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ABSTRACT: UV−vis spectrophotometric titrations have been carried out on meso-
tris(o/m/p-aminophenyl)corrole (H3[o/m/p-TAPC]) and meso-triphenylcorrole
(H3[TPC]) in dimethyl sulfoxide with methanesulfonic acid (MSA). Monoprotona-
tion was found to result in hyperporphyrin spectra characterized by new, red-shifted,
and intense Q bands. The effect was particularly dramatic for H3[p-TAPC] for which
the Q band red-shifted from ∼637 nm for the neutral species to 764 nm in the near-IR
for H4[p-TAPC]

+. Upon further protonation, the Q band was found to blue-shift back
to 687 nm. A simple explanation of the phenomena has been offered in terms of
quinonoid resonance forms.

1. INTRODUCTION
The electronic spectra of porphyrins were classified by
Gouterman and co-workers as normal, hypso, and hyper.1,2

Normal spectra are observed for free-base and many non-
transition element derivatives of simple porphyrins such as
tetraphenyl- or octaethylporphyrin and are characterized by the
classic Soret andQ bands as well as by anN band in the near-UV.
Hypsoporphyrins exhibit blue-shifted Soret and Q bands, while
hyperporphyrins exhibit extra bands relative to normal
porphyrins at wavelengths above 300 nm. Unlike normal
spectra, which are dominated by porphyrin π→ π* transitions,
hyper spectra also involve additional types of transitions, notably
charge transfer (CT) transitions. Heme-thiolate proteins and
their model compounds provide many examples of hyper-
porphyrins.3,4 Diprotonated tetraarylporphyrins provide anoth-
er important class of hyperporphyrins; the spectra of these
species exhibit additional bands attributed to aryl-to-porphyrin
CT transitions. Protonated meso-aminophenylporphyrins pro-
vide particularly vivid examples of such spectra.5−12 An entirely
analogous effect is also observed for meso-tetrakis(p-
hydroxyphenyl)porphyrin in alkaline media where the spectra
exhibit extra bands due to phenolate-to-porphyrin CT
transitions.13,14

Hyper spectra are also well-established for metallocorroles.
Indeed, many metallotriarylcorroles formally described as Mn+−
corrole3− are actually better described asM(n−1)+−corrole·2− and
exhibit substituent-sensitive Soret bands with substantial aryl-to-
corrole·2− charge-transfer character.15−18 Examples of such
noninnocent metallocorroles include MnCl,19 FeCl,20−23

FeNO,23−25 Co,26−28 and Cu29−34 corroles. Although the
Soret bands of innocent metallotriarylcorroles do not exhibit
the same kind of substituent sensitivity as their noninnocent
counterparts, many exhibit overall hyper-type spectra, reflecting

corrole(π)-to-metal(d) transitions. Many families of 5d metal-
locorroles recently reported from our laboratory exhibit such
spectra. Thus, ReVO,35 OsVIN,36 Pt,37,38 and Au39−41 corroles all
exhibit redshifted Soret bands and sharp, split Q bands. Little,
however, has been documented vis-a-̀vis the potential hyper
character of protonated free-base triarylcorroles,42,43 in
particular meso-aminophenylcorroles. Herein, we show that
these systems, upon protonation, exhibit dramatically redshifted
Q bands and thus spectra that are aptly described as hyper.

2. RESULTS

Spectrophotometric titrations were carried out on approx-
imately 0.03 mM solutions of tris(o44/m45/p46-aminophenyl)-
corrole (H3[o/m/p-TAPC]) and triphenylcorrole (H3[TPC])

31

(Chart 1) in dimethyl sulfoxide (DMSO) with methanesulfonic
acid (MSA) in DMSO (with concentrations ranging from about
1 mM to pure MSA) as titrant (Figures 1−4). Even sub-
equivalent amounts of MSA led to substantial spectral changes,
consistent with neutralization of the anionic CorH2

− state that is
thought to be present in substantial amounts in DMSO
solutions.47 Interestingly, although we could identify peaks
that are reasonably attributable to the anions, the broad peaks
that were generated in the Q region could not be definitively
assigned to a single species such as the neutral corrole (Table 1).
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On the whole, it was clear that neutralization of the anionic
states results in a weakening of both the Soret and Q bands.
Further addition of MSA resulted in dramatic redshifts and

intensification of the Q bands. For H3[p-TAPC] (Figure 1), the
Q band shifted from the mid-600s to ∼764 nm, i.e., into the
near-infrared, with the addition of a few equivalents of MSA. For
H3[o-TAPC] (Figure 3), the Q bands at 575 and 610 nm
disappeared and a strong Q band grew at 676 nm, albeit with the
addition of larger quantities of MSA (a couple of hundred
equivalents). Qualitatively similar changes were also observed

for H3[TPC] (Figure 4), with disappearance of the Q bands at
585 and 618 nm and appearance of a strong Q band at 685 nm.
The final spectra were strongly suggestive of hyper character,
attributable at least in part to phenyl-to-corrole charge transfer
in the H4[p-TAPC]

+ and H4[TPC]
+ cations. The formation of

these monocations was also accompanied by a slight weakening
of the Soret band.
Addition of a large excess (i.e., thousands of equivalents) of

MSA to H3[o/m/p-TAPC] solutions led to further changes,
consistent with the formation of H5[o/m/p-TAPC]

2+ dications.
The spectral changes are arguably most dramatic for H3[p-
TAPC] (Figure 1) where the Q band blueshifts dramatically
from 764 to 687 nm, while a new blue-shifted Soret feature
grows at 430 nm. Understandably, H3[TPC] (Figure 4), which
lacks peripheral amino groups, did not evince any indication of
dication formation under the experimental conditions. We also
could not discern whether tri- and tetracationic states of H3[o/
m/p-TAPC] formed under the conditions of the experiments.
The dramatic spectral changes associated with the formation

of CorH4
+ species allowed us to qualitatively estimate the

relative basicities of the four corroles in terms of the apparent
pKa‑app’s of the CorH4

+ species. In this approach, used earlier by
Wamser and co-workers for aminophenylporphyrins,9 pKa‑app
simply equals the negative logarithm of the analytical
concentration of MSA at the half-equivalence point, which
was estimated from spectral changes at multiple wavelengths.
Using this approach, we estimated pKa‑app values of 5.2± 0.1 for

Chart 1. Compounds Studied in this Work

Table 1. UV−vis Absorption Maxima of Different Protonation States of the Free-Base Corroles Studied

CorH2
− CorH3 CorH4

+ CorH5
2+

compound Soret Q Soret Q Soret Q Soret Q

H3[p-TAPC] 430a 655a 429a,b 526a, 637a 454a 547, 622, 764a 430a, 458 687a

H3[m-TAPC] 427a, 449 643a 416a,c 572a, 614, 646 428a, 460 690a 431a 684a

H3[o-TAPC]
d 425a 578, 632a 414a,c 518, 566a, 604, 638 422a 676a 424a 655a

H3[TPC] 427a, 448 641a 415a,c 567a, 615, 648 427a, 458 685a

aThe strongest peak in each set is marked with an asterisk. bIn acetone.45 cIn dichloromethane.46 dMixture of atropisomers.44

Scheme 1. Principal Resonance Structures of the Mono- and Diprotonated Forms of H3[p-TAPC]
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both H3[p-TAPC] and H3[m-TAPC], 4.5 ± 0.1 for H3[o-
TAPC], and 4.1± 0.1 for H3[TPC]. In other words, the first two
compounds are somewhat more basic than the latter two
compounds (by just under a factor of 10), potentially reflecting
steric inhibition of resonance interactions for the ortho isomer.

3. DISCUSSION

The spectral changes accompanying the formation of CorH4
+

species are reminiscent of those accompanying the formation of
centrally diprotonated tetraarylporphyrins, in particular tetrakis-
(p-aminophenyl)porphyrin (H2[p-TAPP]). The redshift of the

Q band accompanying the generation of H4[p-TAPP]
2+,

however, is larger than that accompanying the generation of
H4[p-TAPC]

+. Thus, the Q band at approx. 637 nm for H2[p-
TAPP] redshifts to approx. 811 nm for H4[p-TAPP]

2+.7−9 For
H3[p-TAPC], the Q band shifts from 669 nm for the neutral
species to 764 nm for p-H4[p-TAPC]

+. The lower spectral shift
in the latter case may reflect the lower positive charge of H4[p-
TAPC]+ relative to H4[p-TAPP]

2+. Alternatively, or addition-
ally, the lower spectral shift for corrole protonation may be
related to the fact that a smaller geometrical change is involved;
free-base corroles are already strongly nonplanar and proto-

Figure 1. Spectral changes for p-H3[TAPC] in DMSO as a function of added equivalents of MSA. The three panels approximately correspond to the
following transformations: (a) CorH2

− → CorH3, (b) CorH3 → CorH4
+, and (c) CorH4

+ → CorH5
2+.
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nation results in only a modest increase in nonplanarity. For
H2[p-TAPP], in contrast, protonation of two central nitrogens
alters the macrocycle conformation from planar to strongly
saddled.48−50

It would be of great interest to simulate the above spectral
shifts by quantum chemical means and thereby dissect the
contributions of different factors such as charge transfer,
conformation, and substituents on the meso-aryl groups. Such
calculations, however, involve considerable challenges largely
because charge transfer transitions have long been a weakness
for time-dependent density functional theory methods;51−53 a

recent CAM-B3LYP and CC2 study of tetraphenylthiaporphyr-
in, tetraphenylporphyrin N-oxide, and their protonation,
however, have yielded promising results and may point to a
way forward.54 Meanwhile, as discussed by Wamser and co-
workers for porphyrins,9 simple consideration of resonance
forms may provide a qualitative explanation of some of the
observed spectral shifts. Thus, the strongly redshifted Q band of
H4[p-TAPC]

+ seems ascribable to the three quinonoid
resonance forms shown in Scheme 1, whereas the comparatively
blue-shifted Q band of the H4[p-TAPC]

2+ dication seems
ascribable to only two quinonoid resonance forms.

Figure 2. Spectral changes form-H3[TAPC] in DMSO as a function of added equivalents of MSA. The three panels approximately correspond to the
following transformations: (a) CorH2

− → CorH3, (b) CorH3 → CorH4
+, and (c) CorH4

+ → CorH5
2+.
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4. CONCLUSIONS

UV−vis spectrophotometric titration of the ortho, meta, and
para isomers of H3[TAPC] and H3[TPC] was carried out in
DMSO with methanesulfonic acid (MSA). For all the
compounds, monoprotonation led to hyperporphyrin spectra
with strongly red-shifted and intense Q bands. The effect was
especially dramatic for H3[p-TAPC] for which the Q band was
found to red-shift from ∼637 nm for the neutral species to 764
nm in the near-IR for H4[p-TAPC]

+. Upon further protonation,
the Q band was found to blue-shift back to 687 nm. A simple
explanation of the phenomena has been formulated in terms of
quinonoid resonance forms.

5. EXPERIMENTAL SECTION

The ortho, meta, and para isomers of H3[TAPC] and H3[TPC]
were all freshly prepared as previously described and yielded 1H
NMR and mass spectroscopic data in accord with the
literature.44−46 UV−vis spectrophotometric titrations were
carried out on an HP 8453 spectrophotometer using solutions
of methanesulfonic acid in anhydrous DMSO. Corrole solutions
were prepared from anhydrous DMSO and purged with argon
prior to use. Titrations were performed in a cuvette with an
initial corrole solution of 400 μL. Acid additions were performed
using a micropipette in gradual increments from 2 to 20 μL,
depending on the acid concentration. After each addition, the

Figure 3. Spectral changes for o-H3[TAPC] in DMSO as a function of added equivalents of MSA. The three panels approximately correspond to the
following transformations: (a) CorH2

− → CorH3, (b) CorH3 → CorH4
+, and (c) CorH4

+ → CorH5
2+.
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solution was stirred with a small stir bar and allowed to settle for
3 min before the spectrum was recorded. All titrations were
repeated several times on different batches of freshly made
corrole.
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