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Introduction

The chemical and isotopic composition of fossil shells of 
planktonic foraminifera is a well-established approach 
to investigate the past state of the ocean (e.g., Ravelo 
& Hillaire-Marcel 2007; Pearson 2012). For example, 
the oxygen isotopic signature (δ18O) in shells of Neoglo-
boquadrina incompta has been used to infer the presence 
of meltwater injected into the surface ocean by ice-
bergs (McManus et al. 1999; Came et al. 2007; Rashid 
& Boyle 2007; Voelker et al. 2009). The reconstructions 
are based on the assumption that the calcification of the 
shell and, therefore, the incorporation of the chemical 
signal occurred within the water layer affected by the 
discharged meltwater. This is particularly relevant in situ-
ations where the properties of the target water layer may 
be modified to a degree that is too hostile for the survival 
of the foraminifera. In this scenario, specimens of the 
species could be largely excluded from surface low-salin-
ities habitat, and the oxygen-isotope composition of the 
remaining specimens dwelling deeper would be recording 

conditions below the meltwater layer, leading to a sys-
tematic underestimation of the surface salinity anomaly. 
Indeed, past meltwater injections in the North Atlantic 
likely had a magnitude sufficient to modify surface salin-
ity below the range of naturally occurring values in the 
present ocean (Hemming 2004). Among the species of 
planktonic foraminifera occurring in the North Atlantic 
during these events, especially in the more distal part of 
the iceberg discharge plume, is N. incompta (Dickson et al. 
2008; Voelker et al. 2009).

However, to date, no experimental data are available to 
constrain the range of salinities under which N. incompta 
survives and which it thus could potentially record.

Most existing experiments in which planktonic 
foraminifera were exposed to a gradient of environmental 
parameters have been carried out on tropical to temperate 
species (McCrea 1950; Bé et al. 1977; Bijma et al. 1990; 
Lea et al. 1999; Davis et al. 2017; Bertlich et al. 2018; Feh-
renbacher et al. 2018; LeKieffre et al. 2018). High-latitude 
planktonic foraminifera have been rarely kept in culture 
(Manno et al. 2012), and standardized culturing protocols 
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have not been established for the cultivation of these spe-
cies under cold conditions (Kozdon et al. 2009; Schiebel 
et al. 2018). Here, we present the results from a prelimi-
nary laboratory experiment on the Subarctic planktonic 
foraminifera N. incompta with the purpose to constrain the 
salinity tolerance of the species. With this experiment, we 
aim to provide a first insight into the changes in the physi-
ology and viability of N. incompta in response to different 
salinity conditions and introduce a novel way of monitor-
ing its physiology, applicable in the absence of growth, by 
measuring the extent of its rhizopodial network.

Materials and methods

Sampling

The experiment and the microscope observations 
were performed in a cold room in one of the facilities of 
UiT—The Arctic University of Norway in Tromsø.

Specimens of N. incompta were collected during a 
cruise on the RV Helmer Hansen in October 2018 to the 
shelf and slope of northern Norway off Tromsø, specifi-
cally an area of the shelf known as Håkjerringdjupet. 
In the sampling area, surface water temperature ranged 
between 6 and 10°C. The encountered community of 
planktonic foraminifera was dominated by N. incompta, 
which gave us the opportunity to study the salinity tol-
erance of this species at the lower end of its thermal 
range, under conditions that can be expected to resem-
ble those of past meltwater injections, with cold temper-
atures due to iceberg melting. Specimens were sampled 
from a water depth between 0 and 100 m, using a WP2 
plankton net (63 µm mesh size) that was towed verti-
cally. The retrieved specimens were picked on board and 
incubated in jars containing seawater at 35 PSU previ-
ously filtered through a 0.22 µm nitrate cellulose filter 
(Fig. 1) and allowed to recover for ca. 16 hr at treatment 
temperature (6°C).

Fig. 1 Schematic representation of the different phases of the culturing procedure, from (a) the location of the sampling through (d) monitoring. Salinity 

values in (a) refer to the monthly average surface salinity in October, taken from World Ocean Atlas 2018 (Zweng et al. 2019).
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Culture methods

Onshore, cytoplasm-bearing N. incompta specimens were 
transferred from the collection flasks into Petri dishes 
and, after six hours, a fraction of the specimens was 
transferred into new Petri dishes with a salinity lowered 
by 3–4 PSU to avoid osmotic shock. This acclimatization 
procedure was repeated from the Petri dish with low-
ered salinity at intervals of six hours until the minimum 
tested salinity of 25 PSU was reached. The tested range 
of salinities was chosen to reach below 30  PSU, which 
is the lower limit of salinity estimates in the Heinrich 
meltwater layers (Maslin et al. 1995; De Vernal & Hil-
laire-Marcel 2000). The culturing medium for the treat-
ments (35 PSU/Control, 31 PSU, 28 PSU and 25 PSU) was 
obtained by consecutive dilutions of ambient seawater 
with MilliQ water. Salinity was measured by means of 
a digital refractometer. From the treatment series, cyto-
plasm-bearing specimens of N. incompta were removed 
and cultured individually under the treatment salinity 
in 75 ml Falcon flasks and constant temperature of 6°C 
in a cold room under eight hours light cycles (intensity 
of 150 μmol photons m-2 s-1 [Manno et al. 2012]). They 
were fed daily with 30 μl autoclaved marine microalgae 
Nannochloropsis food mix (30 μl Nannochloropsis concen-
trate: 200 ml filtered seawater), attempting to simulate 

a diet involving phytoplankton detritus. A population of 
16 specimens in the size range of 95–203 µm was ini-
tially selected for the experiment. A larger population 
number was not possible with the given sampled popula-
tion size and the effort associated with individual moni-
toring. After the introduction of the treatment gradient, 
one specimen was left for the individual culturing in the 
control (ambient) treatment (35 PSU), three for 31 PSU, 
three for 28 PSU and two for 25 PSU.

Analyses

The response of the individual specimens to the treat-
ment was monitored until cytoplasm decay was observed 
(Fig. 2d). Cytoplasm-bearing specimens that did not dis-
play any rhizopodial net for 18 days from the start of the 
experiment were re-checked after day 22. The foraminif-
era were photographed using a digital camera attached to 
an inverted microscope, and the state (colour) of the cyto-
plasm was reported. The software ImageJ, Version 1.8.0 
(Schneider et al. 2012), was used to measure the rhizo-
podial activity of each specimen calculated as the ratio 
between the maximum shell diameter and the maximum 
extension of the rhizopods (Fig. 3). This parameter was 
chosen because both measurements are largely invariant 
to rotation on a plane (the specimens were not floating 

Fig. 2 Cultured specimens of N. incompta. Images (a), (b), (e) and (f) show specimens displaying different levels of rhizopodial activity. Black arrows indi-

cate the rmax used to derive the rhizopodial activity. Contrast in the pictures has been artificially enhanced to visualize the rhizopodia. White arrows in (c) 

and (g) indicate respectively specimen feeding on Nannochloropsis and another one producing a feeding cyst. Panel (d) shows cytoplasm decaying in a 

specimen from the 25 PSU treatment, later followed by partial dissolution of the shell (h). Scale bars: 100 µm.
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during observations) and because estimating the number 
of extended rhizopodial is difficult and more ambigu-
ous than a determination of the maximum extension 
length. Repeated measurements on selected specimens 
indicate that the uncertainty on the determination of the 
maximum shell diameter is 3%, and assuming similar 
uncertainty on the rhizopodial extension, the resulting 
uncertainty on the index should be about 6%. After the 
experiment, the cultured specimens were photographed 
using SEM at the University of Bremen.

Given the small scale of our experiment, we decided to 
refrain from statistical analyses.

Results

In the control treatment, the viable N. incompta specimen 
survived for the entire duration of the experiment, dis-
playing the highest rhizopodial activity registered (1.71; 
Fig. 4). In the 31 PSU treatment, one specimen survived 
until day 3, formed a kummerform final chamber and 
showing signs of shell thickening (Fig. 4). The remain-
ing two specimens showed rhizopodial activity until days 
18 and 24, respectively. The overall average rhizopodial 
activity was lower in this treatment than in the control 
(Fig. 4b). The same applies to the average activity for all 
observations when extended rhizopodia were observed 
(Fig. 4c). At the 28 PSU, two of the specimens stopped 
displaying rhizopodial activity after day 12 and later 
showed signs of cytoplasm decay. Only one specimen 
survived until the end of the experiment. The overall 
average rhizopodial activity, as well as the average activ-
ity for all observations when extended rhizopodia were 
observed, was the lowest (Fig. 4). None of the specimens 
cultured at 25 PSU showed rhizopodial activity during 
the experiment and both specimens showed signs of cyto-
plasm decay after day 15 (Fig. 2d).

Discussion

Our observations indicate that N. incompta rhizopodial 
activity decreases on exposure to salinity from 35 to 
28 PSU, but survival under an extended period of time 
(weeks) is possible within this salinity range, whereas 
it appears that extended exposure to 25 PSU is lethal. 
There are no earlier experimental observations on the 
salinity tolerance of this species, and ambient salinities 
in the modern ocean where planktonic foraminifera 
occur, even in the Arctic where the lowest salinity con-
ditions are expected, are always >29 PSU (Greco et al. 
2019). However, Bijma et al. (1990) presented data on 
salinity limits of the related species Neogloboquadrina 
dutertrei. Although these authors used a different defi-
nition of viability based on growth, they observed that 
the vital processes of the tested specimens of N. dutertrei 
were completely inhibited at 25 PSU. This observation 
agrees with our results on N. incompta. It is important 
to note that the ability of N. incompta to survive under 
reduced salinities under laboratory conditions does 
not necessarily mean that it will inhabit a similarly 
low-saline meltwater lens in the natural environment. 
Indeed, laboratory experiments can only constrain the 
maximum range of salinities under which survival in 
the field may occur.

In the present experiments, one of the cultured speci-
mens showed signs of chamber formation and thickening 
under the light microscope. As no calcification label was 
added to the culture seawater, we confirmed the obser-
vation by subsequent analyses of the recovered shell 
using SEM. This revealed the addition of a kummerform 
chamber and of shell-thickening by secondary calcifica-
tion (Fig. 5). Both observations are consistent with the 
normal behaviour prior to gametogenesis in planktonic 
foraminifera (Hemleben et al. 1989). This indicates that 
the laboratory conditions in our experiment did not pre-
clude growth or calcification and, therefore, the termina-
tion of its natural life cycle explains why this specimen 
died so early despite exposure to the non-lethal salinity 
level of 31 PSU. In the light of this observation, it remains 
unclear why the remaining specimens in our experiment 
survived but did not grow.

A possible explanation may lie in the low cultivation 
temperature of 6°C. Indeed, the few previous cultur-
ing studies on N. incompta grown under different tem-
peratures reported no growth in specimens cultured 
at 6°C, but growth occurred at 9°C (Von Langen et al. 
2005; Davis et al. 2017). Unfortunately, both cultur-
ing  studies  were carried out in the Pacific, which is 
inhabited by a different cryptic species of N. incompta 
(Darling et al. 2006), making it difficult to directly 

Fig. 3 Scheme illustrating the method used to derive the rhizopodial 

activity index in this study (see Materials and methods).
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transfer these  observations on the North Atlantic  spe-
cies. Alternatively, it could be that the autoclaved Nan-
nochloropsis used for feeding the cultured N. incompta 
does not represent a suitable food source for this species. 
In the previous experiments, the cultured N.  incompta 
specimens were fed with freshly killed Artemia (Von 
Langen et al. 2005; Davis et al. 2017), but recent molec-
ular investigations revealed that this species may feed 

on bacteria (Bird et al. 2018). With the food preference 
of this species is unknown (Artemia cannot be the natu-
ral prey and has been taken as a substitute for marine 
copepods), we opted for autoclaved Nannochloropsis, 
assuming that it emulates the likely available food found 
below the sunlit layer (N. incompta is a subsurface spe-
cies [Rebotim et al. 2017]) and considering that it was 
found to be accepted by other foraminifera (Schmidt 

Fig. 4 (a) Individual and (b, c) overall rhizopodial activity observed during the experiment in the different treatments. Symbols in (a) refer to the different 

specimens; colour indicates the salinity treatment.
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et al. 2015). We observed  that the autoclaved Nan-
nochloropsis was accepted by N. incompta and collected by 
its rhizopodial network (Fig. 2c, g), forming a feeding 
cyst (Spindler et al. 1984; Hemleben et al. 1989; Heinz 
et al. 2005; Bird et al. 2018), but it is possible that either 
the quantity or quality of the food was insufficient to 
facilitate shell growth.

Conclusions

Our study provides first experimental and preliminary 
evidence for physiological stress in N. incompta with 
decreasing salinity under “polar” conditions. We show 
that the species survives extended chronic exposure from 
35 to 28 PSU, and we interpret the complete absence of 
extended rhizopods at 25 PSU as evidence for physiologi-
cally lethal conditions. Our experiment indicates that 
quantification of the extent of rhizopodial activity may 
be an effective measure of physiological health, which 
can be used even in situations and at timescales where 
no shell growth occurs. Because of the small number of 
specimens investigated, these conclusions require valida-
tion by further experiments, but the preliminary results 
provide a context for assessing the salinity tolerance of 
this species and can serve as a basis to better interpret 
the palaeoclimatic reconstructions based on fossil shells 
of N. incompta.

Data availability

Data in support of the findings are available on figshare at 
https://doi.org/10.6084/m9.figshare.11309627.v1.
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