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Abstract 

The economic growth of the Atlantic salmon fish farming industry in Norway has lessened the 

last few of years. One of the reasons for this is the ectoparasite Lepeophtheirus salmonis, 

commonly known as the salmon louse. It feeds of the mucus layer and skin of the Atlantic 

salmon causing losses in quality of the farmed salmon. The louse is also a problem for the 

population of wild salmon passing through fjords near fish farms on their migration and 

spawning runs. Regulatory measurements were put in place to regulate the number of lice in 

fish farms. These measurements involved the use of chemotherapeutants the louse developed 

resistance towards over time. To circumvent the resistance situation, non-medicinal methods 

(NMMs) were developed for delousing. These include fresh- or warm water treatments, 

brushing, water currents and more. The Thermolicer is one of these NMMs and use water 

holding between 28-34 °C to delouse Atlantic salmon in fish farms. The welfare and effect 

documentation for the Thermolicer from 2015 found acute gill bleedings in fish from the tested 

fish farms. In 2020 the Thermolicer is the most commonly used NMM for delousing operations 

of Atlantic salmon. 

 

In this experiment we examined the effect of treating Atlantic salmon with water holding 34 °C 

for 30 seconds. In this experiment the fish was sampled day 1 and day 21 post-treatment. The 

warm-water treatments were divided into in two sections with two groups in each. In both 

sections there was one group treated with warm water (34 °C)  and one treated with cold water 

(8 °C) for comparison. Section one went through one cold-water treatment before being divided 

into warm- and cold-water groups and let rest for three weeks before sampling. Section two 

went through two cold-water treatments before division into warm and cold-water groups. 

Section two was treated, euthanised and sampled without rest. In the next experiment we 

sampled Atlantic salmon from two different full-scale Thermolicer treatments at two 

Norwegian fish farms. In this experiment the fish was sampled at day 0 and day 10. The field 

Thermolicer treatment used 29 °C with a temperature difference (delta t) of 23,5 °C. For both 

experiments the fish was welfare scored and the organ samples were examined histologically 

and through qPCR-analysis. 
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Our results showed no significant change in the scale loss and skin bleeding scores between 

fish treated with 34 °C and 8 °C. Scale loss was significantly increased at day 0 following the 

full-scale treatment. There was no significant difference in skin bleeding at day 0 following the 

full-scale treatment. There was no significant difference in thymus and pseudobranch between 

34 °C and field treated, but a significant difference in affected tissue between gills from day 1 

8 °C and 34°C (hypertrophy, lifting, or bleeding in histological sections). In addition, we 

investigated the number and acidity of mucus cell acidity in histological sections of skin and 

gill from both 8 °C, 34 °C and full-scale treatment. There was no significant difference between 

the 8 °C, 34 °C and field treated populations in acidity, but a lower overall number of mucus 

cells was recorded in the skin and gill sections from the field treated population. Head kidneys 

and gills were analysed expression of the following genes; interleukin 1, interleukin 6, tumour 

necrosis factor , heat shock protein 70 and complement factor c3. There were no significant 

differences in expression of the genes between the different treatment groups. 

 

In conclusion, our results demonstrated small differences between fish treated at 34 °C and full-

scale Thermolicer treated. However, there was a difference in treatment temperature of 34 °C 

and the Thermolicer treatment at 29 °C. This may suggest that Thermolicer treatments are not 

as harmful and may be a good method for delousing Atlantic salmon in fish farms. 
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1.  Introduction 

1.1 Introduction to Atlantic salmon aquaculture in Norway 

The Norwegian aquaculture industry of Atlantic salmon (Salmo salar L.) started at the end of 

the 1960s/early 1970s when the first smolt was transferred to sea and placed in an octagon 

shaped sea cage by Ove and Sivert Grøntvedt [1]. The first farmed Atlantic salmon was 

slaughtered in 1971. This was the pioneering work that started, what is today, a multi-billion 

export industry. The aquaculture industry today is mainly based on the rearing and export of 

Atlantic salmon, but also Rainbow trout (Oncorhynchus mykiss Walbaum) is farmed for export. 

In 2019 there were over 288 million individuals of Atlantic salmon in sea cages along the coast 

of Norway [2] equalling a slaughter volume of 1,28 million metric tons [3]. 1,1 million metric 

tons of slaughtered salmon was exported in 2019 at a value of 72,5 billion NOK [4].  

 

The seafood report from the Ministry of Fisheries and Coastal affairs in 2013 refers to a list of 

reports, premises and goals for the future of aquaculture in Norway. One of the reports estimates 

the potential value of the aquaculture industry to be worth 500 billion NOK by 2050, five times 

the industry’s worth today [5]. For this to be achieved and sustained there must be a political 

drive for sustainability in the regulation of the aquaculture industry [6]. Sustainable aquaculture 

is to be achieved through a knowledge based production with a focus on best practice and a 

predictable regulatory system [7]. There are several factors challenging the sustainability of the 

Atlantic salmon aquaculture industry today; amoebic gill disease, pancreas disease, mortality 

of cleaner fish, infections of salmon louse and the spread of ILA to mention a few [8]. Of these, 

the infection of salmon louse on Atlantic salmon in sea cages and potential spread to wild 

salmon populations  is amongst the most challenging to handle [8]. 
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1.2 The Atlantic salmon (Salmo salar L.) 

The Atlantic salmon is an anadromous teleost fish belonging to the salmonid family whose life 

cycle begins and ends in the freshwater rivers connected to the northern part of the Atlantic 

ocean [9]. In the wild, eggs are laid in the gravel of the riverbed in the autumn by a mature 

female and are fertilised by a mature male’s milt. After hatching they are known as alevins, 

small larvae of 15-25 mm with an attached yolk sac which sustains them through the first few 

weeks of their life [10]. It remains in the river as it goes from alevin to fry and end up as parr 

the following autumn at the size of 4-6 cm [10]. During the winter they enter a docile state of 

being in while lying in shelter of the rocks along the riverbed. In the spring the parr quickly 

gain weight and by the autumn of its second year it has darkly coloured bars (parr marks) along 

its green and silver tinted body [10]. The young parr usually spends between 2-7 years as a parr 

before going through a process called smoltification [11] depending on its nutritional status and 

environmental triggers [12]. Smoltification is a series of morphological, physiological and 

behavioural changes the parr undergoes to become adapted freshwater (hypoosmotic 

environment) to a life in seawater (hyperosmotic environment) [13]. 

 

The young salmon is now called a smolt, is around 10 cm long and 15-20 gram and the parr 

marks are gone [14]. Instead, the smolt is clad with silvery scales along its sides, a pale belly 

and a dark back, helping to conceal itself in the open water environment [12]. As these changes 

start to occur the smolt starts swimming downstream towards the sea where it will spend the 

next 1-5 years feeding and growing in size [9]. While swimming through the fjords and coastal 

waters the smolt is swimming at a depth of between 1-3 meters during the day, moving closer 

to the surface at less than 0,5 meters at night, depending on light conditions [15]. This migration 

is known to increase the fecundity, meaning increased capability for creating offspring, of 

mature salmon females [16]. The migration is an example of risk versus rewards, the potential 

growth and chance to procreate after a successful migration versus the high mortality of the 

migrating smolts [16]. According to the International council for the exploration of the sea 

(ICES), the mortality is between 90 and 99 % of the migrating smolt [17]. 

 

The mortality of Atlantic salmon smolt is caused by several factors, among these are: predatory 

birds, fish and mammals [18] along with diseases [19] and parasites [2]. The main portion of 
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the mortality is believed to occur in the first months after leaving the river [18] based on the 

assumption that there are more predators in the coastal areas than in the open ocean [9].  

 

After spending 1-5 years at sea, the remaining salmon population swim towards coastal water 

trying to navigate itself back to its natal river [12]. The size of a mature Atlantic salmon varies 

greatly based on the location, population and success in the sea phase of its life but is between 

1-25 kg at 45-130 cm long [12]. When it approaches coastal water and swims towards the fjord 

and river, it is swimming at a depth of 1-5 meters taking occasional deeper dives before 

returning to this cruising depth [12]. After reaching the river it swims against the stream trying 

to reach their mating areas, starting the cycle anew. The Atlantic salmon is iteroparous, meaning 

it can spawn several times in its life, compared to the most Pacific salmon species who are 

semelparous and dies after spawning [12]. 

 

Farmed Atlantic salmon has a shorter life cycle compared to their wild counterparts. It is 

hatched in hatcheries on land where it will go from alevin to fry, parr and smolt within 

(underyearling), or after (yearling), one year depending on the strategy of the facility and 

customer [20]. The smolt is transferred out to sea cages where it will spend between 16-24 

months reaching a weight between 2-8 kg before being slaughtered [21]. However, during its 

time in sea it is affected by many mortality factors as wild Atlantic salmon is, albeit the causing 

factors in many cases are different. 

 

In the sea phase the mortality of farmed Atlantic salmon is, amongst other factors, caused by 

diseases like cardiomyopathy syndrome, heart- and skeletal muscle inflammation along with 

pancreas disease and gill infections [2, 8, 19, 22]. Diseases in sea cages is a severe event if it 

occurs, and can have long lasting effects on the salmon population [2]. The sea cages are known 

to act as reservoirs for both diseases like pancreas disease [19], but also for the parasitic salmon 

louse Lepeophtheirus salmonis [23]. Farmed salmon is also vulnerable to toxic algae blooms 

and other environmental factors like decreased oxygen content in the water [2]. This is due to 

not being able to escape the sea cages, unlike wild fish who can simply dive or swim away from 

an area with unfavourable environment. 
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Most fish farms for Atlantic salmon in Norway are in or near fjords, placing them in proximity 

of the rivers inhabited by wild Atlantic salmon populations [24]. Their potential role as a 

reservoir for contagious diseases and parasites are often discussed and tied to the decline in 

wild salmon in areas associated with fish farms [23, 25]. They can act as reservoirs due to the 

high stocking density and they are protected from predators who could have ended the infection 

cycle. The stocking density in fish farms, up to 200 000 individuals in each sea cage [26], means 

less than three sea cages would hold the entire Norwegian population of wild salmon in them 

[25]. In other words, there is an abundance of hosts for diseases and parasites concentrated in 

one place. 

 

 

1.3 The salmon louse 

There are two parasites from the family Caligidae who has Atlantic salmon as their host, 

Lepeophtheirus salmonis and Caligus elongatus. Caligidae belong to the copepods, a group of 

small crustaceans, and are commonly called sea lice [27]. They are both parasitic species, and 

the Atlantic salmon is one of their host species. However, the current regulations only apply for 

the salmon louse, L. salmonis, and the focus will therefore be on L. salmonis [28]. 

 

L. salmonis has a multi-staged life cycle comprised of 8 stages [27], earlier thought to be 10 

[29], each separated by molts. Molting is a process where the exoskeleton of crustaceans is shed 

and a new one is grown in its stead, allowing for an increase in size of the organism and the 

time between each molting is affected by temperature [30]. During the 8 stages of growth 

separated by molts, the life cycle of the salmon louse is spread over 5 phases of movement [31-

33]. These are: two planktonic stages of nauplius larvae after hatching, one infective stage, two 

attached chalimus stages, two mobile pre-adult/adult stages and one adult stage [34]. The cycle 

starts as eggs in the egg sacs of a mature female salmon louse attached to an Atlantic salmon, 

or other salmonid species, where the eggs will grow over a period of time [33]. Johnson and 

Albricht 1991 found this period to be temperature dependent varying from 17,5 days at 5 °C 

down to 5,5 days at 15 °C [31], but another study found it to be 30-40 days at 9 °C and 10-12 

days at 11,5 °C [35]. However, both studies show that temperature shortens the development 

times significantly. 
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During their lifespan, each mature female can produce up to 6 pairs of egg sacs (12 egg sacs in 

total), each containing between 100-965 eggs dependent on egg sac length [36], time of year 

[37] and wild or farmed Atlantic salmon [36]. A quick calculation finds the total number of 

eggs from 1 mature adult female L. salmonis to be between 1200-11500 eggs. The current 

regulation regarding allowed number of mature female L. salmonis says no more than 0,5/0,2 

louse per Atlantic salmon depending on the time of year [28]. In a sea cage of 200 000 salmon, 

the maximum allowed number of mature adults equates to between 40 000 and 100 000 mature 

lice. Throughout their lifespan of up to seven months, in laboratory conditions [38], this could 

translate to a potential egg production between 48 million to 1,15 billion eggs in total. The 

survival rate from nauplii to mature adult is unknown and based on estimations, but the high 

number of eggs itself supports the regulation in number of allowed mature adults per fish in 

each sea cage. 

 

The salmon louse adult males reach a size of around 6 mm, while the females reach a length of 

around 11 mm, without their egg sacs trailing behind them [39]. The effect of an infection of L. 

salmonis on Atlantic salmon depends on what stages of the lice that is infecting. It is mainly 

when the lice feeds that cause harm to the host, the movements of the antenna and “lips” of the 

lice cause superficial damage that erodes the epidermal layer [40]. This causes reactions centred 

around the local area [41]. Movement of the lice along the body of the host causes little or no 

apparent damage [42]. The feeding action itself is what causes the most damage, feeding on the 

epidermis of the skin [33]. Over time this loss of epidermis evolves into open sores, scar tissue 

and damage to fins and respiratory tissue [33]. Open sores and scar tissue not only lower the 

commercial value, can also open the fish up for possible secondary infections [42]. 

 

In addition to the superficial effects of an infection of salmon louse, it also causes internal 

reactions. As few as 11 chalimus larvae have shown to cause detrimental effect on trout smolt 

of 15 grams in a experimental conditions [43]. Over 30 mobile pre-adult stage have the potential 

to cause lethal damage to 40 gram trout smolts [43]. Holst et al. 2003 examined over 3000 

salmon smolts and found no individuals with more 10 than pre-adult lice, pointing to similar 

numbers in Atlantic salmon [44]. The infection causes reactions in the form of increased plasma 
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cortisol [45], reduced osmoregulatory ability [46], reduced growth [45] and weakens the non-

specific part of the immune system [34]. 

 

It is during their migration, both the outgoing and returning phase, passing through areas 

associated with fish farms the wild salmon is most vulnerable to infection of salmon louse [34]. 

As mentioned earlier the salmon on their migration to and from the sea swim relatively close to 

the surface at between 1-5 meters. This puts them in the same depth zone as the infective stage 

of salmon louse seek for hosts to feed on in [47]. Depending on the region of Norway, up to 30 

% of wild Atlantic salmon smolt is estimated to be killed by an infection of salmon louse [2]. 

Farmed Atlantic salmon acts as a reservoir for salmon louse, it is therefore crucial to have 

control over the number of salmon louse in sea cages of Norwegian fish farms to achieve the 

sustainability needed for future growth [7, 8]. 

 

1.3 Controlling the population of L. salmonis 

According to regulation 5. December 2012 nr. 1140 about combating the salmon louse in 

aquaculture facilities the highest average number of mature female lice allowed per salmon in 

each sea cage is 0,5. During parts of the spring this decreases to 0,2 mature female lice [28]. To 

reduce the amount of salmon lice the farmed salmon is put through a process called delousing. 

There are several ways to go about this, using methods from different categories including: 

chemotherapeutants, freshwater baths, mechanical treatments and thermal treatments [2]. 

Mechanical treatments use different principles like brushes, water jets or water currents. The 

thermal treatments include the Optilicer and Thermolicer. 

 

Up until 2014 the delousing process was done through baths or diets containing 

chemotherapeutants [48]. In this procedure the bottom weight of the sea cage is removed, and 

a delousing tarpaulin is put around and underneath the whole sea cage. Ropes with tubes 

entwined in them are stretched from one side of the sea cage to the other. These tubes will 

supply and disperse the chemotherapeutant and extra oxygen throughout the treatment period. 

The tarpaulin’s purpose is to contain the chemotherapeutant inside the sea cage for the duration 

of the treatment. When the treatment is complete, the tarpaulin is removed. Another way of 



 

- 7 - 

 

doing it is through crowding and pumping the fish aboard a wellboat for treatment in its wells. 

The use of chemicals to delouse salmon in sea cages have been heavily disputed for its effect 

on the salmon itself [49] environment [50] and affecting other crustacean species [51]. 

 

Another important point to mention regarding the use of chemotherapeutants is the development 

of resistance within the population of salmon lice. In their strategy for sustainably aquaculture 

from 2009 the Ministry of Fisheries and Coastal affairs stated that suboptimal conditions during 

a chemotherapeutic delousing is a major factor for development of resistance [52]. During a 

delousing there is no guarantee that 100 % of the lice is killed, nor is this the main goal of a 

delousing according to NFSA and regulation 5. December 2012 nr. 1140 about combating the 

salmon louse in aquaculture facilities [28, 53]. The chemotherapeutants affect the lice harder 

than the salmon, but their toxicity is temperature dependent [54-56]. However, by using a single 

chemotherapeutant in each treatment and not killing 100 % of the sea louse infestation, there is 

a risk of developing resistance [57, 58]. This happens over time, as the survivors of each 

treatment are free to further their genes and the population of resistant louse grows [57]. 

 

In 2014 the resistance had spread to most salmon louse populations in the country and across 

multiple chemotherapeutants [48]. This caused a swift development of novel methods of 

delousing Atlantic salmon on a commercial scale; freshwater, mechanical and thermal 

treatments [2, 19]. 

 

The freshwater delousing method involves a wellboat with wells of freshwater the fish is 

pumped into. Atlantic salmon tolerates freshwater well compared to the louse who has shown 

preference for a salinity over 27 ‰ [59, 60]. Freshwater is an effective delousing method with 

low pathological effect on the fish [61], but there is a study showing that salmon louse could 

develop resistance towards the freshwater treatment [62]. 

 

Mechanical delousing is a term used to describe three different machines using water jets (FLS 

system), water jets and brushes (SkaMik) and water turbulence (Hydrolicer) to remove the lice 
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after pumping the fish onboard specialised boats. According to regulation 17. June 2008 nr. 822 

regarding the operation of aquaculture facilities § 20 all methods, installations and equipment 

can only be used in an aquaculture facility when the consequences for fish welfare has been 

documented [26]. The FLS system has a documentation of effect and welfare from the 

Veterinary Institute [63], showing significant difference in scale loss and gill bleeding 

before/after treatment. SINTEF released a documentation on the Hydrolicer showing significant 

difference in scale loss and skin bleeding before/after treatment [64]. To the best of our 

knowledge there is no official documentation for the SkaMik delousing method at the time of 

writing, only an unpublished report [65]. 

 

Thermal delousing of Atlantic salmon is done through either an Optilicer [19] or a Thermolicer 

[66]. They work on the same principle; the fish is pumped through a wellboat or specialised 

boat and through a bath of water holding between 28-34 °C water. The documentation of effect 

and welfare for the Optilicer delousing treatment showed physical injuries from collisions, blunt 

trauma, rifts in the skin caused by metal and other mechanical injuries [67]. In the 

documentation of effect and welfare for the Thermolicer there was a significant difference in 

scale loss before/after treatment along with acute gill bleeding [68]. 

 

1.4 The documentation of welfare 

There is a focus on welfare in the documentation of delousing procedures. How is welfare 

defined, and how is it applied, in an aquacultural setting? Welfare is a term that is hard to 

describe and define, and varies depending on the perspective and background of the viewer 

[69]. There are three ways that is most commonly used to define whether an animal is in a good 

state of being; the function based, nature based and feelings based definition of welfare [69]. 

 

The first way to define welfare, the function based one, is based on the body of the animal [70]. 

This definition assumes that an animal that is feeding and growing well is experiencing good 

welfare, but it also assumes the opposite; an animal that is immunosuppressed or has a reduced 

life expectancy is experiencing poor welfare [70]. This definition focuses solely on the 

functions of the bodily systems, ignoring the potential for poor welfare in for instance, social 
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animals kept alone [69, 71, 72]. Furthermore, proving good welfare through bodily functions 

like plasma cortisol and heart rate is difficult to interpret, since their values are altered by both 

positive and negative interactions and influences [72]. Breeding programs can give genetics 

that shows good growth while ignoring the mental state of the animal [72]. 

 

The second way to define welfare, the nature based one, is based on the idea that an animal 

living like they do in nature, with freedom to express themselves and their full range of natural 

behaviour is in a good state of being [72-74]. This ignores any and every form of suffering. To 

put it bluntly, if the salmon is free to swim, it does not matter if an otter, bear or a predatory 

bird have taken a chunk out of it, it is in a good state of being. A point to mention regarding the 

sea phase of Atlantic salmon, does it swim continuously because it is tracking food and stop 

when it finds food? Is it natural for it to swim continuously, or is it fine to stand still if it has 

food? Does this mean the confinement in sea cage is good welfare, or bad [69, 75, 76]? 

 

The third way to define welfare, the feelings based one, is based on the principle that an animal 

in good physical shape can experience bad welfare through feelings of pain and fear [69, 77]. 

This assumes that higher feelings other than instincts like hunger and fight or flight reactions 

can be found in animals, or more specifically fish in an aquacultural setting. It also assumes 

that an animal can be visibly injured and still experience good welfare as long as that injury 

does not cause a feeling of pain [69]. Does this definition of welfare still apply to animals that 

cannot feel pain? Can fish feel pain? Does an absence of pathology equal good welfare, if it 

does not elicit a feeling of pain, if we follow this definition? To avoid a moral debate, we must 

assume that animals can in fact feel pain and that we should treat them as such. 

 

The law of 19. June 2009 nr. 97, Animal Welfare Law, § 3 states that all animals embraced by 

the statute has an intrinsic value independent to their eventual economical value for humans 

[78]. It states further that the animal keeper, in this case the fish farm, are obligated to make 

sure all methods, equipment and technical solutions applied are suited to maintain the welfare 

of the animal [78]. So, how does one measure animal welfare in aquaculture? The three 
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definitions mentioned above can conflict with each other, creating the need for a different or 

specified definition on welfare. 

 

Stien et al. 2013 defines welfare as “the quality of life as perceived by the animal themselves” 

[79]. This relies on the assumption that fish can experience different states of welfare, and is 

based on results from studies on “nervous systems linked with emotion, memory, spatial 

relationships, primary consciousness, reward, cost-benefit estimation and decision making” 

[79]. The Salmon Welfare Index Model is comprised of a selection of welfare indicators that, 

when combined, can make an overall welfare assessment of Atlantic salmon in fish farms [79]. 

Welfare indicators can provide information about how fulfilled an animals needs are, they can 

be animal or environmental based and the ones chosen were selected for their gradeability [79, 

80]. In the model, scientific knowledge of animal physiology and behaviours is applied to 

surmise an individual’s welfare state [79, 81]. In “Welfare indicators for farmed Atlantic 

salmon: tools for assessing fish welfare” the welfare indicators are collected into a book format 

for ease of use in the aquaculture industry [80]. Furthermore, welfare indicators can be divided 

into operational (indicators realistically used on the farm) and laboratory based welfare 

indicators (requiring access to a laboratory) [80]. 

 

1.5 The histological changes 

Skin bleeding and scale loss are two examples of welfare indicators. On the other hand, to assess 

effects on the fish not seen macroscopically one can use histological examination. Such 

examinations of tissue samples taken from salmon after a, for instance, Thermolicer treatment 

will show the microscopical changes. In the gills this is visible as aneurisms caused by burst 

blood vessels and lifting of the lamellar epithelia [68]. In the skin the epidermis was either lost 

or thinned out, oedema in the scale pockets and/or a loss of scales. The epidermis is where the 

mucusin producing cells lie [82]. These cells are responsible for the production of the mucus 

layer covering the epithelial surfaces of the fish. The cells produce either acidic glycoproteins, 

neutral glycoproteins or a mix of the two [83]. 
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Staining sections with Alcian blue periodic acid Schiff (AB-PAS) instead of the hematoxylin 

& eosin (HE) stain used for normal histopathology, will colour the mucus cells blue (acidic) or 

red/magenta (neutral) [83]. Mixed cells are coloured lilac. Since the cells are located at the top 

of the epidermis, they are highly exposed to damage and injuries. The production of 

glycoproteins in the mucus layer have been shown to change under the effect of stressors or 

environmental factors [84]. A consequence of the removal or thinning of epidermis is a 

weakening of the mucus layer protecting the fish from pathogens. 

 

A paper published by a diagnostic laboratory showed  microscopical changes in organs not 

usually sampled: thymus, nasal cavity and brain tissue [85, 86]. In the thymus this was 

formation of cavities of the thymus tissue, increase in mucus cells, focal bleeding and 

hemosiderosis. Sections of nasal cavity showed a metaplasia of the epithelia into mucus cells 

and focal bleeding. The article acknowledges that some of these are also possible artefacts 

caused by the processing, but oedema fluid and blood found in the scale pockets support their 

claim of it being caused by the treatment instead of artefacts. 

 

To summarize, there are several steps in the treatment process that can cause injury and stress 

to the fish. It is already explained that this causes damage to different organs, but what happens 

when the fish undergoes treatments without time to heal in between? In the fish farming 

industry today, there is often a need for delousing treatments scheduled shortly after one another 

to comply with the regulation for the allowed number of salmon louse per fish [24]. Thermolicer 

is a relatively new method of delousing salmon, having only been used for the last 4-5 years. 

In this time there have been, to the best of our knowledge, few studies on the microscopical 

effects of Thermolicer treatments. What is known is that Atlantic salmon’s ability to heal from 

injuries is dependent on the ambient sea temperature [87]. 

 

1.6 The healing process 

After being injured and escaping whatever caused the injury, in this case the Thermolicer, the 

regeneration begins. It starts by a migration of different cell types including neutrophils, 

macrophages, endothelial cells and keratinocytes. These cells promote the regrowth of the 



 

- 12 - 

 

epithelium layer and blood vessels while also combating the possibly invading microorganisms 

[88]. An important part of this regrowth is scar tissue. It is formed by fibroblasts producing 

collagen which is a key component in the extracellular matrix, a process which is temperature 

dependent [87, 88]. The metabolic rate of an animal changes with its temperature, and since the 

Atlantic salmon is ectotherm this means its body temperature conforms to the ambient 

temperature around it [89, 90]. 

 

The effects of a lower sea temperature will therefore mean it takes longer for an Atlantic salmon 

in a fish farm in colder water to heal compared to one living in warmer water. This can affect 

how close together two delousing operations can be scheduled. Another factor to consider is 

stress’ effect on healing. According to Sveen et al. 2018 the low temperature delays the repair 

of the epidermis, while the stress hormone cortisol delays repair of the dermis [91]. A stressful 

situation has also been proven to cause decreased immune function and changes in the gene 

expression of Atlantic salmon [92]. 

 

1.7 The gene expressional effects 

As stated earlier, the processes the fish is subjected to as part of a Thermolicer treatment is 

stressful. During the exposure to a stressor the body reacts in several ways, one of which is 

changes to the gene expression of a variety of genes [93]. The chosen genes to examine the 

effect of a Thermolicer treatment on are interleukin 1, interleukin 6, tumor necrosis factor , 

heat shock protein 70 and complement factor C3. A quantitative real time polymerase chain 

reaction (RT qPCR or just qPCR) analysis of head kidney- and gill samples can be used to 

measure the relative expression of the genes by comparing the CT-values [94].  

 

The purpose of a qPCR-analysis is to amplify the amount of DNA through several cycles of 

denaturation, annealing and extension. During the denaturation stage the double stranded 

cDNA, made from isolated RNA in tissue samples, is heated up and split into single stranded 

DNA. The temperature is lowered during the annealing stage to facilitate the primers binding 

to the DNA. Last stage of the amplification cycle is the extension step: the temperature is 
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increased and a new strand of DNA is made by a polymerase enzyme using the single stranded 

DNA as a template [95]. 

 

By adding a fluorescent reagent that binds to the DNA strand called SybrGreen, the machine 

can measure the increase in DNA. This is made possible by the SybrGreen where the increase 

in fluorescence is proportional to the increase in DNA made by the amplification cycles [94]. 

The number of amplification cycles need to reach a certain point of fluorescence, and therefore 

a certain amount of DNA, is displayed as each sample’s Ct-value. A lower Ct-value indicates a 

higher expression of the gene since it took fewer cycles to reach the threshold and vice versa 

[94]. The Ct-values can then be used to compare the relative expression of genes in the samples 

through different methods of Ct-analyses. 

 

Using a reference gene allows different groups to be compared by adjusting the threshold of the 

two qPCR-runs [94]. A reference gene is a gene whose expression is overall constitutively 

expressed in all genes and tissues [96]. Elongation factor (EF1-) was chosen because its 

expression is stable between organs. According to Ingerslev et al. 2006 the expression of EF1-

 only varied by a twofold change in expression maximum between gill and head kidney, and 

is therefore a suited housekeeping gene to use [96]. 

 

1.7.1 Interleukin 1 & interleukin 6 

Interleukin 1 (IL1) and interleukin 6 (IL6) are cytokine proteins and part of the immune 

system. They are both pyrogens, which means they are pro-inflammatory proteins. An area with 

elevated concentration of IL1 shows an increased recruitment of phagocytes and their 

phagocytic and lysozyme activity, increased expression of TNF, and it also activates the 

expression of immune suppressing genes in Atlantic salmon [97]. It is upregulated after stressful 

events [92]. 

 

IL6 stimulates growth of macrophages and stimulates B-cells to maintain their expression of 

IgM over time. IL6 can also act anti-inflammatory to maintain the haematopoiesis [97]. In mice 
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it plays a role in wound healing, but this function is not proven in salmon [98]. It has also been 

proved to have a role in the increased blood pressure after acute stress in mice, which increases 

the risk of brain haemorrhaging [99]. As stated by Gismervik et al. in 2019, the collisions might 

not be the sole cause of brain haemorrhaging. The hot water in the treatment or the stress itself 

might have an influence as well [86]. The concentration of plasma-IL6 increases rapidly after 

physical activity in humans [100]. This increase in concentration is likely not caused by 

expression changes since changes in expression is not near instant like Nielsen et al. 1996 saw. 

 

1.7.2 Tumor necrosis factor  

Tumor necrosis factor  (TNF) has several overlapping functions with IL1 and is one of the 

first immune genes expressed at the start of an infection in Atlantic salmon [97]. Its function is 

to activate macrophages and increases their killing ability while promoting their survival and 

restricting bacterial growth inside them [97]. In trout it plays a role in both T-cell mediated 

immunity and the innate immune system [97]. 

 

1.7.3 Heat shock protein 70 

Heat shock proteins are proteins found in all organisms, including fish. One of their main 

functions is to maintain the homeostasis and assisting in correct folding of proteins inside the 

organism [101]. Their function in the homeostasis and protein folding means they are already 

highly expressed during normal cell growth. Proteins, and their folding process, are generally 

vulnerable to heat due to misfolding and denaturation risk. One function of heat shock protein 

70 (HSP70) is to refold misfolded proteins and its expression is upregulated when temperature 

increases [102]. This points to heat shock proteins being an important factor in an organism’s 

thermal tolerance. 

 

Another factor that points to HSP’s connection to thermal tolerance is the fact that HSPs inhibit 

caspase activation and apoptosis of its host cells [103]. This function helps the cell survive after 

damaging stimuli and stress. There are several factors that regulates their expression including 

temperature changes and inflammatory stress [101]. In a study on acclimation temperature and 

heat shock in Gillichthys mirabilis there was a significant upregulation of HSP70 regardless of 
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acclimation temperature [104]. To summarize, the HSP70 is constitutively expressed due to its 

important functions and is upregulated during stressful encounters. 

 

1.7.4 Complement factor C3 

Complement factor C3 (C3) is a protein in the complement system of the immune system. Its 

main function is its role in activation of the classical and alternative complement system [105]. 

This is used in the defence of its host against pathogens, but also clearing cellular debris and 

suppressing tumor cell growth [105]. Its presence in salmon is well established [106]. In humans 

it is regulated by the concentration of IL1, IL6 and TNF [107]. Seeing as IL1, IL6 and 

TNF are all upregulated by stress, this means that C3 is also upregulated after an encounter 

with a stressor. 

 

The genes were all selected due to their role in the salmon’s reaction to a stressor. How does 

one separate the warm water’s effect on the salmon from the rest of the stressors like crowding, 

netting, pumping etc.? In this case the stressor we want to know the effect of is the 30 second 

treatment with 34 °C water. The histological examination and the qPCR-analysis of the genes 

is an attempt to identify this effect.  One way to do this is to complete the treatment in a 

controlled setting with two experiment groups; one treated in warm water and one treated with 

cold water. Comparing the two groups will let you see what differed between them. It is 

plausible the difference is the effect of the warm water. A 34 °C warm-water treatment will not 

include any of the unknown variables that influence the results of a full-scale Thermolicer 

treatment. To include these unknown variables a field treatment with a Thermolicer is included 

for comparison. 
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1.8 Master’s thesis’ goal and objectives 

 

 

Goal: 

- To examine the histological, mucosal and gene expressional effects of a 30 second 34 

°C warm-water treatment on Atlantic salmon immediately after and three weeks post-

treatment compared to a full-scale Thermolicer treatment in the field. 

 

Objectives:  

- Compare the mean welfare indicator scores from a 30 second 34 °C treatment 

compared to a full-scale Thermolicer treatment in the field to look for differences in 

the macroscopical effect on the fish. 

 

- Assess the effect of a 30 second 34 °C treatment and full-scale Thermolicer treatment 

on important surface organs using histology. 

 

- Examine potential differences in mucus cell acidity before and after being exposed to 

warm water in sections of skin and gills. 

 

- Examine differences in gene expression of Atlantic salmon going through a 30 second 

34 °C and full-scale Thermolicer treatments. 
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2. Methods 

2.1 Experiment groups and data 

The experiment was designed to consist of two parts; a controlled experiment and a field 

experiment. The controlled experiment was completed at the Institute of Marine Research’s 

facility at Matre outside of Bergen in May 2019. This consisted of Atlantic salmon acclimated 

to 8 °C before being split into two groups. One small group would undergo a 30 second 34 °C 

warm-water treatment. The second group would go through the same process, but at 8 °C with 

the purpose of removing high water temperature as a cause of injury. Three weeks later the 

warm water treated fish was euthanized with Tricaine (Pharmaq) along with a part of the cold-

water group to act as control.  

 

To examine the effects of a 30 second 34 °C warm-water treatment, the fish was transferred 

from its holding pen (8 °C) and into a perforated box before being submerged in the 34 °C 

water. A temperature difference of 26 °C, or t = 26 °C. The same process was done for the 

cold-water treatment, but in 8 °C water. 

 

All fish taken from the controlled experiment and examined in this thesis underwent at least 

one cold-water treatment. To check for long-term injuries after the warm water treatment one 

group underwent a warm water treatment and rested for three weeks before sampling. This 

group is named warm-water long-term group, or WWLT for short. For comparison purposes, a 

group underwent another cold-water treatment at the same time as WWLT went through warm-

water and was sampled after three weeks rest. This is the cold-water long-term group and it is 

checking for the eventual effect of the handling the fish undergoes during the thermic delousing 

process. After three weeks the long-term groups were netted over to a bath with an overdose of 

Tricaine (Pharmaq) for euthanization. 

 

The last two groups in the controlled experiment are the cold-water- and warm-water short-

term groups, named CWST and WWST for short. In total these two groups had undergone three 

cold-water treatments (CWST) or two cold-water and one warm-water treatment (WWST). The 
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warm-water group’s purpose is to check for the short-term effect of warm-water treatment, 

whilst the cold-water group is acting as a control. 

 

Atlantic salmon undergoing the field treatment were also divided in two groups; field treated 

short-term (FTST) and field treated long-term (FTLT). They both underwent a thermic 

delousing treatment using Thermolicer at 29 °C, a t = 24,5 °C from the 5,5 °C sea temperature. 

The sea farms are both located at Senja in northern Norway, but the farms wished to remain 

anonymous. Unlike the controlled experiments the field groups are not from the same 

population. This was due to several factors, all of which will be discussed later. 

 

A summary of all group names, abbreviations, treatment temperature and weight are shown in 

table 1. Difference in weight between the long-term groups are caused by the three weeks 

between the treatment times. The temperature difference from acclimation temperature and 

treatment temperature was 26 °C for the controlled experiment and 24,5 °C for the field 

experiment. Both groups were vaccinated. The controlled experiment groups were vaccinated 

with Aquavac 6 vet. The fish farms did not disclose what vaccine they had vaccinated with. 

 

Table 1: Division of the salmon into different experiment groups.  Cold and warm water groups were hatched, reared and 

treated at Institute of Marine Research's facility at Matre. The field treated salmon belonged to a fish farm who wished to be 

anonymous. Standard deviation and number of fish weighed was not received from the fish farms. 

Group Abbreviation Treatment 
temperature 

Avg. weight (± SD) 

Cold water short-term CWST 8 °C 1657 ± 450,9 

Warm water short-term WWST 34 °C 1742,8 ± 383,5 

Cold water long-term CWLT 8 °C 1339 ± 254,4 

Warm water long-term WWLT 34 °C 1509,4 ± 276,6 

Field treated short-term FTST 29 °C 3,2 

Field treated long-term FTLT 29 °C 3,6 
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2.2 Welfare indicators 

Before sampling the fish were welfare scored using the welfare indicators in table 2. The scoring 

system works on a 0-3 scale [80]. A 0 on the scale means there were no signs of lowered welfare 

detected, while a score of 3 means there were large areas affected/severe changes seen. The 

welfare scoring in the controlled experiment were scored by Lene Moltumyr og Jonatan 

Nilsson, researchers at the marine research facility. In the field experiment the fish were scored 

by a veterinarian from Marin Helse, a fish health consulting firm, using a scoring scale based 

on the one the Veterinary Institute used under the documentation of Thermolicer as a delousing 

method [68]. The results from the two different scoring scales are similar enough to be 

integrated. 

 

Table 2: The two welfare indicators used to macroscopically score the fish before and after treatment, taken from the 

FISHWELL-project [80]. The scale goes from 0-3 in ascending severity. 

Welfare indicator  

and score 
 

Skin bleeding 

 

Scale loss 

0 None detected None detected 

1 Petechiae in the skin of the gut Loss of individual scales 

2 Larger areas with petechiae Small areas with no scales 

3 Recently bleeding areas, often with 

significant scale loss and wounds 

Large areas with no scales 
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2.3 Data material 

2.3.1 Controlled experiment 

 

Table 3 shows the number of fish and total number of organs sampled from the controlled 

experiment groups. The difference between short- and long-term groups is due to a wish to have 

more warm-water treated samples than cold water ones. This gave a higher n to use in statistics 

and more samples to study for short-term injuries. 

 

Table 3: Overview of the number of fish, and organs, sampled from the controlled experiment groups. The difference in 

number of individuals in cold water long-term and warm water long-term was due to a wish to have more warm water treated 

than cold water treated. Eyes, kidney and nostrils were sampled, but not examined apart from testing the protocol due to time 

constraints/priorities. 

Organs/group CWST WWST CWLT WWLT 

Gills 16 16 5 13 

Skin 16 16 5 13 

Thymus 16 16 5 13 

Pseudobranch 16 16 5 13 

 

 

2.3.2 Field experiment 

Table 4 shows the number of fish and organs sampled in total from the field experiment groups. 

There are two fewer individuals in the FTST group compared to FTLT. This was not due to a 

shortage of fish or a wish to have more or less of one group, there was simply not more time 

left before the boat back to shore left and sampling had to stop. 

 

Table 4: Overview of the number of fish, and organs, sampled from the field treated fish. Eyes, kidney and nostrils were 

sampled, but not examined due to time constraints/priorities. 

Organs/group FTST FTLT 

Gills 8 10 

Skin 8 10 

Thymus 8 10 

Pseudobranch 8 10 
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2.4 Organ sampling 

Organ sampling was performed similarly for all groups in the experiment. All organ samples 

were stored on 4 % neutral buffered formalin. All the samples were stored at room temperature 

at the Norwegian College of Fishery Science until they were further processed. For the purpose 

of qPCR-analysis samples of gill, thymus and head kidney was stored on RNA-later at -20 °C 

awaiting processing. This was not done for FTLT because it could not act as a control for FTST 

due to it being a separate population. It could have been analysed on its own, but there were no 

samples put on RNA-later to save costs on material that was not going to act as a control. As 

the controlled fish was being sampled, they were also sexed. This was to look for differences 

between the heat tolerance between the sexes, as was found in guppies during a temperature 

tolerance test [108]. 

 

2.4.1 Nostril 

The left nostril of the controlled experiment fish was removed by making a deep incision from 

the snout to the eye pit along the medial plane. This was repeated on the horizontal plane, 

making the removed sample have a rounded pyramid-like appearance including the nasal pit. 

 

2.4.2 Eye 

Removal of the eye was done by carefully cutting around the eye, inside the eye pit, with a 

scalpel. Being careful not to puncture the eye the scalpel was pushed in and used as a lever to 

gain access to the optical nerve behind it. After cutting the nerve and surrounding tissue the eye 

was removed. 

 

2.4.3 Thymus 

Thymus is located at the cross section where the operculum is attached to the top of the gill 

chamber and was cut out in a pyramid shape using a scalpel. 

 

2.4.4 Gill  

Gill samples were cut from the second gill arch on the fish’s left side using a scissor. 
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2.4.5 Pseudobranch 

Pseudobranch was cut along its edges with a scalpel and removed with forceps. 

 

2.4.6 Skin 

Skin samples were taken across the lateral line below the dorsal fin of each fish. The piece cut 

out was 2 cm long, 0,5 cm wide and 1 cm deep. 
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2.5 Protocols 

2.5.1 Tissue processing 

To process the samples stored on formalin they were moved into a tissue processor (Citadel 

2000, Shandon). Table 5 shows the protocol used for processing the organ samples from both 

the controlled and field experiment. 

 

Table 5: The protocol used for tissue processing in a Citadel 2000 tissue processor (Shandon). 

Protocol for tissue processing 

96 % EtOH 2 hours 

96 % EtOH 2 hours 

Abs. EtOH 2 hours 

Abs. EtOH 2 hours 

1:1 100 % EtOH & Histoclear 1 hour 

Histoclear 1 hour 

Histoclear 1 hour 

Histoclear 1 hour 

1:1 Histoclear & paraffin wax 1 hour 

Paraffin wax Minimum 1 hour 

Total: 14 hours minimum 

 

 

A Leica EG 1150H paraffin dispenser station was used to embed the tissue cassettes using 

Histowax (Histolab) at 60 °C. The cassettes were refrigerated on a cooling element and stored 

in a refrigerator. After processing and embedding the samples they were sectioned using a Leica 

RM 2255 microtome at 4 µm and put in a heating cabinet holding 64 °C for one hour to 

deparaffinize. 
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2.5.2 Hematoxylin & Eosin staining 

After deparaffinization the sections of gill, pseudobranch, thymus and test sections of eye and 

nostrils were stained with hematoxylin and eosin using the protocol found in table 6. This 

protocol is the standard protocol used for staining at the Norwegian College of Fishery Science. 

The staining process was done manually. 

 

Table 6: Protocol used for hematoxylin and eosin staining sections following an hour of deparaffinization at 64 °C. 

Protocol for HE-staining 

Histoclear 6 min. 

Abs. EtOH 90 s. 

96 % EtOH 90 s. 

96 % EtOH 90 s. 

Rinse in water 90 s. 

Hematoxylin 90 s. 

Hematoxylin 90 s. 

Rinse in water 90 s. 

Rinse in water 90 s. 

Eosin 90 s. 

96 % EtOH 90 s. 

96 % EtOH 90 s. 

Abs. EtOH 90 s. 

Abs. EtOH 90 s. 

Histoclear 90 s. 

Total: 27 min 
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2.5.3 Alcian blue periodic acid Schiff 

AB-PAS staining was done to categorize and counting mucus cells in sections of gills and skin. 

Table 7 shows the staining protocol for AB-PAS staining sections of skin and gill. This protocol 

is taken from the veterinary institute of Harstad’s diagnostical laboratory. 

 

Table 7: Protocol used for AB-PAS staining sections following an hour of deparaffinization at 64 °C. Hydrochloric acid was 

diluted to 600 µl HCl in 300 ml 96 % EtOH. 

Protocol for AB-PAS staining 

Histoclear 5 min. 

Histoclear 5 min. 

Histoclear 5 min. 

Abs. EtOH 5 min. 

Abs. EtOH 5 min. 

96 % EtOH 5 s. 

70 % EtOH 5 s. 

Alcian blue 15 min. 

Rinse in water 2 min. 

0.5 % Periodic acid 10 min. 

Rinse in water 30 s. 

Schiff’s reagent 15 min. 

Rinse in water 5 min. 

Hematoxylin 30 s. 

Rinse in water 1 min. 

Hydrochloric acid 2 s. 

Rinse in water 30 s. 

Bluing (warm water) 1 min. 

Rinse in water 20 s. 

Total: 1 hour and 16 min. 

 

 

All chemicals, dilutions and their suppliers used in the protocols can be found in table 1 in 

appendix. 
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2.6 Overview of samples 

2.6.1 Scoring system for histology 

After processing, sectioning and staining the sections they were histologically examined and 

scored using a light microscope. The sections were scored on a simple system of 0-3 based on 

the percentage of tissue affected; 0 (< 5 %), 1 (5-10 %), 2 (10-50 %) and 3 (>50 %) [109]. 

 

2.6.2 Controlled experiment 

The number of samples from the controlled experiment that were examined are shown in table 

8. Compared to table 3 there are some differences in number of samples and results. This was 

caused by several factors. 

 

A part of this difference was likely caused by using a general program for processing tissue. 

The effect this has on the tissue depends on the type of tissue [110]. For instance, sections made 

from thymus samples have tiny cracks all throughout the section of tissue, a sign of over-

processing and exacerbated by poor microtome skills [111]. Skin samples on the other hand, 

which is a fattier tissue, were under-processed [112]. This is shown as the outer rim of tissue 

sectioning nicely while leaving a hole where the under-processed tissue lies. 

 

Due to the under-processing issue the skin samples from the controlled experiment were 

sectioned at the Veterinary Institute (VI) in Harstad. Their recommendation was to submerge 

the fixated skin samples in Decalc decalcifying fluid (Histolab) for one hour before processing. 

This decalcifies the tissue making the skin blocks easier to section, but it does not fix the issue 

of under-processing. Having learnt from this, the skin samples from the field experiment were 

sectioned at the Norwegian College of Fishery Science. 

 

Another reason was finding the relevant tissue one wanted to examine. Finding the thymus 

tissue in the samples taken proved to be challenging, only hitting the correct spot in 10 % of the 

first sectioning and staining session. After repeated sectioning attempts, thymus was still not 

found in some of the samples. A possible reason is that the area containing thymus tissue was 
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missed when the sample was taken. Nostrils and eyes were difficult to section, but were tested 

since pathological changes in the nostril and eye was discovered in the pilot experiment [86]. 

 

Table 8: The number of histologically examined and scored samples. Table 5 also shows the test samples from nostrils and 

eyes.  

 Organs/group CWST WWST CWLT WWLT 

Gills 15 15 4 10 

Skin 15 11 3 10 

Thymus 13 13 2 10 

Pseudobranch 13 13 3 8 

Nostrils 0 0 4 4 

Eyes 0 2 0 1 

 

 

2.6.3 Field experiment 

Skin samples from the field experiment were submerged in Decalc decalcifying fluid (Histolab) 

for one hour before processing in the Citadel 2000 tissue processor (Shandon). There were only 

2 sections of skin from the FTLT group that had an epidermis section large enough to count 

and categorize. It is unknown whether this is caused by outside factors or the processing 

protocols.  

 

Table 9: The number of histologically examined and scored samples. 

 Organs/group FTST FTLT 

Gills 8 10 

Skin 8 2 

Thymus 8 8 

Pseudobranch 8 10 
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2.7 qPCR  

Samples of thymus, gills and head kidney was taken from fish in the controlled experiment and 

from day 0 of field treated fish. The samples were stored at RNA-later in a -20° Celsius freezer 

at the Norwegian College of Fishery Science. To extract RNA from the tissue the RNeasy 250 

mini-kit (Qiagen) and its protocol was used. The protocol from the RNeasy mini kit requires 

the tissue (30 mg) to be homogenised, this was done in a TissueLyzer II (Qiagen) using 2 ml 

tubes and autoclaved lead beads. After extracting the RNA its concentration and purity was 

measured using Nanodrop (Thermo Scientific). The isolated RNA was stored at -80°C. 

 

Using Quantitect Reverse Transcription-kit (Qiagen) cDNA was synthesized from the isolated 

RNA. In the first step, removal of genomic DNA, the isolated RNA was diluted to 100 ng/µl 

and 5 µl of the diluted RNA was added to the reaction. The sample strips were incubated at 42 

°C for 2 minutes, to activate the gDNA wipeout, before being put on ice. For the rest of the 

cDNA synthesis the kit protocol was followed for a total volume of 20 µl cDNA. Negative 

control was made without reverse transcriptase in the reaction. To finish the cDNA synthesis 

the sample strips were incubated at 42 °C for 15 minutes, 95 °C for 3 minutes and then a 4 °C 

hold to immediately cool the samples down from 95 °C. The synthesised cDNA was stored at 

-20°C. 

 

For the qPCR-run, six genes were selected. Elongation factor was used as the reference gene. 

Interleukin 1, interleukin 6, tumour necrosis factor , complement factor 3 and heat shock 

protein 70 were the five genes run for comparison between the fish groups. 

 

The qPCR was set up using a 96-well tray filled with a Sybr Green-mix containing 10 µl Fast 

Sybr green master mix (Applied Biosystems), 1 µl forward primer (5 µM), 1 µl reverse primer 

(5 µM) and 3 µl H2O. 5 µl cDNA was then added to each well before the tray was sealed with 

a film. Samples and negative reverse transcriptase controls were run in duplicates. On each tray 

there were two H2O-wells to check for the formation of primer dimers and a positive control 

was run in duplicate to adjust the threshold for comparison between the two plates running the 

same gene. After the qPCR-analysis was done and the Ct-values were obtained, the delta delta 
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Ct-method, also known as the 2Ct-method, was used to calculate the relative gene expression 

differences [95]. 

 

2.8 Statistical analyses 

In this experiment the significance value is set to 5 % (p < 0,05). To calculate the significance 

of welfare scores and histological scores Welch’s t-test was used. Welch’s t-test was chosen 

over Student t-test for three reasons. It is simple and gives good control over type 1 errors and 

is preferred over Student’s t-test in instances where the variance and size of groups are not equal 

[113]. The calculations were performed in Excel 365 (Microsoft) and graphs were made in 

GraphPad Prism 8 (GraphPad Software). 
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3. Results 

3.1 Welfare 

After the 30 second treatment the fish was scored either immediately or at day 21 post-

treatment. Table 10 shows the welfare scores from the cold- (8 °C) and warm-water (34 °C) 

short-term treated (scored immediately after) and long-term (scored three weeks post-

treatment).  

 

Table 10: Mean welfare indicator scores of skin bleeding and scale loss from the cold and warm water treated groups shown 

with their standard error mean. 

Group Skin bleeding (± SEM) Scale loss (± SEM) 

CWST 

(n=16) 
0.5 ± 0.13 1,06 ± 0.11 

WWST 

(n=16) 
0.44 ± 0.13 1,33 ± 0.12 

CWLT 

(n=5) 
0.2 ± 0.18 1,0 ± 0.00 

WWLT 

(n=13) 
0.54 ± 0.14 1,31 ± 0.13 

 

The results in table 10 shows small, insignificant differences between the groups’ skin bleeding 

scores (p > 0.05). CWLT had the lowest skin bleeding score, 0.2. The scale loss scores show 

that both cold-water groups had a lower scale loss compared to the warm water group, but these 

differences were insignificant (p > 0.05). The difference between the warm-water short- and 

long-term group is insignificant too, despite three weeks rest post-treatment for the long-term 

group (p > 0.05). 
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Before and after the Thermolicer treatment the fish in the field treated short term group was 

welfare scored. Table 11 shows the welfare scores from the field treated short term group that 

underwent a Thermolicer treatment at 29 °C. 

 

Table 11: Mean welfare indicator scores from the field treated short-term group shown with their standard error mean. 

Checkpoint Skin bleeding Scale loss 

Before Thermolicer 0.1 ± 0.11 0.1 ± 0.11 

After Thermolicer 0.2 ± 0.14 0.5 ± 0.18 

 

The results in table 11 shows a small, insignificant increase in skin bleeding score after the 

Thermolicer treatment compared to before. The difference in scale loss before compared to 

after the Thermolicer treatment was significant and shows an increase in scale loss mean from 

0.1 to 0.5 (p > 0.05). A possible flaw in the method of catching fish after the Thermolicer 

treatment was found and is discussed later. 
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3.2 Histological scores 

The HE-stained sections of gills, pseudobranch and thymus from cold- and warm-water treated 

short term groups were scored histologically. The scale goes from 0 to 3, but there were no 

histopathological changes that affected more than 10 % of the tissue sections. Therefore table 

12 only shows columns for score 0 and 1, mean score for each organ and the n of each group. 

 

Table 12: Histological scores from HE-stained sections of gill, pseudobranch and thymus of the cold and warm water short-

term injuries groups. n differed between the groups and is shown in the table. Scores: 0 (< 5 %), 1 (5-10 %) of tissue affected. 

Group CWST WWST 

Organ/score 0 1 Mean n 0 1 Mean n 

Gills 14 1 0.07 15 9 6 0.4 15 

Pseudobranch 13 0 0.00 13 11 2 0.15 13 

Thymus 8 4 0.33 12 8 5 0.38 13 

 

The results in table 12 shows a small, but significant difference in the number of gills scored 1 

(> 5 % of tissue affected) between the cold- and warm-water treated short term group (p < 0.05). 

This difference was seen in the amount of hyperplasia and some bleedings. In the 

pseudobranchs there was a small, insignificant increase in the number of pseudobranchs scored 

1 between the cold- and warm-water treated short term groups. There was one bleeding found, 

and one tear in the tissue that is likely and artefact of the processing. In the thymus there was a 

small, insignificant increase between the cold- and warm-water treated short term group (p > 

0.05). This was an increase in mucus cells, one bleeding, one hemosiderosis and formation of 

cavities. 
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The HE-stained sections of gills, pseudobranch and thymus from cold- and warm-water treated 

short term groups were scored histologically. The scale goes from 0 to 3, but there were no 

histopathological changes that affected more than 10 % of the tissue sections. Therefore table 

13 only shows columns for score 0 and 1, mean score for each organ and the n of each group. 

 

Table 13: Histological scores from HE-stained sections of gill, pseudobranch and thymus of the cold and warm water long-

term injuries groups. n differed between the groups and is shown in the table. Scores: 0 (< 5 %), 1 (5-10 %) of tissue affected. 

Group CWLT WWLT 

Organ/score 0 1 Mean n 0 1 Mean n 

Gills 4 0 0.0 4 8 2 0.2 10 

Pseudobranch 4 0 0.0 4 8 0 0.0 8 

Thymus 2 0 0.0 2 8 2 0.2 10 

 

The results in table 13 shows a small, but insignificant difference in the number of gills scored 

1 (> 5 % of tissue affected) between the cold- and warm-water treated long-term group (p > 

0.05). This difference was a bleed and lifting of the epithelium in one of the two sections and 

hyperplasia in the other gill section. In the pseudobranchs there was no difference between the 

two groups. In the thymus there was a small, insignificant increase between the cold- and warm-

water treated long-term group (p > 0.05). There were only two sections from CWLT where the 

thymus tissue was located, making the calculation of significance inaccurate. There were no 

significant differences between WWLT compared to WWST in any organ, but both the gills 

and thymus was on average scored higher in the group sampled immediately compared to after 

three weeks. 
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The HE-stained sections of gills, pseudobranch and thymus from the short- and long-term field 

treated groups were scored histologically. The scale goes from 0 to 3, but there were no 

histopathological changes that affected more than 10 % of the tissue sections. Therefore table 

14 only shows columns for score 0 and 1, mean score for each organ and the n of each group. 

 

Table 14: Histological scores from HE-stained sections of gill, pseudobranch and thymus of the field treatment short-term 

injuries group. n differed between the groups and is shown in the table. 0 = none detected, 1 = < 10 % of tissue affected. 

Group FTST FTLT 

Organ/score 0 1 Mean n 0 1 Mean n 

Gills 7 1 0.125 8 8 2 0.20 10 

Pseudobranch 8 0 0.00 8 10 0 0.00 10 

Thymus 3 5 0.60 8 5 3 0.38 8 

 

The results in table 14 shows differences between the gill scores from the field treated short- 

and long-term groups. The mean gill score was higher in the long-term group than in the short-

term, despite having 10 days rest after their Thermolicer treatment. The pseudobranch had no 

scores higher than 0 in either of the groups. The mean thymus score was higher in the short-

term group sampled immediately after their Thermolicer treatment. Significance was not 

calculated as the groups are from two different populations of farmed Atlantic salmon. 
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3.3 Mucus cells 

The results are presented in tukey box plots, where the bottom edge of the box is the 25th 

percentile (first quartile) and the upper edge is the 75th percentile (third quartile). The whiskers 

are 1.5 times the width of the [25th, 75th] interval. Outliers are marked as dots outside of the 

whiskers. 

 

The mucus cells were counted and categorized into either acidic or neutral mucus cells. Figure 

1 shows a comparison between the count of acidic and neutral mucus cells in skin sections from 

the cold- (n=15) and warm-water (n=11) treated short-term groups. The results are made from 

table 1 and 2 in appendix. 

 

 

Figure 1: A tukey box plot comparison of the acidity and count of mucus cells in skin sections of warm- (n=11)  and cold-

water (n=15) treated short term groups. An outlier is marked as a dot. 

 

The results show a mean acidic mucus cell count of 15.3 (SEM ± 5.4) in [0, 34] for WWST and 

27.9 (SEM ± 5.8) in [1, 52] for CWST. Mean neutral mucus cell count was 22.4 (SEM ± 6.6) 

in [0, 34] for WWST and 17.5 (SEM ± 6.4) in [2, 33] for CWST. An outlier at 80 neutral mucus 

cells in CWST is marked as a dot. There was a seemingly large, but insignificant difference in 

acidic mucus cells between the warm- and cold-water treated group (p > 0.05). There was no 

significant difference between the neutral mucus cells (p > 0.05). 



 

- 36 - 

 

The mucus cells were counted and categorized into either acidic or neutral mucus cells. Figure 

2 shows a comparison between the count of acidic and neutral mucus cells in skin sections from 

the warm-water treated long-term (n=10) and the cold-water treated short-term (n=15) and 

group. WWLT is compared to CWST due to low n in CWLT (n = 3). The results are shown in 

tukey box plots made from table 1 and 2 in appendix. 

 

 

Figure 2: A tukey box plot showing the count and acidity of mucus cells in skin sections from the warm-water long-term 

group (n=10) compared to the cold-water short-term group (n=15). An outlier is marked as a dot. 

 

The results show a mean acidic mucus cell count of 18.8 (SEM ± 6.6) in [0.75, 38.35] for 

WWLT and 27.9 (SEM ± 5.8) in [1, 52] for CWST. Mean neutral mucus cell count was 24.5 

(SEM ± 7.7) in [0.3, 47] for WWLT and 17.5 (SEM ± 6.4) in [2, 33] for CWST. There was a 

noticeable, but insignificant difference in the acidic mucus cells between warm-water long-term 

and cold-water short-term group (p > 0.05). An outlier at 80 neutral mucus cells from CWST is 

marked as a dot. There was a noticeable difference in the neutral mucus cells between the two 

groups, but this was insignificant (p > 0.05). There were no significant differences between the 

warm-water short- and long-term group (p > 0.05). 
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The mucus cells were counted and categorized into either acidic or neutral mucus cells. Figure 

3 shows a comparison between the count of acidic and neutral mucus cells in skin sections from 

the field treated short-term (n=8) and cold-water treated short-term (n=15) group. FTST was 

compared to CWST due to low n in the field treated long-term group (n=2). The results are 

shown in tukey box plots made from table 1 and 2 in appendix. 

 

 

Figure 3: A tukey box plot comparison showing the count and acidity of mucus cells in skin sections from the field treated 

short-term group (n=8) and cold-water short-term group (n=11). Outliers are marked as a dot. 

 

The results show a mean acidic mucus cell count of 20.9 in [14,5, 30] for FTST and 27.9 (SEM 

± 5.8) in [1, 52] for CWST. Mean neutral mucus cell count was 4.3 (SEM ± 1.8) in [2, 3,75] 

and 17.5 (SEM ± 6.4) in [2, 33] for CWST. An outlier at 17 neutral mucus cells in FTST and 

80 neutral mucus cells in CWST are marked as dots. There is a noticeable difference in the 

acidic mucus cells between the field treated and cold-water treated group, but this was 

insignificant (p > 0.05). There was a significant and large difference between neutral mucus 

cells in the field treated short term group compared the cold-water short-term group (p < 0.05).  
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The mucus cells were counted and categorized into either acidic or neutral mucus cells. Figure 

4 shows a comparison between the count of acidic and neutral mucus cells in gill sections from 

the cold- (n=11) and warm-water (n=16) treated short-term groups. The results are shown in 

tukey box plots made from table 1 and 2 in appendix. 

 

 

Figure 4: A tukey box plot comparison of the count and acidity of mucus cells in gill sections made from the warm- (n=16) 

and cold-water (n=11) short term groups. Outliers are marked as dots. 

 

The results show a mean acidic mucus cell count of 27.1 (SEM ± 4.4) in [11, 42.5] for WWST 

and 34.4 (SEM ± 4.9) in [22, 39] for CWST. Mean neutral mucus cell count was 7.1 (SEM ± 

3.4) in [0, 3] for WWST and 2.3 (SEM ± 0.5) in [0, 4] for CWST. An outlier at 67 acidic mucus 

cells in CWST is marked as a dot. The three outliers in neutral mucus cells of WWST are 

marked as dots at 20, 37 and 42. There were no significant differences between the warm- and 

cold-water treated short-term groups in acidic mucus cells (p > 0.05). Despite the three outliers 

in the warm-water treated group there were no significant difference between the two groups in 

neutral mucus cells (p > 0.05). 
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The mucus cells were counted and categorized into either acidic or neutral mucus cells. Figure 

4 shows a comparison between the count of acidic and neutral mucus cells in gill sections from 

the cold- (n=5) and warm-water (n=9) treated long-term groups. The results are shown in tukey 

box plots made from table 1 and 2 in appendix. 

 

 

Figure 5: A tukey box plot comparison of the count and acidity of mucus cells in gill sections made from warm- (n=9) and 

cold-water treated long term groups (n=5). 

 

The results show a mean acidic mucus cell count of 22.9 (SEM ± 1.9) in [11, 42.5] for WWLT 

and 21.0 (SEM ± 1.6) in [22, 39] for CWLT. Mean neutral mucus cell count was 2.0 (SEM ± 

0,5) in [0, 3] for WWLT and 0.8 (SEM ± 0.5) in [0, 4] for CWLT. There was a small but 

insignificant difference between the warm- and cold- water treated groups three weeks post-

treatment in acidic mucus cell count (p > 0.05). The difference in neutral mucus cells was 

insignificant in neither the neutral nor acidic mucus cells (p > 0.05). There were no significant 

differences between the warm-water short- and long-term group (p > 0.05). 
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The mucus cells were counted and categorized into either acidic or neutral mucus cells. Figure 

3 shows a comparison between the count of acidic and neutral mucus cells in gill sections from 

the field treated short-term (n=8) and cold-water treated short-term (n=11) group. FTST was 

compared to CWST due to low n in the field treated long-term group (n=2) and interest to see 

short term samples from field compared to controlled experiment. The results are shown in 

tukey box plots made from table 1 and 2 in appendix. 

 

 

Figure 6: A tukey box plot comparison of the count and acidity of mucus cells in gill sections made from field treated short 

term group (n=8) and cold-water short-term group (n=11). An outlier is marked as a dot. 

 

The results show a mean acidic mucus cell count of 10.1 (SEM ± 1.6) in [6.75, 14.75] for FTST 

and 34.4 (SEM ± 4.9) in [22, 39] for CWST. Mean neutral mucus cell count was 0.5 (SEM ± 

0.3) in [0, 1.5] for FTST and 2.3 (SEM ± 0.5) in [0, 4] for CWST. There is a significant and 

large difference in the acidic mucus cells between the field treated and cold-water treated group 

(p < 0.05). There was a noticeable but insignificant difference in neutral mucus cells between 

the field treated short term group compared the cold-water short-term group (p > 0.05).  
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3.4 qPCR analysis 

Outliers in the results are caused by individuals expressing the gene higher or lower compared 

to the reference point. All the results are shown in tukey box plots made from table 4 and 5 in 

appendix. Figure 7 shows the relative expression of interleukin 1  in gills and head kidney 

samples from the warm-water treated short- (n=8) and long-term (n=7) group. Since the cold-

water short-term group was used as base for the calculations of relative expression changes, it 

is not displayed side by side with the corresponding warm-water group, but included as a control 

bar.  

 

 

Figure 7: A tukey box plot comparison of interleukin 1 relative expression in gill and head kidney, on a log2 scale, of warm-

water short- (n=8) and long-term (n=7) groups. A relative expression value over 1 is a relative increase in expression, while a 

value below 1 is a relative decrease in expression compared to control group. An outlier is shown as a dot. 

 

The results show a mean decrease in expression of 0.9-fold (SEM ± 0,1) in [0.72, 0.89] in gills 

from WWST compared to a small increase in mean expression 1.1-fold (SEM ± 0.3) in [0.54, 

1.45] in gills from WWLT. There was a mean increase in expression of 2.4-fold (SEM ± 0.8) 

in [0.55, 4.28] in head kidney from WWST compared to a mean decrease in expression of 0.9-

fold (SEM ± 0.3) in [0.25, 1.35] in head kidney from WWLT. There was an outlier in a gill 

sample from the warm-water short-term group at 1.57-fold increase. 
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Figure 8 shows the relative expression of interleukin 6 in gills and head kidney samples from 

the warm-water treated short- (n=8) and long-term (n=7) group. Since the cold-water short-

term group was used as base for the calculations of relative expression changes, it is not 

displayed side by side with the corresponding warm-water group, but included as a control bar.  

 

 

Figure 8: A tukey box plot comparison of interleukin 6 relative expression in gill and head kidney, on a log2 scale, of warm-

water short- (n=8) and long-term (n=7) groups. A relative expression value over 1 is a relative increase in expression, while a 

value below 1 is a relative decrease in expression compared to control group. Outliers are shown as dots. 

 

The results show a mean increase in expression of 1.8-fold (SEM ± 0.6) in [0.37, 3] in gills 

from WWST compared to a 1.9-fold increase in expression (SEM ± 0.6) in [0.63, 2.25] in gills 

from WWLT. There was a mean increase in expression of 3.2-fold (SEM ± 1.8) in [0.65, 2.53] 

in head kidney from WWST compared to a 1.3-fold increase in expression (SEM ± 0.6) in 

[0.23, 2.13] in head kidney from WWLT. There was an outlier in a gill sample from the warm-

water long-term group at 4.9-fold increase and 15.75-fold increase in a head kidney sample. 
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Figure 9 shows the relative expression of tumour necrosis factor  in gills and head kidney 

samples from the warm-water treated short- (n=7) and long-term (n=6) group. Since the cold-

water short-term group was used as base for the calculations of relative expression changes, it 

is not displayed side by side with the corresponding warm-water group, but included as a control 

bar. 

 

 

Figure 9: A tukey box plot comparison of tumour necrosis factor  relative expression in gill and head kidney, on a log2 

scale, of warm-water short- (n=7) and long-term (n=6) groups. A relative expression value over 1 is a relative increase in 

expression, while a value below 1 is a relative decrease in expression compared to control group. Outliers are shown as dots. 

 

The results show no difference in expression, meaning a 1.0-fold increase/decrease was found 

(SEM ± 0.3) in [0.45, 1.17] in gills from WWST compared to a small increase in mean 

expression 1.3-fold (SEM ± 0.5) in [0.65, 1.76] in gills from WWLT. There was a mean increase 

in expression of 1.6-fold (SEM ± 0.5) in [0.24, 2.94] in head kidney from WWST compared to 

a mean decrease in expression of 0.5-fold (SEM ± 0.2) in [0.09, 1.14] in head kidney from 

WWLT. There was an outlier in a gill sample from the warm-water short-term group at 2.3-

fold increase and 3.8-fold increase in a gill sample from the long-term group. 
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Figure 10 shows the relative expression of heat shock protein 70 in gills and head kidney 

samples from the warm-water treated short- (n=8) and long-term (n=8) group. Since the cold-

water short-term group was used as base for the calculations of relative expression changes, it 

is not displayed side by side with the corresponding warm-water group, but included as a control 

bar.  

 

 

Figure 10: A tukey box plot comparison of heat shock protein 70 relative expression in gill and head kidney, on a log2 scale, 

of warm-water short- (n=8) and long-term (n=8) groups. A relative expression value over 1 is a relative increase in 

expression, while a value below 1 is a relative decrease in expression compared to control group. An outlier is shown as a 

dot. 

 

The results show a mean increase in expression of 1.1-fold (SEM ± 0.01) in [0.98, 1.21] in gills 

from WWST compared to a 0.9-fold decrease in expression (SEM ± 0.1) in [0.51, 1.16] in gills 

from WWLT. There was a mean increase in expression of 1.1-fold (SEM ± 0.1) in [0.98, 1.21] 

in head kidney from WWST compared to a 1.2-fold increase in expression (SEM ± 0.1) in 

[0.77, 1.41] in head kidney from WWLT. There was an outlier in a gill sample from the warm-

water short-term group at 0.64-fold the expression of control. 
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Figure 11 shows the relative expression of interleukin 1  in gills and head kidney samples from 

the field treated short-term (n=8) group. For the field treated group there were no control group 

taken before the treatment started. Due to this the relative expression values of the field treated 

group are calculated using the individual with the lowest expression of each gene as a reference 

value.  

 

 

Figure 11: A tukey box plot of interleukin 1  relative expression in gill and head kidney, on a log2 scale, of field treated 

short term (n=8) group. A relative expression value over 1 is a relative increase in expression of the gene compared to the 

lowest expressing individual of that gene from the field group. 

 

The results show a mean increase in expression of 1.3-fold (SEM ± 0.01) in [0.98, 1.64] in gills 

from FTST compared to the lowest expressing individual for IL1. There was a mean increase 

in expression of 3.7-fold (SEM ± 0.7) in [1.92, 5.61] in head kidney from FTST compared to 

the reference individual. A possible cause of the increased IL1-expression in the head kidney 

is later discussed. 
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Figure 12 shows the relative expression of interleukin 6 in gills and head kidney samples from 

the field treated short-term (n=8) group. For the field treated group there were no control group 

taken before the treatment started. Due to this the relative expression values of the field treated 

group are calculated using the individual with the lowest expression of each gene as a reference 

value.  

 

 

Figure 12: A tukey box plot comparison of interleukin 6 relative expression in gill and head kidney, on a log2 scale, of field 

treated short term (n=8) group. A relative expression value over 1 is a relative increase in expression of the gene compared to 

the lowest expressing individual of that gene from the field group. 

 

The results show a mean increase in expression of 2.3-fold (SEM ± 0.6) in [1.09, 3.63] in gills 

from FTST compared to the lowest expressing individual for IL6. There was a mean increase 

in expression of 6.3-fold (SEM ± 4.3) in [1.39, 3.90] in head kidney from FTST compared to 

the reference individual. An outlier in a head kidney sample at 31.71 is marked as a dot and 

increases the mean and SEM significantly from 2.0 (SEM ± 0.4). 
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Figure 13 shows the relative expression of tumour necrosis factor  in gills and head kidney 

samples from the field treated short-term (n=7) group. For the field treated group there were no 

control group taken before the treatment started. Due to this the relative expression values of 

the field treated group are calculated using the individual with the lowest expression of each 

gene as a reference value.  

 

 

Figure 13: A tukey box plot comparison of tumour necrosis factor  relative expression in gill and head kidney, on a log2 

scale, of field treated short term (n=7) group. A relative expression value over 1 is a relative increase in expression of the 

gene compared to the lowest expressing individual of that gene from the field group. An outlier is marked as a dot. 

 

The results show a mean decrease in expression of 0.9-fold (SEM ± 0.3) in [0.49, 1.0] in gills 

from FTST compared to the lowest expressing individual for TNF. There was a mean increase 

in expression of 9.0-fold (SEM ± 2.7) in [2.71, 14.74] in head kidney from FTST compared to 

the reference individual. An outlier in a gill sample is shown as a dot on 2.53. 
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Figure 14 shows the relative expression of heat shock protein 70 in gills and head kidney 

samples from the field treated short-term (n=7) group. For the field treated group there were no 

control group taken before the treatment started. Due to this the relative expression values of 

the field treated group are calculated using the individual with the lowest expression of each 

gene as a reference value. 

 

 

Figure 14: A tukey box plot comparison of heat shock protein 70 in relative expression in gill and head kidney, on a log2 

scale, of field treated short term (n=8) group. A relative expression value over 1 is a relative increase in expression of the 

gene compared to the lowest expressing individual of that gene from the field group. An outlier is marked as a dot. 

 

The results show no change in expression, meaning a 1.0-fold increase/decrease (SEM ± 0.1) 

in [0.69, 1.1] in gills from FTST compared to the lowest expressing individual for HSP70. There 

was a mean increase in expression of 1.1-fold (SEM ± 0.01) in [0.89, 1.42] in head kidney from 

FTST compared to the reference individual. An outlier in a gill sample is shown as a dot on 

0.03. This outlier expressed HSP70 significantly lower than the rest of the group, raising 

suspicion of human error in the qPCR-analysis, see sample 699 in table 6 in appendix. 
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4. Discussion 
The Atlantic salmon fish farming industry’s growth has lessened over the last couple of years. 

Of the 13 zones the coast is divided into, two zones had to stop their growth while another two 

zones had to reduce their total biomass [114]. The lessened growth is caused by regulatory 

measurements due to the salmon louse, Lepeophtheirus salmonis. When present in large 

numbers, this ectoparasite can cause damage to the farmed salmon by feeding on the mucus and 

skin layer, opening it up to infections and osmotic stress. However, the biggest concern is the 

impact of the spread of lice from farmed salmon to their wild counterpart. This has led to strict 

regulations laid down by the regulatory authorities demanding delousing treatments when the 

average number of parasites reaches a fixed limit. Combating this threat is estimated to costing 

the industry between 4.5 to 5 billion NOK yearly, 2 billion of that is in treatment costs [115]. 

 

A Thermolicer treatment uses a 30 second exposure to high temperature water (28-34 °C) to 

remove salmon louse from the salmon. A single treatment is not always enough, leading to 

repetitive treatments to completely delouse the salmon. After the treatment there is often a 

period of increased mortality in the treated sea cages. Examined salmon showed macroscopical 

injuries to the gills, skin, snout and eyes. Using the welfare indicators from FISHWELL the 

fish were macroscopically examined before tissue sampling [80]. Histological exams of the 

gills and skin supported the macroscopical signs, showing aneurisms and lifting of the 

epithelium in the gills along with scale loss and thinning, or removal, of the epidermis in the 

skin [85].  

 

The focus in this master thesis has been on the effect of a 30 second 34 °C warm-water treatment 

compared to a full-scale Thermolicer treatment on Atlantic salmon. Firstly, the 30 second 

warm-water treatments were done in a controlled setting. This removes the unknown variables 

found in the field, for instance the crowding time, rough weather and collisions between 

conspecifics or sea cage equipment. Secondly, two field samplings were done, one during a 

Thermolicer treatment procedure and one ten days post treatment. This was done to compare 

full-scale Thermolicer treatments with a controlled warm-water treatment at 34 °C for 30 

seconds in controlled laboratory settings. In addition to welfare scoring and histological 

examinations a qPCR analysis five stress related genes were chosen. These were interleukin 1, 
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interleukin 6, tumor necrosis factor , complement factor C3 and heat shock protein 70. 

Changes in gene expression is shown as relative expression compared to control by using the 

Ct-method. 

 

4.1 Welfare scores 

One way to get insight into an individual’s state of being is through a set of parameters called 

welfare indicators. Bleeding in the skin and eyes, loss of scales, wounds and so on are individual 

welfare indicators. These describe the condition of a single individual, it’s not straight forward 

to extrapolate these indicators to population level, say a population of 200 000 individuals in a 

typical sea cage. It is therefore important to be critical when looking at a sea cage’s mean values 

of welfare indicator scores [22]. Group based welfare indicators exist, but are focused more on 

overall mortality, behaviour, surface activity and as such is not an optimal indicator of how the 

fish is faring immediately after a treatment [80]. Therefore, one must rely on the individual 

based indicators to estimate how rough an operation like a Thermolicer treatment is on the 

population. 

 

The mean welfare scores from the controlled and field experiment were meant to give a 

macroscopical indication of the individuals’ condition. In the controlled experiment, mean skin 

bleeding scores showed no significant differences between either of the warm-water groups 

compared to their cold-water control groups. There was no significant difference between the 

mean skin bleeding score of the warm-water short-term and long-term group either. This is 

despite the long-term group having three weeks to recover from its treatment. As mentioned 

earlier, superficial wounds heal quickly, depending on the temperature, in Atlantic salmon [87, 

116, 117]. Furthermore, it is proved that handling involving handling the fish and/or taking it 

out of water is a stressor and a cause of abrasions, bruises and scale loss [118-120]. 

 

One possible reason for the similar skin bleeding score of both warm-water short-term and long-

term groups is that the temperature itself did not cause a macroscopical effect on the skin after 

the treatment. The skin bleeding that was observed might have been caused by netting the fish 
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into the treatment box before submerging it into the treatment tank. This is also a possible 

explanation of the similar skin bleeding scores of cold-water and warm-water groups. 

 

The field group was also scored for skin bleeding: before and immediately after going through 

the Thermolicer. At both checkpoints, before and after, the mean skin bleeding score was lower 

than the controlled experiment scores. In theory the field group underwent the same procedures 

as the controlled ones: crowding, treatment and release. One difference is that the fish from the 

controlled experiment was netted one at the time, meaning the whole fish was in contact with 

the net at some point. In the field, moving the fish is done through pumps, this means it is never 

out of water and there are no nets involved. As stated earlier there is a possibility for collisions 

between conspecifics and the sea cage walls, but this is a guarantee. A reason for the differences 

between controlled groups and the field group is that the individuals in the field got lucky. The 

fish from the field group might not have had any, or few, collisions with conspecifics, nets or 

walls during the treatment. 

 

In the documentation by Grøntvedt et al. 2015 the effect and welfare of Atlantic salmon going 

through the Thermolicer machine was tested at four different fish farms, three of these were 

Atlantic salmon and one was Rainbow trout. The salmon had a mean weight of 2 kg, which puts 

them between our controlled experiment groups and the field experiment groups. 40 salmons 

were taken from each fish farm before and after the treatments, as well as at week 1, 2 and 3 

post treatment. At each sampling they were welfare scored according to the Veterinary 

Institute’s protocol for welfare scoring [68]. There were no significant skin bleeding score 

differences before/after the treatment at neither of the three Atlantic salmon farms. Our findings 

from both the controlled and field experiment agrees with this. 

 

The mean scale loss scores showed no significant changes between the warm-water groups 

compared to their cold-water control groups. There was not a significant difference between 

the mean scale loss score of the warm water short-term group and long-term group either. Mean 

scale loss score in the field was significantly higher after going through the Thermolicer 

compared to before the treatment. This was also seen in one of the three Atlantic salmon fish 



 

- 52 - 

 

farms the Thermolicer was tested on as part of its documentation [68]. An explanation to this 

might lie in the method of catching the fish after they have been through the Thermolicer. The 

way this is done is by pushing a circular capture net below the pipe pumping fish from the 

wellboat back into the sea cage. The fish is pumped at a decent speed through the pipe and gets 

dropped around 1.5 meters from the end of the pipe down into the net. This leads to collisions 

with the capture net wall at quite a high speed, possibly leading to scale loss [118, 120]. This 

could suggest the scale loss is not necessarily caused by the Thermolicer itself. 

 

Another factor at play might be the size of the fish. The fish in the field study was on average 

almost twice the size of the fish used in the controlled experiment, and larger weight and larger 

muscular mass might increase the likelihood of the fish injuring itself while opposing the 

treatment. The mean weight in Grøntvedt et al. 2015’s documentation was 2 kg, placing it in 

between our own two experiment groups and, in our case, eliminating this factor. 

 

4.2 Histopathological examination 

Histopathological examinations were performed to give an indication of possible microscopical 

changes within the controlled study and field group. The sections were scored on a simple 

system of 0-3 based on the percentage of tissue affected; 0 (< 5 %), 1 (5-10 %), 2 (10-50 %) 

and 3 (>50 %) [121]. Of the histopathological changes we observed there were only mild 

changes in the tissue, where between 5 and 10 % of the tissue was affected, giving it a score of 

1. 

 

Thymus is not normally sampled for routine diagnostics in the industry today, but was sampled 

in our experiment due to its important immunological function in the adaptive cellular immune 

system (the transport and maturation of T-cells) [122, 123]. The main findings in the thymi 

examined from both the controlled study and field group were formation of cavities and increase 

in mucus cells in the thymus tissue beneath the epidermis. Such changes have by some authors 

been discussed as normal findings, with the degree of occurrence showing normal variations 

depending on season, life stage and sex [124]. One fish in the warm-water short term exposure 

group from the controlled experiment had a focal hemosiderosis and a small bleeding. Whether 
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this single observation can be related to the thermal treatment is uncertain, and it is not 

uncommon to macroscopically see focal bleedings in the thymus of salmon that has been 

subjected to stressful events [125]. 

 

Mean thymus scores were insignificant in all the controlled experiment groups. The lack of a 

control group to compare the field Thermolicer group treatment with is a weakness in the study 

that will be discussed later. However, as an estimate, comparing the thymus score of the field 

group with the cold-water short-term group acting as control, shows no significant difference. 

Thymus was not sampled in the documentation study of Grøntvedt et al. 2015 but was sampled 

in the pilot study of Gismervik et al. from 2019. There were no significant differences between 

the two studies’ examinations of sampled thymus from warm-water treated fish [86].  

 

Gismervik et al. 2019 used a longer exposure time (90-140 s.) and a different scoring system 

(sparse, moderate, severe) compared to ours (30 s.) and 0-3 [86]. We chose 0-3 like George et 

al. 2016 since numbers with percentages are less dependent on the readers perspective of what 

sparse, moderate and severe changes look like. However, their scoring results are translatable 

and agree with ours when it comes to mean gill scores. In the controlled experiment, the warm 

water treated short-term group showed a significantly higher gill score compared to the cold-

water treated group. However, significant differences, the degree of changes were qualitatively 

defined as mild. The score differences are mainly based on hyperplasia and light clubbing of 

the tips of the lamella. One of the fishes from the warm-water short term group had 5 closely 

grouped aneurisms in an area of the filament but it did not cover enough of an area to warrant 

a score of 2. It is not possible to prove whether it was caused by the heat or collision with a 

wall, or whether it represents a sampling artefact. In the long-term groups, there were no 

differences in gill score between warm- and cold-water treated groups. 

 

Comparing the effect of the Thermolicer field treatment is complicated by the lack of a control 

group sampled before the treatment began. However, by comparing the Thermolicer field 

treatment group with the cold-water short-term group as an estimate, no significant difference 

in mean gill score was seen. This disagrees with the findings of Grøntvedt et al. 2015. In the 
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three Atlantic salmon farms sampled the gills showed active bleeds, in two of the three farms 

this bleeding was described as acute [68]. Active bleeds in addition to aneurisms were also 

found in gill sampled from deceased Thermolicer treated salmon according to Poppe et al. 2018. 

As discussed earlier in the welfare section, handling is known to cause damage to the fish. Panic 

reactions from the warm water could explain the higher mean gill score in the controlled warm-

water group. As the fish panics inside of the treatment box, it collides with the walls. This might 

be a likely cause, seeing how there was no significant difference between the field treated group 

and the cold-water short-term group. However, this does not explain the difference between the 

field treated group and the fish farms in the documentation study of Grøntvedt et al. 2015. The 

Thermolicer has been in active use for five years and has gone through several models of the 

machine setup, from the prototype testing in 2014 to the Thermolicer System V in 2017 [126]. 

However, the temperature in the treatment chamber is still between 28-34 °C. A possible 

explanation might lie in the advancement and experience gained in usage of the Thermolicer 

procedure. Efficiency in crowding, pumping and treating the fish may affect the possibility of 

injury the fish is exposed to as well as dedicated wellboats streamlining the process.  

 

Observations in this and other recent studies differs somewhat with the qualitative descriptions 

given by Grøntvedt et al. 2015 and Poppe et al. 2018. This might stem from the fact that the 

observations in the two mentioned publications are from earlier versions of the Thermolicer-

machine compared to the Thermolicer in this thesis’s field group. Thus, it is tempting to suggest 

that improvement of the equipment and operation procedures may have a role in the lower 

severity of injuries found in this study, although other factors cannot be excluded. 

 

Pseudobranch is another organ that is not usually sampled [86]. It has an important function in 

supplying the eyes with oxygenated blood [127]. There were no signs of histological changes 

in any of the groups except for one small bleeding and one tear in the lamellar tissue, both found 

in the warm-water short-term group. The tear is likely an artefact from the processing process. 

Gismervik et al. found no histological changes in their study, even though their exposure time 

was 2-5 times as long as ours. 
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The decision to include the pseudobranch was made due to its superficial location and that little 

is known about how it is affected Thermolicer treatments [85, 127]. Its role is not as 

immediately life threatening for the fish compared to the gills, but damage to the pseudobranch 

will be a negative influence on the eyes’ blood supply. The Atlantic salmon is a visual hunter, 

meaning it relies on its vision to hunt for food [128]. Damage to the pseudobranch in Atlantic 

salmon infected with the parasite Parvicapsula pseudobranchiola shows how the fish is 

affected by pseudobranchial damage. In infected fish, bleeding in the eyes may occur and as 

the infection progresses this causes a loss of vision or blindness as the oxygen and blood supply 

diminish over weeks or months [129]. Pseudobranch was not one of the organs examined in the 

documentation study of Grøntvedt et al. 2015, so comparing how the pseudobranch was 

affected by Thermolicer treatments in 2015 compared to 2020 is not possible. 

 

Nostrils, eyes and kidneys were also sampled as mentioned in earlier. The nostrils were 

examined by Gismervik et al. 2019, but at 34 °C and at 2-5 times the exposure time compared 

to our study there was only seen histopathological changes in one fish. They note that the 

nostrils are not usually sampled, meaning the interpretation of the results should be done 

carefully as the results might be caused by artefacts from the processing. Inexperience with the 

processing and sectioning of nostrils in our experiment made it difficult to get meaningful 

results. The sections made were often full of artefacts. It was often difficult to make a proper 

section due to the cartilage around the nasal cavity. After experimenting with different 

processing and trimming of the nasal cavity it was decided to not continue sectioning to focus 

our efforts on the organs we had success in sectioning. 

 

Sectioning the large eyes was a challenge. The marble size of the eyes meant they had to be 

trimmed into a processable size. This was probably the step where artefacts such as tears and 

crumbling were made. In 4 out of 6 sections made to experiment with the processing method 

the cornea was crumbled or teared, likely due to poor processing skills. Gismervik et al. 2019 

found epithelial changes in the cornea of one of the salmons treated at 34 °C after a longer 

treatment time. 
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The kidneys were sampled since we were already sampling the head kidney for qPCR-analyses. 

Gismervik et al. 2019 found no histopathological changes in the kidneys at the same 

temperature and longer treatment time. Due to this the kidneys were not prioritized for 

sectioning. Another thing to note is that due to the large size of the salmon there is a lag before 

the body temperature starts to increase after being submerged in warmer water [130]. In other 

words, the 30 seconds treatment time might not influence the internal organs, which agrees with 

the results of Gismervik et al. 2019. 

 

Fry 1971 saw a difference in the thermal tolerance between the genders of guppies [108]. We 

gendered the fish sampled in our experiment, but there was no difference between the genders 

in the histopathological examinations of thymus, gills or pseudobranch. 

 

The lack of a control group for the field short-term is a critical weakness when it comes to 

comparing and concluding results. We were given a two-hour notice before we had to leave if 

we wanted to make it to the fish farm before the Thermolicer treatment was scheduled to begin. 

When we arrived at the fish farm the delousing was underway making it impossible to get both 

a control group and a treated group, even though there were enough equipment to sample both. 

There was only one pair of hands available, so the option was to either go to another un-treated 

sea cage to sample control groups or stay with the Thermolicer to get samples from treated fish. 

Additionally, FTLT was not from the same fish farm as FTST and was sampled mostly because 

we got access to a population of fish that had undergone a Thermolicer treatment and was 

curious about how it looked 10 days later. We followed the method of Grøntvedt et al. 2015, 

but our results disagree with the acute bleedings they found. The treatment temperature used in 

the documentation is not mentioned, it might have been higher than the 29 °C used in our 

treatment. 
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4.3 Mucus cells 

Mucus cells, or goblet cells, are a type of cell producing the mucus layer covering the epithelial 

surfaces of the fish. The mucus cells can produce glycoproteins of different acidity; some are 

acidic, and some are neutral. Which acidity the glycoproteins have are produced have been 

shown to change under stressing and environmental factors [84]. The mucus layer’s function as 

an antimicrobial barrier have however been known for years and a change to this system might 

expose the fish to possible infections [131]. 

 

There are two major glycoprotein components in the mucus [83, 132] amongst other minor 

components [133]. The glycoproteins’ role in the mucus layer is not fully understood, but they 

are known to act as agglutination factors [132]. Based on this we wanted to look for changes 

before and after warm-water treatments. Using AB-PAS staining the acidic cells will be 

coloured a deep blue colour compared to the red/magenta colouring of the neutral cells. How 

changes in the epidermal mucus cells affects the fish is an area that needs further study [134]. 

 

We examined sections of skin and gills, following the method of T. C. Fletcher et al. 1976 who 

looked at Rainbow trout and Karlsen et al. 2018 who looked at Atlantic salmon. In the skin 

sections from CWST and WWST there were no significant changes in mucus acidity, i.e. no 

significant change from acidic to neutral. It was only possible to get sections of skin properly 

sectioned from 3 fish in the CWLT group for reasons explained earlier. Comparing WWLT to 

CWST showed no significant differences. 

 

A weakness in the sampling, as mentioned earlier and discussed later, was no control group 

sampling before the Thermolicer treatment. Therefore, FTST is compared to CWST from the 

controlled experiment. There was a significant difference in the number of neutral mucus cells 

from sections of skin. The number of neutral mucus cells in FTST was significantly lower than 

in CWST. Since there is no control group it is not possible to determine if this was caused by 

the Thermolicer or if there was no change between before/after the treatment. 
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In the gill sections from the controlled experiment there were no significant differences between 

CWLT and WWLT in neither of the mucus cell types. There were no significant differences 

between CWST and CWLT, nor between WWST and WWLT. In the field experiment there 

was a significant difference between FTST and CWST. Same as with the skin cells, this might 

not have been a drastic change compared to before the Thermolicer treatment, but there is no 

control group to compare this to. 

 

There is, to the best of our knowledge, a lack of studies on the effect of acute thermal 

stress/Thermolicer treatments on the glycoproteins in mucus cells. Handling, stress and 

environmental factors affect the mucus layer as discussed earlier, but not how it effects the cells 

directly. The importance of the mucus layer for the welfare and survival of the fish is perhaps 

overlooked in the welfare scoring after Thermolicer treatments as it is not easily visible to see 

a damaged mucus layer. 

 

If the experiment was to be repeated it should include a proper control group for FTST as 

discussed previously, and FTLT should either be sampled properly with a control group or not 

be included at all. Due to the circumstances regarding Covid19 the mucus cell counts were not 

blinded, but it was repeated by the same person to check for differences. There is software 

available that can assist in the counting of mucus cells by filtering colours in an image. This is 

helpful in situations with a mix of acidic and neutral glycoproteins inside the same cell. In most 

of the skin and gill sections the colours were easy to distinguish and count, so no software was 

employed in this experiment. 
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4.4 Changes in gene expression 

After an exposure to a stressful event the gene expression within the cells of the body alters to 

better adjust to the situation. In the controlled experiment the control group samples were taken 

after the fish had undergone a cold-water treatment. Since handling is a known stressor, and 

most of the genes’ expression changes under stress, there might be no discernible difference 

between the warm-water and cold-water treated fish. In the field experiment the samples were 

taken before and after a Thermolicer treatment. All samples were stored at RNAlater at -20 °C. 

The protocols from the two kits, RNeasy 250 mini-kit (Qiagen) and Quantitect Reverse 

Transcription-kit (Qiagen), was followed. These kits were chosen for their ease of use, previous 

experience with and their reliability vs. cost per sample ratio. We used a qPCR-analysis of 

samples from before and after either a 30 second 34 °C warm-water treatment or full-scale 

Thermolicer treatment. The changes in relative gene expression compared to the control group 

was quantified using the Ct-method. 

 

Interleukin 1  is an important part of the first reaction to stress, and as such it was hypothesized 

that there would be an increase in its expression after a warm-water treatment. An important 

point to mention is that the field group’s relative expression was calculated by using the 

individual with the lowest expression of each gene as a reference point. In a study by Fast et al. 

2008 on Atlantic salmon, IL1 was significantly upregulated at 1 and 3 hours after a stressing 

event, but not at 0h or 24h after [92]. We euthanised the fish shortly (> 10min) after the warm-

water treatment, and shortly after the Thermolicer treatment. This could mean we missed the 

sampling window and should have delayed the sampling. In the field group the mean of the 

head kidney’s relative expression of IL1 looked almost twice as high as in WWST. This could 

look like a high difference between the two experiment groups, but it could likely be a result of 

no control group for the field group. However, there is an external factor that could in fact make 

this a real difference in expression of IL1, even if you cannot directly compare the controlled 

experiment and the field group. 

 

An infection with Lepeophtheirus salmonis has been shown to increase the expression of IL1 

in head kidneys of Atlantic salmon 21 days post infection. The field group underwent a 
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Thermolicer due to the fish farm’s high mean mature female salmon louse in the weeks leading 

up to the treatment. This means an increased relative gene expression of IL1 in the field group 

is not necessarily caused by the Thermolicer treatment, nor is it necessarily merely a result of 

what the calculations are based on. 

 

Changes in the expression of interleukin 6 has been seen after increased physical activity in 

humans. Atlantic salmon in both the 30 second 34 °C and full-scale Thermolicer treatments are 

exposed to a highly stressful physiological event, so the expression of IL6 was hypothesised to 

increase after the treatment. Nielsen et al. 1996 saw a rapid increase in IL6 following physical 

activity in humans, but this was thought to be due to a decrease in plasma volume [100, 135, 

136]. This could explain the differences in the spread of relative expression, as the fish is 

actively trying to avoid its environment as seen by Elliott 1991 on salmonids [137]. 

 

Another reason to believe that the differences are not caused by changes in expression is that 

the expression of IL6 increases after 45-120 minutes post-stress in humans according to Steptoe 

et al. 2007. This points to delaying the sampling of organs for qPCR-analysis to hit the 

expression window. The hypothesis that because IL6 has an expression window of 45-120 min 

post treatment has a flaw in it; humans have a higher core temperature which alters the 

pharmacokinetics [138]. In gilt-head seabream (Sparus aurata) and zebrafish (Danio rerio) the 

expression of interleukin 6 has its peak between 180-360 minutes post stress [139, 140]. 

 

Tumor necrosis factor  has several overlapping functions with IL1. This means it should 

have an early expression to react to potential infections and to act pro-inflammatory. In a meta 

study on humans it was found that the concentration of TNF increased 31-50 minutes after a 

stressor was encountered, but not later than 50 minutes [141]. An in vitro study on six cell lines 

from Rainbow trout by Hong et al. 2013 showed an increase in the gene expression of TNF 

between 15-30 minutes after applied stress in the form of a bacterial infection. This makes it 

plausible that we may have hit the sampling window in our field group. If the Thermolicer 

treatment itself was not causing an increased expression, then another possible reason for an 

increased gene expression may be the salmon louse [142]. In Fast et al. 2006 the gene 
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expression of TNF in head kidney was significantly higher 9 days post-infection compared to 

uninfected Atlantic salmon in their control group, which agrees with our results. 

 

Heat shock protein 70 is constitutively expressed in cells due to its important function in 

maintaining the homeostasis and assisting in protein folding. Its expression is upregulated by 

temperature changes, meaning there should be a noticeable increase in expression following the 

warm water/Thermolicer treatments. Logan et al. 2011 in a study on cooper (Gillichthys 

mirabilis) found there to be a significant upregulation of HSP70 regardless of the fish’s 

acclimation temperature. The Atlantic salmon lives in a colder climate than coopers, this could 

affect the pharmacokinetics of when the gene increases/decreases in expression. In the 

controlled experiment groups this was not seen, nor was it seen in the field group, where the 

lowest HSP70 expressing individual was within a 1-fold increase of the highest expressing one. 

Either we sampled too early for the expression changes to kick in, or our results disagree with 

Tomanek et al. 2010 and Logan et al. 2011, which is less likely than us missing the sampling 

window. Logan et al. 2011 did the first sampling after one hour of heat stress, supporting the 

hypothesis of us missing the window by sampling less than 10 minutes after the heat stress. 

 

A point to mention is that the whole operation is stressful; the crowding, pumping and general 

handling of the fish is a stressor. This means that the changes in gene expression might very 

well have started by the time the fish was sent through the Thermolicer and sampled afterwards. 

If we had a control group of fish that was sampled earlier in the day, before the whole delousing 

process began, we could have tested this hypothesis. 

 

The genes chosen in the experiment were picked out after we had done the sampling, which 

means that by the time we read the relevant literature regarding when the increased expression 

is seen, we had already sampled. If the experiment were to be repeated one should take this into 

consideration. However, when planning in vivo experiments, what is ideal for the gene we want 

to examine might not be practically doable. Adding four more genes to the mix makes it near 

practically impossible to sample once and hit all the hypothetical sampling windows. This is 
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especially true for conditions like those in the field treatment where we had no say in how 

quickly the treatment was completed. 

 

There are several reasons for the lack of statistical analysis of the qPCR-analysis. Firstly, the 

costs of the qPCR-analysis lowered the number of samples analysed leading to a high standard 

deviation due to the low n (n = 6-8). However, it is normal to run qPCR and statistical analyses 

like ANOVA on a low n as seen in other studies on Atlantic salmon [143, 144] . Secondly, in a 

study on the gene expression within the same population of the teleost genus Fundulus there 

was often up to a 2-fold difference between individuals [145]. The samples within the controlled 

and field experiment were quite spread, as shown in the results. Due to these factors there was 

not done any statistical analysis on the relative expression data due to the high probability for 

error. 

 

There is less value in comparing the differences in relative expression between the experiment 

groups compared to what the lack of differences may tell us. The differences we found can to a 

degree be explained by the natural spread of the gene expression within a population. Since 

there is a natural spread in the expression of genes, there are individuals who respond to 

treatment with stronger or weaker gene expression than others. This could have had an effect 

during the sampling. We may have sampled fish that were all expressing a gene strongly in one 

group compared to a mixed group of strong and weak expression in another group, giving us a 

larger spread.  If we take away these effects, what does the lack of clear changes in the 

expression tell us? Ignoring the debate about different perspectives of what is a clear change 

and not, what does the gene expressions we found, coupled with our histopathological findings, 

say? 

 

We planned this experiment with thoughts of how we were going to find massive aneurisms 

like those from the diagnostical laboratory’s report, acute bleedings filling the gill cavity like 

those found in the documentation from 2015. Based on these assumptions we expected to find 

clear indicators of stress; expression changes that could not be explained by randomness or 

individual spread of expression, but rather caused by the immune system reacting to what, in 
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2015, was proved to be a harsh treatment. Our qPCR-analysis supports our histological 

examinations in the claim that there was no significant change before and after treatment in 

either of our experiments within the limitations set by sampling sizes, methods used and (lack 

of) control groups. 

 

 

4.5 Future work 

A future study should continue work on the repetitive treatments with proper control groups 

in the field. The welfare documentation of Grøntvedt et al.’s 2015 main concern regarding the 

Thermolicer was the severe gill injures seen in all four fish farms. In our field study we found 

no significant gill changes compared to our cold-water treated control group. A larger sample 

size is needed to conclude that there has been a significant improvement in fish welfare since 

2015. Another area worth looking into is the minimum recuperation time needed at a given 

temperature to make sure treatments are scheduled far enough apart to avoid overwhelming 

the salmon’s ability to recover. In our experiment we did not manage to quantify the effect of 

heat itself and how it plays a role on warm-water treatments of Atlantic salmon, like a 

Thermolicer delousing treatment. Improvements and changes to the experiment setup and 

methods should be considered. 
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 5. Conclusion 
There were no significant changes in mean skin bleeding and scale loss scores of the groups 

in the controlled experiment. We did not find any significant difference between the 34 °C 

treated and full-scale Thermolicer treated fish regarding skin bleeding score. The scale loss 

was significantly higher after the Thermolicer treatment. Both results agree with the findings 

of Grøntvedt et al. 2015. However, these changes in scale loss might have been caused by the 

method of catching the fish after the treatment. 

 

The histopathological examinations showed no significant changes in samples of thymus and 

pseudobranchs from all groups. In the gills there was a small, significant difference between 

the warm- and cold-water treated short-term group seen as hyperplasia and/or bleeding. There 

was no significant difference from the cold-water short-term group compared to Thermolicer 

treated group, raising doubts about the results from the warm-water short-term group being 

caused by the temperature alone. 

 

In the mucus cell counts and acidity in the skin we found no significant differences in the 

controlled experiment groups. In the field there was a significantly lower number of cells in 

total compared to the controlled experiment groups. In the gills there were no significant 

differences in count nor acidity between any of the controlled experiment groups. There was a 

significant difference in total mucus cell count in gills between field and controlled 

experiment group. 

 

The qPCR-analyses showed a wide spread in the expression of genes amongst the individuals 

in each group. IL1 and TNF was stronger expressed in head kidney of both warm-water 

treated and field treated fish compared to control/reference fish. In the warm-water treated 

fish this is suspected to be cause by individual differences within a populations. In the field 

treated fish, the salmon louse may have had an effect in the increased expression of IL1 and 

TNF in addition to the individual variation. 
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Appendix I – Reagents 
 

Reagents 

Alcian blue solution pH 2,5 (Merck) 

 

Bluing 

 

Decalc decalcifying fluid (Histolab) 

 

Ethanol (VWR Chemicals) 

 

Eukitt (Merck) 

 

Fast Sybr Green (Applied Biosystems) 

 

Formalin 

 

Gill’s hematoxylin III solution (Merck) 

 

Heat shock protein 70 fwr/rev primer ( 

 

Histoclear (National Diagnostics) 

 

Histowax (Histolab) 

 

Hydrochloric acid (Merck) 

 

Periodic acid 0,5 % (Merck) 

 

Quantitect Reverse Transcription-kit (Qiagen) 

 

RNeasy mini-kit 250 (Qiagen) 

 

Schiff’s reagent solution (Merck) 

 

Shandon Instant Eosin (Y) (Thermo Scientific) 

 

Tricaine (Pharmaq) 

 

 

 

 

 

 

 

 

 

 

 

 

Concentration/content 

 

 

75 µl NH3 + 225 ml dH2O. 

 

 

 

96 % & absolute EtOH. 

 

 

 

 

 

100 ml 37 % formaldehyde + 900 ml PBS. 

 

 

 

 

 

 

 

 

 

300 µl + 225 ml 70 % EtOH 



 

- 75 - 

 

Appendix II – Data material 
 

Table 1: Summarized raw data from the mucus cell typing and count from skin sections. 

 

Group/mucus colour 

 

Acidic mucus cells 

 

SD 

 

Total 

 

Neutral mucus cells 

 

SD 

 

Total 

CWT day 1 (n=15) 27,93 21,79 419 20,5 23,86 262 

WWT day 1 (n=11) 15,27 17,22 168 22,45 20,76 247 

CWT day 21 (n=5) 1,67 2,36 5 35,67 7,76 107 

WWT day 21 (n=10) 18,8 19,72 188 24,5 23,28 245 

FT day 0 (n=8) 20,88 9,28 167 4,25 4,95 34 

FT day 10 (n=2) 33,5 2,5 67 10 2 29 

 

 

Table 2: Summarized raw data from the mucus cell typing and count from gill sections. 

 

Group/mucus colour 

 

Acidic mucus cells 

 

SD 

 

Total 

 

Neutral mucus cells 

 

SD 

 

Total 

CWT day 1 (n=11) 34,45 15,44 379 2,27 1,65 25 

WWT day 1 (n=16) 27,06 16,92 433 7 13,15 113 

CWT day 21 (n=5) 21 3,29 105 0,8 1,17 4 

WWT day 21 (n=9) 22,89 5,34 206 2 1,33 18 

FT day 0 (n=10) 10,13 4,28 81 0,5 0,86 4 

FT day 10 (n=2) 3,6 3,77 36 0,3 0,9 3 
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Appendix III – qPCR data 
 

 

Table 3: Overview of primers used in the qPCR-analysis. Due to circumstances regarding the 

covid19-outbreak the IL6 effectiveness was not calculated. 

Gene Primers 5'->3' Acc. nr. Effectiveness Publication 

ssEF1a Fw TGCCCCTCCAGGATGTCTAC BG933853 2,16 Link 

ssEF1a Rev CACGGCCCACAGGTACTG BG933853 2,16 
 

ssC3-1 Fw TCCCTGGTGGTCACCAGTACAC BI468074 1,95 Link 

ssC3-1 Rev ATGATGGTGGACTGTGTGGATC BI468074 1,95 
 

ssTNF alpha 2 

Fw 

TGCTGGCAATGCAAAAGTAG AY848945 1,7 Link 

ssTNF alpha 2 

Rev 

AGCCTGGCTGTAAACGAAGA AY848945 1,7 
 

ssHSP70 Fw CCCCTGTCCCTGGGTATTG BG933934 2,05 Link 

ssHSP70 Rev CACCAGGCTGGTTGTCTGAGT BG933934 2,05 
 

ssIL-6 Fw CGAGTGTACCAGCTTCTTCTT XM_014143031 Unknown 
 

ssIL-6 Rev GGTCTTTGACCAGCCCTATC XM_014143031 Unknown 
 

ssIL-1b1 Fw GCTGGAGAGTGCTGTGGAAGA XM_014170479 1,92 Link 

ssIL-1b1 Rev TGCTTCCCTCCTGCTCGTAG XM_014170479 1,92 
 

 

Table 4: Overview of the CT-values of all genes and groups from gill samples. 

Gill CWST WWST CWLT WWLT FTST 

Gen Spread Avg. Spread Avg. Spread Avg. Spread Avg. Spread Avg. 

EF1- 18,36-22,91 20,53 17,75-24,56 20,39 18,03-20,95 19,47 18,4-25,19 21,71 18,81-20,90 19,95 

IL1 27,28-34,70 30,52 27,79-34,72 30,59 26,73-31,43 28,16 26,01-33,58 29,9 26,29-28-40 27,05 

IL6 27,81-35,23 31,19 28,89-34,43 31,01 27,66-33,28 30,73 30,83-36,16 33,01 32,86-37,05 34,85 

TNF 28,71-36,77 31,37 28,95-36,54 31,34 28,19-34,42 29,99 27,32-33,66 30,85 29,21-31,86 30,39 

HSP70 19,63-25,40 22,26 19,19-25,50 22,02 19,00-23,72 20,73 19,28-27,47 23,05 19,45-30,24 21,35 

 

Table 5: Overview of the CT-values of all genes and groups from head kidney samples. 

Head kidney CWST WWST CWLT WWLT FTST 

Gen Spread Avg. Spread Avg. Spread Avg. Spread Avg. Spread Avg. 

EF1- 18,37-22,59 20,21 18,50-21,51 20,28 20,38-28,15 21,79 19,77-24,25 21,42 17,26-19,86 18,92 

IL1 26,81-35,60 30,38 26,96-35,33 30,56 29,98-37,08 32,22 28,79-34,42 31,73 28,44-32,74 29,64 

IL6 30,64-35,32 33,43 29,28-34,23 32,7 28,47-37,29 31,09 30,23-33,64 31,82 31,61-36,87 34,14 

TNF 31,91-34,75 32,84 30,77-38,22 33,83 30,95-34,56 32,58 31,25-37,03 35,19 29,99-35,79 31,58 

HSP70 19,63-25,87 21,79 19,95-23,46 21,78 22,02-30,51 24,19 21,00-26,60 23,048 18,95-20,45 19,43 

https://www.mdpi.com/2076-393X/2/2/228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=BI468074
https://www.sciencedirect.com/science/article/pii/S1050464807000083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=BI468074
https://munin.uit.no/handle/10037/17014?locale-attribute=en
https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=15843762
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2095.2010.00778.x
https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=15843762
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204924
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Table 6: List of all qPCR-samples. Samples marked with * had too low RNA-concentration 

to synthesize cDNA from with the amount of isolated RNA available. 

Sample Group Organ EF1- IL1 IL6 TNF HSP70 

510 WWLT Gill 18,415 26,611 32,230 28,932 19,309 

511 CWLT Gill 18,687 26,868 30,751 29,090 19,757 

512 WWLT Gill 20,057 29,303 32,015 30,895 21,246 

513 CWLT Gill 18,046 27,054 27,940 28,462 19,073 

514 WWLT Gill 20,744 30,353 31,143 31,161 21,789 

515 WWLT Gill 22,140 30,416 32,268 32,798 23,298 

516 WWLT Gill 23,613 33,123 32,615 36,888 26,044 

517 CWLT Gill 19,664 27,143 33,209 29,340 20,634 

518 WWLT Gill 18,850 26,268 34,512 27,658 20,061 

519 WWLT Gill 23,090 33,238 34,169 N. detected 25,293 

520 WWLT Gill 25,166 N. detected 35,292 N. detected 27,433 

521 CWLT Gill 20,878 31,088 31,512 33,108 23,039 

522 CWLT Gill 19,909 28,684 30,263 29,976 21,175 

523 WWST Gill 17,765 27,939 29,628 29,807 19,221 

524 WWST Gill 19,430 29,702 31,543 31,943 20,975 

525 CWST Gill 19,991 30,424 34,394 33,175 21,811 

526 CWST Gill 22,485 32,701 33,832 34,887 25,386 

527 WWST Gill 21,050 28,175 29,009 30,219 20,136 

528 WWST Gill 18,833 32,851 32,171 34,558 24,607 

529 CWST Gill 18,405 27,391 27,994 28,836 19,648 

530 CWST Gill 19,305 29,422 30,525 30,756 20,586 

531 WWST Gill 22,232 32,851 32,171 34,558 24,607 

532 CWST Gill 19,446 28,239 29,188 30,042 20,958 

533 CWST Gill 21,072 31,620 31,168 31,742 22,521 

534 WWST Gill 23,973 34,462 33,608 N. detected 25,507 

535 WWST Gill 21,331 31,661 29,629 31,291 22,917 

536 CWST Gill 20,671 30,392 29,822 30,184 21,878 

537 CWST Gill 22,905 34,037 32,618 N. detected 25,297 

538 WWST Gill 18,538 28,763 32,560 29,553 20,339 

              

541 WWLT H. kidney 19,844 32,867 32,804 34,814 21,001 

542 CWLT H. kidney 20,439 30,778 28,820 31,752 22,032 

543 WWLT H. kidney 20,564 31,144 32,501 35,251 21,900 

544 CWLT H. kidney 21,266 30,253 29,862 31,472 22,698 

545 WWLT H. kidney 21,356 33,413 30,360 32,641 22,859 

546 WWLT H. kidney 19,836 30,856 30,389 36,751 21,115 
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547 WWLT H. kidney 24,183 N. detected 32,938 38,624 26,334 

548 CWLT  H. kidney 21,180 32,167 28,740 33,665 22,437 

549 WWLT H. kidney 20,105 29,060 31,905 31,836 21,552 

550 WWLT H. kidney 24,103 34,426 31,859 N. detected 26,576 

551 * H. kidney           

552 CWLT H. kidney 21,102 33,268 36,646 34,328 23,353 

553 CWLT  H. kidney 28,147 37,079 37,297 N. detected 30,476 

554 WWST H. kidney 20,673 31,814 35,117 32,558 21,606 

555 WWST H. kidney 20,906 30,877 29,590 33,167 22,027 

556 CWST  H. kidney 21,242 32,319 33,121 33,780 22,762 

557 CWST H. kidney 23,370 35,601 34,274 N. detected 25,853 

558 WWST H. kidney 20,188 30,118 29,590 36,092 21,387 

559 WWST H. kidney 18,519 26,725 31,082 31,344 19,972 

560 CWST H. kidney 18,584 28,434 30,896 32,628 19,719 

561 CWST  H. kidney 18,668 29,539 34,753 32,766 19,909 

562 WWST H. kidney 21,255 34,336 33,205 38,220 23,460 

563 CWST  H. kidney 18,593 29,539 33,420 33,340 19,676 

564 CWST H. kidney 18,423 27,050 33,895 32,127 19,788 

565 WWST H. kidney 21,484 33,415 33,813 N. detected 23,468 

566 WWST H. kidney 19,746 28,323 33,234 34,406 21,417 

567 * H. kidney           

568 CWST H. kidney 22,577 34,578 34,797 N. detected 24,834 

569 WWST H. kidney 19,529 28,892 34,600 32,651 20,945 

690 FTST H. kidney 18,140 29,660 34,363 33,328 18,965 

691 FTST H. kidney 19,838 29,744 31,660 31,608 19,850 

692 FTST H. kidney 19,374 29,207 35,197 30,135 19,427 

693 FTST H. kidney 17,315 28,464 32,159 30,192 18,273 

694 FTST H. kidney 19,806 32,162 N. detected 32,034 20,433 

695 FTST H. kidney 18,814 29,807 34,324 31,567 19,151 

696 FTST H. kidney 19,423 29,519 36,231 30,728 19,983 

697 FTST H. kidney 18,709 28,565 35,046 32,460 19,412 

698 FTST Gill 18,834 26,384 33,792 30,441 19,516 

699 FTST Gill 19,989 26,964 33,763 30,773 25,861 

700 FTST Gill 19,981 26,885 35,377 30,666 21,508 

701 FTST Gill 19,265 26,781 35,271 30,658 20,061 

702 FTST Gill 19,676 26,402 34,504 30,093 20,330 

703 FTST Gill 20,204 26,898 35,251 29,489 20,966 

704 FTST Gill 20,890 28,376 34,279 31,244 21,671 

705 FTST Gill 20,774 27,783 36,609 29,791 20,961 

-RT 510 WWLT Gill 37,785 N. detected N. detected N. detected 36,332 
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-RT 511 CWLT Gill 35,630 N. detected 33,731 N. detected 34,048 

-RT 523 WWST Gill 29,929 N. detected 29,166 37,287 29,983 

-RT 524 WWST Gill 27,575 N. detected 26,969 32,487 27,766 

-RT 541 WWLT H. kidney 34,657 N. detected 32,830 39,740 33,843 

-RT 542 CWLT H. kidney 30,403 N. detected 29,259 35,955 29,844 

-RT 554 WWST H. kidney 35,420 N. detected 35,850 N. detected 36,833 

-RT 555 WWST H. kidney 31,616 37,673 29,630 35,995 30,498 

-RT 695 FTST H. kidney 36,518 N. detected N. detected N. detected 36,091 

 

 

 

 

 

 

 

 

 


