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Fine-tuning has received much attention in physics, and it states that the fundamental constants of phy-
sics are finely tuned to precise values for a rich chemistry and life permittance. It has not yet been applied
in a broad manner to molecular biology. However, in this paper we argue that biological systems present
fine-tuning at different levels, e.g. functional proteins, complex biochemical machines in living cells, and
cellular networks. This paper describes molecular fine-tuning, how it can be used in biology, and how it
challenges conventional Darwinian thinking. We also discuss the statistical methods underpinning fine-
tuning and present a framework for such analysis.
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1. Introduction

Fine-tuning has obtained much attention in physics, and many
studies have been accomplished since Brandon Carter presented
his first results at the conference honoring Copernicus’s 500th
birthday (Carter, 1974). Luke Barnes has published a good review
paper on the fine-tuning of the universe (Barnes, 2012), and Lewis
and Barnes wrote an up to date book (2016). This naturally raises
the question whether it is appropriate to introduce and address
fine-tuning in biology as well.

The term fine-tuning is used to characterize sensitive
dependences of functions or properties on the values of certain
parameters (cf. Friederich, 2018). While technological devices are
fine-tuned products of actual engineers and manufacturers who
designed and built them, only sensitivity with respect to the values
of certain parameters or initial conditions are considered sufficient
in the present paper. We define fine-tuning as an object with two
properties: it must a) be unlikely to have occurred by chance,
under the relevant probability distribution (i.e. complex), and b)
conform to an independent or detached specification (i.e. specific).

The notion of design is also widely used within both historic and
contemporary science (Thorvaldsen and Øhrstrøm, 2013). The
concept will need a description for its use in our setting. A design
is a specification or plan for the construction of an object or system,
or the result of that specification or plan in the form of a product.
The very term design is from the Medieval Latin word ‘‘designare”
(denoting ‘‘mark out, point out, choose”); from ‘‘de” (out) and
‘‘signum” (identifying mark, sign). Hence, a public notice that
advertises something or gives information. The design usually
has to satisfy certain goals and constraints. It is also expected to
interact with a certain environment, and thus be realized in the
physical world. Humans have a powerful intuitive understanding
of design that precedes modern science. Our common intuitions
invariably begin with recognizing a pattern as a mark of design.
The problem has been that our intuitions about design have been
unrefined and pre-theoretical. For this reason, it is relevant to
ask ourselves whether it is possible to turn the tables on this dis-
parity and place those rough and pre-theoretical intuitions on a
firm scientific foundation.

Fine-tuning and design are related entities. Fine-tuning is a
bottom-up method, while design is more like a top-down
approach. Hence, we focus on the topic of fine-tuning in the
present paper and address the following questions: Is it possible
to recognize fine-tuning in biological systems at the levels of
functional proteins, protein groups and cellular networks? Can
fine-tuning in molecular biology be formulated using state of the
art statistical methods, or are the arguments just ‘‘in the eyes of
the beholder”?
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2. Statistical methods

The real world is complicated, and scientific models must han-
dle it by simplifying matters, approximate and focus on some
aspects of a structural or numerical investigation, namely the
aspects that interest us. Mathematical models have proven invalu-
able in several fields of both science and engineering (Quarteroni,
2009). In biology, they provide structured abstractions that enable
the study of design, organization and evolution of biological sys-
tems. Whenever we use mathematics in order to study some
observational phenomena, we must essentially begin by building
either a deterministic or a stochastic model to represent the phe-
nomena, which are the two main types of mathematical frame-
work used in science.

For a large number of situations the deterministic mathematical
model will suffice. However, there are also many phenomena
which require a different mathematical model for their investiga-
tion, stochastic (often called probabilistic) models. A model is
stochastic when it is able to represent different choices and to pro-
vide information on the probability of these choices. It differs from
deterministic models, where the conditions determine the actual
outcome and no choices are represented. The randomness of a
stochastic model is either epistemic or ontological. Epistemic ran-
domness represents our lack of knowledge within a deterministic
framework, whereas ontological randomness corresponds to a
more fundamental uncertainty. Even if all the initial conditions
of an experiment were known, a model with ontological random-
ness would still only provide probabilities for a range of possible
observable outcomes (Coffman, 2014).

In order to summarize all possible ways to choose the outcome
of a stochastic model, with different probabilities, a distribution is
used. This distribution (or likelihood) typically involves some
unknown parameters (such as the mean or standard deviation).
Each possible parameter setting gives rise to a different stochastic
model. The collection of all such stochastic models is usually
referred to as a statistical model. The objective of statistical infer-
ence is not to predict the randomness of a statistic model (whether
epistemic or ontological). The best we can do is to infer (or esti-
mate/test) the values of the unknown parameters, and based on
this estimate the probabilities of a certain event A which repre-
sents a specific collection of possible outcomes.

Within statistic modeling there are two main traditions for
doing this, the Frequentist and Bayesian schools (see Fig. 1), which
differ in the way they treat parameters. Frequentists generally con-
sider parameters to be fixed but unknown. Probabilities are inter-
preted as the fraction of times an event occurs, if it is possible to
repeat an experiment a large number of times under identical cir-
cumstances. Bayesians rather assign probability distributions to
parameters, according to a prior distribution, which either repre-
sents subjective beliefs or prior knowledge. In any case, there is a
modeled continuity between past and present in Bayesian statis-
tics, since new observations are used to update subjective beliefs
or prior knowledge into a posterior distribution according to Bayes’
Rule. Consequently, the posterior distribution also takes the
observed outcomes of the experiment into account. A Bayesian
speaks of the probability of a parameter or a theory h, while a true
frequentist can speak only of the consistency of the evidence with
the parameter or the theory, through hypothesis testing or confi-
dence regions. While there is fundamental philosophical difference
between the frequentist and Bayesian approaches, many statisti-
cians use both models, depending on the type of problem they
study.

Nonparametric statistics is a way to release assumptions on the
distribution of outcomes of a stochastic model. The word is actu-
ally a misnomer, since infinitely many (or a very large number
of) parameters are used in these kinds of models to represent the
greater uncertainty of how data is distributed, so that data to a lar-
ger extent ‘‘speaks for itself”. Although nonparametric statistics
was first developed within a frequentist setting, it is actually con-
sistent with a Bayesian approach as well.

Bayesian statistics was pioneered through the work of Thomas
Bayes (who introduced Bayes’ Rule) and Pierre-Simon Laplace. It
was the prevailing view of statistics throughout the 19th century.
Then, through the work of Ronald Fisher, Jerzy Neyman, Egon Pear-
son and others, frequentist statistics came to dominate during
most of the 20th century. More recently, Bayesian statistics has
seen an upswing, not the least through the development of effec-
tive simulation methods, such as Markov chain Monte Carlo and
Approximate Bayesian Computation, which enable complex mod-
els to be studied within a Bayesian framework (Berger, 1985;
Lehmann and Casella, 1998; Gilks et al., 1996).

Both schools have impressive records of successful application.
Classical frequentist statistics is well suited for designed repeat-
able experiments. It has a larger record because numerous results,
tailored for these methods, were obtained with mechanical calcu-
lators and printed tables of special statistical distribution func-
tions. Bayesian methods have been highly successful in the
analysis of information that is naturally sequentially sampled (like
radar and sonar). It has also been applied within such diverse areas
as philosophy or religion and social science, for instance in order to
analyze complicated decision making, where debates and other
types of social interactions are taken into account (Korb, 2003;
Colin and Urbach, 2006; Chen et al., 2010; Chandler and
Harrison, 2012).

A common task of proving fine-tuning is to demonstrate that a
certain event A is very unlikely to occur by chance, that is, to show
that the probability P Að Þ of this event, the prevalence, is small.
Typically, A is a classification; that an existing observation is
fine-tuned. But it is also possible that A corresponds to a future
observation being fine-tuned, a prediction. Regardless of whether
A represents a classification or a prediction, a stochastic model
(II or IV in Fig. 1) can be used in order to determine the probability

P Ajhð Þ ¼
X
x2A

P xjhð Þ ð1Þ

for each parameter value h, by summing the probabilities of all out-
comes included in A. Since the parameter h is typically unknown,
one needs to estimate it from data.

With a frequentist approach, a point estimate bh ¼ bh datað Þ is
used, and this leads to an estimate

bP Að Þ ¼ P Ajbh� �
ð2Þ

of the prevalence. In order to quantify the uncertainty of (2), a fre-
quentist might translate a confidence region of possible values of h
into a confidence interval of possible values of P Ajhð Þ. A Bayesian,
on the other hand, regards the parameter as random and computes
a posterior distribution of the parameter, by combining the prior
and the likelihood according to Bayes’ Rule, i.e.
P hjdatað Þ ¼ P datajhð ÞP hð Þ=P datað Þ. This leads to an estimate

bP Að Þ ¼
X
h

P Ajhð ÞP hjdatað Þ ð3Þ

of the prevalence. In order to assess the uncertainty of (3), a Baye-
sian may translate the posterior distribution of the parameter h
into a posterior distribution of the prevalence P Ajhð Þ. For complex
models, whether a frequentist of Bayesian approach is used, it is
often the case that P Ajhð Þ is unknown for all values h of the param-

eter. In this case one typically computes an estimate bP Ajhð Þ of
P Ajhð Þ and then inserts it into (2) or (3).



Fig. 1. Schematic description of deterministic (I, III) and stochastic (II, IV) models. All types of models involve parameters (or more generally possible theories or
explanations). For a given parameter, the outcome of a deterministic and stochastic model is non-random and random respectively. The Bayesian models I and II treat the
parameter (or collection of parameters) h as random, whereas the abduction and frequentist models III and IV treat it as fixed. The outcome x is either completely determined
by the parameter (I, III) or it is an observation of a random quantity X, with a distribution P xjhð Þ (the likelihood) that depends on the parameter (II, JV). The sample space X is
the collection of all outcomes that are possible for at least one h, whereas an event A � X is a subset of the sample space, that is, a specific collection of outcomes. The
parameter space H is the set of possible values of the parameter, with each h 2 H giving rise to a different deterministic or stochastic model. For II and IV, the collection
M ¼ P �jhð Þ; h 2 Hf g of all stochastic models is usually referred to as a statistical model.
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Eq. (1) is actually consistent with a deterministic model (I or III
in Fig. 1) as well, with P Ajhð Þ equal to 1 or 0 depending on whether
the observed event A is consistent with theory h or not. In particu-
lar, there is a way of reasoning denoted abductive reasoning (cf. III
of Fig. 1) or inference to the best explanation (Walton, 2001). An
explanation is a story h about an event A that has occurred, and this
kind of explanatory inference plays a central role, both in ordinary
life and contemporary science. Abduction was introduced by
Charles Peirce as a form of logical inference that starts with a set
of observations A and seeks to find the simplest and most likely
explanation for the observations. Peirce considered it a topic in
logic, but not as formal or mathematical logic. Computer science,
expert systems and artificial intelligence research frequently
employ abduction. In our framework, it can be viewed as a proce-

dure of choosing the hypothesis or theory bh that best explains the
available data A, based on some guiding principle. This process
yields a plausible conclusion but does not positively verify it. Ernan
McMullin (1992) even refers to abduction as ‘‘the inference that
makes science.”

Even though the original version of abduction was not stochas-
tic, one still refers to a plausible result as relatively likely to be true,
compared to competing hypotheses, given the background knowl-
edge. In Fig. 1III, this would mean that all the likely hypotheses,
theories, explanations or parameter values generate outcomes
deterministically within the observed event A, i.e. P Ajhð Þ ¼ 1. In
recent years, several statisticians have become interested in a more
mathematical version of abduction that is probabilistic in nature,
with Bayesian inference as a special case (Douven and
Wenmackers, 2017). Some authors have argued that not only is
abduction compatible with Bayesianism, it is a much-needed sup-
plement to it (Douven, 2017). This leads to a probabilistic view of
abduction, where past events are analyzed through a stochastic
Bayesian model (II), with a distribution being assigned to all possi-
ble theories or explanations. The analyst must then assign a prior
to all possible explanations, using some criterion such as simplicity
or scope. The likelihood, on the other hand, describes the distribu-
tion of outcomes for each possible explanation and thereby quan-
tifies whether a theory explains the observed event well or not. In
principle we may also frame abduction within a frequentist frame-
work (IV), where all explanations are treated as fixed. One may
argue though that a frequentist approach is less appealing, since
the past event only happened once, whereas the likelihood within
a frequentist framework involves probabilities that require a hypo-
thetical assumption of how the outcomewould appear if the exper-
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iment was repeated (a counter-factual). With a Bayesian approach,
there is more freedom in modeling the distribution of counter-
factuals, and hence the likelihood. When a past event is observed
before they study begins, statisticians refer to it as an observational
study. It is well known that sometimes (but not always) the likeli-
hood of such a study needs to be adjusted in order to account for
the way in which the past event was observed, also within a Baye-
sian approach (Rosenbaum, 2010). A designed experiment, on the
other hand, is planned before the outcomes occur, and then
the likelihood simply describes the randomness involved in the
experiment.
3. Some historical background of fine-tuning

The biochemist Lawrence Henderson (1878–1942) at Harvard
University wrote one of the first books to explore concepts of
fine-tuning in the universe (Henderson, 1913). He discusses the
significance of water and the environment with respect to living
things, arguing that life depends entirely on the very specific envi-
ronmental conditions on the Earth, particularly with regard to the
prevalence and properties of water.

In the 1970s the astrophysicist Brandon Carter worked on a
kind of counterfactual analysis of cosmology by asking the ques-
tion: Suppose the laws of physics had been a bit different from
what they actually are, what would the consequences be?
(Davies, 2006). Carter was the first to name and employ the term
Anthropic Principle in his important contribution to the 1973
Poland conference honoring Copernicus’s 500th birthday. To his
surprise, it turned out that many of the parameters necessary for
life to exist in our universe, must fall within very narrow margins,
or the universe would either not exist or not be able to support life.
In his lecture, Carter derived the Anthropic Principle (AP) in reac-
tion to the Copernican Principle, which states that humans do
not occupy a privileged position in the universe. As Carter said
on Copernicus’s birthday:

‘‘Although our situation is not necessarily central, it is inevita-
bly privileged to some extent” (Carter, 1974).

The chances that the universe should be life permitting are so
infinitesimal as to be incomprehensible and incalculable.

Having said this, it should also be noted that there is also a cri-
tique of the Antrophic Principle, referred to as the Weak Anthropic
Principle (WAP). WAP states that only in a life-supporting universe
will there be living beings around who are able to observe it. In the
terminology of Section 2, we say that the act of discovering that we
live in a life-permitting universe is part of an observational study,
and therefore we have to modify the likelihood accordingly.
Although there is some truth in this objection against the AP, it
is also problematic. Indeed, if we apply the WAP principle consis-
tently to other occasions where we discover regular or unexpected
patterns, we should never be able to infer fine-tuning or design as
an explanation. Philosopher John Leslie gives the picture of a per-
son that very unexpectedly survives a fire squad. Is he then
allowed to infer that all poppers missed deliberately (because of
someone planning this to happen) or not? (Leslie, 1989).

It is hard to give a definitive answer to the number of fine tun-
ing parameters. Based on the items discussed in Barrow and
Tiplers’ classic book (1988) there are about 100, and the Royal
Astronomer Martin Rees lists six dimensionless constants that give
overall fine-tuning to the universe (Rees, 1999). The finely tuned
universe is like a panel that controls the parameters of the universe
with about 100 knobs that can be set to certain values. In the
framework of Section 2, the parameter h is a vector with 100 com-
ponents (the knobs), the sample space X is the set of all possible
universes (including no universe at all), whereas A is either the
set of possible universes, or the set of those possible universes that
are also hospitable. If you turn any knob just a little to the right or
to the left, the result is either a universe that is inhospitable to life
or no universe at all. If the Big Bang had been just slightly stronger
or weaker, matter would not have condensed, and life never would
have existed. The odds against our universe developing were
‘‘enormous” – and yet here we are, a point that equates with reli-
gious implications, as expressed by Brian Schmidt at the Australian
National University:

Like a Bach fugue, the Universe has a beautiful elegance about
it, governed by laws whose mathematical precision is meted out
to the metronome of time. These equations of physics are finely
balanced, with the constants of nature that underpin the equations
tuned to values that allows our remarkable Universe to exist in a
form where we, humanity, can study it. A slight change to these
constants, and poof, in a puff of gedanken experimentation, we
have a cosmos where atoms cease to be, or where planets are
unable to form. We seem to truly be fortunate to be part of Our
Universe (Lewis and Barnes, 2016, p. xi).

What Brian Schmidt refers to as a ‘‘gedanken experiment”, is
often called ‘‘multiuniverses”, i.e. an enormous supply of universes
and each one a little different. There is a subtle difference between
the set of possible universes X referred to above (of which one is
assumed to exist), and a multiverse theory, which holds that some
or all of these universes exist in parallel. This multiverse hypothe-
sis is not backed up with any empirical support, and may be
regarded as a rather speculative idea.

A probabilistic argument presumes adequate knowledge of (the
limits on) the space of possibility. It presupposes that current
knowledge provides an accurate, unbiased statistical account of,
or means of determining, what may or may not happen by chance.
As Colyvan et al. (2005) and Dembski (2014, pp. 128-129) have
argued, the fine-tuning argument for our universe is not a strict
statistical argument, since it involves features that need to be in
place before the universe can be said to exist and operate. And
there is no way of assigning a probability distribution as reference
associated with the universe in that early stage. Probabilities for
the initial formation of the universe are by its nature independent
of known processes operating in our present universe, i.e. ‘‘gedan-
ken probabilities”.

William Dembski, who mainly belongs to the frequentist’s
school in statistics, regards the fine-tuning argument as suggestive,
as pointers to underlying design. Wemay describe this inference as
abductive reasoning or inference to the best explanation. This rea-
soning yields a plausible conclusion that is relatively likely to be
true, compared to competing hypotheses, given our background
knowledge. In the case of fine-tuning of our cosmos, design is con-
sidered to be a better explanation than a set of multi-universes
that lacks any empirical or historical evidence. If the existence/
habitability of a universe follows deterministically from the fine-
tuned initial conditions, such a frequentistic approach leads to a
model for the physical universe that is essentially deterministic
(cf. III of Fig. 1). A Bayesian approach, on the other hand, corre-
sponds to a model with deterministic outcomes for each parame-
ter, but randomness still enters in the choice of parameters (cf. I
of Fig. 1).

As noted in Section 2, a more general type of abductive reason-
ing is closely related to a Bayesian stochastic model. By applying
methods from Bayesian statistics, several authors have framed a
stronger conclusion than Dembski. Robin Collins (2012), Richard
Swinburne (2012) and Vesa Palonen (2008; 2017) give the fullest
and most up-to-date detailed account of the argument, and con-
clude that the possible existence of a multiverse does not greatly
diminish the powerful force of the argument from fine-tuning to
the existence of design. The main argument of their Bayesian anal-
yses is that even under a multiverse we should use the proposition
‘‘this universe is fine-tuned” as data, even if we do not know the
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‘true standing ’ of our universe. Since multiverse hypotheses do not
predict fine-tuning for this particular universe any better than a
single universe hypothesis, it follows that multiverse hypotheses
are not plausible explanations for fine-tuning. Therefore, our data
on cosmic fine-tuning does not offer support to the multiverse
hypotheses. For physics in general, irrespective of whether there
really is a multiverse or not, the rational consequence of the above
discussion is that we should prefer those theories which best pre-
dict (for this or any universe) the phenomena we observe in our
universe.

One of the surprising discoveries of modern biology has been
that the cell operates in a manner similar to modern technology,
while biological information is organized in a manner similar to
plain text. Words and terms like ‘‘sequence code”, and ‘‘informa-
tion”, and ‘‘machine” have proven very useful in describing and
understanding molecular biology (Wills, 2016). The basic building
blocks of life are proteins, long chain-like molecules consisting of
varied combinations of 20 different amino acids. Complex bio-
chemical machines are usually composed of many proteins, each
folded together and configured in a unique 3D structure dependent
upon the exact sequence of the amino acids within the chain. Pro-
teins employ a wide variety of folds to perform their biological
function, and each protein has a highly specified shape with some
minor variations.

In the 1990s, a huge amount of publications and proceedings
started to appear, with the book ‘‘Evidence of Purpose”, edited by
Sir John Marks Templeton with papers from 10 distinguished sci-
entists, as one of the first (Templeton, 1994). Michael Behe and
others presented ideas of design in molecular biology, and pub-
lished evidence of ‘‘irreducibly complex biochemical machines”
in living cells. In his argument, some parts of the complex systems
found in biology are exceedingly important and do affect the over-
all function of their mechanism. The fine-tuning can be outlined
through the vital and interacting parts of living organisms. In ‘‘Dar-
win’s Black Box” (Behe, 1996), Behe exemplified systems, like the
flagellum bacteria use to swim and the blood-clotting cascade, that
he called irreducibly complex, configured as a remarkable teamwork
of several (often dozen or more) interacting proteins. Is it possible
on an incremental model that such a system could evolve for
something that does not yet exist? Many biological systems do
not appear to have a functional viable predecessor fromwhich they
could have evolved stepwise, and the occurrence in one leap by
chance is extremely small. To rephrase the first man on the moon:
‘‘That’s no small steps of proteins, no giant leap for biology.”

Living forms exhibit structures and functions that can best be
understood as nano-level engineering. In 1998 Bruce Alberts, pres-
ident of the National Academy of Sciences, published an important
paper preparing the next generation of molecular biologists: The
Cell as a Collection of Protein Machines (Alberts, 1998).
4. Main results and discussion

In this section, we will present and discuss some relevant obser-
vations from experimental biology. This will be done in the light of
the theory of stochastic models, outlined in Section 2. More specif-
ically, we will identify events A whose probability P Að Þ is very low
under naturalistic stochastic models, and argue that these repre-
sent extreme examples of fine-tuning.
Fig. 2. Diagram of a typical 3D folded protein domain, as studied by Axe (2004).
This b-lactamase consists of two structural domains, and only the larger one is
shown here (153 amino acids, PDB entry 1ERM).
4.1. Functional proteins

Natural proteins are known to fold only to a limited number of
folds. The designability of a structure is defined as the number of
sequences folding to the structure (Zhang et al., 2014). Some of
these folds are frequently occurring and often referred to as highly
designable, whereas some others are rarely observed and are less
designable. Li et al. (1996) first introduced this concept of protein
designability. One interesting aspect of their study was that the
structures differed strongly in designability, and highly designable
structures were only a small fraction of all structures.

An important goal is to obtain an estimate of the overall preva-
lence of sequences adopting functional protein folds, i.e. the right
folded structure, with the correct dynamics and a precise active
site for its specific function. Douglas Axe worked on this question
at the Medical Research Council Centre in Cambridge. The experi-
ments he performed showed a prevalence between 1 in 1050 to 1
in 1074 of protein sequences forming a working domain-sized fold
of 150 amino acids (Axe, 2004). Hence, functional proteins require
highly organised sequences, as illustrated in Fig. 2. Though pro-
teins tolerate a range of possible amino acids at some positions
in the sequence, a random process producing amino-acid chains
of this length would stumble onto a functional protein only about
one in every 1050 to 1074 attempts due to genetic variation. This
empirical result is quite analog to the inference from fine-tuned
physics. That is, we may regard the space X of all possible proteins
as the outcomes of a stochastic model, where each outcome is a
string of letters (amino acids). The prevalence P Ap

� �
is the probabil-

ity of the event Ap that a randomly chosen amino acid sequence
leads to a functional protein (or more generally a protein with
some characteristic patterns), whereas hp involves all bio-
chemical constants of relevance for protein formation.

The experimental results reported by Douglas Axe are empirical
studies of a single protein that typically would be involved as one
of the constituent parts of a coherent Behe-system (see Section 4.2).
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Protein sequence space may look like a limitless desert of malad-
justed sequences with only a few oases of working sequences, as
outlined by Axe. Another study examines the probability of finding
ATP binding proteins from a random sample of sequence space
regardless of the fold (Ferrada and Wagner, 2010). The authors
estimated a probability of 1 in 1011 to find an ATP binding protein,
suggesting a higher probability than found by Axe. Recently
Kozulic and Leisola (2015) made careful analyses of these results,
and concluded that even with very conservative conditions, the
probability of finding ATP binding activity that would function in
a cell, would be less than 1 in 1032. Estimates like these depend
on various factors (the components of the parameter vector hp),
including the length of the proteins considered. They indicate that
the probability of finding a functional protein in sequence space
can vary broadly, but commonly remains far beyond the reach of
Darwinian processes (Axe, 2010a). Some authors have even sug-
gested that the original amino acid repertoire consisted of only
four or five amino acids, in order to reduce the gigantic sequence
space, and ‘‘rule out the big number game” (Dryden et al., 2008).
However, this will need another type of genetic code, something
considered highly speculative. Hence, for a typical functional pro-
tein we may state experimentally:

bP Ap
� �

< 10�50 ð4Þ
The functional protein arguments outlined above are empirical

studies based on a standard statistical estimation of prevalence,
using either a frequentist or a Bayesian framework (2)-(3). Such
studies are commonly performed within scientific research by
Monte Carlo estimates of the prevalence (cf. the discussion below
(3)), examining a randomly selected sample from the entire popu-
lation. Using such estimates, the proteins of life are found to be
specific kinds of events with low probability. Notice however that
the prevalence will depend on how the stochastic model of protein
formation is built. The simplest approach is to choose the amino
acids of the protein sequence independently and randomly, as
above. A more refined approach is to model protein evolution (as
briefly discussed in Section 5). Randomness is then built into an
ancestral tree of proteins, whose dynamics is driven by random
drift through reproduction, random mutations and natural selec-
tion. The parameters hp of such a model include the size of the pro-
tein population, the effective population size, mutation rates and
the fitness of organisms carrying a certain protein, where organ-
isms with well functioning proteins are assigned a higher fitness.
Axe also elaborates on the massive improbabilities of anything like
functional proteins arising by natural selection (Axe, 2016). The
search space turns out to be too impossibly vast for blind selection
to have even a slight chance of success. The contrasting view is
innovations based on ingenuity, cleverness and intelligence. An
element of this is what Axe calls ‘‘functional coherence”, which
always involves hierarchical planning, hence is a product of fine-
tuning. He concludes: ‘‘Functional coherence makes accidental
invention fantastically improbable and therefore physically impos-
sible” (Axe, 2016, p. 160).

Life as it is today is an interdependent DNA-protein world (Voie,
2006). However, RNA-molecules can function both as enzyme
(‘‘protein”) and as replicator (‘‘DNA”). Eugene Koonin (2007,
2012) has made a theoretical study of the path from a putative
RNA world to an explicit translation system (like a ‘‘DNA-protein
world”). He found this path to be incredibly steep (Koonin, 2012,
p. 376), even under the best-case scenario. Koonin studied the
requirements of a specified coupled replication-translation RNA-
system to emerge, after our universe was formed, within an O-
region of planets. Assuming that the replication-translation RNA-
system corresponds to an n-mer with n ¼ 1800 nucleotides, he cal-
culated vanishingly small odds
bP ARNAð Þ � t
E Tð Þ < 10�1018 ð5Þ

for it to emerge within a time interval of length t ¼ 3� 1017 sec-

onds after the Big Bang. The quantity E Tð Þ ¼ 4n= 1021 � 5� 1022
� �

in the denominator of (5) is the expected waiting time until the
the first coupled replication-translation RNA-system emerges by
chance somewhere among the 1021 planets of the O-region. It is
assumed that each one of these planets has the same dimension
as the earth, and a rate of 5� 1022 molecules per second at which
n-mers are formed within its habitable layer.

Koonin raises a rather speculative solution of an infinite multi-
verse: the Many Worlds in One (MWO). This changes the very def-
inition of what is possible and likely in such a way that the
probability of the realization of any scenario in an infinite multi-
verse is 1. The odds do not matter anymore. Nevertheless, Koonin
has presented a detailed calculation of a threshold for biological
evolution. He also states that the RNA-World hardly has the poten-
tial to evolve beyond very simple ‘‘organisms” (Koonin, 2012, p.
366).
4.2. Protein complexes

Proteins rarely work alone. They can interact with a variety of
different molecules, but it is their simultaneous interactions with
one another at the same location that account for many of the
functions of the cell (Jones and Thornton, 1996). Proteins in a pro-
tein complex are linked by non-covalent protein–protein interac-
tions. Protein complexes are a form of quaternary structure.
These complexes are fundamental in many biological processes
and together they form various types of molecular machinery that
perform a vast array of biological functions. Protein assemblies are
at the basis of numerous biological machines by performing
actions that none of the individual proteins would be able to do.
There are thousands, perhaps millions of different types and states
of proteins in a living organism, and the number of possible inter-
actions between them is enormous. Proper assembly of multipro-
tein complexes is important, and change from an ordered to a
disordered state leads to a transition from function to dysfunction
of the complex. Some protein complexes can be quite constant and
exist for the lifetime of the cell while others can be transient, accu-
mulated for some purpose and broken down when no longer
needed. A Behe-system of irreducible complexity was mentioned
in Section 3. It is composed of several well-matched, interacting
modules that contribute to the basic function, wherein the removal
of any one of the modules causes the system to effectively cease
functioning.

Behe does not ignore the role of the laws of nature. Biology
allows for changes and evolutionary modifications. Evolution is
there, irreducible design is there, and they are both observed.
The laws of nature can organize matter and force it to change.
Behe’s point is that there are some irreducibly complex systems
that cannot be produced by the laws of nature:

‘‘If a biological structure can be explained in terms of those nat-
ural laws [reproduction, mutation and natural selection] then we
cannot conclude that it was designed. . . however, I have shown
why many biochemical systems cannot be built up by natural
selection working on mutations: no direct, gradual route exist to
these irreducible complex systems, and the laws of chemistry work
strongly against the undirected development of the biochemical
systems that make molecules such as AMP1” (Behe, 1996, p. 203).



Fig. 3. Simple illustration of a local configuration based on electrostatic comple-
mentary of a Behe-system with three hydrogen-bonded pairs in a crystal. This
figure displays positive (blue) and negative (red) isosurfaces of the deformation
electron density. The electrostatic interaction energies (kJ mol�1) for nearest
neighbor pairs of molecules are indicated in yellow numbers. Molecular pattern
recognition and protein docking involves steric, electrostatic and other physico-
chemical properties. The figure is adapted from Faraday Discussions (Edwards et al.
2017).
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Then, even if the natural laws work against the development of
these ‘‘irreducible complexities”, they still exist. The strong syn-
ergy within the protein complex makes it irreducible to an incre-
mental process. They are rather to be acknowledged as fine-
tuned initial conditions of the constituting protein sequences.
These structures are biological examples of nano-engineering that
surpass anything human engineers have created. Such systems
pose a serious challenge to a Darwinian account of evolution, since
irreducibly complex systems have no direct series of selectable
intermediates, and in addition, as we saw in Section 4.1, each mod-
ule (protein) is of low probability by itself.

Extensive arguments have been written about whether or not
Darwinian evolution can plausibly explain irreducibly complex
systems (Behe, 2001; 2004; 2019, 283-301; Miller, 2004;
Dembski, 2004; Pallen and Matzke, 2006; Liu and Ochman, 2007;
Doolittle, 2012). Irreducible complexity does not mean that irre-
ducibly complex systems are logically impossible to evolve based
on existing modules. One cannot definitively rule out the possibil-
ity of an indirect, circuitous route. A well-known subsystem of the
bacterial flagella (called TTSS secretion system) performs a func-
tion distinct from the flagellum. However, finding a subsystem of
a functional system that performs some other function is hardly
an argument for the original system evolving from that other sys-
tem. As the complexity of an interacting system increases, the like-
lihood of such an indirect route drops quickly. Hence, Darwinian
explanations of irreducibly complex systems are improbable. Ulti-
mately, this is a question that must be studied both experimentally
and by computer simulations. Behe’s concept of irreducible com-
plexity has not been falsified by computer models (Ewert, 2014),
and there are presently no detailed Darwinian accounts of the evo-
lution of any such biochemical or cellular system, ‘‘only a variety of
wishful speculations” (Harold, 2003, p. 205).

In the framework of Section 2, the set of all possible protein
complexes is regarded as the sample space X of a stochastic
model. According to a naturalistic model, the outcomes are gen-
erated randomly by evolution, driven by random drift through
reproduction, random mutations and natural selection. The
prevalence P Að Þ, i.e. the fraction of functioning protein com-
plexes, will typically be even smaller than in Section 4.1, since
it requires even more for a complex of proteins to function com-
pared to one single protein.

Indeed, the stochastic model of protein complexes is quite
involved, including, for instance, physical interaction. Physical
interactions between proteins are specific types of interactions,
and a Behe-system may be analyzed by the biochemical principle
of complementarity. When a biologically active protein complex
consists of more than one separate subunit, the so-called quater-
nary structure describes the topology of contacts, i.e. how the con-
stituent units come together in space. The surface molecules in
such a biological system fit together both because of special and
electrostatic complementarity. Contours of one subunit of the sys-
tem are complementary to the contours of the others, and regions
of positive excess charge on the surface of one unit must fit closely
with regions of negative excess charge on the others, as illustrated
in Fig. 3. In addition, hydrophobicity and other physicochemical
properties are also involved in the final configuration. The asym-
metry between the proteins involved is conventionally divided into
‘‘bait” and ‘‘prey” (Scholtens et al., 2008). The bait is the protein
whose interaction partners we are seeking; the prey proteins are
those proteins detected to interact with a particular bait. The basic
subunits fit into the multi-subunit system like a big 3D puzzle.

The principle of complementarity was first proposed by Nobel
Prize winner Paul Ehrlich (1854–1915). It resonates throughout
the whole of biochemistry, and continues to underpin much of
modern research into the mode of action of enzymes (Hall, 2000,
p. 303). Protein docking and pattern recognition at the molecular
level is based on multilevel complementarity (geometry, charge,
hydrophobicity etc.).

Dembski applies the term ‘‘Discrete Combinatorial Object” to
any of the biomolecular systems which have been defined by Behe
as having ‘‘irreducible complexity” (Dembski, 2002, pp. 289-302).
The Drake equation is an expression often used in astrobiology to
estimate the prevalence of active civilizations in our galaxy. By
analogy to the Drake equation, Dembski proposes an equation
based on three independent events: Ap: originating the building
blocks (protein chains) of the protein complex (as outlined in Sec-
tion 4.1), Al: localizing the building blocks in the same place, and
Ac: configuring the building blocks correctly to form the complex.
Then the probability of a protein complex is the multiplicative pro-
duct of the probabilities of the origination of its constituent parts,
the localization of those parts in one place, and the configuration of
those parts into the resulting system (contact topology). This leads
to the following estimate for the probability of a protein complex
(PC) composed of N independent building blocks:

bP APCð Þ ¼
YN
n¼1

P A nð Þ
p jbh nð Þ

p

� �
� P A nð Þ

l jbh nð Þ
l

� �
� P A nð Þ

c jbh nð Þ
c

� �h i
; ð6Þ

where h nð Þ
p , h nð Þ

l , and h nð Þ
c are the parameters involved in forming the

protein chain, the localization and the configuration of the nth
building block. Modeling the formation of structures like protein
complexes via this three-part process of production, convergence
and assembly, is of course problematic because the parameters in
the model are very difficult to estimate. Therefore, analogous to
the Drake equation, the usefulness of the equation is not in the solv-
ing, but rather in the contemplation of all the various concepts
which science must incorporate when considering the question of
how to explain this kind of complex structures. Even if we take P
(Ap) equal to 1, and thus assume there are no problematic obstacles
involved in generating the building blocks; and also eliminate the
localization probability by collapsing chance to necessity (self-
organization), P(Ac) can still pose huge obstacles to the chance
configuration of the quaternary structure of operative biological
systems (Csermely et al., 2010). This problem of estimating P(Ac)



Fig. 4. Representing protein complexes as graphs. The complementary configuration of a Behe-system is shown. Its molecular pattern recognition is based on steric,
electrostatic and other physicochemical properties. From 3Dcomplex.org at http://shmoo.weizmann.ac.il/elevy/3dcomplexV6/About.cgi.
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seems quite intractable, but it may be addressed by performing per-
turbation experiments (Antal et al., 2009). The idea is to take a func-
tional system, perturb it, and determine how perturbation affects
the probability of retaining function. There is much of biological
work to be done here, empirically and theoretically, and it is impor-
tant to be open for any type of conclusions from new experiments.
For instance, can we allow that irreducible complexity in the pre-
sent tells us little or nothing about functional precursors in the
past?

As we have seen, the stochastic model of protein complexes
involves more complicated types of outcomes than the protein
models of Section 4.1. Whereas single proteins correspond to
strings of amino acids, the protein complexes are often represented
as graphs (Fig. 4). Much of the research in studying protein inter-
actions has been done with the use of mathematical graph theory
(Chiang et al., 2007; Su et al., 2018). Graph theory is a straightfor-
ward and flexible way of implementing real interactive systems.
The language of graph theory offers a mathematical abstraction
for the description of such relationships. An important role for
graphs is statistical modeling. A directed graph model is appropri-
ate for bait to prey systems, in which a multinomial error model is
used to represent the interactions. Both global and local statistics
on the topology of interaction graphs aim to infer the nature and
behavior of interactions of the protein complex. Su et al. (2018)
have addressed the issue of significance testing procedures for real
biological protein complexes. Their statistical studies show that
the interactions in such complexes occur much less randomly than
expected by chance.

The bait-prey model is in itself a way to model fine-tuning of
protein modules. Moreover, the final function of the protein com-
plex is achieved by complementarity between the binding cavity
of the protein and its substrate. This involves an additional level
of fined tuned complementarity with respect to the interacting
groups of atoms that are involved in the ultimate function of the
protein complex, a factor that additionally lowers the prevalence
P APCð Þ of functioning protein complexes.

There is also an additional level of information that should be
accounted for in a stochastic model of protein complexes. This
level of information is embedded in the language of molecular
complementarity, which may also be understood as a biosemiotic
sign language, i.e. signals written and read at the molecular level.
Biosemiotics is in general the study of signs, of communication,
and of information in living organisms. Charles Peirce is considered
to be one of the founders of semiotics, and hence also of biosemi-
otics. In biosemiotics, the sign, rather than the molecule, is the
basic unit for the study of life (Hoffmeyer, 1997). Our current pref-
erential focus on the genome and amino acid sequences needs to
be complemented by a similar focus on the senome (Baluška and
Miller, 2018), representing the sum of all the activities of the living
cell and its apparatus (Compagno, 2018).
4.3. Cellular networks

As Denis Noble states, biological systems function as a full
orchestra with its different elements playing ensemble the score
of life (Noble, 2006). Protein complexes perform their biological
functions in a cooperative manner through their participation in
many biological processes and networks, from the nucleus to the
cell membrane. Cellular networks are also known to contain feed-
back loops and cycles. A stochastic model with cellular networks as
outcomes is exceedingly complex. However, Bayesian models pro-
vide one of the most flexible frameworks for modeling such net-
works in terms of Dynamic Bayesian networks. In order to
describe these structures, modern textbooks often utilize the ped-
agogical similarities between the cell’s network and a modern city,
or ‘‘smart city” (Daempfle, 2016).

Studying protein interaction networks of all proteins in an
organism (the ‘‘interactomes”) remains one of the major challenges
in modern biology, and constitutes the objective of systems biology
(Fig. 5). Statistical methods to reconstruct cellular networks is a
vast and fast developing area of research, including Bayesian net-
works, Gaussian graphical models and graph-based methods for
data from experimental interventions and perturbations
(Markowetz and Spang, 2007). Random graphs may also be used
for modeling cellular networks. They are described in terms of a
random process that generates them, and the parameters h of this
random process are chosen so that the edge configuration of the
resulting random graph makes sense in comparison to real data.
These resulting graphs should capture the fact that genes and gene
products are connected in highly organized networks of informa-
tion flow through the cell, which themselves do not work in isola-
tion. We observe correlations between genes by the presence of
other genes. Correlation graphs generate the simplest correlation
structures of genes, whereas Bayesian networks encompass a more
sophisticated set of models, with more intriguing correlations.



Fig. 5. Example showing a cellular network, with a b-lactamase protein ampC (red)
and its most confident interactors. From string-db.org. String is a database of known
and predicted protein–protein interactions. The interactions include indirect
(functional) and direct (physical) associations.
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Perturbation experiments are key to inferring gene function and
regulatory pathways, and a common genetic technique is to per-
turb a gene of interest and to study which other genes’ expressions
that are affected. Several types of perturbations have a large effect
on network stability, and a graph theoretical study shows that pro-
tein complex interaction networks are non-random networks
(Jalan, 2013; Huang et al., 2016, 2019). Low randomness means
that the probability of any two randomly chosen nodes to be wired
to each other is very low or zero. However, although results such as
these indicate the difficulty of random naturalistic processes to
generate protein networks, there is still much work to be done
before we can make more sense of biological networks in the light
of fine-tuning. Network-based analysis falls into the following
major categories: (a) motif identification and analysis, (b) global
architecture study, (c) local topological properties, and (d) robust-
ness of the network under different types of perturbations.

As we have outlined above, the internal organization of the cell
comprises many layers. The genome refers to the collection of
Table 1
The table gives an overview of scientific data and statistical models. The data structure cor
and Cellular networks, or the specificity (functioning) f xð Þ of this outcome for fine-tuned

Empirical data Data structure Typ

Fine-tuned physics Binary indicator of function. Bay
Abd

Proteins Random sequences Fre
Molecular motors Random graphs Fre
Cellular networks Random graphs Bay
information stored in the DNA, while the proteome covers the set
of all proteins. The metabolome contains small molecules (sugars,
salts, nucleotides, and amino acids) that participate in metabolic
reactions required for the maintenance and usual function of a cell,
and all the proteins in the cell interact in a great network called the
interactome. To understand the complexity of living cells, research
will need to build models on all these layers. Statistical modeling of
these systems may provide deeper insight into our understanding
of the physical and biological universe, as displayed in Table 1.

In the following two sections, we will discuss some further
implications and mathematical modeling questions related to
fine-tuned systems.
5. Achieving fine-tuning in a conventional Darwinian model:
The waiting time problem

In this section we will elaborate further on the connection
between the probability of an event and the time available for that
event to happen. In the context of living systems, we need to ask
the question whether conventional Darwinian mechanisms have
the ability to achieve fine-tuning during a prescribed period of
time. This is of interest in order to correctly interpret the fossil
record, which is often interpreted as having long periods of stasis
interrupted by very sudden abrupt changes (Bechly and Meyer,
2017). Examples of such sudden changes include the origin of pho-
tosynthesis, the Cambrian explosions, the evolution of complex
eyes and the evolution of animal flight. The accompanying genetic
changes are believed to have happen very rapidly, at least on a
macroevolutionary timescale, during a time period of length t. In
order to test whether this is possible, a mathematical model is
needed in order to estimate the prevalence P Að Þ of the event A that
the required genetic changes in a species take place within a time
window of length t.

More specifically, in the framework of Section 2 we consider a
time interval of length t (typically measured in units of genera-
tions) and ask the question whether evolutionary mechanisms
(mutations, natural selection, and random genetic drift) may
change a DNA-string of nucleotides for a whole population (spe-
cies), from one pattern to another through a series of m coordi-
nated genetic changes. The outcome x is the evolutionary path of
the system from the starting point of the interval, T ¼ T xð Þ is the
time required to bring about a series of m specific changes and A
is the set of all outcomes x for which these changes take place
within time t. This corresponds to a prevalence
P Ajhð Þ ¼ P T Xð Þ � tjhð Þ, where X is random, with a distribution that
assigns probabilities to all possible outcomes, according to a popu-
lation genetic model of the system, whereas h includes the param-
eters of that model, such as the (effective) size of the population,
the length of the DNA-string, the mutation rate, the type of genetic
changes required in each of the m steps, and the selective fitness of
individuals that have acquired i ¼ 0;1; � � � ;m genetic changes. For
instance, if the final target of the evolutionary process is an irre-
ducibly complex system with m subunits, the fitness of the corre-
responds to the outcome x of the corresponding model for Proteins, Molecular motors
physics.

e of model Section

esian inference or
uctive inference

3

quentistic inference or Bayesian inference 4.1
quentistic inference or Bayesian inference (preliminary) 4.2
esian inference (preliminary) 4.3
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sponding targeted DNA-string is higher that the fitness of individ-
uals with no genetic changes (i ¼ 0Þ, whereas individuals that have
acquired i ¼ 1; � � � ;m� 1 genetic changes should have even lower
fitness than those with no genetic changes. The larger the popula-
tion is, the more difficult it is for deleterious mutations of the inter-
mediate steps to spread and get fixed in the whole population.
Therefore, the prevalence P Að Þ of an irreducibly complex system
is extremely small for all but very small populations.

It is important here to differentiate between mutational adapta-
tions which are based on internally-coded information and those
which are the results of mere chance. More specifically, one or sev-
eral mutations of the former kind are needed to build up new infor-
mation and move the system from state i to iþ 1. But at the same
time, other random mutations of the second kind will arrive, and
sometimes these mutations destroy information and move the sys-
tem back from state i to state i� 1. The effect of such back muta-
tions is to enlarge the required time T to reach the target of m
coordinated genetic changes, and consequently making the preva-
lence P Að Þ of an irreducibly complex system even smaller.

In order to estimate the prevalence of the system, we thus need
to find the distribution of the waiting time T until m coordinated
genetic changes take place. For one single change (m ¼ 1Þ, this is
a well studied problem of population genetics when the target rep-
resents a single point mutation (Crow and Kimura, 1970; Durrett,
2008). These results have been generalized to more complicated
settings with m ¼ 1, where the target represents a whole DNA-
string of nucleotides, using either analytical approximations
(Durrett and Schmidt, 2007; Behrens and Vingron, 2010; Tugrul
et al., 2015) or simulations (Sanford et al., 2015).

The distribution of the waiting time for m ¼ 2 genetic changes
includes a pioneering article of Kimura (1985), and more recent
publications in the context of tumour spread by Komarova et al.
(2003) and Iwasa et al. (2004). The mathematical results of the lat-
ter two papers were used by Durrett and Schmidt (2008, 2009) in
order to estimate the time required for two coordinated mutations
to change the expression of a gene in such a way that the first
mutation deactivates a binding site within a nearby regulatory
region, whereas the second mutation activates a second binding
site within the same regulatory region. This work was later
extended by Durrett et al. (2009), to an arbitrary number m of
mutations.

Behe (2007) has argued that m ¼ 2 coordinated mutations
seems to be the edge of what evolution is capable of achieving,
with the development of chloroquine resistance in the parasite
that causes malaria (P. falisparum) as a well known example.
Behe (2009) also stressed the importance of including back muta-
tions in models for the waiting time of coordinated mutations. This
has been confirmed, in different contexts, by Axe (2010b) and
Hössjer et al. (2018). In one section of the latter paper the authors
consider a system with m subunits, each of which may experience
forward and backward mutations independently, back and forth, in
any order. They further assume a neutral model where all interme-
diate states of i ¼ 1; � � � ;m� 1 acquired forward mutations have no
selective disadvantage. It is proved in equation (12.109) of Hössjer
et al. (2018) that the expected waiting time until the system
acquires all m forward mutations, is approximately
E Tð Þ � 1þ Cð Þm
mCu

ð7Þ

when m is large, with u > 0 the probability of a forward mutation
per generation and individual, and the probability of a backward
mutation per generation and individual denoted by Cu > 0. If each
subunit is a single DNA nucleotide A,G, C or T, then typical param-
eter values are u ¼ 10�8=3 and C ¼ 3, since only one mutation out
of three is a forward mutation (corresponding to the targeted
nucleotide of that subunit), whereas all mutations are back muta-
tions. The waiting time in (7) is approximately exponentially dis-
tributed, so by Taylor expansion the prevalence is given as

P Að Þ ¼ P T � tð Þ � 1� exp � t
E Tð Þ

� �
� t

E Tð Þ : ð8Þ

Notice in particular that the expected waiting time in (7) grows
with m at an exponential rate when back mutations are allowed
(C > 0Þ, whereas the prevalence in (8) decreases exponentially
with m. The waiting time grows even more quickly with m for an
irreducibly complex system with back mutations, since the inter-
mediate states are not neutral but deleterious. Consequently, the
prevalence P Að Þ of an irreducibly complex system with back muta-
tions is exceedingly small even for moderately large m.

A number of authors have tried to overcome the waiting time
problem by proposing mechanisms of change within the evolution-
ary pathway X that shorten the time to reach the target. These
mechanisms include symbiogenesis, the action of transposable ele-
ments, horizontal gene transfer, and the use of alternative evolu-
tionary pathways. However, LeMaster (2018) argues that none of
these mechanisms really solve the waiting time problem.

It is also possible to address the waiting time problem in the
context of fine-tuning of structures of the living cell that connect
to the origin of life, such as proteins (see equation (5) of Sec-
tion 4.1), protein complexes (Section 4.2) or the genetic code
(Wichmann and Ardern, 2019). The prevalence
P Að Þ ¼ P T Xð Þ � tð Þ � t=E Tð Þ then corresponds to the probability
that (some aspect of) life arose purely by chance within a pre-
scribed time frame t. Whereas the fine-tuning of the diversity of
live (given that life first occurred) requires a Darwinian (biological)
evolutionary process X in order to estimate the probability P Að Þ
that the observed genomic structure occurred randomly, within a
prescribed time frame, the origin on life corresponds to a scenario
where X is a chemical evolutionary process.
6. Modelling of fine-tuning in biological systems

6.1. Previous modeling work

Intelligent Design (ID) has gained a lot of interest and attention
in recent years, mainly in USA, by creating public attention as well
as triggering vivid discussions in the scientific and public world. ID
aims to adhere to the same standards of rational investigation as
other scientific and philosophical enterprises, and it is subject to
the same methods of evaluation and critique. ID has been criti-
cized, both for its underlying logic and for its various formulations
(Olofsson, 2008; Sarkar, 2011).

William Dembski originally proposed what he called an ‘‘ex-
planatory filter” for distinguishing between events due to chance,
lawful regularity or design (Dembski, 1998). Viewed on a suffi-
ciently abstract level, its logics is based on well-established princi-
ples and techniques from the theory of statistical hypothesis
testing. However, it is hard to apply to many interesting biological
applications or contexts, because a huge number of potential but
unknown scenarios may exist, which makes it difficult to phrase
a null hypothesis for a statistical test (Wilkins and Elsberry,
2001; Olofsson, 2008).

The re-formulated version of a complexity measure published
by Dembski and his coworkers is named Algorithmic Specified Com-
plexity (ASC) (Ewert et al., 2013; 2014). ACS incorporates both
Shannon and Kolmogorov complexity measures, and it quantifies
the degree to which an event is improbable and follows a pattern.
Kolmogorov complexity is related to compression of data (and
hence patterns), but suffers from the property of being unknow-
able as there is no general method to compute it. However, it is
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possible to give upper bounds for the Kolmogorov complexity, and
consequently ASC can be bounded without being computed
exactly. ASC is based on context and is measured in bits. The same
authors have applied this method to natural language, random
noise, folding of proteins, images etc (Marks et al., 2017).

6.2. Towards a general statistical framework for testing fine-tuning

More recently, George Montañez published a model for detect-
ing fine-tuning that incorporates randomness and specificity, and
which unifies many previous attempts (Montañez, 2018). In order
to describe this method, let f xð Þ be a function that quantifies, for
each outcome x 2 X, how specified it is, with a larger value corre-
sponding a higher degree of specificity. Let xobs be the observed
outcome, and define the set

A ¼ x 2 X;
P xjhð Þ
f xð Þ � P xobsjhð Þ

f xobsð Þ
� 	

ð9Þ

of outcomes which are either at least as unlikely or at least as spec-
ified as the observed one. The prevalence P Að Þ corresponds to the
outlyingness of xobs, that is, how likely it is to observe an outcome
at least as improbable and/or specified as xobs. Another possibility
is to define an event

A ¼ x 2 X; f xð Þ � f xobsð Þf g; ð10Þ
that consists of all outcomes at least as specified as the observed
one. An advantage of (10) over (9) is that (10) makes it possible
to treat models where some outcomes are discrete whereas others
are continuous, as is common in problems with censoring and
truncation.

The choice of specificity function f is crucial. In the simplest
case an outcome is either specified or not, quantified as 1 or 0. This
corresponds to an indicator function

f xð Þ ¼ 1 x 2 Að Þ; ð11Þ
where A is the set of specified outcomes, that is, a function that
equals 1 for all outcomes in A and 0 for all outcomes outside of
A. Notice that (10) retrieves A whenever f satisfies (11) and we
observe a specified outcome (xobs 2 A).

In other applications, there are different degrees of specificity,
and this requires more sophisticated choices of f than (11). It is
possible, for instance, to state Haldane’s Dilemma in the frame-
work of (10). Haldane (1932) asked the question whether natural
selection is capable of removing deleterious mutations as they
arrive within a species over time. If not, they may cause a muta-
tional load that increases to such an extent that the survival of
the species is threatened (Lynch et al., 1993). Such an increased
mutational load corresponds to an increase of genetic entropy
(Sanford, 2008) or a decreased biological fitness. Haldane’s
Dilemma is in fact related to the waiting time problem of Section 5.
More specifically, we ask the following question: If a population
evolved randomly during a time period of length t, then at the
end of this time period what fraction of individuals x within the
population X would have a fitness f xð Þ at least as large as the
one observed, f xobsð Þ, for some individual alive at this time point?
In the context of (8), this corresponds to a prevalence
P Ajhð Þ ¼ P f Xð Þ � f xobsð Þjhð Þ, where f Xð Þ is the fitness of a randomly
chosen individual X at the end of the time period, according to pre-
dictions of an evolutionary model.

The parameters h of this model include the fitness distribution
at the beginning of the time period, the (effective) size of the pop-
ulation, the mutation rate, and the mutational spectrum (the dis-
tribution of fitness changes caused by mutations). If the
mutational spectrum is such that mutations are neutral on average,
then Fisher’s Fundamental Theorem of Natural Selection (Fisher,
1930, Price, 1972) predicts that biological fitness increases over
time, corresponding to a large prevalence P Að Þ. However, it is well
known (Kimura, 1979) that most mutations are slightly detrimen-
tal. Basener and Sanford (2018) recently extended Fisher’s Theo-
rem, allowing for arbitrary mutational spectra. In particular, they
showed that Kimura’s mutational spectrum implies a fitness
decreases over time, in line with the predictions of Haldane’s
Dilemma. Consequently, the prevalence P Að Þ is very small for spe-
cies that have existed for a long period t of time.

Regardless of whether (9) or (10) is used, and regardless of
whether f corresponds to a binary or continuous function, the
prevalence P Að Þ involves a number of unknown parameters h.
Therefore, in order to estimate the prevalence we need some train-
ing data set (=data) different from xobs in order to estimate the
unknown parameters, either through a frequentist approach (2)
or a Bayesian approach (3). In the former case P Að Þ is referred to
as a p-value. We also face the challenge that the prevalence P Að Þ
depends on f . We must either know f beforehand or be able to esti-
mate it in some way (this is related to the abovementioned diffi-
culty of framing a null hypothesis of testing). Our previous
examples in Sections 3–5 correspond to a binary specificity (11),
where f xð Þ ¼ 1 (or equivalently x 2 A) when x is a universe that
either exists or is habitable (Section 3) or when x is a protein or
protein complex that functions (Sections 4.1–4.2). In Section 5
we addressed the waiting time problem and asked the question
whether the time T ¼ T xð Þ until a pre-specified sequence of
changes of an evolutionary path x occur, is less than t or not. This
corresponds to the binary specificity function (11) with
A ¼ x; T xð Þ � tf g. For Haldane’s Dilemma we rather used a contin-
uous specificity function that corresponds to biological fitness.
6.3. Model selection

A general approach is to detect fine-tuning by demonstrating
that the prevalence of the event (9) or (10) is low. A critic may
say that this to some extent is a ‘‘fine-tuning-of-the gaps”-
argument, since we may never know for sure whether a better nat-
uralistic model, with a much higher prevalence, will be found in
the future. That is, if the prevalence P Að Þ is low, we have only fal-
sified one specific naturalistic model, not necessarily naturalism in
general. Of course, we can never be sure whether a better natural-
istic explanation will be found later on or not. However, one may
argue that the most suitable approach of science is to compare
the best explanations founds so far within two competing world-
views. This naturally leads to model selection. Recall from Fig. 1
that a statistical model M is a collection of data generating mech-
anisms P �jhð Þ for all parameters h that the model allows for. It is
possible for some problems to suggest a design model M1 that
competes with the currently most promising naturalistic model
M2, in terms of which model explains data the best.

Such a model selection can be performed by computing esti-

mates bP AjM1ð Þ and bP AjM2ð Þ of the prevalence of A (chosen as in
(9) or (10)) for both models and then choosing the model with
the largest estimated prevalence. The prevalence of each model
can be estimated by a frequentist (2) or a Bayesian approach (3).
In either case, the prevalence corresponds to the outlyingness of
xobs, so that the chosen model is the one for which xobs is least of
an outlier. We may interpret such a model selection between M1

and M2 as a comparison of the two models’ goodness-of-fit, to
the set A of all possible data sets that are at least as specified as
xobs. A more traditional kind of model selection, which does not
take specificity into account, is to compare the goodness-of-fit of
the observed outcome xobs for both competing models by compar-

ing bP xobsjM1ð Þ and bP xobsjM2ð Þ, or versions of these probabilities that
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are penalized by model size. This corresponds to choosing
A ¼ xobsf g in (2) or (3).

We believe the model selection approach is very promising for
future fine-tuning research. It can be used, for instance, when
deciding whether the diversity of life is best explained by Dar-
winian macroevolution (M2) or a design-inspired model (M1).
Examples of design-inspired models are the Dependency Graph
of Winston Ewert (2018), and a forest of microevolutionary family
trees, where the species within each family tree descend from a
designed common ancestral population (Tan, 2015; 2016). One
may also study the more restricted problem of human/chimp
ancestry, and compare a model M2 with common ancestry of the
two species, with a unique origin model M1, according to which
each species is founded by one single couple (Sanford and Carter,
2014; Hössjer et al., 2016a; 2016b, Carter et al., 2018, Hössjer
and Gauger, 2019). In order to extend and strengthen the results
of these articles, data x could involve not only DNA patterns, but
also one or several layers of organization from the cell, as outlined
in Section 4.
7. Concluding remarks

Statistical modeling and inference on molecular systems may
provide valuable insights for our way to understand the physical
and biological universe. In this paper, we have elaborated on basic
information from DNA sequences, proteins, protein complexes, sig-
naling pathways and networks, using the prevalence P Að Þ of an
observed event A of fine-tuning, which corresponds to a Shannon
information of �log2P Að Þ. By elaborating such models, we may
adequately capture some of the richness of the natural world. In
this context, statistical methods are part of a new approach that
in many cases enable us to quantify how challenging it is for nat-
uralistic, random processes to explain contemporary scientific
observations and material, and instead propose fine-tuning as a
credible alternative explanation.

The laws, constants, and primordial initial conditions of nature
present the flow of nature. These purely natural objects discovered
in recent years show the appearance of being deliberately fine-
tuned. Functional proteins, molecular machines and cellular net-
works are both unlikely when viewed as outcomes of a stochastic
model, with a relevant probability distribution (having a small
P Að Þ), and at the same time they conform to an independent or
detached specification (the set A being defined in terms of speci-
ficity). These results are important and deduced from central phe-
nomena of basic science. In both physics and molecular biology,
fine-tuning emerges as a uniting principle and synthesis – an inter-
esting observation by itself.

In this paper we have argued that a statistical analysis of fine-
tuning is a useful and consistent approach to model some of the
categories of design: ‘‘irreducible complexity” (Michael Behe),
and ‘‘specified complexity” (William Dembski). As mentioned in
Section 1, this approach requires a) that a probability distribution
for the set of possible outcomes is introduced, and b) that a set A
of fine-tuned events or more generally a specificity function f is
defined. Here b) requires some apriori understanding of what
fine-tuning means, for each type of application, whereas a)
requires a naturalistic model for how the observed structures
would have been produced by chance. The mathematical proper-
ties of such a model depend on the type of data that is analyzed.
Typically a stochastic process should be used that models a
dynamic feature such as stellar, chemical or biological (Darwinian)
evolution. In the simplest case the state space of such a stochastic
process is a scalar (one nucleotide or amino acid), a vector (a DNA
or amino acid string) or a graph (protein complexes or cellular
networks).
A major conclusion of our work is that fine-tuning is a clear fea-
ture of biological systems. Indeed, fine-tuning is even more
extreme in biological systems than in inorganic systems. It is
detectable within the realm of scientific methodology. Biology is
inherently more complicated than the large-scale universe and so
fine-tuning is even more a feature. Still more work remains in
order to analyze more complicated data structures, using more
sophisticated empirical criteria. Typically, such criteria correspond
to a specificity function f that not only is a helpful abstraction of an
underlying pattern, such as biological fitness. One rather needs a
specificity function that, although of non-physical origin, can be
quantified and measured empirically in terms of physical proper-
ties such as functionality. In the long term, these criteria are neces-
sary to make the explanations both scientifically and
philosophically legitimate. However, we have enough evidence to
demonstrate that fine-tuning and design deserve attention in the
scientific community as a conceptual tool for investigating and
understanding the natural world. The main agenda is to explore
some fascinating possibilities for science and create room for
new ideas and explorations. Biologists need richer conceptual
resources than the physical sciences until now have been able to
initiate, in terms of complex structures having non-physical infor-
mation as input (Ratzsch, 2010). Yet researchers have more work
to do in order to establish fine-tuning as a sustainable and fully tes-
table scientific hypothesis, and ultimately a Design Science.
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