140 159 174 182 186 185 188 195 197 188 175 133 70 19 0 0 209 231 218 222 224 227 217 229 93]
 [0 0 0 0 0 0 2 24 37 45 32 18 11 0 0 0 0 0 0 72 51 53 37 34 29 31 5 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]]

Figure 2.2: Shows how a 28× 28 gray-scale image of a shoe can be represented as values
in a matrix. Each entry in the matrix is the pixel value [0, 255] that gives the amount
of white in the image. The image data is from the fashion MNIST dataset (Xiao et al.,
2017).

2.1.5 Image data

As this thesis comprises image data it can be useful with a clarification on what
image data is to a computer. An image consists of pixels composed in a grid. In a
gray-scale image every pixel is usually represented by an integer value in the range
of [0, 255]. The value represents the luminance of each pixel. The grid of pixel
values in a gray-scale image are often represented in a matrix A, where each entry
Ai,j corresponds to the pixel value in row i and column j (see figure 2.2).

In color images (RGB), every pixel is represented using three numbers. The numbers
(r, g, b) are in the range [0, 255] and specifies the amount of red, green and blue
light respectively. Mixing the proportions of red, green and blue (RGB) allows it
to display 2563 = 16 777 216 different colors. The numbers describing one pixel
in an image are often referred to as channels. In an RGB image a 3-D matrix
is needed to represent the numbers. Multi-dimensional matrices are sometimes
referred to as tensors and are denoted A. In figure 2.3 the 2-D tensor slices A:,:,1,
A:,:,2 and A:,:,3 yielding the red, green and blue channels respectively are displayed
along with the complete image tensor A. Even though color images typically are
represented by 3-D tensors, they are still considered to be a 2-D data types. More
specifically, multi-channel 2-D data (Goodfellow et al., 2016). The 3-D equivalent

12

CHAPTER 2. BACKGROUND THEORY

Figure 2.3: RGB image of benthic foraminifera (Ammonia beccarii) from the North
Sea. The three "layers" of red, green and blue channels are shown to the right. These
three together make up the complete RGB color image. The original image to the left is
borrowed from (Commons, 2013)

.

of multi-channel color images could be video data, where the height and width of
each video frame give the two first axis and time the last axis.

2.2 Neural networks
Neural networks are at the heart of deep learning, and can be considered the
most fundamental architecture of the generative models used in the experiments
in chapter 4. Neural networks are introduced by motivating and presenting their
basic building block, the perceptron, before extending the concept to multilayer
perceptrons and convolutional neural networks.

2.2.1 The perceptron

The perceptron have been developed partially after inspiration from the human brain
and its biological neurons that transmits electric signals. This section presents some
of the intuition and biological motivation that modern perceptrons and artificial
neural networks originates from.

2.2.1.1 A mathematical model of the biological neuron

The human brain consists of more than 86 billions neurons that are connected
in a large network. These biological neurons are electrically excitable cells
that propagates signals to other neurons using connections called synapses. The
neurons propagate the electrical signal forward to other neurons if the stimulus
above a certain threshold.

This neuroscientific model of a biological neuron has inspired the perceptron, a
simple mathematical model that have become the basic building block of modern

13

CHAPTER 2. BACKGROUND THEORY

deep learning models. The predecessor of the perceptron were simple linear
functions that associate a set of n input values x1, x2, . . . , xn with an output y.
To perform this mapping the model would learn a set of weights w1, w2, . . . , wn
using e.g. maximum likelihood (section 2.1.1). The model computes the output
f(x,w) = x1w1 + x2w2 + · · ·+ xnwn.

McCulloch and Pitts (1943) proposed a mathematical model of brain function
that could perform binary classification by testing whether f(x,w) was positive
or negative. The test was done using a step function, and the weights were
set manually. This model, often referred to as the McCulloch-Pitts neuron,
was important inspiration for the modern perceptron. Rosenblatt (1958, 1962)
introduced a similar model that could learn the weights needed to perform the
classification automatically.

2.2.1.2 The modern perceptron

The modern perceptron is a simple mathematical function that serves as the
fundamental building block in the neural networks used in deep learning. The
perceptron performs an inner product operation between an input vector x and
parameter weights w. A bias term b is added to the inner product to create a
potential that is no longer bounded to the origin2. The bias can be thought of as
the threshold needed to propagate a signal forward (section 2.2.1.1). The potential is
usually evaluated using a nonlinear function g(·) known as the activation function.
The output of the activation function is often referred to as the activation. The
operation performed by the perceptron is shown in equation 2.14 and figure 2.4.

g(w>x+ b) = y (2.14)

A common type of activation function in simple perceptrons are the continuous and
differentiable functions from the family of sigmoid functions. When replacing
the step function with e.g. the logistic sigmoid function

σ(x) =
1

1 + exp(−x)
(2.15)

the input x gets squished to the range of (0, 1). If the perceptron is used for binary
classification, and output of the is manipulated to be either 1 (true class) or 0
(false class), using the sigmoid function as a nonlinear lets us interpret the output
as the probability of an input x being of class 1. This result can also be motivated
using the logistic regression model for classification (Alpaydin, 2014).

2In the context of linear functions (section 2.2.1.1) the bias b states where the hyperplane will
intersect the axis when x = 0.

14

CHAPTER 2. BACKGROUND THEORY

Σ

w1

wk

g(⋅)

xk

x1

w2

y

x2

b

Figure 2.4: Shows the operations of a basic perceptron. The inputs x are multiplied with
the weights w and summed with a bias b before it is sent through a nonlinear activation
function g to produce the output y.

The basic perceptron is essentially a linear function that sends its potential through
a nonlinear activation function. Multiple of these simple models can be combined
and stacked in layers to form arbitrarily large neural networks of connected
perceptrons. The stacked perceptrons pass their activations forward to form to
create a powerful and versatile model called a feedforward neural network or
multilayer perceptron (MLP).

2.2.2 Feedforward neural network

The multilayer perceptron is the base architecture of deep learning. It is often
referred to as a neural network due to how the stacked perceptrons (neurons) are
interconnected. The network can be considered a function f that approximates
a function f ∗. The non-linearity introduced by the activation function in each
perceptron makes it possible for a large enough MLP to represent any function
(Goodfellow et al., 2016). For example, if y = f ∗(x) is a classifier that performs the
mapping of the input x to a category y, the network that defines y = f(x;θ) is a
function approximator that learns the values of θ to give similar results as f ∗(x).

Stripped down to its core components it consists of an input layer, hidden
layers and an output layer. See figure 2.5. In the input layer a vector x(0)

with n features is passed into the MLP. The input layer is connected to the first

15

CHAPTER 2. BACKGROUND THEORY

x1

x2

xn

Input layer Hidden layer 1 Hidden layer 2 Hidden layer 3 Output layer

ŷ1

ŷm

f (1) f (2) f (3) f (4)

Figure 2.5: A multilayer perceptron with n inputs, 3 hidden layers and m outputs. The
inputs x(0) = [x1, x2, . . . xn] are sent through the hidden layers. Every layer produces
activations that are propagated forward. The final layer produces the output ŷ =
[ŷ1, . . . , ŷ2].

16

CHAPTER 2. BACKGROUND THEORY

layer, f (1), which consists of stacked perceptrons referred to as units. Every unit
has n weights w and a bias b. The units of the first layer are connected to the
second layer, f (2). Every connection between the units in layer f (l) and f (l−1) in
figure 2.5 represents the weights that are multiplied with the activations from layer
(l− 1) used to compute the potential in each unit in layer l. All the layers between
the input layer and the output layer is referred to as hidden layers because the
desired output of these layers are not specified by the training data. The output
layer yields m activations that constructs a vector ŷ that gives the output of the
network so ŷ ≈ f ∗(x).

Every layer f (l) in the network processes an input x(l−1) by performing the operation
described in equation 2.14 and figure 2.4 with the weights w and bias b of every unit.
These are the trainable parameters and they are collected in θ(l) = {W (l), b(l)}
so the operations of equation 2.14 can be performed in parallel in every layer. In
general layer l performs

f (l)(x(l−1);θ(l)) = g(l)(W (l)x(l−1) + b(l)), l = 1, . . . , L (2.16)

WhereW (l) ∈ Rkl×kl−1 , b(l) ∈ Rkl and g(l)(·) is the vector-valued activation function
of layer l. The specified input x(0) give the input dimension k0. The number of
layers L is referred to as the depth of the network.

As every layer f (l) acts as a function (equation 2.16) that propagates its output to
the next layer, the whole network f(x;θ) can be represented by a nested function.
Let the composite function be given by ◦ so f (2)(f (1)(x)) = f (2) ◦ f (1). The general
feedforward neural networks is then

f(x;θ) = f (L) ◦ f (L−1) ◦ · · · ◦ f (2) ◦ f (1)(x) (2.17)

2.2.3 Learning the parameters

For the feedforward neural network to give fruitful results it must learn the set
of trainable parameters θ = {W (l), b(l)}Ll=1 that is needed to compute output like
f ∗(x). The learning of these parameters are done through an iterative optimization
procedure often referred to as training.

When the training is supervised the network is provided with data pairs from a
training set X = {xi,yi}N1 . xi is a vector with features (explanatory variables) and
yi is the desired output for the given feature vector. The idea behind the training
procedure is to compare the output of the network f(x;θ) = ŷ with the ideal
output of f ∗(x) = y to find out how the network should change θ to make the ŷ
more similar to y. To do this a loss function typically quantifies a dissimilarity
measure between the two outputs, and the parameters of the network are updated
using a gradient based optimization algorithm.

17

CHAPTER 2. BACKGROUND THEORY

The loss function of the network must be determined for the specific problem the
model should solve. Often the goal of the a network is to model a probability
distribution pdata that produced the set of training examples X. Given the training
pairs the distribution to model is p(y|x;θ), so finding the parameters θ can be done
by the principle of maximum likelihood. In this scenario the cross-entropy between
the training data and the model’s prediction becomes the objective function to
minimize (Goodfellow et al., 2016).

J(θ) = −Ex∼p̂data [log f(x;θ)] (2.18)

To minimize the objective function in equation 2.18 the gradients ∇θJ should
be computed and used to update the weights according to gradient descent or
another optimization algorithm like SGD or Adam. The most common procedure
of computing these gradients is the backpropagation algorithm. The details of
the algorithm is beyond the scope of this thesis, but it is derived in detail and for
the general case in Goodfellow et al. (2016, p. 204-218). The intuition behind the
algorithm is to recursively apply the chain rule of calculus to the objective function
(e.g. equation 2.16) obtaining the gradients of the weights and biases of every layer
in the neural network. Once the gradients ∇θJ are obtained for the training set3
X they are used to update the parameters θ. Using gradient descent the update
becomes

θ(t+1) = θ(t) − µ∇θ(t)J (2.19)

where µ is the learning rate that is used to scale the gradients so the parameter
update only is a small step in the negative direction of the gradient.

2.3 Convolutional neural networks
A convolutional neural network (CNN) (LeCun et al., 1989) is a feedforward
neural network where the inner product operation of one or more of the perceptron
layers are replaced by convolution operations. Before going into the details it is
useful with some motivation for the CNN.

2.3.1 The biology of computer vision

When looking at the raw data of the shoe image in figure 2.2 it is possible to
recognize the contours of a shoe even though you are looking at a grid of numbers.
The biology of human vision makes it possible to recognize edges and some degree
of texture, so the shoe image can be comprehended, even when it is displayed as
raw data. In computer vision it has become essential to have models that can

3More commonly a minibatch B of the training set when using SGD or Adam

18

CHAPTER 2. BACKGROUND THEORY

detect features such as edges, textures and colors when they examine raw data, so
the models in turn can interpreted them as more complex shapes and objects. This
hierarchical approach of tackling computer vision have been inspired by biology of
vision (Goodfellow et al., 2016; Bouvrie, 2006).

Images are perceived when light hits the retina – the light sensitive tissue in the
back of the eye. Hubel and Wiesel (1959) investigated the visual system of cats
and discovered that neurons early in the cat’s visual system responded strongly
to vertical, horizontal and oblique light patterns. Recognizing simple shapes and
textures early in a computer vision model is clever because the simple patterns can
be composed together to more complex patterns later in the model. This is the
goal of using convolutional layers in a feedforward neural network.

2.3.2 The convolutional operator

The basis for the convolutional neural network (CNN) is the convolution
operator. The convolution operator is useful for pattern recognition on grid-like
data such as time series (1-D), images (2-D) and volumetric data (3-D) from e.g.
CT scans. As this thesis concerns mostly images the focus of this section will be
the two-dimensional discrete convolution operator.

The convolution operation can be thought of as passing a filter over an input
producing an output referred to as the feature map. The filter is often referred
to as a kernel, not to be confused with the kernels known from the "kernel trick"
(Theodoridis and Koutroumbas, 2008).

Let the input I(i, j) be an image, and K(i, j) the kernel (filter). The discrete
convolution in two dimensions is defined

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.20)

where ∗ denotes the convolution operator. Figure 2.6 illustrates this 2-D discrete
convolution operation.

Note that in practice many machine learning libraries implement a variant of the
convolution operation called cross-correlation, and still refer to it as a convolution
operation. The difference is that the kernel of equation 2.20 is flipped up-down
and left-right before the element-wise multiplication. Conceptually this does not
change much, and the reader is referred to Goodfellow et al. (2016) for details.

19

CHAPTER 2. BACKGROUND THEORY

0

0

0

0 0

182 100

211242

0 104 233

134 201 194

0 00

229 238 238

115 194 190

0 00

−1 −2 −1

0 0 0

1 12

15 735

441 293

729 −103463

−441 −799 −929 −943

−241

252

934

572
∗ =

269

Elementwise multiplication, ⊙

Summation, Σ

I K S

0 0

0 0

150

0

227

239

Figure 2.6: Illustration of the convolution K ∗ I. The kernel K(i, j) is convolved over the
input image I(i, j) to produce the feature map S(i, j). As there is no padding around the
input, this is a "valid" convolution resulting a smaller output.

2.3.3 Convolutional layers

In a convolutional layer, the operation performed on a two dimensional input in a
neural network is

f (l)(x(l−1);θ(l)) = g(l)(K(l) ∗X(l−1) + b(l)) (2.21)

where θ(l) = {K(l), b(l)}. For 2-D image data (height, width) X(0) ∈ Rh×w, the
kernel matrix has dimensions so K ∈ Rhl×wl . In practice implementations of the
convolutional operation of a layer may differ slightly from equation 2.20 and 2.21.
The variations are due to the practice that convolutions often are performed over
multiple channels (e.g. RGB-channels or multiple feature maps) and over batches
of inputs in parallel. Details of the variations are elaborated in (Goodfellow et al.,
2016, p. 347-358).

Considering a simple case, convolving a filter over an image can be used to extract
features of an image in a computationally efficient fashion. To illustrate this
property consider convolving the following matrices over an input image:

Kh =

−1 −2 −1
0 0 0
1 2 1

 Kv =

−1 0 1
−2 0 2
−1 0 1

 (2.22)

The matrices are filters that corresponds to respectively extracting horizontal and
vertical edges of an image. Figure 2.7 illustrates the effect of filter Kh and Kv

20

CHAPTER 2. BACKGROUND THEORY

Original Horizontal Vertical (4× 4) MaxPool

Figure 2.7: The three first images illustrate the effect of applying two simple 3× 3 filters
to an input image, extracting the horizontal and vertical features of the image respectively.
The last image illustrate the effect of a 4× 4 max pooling layer after applying the vertical
filter. Photocredit Hillebrand (2016).

when applied to an input image. The results are feature maps where characteristics
associated with horizontal and vertical edges are emphasized.

2.3.4 Motivation

The images of figure 2.7 are 512×512 pixels and the filters are 3×3. The operation
requires 5122× (9+8) = 4 456 448 floating point operations (9 multiplications and 8
additions per output pixel). Producing the same result using matrix multiplication
in an MLP would require 5124 = 68 719 476 736 floating point operations. This
illustrates the computational benefits of using convolutional layers.

To further emphasize the motivation for convolutional layers in feedforward neural
networks their following properties (Goodfellow et al., 2016) are highlighted:

• sparse interactions – filters of few parameters can be used to extract mean-
ingful features such as edges or textures.

• parameter sharing – the same weights of the filter are used to compute
multiple output values (pixels) when it convolves over an input.

• equivariance to translation – if the input changes, the output changes corre-
spondingly

2.3.5 Pooling

One of the motivations for using convolutions are, as illustrated in figure 2.7, to
extract certain features of the data. To amplify or reinforce the presence of such
features pooling layers are often combined with convolutional layers.

21

CHAPTER 2. BACKGROUND THEORY

A pooling layer can make the result of a convolutional layer become more invariant
to small local changes. This means that the pooling layer produces a similar output
even though the inputs are changed by a small amount. This is useful when "[...]
we care more about whether some feature is present than exaxtly where it is."
(Goodfellow et al., 2016, p. 342).

A popular pooling function that achieves the aforementioned result is the max
pooling function which extracts the maximum value of neighboring data points.
Using the image in figure 2.7 as an example the max pooling function examines
e.g. a 4× 4 grid of the image and returns the maximum value of the pixels in the
current grid. The result is a down-scaled version of the input image. In the case of
a (4× 4) pooling operation the output is 1

4
-th of the original resolution.

2.3.6 Variations of convolutional layers

To this point only the basic convolutional layer is presented, but there are many
useful variations. In figure 2.8 and the following sections some popular variants
will be presented briefly.

2.3.6.1 Padding

Examining the illustration in figure 2.6 it is clear that the output "image" is of a
smaller resolution that the input. This output is produced by a valid convolution.
To prevent this effect padding can be added to the input. The padding is usually
zeros around the edges of the input image, so the output will be of the same size
as the input. This is referred to as same convolutions.

2.3.6.2 Strides

In all convolutions that are considered so far, the filter moves one pixel at the time
during the convolution operation. This is referred to as a stride of 1. Moving the
filter over multiple pixels when convolving over an image results in an output that
is smaller than the input. Using a stride > 1 is useful for convolutional layers that
in addition should perform a down-scaling operation, because the output produced
will be smaller than the input.

2.3.7 Learning the filters

The filters of a convolutional layer are learned by the learning algorithm. Specifically
that the model adapts the filters, so it learns useful features for solving the problem
at hand. The learning of the filter weights can be done in a similar fashion as
MLP’s – by computing the gradients using backpropagation and updating the

22

CHAPTER 2. BACKGROUND THEORY

0

0

0 0

1 1

0

1

0 1 1 1

0 1 1 1

0

0

0

0

0 0 0 0 0

1 1

1 1

1 1

1

1

1

4

4

4

4

(a) Convolution with stride 1 and "valid" padding

(c) Convolution with stride 2 and 1 padding

∗ =

1

1

0

0

0 0

1 1

0

1

0 1 1

0 1 1

1 1

1 1

1 1

1

1

1

0

0

0

0

0 0 0 0 0

4 6

6 9

4 6

4

6

4

(b) Convolution with stride 1 and "same" padding

∗ =

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1

1

1

1

9

Input Kernel Output

∗
=

Figure 2.8: An illustration of three popular variants of the convolution operation. (a)
"Valid" padding applies no zero-padding to the input, and the output will thus be of lower
dimensionality. (b) "Same" padding adds enough padding around the edges of the input
so the output is of the same dimensionality as the output. (c) A stride of 2 refers to the
number of places the filter moves when convolving over the image.

23

CHAPTER 2. BACKGROUND THEORY

weights using e.g. gradient descent. For an intuition for how this is done it can
be useful to think of convolution as a linear transformation that can be described
by matrix multiplication (Goodfellow et al., 2016). The matrices involved are the
input matrix which is unraveled to a vector x∗, and a matrix K∗ that is a function
of the convolution kernel K. When the convolution operation can be performed
using matrix multiplication, K∗ can also be transposed. This matrix transpose is
needed to make use of the chain rule to backpropagate errors and to compute the
gradients backwards in the network. Details of the backpropagation in CNNs are
beyond the scope of this thesis, but can be found in Bouvrie (2006).

2.3.8 Transposed convolutions

The transposed matrix K∗> that is defined by the convolution kernel is in addition
to be useful in backpropagation also used in various generative models such as
autoencoders and generative adversarial networks (GANs) (Goodfellow et al., 2014)
that this thesis concerns (Goodfellow et al., 2016).

Layers using K∗> in a convolutional layer are often referred to as transposed
convolutions, fractionally-strided convolutions or deconvolutional layers.
The name "deconvolution" is used because the operation is associated with doing the
opposite of a convolutional layer, specifically going from a scalar to a matrix, while
learning the filter that produces this result (figure 2.9). The term deconvolution can
be misleading because transpose convolutions are not the inverse of convolutions.
Therefore the more correct term "transposed convolution" will be used in this
thesis to avoid this misconception.

In applications of convolutional networks where the goal is to go from a low
dimensional input, or even a single vector to a higher dimensional output, there
is a need for upsampling. Upsampling an image can be done using a method like
nearest neighbor interpolation (Theodoridis and Koutroumbas, 2008), but might
not yield sufficient results. Using transposed convolutions for upsampling allows
the upsampling layer to learn useful upsampling-filters to provide better up-scaled
results Goodfellow et al. (2016). Layers performing transposed convolutions provide
a learnable upsampling that is adaptive to the specific problem.

Like normal convolutions transposed convolutions can be thought of as passing a
filter over an input to produce an output. The operations that are performed is a
little different, but similar. The process is displayed in figure 2.9.

24

CHAPTER 2. BACKGROUND THEORY

2

0 1

3 2

1 1 1

1 1 1

1 1 1

0 1

3 6

1 1

6 3

3 6

3 5

6 3

5

Multiplication, ×
Add overlapping numbers, +

Input Learned kernel Output

Figure 2.9: Shows the operation of a valid transpose convolution with stride of 1. Each
value of the input is multiplied with the learned filter and mapped to the corresponding
position of the output. The values of the overlapping areas are accumulated to produce
one output value. In this example values near the edges of the output get accumulated
less than the values near the center. In practice this is not a problem because the kernels
learn to adjust for this effect.

2.4 Regularization

Regularization are strategies used in machine learning designed to reduce test error,
possibly at the expense of increased training error.

2.4.1 Early stopping

One technique of regularization that can help a model generalize better is the
method of early stopping. The idea behind early stopping is to terminate training
before the model overfits to the training data. The technique requires a separate set
of validation samples like the test set. These samples are not used for training,
but to identify when the model’s performance drops due to overfitting, and thus
when to stop training. Figure 2.10 illustrates that training should be stopped when
the validation error increases. This regularization technique is very effective in
tasks like classification when it is easy to measure the model’s performance. As
will be discussed later this is not necessarily the case for the tasks of generative
models.

25

CHAPTER 2. BACKGROUND THEORY

Training steps

E
rr

o
r

Early stopping Validation error

Training error

Figure 2.10: An illustration of when to terminate training. Training should be terminated
when the model’s performance measured on the validation set increases. After this point
the model will overfit to the training set.

2.4.2 Dropout

Another technique to achieve regularization is to prevent a network to become
too reliant on specific units in the layers or features of the input. The strategy of
dropout (Srivastava et al., 2014) is to remove units and its connections from the
network during training with a probability e.g. p = 0.2 (figure 2.11) and then do
the forward pass, backpropagation and optimization as usual. This strategy will
intuitively force the network to learn a form of redundancy so it still performs well
without a selection of the units (Goodfellow et al., 2016). When the network is not
training all units should be present.

2.4.3 Batch normalization

In section 2.2.2 it was illustrated that deep neural networks can be represented by
composite functions (equation 2.17), and in section 2.2.3 that during training the
gradient tells how each parameter should be updated. This update procedure is
complicated in practice because every layer must constantly adapt to the changes
in all the other layers of the network. Ioffe and Szegedy (2015) argues that these
changes are covariate shifts in the layers’ learned distributions, and that it makes
it hard to train models efficiently. They show that a normalization operation to
fix the means and variances of the layer inputs help remedy this covariate shift.
The normalization is done over each minibatch during training and is referred to
as batch normalization or batchnorm.

The batch normalization operation is done over the minibatch B = {x1, . . . ,xb} of
vectors xi = [x1, . . . , xm]. The normalized minibatch is given by the normalized

26

CHAPTER 2. BACKGROUND THEORY

(a) Without dropout (b) With dropout

Figure 2.11: An illustration of a neural network with and without dropout regularization
applied. In (b) some inputs and hidden units are dropped during training, so the network
must learn to manage without them.

vectors x′i with elements

x′j =
xj − E[xj]√

Var[xj]
(2.23)

where the expectation E[·] and variance Var[·] is computed over the minibatch B.

It should be noted that normalizing the activations from a layer can constrain what
the layer can represent. To ensure that a layer has the expressive power that is
needed each normalized activation x′j is scaled and shifted with a pair of parameters
{γj, βj} that is learned through backpropagation.

yj = γjx
′
j + βj (2.24)

This additional transformation allows the new variable to have any mean and
variance. This could in principle undo the normalization in equation 2.23 if it
was the optimal thing to do. Still, Ioffe and Szegedy (2015) demonstrates that
the reparameterization done by equation 2.23 and 2.24 allows a state-of-the-art
classification network to learn with 14 times fewer training steps achieving better
results.

2.5 Classification of foraminifera using a CNN
The final objective of this thesis is to improve the classification model of Johansen
and Sørensen (2020). Their classification model is a large convolutional neural

27

CHAPTER 2. BACKGROUND THEORY

Table 2.1: A high-level summary of the foraminifera classifier of (Johansen and Sørensen,
2020). This configuration was found through an extensive hyperparameter search that
tested 72 permutations of units per layer.

Layer type Input dim. Output dim.

VGG16 224× 224× 3 7× 7× 3

Dense (ReLU) 25088 512
Dense (ReLU) 512 64
Dense (softmax) 64 4

network that is trained to classify images of foraminifera. The model utilizes
transfer learning, a technique that allows a model to reuse parts of e.g. a
pretrained convolutional neural network to boost its performance. The parts that
can be reused are the learned convolutional filters that can detect abstract features.
It has been shown that the utilization of abstract feature-detecting filters from one
domain can be useful in a different one (Yosinski et al., 2014).

To build the foraminifera classifier Johansen and Sørensen (2020) used the pretrained
weights (filters) of the convolutional blocks of the VGG16 model (Simonyan and
Zisserman, 2014) that was trained on the ImageNet (Deng et al., 2009) dataset4.
The convolutional blocks of VGG16 was used as a feature extractor to obtain the
visually relevant features of the foraminifera images. These features were used
as inputs to a fully connected neural network with three layers. A simplified
model of the foraminifera classifier is displayed in figure 2.12. All layers employed
the rectified linear unit (ReLU) activation function (equation 2.25), except the
final layer that used the softmax function (equation 2.26) to map the outputs to
probabilities associated with a generalized Bernoulli distribution. A high-level
summary of the foraminifera classifier is given in table 2.1.

ReLU(x) = max(0, x) (2.25)

softmax(x)i =
exp(xi)∑n
j=1 exp(xj)

(2.26)

To further improve classification of foraminifera the last two layers of the VGG16
network was retrained to fine-tune the feature extractor to the dataset of foraminifera.
Early stopping (section 2.4.1) and dropout (section 2.4.2) was implemented to
improve generalization, and classical image augmentation was used to synthetically
increase the number of images in the dataset. The augmentation was performed

4ImageNet is a large dataset consisting of 14 million real-world images.

28

CHAPTER 2. BACKGROUND THEORY

Block 1 Block 3 Block 4 Block 5

Classification head

Block 2Input

Convolution + ReLU

Max pooling

Input

Perceptron

Softmax

Feature extractor

Foraminifera classifier

Figure 2.12: A simplified model of the foraminifera classifier. The first part of the classifier
uses the pretrained VGG16 (Simonyan and Zisserman, 2014) model to extract relevant
features from the foraminifera images. The classification head is a fully connected network
that performs classification to four classes.

by horizontal flipping, 90-degree rotations, and randomly adjusting brightness,
contrast and saturation with ±10% and hue with ±5%.

29

CHAPTER 2. BACKGROUND THEORY

30

Chapter 3

Generative adversarial networks

This chapter presents an in-depth study of the deep learning models referred to as
generative adversarial networks (GANs). The study addresses the first objective of
this thesis using mainly a theoretical approach. In this chapter the framework, key
aspects, as well as challenges and proposed solutions of GANs are presented and
explored. The theory and methodology that is comprised in this chapter makes up
the theoretical framework upon which the experiments of chapter 4 are based.

The chapter begins by addressing some key challenges of generative models before
the GAN framework is presented along with some common challenges of GANs.
From there the evolution of GANs is followed until some very recent discoveries
in the field of research. Lastly, the chapter is concluded with a general overview,
some final notes on GANs and how GAN images can be evaluated.

3.1 Challenges of generative models
Generative models take training samples from a distribution pdata and learn
to represent an estimate of the distribution. Generative models can represent a
probability distribution over one, two or multiple variables. Some models allow
evaluation of the probability distribution explicitly and other allow only implicit
interaction with the learned distribution, such as sampling data.

3.1.1 The curse of dimensionality

Simple distributions can be estimated using e.g. Parzen window estimation (Rosen-
blatt, 1956; Parzen, 1962), where superpositions of kernel functions1 centered at

1Not convolutional kernels

31

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

0 10 20 30 40 50

d-dimensions in a unit hypercube

0

2

A
ve

ra
ge
L

2
-d

is
ta

n
ce

to
1-

N
N

The curse of dimensionality

f(d,N) = 2(dΓ(d/2)

2π
d
2 N

)
1
d

Figure 3.1: The average Euclidean distance to the nearest neighbor for N = 100 points
drawn from a uniform distribution in a d-dimensional unit hypercube. The plot illustrates
the curse of dimensionality because for a fixed number of points the average distance the
closest point increases as d increases.

the training data points are used to estimate p̂data. The idea is simple, but falls
short when data becomes high-dimensional with many variables.

This problem is often referred to as the curse of dimensionality (Bellman, 1961).
To illustrate the problem consider a one-dimensional distribution on an interval that
is considered densely populated with N equidistant points. For a corresponding
two-dimensional distribution on a square, N2 equidistant points are needed to
achieve the same population density. For a 3-D cube N3 points are needed and
so on. Friedman (1989) showed that for N points of a uniform distribution in
a d-dimensional unit hypercube the average Euclidean distance to the nearest
neighbor is given by

f(d,N) = 2

(
dΓ(d/2)

2π
d
2N

) 1
d

(3.1)

as the dimensionality increases. How the average distance increases is illustrated
in figure 3.1. As the dimensionality of a distribution increases, more samples
are required to describe the distribution. This constitutes a major problem of
learning or estimating high-dimensional distributions, because real data samples or
observations are often limited.

As discussed in section 2.1.5 images can be considered as high-dimensional data,
because every image is (h× w × c)-dimensional. To have a model learn this high-
dimensional distribution of pixel values would be near impossible if the pixel values
were not highly correlated. This means that the dimensionality of real-world image
datasets only appear to be artificially high. Once the theme of a real-world image

32

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

dataset is fixed the images must follow real life restrictions, e.g. a human face has
eyes, nose and a mouth, and cannot have free form. Gong et al. (2019) suggests
that the true intrinsic dimensionality of high-resolution real-world images are in
the range of [10, 20].

Learning this lower-dimensional representation and a mapping to the full-resolution
image is still not an easy task. Generative models based on approaches of deep
learning and convolutional models have shown an increasing success on the problem
of generating images over the recent years. Models based on convolutional Boltz-
mann machines (Desjardins and Bengio, 2008), variational autoencoders (Kingma
and Welling, 2013) and generative adversarial networks (GANs) (Goodfellow et al.,
2014) are some of the more successful. Especially models based on GANs have
become very popular, achieving to generate high-resolution credible images (Karras
et al., 2019a; Brock et al., 2018).

3.1.2 Creating multi-modal outputs

Real-world data distributions are complex and multi-modal with multiple peaks
of likely outcomes. A well performing generative model whose goal is to learn the
real-world distribution and sample from it, must produce samples that represent
modes of the data generating distribution. Depending on the model, one input may
correspond to many acceptable solutions. Many traditional models, for instance
some that reduce the mean squared error, tend to average over multiple acceptable
solutions (Goodfellow, 2016b). In the case of generating images this results in
blurry images (Lotter et al., 2015) that are not suitable for many applications of
generative models.

Moving forward in this thesis the focus will be to investigate the generative
adversarial networks that has shown in particular to be able to produce sharp
images from high-dimensional multi-modal distributions such as real-world image
datasets.

3.2 Generative adversarial networks

Generative adversarial networks (GANs) are a type of generative models
that learn through adversarial training. GANs are neural networks that are
constructed in clever ways to yield models that overcome much of the challenges of
generative models.

33

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

3.2.1 The GAN framework

A generative adversarial network is set up as a game between two players: a
generator and a discriminator. The generator tries to create samples that are
similar i.e. from the same distribution as the training data. The discriminator tries
to predict which samples are fake (from the generator), and which are real (from
the training samples). As the game proceeds the discriminator must learn how
to distinguish between real and fake samples. The generator must then learn to
improve the quality of the fake samples.

The classic analogy of the GAN setup is the police and the forger (Goodfellow,
2016b). The generator is the forger that tries to make fake money, and the
discriminator is the police trying to allow legitimate money and stop forged money.
In this game the forger wants to make increasingly better forges, and the police
must learn to distinguish between real and fake. To make the analogy more correct
it should be specified that the forger never actually sees any money it can replicate.
It must learn the distribution of real samples without ever examining a real one.

To be more precise the discriminator is a function D that takes a sample (real or
fake) x as input, and computes its output using its parameters θ(D). The generator
is a function G that takes a latent variable z as input. This input can be considered
a seed for the generated sample G(z) = x̂. The goal is that the generator function
learns the mapping from the latent variable z ∼ Z to the distribution of the data,
so G : z→ pdata. Both functions D and G are usually represented by deep neural
networks and are differentiable with respect to their parameters θ(D) and θ(G), so
the backpropagation algorithm can be applied. The model setup is illustrated in
figure 3.2

3.2.2 Learning in the GAN framework

For the functions to learn useful parameters during the game the players need an
objective to optimize.

3.2.2.1 Mini-max game

The simplest version is a zero-sum game with a value function V (θ(G),θ(D)) that
determines the discriminators reward. In the zero-sum game the generator receives
the opposite reward −V (θ(G),θ(D)). When the game proceeds both players want
to learn their parameters θ(G) and θ(D) to maximize their reward.

Provided enough capacity the game will in theory end when the generator converges
to the optimal generator G∗ (Goodfellow et al., 2014, 2016) and the solution of the

34

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

Generator,

G(z)

Discriminator,

D(⋅)

Fake
sample,

x̂

Real
sample,

x

Latent
variable,

z

Predictions,

{ , y}ŷ

Cost function,

(, y)J (D) ŷ

Cost function,

()J (G) ŷ

The GAN framework

Figure 3.2: The overall structure of a simple generative adversarial network. A latent
variable z is the seed of the fake sample produced by the generator G. The fake sample
and a real sample are fed to the discriminator D which tries to predict whether the samples
are real or fake. The discriminator’s output is in the range of (0, 1). The prediction is
close to 0 if it predicts a fake sample, and close to 1 for a real sample. The evaluation of
the fake sample is the argument of the generator’s cost function J (G) and both outputs
are arguments of the discriminator’s cost function J (D). The cost of the discriminator
and generator are used in backpropagation so they can improve.

35

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

mini-max game becomes

G∗ = arg min
G

max
D

V (G,D) (3.2)

When the discriminator wants to maximize the probability of classifying the training
data (labels 1) and the fake samples (labels 0) correctly the discriminator’s reward,
and the value function of the game, is the negative standard cross-entropy cost
(equation 2.18) for the discriminator V (G,D) = −J (D) (Goodfellow, 2016b). The
discriminator is a binary classifier with a sigmoid output of range (0, 1), so the cost
becomes

J (D)(θ(D),θ(G)) = −1

2
Ex∼pdata [logD(x)]− 1

2
Ez[log (1−D(G(z)))] (3.3)

Using −J (D) as value function in the game, the discriminator learns to distinguish
between fake and real samples. Simultaneously the generator learns to produce
samples that ultimately become indistinguishable from the real data. At this point
the generator has converged to G∗ and discriminator outputs D(x) = 1

2
for all

samples (Goodfellow et al., 2016). The game has reached its Nash equilibrium
(Nash et al., 1950), where none of the players can improve their strategy to win.
Now the discriminator can be discarded and the generator is a generative model
that can sample from pmodel = pdata (Goodfellow et al., 2014).

It should be noted that these results only apply in theory. In practice the learning
of parameters, and convergence of the models, may be very challenging. More on
this later.

3.2.2.2 Vanishing gradients in the mini-max game

In the mini-max game the discriminator minimizes, and the generator maximizes,
the same cross-entropy cost (equation 3.3). This causes a problem when the
generator is learning its parameters. When the discriminator successfully classifies
the fake samples as fake the generator’s gradients vanish (figure 3.3) because the
cost function saturates.

A simple, and somewhat heuristically motivated, solution to this problem would
be to flip the targets in the generator’s cross-entropy cost function (equation 3.3),
so the cost is greater when the discriminator is performing well. The cost of the
generator then becomes

J (G)(θ(D),θ(G)) = −1

2
Ez log [D(G(z))] (3.4)

36

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

0.0 0.2 0.4 0.6 0.8 1.0

Discriminator’s accuracy

−10

−5

0

5

Mini-max game

Cross-entropy cost

Generator’s gradients

0.0 0.2 0.4 0.6 0.8 1.0

Discriminator’s accuracy

0

1

2

3

4

5

Non-saturating game

Non-saturating cost

Generator’s gradients

Figure 3.3: An illustration of the vanishing gradient problem in the mini-max game (left).
When the generator minimizes the cross-entropy cost (equation 3.3), but the discriminator
rejects the fake samples with confidence (high accuracy), the generator’s gradients vanish.
A simple solution is proposed in the non-saturating game (right), where the target in the
generator’s cost function is flipped (equation 3.4). In this game the generator’s gradients
become stronger when the discriminator is performing well (high accuracy). In this game
the generator’s learning does not halt even if it is performing poorly.

This is known as the non-saturating cost for the generator. This cost function
gives the generator stronger gradients (figure 3.3), and allows it to learn its param-
eters faster, even though the discriminator is performing well. This modification
ensures that the generator tries to generate samples that have a high probability of
being real, rather than a low probability of being fake as in the original mini-max
game (equation 3.3) (Fedus et al., 2017).

The GAN framework is open for many different cost functions. The cost function
for the discriminator (equation 3.3) and the generator (equation 3.4) were the first
to become popular and provide good results (Goodfellow et al., 2014; Radford
et al., 2015; Denton et al., 2015).

3.2.3 Learning the distribution of a circle

The generator of a GAN can learn a distribution without ever observing the training
data directly. Everything it learns is through the judgements of the discriminator.
To demonstrate how this happens, and to concretize how a GAN learns, this section
illustrates through an example how the generator can learn the distribution of the
unit circle.

The GAN in this example consists of a generator and a discriminator represented

37

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

z σ

x1

x2

256 hidden units 256 hidden units

Generator Discriminator

x̂2

x̂1

ŷ

Figure 3.4: The architecture of the generator and discriminator that was used in the gen-
erative adversarial network that learned the distribution of the unit circle in section 3.2.3.

by two multi-layer perceptrons with one hidden layer each consisting of 256 hidden
units. Both models use the ReLU activation function (equation 2.25) in all hidden
units. The generator and discriminator are presented in figure figure 3.4

The input of the generator is a scalar z ∈ Z ∼ Uniform(−1, 1) and the output
layer uses an identity (linear) activation function, so the layer only performs matrix
multiplication and adds the bias without sending it through a non-linearity. The
discriminator takes as input a vector x = [x1, x2] and the output layer uses a
sigmoid activation function σ(x) = y to produce an output of range (0, 1). The
cost is computed using the binary cross-entropy cost function (equation 3.3) for
the discriminator and the non-saturating cost for the generator (equation 3.4).

As stated the goal of this GAN is to learn the distribution of the unit circle. To
do this 300 points are sampled randomly from the true distribution, and used as
training data. The GAN is trained on minibatches of 32 samples each training step
according to the following training scheme:

1. The generator samples 32 numbers from Z and generates fake samples by
performing the forward pass.

2. The discriminator is trained on 32 real training samples and the 32 fake
samples. The real samples get labeled as 1s and the fake as 0s.

38

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

3. The generator is trained through the discriminator evaluating the fake samples
from G(z) and then computing the cost using 1s as labels (flipped targets
equation 3.4).

Additional details on the training scheme and the code to implement a basic GAN
using the high-level API of Keras is presented in appendix B.

In figure 3.5 and figure 3.6 it is shown how the GAN training evolves during the
720 epochs of training. As the training proceeds the GAN learns the mapping
from z to the circumference of the unit circle. In figure 3.6 the discriminator’s
decision boundary is displayed as a contour map. Red areas indicate that the
discriminator classifies everything within as fake, and in the blue, everything is
classified as real. As both models learn the mapping simultaneously the results are
poor in the beginning, but after around epoch 550 the results improve. At this point
the generator has learned to produce samples that are almost indistinguishable
from the real samples, and the discriminator outputs D(x) ≈ 0.5 for all samples
(figure 3.5). Although the discriminator outputs 0.5 it is not guaranteed that the
GAN has converged. The generator might continue to learn a better representation
of the distribution, and the discriminator may learn a sharper decision boundary.

0 100 200 300 400 500 600 700

Epochs

0.00

0.25

0.50

0.75

1.00

D
(x

)

Discriminator’s prediction

Real samples

Fake samples

Figure 3.5: Shows how the discriminator’s average predictions of real and fake samples
evolves during training. In the beginning the predictions fluctuates, but after epoch 550
the discriminator is unable to distinguish between the real and fake samples and outputs
≈ 0.5 for all samples.

39

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

−1 0 1

−1

0

1

Epoch 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

−1 0 1

−1

0

1

Epoch 140

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

−1 0 1

−1

0

1

Epoch 290

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

−1 0 1

−1

0

1

Epoch 430

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

−1 0 1

−1

0

1

Epoch 580

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

−1 0 1

−1

0

1

Epoch 720

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

Figure 3.6: A visualization of what the generator and discriminator learns during training.
The contour map shows the learned decision boundary of the discriminator, and the
yellow stars show 100 mappings of the generator. The 300 black dots in a circle formation
are the training points that the discriminator use for training.

3.2.4 Interpolation in latent space

To get a better understanding of what the generator really has learned one can
try to illustrate the mapping G performs from the latent z-space to the generated
samples x̂. This can be performed by feeding in evenly distributed values of
the latent space, and visualize where they are mapped to. Figure 3.7 shows an
interpolation in the latent z-space with values from -1 to 1 plotted at y = 0. These
latent points are used as seeds to the generator that has learned to map them to its
distribution pmodel. One interesting observation is that the points that are close in
the latent space are also close in the learned output space. This property indicates
that the generator has learned a continuous mapping from z→ G(z). Goodfellow
et al. (2014) and Radford et al. (2015) demonstrated that this also applies for higher
dimensional data such as images. This property allows well performing GANs to
sample smooth transitions between images by interpolating in the latent z-space
of the generator. This will be demonstrated in the experiments of chapter 4.

40

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Interpolation in latent space

Mapping G(z)

Input z

Figure 3.7: The mapping learned by the generator. 80 input points z are linearly spaced
in the range [−1, 1] and are passed into the generator G(z). The arrows and colors show
where each input end up after the mapping. The pattern formed by the arrows is caused
by the non-linear stretching and bending of the input space that the generator has learned
when mapping inputs to the circumference of the circle.

41

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

3.3 Challenges of generative adversarial networks
The GAN framework has several computational advantages over other generative
models and have provided good results on many different tasks (Goodfellow, 2016b).
Despite the progress in GANs the recent years there are still major challenges
related to convergence and training. In this section some of the major challenges
one are faced with when working with GANs will be presented.

3.3.1 Training instability

Figure 3.5 and 3.6 shows how the discriminator’s predictions oscillates somewhat
during training in the example of the unit circle GAN in section 3.2.3. It was
observed in the aforementioned example that the training stabilized after a while,
but it was not guaranteed that the GAN had converged. For GANs it is common
that the performance oscillates a lot during training, and especially for more
complex datasets.

This, along with the challenge of determining convergence, are training related
issues that are common to GANs and are considered open fields of research. Later
in this thesis some possible solutions to these problems will be addressed, but first
the culprit needs to investigated.

The mini-max-game example in section 3.2.2.1 converges in theory using simulta-
neous gradient descent, but this result is not guaranteed in practice. In practice
the updates during training are made in parameter space, so the value surface is
not necessarily convex (Goodfellow et al., 2014). This implies that when the two
models are trained simultaneously with conflicting interests the improvement of
one comes at the expense of the other.

Most deep learning models are optimized by finding a minimum of a cost function.
This is not always an easy task, but an optimization algorithm usually make steady
progress downhill towards a local minimum (Goodfellow, 2016b). In GANs on the
other hand the optimization algorithm is required to find the equilibrium in a game
between two players with opposing goals. Finding the equilibrium is hard and the
adversarial players often undo each other’s progress without making any overall
progress.

To illustrate the problem consider the mini-max game of two players controlling a
single scalar value each, x and y. The value function of the game is

V (x, y) = xy (3.5)

where player 1 wants to maximize V by controlling x, and player 2 wants to
minimize V by controlling y. Visualizing the surface of the value function in

42

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

three dimensions (figure 3.8) gives an idea of why finding the equilibrium can be a
difficult task in optimization. The equilibrium is a saddle point at x = y = 0 with
0 gradient. If the optimization algorithm were to follow the gradients on the value
surface the model would never converge because simultaneous gradient descent
forms a circular trajectory (Goodfellow, 2016b).

This example illustrates that games do not always converge for simultaneous
gradient descent. GANs sometimes converges, but "[...] there is no theoretical
prediction as of whether simultaneous gradient descent [for GANs] should converge
or not." (Goodfellow, 2016b, p. 49).

In practice GAN training do not always follow a circular trajectory like in figure 3.8.
Another scenario is that the gradients cause the generator to spiral outwards (Bailey
and Piliouras, 2018), or that the stochasticity of training orients the gradients
in the correct direction, but the learning rate is too large, so the optimization
algorithm overshoots the equilibrium (Mescheder et al., 2018). All these scenarios
make it hard for GANs to converge and are some of the reasons that convergence
for GANs are often considered a more fleeting than stable state.

This may give an intuition of why it can be helpful to average out the oscillations in
training. Yazıcı et al. (2018) show theoretically and experimentally that keeping an
exponential moving average (EMA) of the GAN’s weights outside the training
loop will help dampen the amplitude of oscillations, and thus contribute to stabilize
GAN training. An exponential moving average of the weights θ at iteration t are
defined as

θ
(t)
EMA = αθ

(t−1)
EMA + (1− α)θ(t) (3.6)

where α ∈ [0, 1) is the rate of decay in the EMA. Common values for α are usually
close to 1 like 0.999 and 0.9999. The effect of EMA for different decay values on
simple oscillations are illustrated in figure 3.9.

3.3.2 Mode collapse

Real-life data distributions have often multiple modes representing ranges of data
values that are more likely to occur than other (section 3.1.2). It is desirable
that a generative model is able to reproduce the whole range of possible outputs
from the distribution. In the case of GANs this means that the model should be
able to sample from the whole distribution, not just provide small subset of the
distribution.

A common problem in GANs is when the generator is not able to reproduce the
full distribution, only a small subset. This is called the Helvetica scenario and is
caused by mode collapse, in the generator. In mode collapse the generator maps

43

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

x

−2.0−1.5−1.0−0.5
0.0

0.5
1.0

1.5
2.0

y

−2.0
−1.5
−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

V
(x
, y

)

−4

−3

−2

−1

0

1

2

3

4

Value surface of V (x, y) = xy minimax game

Gradient

Equilibrium point

Figure 3.8: The trajectory and the gradients given by simultaneous gradient descent
with infinitesimal small steps on the value surface of the game minxmaxy V (x, y) = xy.
The players will orbit the equilibrium point and the game will never converge if the
optimization algorithm were to follow the gradients of the value surface.

44

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

0 2 4 6 8 10 12 14

−1.0

−0.5

0.0

0.5

1.0

Exponential moving average (EMA)

Oscillations θ

EMA(θ, α = 0.9)

EMA(θ, α = 0.99)

EMA(θ, α = 0.999)

Figure 3.9: The plot illustrates the effect of equation 3.6 on sinusoidal oscillations with
different decay rates α. Decay rates close to 1 dampen the amplitude of the oscillations
more.

too many values of z into the same x̂ so pmodel has too little diversity to represent
pdata. In practice this causes the fake samples to appear too similar with little or
no variation.

Mode collapse happens when the generator and discriminator are not synchronized
well. This usually becomes a problem when the generator is trained more than the
discriminator, and the generator overfits to the low-grade discriminator. To get an
intuition of how this happens consider the simplified and extreme case where the
generator is updated extensively without any updates to the discriminator. The
generator will learn to map all inputs to the one output that fools the discriminator
the most. In this case the generator will collapse pmodel into the same single point
x̂ = x that the discriminator believes is realistic (Goodfellow, 2016b). When the
discriminator then learns that this point is also fake, gradient descent will not be
able to produce sensible gradients that recover the models from the collapsed mode
(Salimans et al., 2016).

In a less extreme example not all modes are dropped. During training of the
generator one can imagine that the fake samples are drawn towards their nearest
neighbor as illustrated in figure 3.10. As training proceeds the fake points get closer
to their nearest real neighbor. When this happens, every fake sample has a nearby
real sample, though it is not guaranteed that every real sample has a nearby fake
sample (Li, 2019). This can cause some modes of the data generating distribution
to be dropped.

45

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

Li and Malik (2018) proposed an intuitive fix to this problem for generative models.
Instead of letting the generated samples go towards their nearest neighbor, they let
the real samples pull the generated samples towards themselves, to avoid dropping
modes. This solves the problem of mode collapse, but the solution uses implicit
maximum likelihood estimation (Li and Malik, 2018) and is no longer adversarial
training. Furthermore their model does not provide qualitative better results than
GANs so this solution will not be considered as a sufficient solution to mode collapse
in GANs.

3.3.3 Addressing the challenges of GANs

In the field of generative adversarial networks there have been few theoretical
results that solve the challenges one are faced with when training GANs. Training
instability, convergence and mode collapse are still missing solid theoretical results
needed to solve the problems for good.

Despite this there has been progress in the field of GANs the recent years. The
progress have mainly been techniques and practices that are proven useful in some
cases. Some of these remedies have some theoretical basis, but other are just
considered tricks worth trying out. Before addressing these remedies, the task of
synthetic image generation using the deep convolutional GANs is first presented.

3.4 Deep convolutional GANs

Synthetic image generation is a major task of GANs that has shown great improve-
ments over the recent years. The task is also of great relevance to this thesis as
one objective is to generate synthetic images of foraminifera.

3.4.1 Early deep convolutional GANs

When the GAN framework was launched in 2014 the idea of combining the generator
and discriminator with convolutional layers was proposed. The strength of this
methodology is to use the pattern recognition capabilities of the well-developed
convolutional neural networks in combination with the GAN framework. Goodfellow
et al. (2014) showed that using convolutional layers in the discriminator and
transposed convolutions in the generator produce qualitatively better fake samples
than using a fully connected model (MLP). Still, the generated images were noisy
and incomprehensible, with great room for improvement.

Denton et al. (2015) improved the convolutional GAN architecture by extending
it with a Laplacian pyramid (Burt and Adelson, 1983) approach. This Laplacian

46

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

a) After training the discriminator

Real data

Generated samples

b) Training the generator

c) After training the generator d) Modes are dropped by the generator

Dropped modes

Figure 3.10: An illustration of why modes are dropped during in mode collapse. The
discriminator and generator are trained on a toy dataset of points (•). a) After the
discriminator is trained all the blue regions are classified as real, and all the red as fake.
b) While training the generator the fake samples get closer to the nearby samples of the
real distribution resulting in the scenario of c). d) After the discriminator is trained again
new discrimination regions are produced. As each generated point gets pushed towards
its nearest neighbor it is not guaranteed that all real samples have a nearby fake sample
(Li, 2019). Thus, modes of the real distribution may be dropped by the generator.

47

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

Figure 3.11: An illustration of the generator of a DCGAN. The latent vector z is reshaped
and projected to a small (4× 4) image that is scaled up by learned upscaling filters of
transposed convolutions of stride > 1. The result is a (64× 64) image with 3 channels
(RGB). The figure is from (Radford et al., 2015).

pyramid GAN (LAPGAN) generated images using multiple GANs in multiple
stages. First a coarse image is generated, then different convolutional GANs apply
increasingly more detail to the image. Using this approach LAPGAN were able to
generate plausible looking scenes at resolutions of (32× 32) and (64× 64) pixels.

3.4.2 DCGAN architecture

The first GAN that was able to produce high quality images at resolutions of
(64 × 64) pixels in one shot was the deep convolutional generative adversarial
network (DCGAN) of Radford et al. (2015).

The DCGAN architecture is built on the approach of LAPGAN, by starting with
a low resolution image and gradually scaling it up, but without using Laplacian
pyramids or multiple GANs.

The approach of Radford et al. (2015) uses transposed convolutions with strides
> 1 to learn upscaling filers from one resolution to the next. In the beginning a
100-dimensional vector z from a uniform distribution is projected and reshaped to
a (4× 4) image. This low resolution image is upscaled using the learned filters to
(8 × 8), (16 × 16), (32 × 32) and finally (64 × 64) pixels. Figure 3.11 illustrates
the architecture of a DCGAN model that was used in (Radford et al., 2015). The
discriminator of a DCGAN is conceptually similar to a reversed generator only it
uses convolutions with strides > 1 to downsample the image instead of transposed
convolutions to upscale it. Details are covered in the following section and in

48

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

(Radford et al., 2015).

3.4.3 Architectural guidelines

Radford et al. (2015) developed some architectural guidelines to achieve stable
training for deep convolutional GANs. These were long considered the standard of
GAN image generation and has influenced many architectures since.

Strided convolutions. DCGANs should use the all-convolutional architecture
from Springenberg et al. (2014). In this architecture all spatial pooling (and un-
pooling) functions such as maxpooling (section 2.3.5) are replaced with strided
convolutions. In the discriminator this allows the network to learn its own down-
sample filters using strided convolutions. Similarly, the generator uses strided
transposed convolutions so the network learns its own upsample filters to produce
images.

Batch normalization in the discriminator and generator stabilizes training (Rad-
ford et al., 2015). When using batch normalization, the input of each unit is
normalized to have mean 0 and variance 1. This takes care of problems caused by
poor weight initialization and helps gradients flow through the network in deeper
models. Radford et al. (2015) found that this was critical to prevent mode collapse
in the generator but could also cause oscillation and model instability if batchnorm
was applied to all layers. To bypass this problem batchnorm should not be applied
to the output of the generator and the input of the discriminator.

The generator used the hyperbolic tangent (tanh) function as activation function
in the output layer. Radford et al. (2015) observed that this allowed the generator
to learn the saturation and coverage of the color space more quickly. The tanh
function (equation 3.7) is the shifted and scaled sigmoid function and produces
outputs in the range of [−1, 1]. All training images should consequently be scaled
and shifted to this range before training.

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(3.7)

In addition the following should be noted on the DCGAN architecture:

• For optimization they used Adam instead of stochastic gradient descent.

• There were no fully connected hidden layers in deep models.

• They used ReLU activation function (equation 2.25) in all layers of the
generator, except for the output layer, that used Tanh (equation 3.7).

49

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

• LeakyReLU (equation 3.8) with leakiness a = 0.02 was used as activation
function in all the layers of the discriminator.

LeakyReLU(x) =

{
x if x > 0

ax otherwise
(3.8)

3.4.4 Challenges of the DCGAN architecture

The DCGAN architecture provided guidelines for developing more stable generative
adversarial networks. Let it be clear that "more stable" is relative to the early GAN
models (Goodfellow et al., 2014; Denton et al., 2015) that were notoriously unstable.
The DCGAN architecture addressed the instability problems of the early GANs,
but did not perfect them. Radford et al. (2015) report also of mode collapse in
DCGANs, especially when the models are trained for longer. In addition DCGANs
are like most GANs sensitive to the choice of learning rate, optimizer and size of
dataset.

3.5 Wasserstein GAN

The cost function that is considered up to this point is the cross-entropy cost
(equation 3.3) with the heuristic non-saturating modification to the generator’s cost
function presented in section 3.2.2.1. This heuristic modification has no theoretical
justification, and is only motivated by the desire of a strong gradient of each player
when the adversary is "winning" Goodfellow (2016b).

This section comprises the buildup of the Wasserstein loss (Arjovsky et al.,
2017) as a new cost function for GANs that has theoretical advantages over the
cross-entropy cost function.

3.5.1 Wasserstein distance

Wasserstein distance (Vaserstein, 1969) also known as the Earth-mover dis-
tance (Rubner et al., 2000) is a metric that measures the distance between probabil-
ity distributions. If one imagines that two distributions pr = pdata and pg = pmodel

are piles of dirt, the EM distance would be the cost of the most effective way
to transform one distribution into the shape of the other distribution (Arjovsky
et al., 2017). The cost is calculated by the amount of dirt that should be moved
multiplied with the Euclidean distance to move the dirt.

Consider the two discrete distributions in figure 3.12. To compute the EM distance
one would need to find the optimal way to transform Pg into Pr and examine

50

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

0.0 2.5 5.0 7.5 10.0
0.0

0.2

Pg

0.0 2.5 5.0 7.5 10.0
0.0

0.2

Pr

Figure 3.12: Two example distributions to illustrate the starting distribution Pg and the
goal distribution Pr in the Earth mover distance example of section 3.5.1.

how much of the distribution, and how far, it should be moved. Assuming that
the piles are of equal mass, i.e. for probability distributions that they sum to 1,
there are infinitely many ways transform Pg into Pr. Each transport plan γ(x, y)
states how the proportion of dirt should be redistributed from x to y, so as long as∑

x γ(x, y) = Pr(y) and
∑

y γ(x, y) = Pg(x) the transport plan is valid. Equivalently
γ is a joint probability distribution when γ ∈ P(Pg, Pr), where P(Pg, Pr) is the
set of all distributions with marginals Pg and Pr respectively (Herrmann, 2017).
To obtain the EM distance every value (x, y) of the optimal transport plan γ∗ is
multiplied with the Euclidian distance ‖x− y‖ between the points. More formally
the Earth mover distance (Wasserstein-1 distance) is defined by

W (Pg, Pr) =
∑
x,y

‖x− y‖γ∗(x, y)

= inf
γ∈P(Pg ,Pr)

E(x,y)∼γ[‖x− y‖] (3.9)

where the infimum (inf) is the greatest lower bound of the set indicating that the
only transport plan of interest is the optimal one, and hence yields the smallest
cost.

As there are an infinite number of possible transport plans, finding the optimal is
an optimization problem in itself. For the above example with the distributions
of figure 3.12 the optimal transport plan can be found using linear programming2.
Figure 3.13 show the optimal transport plan with all the required transportations
γ∗(x, y) and figure 3.14 illustrates the result after the optimal transportation is
executed.

2Details are presented in (Herrmann, 2017)

51

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

Pg

Figure 3.13: The optimal transportation plan γ∗(x, y) illustrated as a joint distribution
with marginals Pg and Pr. Darker squares indicates that a greater proportion is moved,
and the position of the square give where it should be moved from and to.

Optimal transport plan Pg Pr

Figure 3.14: The result of the optimal transport plan γ∗(x, y). The colored pieces of the
distribution indicates where each piece ends up.

52

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

3.5.2 Advantages of the Wasserstein distance

As illustrated the Wasserstein distance measures the difference between two dis-
tributions. This is useful in GANs because the loss function should essentially
compare the learned distribution of the generator with the distribution of the
training samples. The discriminator in early GANs used the cross-entropy loss
(equation 3.3) to do this comparison.

In section 2.2.3 the loss was computed during training so the optimization algorithm
could use the gradients of the loss function to update the learned distribution pg,
and hence make it more similar to the objective distribution pr. Arjovsky et al.
(2017) argues that the weaker the distance measure between pg and pr, the easier
it is to learn the continuous mapping from pg → pr because it is easier for the
distribution sequence to converge. Hence using a weak distance measure as loss
function may give stronger gradients when learning a distribution. Arjovsky et al.
(2017) proves that the Wasserstein distance is a weaker distance measure than the
Kullbach-Lieber divergence3 and Jensen-Shannon divergence4.

This suggests that the Wasserstein distance is a compelling loss function for
generative adversarial networks.

3.5.3 Towards a Wasserstein loss function

Though the Wasserstein distance is compelling to use as loss function it is not
straight forward. Equation 3.9 call for the infimum of all possible joint distributions
infγ∼P(pg ,pr). This is intractable to compute, so Arjovsky et al. (2017) use the
Kantorovich-Rubinstein duality (Kantorovich and Rubinstein, 1958) to express
W (pg, pr) using the supremum sup, also known as the least upper bound, instead.

W (pg, pr) =
1

k
sup
‖f‖L≤k

Ex∼pg [f(x)]− Ex∼pr [f(x)] (3.10)

This formulation calls for the maximum over all functions ‖f‖L ≤ k, meaning that
f is k-Lipschitz continuous.

3The Kullbach-Lieber divergence is minimized when training a GAN using maximum likelihood
(Goodfellow, 2016b)

4The Jensen-Shannon divergence is minimized in the original GAN mini-max game (Goodfellow
et al., 2014).

53

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

3.5.3.1 Lipschitz continuity

A real valued function f : R→ R is k-Lipschitz continuous when there exists a
constant k ≥ 0 such that for all x1, x2 ∈ R

|f(x1)− f(x2)| ≤ k|x1 − x2| (3.11)

A Lipschitz continuous function is always continuous, but not necessarily differ-
entiable (Sauer, 2012). This means that functions, such as f(x) = |x|, that are
continuous everywhere but not differentiable at x = 0, still can satisfy the Lipschitz
continuity condition. Intuitively this is because Lipschitz continuity is related to
the how rapid the function value changes over a small interval of the domain.

3.5.4 From discriminator to critic

In equation 3.10 the function f helps measure the Wasserstein distance between
the distributions pg and pr and is required to be k-Lipschitz continuous.

Arjovsky et al. (2017) proposed a modification of the GAN scheme where the
discriminator is the function f that helps the generator learn the distribution pr.
In this version f is parametrized by w and is assumably from a family of functions
{fw}w∈W that are k-Lipschitz continuous. Now the Wasserstein distance for a GAN
can be achieved by

W (pr, pg) = max
w∈W

Ex∼pr [fw(x)]− Ez∼p(z)[fw(gθ(z))] (3.12)

This equation serves as the loss function in the Wasserstein GAN (WGAN). In
this version of the GAN game the discriminator no longer classifies real and fake
samples but is rather considered a critic that helps the generator produce good
fake samples. When the critic computes the Wasserstein distance it is possible to
back-propagate through equation 3.12 by estimating Ez∼p(z)[∇θfw(gθ(z))].

Using more familiar terms with G(z) as the generator and D(x) as the critic
(formerly the discriminator), the value function of this modified GAN scheme
becomes

V (D,G) = min
G

max
D∈D

Ex∼pdata [D(x)]− Ez[D(G(z))] (3.13)

where D is a set of 1-Lipschitz continuous functions. This value function gives the
loss function of the critic

L(D) = −Ex∼pdata [D(x)] + Ez[D(G(z))]

= −Ex∼pdata [D(x)] + Ex̂∼pmodel
[D(x̂)] (3.14)

54

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

and the generator
L(G) = −Ex̂∼pmodel

[D(x̂)] (3.15)

To enforce the Lipschiz constraint in equation 3.13 Arjovsky et al. (2017) proposes
to clip the weights of the critic to lie in a compact space W = [−c, c]. Though
this approach is simple and "[...] clearly a terrible way to enforce a Lipschitz
constraint."(Arjovsky et al., 2017, p. 7), it yields good empirical results.

3.5.5 Gradient penalty on Wasserstein GANs

Gulrajani et al. (2017) demonstrated the downsides of clipping the weights in
Wasserstein GANs (WGANs) and found it to cause convergence failure and opti-
mization difficulties in deep WGANs.

As an alternative approach a soft version of the weight clipping is proposed to
encourage the critic to be 1-Lipschitz. This soft approach is motivated by the
desire of having gradients with norm ≤ 1 everywhere for a 1-Lipschitz differentiable
function. Gulrajani et al. (2017) proposes a gradient penalty to constrain the
gradient norm of the critic’s output with respect to its input. The penalty is
evaluated randomly along straight lines between pairs of points {x, x̂}, from pr
and pg respectively, where the critic should have unit gradient. Evaluating the
penalty along these lines effectively smooth out the space between the distributions
pr and pg (Fedus et al., 2017). The gradient penalty (GP) is

GP = λEx̂∼pmodel
[(‖∇D(αx+ (1− α)x̂)‖2 − 1)2] (3.16)

where α ∼ U(0, 1) determine the random points to evaluate the gradient norm, and
λ is the penalty coefficient (suggested to λ = 10). The GP term is added to the
Wasserstein critic loss in equation 3.14 to enforce the Lipschitz constrain.

LWGAN-GP = LWGAN + GP (3.17)

where LWGAN is the discriminator’s Wasserstein loss from equation 3.14. It should
be noted that gradient penalty is not valid when batch normalization is used in
the critic. This is because equation 3.16 penalize the critic’s gradient norm with
respect to each input independently, and not the entire batch.

3.6 Progressively growing GANs
The GANs considered in this section builds on the intuition that a complex mapping
from a latent variable z to high-resolution (e.g. 10242) images x̂ is easier to learn
step by step at different scales, rather than learning all scales simultaneously. This

55

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

idea is the same as Denton et al. (2015) used in LAPGANs (section 3.4.1), and
others has experimented with in GANs (Durugkar et al., 2016; Zhang et al., 2017;
Wang et al., 2017).

The aforementioned GANs that build on this idea use multiple generators and
discriminators that operate in a hierarchy or on different spatial resolutions. The
progressively growing GAN (ProGAN) of Karras et al. (2017) uses only one dis-
criminator and generator to produce high quality 1024× 1024 images.

3.6.1 ProGAN architecture

The progressive growing of images start with a latent variable z drawn randomly
from the distribution of the 512-dimensional surface of a 513-hypersphere, i.e.
z ∼ S512 = {z ∈ R512 : ‖z‖ = 1}. The latent variable is used by the generator G
to form a (4 × 4) resolution image. The discriminator5 D is trained in turn on
real and fake images of the same resolution as the generator produces. As training
advances layers are added to G and D to incrementally increase the resolution of
the images to (8× 8), (16× 16) up to e.g. (1024× 1024) pixels. This is similar to
the DCGAN approach (section 3.4.2), but G and D are trained separately on each
spatial resolution before more layers are added. Models of the discriminator and
generator as training proceeds are illustrated in figure 3.15. Details on how the
new layers are introduced are presented in (Karras et al., 2017).

3.6.2 Normalization and a remedy to mode collapse

After DCGAN’s success (section 3.4.3) most GAN models use a variant of batch
normalization (section 2.4.3) to prevent training instability due to escalation of
signal magnitudes in the models, and to reduce the risk of mode collapse. The
progressively growing GAN (Karras et al., 2017) is designed for multiple loss
functions including the Wasserstein distance (equation 3.14) with gradient penalty
(equation 3.16) and is therefore not able to use batchnorm. ProGANs use different
techniques to replace the need for batchnorm in the generator and discriminator.

3.6.2.1 Normalization

Though it has not been under much consideration up to this point, careful weight
initialization is an important measure to achieve stable training in deep learning.
In short, weight initialization influences i) training time and ii) risk of exploding or
vanishing gradients. A popular approach is to initialize the weights randomly from

5Optionally "the critic" as ProGAN sometimes uses the WGAN-GP loss function from
equation 3.14 and 3.16.

56

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

1024 × 1024
512 × 512
256 × 256
128 × 128
64 × 64
32 × 32
16 × 16

4 × 4

8 × 8
4 × 4

4 × 4

4 × 4

8 × 8

8 × 8
4 × 4

16 × 16

4 × 4
8 × 8

32 × 32
64 × 64

128 × 128
256 × 256
512 × 512

1024 × 1024

z z z

y y y

x x

x

x̂x̂

x̂

G

D

Training progress

⋯

Figure 3.15: The architecture and training process in progressively growing GANs
(ProGANs). The discriminator is trained on small resolution images (real x and fake x̂)
before higher resolutions are added incrementally. The figure is reproduced from (Karras
et al., 2017).

N (0, 1) and scale them using He’s initialization constant c (He et al., 2015)

w′i = c · wi, where c =

√
2

ninputs
(3.18)

where ninputs are the number of inputs to the layer.

In ProGANs, instead of initializing the weights carefully, they are initialized from
N (0, 1) and scaled using equation 3.18 each time the layer is ran. Karras et al.
(2017) refers to this as equalized learning rate because it ensures that the
dynamic range of all parameters is the same when using optimizers such as Adam
and RMSProp. This equal dynamic range ensures that the time it takes to learn a
parameter with a large range is the same as with a small range, helping speed up
and stabilize the training.

In addition ProGAN normalizes the feature vector of each pixel (across all feature
maps) to have unit length after each convolutional layer. This is to prevent exploding
activations as a result of competition between the generator and discriminator.
Karras et al. (2017) refer to this as pixelwise normalization, and it is performed

57

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

on the multi-channel image A

A′i,j,: =
Ai,j,:√

1
n

∑n−1
k=0(Ai,j,k)2 + ε

(3.19)

where n is the number of feature maps and ε = 10−8 is a small constant for numeric
stability. It was found that this fairly heavy constraint on the generator did not
limit its performance (Karras et al., 2017).

3.6.2.2 Variation

To prevent mode collapse in ProGANs and to increase variation in the synthetic
images Karras et al. (2017) builds on the idea of minibatch discrimination
(Salimans et al., 2016). The idea is that the discriminator examines multiple
samples in combination, instead of just one by one, to prevent mode collapse. In
ProGANs this idea constitutes by letting the discriminator have easy access to the
average standard deviation of all pixel values across all channels of the images of
each minibatch. When this statistic is computed it is concatenated as a constant
feature map across the all samples in the minibatch. By doing this the discriminator
can easily detect if the generator produces a minibatch of little variation (small
standard deviation), and hence similar images. This encourages the generator to
capture more variation of the data generating distribution (Karras et al., 2017).

3.6.3 Restricting the discriminator

The progressively growing GAN was introduced with an additional loss term
that was added to the WGAN-GP loss (equation 3.17). This additional loss was
introduced to restrict the discriminator from drifting too far away from zero, thus
stabilizing the training process (Karras et al., 2017). The loss was introduced
without further discussion of its importance but have been adopted by other GAN
models that build on the ProGAN architecture. The drift term is given by

drift = εdriftEx∈Pr [D(x)2] (3.20)

where εdrift = 0.001. The complete loss becomes

Ldrift = LWGAN-GP + drift (3.21)

3.7 Multi-scale gradient learning in GANs
The previously introduced DCGAN and ProGAN both learn the distribution
of images by gradually increasing the resolution of images, thus increasing the

58

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

G
(0)

G
(1)

D
(2)

G
(3)

D
(3)

G
(2)

D
(1)

D
(0)

Real images x

Fake images x̂

z y

Latent variable
Output

Generator

Discriminator

x̂
(0)

x̂
(1)

x̂
(2)

x̂
(3)

x
(3)

x
(2)

x
(1)

x
(0)

Dcritic

Figure 3.16: A model of a multi-scale gradient GAN of depth 4 based on the progressively
growing GAN architecture. Each block of the generator G upscales and performs convo-
lutions on the input volume. Each block of the discriminator downscales and performs
convolutions on the input volume. The generator is forced to be able to produce RGB
images at each resolution (equation 3.24) because the discriminator has access to these
intermediate outputs. The connections between G and D allow the gradients to flow to G
at multiple resolution scales during backpropagation. This results in faster convergence
and more stable training.

complexity of the distribution. Their main difference is that ProGAN explicitly
train the GAN on low resolution images before introducing higher resolution images,
while DCGAN has only access to the full resolution targets while training.

In this section the concept of multi-scale gradient (MSG) based learning in GANs
(Karnewar and Iyengar, 2019) is introduced, which allow the generator and dis-
criminator to learn a distribution at multiple scales simultaneously. Intuitively the
modification is a mix between the DCGAN approach, where training takes place
in all scales simultaneously, and the ProGAN approach where the discriminator
has access to real and fake samples at different resolution scales. A conceptual
illustration model of the GAN architecture is illustrated in figure 3.16.

Consider the generator G(z) of a multi-scale gradient GAN. It consists of k blocks
G(i) that produce an output volume A(i) ∈ R2i+2×2i+2×c much like the DCGAN
(figure 3.11), where c is the number of channels. The initial block G(0)(z) take in a
latent variable e.g. z ∼ S512 and hence produce an image G(0) : z → A(0), where
A(0) ∈ R4×4×512. In general G(i) : A(i−1) → A(i) for i ∈ N. Using this notation G

59

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

can be considered a composite function that produces a synthetic image x̂

G(z) = G(k) ◦G(k−1) ◦ · · ·G(i) ◦ · · ·G(1) ◦G(0)(z) = x̂ (3.22)

Each block of the MSG-GAN generator must be able to produce an RGB (c = 3)
image, so learning can take place at different scales simultaneously. Therefore a
function r is defined so it converts each activation volume A(i) to an RGB image
x̂(i).

r(i) : A(i) → x̂(i)

where, x̂(i) ∈ {R2i+2×2i+2×3| 0 ≤ x̂i,j,k ≤ 1} (3.23)

hence, r(i)(G(i)(z)) = r(i)(A(i)) = x̂(i) (3.24)

The discriminator is built up in a similar hierarchical fashion as the generator,
only in reverse (figure 3.16). The initial block of the discriminator D(0)(x) takes
in the highest resolution image (real or fake) and use a function r′(k), similar to r
but inversely6, to produce features from the raw RGB input. These features are
handled by the block to produce an activation volume B(0) where the height and
width are downsampled by a factor of 2. To this activation volume the features
r′(x) from an RGB image of corresponding size is concatenated using a combine
function φ, so B(1)′ = φ(B(0), r′(1)(x(k−1))). In general the output activation volume
B(j)′ from D(j), where j = k − i is defined

B(j)′ = D(j)(φ(B(j−1)′ , r′(j)(x(k−j))))

= D(j)(φ(B(j−1)′ , r′(j)(x(i)))) (3.25)

The final block of the discriminator Dcritic(·) computes the critic score based on B(k)′

which indirectly contains information of images on all scales due to the connections
in equation 3.25. The discriminator as a composite function becomes

D(x,x(0), . . . ,x(k−1)) = Dcritic ◦D(k)(·,x(0)) ◦Dk−1(·,x(1)) ◦ · · ·D0(·,x)) (3.26)

In equation 3.26 where the discriminator takes in a new x(i) there essentially is
a connection between the generator and discriminator. These connections allow
the gradients from the discriminator to flow to the generator at multiple scales
simultaneously during backpropagation. This lets the generator be able to learn
all scales simultaneously, and is not required to be trained to convergence on each
resolution separately as in the progressively growing GAN (section 3.6).

6The function r′ is not a real inverse of r, but conceptually they perform the opposite
operations.

60

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

Karnewar and Iyengar (2019) shows experimentally that the MSG modification is
robust to different base architectures, learning rates, loss functions7 and training
sets.

3.8 Final notes on GANs

Up to this point some major steps of the evolution of generative adversarial networks
has been covered. Starting from the early GANs which were unstable and hard to
train, moving forward to the success of the deep convolutional GANs, Wasserstein
loss and progressively growing GANs.

These variants of GANs are individual steps towards achieving a more stable training
for GANs. DCGANs (section 3.4.2) and ProGANs (section 3.6) that are from a
family of convolutional GAN architectures, that build images from a low resolution
and up, which gives them stability. The heuristically motivated non-saturating loss
(section 3.2.2.2) and the more theoretically rooted Wasserstein GANs (section 3.5)
with gradient penalty (section 3.5.5) explored better loss functions that provide
a stronger gradient for the generator. And lastly the multi-scale gradient GAN
(section 3.7) that allow the model to learn from multiple resolutions simultaneously,
providing a more stable training.

It should be emphasized that other approaches towards stable GANs producing
high quality high resolution images has been made. StyleGAN (Karras et al., 2019b)
builds on principles from neural style transfer (Gatys et al., 2016) to develop a
GAN architecture that automatically learn unsupervised separation of high-level
attributes and stochastic variation in synthetic images. This architecture has
further been improved with StyleGAN2 (Karras et al., 2019a), adopting elements
from techniques such as progressively growing (section 3.6) and multi-scale gradient
learning (section 3.7), to provide state-of-the-art results.

In total all these architectures, techniques and approaches are remedies to training
instability, vanishing and exploding gradients, and mode collapse that were the
major setbacks of the original GAN framework. All these problems are not perma-
nently solved yet (Wang et al., 2020), but huge steps have been made in the right
direction.

7If a loss function with gradient penalty (e.g. equation 3.16) is used the penalties are averaged
over all inputs (Karnewar and Iyengar, 2019)

61

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

3.9 Evaluating generative models
As GANs have evolved and the quality of synthetic images have become increasingly
better, the need for reliable quantitative methods for evaluating and comparing
image quality has followed.

As the probability distribution pg that the generator learns cannot be explicitly
represented it is difficult to evaluate it directly. The early GAN papers used
Gaussian Parzen windows to estimate the learned distribution so the performance
could be judged using log-likelihood estimates. This method is unreliable for high-
dimensional data, but it was the "best method available" at the time (Goodfellow
et al., 2014, p. 6).

Since then several different evaluation metrics have been proposed. Denton et al.
(2015) used human evaluation of real and fake images to compare the performance
of different GANs. Arjovsky et al. (2017) found that the Wasserstein distance
(section 3.5.1) computed by the WGAN loss function corresponded reasonably
well with image quality. A good performance metric for GANs must be reliable
on different models and data types, as well as being computationally efficient
to compute. Steps towards this goal has been made, but the problem of GAN
evaluation is still considered open (Wang et al., 2020).

3.9.1 Inception Score (IS)

One possible approach concerning images that gained some popularity is the
Inception Score. To get an automatic and reliable evaluation of the generated
images Salimans et al. (2016) proposed to use a pretrained image classifier on the
generated images. The model they used was Google’s Inception model8 trained on
ImageNet (Deng et al., 2009) with images from 1000 classes. When evaluating each
generated sample x̂ on the Inception model the probability of the sample being
from each of the classes, the conditional label distribution p(y|x̂), is returned.

A well performing generator produces images with meaningful objects. Evaluated by
the Inception model p(y|x̂) should have low entropy, corresponding to recognizable
objects in the image. If an image has high entropy in the conditional label
distribution, the classifier does not recognize any particular objects in the image,
and returns a small probability for multiple classes.

A well performing generator is not only measured by the "objectness" of x̂, but
also that it is able to reproduce the variety of the data generating distribution
(section 3.1.2). Therefore the marginal distribution p(y) =

∫
z
p(y|x̂ = G(z))dz

8The Inception V3 model is a deep convolutional network that achieved state-of-the-art
classification results on ImageNet (Deng et al., 2009) in 2015.

62

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

should have high entropy. These two requirements are summed up by the proposed
inception score (IS) (Salimans et al., 2016)

IS(G) = exp(Ex∼pgDKL(p(y|x)‖p(y))) (3.27)

Equation 3.27 compares the conditional label distribution with the marginal dis-
tribution of all labels using the Kullback-Leiber divergence. When comparing
Inception score for different models a higher score is better, meaning that the
samples have a high degree of "objectness" and are diverse over different classes.

When IS measures the variety of the images it only has access to the generated
samples, and can thus only penalize the model for not producing all classes of the
distribution. As IS do not have access to any real images, it cannot penalize the
model for modes that are dropped within the classes.

3.9.2 Fréchet inception distance (FID)

An alternative to the Inception score that takes use of fake and real images and
has proven to be robust to noise is the Fréchet inception distance (FID) (Heusel
et al., 2017). FID is like IS based on the Inception model, but instead of using
the classifications from the output layer of the model, the activations of the last
hidden layer are used. These activations are the 2048-dimensional features that
carry important information about the recognizable characteristics of the image.
The statistics of the activations from the generated images are, unlike in the IS
score, compared with the statistics of the real images upon evaluation.

It is assumed that the activations from the last hidden layer follow a multidimen-
sional Gaussian distribution so Pr ∼ N (µr,Σr) and Pg ∼ N (µg,Σg). The Frétchet
distance (Fréchet, 1957) also known as the Wasserstein-2 distance9 (Vaserstein,
1969) between the two distributions can be calculated using equation 3.28.

FID(Pr, Pg) = ‖µr − µg‖22 + Tr(Σr + Σg − 2(ΣrΣg)
1
2) (3.28)

where µ and Σ are the mean and covariance matrix of the two distributions
respectively. Tr is the trace of the matrix which computes the sum over the
elements down the main diagonal.

The Frétchet Inception distance between the real and fake images has proven to
correlate well to human evaluation of image quality (Heusel et al., 2017; Lucic

9There is indeed a connection to the Wasserstein-1 distance considered in section 3.5.1. For
the curious reader the difference is due to the Wasserstein-2 distance in addition uses the second
moment when comparing two distributions. As the Wasserstein-1 distance has the "earth mover"
intuition behind it, the Wasserstein-2 distance can be thought of as the minimum cord-length
needed to join two forward-moving points on the two distributions together.

63

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

et al., 2018), and is therefore today the most popular metric for evaluating GANs.
FID is, unlike IS, sensitive to the dropping of modes within a class, because FID
compares the distribution of the generated samples with the distribution of the
real samples.

Note that FID and IS are both metrics that only apply to image data. As variety
in the distributions is an important characteristic to measure, both IS and FID are
measured over 50 000 generated samples, and often the whole training set. The
reliability of these measures for small training sets will be discussed in section 4.5.3.

64

Chapter 4

Experiments

Apart from the illustrative GAN example in section 3.2.3 there is up to this
point only considered theoretical aspects and techniques of deep learning and
GANs. Convolutional neural networks, that constitute the basis for synthetic
image generation using deep convolutional GANs, have been studied along with
the key theoretical and empirical aspects, challenges and solutions of GANs since
the beginning in 2014.

The following chapter will continue to address the threefold objective of this
thesis (section 1.4) only now taking a more empirical approach. Experiments are
conducted to illustrate some key results and challenges of the deep convolutional
GAN architecture and the progressively growing multi-scale gradient GAN. Different
datasets from the GAN literature are used in the experiments, as the well as the
foraminifera dataset that addresses this thesis’ objective.

The first experiment is conducted to illustrate the success and failure of the DCGAN
architecture using the MNIST, CelebA and Horse or human datasets. The second
experiment is set up to find the most stable configuration for the MSG-GAN, and
to compare performance with other models, using the CIFAR-10 dataset. Following,
several experiments are conducted to explore the distributions that the MSG-GAN
learns when it is trained on the foraminifera dataset both unconditionally and
class conditionally. Two experiments are conducted to investigate artifacts and
the quality of the images that is sampled from the learned distributions. The final
experiment address the main hypothesis of this thesis, to test if synthetic image
augmentation will improve the foraminifera classification model of Johansen and
Sørensen (2020).

65

CHAPTER 4. EXPERIMENTS

4.1 Preliminary experiments with a deep convolu-
tional GAN

As a part of the exploration of GAN models a preliminary experiment is conducted
to illustrate how the DCGAN architecture (section 3.4.2) can be used to produce
images from a relatively simple dataset. This model is also used, without adjusting
hyperparameters or the model’s capacity, to investigate the stability and robustness
of GAN training when using two more complex datasets. The main objective is not
to achieve state-of-the-art results on either datasets but rather to gently introduce
the task of synthetic image generation in this thesis.

4.1.1 Datasets

The main dataset of consideration is the MNIST dataset (LeCun et al., 2010)
consisting of 60 000 grayscale images of handwritten digits of resolution 28× 28
pixels. This dataset has been analyzed countless of times, and has been used as a
benchmark test for classification and image generation since its release in 2010.

The two more complex datasets are a selection of 2500 downscaled 28× 28 RGB
images of celebrity faces, CelebA (Liu et al., 2015) and 500 horses from the Horse
or human dataset (Moroney, 2019).

4.1.2 Experiment setup and implementation details

For this experiment a DCGAN is implemented to generate images of resolution
28 × 28. The image starts from a latent vector of length 100 that is sampled
from a standard normal distribution N (0, 1). A fully connected perceptron layer
produces 7 ·7 ·256 = 12 544 activations that are reshaped to 256 feature maps of size
7× 7. These feature maps are upsampled using two (5× 5) convolution transpose
layers with strides of 2. All layers except the final employ batch normalization
(section 2.4.3) and the leaky ReLU activation function (equation 3.8) with leakiness
of 0.3. The final layer uses the hyperbolic tangent function (equation 3.7) as
activation function.

The discriminator is a mirror image of the generator, only using convolutional layers
instead of convolution transpose layers, and dropout (section 2.4.2) regularization
(with p = 0.3) instead of batch normalization. The final discriminator layer use a
fully connected layer with linear activation function.

The discriminator use the original GAN loss function from equation ?? and the
generator use the non-saturating loss equation 3.4. The training is performed on
minibatches of 256 samples for a total of 50 epochs.

66

CHAPTER 4. EXPERIMENTS

Real samples Epoch 1 Epoch 25 Epoch 50

Figure 4.1: A small selection of real training data (left) from the MNIST dataset (LeCun
et al., 2010) and synthetic samples that are generated from the same latent variables at
different stages of the training process. The checkerboard artifact can be observed early
in the training are due to accumulations in the feature maps caused by overlap in the
convolution transpose layers (Odena et al., 2016) similar to figure 2.9.

4.1.3 Results

Here the results from the preliminary DCGAN experiments are presented. The
Fréchet Inception distance and Inception score is not measured for any of the
results as this experiment’s objective is to introduce image generation with GANs.
Figure 4.1 show a random selection of real samples from the MNIST dataset as
well as generated images from various epochs during training. Figure 4.2 and 4.3
illustrate the instability of the DCGAN model as the generator collapse to one
training sample.

4.1.4 Discussion

The results in figure 4.1 suggest that the DCGAN model has learned to reproduce
the distribution of MNIST digits to some degree after 50 epochs. In the image from
the first epoch of training on the MNIST dataset (figure 4.1) a checkerboard artifact
can be observed in the generated images. These artifacts are due to the activations
of the transposed convolutional layers accumulating in the feature maps (Odena
et al., 2016). This is especially prominent when transposed convolutions with
strides > 1 are used in the generator, like in this DCGAN model. One can observe
this accumulation also happening in figure 2.9. As training proceeds much of the
checkerboard artifacts disappear as the generator learns filters that compensate for
this accumulation.

As expected both experiments with color images collapsed to one mode during
training. A plausible hypothesis is that the mode collapse is due to DCGAN’s
sensitivity to the choice of hyperparameters and model configurations. As the DC-

67

CHAPTER 4. EXPERIMENTS

Closest real sample Mode collapse

Figure 4.2: The result of training DCGAN on downscaled images of horses without tuning
hyperparameters or model capacity. The generator has collapsed to one mode, that is
easily recognized from the training samples. Note that all training samples were scaled
down to 28× 28 pixels before training.

Closest real sample Mode collapse Exploding activations

Figure 4.3: The result of training DCGAN on a selection of downscaled images from
the CelebA dataset (Liu et al., 2015). The generator has collapsed onto one mode of
the distribution and is not able to produce anything else. As training proceeds, signs of
exploding activations can be observed (right) due to competition of the models.

68

CHAPTER 4. EXPERIMENTS

GAN model in this experiment have not been especially tailored for the complexity
of these datasets training becomes unstable, and the generator only produce the
image that fools the discriminator the most. Further investigations of why mode
collapse happens have been presented in section 3.3.1.

As training proceeds in figure 4.3 (even though the generator has collapsed), the
pixels become brighter and the contrast increases. This effect is possibly caused by
exploding activations in the generator due to competition between the generator
and discriminator (Karras et al., 2017). One measure against this artifact is the
pixelwise normalization from the progressively growing GANs section 3.6. The
normalization is performed on all pixels across all feature maps of the generator.

A possible solution to why the generator does not recover from mode collapse
might be the choice of loss function of the generator. Figure 3.3 illustrates how
the gradients of the generator explodes as the discriminator’s accuracy increases.
Exploding gradients points in uninformative directions so the generator do not
recover from the mode collapse (Salimans et al., 2016; Arjovsky et al., 2017).

4.1.5 Closing remarks

In this DCGAN experiment several interesting observations was made when training
the same GAN on different datasets with different degree of complexity. On the
least complex MNIST dataset the generator learned a meaningful distribution, but
when the complexity of the datasets increased the model’s performance dropped.
By training the DCGAN on color images without adapting the capacity or hyper-
parameters the model collapsed to one mode. Though the generator collapsed the
results lead to valuable insight on the task of image-generation with GANs.

4.2 Method and setup of the multi-scale gradient
GAN

One explicit goal of this thesis is to use a generative adversarial network to generate
synthetic images of foraminifera. The foraminifera images are from a dataset of
2637 RGB color images of dimensions 224× 224× 3. To generate realistic images
of this dimensionality is a computationally demanding task that require a robust
model and days of training on fast GPUs.

To avoid the need for additional hyperparameter searches and to reduce the risk
of unstable training, the model that is chosen for this experiment is a multi-scale
gradient GAN described in section 3.7 that builds on the progressively growing
GAN architecture from section 3.6. This model has shown to provide more stable

69

CHAPTER 4. EXPERIMENTS

training of the GAN, also when there are few images in the training set. Karnewar
and Iyengar (2019) demonstrated the stability of an MSG-GAN on a dataset of
3000 256 × 256 RGB images. The foraminifera dataset consists of even fewer
samples distributed over four classes, so generating realistic foraminifera images is
nonetheless a challenging task.

Before tackling the problem of generating synthetic images the experimental setup
and implementation details of the MSG-GAN is described and its performance
is tested. The performance is demonstrated and compared with other models by
generating synthetic images from the CIFAR-10 dataset familiar from the GAN-
and computer vision literature.

4.2.1 Implementation details of the MSG-GAN model

The model that is presented here builds on the progressively growing GAN (Karras
et al., 2017) and MSG-GAN (Karnewar et al., 2019). The implementation is similar
to the MSG-ProGAN described in (Karnewar et al., 2019) but implemented in
Tensorflow 2.1 using Keras.

The GAN consists of a generator and a discriminator that are represented by
separate models. Each model consists of sequential blocks that perform the
operations required to manipulate an input volume of a specific dimensionality.
The models consist of k blocks that performs an upsample or downsample procedure
followed by convolutional operations.

To be able to use the GAN on datasets with different resolutions blocks are added
to, or removed from, the generator and discriminator respectively. Each additional
block in the models results in doubling the resolution of the images. The number
of blocks k in the models is referred to as the depth. The resolution of a generator
of depth k is therefore (2k+1 × 2k+1). A detailed figure of the architecture of the
generator and the discriminator is given in figure 4.4.

All layers of the models with learnable parameters are implemented to incorporate
equalized learning rate (section 3.6.2.1), where the weights are scaled by

√
2/ninputs

at runtime according to equation 3.18. All (3×3) and (4×4) convolutional layers in
all blocks of both models use the leaky ReLU (equation 3.8) for activation function
with a leakiness of 0.2. The final layer of the discriminator and generator and the
(1 × 1) convolutions r and r′, use linear activation functions. All convolutional
layers use a stride of 1.

70

CHAPTER 4. EXPERIMENTS

Conv transpose

Convolution

Upsample

Concatenate

Minibatch st. dev

(1 × 1) convolution

z

r r r

ŷ

x̂
(0)

x̂
(1)

x̂
(2)

x̂

x
x(2) x(1) x(0)

Downsample

4 × 4
8 × 8

16 × 16

G(0) G(1) G(2)
D(k−2) D(k−1) D(k)

Real downscaled images

16 × 16 8 × 8 4 × 4

Dcritic
r′ r′ r′

r′
r′

r′

Figure 4.4: A detailed model of the implementation of a multi-scale gradient GAN built on
the progressively growing GAN architecture. Note that there is no progressively growing
of images like the original ProGAN as all scales are learned simultaneously like DCGAN.

4.2.1.1 The generator

The generator takes in a 512-D latent variable sampled from the surface of a
hypersphere. This is achieved by sampling 512 random variables zi ∼ N (0, 1) to
form a 512-D vector z, and performing hyperspherical normalization

z

‖z‖2
∼ S512 (4.1)

(Muller, 1959). This latent variable serves as input to the generator’s initial block
that in turn propagates its activations forward through the network to create the
final image.

The initial block of the generator transforms z to 512 feature maps of size (4× 4)
by a convolution transpose layer with kernel size (4 × 4) and "valid" padding.
This is in turn sent to a (3× 3) convolutional layer with "same" padding before
pixel normalization (equation 3.19) is performed across all feature maps. All
subsequent blocks of the generator consist of: an upsampling layer performing
nearest neighbor interpolation to double the resolution of the image, followed by
two (3 × 3) convolutional layers with "same" padding. Pixel normalization is
performed after each (3× 3) convolution to prevent exploding activations. Details
and dimensions of each block is presented in table 4.1.

71

CHAPTER 4. EXPERIMENTS

For each block of the generator there are also a corresponding function r referred
to as RGB converter that produces an RGB image from the output volume of
the block. The RGB converter consists of one (1 × 1) convolutional layer with
linear activation function that learns the mapping from the c feature maps of each
block to the 3 channels of RGB images. Note that this convolutional layer also
incorporates equalized learning rate.

4.2.1.2 The discriminator

Each block of the discriminator takes in an RGB image of resolution 2(k+1)× 2(k+1)

and uses a (1×1) convolution layer r′ with a linear activation function to convert the
image to the desired number of feature maps. These features are concatenated with
the activation volume of the previous discriminator block (if any). The resulting
volume is subject to two (3×3) convolutional layers with "same" padding before the
feature maps are downsampled using an average pooling layer, that computes the
average of every (2× 2) pixel grid, yielding feature maps of half the dimensionality.
These feature maps are propagated forward to the next block of the discriminator
and the same operations are applied.

Finally the activation volume reaches the final block of the discriminator. This block
is similar to the ones previously described, only a minibatch standard deviation
layer described in section 3.6.2.2 is applied before the final convolutions of (3× 3),
(4×4) and (1×1) produce the discriminator’s final prediction y. The dimensionality
of the activations of all layers are given in table 4.2.

4.2.2 Implementation of the training loop

Generic GAN training is illustrated in figure 3.2 and section 3.2.3. Following is
additional details on how this training procedure is implemented in the MSG-GAN
setup for the following experiments.

The GAN training process consists of the following steps:

1. Sample real and fake data at all scales from the generator and training set
respectively.

2. Train the discriminator

(a) Compute the loss from fake samples and real samples (equation 3.14),
the gradient penalty (equation 3.16) and the drift loss (equation 3.20).

(b) Backpropagate to retrieve the gradients w.r.t. the weights

(c) Apply gradients.

72

CHAPTER 4. EXPERIMENTS

Table 4.1: A detailed description of the blocks of the MSG-GAN generator used in the
experiments. The shape of the output volume of every layer is specified (excluding the
batch size). Model 2 is used to produce images of resolution 128× 128 and use all layers.
Model 1 produce images of size 32 and use only blocks from "Model 1" and up.

Block Operation Activation Output shape
Latent variable Hypersphere norm. 1× 1× 512

1
(4× 4) conv transpose LeakyReLU 4× 4× 512
(3× 3) convolution LeakyReLU 4× 4× 512
Pixelwise normalization - 4× 4× 512

2

Upsample - 8× 8× 512
(3× 3) convolution LeakyReLU 8× 8× 512
Pixelwise normalization - 8× 8× 512
(3× 3) convolution LeakyReLU 8× 8× 512
Pixelwise normalization - 8× 8× 512

3

Upsample - 16× 16× 512
(3× 3) convolution LeakyReLU 16× 16× 512
Pixelwise normalization - 16× 16× 512
(3× 3) convolution LeakyReLU 16× 16× 512
Pixelwise normalization - 16× 16× 512

4

Upsample - 32× 32× 512
(3× 3) convolution LeakyReLU 32× 32× 512
Pixelwise normalization - 32× 32× 512
(3× 3) convolution LeakyReLU 32× 32× 512
Pixelwise normalization - 32× 32× 512

Model 1 ↑

5

Upsample - 64× 64× 512
(3× 3) convolution LeakyReLU 64× 64× 256
Pixelwise normalization - 64× 64× 512
(3× 3) convolution LeakyReLU 64× 64× 256
Pixelwise normalization - 64× 64× 512

6

Upsample - 128× 128× 256
(3× 3) convolution LeakyReLU 128× 128× 128
Pixelwise normalization - 128× 128× 512
(3× 3) convolution LeakyReLU 128× 128× 128
Pixelwise normalization - 128× 128× 512

Model 2 ↑

73

CHAPTER 4. EXPERIMENTS

Table 4.2: A detailed description of the MSG-GAN discriminator. Model 2 is used to
critic images of resolution 128× 128 and use all blocks. Model 1 is used for images of size
32 and use only the blocks from "Model 1" and down.

Block Operation Activation Output shape h× w × c
Model 2 ↓

1

RGB input 128× 128× 3
(1× 1) convolution, r′ Linear 128× 128× 64
(3× 3) convolution LeakyReLU 128× 128× 128
(3× 3) convolution LeakyReLU 128× 128× 128
Average pooling - 64× 64× 128

2

RGB input - 64× 64× 3
(1× 1) convolution, r′ Linear 64× 64× 128
Concatenate - 64× 64× 256
(3× 3) convolution LeakyReLU 64× 64× 256
(3× 3) convolution LeakyReLU 64× 64× 256
Average pooling - 32× 32× 256

Model 1 ↓

3

RGB input - 32× 32× 3
(1× 1) convolution, r′ Linear 32× 32× 256
Concatenate - 32× 32× 512
(3× 3) convolution LeakyReLU 32× 32× 512
(3× 3) convolution LeakyReLU 32× 32× 256
Average pooling - 16× 16× 256

4

RGB input - 16× 16× 3
(1× 1) convolution, r′ Linear 16× 16× 256
Concatenate - 16× 16× 512
(3× 3) convolution LeakyReLU 16× 16× 512
(3× 3) convolution LeakyReLU 16× 16× 256
Average pooling - 8× 8× 256

5

RGB input - 8× 8× 3
(1× 1) convolution, r′ Linear 8× 8× 256
Concatenate - 8× 8× 512
(3× 3) convolution LeakyReLU 8× 8× 512
(3× 3) convolution LeakyReLU 8× 8× 256
Average pooling - 4× 4× 256

6

RGB input - 4× 4× 3
(1× 1) convolution, r′ Linear 4× 4× 256
Concatenate - 4× 4× 512
(3× 3) convolution LeakyReLU 4× 4× 512
(4× 4) convolution LeakyReLU 1× 1× 512
(1× 1) convolution Linear 1× 1× 1

74

CHAPTER 4. EXPERIMENTS

3. Train the generator

(a) Sample fake data from the generator.

(b) Use the discriminator to compute loss of the fake samples (equation 3.15)

(c) Backpropagate to retrieve the gradients w.r.t. the weights.

(d) Apply gradients.

Note that the discriminator and generator are trained as two separate models. This
is important for adversarial training, so the generator is not aiming for a moving
target.

In the training loop the operations of backpropagation are performed using
TensorFlow’s automatic differentiation software. This software "records" the
operations, that is performed on the weights during training by the computational
graph, so the gradients can be evaluated numerically. The fake samples retrieved
at stage 1 must be detached from the computational graph so gradients does not
flow through the generator when the discriminator is training. The complete and
detailed training process of the GAN discriminator is illustrated in figure 4.5.

After the gradients are retrieved through automatic differentiation (backpropaga-
tion) the Adam optimizer (section 2.13) is used with learning rate of 0.003, β1 = 0,
β2 = 0.99 and ε = 10−8 to apply the gradients.

For additional stability during training, a copy of the generator, referred to as
the shadow generator, is kept outside the training loop and updated with an
exponential moving average of the generator’s weights during training (section 3.3.1).
The shadow generator is kept for evaluation and ultimately used for generating
synthetic images after training. The EMA is updated according to equation 3.6.

4.2.3 Technical details

The models are implemented in Python 3.7.4 with TensorFlow 2.1 and Keras. All
custom blocks and layers such as the generator- and discriminator blocks, equalized
learning rate-layers and normalization layers are implemented by subclassing from
tf.keras.Model and tf.keras.layers.Layer. This allows the implementation
to benefit from the high-level API of Keras while having the freedom to change
low-level implementation details such as weight scaling at runtime and making a
custom training loop.

For computational performance the decorator @tf.function is used on compu-
tationally demanding tasks such as backpropagation and computing the gradient
penalty. This decorator compiles a function block to a computational graph for

75

CHAPTER 4. EXPERIMENTS

G(z)

D()x̂

= −D()L
(G) x̂

∇θL
(G)

Optimizer

z

Multi-scale gradient GAN training scheme

Training the discriminatorTraining the generator

D()x̂ D()x~ D(x)

D()∇x
~ y~

Automatic
differentiation

Real samples xFake samples x̂

Mixed samples x~

z

Latent variable

∇θL
(D)

Optimizer

G(z)

= D() + λ(∥ D() − 1 − D(x) + D(xL
(D) x̂ ∇x

~ y
~ ∥2)2

ϵdrift)2

Gradient penalty DriftReal lossFake loss

Automatic
differentiation

Fake samples x̂

Figure 4.5: Illustration of the computational graph and training process of the discrimi-
nator and generator. Training D starts by sampling multiple resolution images from the
G and training set. These samples are given to D to be evaluated and this makes up
the fake and real loss of the loss L(D). The gradient penalty is computed by evaluating
the norm of the gradients of the discriminator w.r.t. a mixture of real and fake samples.
Training G is done generating fake samples and evaluating them using D. Automatic
differentiation software capture the gradients for backpropagation during the training
process. These gradients are applied to the models according to the Adam optimizer
(equation 2.13).

76

CHAPTER 4. EXPERIMENTS

faster execution on GPU.

The training loop is implemented as described in section 4.2.2 with Tensorflow’s
function tf.stop_gradients() to detach the fake images from the computational
graph when the discriminator is training. Tensorflow’s tf.GradientTape is
used to record operations of the forward pass for automatic differentiation in
backpropagation and gradient penalty. No preprocessing is performed on the
training images except downscaling the images to the correct resolutions of the
discriminator, and rescaling the pixel values to the range [−1, 1]. See appendix A
for additional details on the source code.

The GAN training is performed on one Nvidia GPU with 11 GB RAM and on 8
CPUs with 32 GB of RAM.

4.3 Model validation and testing on real-world im-
ages

Before the model is trained on the foraminifera dataset it is tested by investigating
its performance on the popular CIFAR-10 datasets, and comparing the results with
other GANs. In addition, two different versions of the GAN setup is tested to find
the best configuration, one with and one without EMA in the generator.

This experiment is an unconditional learning experiment for the GAN model. The
generator will thus have no information of the image’s class when it generates
an image. The goal is that the generator will learn the distribution of the whole
dataset including all classes. In such an unconditional experiment it is likely that
the GAN will produce images reminiscent of mixtures of images from different
classes.

4.3.1 The CIFAR-10 dataset

The model is tested on real-world images from the CIFAR-10 dataset (Krizhevsky
et al., 2009) that is a popular benchmark dataset for GANs. The dataset consists
of a total of 60 000 32× 32 RGB images evenly distributed over 10 different classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. All of the
classes are exclusive, so no images overlap multiple categories, e.g. there are no
pick-up trucks in either of the car or truck class.

77

CHAPTER 4. EXPERIMENTS

Random selection of real CIFAR10 images

Figure 4.6: For comparison, 144 randomly selected CIFAR-10 images are presented. Each
image display an object from one of the following classes airplane, automobile, bird, cat,
deer, dog, frog, horse, ship and truck.

78

CHAPTER 4. EXPERIMENTS

4.3.2 Experiment setup

For this experiment the multi-scale gradient GAN based on the progressively
growing GAN described in section 4.2 is used. It implemented with a depth of 4 to
produce 32× 32 images and is trained on minibatches of size 32. The relatively
small minibatch size is due to a limitation of computational resources.

To find the best evaluation configuration for the GAN, a model with exponential
moving averages of weights, and one without, are tested. In model A no EMA is
used, so the weights of the generator are always updated. In model B an EMA
with a decay of 0.999 of the generator’s weights is used when images are generated
for the results.

Both models are trained for a total of 200 epochs, where each epoch the dis-
criminators are shown all 60 000 real images. When the training is complete the
discriminators have been shown a total of 12 million real images. To evaluate the
models 50 000 images are generated from both models and evaluated using the
Inception score (IS) and Fréchet Inception distance (FID). The code for evaluating
samples using the Inception model is based on the library of tensorflow_gan that
uses the official implementation of the Inception V3 model.

As a measure of stability and convergence of the GAN the mean squared error
(MSE) is reported between images generated at all scales from the same seed of
consecutive epochs as is suggested in (Yazıcı et al., 2018). The MSE is averaged
over 36 samples.

To illustrate some of the mappings that the generator has learned interpolations in
the 512-D latent space of the generator visualized. The interpolations are performed
by sampling two random points in the latent space and linearly interpolating across
all dimensions. The interpolated points are normalized to lie on the surface of a
hypersphere (equation 4.1) before they are used as input to the generator to yield
images.

4.3.3 Results

Following the results of the aforementioned experiment with the MSG-GAN trained
unconditionally on the CIFAR-10 dataset is presented. A random selection of
generated images from model A and B are displayed in figure 4.7 and figure 4.8
respectively. Inception scores and Fréchet Inception distances are presented in
table 4.3. A selection of interpolation transitions is displayed in figure 4.9.

79

CHAPTER 4. EXPERIMENTS

Fake CIFAR-10 images from model A

Figure 4.7: 144 randomly selected images generated from MSG-GAN model A, trained
unconditionally on the CIFAR-10 dataset for 200 epochs. These images correspond to an
inception score of 6.99.

80

CHAPTER 4. EXPERIMENTS

Fake CIFAR-10 images from model B

Figure 4.8: 144 randomly selected images generated from MSG-GAN model B (with EMA
in generator), trained unconditionally on the CIFAR-10 dataset for 200 epochs. These
images correspond to an inception score of 7.17.

81

CHAPTER 4. EXPERIMENTS

Interpolation between random points in latent space

Figure 4.9: Interpolation between random points in latent space of model B (with EMA).
This experiments show the smooth transitions between classes that the model has learned.
The interpolated images change smoothly in both color and shape. It it not easy to
recognize all "ghosts" caused by between-class transitions.

82

CHAPTER 4. EXPERIMENTS

0 25 50 75 100 125 150 175 200

Epoch

0.000

0.035

0.071

0.106

0.142

M
S

E

Model A

4× 4

8× 8

16× 16

32× 32

0 25 50 75 100 125 150 175 200

Epoch

0.000

0.035

0.071

0.106

0.142

M
S

E

Model B (with EMA)

4× 4

8× 8

16× 16

32× 32

MSE between images of consecutive epochs

Figure 4.10: The plots display the mean squared error (MSE) between images generated
from the same latent variables in consecutive epochs as a measure of stability. During the
first few iterations there is much variation from epoch to epoch. As training proceeds the
variation is somewhat constant apart from small variations in both models. As expected,
there is less variation in the low-resolution images. The effect of exponential averaging
over the generator weights becomes apparent when comparing model A and model B.

83

CHAPTER 4. EXPERIMENTS

Table 4.3: Evaluation of model A and model B, compared to other recognized GAN
methods. Inception score (IS), where a higher score is better, is the standard evaluation
measure of the CIFAR-10 dataset. For FID a lower value is better.

Model IS(↑) FID (↓)
Real images 11.36 0
NCSN (Song and Ermon, 2019) 8.87 25.32
ProGAN (Karras et al., 2017) 8.80 -
MSG-GAN (Karnewar et al., 2019) 7.96 -
WGAN-GP (Gulrajani et al., 2017) 7.86 29.30
Model B (with EMA) 7.17 26.32
Model A 6.99 31.72
Improved GAN (Salimans et al., 2016) 6.86 -
DCGAN (conditional) (Radford et al., 2015) 6.58 -

4.3.4 Discussion

A qualitative evaluation of image samples from the generators suggest that neither
of model A or B suffers from mode collapse. This is also suggested by the reasonably
low FID value, as FID is very sensitive to the dropping of modes (Lucic et al.,
2018). Many of the images from both models look plausible, although there are
multiple images that are difficult to recognize as real objects.

When comparing the scores of model A and B from table 4.3 and the plot of
mean-squared errors of figure 4.10 the effect of exponential moving averaging in
the generator becomes apparent. The EMA causes both an improved performance
in IS and FID, and more stable training. EMA smooths out the oscillations in
GAN training, so the results become less dependent on the specific point the when
training is terminated.

Both models A and B get an Inception score below both WGAN-GP (Gulrajani
et al., 2017), ProGAN (Karras et al., 2017) and the original MSG-GAN (Karnewar
et al., 2019) that they were based upon. The lower IS could be due to scarcity
of computational resources in the experiment. The GPUs that was used in the
experiment allows only a batch size of 32 due to limited GPU memory, while e.g.
WGAN-GP used hardware that allowed a batch size of 64. In the training of
GANs, the batch size has a big impact on training results. Brock et al. (2018, p. 3)
illustrated the "tremendous benefits" of increasing the batch size, showing that a
batch size increased by a factor of 8 gave an increased IS of 46 %.

The IS measures the "objectness" of the images, and rewards images that are easy
to define into one class. The slightly lower IS could therefore be due to the models

84

CHAPTER 4. EXPERIMENTS

producing images that are a mixture of multiple classes, yielding "ghosts" that
are difficult to classify as one class. This hypothesis is supported by the results
from figure 4.9. Karras et al. (2017) achieved ProGAN’s impressive IS of 8.80 by
increasing the gradient norm target of 1 in the gradient penalty (equation 3.16) to
750, essentially making the discriminator a 750-Lipschitz continuous function that
prefer much faster transitions between images (Karras et al., 2017). This adjustment
is not performed in the described CIFAR-10 experiment as the modification would
requires computationally expensive hyperparameter searches.

Model B especially achieves relatively low FID scores. FID is not the most common
measure for the CIFAR-10 dataset but is generally considered as the recommended
measure of GAN images (Lucic et al., 2018). Lucic et al. (2018) showed that FID
is very sensitive to intraclass mode dropping, opposed to IS that only detects
interclass mode dropping. In general FID measures how dissimilar the generated
image distribution is to the real image distribution, considering mainly important
visual artifacts. This suggests that even though the model did not capture the
objectness in the images, it still learned important characteristics of the CIFAR-10
dataset, and that EMA of generator weighs contributed significantly.

4.3.5 Closing remarks

This experiment has demonstrated that the MSG-GAN model is able to learn
important visual artifacts of the training distribution, despite the limited resources
of the training setup. Model A achieves an IS of 6.99 and FID 31.72, while model
B achieves 7.17 and FID 26.32. The experiment show that EMA in the generator
gives several benefits concerning training and performance, and suggests that model
B is a more suitable configuration for training in the following experiments with
foraminifera.

4.4 Generating synthetic foraminifera uncondition-
ally

The final objective of this thesis is to improve the accuracy and confidence of the
foraminifera classifier of Johansen and Sørensen (2020) by using synthetic images of
foraminifera. A first step towards this objective is to uncover the potential of GANs
with the limited foraminifera dataset. To achieve this an experiment is conducted
to train a GAN to learn the distribution of foraminifera unconditionally. The
objective is to investigate how well a GAN is able to learn the distribution of the
foraminifera dataset. Sampling from an unconditional distribution of foraminifera
will not yield synthetic images that can be used for supervised learning (due to the

85

CHAPTER 4. EXPERIMENTS

Table 4.4: The number of training samples in the different classes and splits of the
foraminifera dataset.

Agglutinated Benthic Planktic Sediment Total

Train 138 623 505 843 2109
Validation 18 78 63 106 265
Test 17 78 63 105 263
Total 173 779 631 1054 2637

lack of labels), but it will help uncover the potential of GANs applied to images of
foraminifera.

4.4.1 The foraminifera dataset

The foraminifera dataset was introduced by Johansen and Sørensen (2020) as a
part of their work towards developing a deep learning model that can detect and
classify microscopic foraminifera. The dataset consists of specimen from sediment
cores retrieved from the Arctic Barents Sea region, with sediments influenced by
Atlantic, Arctic, polar and coastal waters. Foraminifera specimen and sediments
were picked out in sizes ranging from 100 µm to 1000 µm and photographed through
a microscope. The images were in turn refined and preprocessed to yield a dataset
consisting of 2637 images of resolution 224 × 224 from four high-level classes;
planktic, calcareous benthic, agglutinated benthic and sediment. The dataset was
divided into training, validation and test set using an 80/10/10 split. The number
samples of each class in the different dataset splits are presented in table 4.4 and
figure 4.11 show samples from the different classes.

4.4.2 Experiment setup

For the unconditional foraminifera GAN experiment the MSG-GAN model described
in section 4.2 is used with a depth of k = 6. Exponential running average technique
(section 3.3.1) is used as well, as this has shown to yield higher quality images when
generating synthetic images (section 4.3).

The model used in this experiment has the exact same configuration as model B
that was used in the CIFAR-10 experiment (section 4.3), only with two additional
blocks added in the discriminator and the generator. This configuration yields
images of resolution 128× 128. Ideally the generated images would be of resolution
224× 224, as this is the original resolution of the foraminifera dataset, but due to
limitations on GPU memory it is only possible to produce images of size 128× 128.

86

CHAPTER 4. EXPERIMENTS

Figure 4.11: A random selection of 25 image samples from each of the four classes of the
foraminifera dataset: agglutinated, benthic, planktic and sediment. The images are scaled
down to resolution 128× 128.

87

CHAPTER 4. EXPERIMENTS

At this resolution a batch size of 8 is used.

As the unconditionally generated images will not be used for supervised training
of the foraminifera classifier, and to illustrate the full potential of GANs on
foraminifera, all 2637 images from the foraminifera dataset is used for training,
including the validation set and test set. All images are scaled down so the highest
resolution is 128× 128, and the pixel values are centered to the range [−1, 1]. No
additional preprocessing or data augmentation is applied to the images.

For evaluation of the learned distribution 50 000 fake images are generated to
measure the Fréchet Inception distance to the distribution of all training samples.
For comparison the FID bias is measured for the distribution of training images
using a similar method as Lucic et al. (2018): the training images are divided
randomly into two sets and the FID between the sets are measured. This process
is repeated 50 times, and the mean and standard deviation is reported.

To visualize the GAN training on the foraminifera dataset images at all scales from
the same latent vector is evaluated during training. In addition, the MSE between
images of consecutive epochs are reported to check for convergence. To visualize
the distribution the GAN has learned a linear interpolation is performed between
random points in the latent space.

4.4.3 Results

The GAN was trained for a total of 760 epochs over 42 hours, and shown in total 2
004 120 real images of foraminifera. A random selection of synthetically generated
images are presented in figure 4.12. The unconditionally generated foraminifera
measured a FID to the training data of 47.1 and the bias of the distribution is
estimated to 11.58 ± 0.13. Figure 4.13 shows how the images generated at all
scales from the same latent vector evolve during training, and figure 4.15 shows
that the MSE stabilizes as training proceeds. Figure 4.14 shows the generated
images from 10 interpolations between random points in the latent space of the
unconditionally trained GAN.

4.4.4 Discussion

The results of figure 4.12 show random samples from the distribution that the
generator has learned. The distribution seems to contain a large variety of samples,
with realistic looking samples that could originate from all four classes. Figure 4.14
show that the generator has learned smooth transitions between images. Smooth
image transitions when interpolating in latent space suggests that the generator has
not "memorized" the real samples, but rather learned the mapping to a continuous

88

CHAPTER 4. EXPERIMENTS

Synthetic images of foraminifera

Figure 4.12: A random selection of unconditionally generated images of foraminifera
after the GAN is trained for 760 epochs, and the discriminator is shown approximately 2
million real images.

89

CHAPTER 4. EXPERIMENTS

1

60

160

260

360

460

660

E
p

o
ch

s

Resolution

4 × 4 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

The evolution of training at different scales

560

760

Figure 4.13: Images evaluated at different scales during training of the MSG-GAN
unconditionally on the foraminifera dataset. In the beginning of training the images
synchronize in color at all resolutions. As training proceeds the images at higher resolutions
stabilize to one kind of sample and increasing amounts of detail are added.

90

CHAPTER 4. EXPERIMENTS

Interpolations between random points in latent space

Figure 4.14: Synthetic images produced from interpolations in latent space of the un-
conditionally trained GAN on the foraminifera dataset. Every row shows the transition
between the images of two random points. The generator has learned to produce smooth
transitions between different species, sizes, textures, colors, shapes and numbers.

91

CHAPTER 4. EXPERIMENTS

0 50 100 150 200 250 300

Epoch

0.000

0.002

0.004

0.006

0.008

M
S

E

Stability of unconditional GAN training on foraminifera

4× 4

8× 8

16× 16

32× 32

64× 64

128× 128

Figure 4.15: A plot of the mean squared error between images generated from the same
latent variables from consecutive epochs. The plot shows how the images stabilize during
training. The low resolution images stabilize faster as it is easier to learn their distribution.
Note that the plot only shows MSE between epoch 15 and 300 as values before epoch 15
was too large for the scale, and values after 300 did not provide any new information.

distribution (Radford et al., 2015).

The FID of 47.1 indicate that the generator suffers from a low degree of collapsed
modes, and that it has learned characteristics of the distribution that are similar
to the original distribution. The smooth transitions between generated images will
sometimes result in "ghosts" that do not resemble any of the true classes. Some
of these ghosts can be found in figure 4.12 and figure 4.14 (e.g. bottom row) and
is likely to contribute to a higher FID value, as they do not exist in the original
distribution.

Figure 4.13 show the training process and how the generator’s mapping from one
latent point to an image evolves. In the beginning (epoch 1) it produces only
noise, when the parameters are not learned. During the first epochs the generator
synchronizes the color of images at all resolution scales. After approximately 300
epochs the generator seems to settle for something that could originate from the
sediment class. The stabilization of training is also suggested by the averaged MSE
between images during training in figure 4.15. In the first few epochs the generator
produces very different images, before the fluctuations in MSE settle between 0
and 0.002. This stabilization can be observed in the higher resolutions from epoch
360 to 760 in figure 4.13.

The MSE between images never reached 0 indicating that the generator had not
yet converged when the training was stopped after 760 epochs. As elaborated in
section 3.3.1 convergence in GANs is not guaranteed and small datasets does not

92

CHAPTER 4. EXPERIMENTS

make it easier. It is possible that the generator would converge eventually, but when
the measured MSE more or less has stabilized there is no way of knowing when the
best time to stop training is. This has been a common and unsettled problem in
GANs since the beginning, and only recently have there been any advances towards
a better convergence measure (Grnarova et al., 2019). More on this discussion
later. For this experiment showing the discriminator 2 000 000 real images, yielded
sufficient results to show the potential of GANs with foraminifera.

4.4.5 Closing remarks

This experiment is conducted to investigate how well a GAN is able to learn the
distribution of the foraminifera dataset. The results were that the implemented
MSG-GAN was able to learn the unconditional distribution of foraminifera. Though
the resulting images of foraminifera are not perfect, containing e.g. artifacts from
mixed species and classes, this experiments show the potential of using a generative
adversarial network to produce synthetic images of foraminifera.

4.5 Generating foraminifera conditionally

As a measure to avoid artifacts from the mixing of characteristics of different species,
and to produce foraminifera that can be used for supervised training, the following
experiment is conducted to generate images of foraminifera class conditionally. The
benefit of avoiding the mixture of species characteristics comes at the expense of
more limited training data. On the other hand, the limited training data will be
more homogeneous so the distribution may be easier to learn.

4.5.1 Hypothesis and experimental setup

This is the setup for a class conditional experiment with the MSG-GAN described in
section 4.2 and each class of the foraminifera dataset (table 4.4). The hypothesis is
that images generated from the class conditional distributions will be qualitatively
more similar to the images from the real distributions of foraminifera classes than
the unconditional images, and hence yield a lower FID.

This class conditional experiment is conducted in a similar fashion as the uncondi-
tional foraminifera experiment, only now one MSG-GAN is trained for each dataset.
The GAN will be trained on the training and validation splits of the foraminifera
dataset, however the test images are spared for later classification experiments. In
lack of a more stable evaluation measure for small datasets1 the Fréchet Inception

1A more in depth discussion on this will follow in section 4.5.3

93

CHAPTER 4. EXPERIMENTS

Table 4.5: Fréchet Inception distance measures between the learned distributions and the
training set. The FID scores in parenthesis are considered somewhat unreliable as they
are measured from training sets containing < 2048 samples.

Real images shown FID (↓)
Unconditional foraminifera 2 M 47.1
Benthic (conditional) 1 M (52.8)
Planktic (conditional) 1 M (52.6)
Agglutinated (conditional) 300 k (52.6)
Sediment (conditional) 1 M (42.0)

distance is measured between 50 000 fake samples and the training samples of each
class.

As the individual classes of the dataset contains a different amount of images,
and as the risk of non-convergence is high, it would not yield a fair comparison
to fix the number of training epochs. Instead this experiment fixes the number
of real images the discriminator is shown, similar to how results are compared in
(Karras et al., 2017, 2019b; Karnewar and Iyengar, 2019). Each GAN is trained
so the discriminator is shown approximately 1 million real samples, except the
agglutinated GAN that is shown 300 000 real images. The reason for this is to avoid
the discriminator to overfit to the significantly smaller training set (156 against
701, 568, 949). GAN overfitting on small datasets will be investigated further in
section 4.6.

This experiment as well employs the MSG-GANmodel with a depth of 6, exponential
moving averages in the generator and a batch sizes of 8.

4.5.2 Results

Figure 4.16 show 25 randomly generated images from the generators trained on the
training and validation splits of each class of the foraminifera dataset. Figure 4.17
and 4.18 shows illustrates some of the learned distributions by sampling from
interpolations between random points in the latent space of the generators. The
resulting FID scores are given in table 4.5.

4.5.3 Discussion

Figure 4.16 suggests that none of the conditional GANs collapsed during training
despite the small datasets of each class. This result is rather surprising considering
the very limited amount of training data each GAN had access to. The produced

94

CHAPTER 4. EXPERIMENTS

Figure 4.16: A random selection of 25 synthetically generated samples from each of the
four classes of the foraminifera dataset: agglutinated, benthic, planktic and sediment. The
generator has learned much of the diversity in each class

95

CHAPTER 4. EXPERIMENTS

Interpolations in latent space of conditionally generated samples

(a) Synthetic agglutinated

(b) Synthetic sediment grains

Figure 4.17: Images created by interpolating between random points in the latent space
of the generators trained on agglutinated foraminifera (a) and sediment grains (b).

96

CHAPTER 4. EXPERIMENTS

Interpolations in latent space of conditionally generated samples

(a) Synthetic planktic

(b) Synthetic benthic

Figure 4.18: Images created by interpolating between random points in the latent space
of the generators trained on planktic foraminifera (a) and benthic foraminifera (b).

97

CHAPTER 4. EXPERIMENTS

images show a great variety in both size, texture and color. The MSG-GAN
(section 4.2) is after all only implemented with one measure against mode collapse
– the minibatch standard deviation layer (section 3.6.2.2) from the progressively
growing GAN (section 3.6).

The interpolation between images in figure 4.17 and figure 4.18 illustrate that the
generators have learned to produce relatively smooth transitions between variants
of the specimen within each class. As each training set contains few samples the
capacity of the GAN becomes larger relative to the size of the training set. This
introduces an additional challenge that is rarely discussed in the GAN literature,
namely overfitting causing memorization of the training set. A memory GAN
would produce sharp transitions between samples when interpolating between
images. From the results of interpolation in latent space of the conditional GANs
it cannot be guaranteed that there is no degree of memorization in the GANs. The
agglutinated GAN would be especially prone to overfitting due to the extra small
training set of 156 samples. This issue will be further discussed in the experiment
of section 4.6.

The FID values displayed in table 4.5 show that only the GAN trained on sediment
grains was able to surpass the FID of the unconditional foraminifera GAN. This
partly falsifies the hypothesis of the experiment that stated that the conditional
GANs would outperform the unconditional GAN. There are multiple plausible
reasons how this could happen, and they will be elaborated on in the following
sections.

4.5.3.1 Reliability of FID

For convenience the key aspects of Fréchet Inception distance (section 3.9.2) is
reiterated here. FID is the Fréchet distance measured between the distributions
Pg and Pr of 2048 features have been extracted from Inception V3’s pool_3 layer,
from 50 000 fake samples and the whole training set of images, respectively. These
distributions are assumed to be multivariate Gaussian, so the FID can be calculated
by

FID(Pr, Pg) = ‖µr − µg‖22 + Tr(Σr + Σg − 2(ΣrΣg)
1
2) (3.28)

However there are a couple of issues with this evaluation measure for GANs. (1)
It has been pointed out that the Gaussian assumption might not hold in practice
(Grnarova et al., 2019; Borji, 2019) and probably not when the real distribution
consists of few samples. Concerning sample sizes is considered a minimum that
each distribution contains at least 2048 samples (Jean, 2018) for this assumption to
hold. Noguchi and Harada (2019) pointed out that FID is hence unstable for small
datasets and therefore not a good evaluation measure for the quality of GAN images
from small training sets. Considering that variety is an important characteristic

98

CHAPTER 4. EXPERIMENTS

that FID measures it becomes clearer that FID should not be recommended for
small datasets.

(2) Even though FID has become the standard for evaluation of real-world GAN
images, it is not necessarily a good evaluation measure for GANs in all domains.
As FID uses the pretrained Inception model the features that it is able to detect in
the images are heavily dependent on the data that the model is trained on. Even
though the Inception model is known to extract robust features for FID evaluation
(Lucic et al., 2018; Heusel et al., 2017), they might be unreliable if the domain FID
is applied to is too different from the domain of Inception V3 (Grnarova et al.,
2019).

Whether the evaluation of microscope images of foraminifera is within the range
of the Inception classifier and hence reliable to FID is uncertain and need more
investigation. Possibly the Inception classifier is able to gather useful features,
textures and shapes although it is not trained on microscope images. However,
the likelihood of violation of the Gaussian assumption in equation 3.28 can be
considered to be high, when the small training sets are taken into account. This
might be some of the explanation of why all FIDs of the conditional experiments
did not surpass the unconditional experiment.

4.5.3.2 When to stop training?

All experiments up to this point has been stopped rather arbitrary. The DCGAN
and unconditional foraminifera experiments were stopped after a "sufficient" num-
ber of epochs. The training proceeded until the experiments proved a point or
fulfilled the objective of the experiment. The CIFAR-10 experiment was stopped
after the discriminator was shown 12 million images, so the results could be com-
pared with previous work. This conditional foraminifera experiment however could,
for the sake of the objective, continue until the fake images were as good as they
could possibly to get.

For GANs there has been no common consensus of when training should come to a
halt. Regularization techniques like early stopping (section 2.4.1) is not developed
for GANs. The MSE technique employed in previous experiments (figure 4.10
and 4.15) do not give any indication on when to stop training when the MSE
stabilizes instead of converging. The GAN loss function is complex and behaves
in non-intuitive ways (Grnarova et al., 2019), so it gives few clues of when to
stop training. This, along with the challenge of giving GANs a fair evaluation of
performance during training, makes the stopping criteria almost arbitrary for some
GAN applications. Progress has although been made on this matter, as Grnarova

99

CHAPTER 4. EXPERIMENTS

et al. (2019) showed that approximating the duality gap2 from game theory
can measure the similarity of a generated data and true data distribution. This
convergence measure seems promising, but has unfortunately not been implemented
in any experiments as the author was made aware of the novelty at a late stage of
the experimental phase.

4.5.3.3 A grid-like artifact on synthetic samples

On some synthetic images of foraminifera a grid-like artifact can be observed in
the texture of the images (figure 4.19). This is an artifact that is not present in
the true distribution of images and is thus a clue to which images are real and fake.
It is not easy to pinpoint exactly what causes this artifact as the generator and
discriminator are deep and complex models.

In the preliminary DCGAN experiments a similar but different "checkerboard"
artifact can be observed. This effect has already been discussed and is likely due
to the overlapping of filters in the transposed convolution layers. A similar effect
could be the reason in these experiments as well, but as the GAN architecture
is different it is not likely. The generator used in this experiment builds on the
progressively growing GAN that use an upscale layer followed by two convolutional
layers to increase the resolution of an image. This method is designed to avoid the
checkerboard artifact that can be caused by transpose convolutions (Odena et al.,
2016).

One observation that might give a clue on why the generator learns a grid-like
texture on some samples is displayed in figure 4.19. It seems that the artifact
is most prominent in rare or unique images of foraminifera, some of which that
take up almost the whole image. When examining the training data and the fake
samples with artifacts qualitatively, two relevant observations are made: (1) the
real specimen that are similar to the generated ones with artifacts are relatively
rare and unique. (2) in the unconditionally generated images (section 4.4) the
artifact is more prominent in the agglutinated looking images. As the agglutinated
images are the least numerous of the classes (156 against 701, 568, 949), one
common characteristic for these observations is that the artifact appears in images
that have few corresponding real samples. This might suggest that the incorrect
grid-like texture in some images are due to underfitting and lack of numerous and
continuous training data. In other words, the generator incorrectly assumes the
texture on some images that it has not trained sufficiently on. If the artifact is due
to underfitting, it is likely that it would disappear if the GAN is trained for longer.
This hypothesis will be investigated further in the following experiment.

2A measure of the sub-optimality of a zero-sum game solution with respect to an equilibrium.

100

CHAPTER 4. EXPERIMENTS

Silimar real samplesGrid artifactsGrid artifacts

(a) unconditional (b) conditional (c) real

Figure 4.19: (a) Two agglutinated looking unconditionally generated foraminifera with
grid artifacts (section 4.4). (b) Two benthic foraminifera that are generated conditionally
with signs of the grid artifacts. (c) Two real benthic images are similar to the ones
generate in (b).

4.5.4 Closing remarks

A conditional GAN experiment has been conducted on each of the classes of the
foraminifera dataset. The hypothesis that the conditionally generated images would
yield a lower (better) FID than the unconditionally generated images (FID 47.1)
was partly falsified. Only the conditionally generated sediment grains improved
FID to 42.0, when benthic, planktic and agglutinated foraminifera measured 52.8,
52.6 and 52.6, respectively. A discussion on why this may have happened suggests
three possible explanations that all could be contributing: (1) FID is unreliable for
small datasets, (2) there is no sufficient stopping criteria for GANs and (3) a grid
artifact in the generated images that may originate from underfitting.

4.6 Underfitting and overfitting in GANs

To follow up the hypothesis introduced in the discussion of section 4.5.3 a short
experiment is conducted to investigate the grid artifact observed in some images.
The hypothesis is that the grid artifact appears on images that suffer from under-
fitting. In the previous experiments the underfitting is caused by (i) not enough
training data or (ii) not enough training.

101

CHAPTER 4. EXPERIMENTS

4.6.1 Experiment setup

To investigate the hypothesis the MSG-GAN model is trained on the training
set of "agglutinated" foraminifera for 800, 2000 and 6400 epochs, showing the
discriminator approximately 100 k, 300 k and 1 M real images, respectively. The
agglutinated training set is the least numerous and contains only 156 training
samples. This should make it plausible to provoke vast overfitting when the model
is trained for too long (6400 epochs) and underfitting when the model is trained
for too short (800 epochs). If the grid artifact is due to underfitting it should be
prominent in the images from the underfitted generator, and not the overfitted one.

Images are generated after each of the given training configurations, and images
from interpolations between points in latent space are displayed to visualize the
learned mapping, and to uncover memorization of training data. The FID is
measured after 2000 epochs and 6400 epochs by evaluating 50 000 fake samples
against the whole agglutinated training set.

4.6.2 Results

A random selection generated samples after training for 800, 2000 and 6400 epochs
are displayed in figure 4.20. Interpolations between random points in latent space
after different amount of training is presented in figure 4.21. The FID is measured
to 52.6 for the samples generated after 2000 epochs, and 32.0 after 6400 epochs.

4.6.3 Discussion

Figure 4.20 confirms that the grid artifact produced by the generator in much
degree is due to underfitting of the GAN. It can be assumed that the generator not
yet has learned the textures of the agglutinated class, as the artifact disappears as
the GAN is trained for longer. Adlam et al. (2019) suggest that poor performance
of the generator is due to the discriminator being underfit. This coincides well
with the results as the GAN is only trained for 800 epochs and showed 100 k real
images.

Figure 4.21 illustrates how overfitting can happen in GANs. The GAN has "memo-
rized" the whole training set, so the generator do not produce smooth transitions
between images, and the FID drops significantly to 32.0. A possible explanation
on why this happens involves the relative capacity of the discriminator compared
to the dataset it tries to learn (Adlam et al., 2019). In practice the discriminator
has the same capacity when it in this experiment tries to learn the distribution of
156 agglutinated images as it has when it tries to learn the full 2637 unconditional
foraminifera images, or the 60 000 images of the CIFAR-10 dataset. This taken

102

CHAPTER 4. EXPERIMENTS

(c) GAN trained for 6400 epochs (overfit)

(a) GAN trained for 800 epochs (underfit)

(b) GAN trained for 2000 epochs

Figure 4.20: All images are randomly generated from the same MSG-GAN trained for
a different number of epochs on the 156 agglutinated samples. (a) Underfitting in the
generator causes the grid artifact discussed earlier. This artifact disappears when the
GAN is trained for longer (b). (c) illustrates severe overfitting in the generator. It
produces two almost identical samples (figure (c) top row left and right) by chance (!).
At this point the GAN has "memorized" all training samples.

103

CHAPTER 4. EXPERIMENTS

(a) GAN trained for 800 epochs (underfit)

Interpolation in latent space

(b) GAN trained for 2000 epochs

(c) GAN trained for 6400 epochs (overfit)

Figure 4.21: Latent space interpolation on the MSG-GAN trained on agglutinated
foraminifera for 800, 2000 and 6400 epochs. The grid artifact can be easily spotted in
figure (a). The artifact disappears when the GAN is trained for longer (b). Figure (c)
illustrated the "memory GAN" that has memorized all training samples and is not able
to produce smooth transitions.

104

CHAPTER 4. EXPERIMENTS

into consideration it becomes clear that the discriminator should have no problem
to memorize all 156 training images, and thus reproduce training samples instead
of generating new plausible agglutinated samples.

When the discriminator has trained for 2000 epochs it seems to produce images that
are plausible, and do not suffer from too much memorization. It is not guaranteed
that the GAN has not memorized the training set to some degree, but the results
seems sufficient for the objective of this thesis.

4.6.4 Closing remarks

The grid-artifact that is observed in some images in the unconditional and con-
ditional experiment is investigated and is found to presumably be caused by
underfitting of the discriminator. The results show that the grid artifact disappears
as the GAN is trained for 2000 epochs. When the model has trained for 6400
epochs on the smallest foraminifera dataset of 156 images, the GAN has to a large
degree memorized all training samples due to the discriminator’s relatively high
capacity.

4.7 Assessment of conditionally generated foraminifera

The final objective of this thesis is to improve classification of the foraminifera
classifier of (Johansen and Sørensen, 2020) (section 2.5) by using synthetic images.
To verify that the synthetic images contain valuable information so that can be
used to improve the classifier, a qualitatively and quantitatively assessment of the
images is performed. The scientists behind the foraminifera classifier (Johansen and
Sørensen, 2020) have contributed with an expert evaluation of the synthetic images,
as well as providing an equivalent foraminifera classifier optimized for 128× 128
resolution images. The goal is to test whether the generated images contain enough
characteristic information to be classified correctly by a foraminifera expert and by
the original foraminifera classifier.

4.7.1 Experiment setup

Two separate experiments are conducted to achieve the same objective. The first is
a human expert assessing benthic and planktic generated images. The second is
the foraminifera classifier that attempts to classify samples generated from all four
classes.

105

CHAPTER 4. EXPERIMENTS

Table 4.6: The form used by the foraminifera expert to assess benthic and planktic images.
Each image 001-200 was classified as either benthic or planktic, and if the image was
thought to be real or fake. The expert reported the confidence level of the desicion from
1-5.

Image # Benthic? Planktic? Fake? Confidence

001
002
003
...

4.7.1.1 Expert assessment of planktic and benthic foraminifera

In this assessment a marine geologist whose field of expertise is foraminifera is
presented with a set of 100 real and 100 synthetic images of foraminifera and is
challenged to classify them. The set consists of images that are randomly generated
from the benthic and planktic class (section 4.5), and images that is randomly
drawn from the training sets of the respective classes. From each class there are
50 real and 50 synthetic samples. The participant is asked to classify each image
as benthic or planktic, as well as if the image is real or synthetic and the overall
confidence level (1-5) of the decision. The results are recorded in a spreadsheet
similar to the one displayed in table 4.6. The classification accuracy of the expert
is reported on both the synthetic and the real images.

It should be noted that this setup of evaluation is very different from how
foraminifera classification usually take place. Usually the classification is per-
formed using a microscope that is able to zoom in to display much detail of each
specimen. In addition a tiny needle is used so the specimen can be rotated and
inspected from different sides.

4.7.1.2 Automatic assessment of conditionally generated foraminifera

To assess the conditionally generated foraminifera the classification model of
Johansen and Sørensen (2020) is used to classify synthetic samples from all four
classes. The corresponding author of (Johansen and Sørensen, 2020) have provided a
trained and fine-tuned model of the original foraminifera classifier that is optimized
for 128× 128-pixel images. This model was obtained by training on downscaled
images of the original dataset and choosing the best performing weights after 10
random weight initializations. After 10 runs the model achieved a mean accuracy

106

CHAPTER 4. EXPERIMENTS

of 97.3± 0.4%3, with a best run at 97.7 %, on the test set.

To this model a total of 10 000 synthetic images generated from the conditionally
trained GANs of section 4.5 was randomly chosen. The relative proportions of the
original dataset are preserved, so 6.6 %, 29.5 %, 23.9 % and 40.0 % of the samples
were from the agglutinated, benthic, planktic and sediment classes respectively.
These images are classified by the 128× 128-model and the accuracy is reported.

4.7.2 Results

The expert assessment of 200 foraminifera images yielded a mean accuracy of 90.0
% upon classification. On average the expert guessed correctly if the samples were
real or generated in 92.5 % of the cases. When considering only the real images,
the expert classified them correctly 99.0 % of the time. The generated images were
classified correctly in 81.0 % of the trials. The confidence level for the fake samples
were 3.7, and for the real samples 4.19. Using the trained classification model to
assess 10 000 synthetic images a categorical accuracy of 93.4 % was achieved across
all four classes.

4.7.3 Discussion

The results of assessing the synthetic images gives promising prospects for the
final experiment of this thesis. The images contains enough information to be
classified correctly in most cases, in both assessments performed in this experiment.
93.4 % accuracy of the CNN suggests that the generated images contain much of
the relevant characteristics it uses for classification. As the foraminifera expert
managed to correctly classify the synthetic samples in 81 % of the cases, the images
clearly contain important information for human assessment as well. Albeit this
accuracy is lower than the impressive 99 % on the real images it still may be enough
for improving the deep learning based classification model.

When interviewed after the assessment, the expert reported that the synthetic
images was usually detected due to a "blurry outline" and "visible ’digital’ striping"
(e.i. the grid-artifact), that became clear when zooming in on the images. These
problems of "ghosts" and grid-artifacts have been addressed previously (section 4.6
and 4.4) and are familiar with GAN images, especially when the GAN is trained
with limited data. The expert stated that most of the incorrectly classified generated
samples were due to "lack of defined chambers" in planktic foraminifera. The expert
noted that the "lack of defined chambers made it look like a single chamber benthic",

3This is a performance drop from 98.8± 0.2% when the model is trained on full scale 224× 224
resolution images.

107

CHAPTER 4. EXPERIMENTS

(a) (b) (c) (d)

RealSynthetic Synthetic Synthetic

Figure 4.22: (a) and (b) show synthetically generated planktic foraminifera that was
assumed to be single chamber benthic by the expert due to their lack of defined chambers.
In (b) a more undefined and blurry outline of some synthetic foraminifera is visible.
(c) show a highly realistic benthic foraminifer that has characteristics reminiscent of a
specimen of acidic conditions. (d) show a similar real sample to (c) but has not been
subject to acidic conditions.

when reviewing several of the misclassified generated samples from the planktic
class (figure 4.22 (a) and (b)). This may suggest that the synthetic images might
introduce some variants that are rare or that do not appear in nature. One example
of a generated foraminifer that fooled the expert was the one displayed in figure 4.22
(c). The expert elaborated that the sample looks like a highly realistic benthic
foraminifera, and that the smoothed surface of the foraminifer was reminiscent of a
specimen that had been subject to acidic conditions. This example illustrates how
generated data might as well introduce valuable variation into a scarce dataset.

4.7.4 Closing remarks

In this experiment the conditionally generated images of foraminifera from sec-
tion 4.5 have been assessed by (1) an expert and (2) a CNN classification model.
The results suggested that the synthetic foraminifera contains valuable information
that can be used for classification. Although the images in most cases are credible
they may sometimes introduce artifacts or characteristics that make classification
harder.

4.8 Improving classification of foraminifera using
synthetic data

The final objective of this thesis is to improve the classification model of (Johansen
and Sørensen, 2020) described in section 2.5 by using synthetic foraminifera images

108

CHAPTER 4. EXPERIMENTS

from a generative adversarial network. To this point several experiments have
been conducted as intermediate steps towards this final objective. In this final
experiment the main hypothesis related to the aforementioned objective is tested.
The hypothesis is reiterated for convenience:

Augmenting the training set of the foraminifera classifier (Johansen and
Sørensen, 2020) with synthetic images from a generative adversarial
network will improve the classification accuracy of the model.

As the computational resources available are somewhat limited, it is not possible
to produce full 224 × 224 resolution synthetic images. The model that will be
considered and attempted to improve will thus be the provided model of resolution
128× 128 from section 4.7. This model have a mean accuracy on the foraminifera
test split of 97.3± 0.4% after 10 runs, with a best achieved accuracy of 97.7 %.

The challenge of this objective should be emphasized as improving a models accuracy
that already is close to 100 % is considered a very hard task. The model of (Johansen
and Sørensen, 2020) is fine-tuned and optimized by performing computationally
expensive hyperparameter searches. This experiment will not perform the same
optimization process, only test the effect of augmenting additional synthetic images
to the existing training set.

4.8.1 Experimental setup

To test the hypothesis the MSG-GAN described section 4.2 is used to generate
images from each class in the foraminifera dataset. The same experimental setup
is used as in the conditional experiment of section 4.5. To summarize the key
points, an MSG-GAN is trained on the train and validation split of each class of the
foraminifera dataset. The agglutinated GAN discriminator is shown approximately
300 k real images while the discriminators of the remaining classes are shown
approximately 1 M real images.

The trained generators are used to produce synthetic images of each class which
in turn are augmented to the training set of each class. In total 10 000 synthetic
samples are produced: 660 agglutinated, 2950 benthic, 2390 planktic and 4000
sediment, so the original proportions of the classes in the dataset is preserved
after augmentation. The 128× 128 CNN classifier of section 2.5 is trained on the
augmented dataset. In practice the training set is increased by a factor of ≈ 5 after
augmentation. The classification model is trained in the exact same manner as the
original model, only with the synthetically augmented training set.

The mean accuracy and standard deviation after training the model 10 times with
random weight initializations is reported, along with the highest achieved accuracy.

109

CHAPTER 4. EXPERIMENTS

4.8.2 Results

Augmenting the original dataset with 10 000 synthetically generated images and
training the classifier from scratch 10 times from random weight initializations
yielded the following result: The mean classification accuracy was improved with
0.1 percentage points from 97.3± 0.4% to 97.4± 0.7%. The best achieved accuracy
obtained during the 10 runs was improved by 0.8 percentage points from 97.7% to
98.5%.

4.8.3 Discussion

Considering the challenge of improving the already high accuracy of the model,
the results of this experiment provides promising results of the approach. The
experimental results confirms the main hypothesis of the thesis, although the
improvement is marginal.

In section 4.6 and section 4.7 it was found that artifacts that was not present in the
original distribution was introduced by the conditional GANs. A plausible outcome
of this experiment was hence that these additional artifacts would introduce noise
into the distribution, so the classifier would perform worse after the augmentation.
Considering that the classifier was previously optimized for the original dataset it
was no guarantee that the synthetic augmentation would lead to improved accuracy.

Although the mean accuracy improved after augmentation, the standard deviation
of the classifications increased from 0.4 % to 0.7 %. This increase indicates that the
final classification result is somewhat more reliant on the weight initialization of the
model, and the stochastic processes that occurs during training. As the test set is
relatively small (10 % of the original dataset, and 263 images), classification of one
image more or less will have a considerable effect on the end test result. To further
investigate the effect of synthetic data augmentation more experiments should be
performed on bigger test sets, and different selections of generated images.

The experiment conducted here have used both the training and validation split of
the dataset to train the conditional GANs. If any of the GANs to some degree have
memorized any of the training samples, it might give an effect on the early stopping
implemented in the CNN classifier of (Johansen and Sørensen, 2020). Conducting
augmentation experiments with generated images from GANs that have not seen
the validation split would yield interesting results, and possibly a model that can
generalize better to unseen test data.

Previous results of related work of GAN based image augmentation showed a
similar effect of synthetically augmenting scarce datasets. Frid-Adar et al. (2018)
used an experimental setup that was similar to the one used in this experiment, but

110

CHAPTER 4. EXPERIMENTS

they applied classical data augmentation techniques (cropping, flipping, rotations
etc.) before training the conditional GANs. The experiment performed in this
thesis applied the classical data augmentation after the GANs were trained, as
this was a part of the training scheme of (Johansen and Sørensen, 2020). It would
be interesting to measure the effect of applying classical augmentation techniques
before training the GANs as the datasets were somewhat limited to start with. This
approach would may yield a better performing conditional GAN that has learned
a more continuous distribution and is less prone to overfitting as the training set
increases due to the classically augmented images.

A final variant of this experiment that should be investigated further is the effect of
the number of synthetic images that is added to the classifier. This experiment was
conducted with 10 000 synthetic images that preserved the original class distribution
of the dataset. The exact number of 10 000 images was used for convenience related
to transfer speeds and computational resources, but it is not guaranteed that this is
the optimal number of images. It may be that additional or fewer synthetic images
augmented would yield a better result of the experiment.

Due to the limited scope and extent of this thesis, the proposed improvements and
additional experiments must unfortunately be left for future work.

4.8.4 Closing remarks

This experiment have tested the hypothesis to fulfill the final objective of this
thesis – to improve the foraminifera classification model of (Johansen and Sørensen,
2020) by synthetic data augmentation. Due to the limited computational resources
available the hypothesis could only be tested on a downscaled version of the original
classifier. Under these circumstances the hypothesis was confirmed by a marginal
improvement in accuracy from 97.3± 0.4% to 97.4± 0.7% with a best run improved
from 97.7% to 98.5%. These results provide promising results that encourage
further investigation in the use of GANs to synthetically augment scarce datasets.

111

CHAPTER 4. EXPERIMENTS

112

Chapter 5

Final discussion and concluding
remarks

This chapter provides a final discussion and summary of the experiments that
have been conducted. The experiments and results are discussed from an holistic
approach on the basis of the objectives of the thesis. After an overall discussion,
propositions for future work related to the experiments of this thesis are suggested.
Finally some concluding remarks are made on the thesis as a whole.

5.1 Final discussion

The first objective of this thesis was to study the deep learning models of generative
adversarial networks. The motivation for this objective was the recent advances in
the field of study that allow GANs to learn high-dimensional distributions of e.g.
images. This potential has brought the application of GANs to multiple domains
in research and to applications in society. The intent of the study presented in
chapter 3 was to provide an in-depth exploration, and theoretical background,
of GANs that could be useful for research as well as the inclined teacher in the
Norwegian education system. The experiments of section 4.1 and 4.3 continued the
exploration from an empirical standpoint, showing off some of the challenges and
learned features of GANs.

The potential of GANs to learn high-dimensional distributions led to the second
objective of this thesis: To learn the distribution of foraminifera images, and
use them to generate synthetic images of foraminifera. Provided the theoretical
background from chapter 2 and 3 the implementation and methodology of the
multi-scale gradient GAN was described, so it could be used to learn the distribution

113

CHAPTER 5. FINAL DISCUSSION AND CONCLUDING REMARKS

of foraminifera. The experiments that followed showed off the interesting attributes
that the GAN had learned when modeling the distribution of foraminifera images.
Interpolations in the latent space of the generator displayed the smooth transitions
that was learned within each class and between classes. Both the unconditional
and conditional learning experiments, as well as the investigations and assessment
that followed in section 4.6 and 4.7 illustrated that GANs have great potential
to learn important attributes of a distribution unsupervised. These experiments,
their results and their following discussions was measures that was taken towards
achieving the second objective of this thesis.

Even though the experiments were justified by the second objective of this thesis,
they were also necessary steps towards the final objective of this thesis. Section 4.8
provided an experiment to test if the conditionally generated images from the
foraminifera dataset classes could improve the already high classification accuracy of
the CNN model of (Johansen and Sørensen, 2020). The experiment was sustained to
the extent that the computational resources available allowed, and within the scope
of this thesis. The results were promising for further investigations and application
of the technique to further develop and improve CNN-based foraminifera classifiers.

5.2 Future work

This section provides suggestions of future work that could be an extension of this
thesis, or that relates generative adversarial networks to the long-term goal towards
developing a reliable foraminifera classifier.

5.2.1 Direct extensions of this thesis

A direct continuation of the work of this thesis would be to implement the recently
developed convergence criteria and goodness measures for GANs by (Grnarova
et al., 2019). This modification, along with a hyperparameter search and more com-
putational resources, could provide better generated images and further uncovering
of the potential of GAN applications on foraminifera images.

Other GAN architectures should also be investigated. The GAN of (Karras et al.,
2019a) uses principles from neural style transfer to learn high-level attributes and
different "styles". This model may have potential to learn different "styles" that
are related to the species of foraminifera in an unsupervised manner. It could
as well be interesting to see if the effect of transfer learning could be useful in
GANs and the domain of foraminifera. Noguchi and Harada (2019) have achieved
promising results using a novel method of transferring knowledge from a pretrained
generator to a new domain, yielding synthetic images from small training sets of

114

CHAPTER 5. FINAL DISCUSSION AND CONCLUDING REMARKS

< 100 samples.

5.2.2 Towards the goal of an automatic foraminifera classi-
fier

The foraminifera classifier under consideration in this thesis only classifies samples
into four high-level classes. To achieve the long-term goal of being able to classify
the specific species of a specimen, additional models and image datasets must
be developed. When new datasets are developed and classification models are
extended to improve discrimination between different species, performance may
not be as good as in the model of (Johansen and Sørensen, 2020). Previous results
(Frid-Adar et al., 2018) may suggest that that the effect of augmenting the dataset
with synthetic images is larger when the classifier is not performing as well to begin
with. If this is the case in the future GANs can be applied in a similar manner
as in this thesis, to synthetically augment the datasets and potentially improve
classification with a greater effect.

If additional unlabeled images of sediment and foraminifera are provided, a slight
modification to the GAN scheme could make use of GANs for semi-supervised
learning (Salimans et al., 2016; Odena, 2016; Dai et al., 2017). The modification
for semi-supervised learning use the GAN to learn important high-level attributes
of the images in an unsupervised manner, and the discriminator is modified to
both classify and discriminate based on very few labeled samples.

5.3 Concluding remarks

This thesis emerged from the recent advances of generative adversarial networks
(GANs) and their potential to model high-dimensional distributions such as real-
world images.

The advances of these models have been studied and explored from a theoretical and
empirical standpoint. A multi-scale gradient GAN was implemented in Tensorflow
2.1 and tested on the CIFAR-10 dataset to find the best model configuration. It
was in turn trained to learn the distributions of four high-level classes of a recent
foraminifera dataset, both conditionally and unconditionally. The conditional
images were assessed by an expert and a deep learning classification model and was
found to contain mostly valuable characteristics, although some artificial artifacts
was introduced. The unconditional images measured a Fréchet Inception distance
of 47.1.

From the conditionally learned distributions a total of 10 000 images was sampled

115

CHAPTER 5. FINAL DISCUSSION AND CONCLUDING REMARKS

from the four distributions. These images were used to augment the original
foraminifera training set in an attempt to improve the classification accuracy of
(Johansen and Sørensen, 2020). Due to limitations of computational resources, the
experiments were carried out with images of resolution 128× 128. The synthetic
image augmentation lead to an improvement in mean accuracy of 97.3± 0.4% to
97.4± 0.7% and an improvement in best achieved accuracy from 97.7% to 98.5%.

116

Bibliography

Adlam, B., Weill, C., and Kapoor, A. (2019). Investigating under and overfitting in
wasserstein generative adversarial networks. arXiv preprint arXiv:1910.14137 . 102

Alpaydin, E. (2014). Introduction to Machine Learning. ISBN: 978-0–262-028189 . MIT
Press. 14

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. arXiv preprint
arXiv:1701.07875 . 50, 53, 54, 55, 62, 69

Bailey, J. P. and Piliouras, G. (2018). Multiplicative weights update in zero-sum games.
In Proceedings of the 2018 ACM Conference on Economics and Computation, pages
321–338. 43

Bellman, R. E. (1961). Adaptive control processes: a guided tour . Princeton university
press. 32

Borji, A. (2019). Pros and cons of gan evaluation measures. Computer Vision and Image
Understanding , 179, 41–65. 98

Bouvrie, J. (2006). Notes on convolutional neural networks. 19, 24

Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., Dickie,
D. A., Hernández, M. V., Wardlaw, J., and Rueckert, D. (2018). Gan augmenta-
tion: Augmenting training data using generative adversarial networks. arXiv preprint
arXiv:1810.10863 . 4

Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale gan training for high
fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 . 33, 84

Burt, P. and Adelson, E. (1983). The laplacian pyramid as a compact image code. IEEE
Transactions on communications, 31(4), 532–540. 46

Commons, W. (2013). File:ammonia beccarii.jpg — wikimedia commons, the free media
repository. [Online; accessed 9-March-2020]. 13

117

BIBLIOGRAPHY

Dai, Z., Yang, Z., Yang, F., Cohen, W. W., and Salakhutdinov, R. R. (2017). Good
semi-supervised learning that requires a bad gan. In Advances in neural information
processing systems, pages 6510–6520. 115

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee. 28, 62

Denton, E. L., Chintala, S., Fergus, R., et al. (2015). Deep generative image models
using a laplacian pyramid of adversarial networks. In Advances in neural information
processing systems, pages 1486–1494. 37, 46, 50, 56, 62

Desjardins, G. and Bengio, Y. (2008). Empirical evaluation of convolutional rbms for
vision. DIRO, Université de Montréal , pages 1–13. 33

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(Jul),
2121–2159. 10

Durugkar, I., Gemp, I., and Mahadevan, S. (2016). Generative multi-adversarial networks.
arXiv preprint arXiv:1611.01673 . 56

Fedus, W., Rosca, M., Lakshminarayanan, B., Dai, A. M., Mohamed, S., and Goodfellow,
I. (2017). Many paths to equilibrium: Gans do not need to decrease a divergence at
every step. arXiv preprint arXiv:1710.08446 . 37, 55

Fréchet, M. (1957). Sur la distance de deux lois de probabilité. COMPTES RENDUS
HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES , 244(6),
689–692. 63

Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., and Greenspan, H.
(2018). Gan-based synthetic medical image augmentation for increased cnn performance
in liver lesion classification. Neurocomputing , 321, 321–331. 4, 110, 115

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American
statistical association, 84(405), 165–175. 32

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2414–2423. 61

Gong, S., Boddeti, V. N., and Jain, A. K. (2019). On the intrinsic dimensionality of
image representations. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3987–3996. 33

Goodfellow, I. (2016a). Deep learning book notation. Avaliable at https://github.com/
goodfeli/dlbook_notation. Accessed 1 December 2019. xv

118

https://github.com/goodfeli/dlbook_notation
https://github.com/goodfeli/dlbook_notation

BIBLIOGRAPHY

Goodfellow, I. (2016b). Nips 2016 tutorial: Generative adversarial networks. arXiv
preprint arXiv:1701.00160 . 33, 34, 36, 42, 43, 45, 50, 53

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680. iii, 3, 24, 33, 34, 36, 37, 40,
42, 46, 50, 53, 62

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning . MIT Press. 8, 9, 12,
15, 18, 19, 20, 21, 22, 24, 26, 34, 36

Grnarova, P., Levy, K. Y., Lucchi, A., Perraudin, N., Goodfellow, I., Hofmann, T., and
Krause, A. (2019). A domain agnostic measure for monitoring and evaluating gans. In
Advances in Neural Information Processing Systems, pages 12069–12079. 93, 98, 99,
114

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017).
Improved training of wasserstein gans. In Advances in neural information processing
systems, pages 5767–5777. 55, 84

Hayward, B., Cedhagen, T., Kaminski, M., and Gross, O. (2020). World foraminifera
database. Avaliable at http://www.marinespecies.org/foraminifera. Accessed 22
March 2020]. 1, 2

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034. 57

Herrmann, V. (2017). Wasserstein gan and the kantorovich-rubinstein duality. Avliable on-
line at https://vincentherrmann.github.io/blog/wasserstein/. Accessed 3 April
2020. 51

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In
Advances in neural information processing systems, pages 6626–6637. 63, 99

Hillebrand, S. (2016). Accent to the top. Available at: https://pixnio.com/people/
accent-to-the-top. [Accessed 24 March 2020]. 21

Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s
striate cortex. The Journal of physiology , 148(3), 574–591. 19

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 . 26, 27

Islam, J. and Zhang, Y. (2020). Gan-based synthetic brain pet image generation. Brain
Informatics, 7, 1–12. 4

119

http://www.marinespecies.org/foraminifera
https://vincentherrmann.github.io/blog/wasserstein/
https://pixnio.com/people/accent-to-the-top
https://pixnio.com/people/accent-to-the-top

BIBLIOGRAPHY

Jean, N. (2018). Fréchet inception distance. https://nealjean.com/ml/
frechet-inception-distance/. 98

Johansen, T. H. and Sørensen, S. A. (2020). Towards detection and classification of
microscopic foraminifera using transfer learning. arXiv preprint arXiv:2001.04782 . iii,
1, 3, 5, 27, 28, 65, 85, 86, 105, 106, 108, 109, 110, 111, 114, 115, 116

Kantorovich, L. V. and Rubinstein, G. S. (1958). On a space of completely additive
functions. Vestnik Leningrad. Univ , 13(7), 52–59. 53

Karnewar, A. and Iyengar, R. S. (2019). Msg-gan: Multi-scale gradients gan for more
stable and synchronized multi-scale image synthesis. arXiv preprint arXiv:1903.06048 .
4, 59, 60, 61, 70, 94

Karnewar, A., Wang, O., and Iyengar, R. S. (2019). Msg-gan: multi-scale gradient gan
for stable image synthesis. CoRR, abs/1903.06048 , 6. 70, 84

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 . 4, 56, 57,
58, 69, 70, 84, 85, 94

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2019a). Ana-
lyzing and improving the image quality of stylegan. arXiv preprint arXiv:1912.04958 .
33, 61, 114

Karras, T., Laine, S., and Aila, T. (2019b). A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4401–4410. 61, 94

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 . 10, 11

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 . 33

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny
images. 77

LeCun, Y. (2016). What are some recent and potentially upcoming break-
throughs in deep learning? Avaliable at https://www.quora.com/
What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning.
Accessed 9 April 2020. 3

LeCun, Y. et al. (1989). Generalization and network design strategies. Connectionism in
perspective, 19, 143–155. 18

120

https://nealjean.com/ml/frechet-inception-distance/
https://nealjean.com/ml/frechet-inception-distance/
https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning
https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning

BIBLIOGRAPHY

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. http:
//yann.lecun.com/exdb/mnist/. 66, 67

Li, K. (2019). Overcomping mode collapse and the curse of dimensionality. Avali-
able at https://drive.google.com/file/d/1PV4YN3OQprww4BCDwB9XWMUIz_mbdDab/
view. Accessed 26 March 2020. 45, 47

Li, K. and Malik, J. (2018). Implicit maximum likelihood estimation. arXiv preprint
arXiv:1809.09087 . 45, 46

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV). 66, 68

Lotter, W., Kreiman, G., and Cox, D. (2015). Unsupervised learning of visual structure
using predictive generative networks. arXiv preprint arXiv:1511.06380 . 33

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bousquet, O. (2018). Are gans created
equal? a large-scale study. In Advances in neural information processing systems , pages
700–709. 63, 84, 85, 88, 99

Marshall, M. (2010). "zoologger: ’living beach ball’ is giant single cell". New Scientist . 2

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4), 115–133. 14

Mescheder, L., Geiger, A., and Nowozin, S. (2018). Which training methods for gans do
actually converge? arXiv preprint arXiv:1801.04406 . 43

Mitchell, T. M. et al. (1997). Machine learning. 7

Moroney, L. (2019). Horses or humans dataset. 66

Muller, M. E. (1959). A note on a method for generating points uniformly on n-dimensional
spheres. Communications of the ACM , 2(4), 19–20. 71

Nash, J. F. et al. (1950). Equilibrium points in n-person games. Proceedings of the
national academy of sciences, 36(1), 48–49. 36

Noguchi, A. and Harada, T. (2019). Image generation from small datasets via batch
statistics adaptation. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2750–2758. 98, 114

Norwegian Ministry of Education and Research (2019). Læreplan i fordypning i
matematikk. Available at https://data.udir.no/kl06/v201906/laereplaner-lk20/
MAT07-02.pdf. Accessed 26 February 2020. 5

Odena, A. (2016). Semi-supervised learning with generative adversarial networks. arXiv
preprint arXiv:1606.01583 . 115

121

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://drive.google.com/file/d/1PV4YN3OQprww4BCDwB9XWMUIz_mbdDab/view
https://drive.google.com/file/d/1PV4YN3OQprww4BCDwB9XWMUIz_mbdDab/view
https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT07-02.pdf
https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT07-02.pdf

BIBLIOGRAPHY

Odena, A., Dumoulin, V., and Olah, C. (2016). Deconvolution and checkerboard artifacts.
Distill . 67, 100

O’neill, B. J. (1996). Using microfossils in petroleum exploration. The Paleontological
Society Papers, 2, 237–246. 1

Parzen, E. (1962). On estimation of a probability density function and mode. The annals
of mathematical statistics, 33(3), 1065–1076. 31

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural
networks, 12(1), 145–151. 10

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 .
37, 40, 48, 49, 50, 84, 92

Riebeek, H. (2005). Paleoclimatology: the oxygen balance. https://earthobservatory.
nasa.gov/features/Paleoclimatology_OxygenBalance. 2

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review , 65(6), 386–408. 14

Rosenblatt, F. (1962). Perceptrons: Principles of neurodynamics. 14

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function.
annals of mathematical statistics. 31

Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance as a metric
for image retrieval. International journal of computer vision, 40(2), 99–121. 50

Sabbatini, A., Morigi, C., Nardelli, M., and Negri, A. (2014). Foraminifera, pages 237–256.
2

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X. (2016).
Improved techniques for training gans. In Advances in neural information processing
systems, pages 2234–2242. 45, 58, 62, 63, 69, 84, 115

Sauer, T. (2012). Numerical analysis. Always learning. Pearson, Boston, Mass, 2nd ed.
edition. 54

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 . 28, 29

Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the data
distribution. In Advances in Neural Information Processing Systems , pages 11895–11907.
84

122

https://earthobservatory.nasa.gov/features/Paleoclimatology_OxygenBalance
https://earthobservatory.nasa.gov/features/Paleoclimatology_OxygenBalance

BIBLIOGRAPHY

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806 . 49

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1), 1929–1958. 26

Theodoridis, S. and Koutroumbas, K. (2008). Pattern Recognition, 4th Edition. Academic
Press, 1 edition. 10, 19, 24

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning , 4(2), 26–31. 10

Vaserstein, L. N. (1969). Markov processes over denumerable products of spaces, describing
large systems of automata. Problemy Peredachi Informatsii , 5(3), 64–72. 50, 63

Wang, L., Chen, W., Yang, W., Bi, F., and Yu, F. R. (2020). A state-of-the-art review on
image synthesis with generative adversarial networks. IEEE Access, 8, 63514–63537.
61, 62

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., and Catanzaro, B. (2017).
High-resolution image synthesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
8798–8807. 56

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747. 12

Yazıcı, Y., Foo, C.-S., Winkler, S., Yap, K.-H., Piliouras, G., and Chandrasekhar, V. (2018).
The unusual effectiveness of averaging in gan training. arXiv preprint arXiv:1806.04498 .
43, 79

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features
in deep neural networks? In Advances in neural information processing systems , pages
3320–3328. 28

Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., and Metaxas, D. N. (2017).
Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. In Proceedings of the IEEE international conference on computer vision,
pages 5907–5915. 56

123

BIBLIOGRAPHY

124

Appendix A

Source code

For the sake of transparency and reproducibility the GAN code used to achieve the results
of this thesis is uploaded to github: agnalt/thesis1

Do not hesitate to contact the author regarding any questions related to the source code
or the work of this thesis.

1https://github.com/agnalt/thesis

125

https://github.com/agnalt/thesis
https://github.com/agnalt/thesis

APPENDIX A. SOURCE CODE

126

Appendix B

Implementation details of a basic
GAN

This appendix contains the source code for training the MLP GAN from section 3.2.3.
Some readers may find this supplementary material useful to further understand the
example of section 3.2.3. In addition, the code illustrates how the high-level API of Keras
can be used to train a basic GAN model. The code is implemented in Python 3.7.4
using Tensorflow 2.1 and Keras. The code for generating the figures is not presented
here, but can be found alongside with the source code for this thesis.

""" This module contains the code to train a basic GAN to learn the
distribution of the unit circle.

Use GPU for performance boost.

Eirik Agnalt Østmo
Tromsø, 2020 """

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow.keras.layers as layers
from tqdm import tqdm

tf.random.set_seed(0)
np.random.seed(0)

127

APPENDIX B. IMPLEMENTATION DETAILS OF A BASIC GAN

def make_discriminator(n_inputs=2):
""" GAN discriminator
n_inputs: dimensionality of input data """

model = tf.keras.Sequential()
model.add(layers.Dense(256, activation='relu',

kernel_initializer='he_uniform',
input_dim=n_inputs))

model.add(layers.Dense(1, activation='sigmoid'))

Compile the discriminator
model.compile(loss='binary_crossentropy',

optimizer='adam', metrics=['accuracy'])

return model

def make_generator(latent_dim, n_outputs=2):
""" GAN generator
latent_dim: dimensionality of input variable z
n_outputs: dimensionality of output """

model = tf.keras.Sequential()
model.add(layers.Dense(256, activation="relu",

kernel_initializer="he_uniform",
input_dim=latent_dim))

model.add(layers.Dense(n_outputs, activation="linear"))

return model

def make_gan(generator, discriminator):
""" Combined generator and discriminator. """

Disable training of discriminator as default
discriminator.trainable = False

Create GAN
model = tf.keras.Sequential()
model.add(generator)
model.add(discriminator)

128

APPENDIX B. IMPLEMENTATION DETAILS OF A BASIC GAN

Compile the GAN
model.compile(loss='binary_crossentropy', optimizer='adam')

return model

def real_distribution(n=200, r=1):
""" Distribution of the real training data.
A circle with radius r. """

theta = np.linspace(0, 2*np.pi, n)

x1 = r * np.sin(theta)
x2 = r * np.cos(theta)

return x1, x2

def generate_real_samples(n):
""" Choose n random training points. """

Generate the population
population = 1000000
x1, x2 = real_distribution(population)
X = np.c_[x1, x2]

Pick a subsample
i = np.random.randint(0, population, n)
X = X[i]

Generate class labels
y = np.ones((n, 1))

return X, y

def generate_latent_points(latent_dim, n):
""" Sample points from latent space of the generator. """

Sample from uniform distribution
x_input = np.random.uniform(-1, 1, latent_dim * n)

129

APPENDIX B. IMPLEMENTATION DETAILS OF A BASIC GAN

Make batch
x_input = x_input.reshape(n, latent_dim)

return x_input

def generate_fake_samples(generator, latent_dim, n):
""" Generate fake samples with class labels """

Sample points from latent space
x_input = generate_latent_points(latent_dim, n)

Forward pass
X = generator.predict(x_input)

Generate labels for the discriminator
y = np.zeros((n, 1))

return X, y

def train(g_model, d_model, gan_model, latent_dim, training_data):
""" The completion of one whole training epoch."""

for batch in data:

batch_size = batch.shape[0]

Real samples
x_real = batch

Fake samples
z = generate_latent_points(latent_dim, batch_size)
x_fake = generator.predict(z)

Train discriminator
Send in real and fake samples with 1 and 0 as labels
d_model.train_on_batch(x_real, np.ones((batch_size, 1)))
d_model.train_on_batch(x_fake, np.zeros((batch_size, 1)))

Train the generator
Update the generator via the discriminator's error
with flipped labels

130

APPENDIX B. IMPLEMENTATION DETAILS OF A BASIC GAN

gan_model.train_on_batch(z, np.ones((batch_size, 1)))

if __name__ =="__main__":

Make training dataset
X, y = generate_real_samples(300)

data = tf.data.Dataset.from_tensor_slices(X)
data = data.batch(32)

Number of input dims
latent_dim = 1

Create models
discriminator = make_discriminator()
generator = make_generator(latent_dim)
gan_model = make_gan(generator, discriminator)

Training stats
train_plot = []
train_loss = []
i = 0

Train the GAN
epochs = 1200

Training loop
for i in tqdm(range(i, i + epochs)):

train(generator, discriminator, gan_model, latent_dim, data)

... additional code to generate figures and evaluate the gan
can be found along with additional source code on github...

131

Index

Activation, see Perceptron
Activation function, 14
AdaGrad, 10
Adam, 10
Adaptive learning rate, 10
Adversarial training, 33
Artificial intelligence, 7

Backpropagation, 22
Backpropagation algorithm, 18
Batch normalization, 26, 49
Batchnorm, see Batch normalization
Biological neuron, 13

Capacity, 11
Channel, 12
Conditional independence, xvii
Convolution operator, 19
Convolutional layers, see Convolutional neu-

ral network
Convolutional neural network, 18, 19
Covariance, xvii
Critic, 54
Cross-correlation, 19
Curse of dimensionality, 32

DCGAN, see Deep convolutional GAN
Deconvolution, see Transposed convolution
Deep convolutional GAN, 46, 48, 66
Deep learning, 7
Depth, see Feedforward neural network
Derivative, xvii
Determinant, xvi
Discriminator, 34
Dropout, 26

Duality gap, 100

Early stopping, 25
Earth-mover (EM) distance, see Wasserstein

distance
Element-wise product, see Hadamard prod-

uct
Equalized learning rate, 57
Exponential moving average, 43

Feature map, 19
Feedforward neural network, 15
Filter, 19
Foraminifera, 1

benthic, 1
planktic, 1

Fractionally-strided convolution, see Trans-
posed convolution24

Generalization, 11
Generalization error, 11
Generative adversarial network, 34
Generative adversarial networks, 33
Generative models, 31
Generator, 34
Gradient descent, 9
Graph, xvi

Hadamard product, xvi
Helvetica scenario, 43
Hessian matrix, xvii
Hidden layer, see Multilayer perceptron, 17
Hyperbolic tangent function, 49

Inception score, 63

132

INDEX

Independence, xvii
Infimum, 51
Input, 19
Input layer, see Multilayer perceptron
Integral, xvii

Jacobian matrix, xvii

Kernel, 19
Kullback-Leibler divergence, xvii

LAPGAN, see Laplacian pyramid GAN
Laplacian pyramid GAN, 48
Learning rate, 9, 18
Linear function, 14
Lipschitz continuous, 54
Logistic sigmoid, 14
Loss, 9
Loss function, 9, 17

Machine learning, 7
Matrix, xv, xvi
Max pooling, 22
Maximum likelihood, 8, 14
Maxpool, see Pooling
McCulloch-Pitts neuron, 14
Mini-max game, 36
Minibatch, 9
Minibatch discrimination, 58
Mode collapse, 43, 49
Momentum, 10
Multilayer perceptron, 15, 46

Neural network, 15
Neural networks, 13
Non-saturating cost, 37
Norm, xviii

Output layer, see Multilayer perceptron
Overfitting, 11

Padding, 22
Perceptron, 13
Pixelwise normalization, 57
Pooling, 21

Potential, see Perceptron

RGB converter, 72
RMSProp, 10

Same convolutions, see Padding
Scalar, xv, xvi
Set, xvi
Shannon entropy, xvii
Sigmoid, xviii
Sigmoid function, 14
Softplus, xviii
Stride, 22
Strided convolutions, 49
Synapse, see biological neuron

Tensor, xv, xvi, 12
Test, see Foraminifera
Test error, 11
Test split, 11
training data, 7
Training split, 11
Transfer learning, 28
Transpose, xvi
Transposed convolution, 24

Underfitting, 11

Valid convolutions, see Padding
Validation split, 11, 25
Variance, xvii
Vector, xv, xvi

Wasserstein distance, 50
Wasserstein GAN, 50, 54
Wasserstein loss, 50

133

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Notation
	Introduction
	What are foraminifera?
	Importance in research

	Classification of foraminifera
	Improving classification using generative models

	Contributions
	Motivation and hypothesis
	Thesis outline

	Background theory
	Machine learning basics
	Maximum likelihood
	Gradient descent
	Momentum and Adam
	Overfitting and underfitting
	Image data

	Neural networks
	The perceptron
	Feedforward neural network
	Learning the parameters

	Convolutional neural networks
	The biology of computer vision
	The convolutional operator
	Convolutional layers
	Motivation
	Pooling
	Variations of convolutional layers
	Learning the filters
	Transposed convolutions

	Regularization
	Early stopping
	Dropout
	Batch normalization

	Classification of foraminifera using a CNN

	Generative adversarial networks
	Challenges of generative models
	The curse of dimensionality
	Creating multi-modal outputs

	Generative adversarial networks
	The GAN framework
	Learning in the GAN framework
	Learning the distribution of a circle
	Interpolation in latent space

	Challenges of generative adversarial networks
	Training instability
	Mode collapse
	Addressing the challenges of GANs

	Deep convolutional GANs
	Early deep convolutional GANs
	DCGAN architecture
	Architectural guidelines
	Challenges of the DCGAN architecture

	Wasserstein GAN
	Wasserstein distance
	Advantages of the Wasserstein distance
	Towards a Wasserstein loss function
	From discriminator to critic
	Gradient penalty on Wasserstein GANs

	Progressively growing GANs
	ProGAN architecture
	Normalization and a remedy to mode collapse
	Restricting the discriminator

	Multi-scale gradient learning in GANs
	Final notes on GANs
	Evaluating generative models
	Inception Score (IS)
	Fréchet inception distance (FID)

	Experiments
	Preliminary experiments with a deep convolutional GAN
	Datasets
	Experiment setup and implementation details
	Results
	Discussion
	Closing remarks

	Method and setup of the multi-scale gradient GAN
	Implementation details of the MSG-GAN model
	Implementation of the training loop
	Technical details

	Model validation and testing on real-world images
	The CIFAR-10 dataset
	Experiment setup
	Results
	Discussion
	Closing remarks

	Generating synthetic foraminifera unconditionally
	The foraminifera dataset
	Experiment setup
	Results
	Discussion
	Closing remarks

	Generating foraminifera conditionally
	Hypothesis and experimental setup
	Results
	Discussion
	Closing remarks

	Underfitting and overfitting in GANs
	Experiment setup
	Results
	Discussion
	Closing remarks

	Assessment of conditionally generated foraminifera
	Experiment setup
	Results
	Discussion
	Closing remarks

	Improving classification of foraminifera using synthetic data
	Experimental setup
	Results
	Discussion
	Closing remarks

	Final discussion and concluding remarks
	Final discussion
	Future work
	Direct extensions of this thesis
	Towards the goal of an automatic foraminifera classifier

	Concluding remarks

	Bibliography
	Source code
	Implementation details of a basic GAN
	Index

