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Abstract

This deliverable reports the results of the power models, energy models and libraries
for energy-efficient concurrent data structures and algorithms as available by project
month 30 of Work Package 2 (WP2). It reports i) the latest results of Task 2.2-2.4 on
providing programming abstractions and libraries for developing energy-efficient data
structures and algorithms and ii) the improved results of Task 2.1 on investigating and
modeling the trade-off between energy and performance of concurrent data structures
and algorithms. The work has been conducted on two main EXCESS platforms: Intel
platforms with recent Intel multicore CPUs and Movidius Myriad platforms.

Regarding modeling the trade-off between energy-efficiency and performance of con-
current data structures and algorithms, we report in this deliverable four energy/power
model evaluation studies, including: an improved power model for EXCESS platforms
compared to Deliverable D2.2 (i.e., Movidius Myriad1), a new energy complexity model
(namely, EPEM - Energy-aware Parallel External Memory) for multi-threaded algo-
rithms, the modeling of the performance and the energy consumption of data struc-
tures on a CPU platform, as well as an investigation on the optimization of streaming
applications on Myriad2, from three points of view, which are performance, energy
consumption, and space.

Regarding developing novel programming abstractions and libraries, we have col-
lected additional performance profiles using CPU counters and a cycle accurate simu-
lator (i.e., GEM5), which are useful to gain insight into the relation between reduced
data movements and energy efficiency. Moreover, we have implemented DeltaTree, the
locality-aware data structures, and a fast concurrent B-Tree on Myriad2 platform, and
have shown that a specialized ultra low-power embedded platform such as Movidius
Myriad2 can also benefit from the locality-aware data structures.
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Executive Summary

Work package 2 (WP2) aims to develop libraries for energy-efficient inter-process commu-
nication and data sharing on the EXCESS platforms. In order to set the stage for these
tasks, WP2 needs to investigate and model the trade-offs between energy consumption and
performance of data structures and algorithms for inter-process communication. WP2 also
provides concurrent data structures and algorithms that support energy-efficient massive par-
allelism while minimizing inter-component communication. The developed data structures
and algorithms are locality- and heterogeneity-aware.

This Deliverable D2.3 includes the results of four on-going tasks (i.e., Task 2.1-Task 2.4).
In summary, Task 2.1 (PM1 - PM36) aims for modeling the trade-off between energy and
performance in concurrent data structures and algorithms. Task 2.2 (PM7 - PM36) objective
is to identify essential concurrent data structures and algorithms for inter-process communi-
cation. Task 2.3 (PM7 - PM36) develops locality- and heterogeneity-aware concurrent data
structures and Task 2.4 (PM7 - PM36) develops locality- and heterogeneity-aware memory
access algorithms.

The latest results of Task 2.1 on investigating and modeling the trade-off between energy
and performance [46] are presented in the Sections 2, 3, 4, 5 (power/energy model studies).
The latest results of Tasks 2.2-2.4 on energy-efficient and concurrent programming abstrac-
tions and libraries [49] available by project month 30 are also summarized in this report in
Section 6.

Power/Energy models

The studies on proposing new power and energy models help to investigate the trade-off
between energy-efficiency and performance of concurrent data structures and algorithms.
The new power and energy models provide the understanding of energy consumption of
concurrent data structures and algorithms.

• We have improved the power models for EXCESS platforms (i.e., Movidius Myriad1)
from the power models presented in Deliverable D2.2. The latest RTHpower models
have modeled the power consumption of Myriad1 both when computation and data
transfer are performed in parallel and separately.

• We have proposed EPEM, a new energy complexity model for multithreaded algo-
rithms. This new general and validated energy complexity model for parallel (multi-
threaded) algorithms abstracts away possible multicore platforms by their static and
dynamic energy of a computational operation and data access, and derives the energy
complexity of a given algorithm from its work, span and I/O complexity. The new
model is validated by different sparse matrix vector multiplication (SpMV) algorithms
(e.g., compressed sparse column (CSC) and compressed sparse block (CSB)) running
on high performance computing (HPC) platforms (e.g., Intel Xeon and Xeon Phi) and
using nine sparse matrix types from Florida Matrix Collection. The new energy com-
plexity model is able to characterize and compare the energy consumption of SpMV
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kernels according to three aspects: different algorithms, different input matrix types
and different platforms.

• We have continued the modelling of the performance and the energy consumption
of data structures on a CPU platform. In Deliverable D2.2, we have successfully
modelled lock-free queues: we have been able to predict the throughput, the power
dissipated by the chip and the energy per operation of six different implementations
of lock-free queues by measuring only a very few points of the studied domain. In
the present deliverable, we target the same metrics, which are performance- and/or
energy-related, and take some more steps: we present the prediction of those metrics
on a larger set of data structures, namely stack, shared counter, queue and priority
queue on a single-socket processor. To obtain these estimates of the metrics, we need
even less measurement points than previously.

• We have investigated on the optimization of streaming applications on Myriad2, from
three points of view, which are performance, energy consumption, and space. To
do this, we have focused our evaluation on an operator that is widely used in data
streaming applications: the multiway aggregator. Several implementations of this
aggregator has been tested, employing several queue implementations.

Libraries of concurrent data structures and algorithms

We describe a set of implemented concurrent search trees as well as their energy and perfor-
mance analyses.

• In the previous deliverable, we have shown that locality-aware concurrent search trees
were able to consume less energy while able to maintain better throughput than the
locality-oblivious concurrent search trees. Recently, we have collected additional per-
formance profiles using CPU counters and a cycle accurate simulator (i.e., GEM5),
which are useful to gain insight on the relation between reduced data movements and
energy efficiency.

• We have implemented DeltaTree and a fast concurrent B-Tree on Myriad2 platform,
and have shown that a specialized ultra low-power embedded platform such as Mo-
vidius Myriad2 can also benefit from the fine-grained locality data structures. The
experimental results show that GreenBST has up to 100% better energy efficiency and
more operations/second on the x86, ARM, and Xeon Phi platforms.

This report is organized as follows. Section 1 provides the background and motivations of
the work presented in this deliverable. Sections 2, 3, 4, 5 discuss power and energy models
studies. Section 6 describes the second prototype with latest updates of EXCESS libraries
including numerous concurrent search tree implementations as well as their performance and
energy analyses. Section 7 concludes the report by summarizing the latest results and future
works.
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1 Introduction

1.1 Purpose

The goal of Work package 2 (WP2) is to develop programming abstraction and libraries
for inter-process communication and data sharing on EXCESS platforms, along with in-
vestigating and modeling the trade-offs between energy consumption and performance of
data structures and algorithms for inter-process communication. WP2 also concerns sup-
porting energy-efficient massive parallelism through scalable concurrent data structures and
algorithms that strive for the energy limit, and minimizing inter-component communication
through locality- and heterogeneity-aware data structures and algorithms.

This report summarizes i) the latest results of Task 2.1 on investigating and modeling
the trade-off between energy and performance of concurrent data structures and algorithms
ii) the improved results of Task 2.2 on providing essential concurrent data structures and
algorithms for inter-process communication and well as results of Task 2.3 on developing
novel concurrent data structures that are locality- and heterogeneity-aware.

1.2 Power and Energy Models

This section explains the motivations of four energy/power model studies, including: an
improved power model for EXCESS platforms compared to Deliverable D2.2 (i.e., Movidius
Myriad1), a new energy complexity model (namely, EPEM - Energy-aware Parallel External
Memory) for multi-threaded algorithms, the modeling of the performance and the energy
consumption of data structures on a CPU platform, as well as an investigation on the opti-
mization of streaming applications on Myriad2.

1.2.1 Power Models for Ultra-low Power Embedded Systems

Devising accurate power models is crucial to gain insights into how a computer system
consumes power and energy. Significant efforts have been devoted to devising power and
energy models, resulting in several seminal papers in the literature such as [9, 63, 22, 21,
67, 68, 60, 81, 94]. The models are either platform specific [63] or application specific [9].
Jacobson et al. [63] provided an insightful analysis in power modeling methodologies via
a range of abstraction levels. They also proposed accurate power modeling methodologies
for POWER-family processors. Alonso et al. [9] proposed energy models for three key
dense-matrix factorizations. Roofline model of energy [22, 21] considers both algorithmic
and platform properties. However, the Roofline model does not consider the number of cores
running applications as a model parameter (i.e., coarse-grained models). Theoretical models
by Korthikanti et al. [68, 67] are based on strong theoretical assumptions and are not yet
validated on real platforms. Imes et al. [60] provided a portable approach to make real-time
decision and run the chosen configuration to minimize energy consumption. However, the
approach requires systems supporting hardware resources (e.g., model-specific register) to
expose energy data to the software during run-time. Mishra et al. [81] used a probabilistic
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approach to find the most energy-efficient configuration by combining online and offline
machine-learning approaches. However, this approach collects a significant amount of data
to feed to its probabilistic network. RTHpower models proposed in this study are lightweight
and applicable to any ultra-low power embedded systems as long as there is a means to
measure the energy consumption of micro-benchmarks on the targeted platform.

Recently, ultra-low power (ULP) embedded systems have become popular in the scien-
tific community and industry, especially in media and wearable computing. ULP systems
can achieve low energy per instruction down to a few pJ [7]. Alioto [7] mentioned that
techniques such as pipe-lining, hardware replication, ultra-low-voltage memory design and
leakage-reducing make a system ultra-low power. In order to model ULP systems where
energy per instruction can be as low as few pJ, more accurate fine-grained approaches are
needed. However, to the best of our knowledge, there are no application-general, fine-grained
and validated models yet that provide insights into how an application running on an ULP
embedded system consumes energy and, particularly, whether the race-to-halt (RTH) strat-
egy (i.e, system is run as fast as possible, and then switched to idle state to save energy)
that is widely used in high-performance computing (HPC) systems is still applicable to ULP
embedded systems.

1.2.2 Energy Complexity Model for Multithreaded Algorithms

Like time complexity models that have significantly contributed to the analysis and devel-
opment of fast algorithms, energy complexity models for parallel algorithms are desired as
crucial means to develop energy efficient algorithms for ubiquitous multicore platforms. Ideal
energy complexity models should be validated on real multicore platforms and applicable to
a wide range of parallel algorithms. However, existing energy complexity models [9, 67, 68]
for parallel algorithms are either theoretical without model validation or algorithm-specific
without being applicable to a wide range of algorithms. This work presents a new general
validated energy complexity model for parallel (multithreaded) algorithms.

1.2.3 Energy Model on CPU for Lock-free Data-structures with Low-level of
Disjoint-access Parallelism

We consider the modeling and the analysis of the performance of lock-free concurrent data
structures. Lock-free designs employ an optimistic conflict control mechanism, allowing
several threads to access the shared data object at the same time. They guarantee that at
least one concurrent operation finishes in a finite number of its own steps regardless of the
state of the operations. Our analysis considers such lock-free data structures that can be
represented as linear combinations of fixed size retry loops.

Our main contribution is a new way of modeling and analyzing a general class of lock-free
algorithms (including stack, shared counter, queue, priority queue), achieving predictions of
throughput that are close to what we observe in practice. We emphasize two kinds of
conflicts that shape the performance: (i) hardware conflicts, due to concurrent calls to
atomic primitives; (ii) logical conflicts, caused by simultaneous operations on the shared
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data structure. We show how to deal with these hardware and logical conflicts separately,
and how to combine them, so as to calculate the throughput of lock-free algorithms.

We propose also a common framework that, in addition to providing a better under-
standing of the performance impacting factors, enables a fair comparison between lock-free
implementations by covering the whole contention domain. This comparison translates into
the ability to choose the best implementation at hand, with respect to the actual application
that uses the data structure. This part of our analysis comes with a method for calculating
a good back-off strategy to finely tune the performance of a lock-free algorithm. Our exper-
imental results, based on a set of widely used concurrent data structures and on abstract
lock-free designs, show that our analysis follows closely the actual code behavior.

1.2.4 Energy Evaluation on Myriad2 for Multiway Aggregation on Streaming
Applications

The transition from uniprocessor to multiprocessor designs in embedded systems is not as
straightforward as in general purpose machines due to the fact that limitations in terms of
space availability and energy consumption are introduced depending on the application’s
purpose and target environment along with the hardware used.

Developing this kind of systems in a way that it uses memory and energy in an optimal
way, and such that performance is not affected at a big percentage, is of utmost importance
and data structures used within an application play a significant role towards this goal.

The work presented here aims to exhibit data structures that are suited for embedded
systems, and to investigate trade-offs between different implementations in terms of energy
consumption, memory utilization and performance. Through this investigation the focus will
be on data streaming applications implementing multiway aggregation of the received data.

Although efficient data structures for a concurrent environment have been studied ex-
tensively, the issue of appropriate data structures for data streaming applications has been
neglected. Concurrent data structures play a major role between aggregation stages, because
they are in charge of the regulation of the parallelism and the load balancing in this stream-
ing applications. For this reason we have developed such a streaming application, which is
based on the research conducted on concurrent data structures. An efficient solution provid-
ing lower latency, bigger throughput and energy efficiency at the data aggregation function
of the application is then achieved.

1.3 Energy-efficient and Concurrent Data Structures and Algo-
rithms

Recent research has suggested that improving fine-grained data-locality is one of the main
approaches to improving energy efficiency and performance. However, no previous research
has investigated the effect of the approach on these metrices in the case of concurrent data
structures.

Our study investigates how fine-grained data locality influences energy efficiency and
performance in concurrent search trees, a crucial data structure that is widely used in several
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important systems. We conduct a set of experiments on three lock-based concurrent search
trees: GreenBST, a portable fine-grained locality-aware concurrent search tree; CBTree, a
coarse-grained locality-aware concurrent B+tree; LFBST, a locality-oblivious non-blocking
binary search tree; and citrus, a locality-oblivious read-copy-update (RCU) concurrent search
tree. We run the experiments on a commodity x86 platform, an embedded ARM platform,
and an accelerator board based on the Intel Xeon Phi. The experimental results show that
GreenBST has up to 100% better energy efficiency and more operations/second on the x86,
ARM, and Xeon Phi platforms. The results also confirm that portable fine-grained locality
can improve energy efficiency and performance in concurrent search trees.

1.4 Contributions

The main achievements in this report are summarized as follows.

1.4.1 Power/Energy models

• We have improved the power model for one EXCESS platform (Movidius Myriad1)
initially described in Deliverable D2.2. The power models characterize applications
by their operational intensity that can be extracted from any application. The mod-
els are validated with three application kernels, namely dense matrix multiplication,
sparse matrix vector multiplication and breadth first search. Based on the models,
we propose a framework to predict whether it is energy-efficient to apply race-to-halt
(RTH) strategy (i.e. running an application with a maximum number of cores). For
the application kernels, the proposed framework is able to predict when to use RTH
and when not to use RTH precisely. The experimental results show that we can save
up to 60% energy for dense matrix multiplication, 61% energy for sparse matrix vector
multiplication by using RTH and 5% energy for breadth first search by not using RTH.

• We have proposed a new energy complexity model for multithreaded algorithms. This
new general and validated energy complexity model for parallel (multithreaded) algo-
rithms abstracts away possible multicore platforms by their static and dynamic energy
of a computational operation and data access, and derives the energy complexity of a
given algorithm from its work, span and I/O complexity. The new model is validated
by different sparse matrix vector multiplication (SpMV) algorithms (e.g., compressed
sparse column (CSC) and compressed sparse block (CSB)) running on high perfor-
mance computing (HPC) platforms (e.g., Intel Xeon and Xeon Phi) and using nine
sparse matrix types from Florida Matrix Collection [28]. The new energy complexity
model is able to characterize and compare the energy consumption of SpMV kernels
according to three aspects: different algorithms, different input matrix types and dif-
ferent platforms.

• We have continued the modelling of the performance and the energy consumption of
data structures on a CPU platform. In Deliverable D2.2, we have successfully modelled
lock-free queues: we have been able to predict the throughput, the power dissipated
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by the chip and the energy per operation of six different implementations of lock-free
queues by measuring only a very few points of the studied domain. In the present
deliverable, we targeted the same metrics, which are performance- and/or energy-
related, and take some more steps: we present the prediction of those metrics on a
larger set of data structures, namely stack, shared counter, queue and priority queue
on a single-socket processor. To obtain these estimates of the metrics, we need even
less measurements points than previously.

• We have investigated on the optimization of streaming applications on Myriad2, from
three points of view, which are performance, energy consumption, and space. To
do this, we have focused our evaluation on an operator that is widely used in data
streaming applications: the multiway aggregator. Several implementations of this
aggregator has been tested, employing several queue implementations.

1.4.2 Libraries of concurrent data structures and algorithms

• We have added two state-of-the art concurrent search trees into the concurrent search
tree library. In the previous deliverable, we have shown that locality-aware concur-
rent search trees were able to consume less energy lead while able to maintain better
throughput than the locality-oblivious concurrent search trees. Recently, we have col-
lected additional performance profiles using CPU counters and a cycle accurate sim-
ulator (i.e., GEM5), which are useful to gain insight on the relation between reduced
data movements and energy efficiency.

• We have implemented DeltaTree and a fast concurrent B-Tree on Myriad2 platform,
and have shown that a specialized ultra low-power embedded platform such as Movidius
Myriad2 can also benefit from the fine-grained locality data structures.
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2 Power Models for Ultra-low Power Embedded Sys-

tems

This section presents the improvements on power models for Myriad1 platform from the
model proposed in EXCESS Deliverable D2.2 [49]. The study is summarized to three main
works as follows.

• We propose new application-general fine-grained power models (namely, RTHpower)
that provide insights into how a given application consumes power when running on
an ultra-low power embedded system [97]. The RTHpower models consider three pa-
rameter groups: platform properties, application properties (e.g. operational intensity
and scalability) and execution settings (e.g., the number of cores executing a given
application). The models consider both platform and application properties, which
give more insights into how to design applications to achieve better energy efficiency.
(cf. Section 2.1)

• We train the new RTHpower models on an ultra-low power embedded system, namely
Movidius Myriad using different sets of micro-benchmarks and validate the models
using two computation kernels from Berkeley dwarfs [13] and one data-intensive kernel
from Graph500 benchmarks [95]. The three chosen application kernels are dense matrix
multiplication (Matmul), sparse matrix vector multiplication (SpMV) and breadth first
search (BFS). The model fitting has percentage error at most 7% for micro-benchmarks
and 10% for application benchmarks (cf. Section 2.2).

• We investigate the RTH strategy on an ultra-low power embedded platform using the
new RTHpower models. We propose a framework that is able to predict precisely when
to and when not to apply the RTH strategy in order to minimize energy consumption.
We validate the framework using micro-benchmarks and application kernels. From our
experiments, we show real-world scenarios when to use RTH and when not to use RTH.
We can save up to 61% energy for dense matrix multiplication, 59% energy for SpMV
by using RTH and up to 5% energy for BFS by not using RTH. (cf. Section 2.3)

2.1 RTHpower - Analytical Power Models

For the flow of reading, we first summarize a power model for operation units described
in Deliverable D.2.2 and then develop it to the improved RTHpower models considering
application properties in this Deliverable.

2.1.1 A Power Model for Operation Units

The experimental results of the micro-benchmarks suite for operation units show that the
power consumption of Movidius Myriad1 platform is ruled by Equation 1. In the equation,
the static power P sta is the required power when the Myriad chip is on, including memory
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Table 1: P dyn(op) of SHAVE Operation Units

Operation Description P dyn (mW)

SAUXOR Perform bitwise exclusive-OR on scalar 14.68
SAUMUL Perform scalar multiplication 17.69
VAUXOR Perform bitwise exclusive-OR on vector 34.34
VAUMUL Perform vector multiplication 51.98
IAUXOR Perform bitwise exclusive-OR on integer 15.91
IAUMUL Perform integer multiplication 18.48
CMUCPSS Copy scalar to scalar 12.62
CMUCPIVR Copy integer to vector 18.84
LSULOAD Load from a memory address to a register 29.87
LSUSTORE Store from a register to a memory address 37.49

storage power; the active power P act is the power consumed when a SHAVE core is on
and actively performing computational work; the dynamic power P dyn(op) is the power
consumed by each operation unit such as arithmetic units (e.g., IAU, VAU, SAU, CMU)
or load/store units (e.g., LSU0, LSU1) in one SHAVE. The experimental results show that
different operation units have different P dyn(op) values as listed in Table 1. The total dynamic
power of a SHAVE core is the sum of all dynamic power from involved units. If benchmarks
or programs are executed with n SHAVE cores, the active and dynamic power needs to be
multiplied with the number of used SHAVE cores. By using regression fitting techniques,
the average value of P sta and P act from all micro-benchmarks are computed in Equation 2
and Equation 3. Table 2 provides the description of parameters in the proposed models.

P units = P sta + n×

(
P act +

∑
i

P dyn
i (op)

)
(1)

P sta = 61.81 mW (2)

P act = 29.33 mW (3)

2.1.2 RTHpower Models for Applications

Since typical applications require both computation and data movement, we use the concept
of operational intensity proposed by Williams et al.[105] to characterize applications. An
application can be characterized by the amount of computational work W and data transfer
Q. W is the number of operations performed by an application. Q is the number of trans-
ferred bytes required during the program execution. Both W and Q define the operational
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Table 2: Model Parameter List

Parameter Description

P sta Static power of a whole chip
P act Active power of a core
P dyn(op) Dynamic power of an operation unit
PLSU Dynamic power of Load Store Unit
P ctn Contention power of a core waiting for data
m Average number of active cores accessing data
n Number of assigned cores to the program
I Operational intensity of an application
α Time ratio of data transfer to computation
β Tuning parameter of an application

intensity I of applications as in Equation 4.

I =
W

Q
(4)

As the time required to perform one operation is different from the time required to transfer
one byte of data, we introduce a parameter to the models: time ratio α of transferring one
byte of data to performing one arithmetic operation. Ratio α is the property of an application
on a specific platform and its value depends on the application. Since the time to access data
and time to perform computation work can be overlapped, during a program execution, the
SHAVE core can be in one of the three states: performing computation, performing data
transfer or performing both computation and data transfer in parallel. An application either
has data transfer time longer than computation time or vice versa. Therefore, there are two
models for the two cases for higher accuracy (as compared to Deliverable D2.2, only one
model represents both cases).

• If data transfer time is longer than computation time, the model follows Equation 5.
The execution can be modeled as two (composed) periods: one is when computation
and data transfer are performed in parallel and the other is when only data transfer
is performed. Fraction W

α×Q represents the overlapped time of computation and data

transfer. Fraction α×Q−W
α×Q represents the remaining time for data transfer.

P = P comp||data × W

α×Q
+ P data × α×Q−W

α×Q (5)

• If computation time is longer than data transfer time, estimated power follows Equation
6. The execution can be modeled as two periods: one is when computation and data
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transfer are performed in parallel and the other is when only computation is performed.

P = P comp||data × α×Q
W

+ P comp × W − α×Q
W

(6)

After converting W and Q to I by using Equation 4, the final models are simplified as
Equation 7 and Equation 8,

P = P comp||data × I

α
+ P data × α− I

α
(7)

P = P comp||data × α

I
+ P comp × I − α

I
(8)

where P data, P comp and P comp||data are explained below:

2.1.2.1 Data transfer power

P data is the power consumed by the whole chip when only data transfer is performed. P data

is computed by Equation 9. In Equation 9, P sta is the static power; P act is the active power;
n is the number of active cores assigned to run the application; m is the average number of
SHAVE cores accessing data in parallel during the application execution; contention power
P ctn is the power overhead occurring when a SHAVE core waits for accessing data because
of the limited memory ports (or bandwidth) or cache size in the platform architecture.
Therefore, n−m is the average number of SHAVE cores waiting for memory access during
the application execution.

P data = P sta +min(m,n)× (P act + PLSU)

+max(n−m, 0)× P ctn (9)

2.1.2.2 Computation power

P comp is the power consumed by the whole chip when only computation is performed. P comp

is computed by Equation 10. Each core runs its arithmetic units (e.g. IAU, SAU, VAU)
to perform computation work. There is no contention power due to no memory access.
Therefore, all assigned cores are active and contribute to the power consumption.

P comp = P sta + n× (P act +
∑
i

P dyn
i (op)) (10)

2.1.2.3 Computation and data transfer power

P comp||data is the power consumed by the whole chip when computation and data transfer
are performed in parallel. P comp||data is computed by Equation 11. In this case, there is
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contention power due to data waiting. P comp||data is different from P data in the aspect that
the active cores also run arithmetic units that contribute to total power as

∑
i P

dyn
i (op).

P comp||data = P sta

+min(m,n)× (P act + PLSU +
∑
i

P dyn
i (op))

+max(n−m, 0)× P ctn

(11)

2.2 Model Training and Validation

This section presents the experimental results including two sets of micro-benchmarks and
three application kernels (i.e., matmul, SpMV and BFS) that are used for training and
validating the models .

2.2.1 Model Training with Micro-benchmarks

Analyses of experimental results are performed based on two sets of micro-benchmarks: 22
micro-benchmarks for operation units called unit-suite and 9 micro-benchmarks for differ-
ent operational intensities called intensity-suite. Each micro-benchmark is executed with
different numbers of SHAVE cores to measure its power consumption.

2.2.1.1 Micro-benchmarks for Operation Units

We assess the fitting of the power model for operation units (Equation 1) using data from
unit-suite. The micro-benchmarks of unit-suite are listed in Table 3. We calculate the per-
centage errors of the model fitting and plot them in Figure 1. Percentage error is calculated
as PE = measurement−estimation

measurement
. The absolute percentage error is the absolute value of the

percentage error. For this model, the absolute percentage errors are at most 6%. Figure
1 shows the percentage error of the worst cases in all three categories: one unit, two pipe-
lined units and three pipe-lined units. These results prove that the model is applicable to
micro-benchmarks using either a single (e.g., performing bit-wise exclusive-OR on scalar
unit: SauXor) or pipe-lined arithmetic units in parallel (e.g., performing Xor on scalar and
integer units, in parallel with copying from scalar to scalar unit: SauXorCmuCpssIauXor).
The model also shows the compositionality of the power consumption not only for multiple
SHAVE cores but also for multiple operation units within a SHAVE core.

2.2.1.2 Micro-benchmarks for Application Intensities

Since any application requires both computation and data movement, we design intensity-
based micro-benchmarks which execute both arithmetic units (e.g., SAU) and two data
transfer units (e.g., LSU0, LSU1) in a parallel manner. They are implemented with parallel
instruction pipeline supported by the platform. In order to validate the RTHpower models,
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Table 3: Micro-benchmarks for Operation Units
Description Micro-benchmark Name

10 micro-benchmarks using one unit SAUXOR, SAUMUL, IAUXOR, IAUMUL, VAUXOR, VAUMUL, CMUCPSS,
(cf. Table 2) CMUCPIVR, LSULOAD, LSUSTORE
11 micro-benchmarks using two units SAUXOR-CMUCPSS, SAUXOR-CMUCPIVR, SAUXOR-IAUMUL,

SAUXOR-IAUXOR, SAUXOR-VAUMUL, SAUXOR-VAUXOR, SAUMUL-IAUXOR,
IAUXOR-VAUXOR, IAUXOR-VAUMUL, IAUXOR-CMUCPSS, LSULOAD-STORE

1 micro-benchmark using three units SAUXOR-IAUXOR-CMUCPSS
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Percentage Errors of Micro-benchmarks for Operational Units

VauXor SauXorVauXor SauXorCmuCpssIauXor

Figure 1: The upper-/ lower-bounds on percentage errors of the model fitting for unit-
suite shown by the worst cases of three categories: one unit (e.g., SauXor), two units (e.g.,
IauXorVauXor) and three units (e.g., SauXorCmuIauXor). The absolute percentage errors
of micro-benchmarks for operation units are at most 6%.

this intensity-suite indicates different values of operation intensities (from 0.25 to 64). Oper-
ational intensity I is retrieved from the assembly code by counting the number of arithmetic
instructions and the number of load/store instructions.

In the models, there are platform-dependent parameters such as α, m and P ctn. The
parameter values for each application operational intensity are derived from experimental
results by using Matlab function lsqcurvefit . For the application intensities from 0.25 to 1,
α is found bigger than operational intensity I meaning that data transfer time is longer than
computation time. The estimated power model follows Equation 7. For operational intensity
from 2 to 64, α is less than I meaning that data transfer time is less than computation time.
The estimated power follows Equation 8. We plot the percentage errors of the model fitting
for intensity-based micro-benchmarks in Figure 2. In order to obtain a full range of estimated
power with any values of intensities and numbers of cores, a fuzzy logic approach, namely
Takagi Sugeno Kang (TSK) mechanism [96], is applied to the RTHpower models. Each
intensity has a parameter set, including α, P ctn and m. Based on the RTHpower models,
each parameter set provides an individual function to estimate the power of an application
based on its intensity value and a number of cores. The TSK mechanism considers the
individual functions as membership functions and combines them into a general function
that can be used for any input (i.e., intensity I and number of cores n). The membership
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Figure 2: The absolute percentage errors of RTHpower model fitting for intensity-suite
(operational intensity I from 0.25 to 64) are at most 7%.

Figure 3: The estimated power range of varied intensities and numbers of cores from RTH-
power models. The dots in the figure represent measurement data.

functions of the fuzzy sets are triangular[86]. After implemented the approach using Matlab
Fuzzy Logic toolbox, the full range of estimated power is obtained and presented in Figure
3. It is observed that when the intensity value increases, the power-up (i.e., the power
consumption ratio of the application executed with n cores to the application executed with
1 core) is also increased. The small dip in the diagram is due to the switch from Equation
7 to Equation 8 at the intensity I = 2.

2.2.2 Model Validation with Application Kernels

The following application kernels have been chosen to implement and validate the RTHpower
models on Myriad1: matmul (a computation-intensive kernel), SpMV (a kernel with dynamic
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Figure 4: Application Categories

access patterns), and BFS (a data-intensive kernel of Graph500 benchmarks[95]). All three
kernels belong to the list of Berkeley dwarfs [13] and are able to cover the two dimensions
of operational intensity and performance speed-up as shown in Figure 4. matmul is proved
to have high intensity and scalability [83]. SpMV has low operational intensity and high
speed-up due to its parallel scalability [104]. BFS, on the other hand, has low operational
intensity and saturated low scalability [23]. Since the available benchmark suites in literature
are not executable on Myriad1 platform, the three mentioned kernels have been implemented
by the authors using the Movidius Development Kit for Myriad1. As the RTHpower models
will be used to predict whether the RTH strategy is an energy efficient approach for an
given application, we focus mainly on two settings: the 8-core setting representing the RTH
strategy (i.e., using all available cores of Myriad1) and the 1-core setting representing the
other extreme (i.e., using a minimum number of cores).

2.2.2.1 Dense Matrix Multiplication

Matmul has been implemented on Myriad1 by using both C and assembly languages. The
matmul algorithm computes matrix C based on two input matrices A and B C = A × B.
All three matrices in this benchmark are stored in DDR RAM. Matrix elements are stored
with float type equivalent to four bytes. The number of operations and accessed data are
calculated based on matrix size n as: W = 2×N3 and Q = 16×N2 [83]. Intensity of matmul
is also varied with matrix size as: I = W

Q
= N

8
. The experiments are conducted until matrix

size 1024x1024, the largest size that Myriad1 RAM memory can accommodate. Figure 5
shows that the percentage error of matmul estimated power compared to measured power is
-25% on average for 1 core and 12% on average for 8 cores.

We observe that operational intensity is not enough to capture other factors such as the
communication pattern and potential performance/power overheads due to the implementa-
tion. E.g., although a sequential version and a parallel version of a matmul algorithm have
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Figure 5: Absolute percentage errors of estimated power from measured power of matmul.
After incorporating the tuning parameter, the absolute percentage errors of matmul are at
most 10%.

the same intensity, it is obvious that they have different communication pattern (intuitively,
the sequential version doesn’t have communication between cores). Since different parallel
versions for different number of cores have different communication patterns (e.g., sequential
version vs. 8-core version), ignoring the mentioned factors contributes to the percentage er-
rors. Therefore, we improve the models by introducing a tunning parameter β to the models
in Equation 13 and Equation 14, where β is computed in Equation 12. Note that the tuning
parameter β for each sequential/parallel version (e.g., 1-core version or 8-core version) is
fixed across problem sizes and therefore it can be obtained during kernel installation and
then saved as meta-data for each version in practice. E.g., with 1 core, β = 1

1−25% . With 8

cores, β = 1
1+12%

. After the improvement, the percentage errors are at most 10% as shown
in Figure 5.

β =
1

1 + PE
. (12)

Pimproved = (P comp||data × I

α
+ P data × α− I

α
)× β (13)

Pimproved = (P comp||data × α

I
+ P comp × I − α

I
)× β (14)

2.2.2.2 Sparse Matrix Vector Multiplication

SpMV implementation on Myriad1 is written in C language. All input matrix and vector
of this benchmark reside in DDR RAM. This implementation uses the common data layout
of SpMV which is compressed sparse row (csr) format [90]. There is no random generator
supported in the RISC core so a 5 non-zero elements per row is fixed in all experiments. Each
element of matrix and vector is stored with float type of four bytes. From our implementation
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Figure 6: Absolute percentage errors of estimated power from measured power of SpMV.
After incorporating the tuning parameter, the absolute percentage errors of SpMV are at
most 4%.

analysis, the number of operations and accessed data are proportional to the size of a matrix
dimension N as: W = 5 × 2 × N and Q = 5 × 2 × 4 × N . Operational intensity of SpMV
therefore, does not depend on matrix size and is a fixed value: I = W

Q
= 0.25.

Figure 6 shows the percentage error of SpMV estimated power using Equation 13 and
14 compared to measured power. The β values for 1-core and 8-core versions of SpMV are

1
1+14%

and 1
1−9% , respectively. The absolute percentage errors are at most 4% as shown in

Figure 6. SpMV has lower modeling errors than matmul since SpMV has a fixed intensity
value on different matrix sizes.

2.2.2.3 Breadth First Search

We also implemented BFS - a data-intensive Graph500 kernel, on Myriad1. BFS is the
graph kernel to explore the vertices and edges of a directed graph from a starting vertex. We
use the implementation of current Graph500 benchmark (omp-csr) and port it to Myriad1.
The output BFS graphs after running BFS implementation on Myriad1 are verified by the
verification step of original Graph500 code to ensure the output graphs are correct.

The size of a graph is defined by its scale and edgefactor. In our experiments, we mostly
use the default edgefactor of 16 from the Graph500 so that each vertex of the graph has 16
edges in average. The graph scales are varied from 14 to 17 and the graphs has from 214

to 217 vertices. It is noted that graph scale 17 is the largest scale that the DDR RAM of
Myriad1 can accommodate. From the implementation analysis, the operational intensity of
BFS is a fixed value: I = W

Q
= 0.257 and does not depend on edgefactor or scale.

Figure 7 shows the percentage error of BFS estimated power using Equation 13 and 14
compared to measured power . The β values for 1-core and 8-core versions of BFS are 1

1+8%

and 1
1−19% , respectively. The absolute percentage errors are at most 2% as shown in Figure

7.
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Figure 7: Absolute percentage errors of estimated power from measured power of BFS. After
incorporating the tuning parameter, the absolute percentage errors are at most 2%.

2.3 Race-to-halt Prediction Framework

With the RTHpower models, we want to identify how many cores the system should use to
run an application to achieve the least energy consumption. In order to answer the question,
we need to consider the performance speed-up and power-up of an application on a specific
platform.

From Amdahl’s Law [58] the theoretical maximum speed-up of an application running on
a multicore system is derived as Equation 15, where p denotes the fraction of the application
that can be parallelized and n is the number of cores:

speed-up ≤ 1

(1− p) + p
n

(15)

2.3.1 Framework Description

The purpose of this framework is to identify when to and when not to use RTH for a given
application. The two required inputs for making decision are power-up and performance
speed-up of the application executed with n cores, where n is the maximum number of cores.

• Step 1: Identify meta-data, including speed-up and operational intensity, of a given
application by one of the three main approaches listed: i) doing theoretical analysis
to find the amount of computation work W , data transfer Q and operational intensity
I as well as identify the maximum speed-up of a given application; ii) executing the
application on a targeted platform (e.g., Myriad1) to measure its performance speed-
up and extract its operational intensity I; iii) using profiling tools [77] to extract
the number of operations W and the amount of data transferred Q as well as the
performance speed-up of an application on a common platform (e.g., Intel platform).

• Step 2: Compute power consumption of an application running with one core and
with a maximum number of cores by the RTHpower models. Note that the RTHpower
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models are able to estimate power consumption for any number of cores by changing
parameter n in the models. For verifying the RTH strategy, we only need to apply the
model for a single core and all cores.

• Step 3: Compare the energy consumption of the application between using 1 core and
using a maximum number of cores to identify whether running a maximum number of
cores is the most energy-efficient.

2.3.2 Framework Validation

The framework is validated with three micro-benchmarks and three application kernels. In
this validation, the values of operational intensity I are extracted from theoretical analy-
sis of the implementations and performance speed-up is identified by executing the micro-
benchmarks or application kernels with different numbers of cores.

2.3.2.1 Race-to-halt for Micro-benchmarks

We first validate the framework with micro-benchmarks. In this validation, we measure the
power-up and performance speed-up of three micro-benchmarks: one with 60% parallel code,
one with 100% parallel code and a small-size micro-benchmarks which has high overhead.
All three micro-benchmarks have operational intensity I = 0.25. Namely, in the micro-
benchmarks, each SauXor instruction is followed by a LsuLoad instruction which loads 4
bytes.

All three micro-benchmarks have the same assembly code wrapped inside a loop. The
number of iterations to repeat the code are the difference among them. We run the micro-
benchmarks on one SHAVE for 1 000 000 times. If the micro-benchmark has 100% parallel
code, running it on n SHAVEs requires each SHAVE performing 1

n
of the amount of work

(e.g., if performing the micro-benchmark on 8 SHAVEs, each SHAVE needs to run 125 000
times). Similarly, if the micro-benchmark has a parallel fraction of 60%, then running the
program on n SHAVEs requires each SHAVE to perform (1 − 0.6) + (0.6

n
) of the amount

of work (e.g.,if performing the micro-benchmark on 8 SHAVEs, each SHAVE needs to run
475 000 times). For small-size micro-benchmark, the code is executed 8 times with 1 core
and once with 8 cores. Since the amount of computation is small, the relative overhead of
initializing the platform and executing the small-size micro-benchmark is high.

Figure 8 shows that the power-up of running n SHAVEs to the program running 1 SHAVE
varies from 1 (1 core) to 1.71 (8 cores) for operational intensity I = 0.25. If the performance
speed-up is bigger than the power-up, RTH is an energy-saving strategy. If the speed-up is
less than the power-up, running the program with the maximum number of cores consumes
more energy than running it with 1 core. Note that when this happens, assigning one
core to run the program is more energy-efficient and race-to-halt is no longer applicable for
saving energy. For all three micro-benchmarks in this validation, the performance speed-up
is identified by running them over different numbers of cores. The energy consumption of
the three micro-benchmarks is shown in Figure 9. All three micro-benchmarks achieve the
least energy consumption when executed with one core, from both measured and estimated
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Figure 8: Performance and power-up of micro-benchmarks with operational intensity I =
0.25. All three reported micro-benchmarks have performance speed-up less than platform
power-up.
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Figure 9: Energy consumption of micro-benchmarks with operational intensity I = 0.25.
For all three reported micro-benchmarks, the programs executed with 1 core consume the
least energy, compared to 2, 4, 8 cores, from both measured data and estimated data.

data. The model estimation and actual measurement show that RTH is not applicable to
the three micro-benchmarks.

2.3.2.2 Race-to-halt for Dense Matrix Multiplication

The matmul application has increasing values of operational intensity over input sizes and its
performance speed-up is higher than its power-up on Myriad1. Therefore, running matmul
with the 8 cores is more energy-efficient than running it with one core. Figure 10 shows
percentages of energy-saving if executing matmul with 8 cores instead of 1 core, from both
measured and estimated data. The energy saving percentage is computed based on the
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Figure 10: matmul Energy-saving by Race-to-halt. This diagram shows how many per-
centages of energy-saving if executing matmul with 8 cores instead of 1 core. Since the
energy-saving percentage is positive over different matrix sizes, RTH is an energy-saving
strategy for matmul. Energy-saving percentage from model estimation for matmul has stan-
dard deviation less than 3%.

energy gap of running 1 core and 8 cores divided by energy consumed by running 1 core as
in Equation 16.

ES =
E1core − E8cores

E1core
(16)

The framework predict that RTH should be applied to matmul over different matrix sizes.
By using RTH for matmul, we can save from 20% to 61% of matmul energy consumption.
RTH is a good strategy for matmul. We observe that the energy saving reduces when matrix
size increases due to the decrease of performance speed-up from size 128x128. The reason
is that a matrix size bigger than 128x128 makes the data set no longer fit in the last level
cache (or L2 cache of 64KB) and thereby lowers performance (in flops).

2.3.2.3 Race-to-halt for Sparse Matrix Vector Multiplication

SpMV has a fixed value of operational intensity over input sizes. From the RTHpower models
as well as measurement data, the power-up of SpMV is relatively constant. However, SpMV
has performance speed-up higher than its power-up. Therefore, running SpMV with the
maximum number of cores is more energy-efficient than running it with one core. Figure 11
shows how many percentages of energy-saving if executing SpMV with 8 cores instead of 1
core, from both measured and estimated data. The framework can predict that RTH should
be applied to SpMV over different matrix sizes. By using RTH for SpMV, we can save from
45% to 59% of SpMV energy consumption. RTH is a good strategy for SpMV. The energy
saving increases from size 32x32 to 128x128 since the data fits in L1 cache.
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Figure 11: SpMV Energy-saving by Race-to-halt. This diagram shows how many percentages
of energy-saving if execute SpMV with 8 cores instead of 1 core. Since the energy-saving
percentage is positive over different matrix sizes, RTH is a energy-saving strategy for SpMV.

2.3.2.4 Race-to-halt for Breadth First Search

In our set of application kernels implemented on Myriad1, BFS is the application kernel able
to prove that running with a maximum number of cores does not always give the least energy
consumption. From both measured data and estimated data, the total energy consumed by
running with one core is less than the total energy by running with 8 cores at scale 16 and
17. There are negative values of -5% and -3% in Figure 12 if running BFS with 8 cores
instead of 1 cores at scale 16 and 17, respectively. The RTHpower models can predict when
to apply RTH precisely for different scales.

The result can be explained by the relation between BFS power-up and performance
speed-up. Since BFS has a fixed value of operational intensities across graph scale, from
RTHpower models (cf. Equation 13 and 14), it is understood that BFS power consumption
does not depend on graph scales and its power-up is a fixed value. From the measurement
results, we also observe that BFS power-up is relatively constant over the graph scales.
However, BFS speed-up in our experiments decreases when scale increases. The reason is
that with the same graph degree, when scale increases, the graph becomes more sparse
and disconnected. Compared to the Graph500 implementation, BFS search on Myriad1 are
performed from a chosen subset of source nodes. The speed-up then, becomes less than
power-up at scale 16 and 17. Therefore, running BFS with 8 cores at bigger graph scales
(i.e., 16 and 17 in our experiments) consumes more energy than running BFS with one core.

2.4 Conclusion

In this study, new fine-grained power models have been proposed to provide insights into how
a given application consumes energy when executing on an ultra-low power embedded system.
In the models, applications are represented by their operational intensity. The models have
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Figure 12: BFS Energy-saving by Race-to-halt. This diagram shows how many percentages
of energy-saving if executing BFS with 8 cores instead of 1 core. The positive percentages
at scale 14 and 15 mean that RTH should be applied. The negative percentages at scale 16
and 17 mean that RTH should not be applied. The standard deviation of BFS energy-saving
percentage is less than 3%, from scale 14 to 17.

been validated on Movidius Myriad1, an ultra-low power embedded platform. Experimental
results on 31 micro-benchmarks and three application kernels have shown high accuracy of
estimated data by the model. Based on the models, we have devised a new framework to
predict whether RTH is applicable to a given application. The framework has been validated
by both micro-benchmarks and real application kernels, showing a prediction accuracy that
is good enough for the purpose of deciding about RTH. Improving and applying the models
and framework to other embedded platforms (e.g. ARM) and application kernels (e.g. other
Berkeley dwarfs) are parts of our future work.
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3 Energy Complexity Model for Multithreaded Algo-

rithms

3.1 Introduction

Understanding the energy complexity of algorithms is crucially important to improve the
energy efficiency of algorithms and reducing energy consumption of computing systems.
By knowing the energy complexity of algorithms, the algorithm designers can choose one
algorithm over the others to achieve energy optimization. Devising energy models is one
of the main approaches to characterize the energy complexity of algorithms on computing
systems. Energy models help to investigate the trade-offs between energy consumption and
performance of algorithms as well as their inter-process communication.

Significant efforts have been devoted to develop power and energy models in literature
[9, 22, 21, 67, 68, 60, 81, 94]. However, there are no analytic models for multithreaded
algorithms that are both applicable to every algorithms and comprehensively validated yet.
The existing parallel energy models are either theoretical studies without validation or only
applicable for specific algorithms. Modeling energy consumption of parallel algorithms is
difficult since the energy models need to model both algorithm characteristics and platform
properties. Algorithm characteristics include computational workload, memory workload,
data-accessing patterns and scalable parallelism. Platform properties include static and
dynamic energy of memory accesses and computational operations. The previous energy
model studies have not considered all the mentioned algorithm and platform properties.

The existing models and their classification are summarized in Table 4. The previous
studies have not covered all listed aspects: ability to analyze the energy complexity of par-
allel algorithms (i.e. Energy complexity analysis for parallel algorithms), whether applicable
to general algorithm (i.e., Algorithm Generality), whether the model is validated (i.e., Vali-
dation). Table 4 also shows how this work is different from the other studies.

The energy complexity model EPEM (Energy-aware Parallel External Memory) proposed
in this study is for general multithreaded algorithms and validated on three aspects: differ-
ent algorithms for a given problem, different input types types on different platforms. The
proposed model is an analytic model which characterizes both algorithms (e.g., representing
algorithm by work, span and I/O complexity) and platform properties (e.g., representing
platforms with static and dynamic energy of memory accesses and computational opera-
tions). By considering work and span complexity, the new energy model can applied to any
multithreaded algorithms.

Since the new EPEM energy model focuses on analyzing the energy complexity of algo-
rithms, the model does not give the estimation of absolute energy consumption. The new
model, however, provides the algorithms designers the understanding of how an algorithms
consumes energy and give the insight on how to choose one algorithms over the others on
different input types and platforms. This methodology has been validated for two SpMV
algorithms running on two high performance platforms (Intel Xeon and Xeon Phi), comput-
ing nine matrix input types from Florida matrix collection [28]. The validation results prove
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Table 4: Energy Model Summary

Study Energy complexity Algorithm Validation
analysis for generality
parallel algorithms

LEO [81] No General Yes
POET [60] No General Yes
Koala [94] No General Yes
Roofline [22, 21] No General Yes
Energy scalability [67, 68] Yes General No
Sequential energy complexity [89] No General Yes
Alonso et al. [9] Yes Algorithm-specific Yes
Malossi et al. [78] Yes Algorithm-specific Yes
EPEM model Yes General Yes

the practicability and applicability the EPEM energy complexity model when comparing
the energy consumption of different algorithms as well as comparing different input types on
different platforms. In this work, the following contributions have been made.

• Devise a new energy model EPEM for analyzing the energy complexity of multithreaded
algorithms based on their work, span and I/O complexity (cf. Section 3.4).

• Conduct a case study to demonstrate the methodology how to apply the EPEM model
to find energy complexity of three sparse matrix vector multiplication (SpMV) algo-
rithms (i.e., Compressed Sparse Column(CSC) and Compressed Sparse Block(CSB)
and Compressed Sparse Row(CSR))(cf. Section 3.5).

• Validate the EPEM energy complexity model according to three aspects: different al-
gorithms, different input types and different platforms. The results show the precise
prediction on which validated SpMV algorithm (i.e., CSB or CSC) consumes more
energy when computing different matrix input types from Florida matrix collection
[28] (cf. Section 3.6). The model platform-related parameters for 11 platforms, in-
cluding x86, ARM and GPU, are also provided for further uses of the proposed energy
complexity model.

3.2 Related Work - Overview of energy models

Devising accurate power models is crucial to gain insights into how a computer system
consumes energy. Significant efforts have been devoted to predict energy, resulting in several
energy model studies in the literature including analytic models [9, 22, 21, 67, 68] and
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Table 5: Energy Model Details
Study Parallel- Applicability Validation Communication Pre-run Application

Algorithm model Overhead properties
Support

LEO [81] parallel Yes Yes No Yes None

POET [60] parallel Yes Yes No No None

Koala [94] parallel Yes Yes No Yes None

Roofline sequential Yes Yes Von Neumann No Operational
[22, 21] shared cached intensity

Energy parallel Yes No Message passing No No. of messages
scalability [67] No. of computations

Energy parallel Yes No CREW PEM No No. of mem-accesses
scalability [68] No. of computations

Sequential sequential Yes Yes Uni-processor No Work complexity
energy with parallel I/O complexity
complexity [89] memory-bank

Alonso parallel No(Dense matrix Yes No Yes Application tasks
et al. [9] factorization)

Malossi parallel No(Algebraic Yes Shared memory Yes No. of arithmetic, barrier
et al. [78] kernels) mem-accesses, reduction

EPEM parallel Yes Yes EPEM No Work, Span, I/O
model Input types

energy models to find energy-optimized system configurations [60, 81, 94]. We present the
summary of existing modeling studies in Table 4. The characteristics of each approaches are
extracted as the list of categories, including: whether the models support parallel algorithms
(i.e., Parallel Algorithm Support), whether the model is applicable to general algorithms
(i.e., Applicability), whether the model is validated (i.e., Validation), the communication
model (i.e., Communication model), whether there is pre-run overhead before estimating
energy consumption of applications (i.e., Pre-run Overhead) and how the model represents
applications (i.e., App-properties). This summary is not an exhaustive survey on the topic
of energy models. However, we believe the Table 5 represents the most current studies on
energy models.

Energy models for finding energy-optimized system configurations for a given application
have been recently reported [12, 16, 19]. Imes et al. [60] used controller theory and linear
programming to find energy-optimized configurations for an application with soft real-time
constraints at runtime. Mishra et al. [81] used hierarchical Bayesian model in machine learn-
ing to find energy-optimized configurations. They used offline learning to train the Bayesian
model with a training set of applications with different patterns, and used online learning to
quickly estimate the optimal configuration for a given application. Snowdon et al. [94] de-
veloped a power management framework called Koala which models the energy consumption
of the platform and monitors an application’ energy behavior. By matching an application’s
behavior with the system policy, an energy-optimized configuration is determined at run-
time. Although the energy models for finding energy-optimized system configurations have
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resulted in energy saving in practice, they focus on characterizing system platforms rather
than applications and therefore are not appropriate for analyzing the energy complexity of
application algorithms.

Another direction of energy modeling study is to predict the energy consumption of
applications by analyzing applications without actual execution on real platforms which
we classify as analytic models. The analytic modeling approaches also provide algorithm
designers the understanding about how their applications consume energy, helping them to
improve the energy complexity of their algorithms.

Energy roofline models [22, 21] are some of the comprehensive energy models that abstract
away possible algorithms in order to analyze and characterize different multicore platforms in
terms of energy consumption. The models abstract possible algorithms by their operational
intensity, the ratio of computation to communication (i.e., flop/byte), and characterize a
platform’s properties by running a set of micro-benchmarks on the platform. Our new
energy model, which abstracts away possible multicore platform and characterize the energy
complexity of algorithms based on their work, span and I/O complexity, complements the
energy roofline models.

Validated energy models for specific algorithms have been reported recently [9, 78].
Alonso et al. [9] provided an accurate energy model for three key dense matrix factor-
izations. Malossi et al. [78] focused on basic linear-algebra kernels and characterized the
kernels by the number of arithmetic operations, memory accesses, reduction and barrier
steps. Although the energy models for specific algorithms are accurate for the target algo-
rithms, they are not applicable for other algorithms and therefore cannot be used as general
energy complexity models for parallel algorithms.

The energy scalability of a parallel algorithm has been investigated by Korthikanti et
al. [67, 68]. The energy scalability studies are to find the optimal number of cores for a
given algorithm with a real-time constraint which minimizes energy consumption. Our stud-
ies complement the energy scalability studies by addressing the following energy complexity
question: Given two parallel algorithms A and B for a given problem, which algorithm con-
sumes less energy analytically?. Unlike the energy scalability studies that have not been
validated on real platforms, our new energy complexity model is validated on HPC and
accelerator platforms, confirming its usability and accuracy.

The energy complexity of sequential algorithms on a uniprocessor machine with several
memory banks has been studied by Roy et al. [89]. Our energy complexity studies comple-
ment Roy et al.’s studies by investigating the energy complexity of parallel algorithms on
a multiprocessor machine with a shared memory bank and private caches, a machine model
that has been widely adopted to study parallel algorithms [38, 12, 68].

Our new energy complexity model EPEM for multithreaded algorithms complements
the aforementioned seminal studies on energy models. The EPEM model enables algorithm
designers to analyze the energy complexity of their multithreaded algorithms without im-
plementing and benchmarking the algorithms on a platform. We prove the model usability
and accuracy by demonstrating how to apply the model for different SpMV algorithms and
validating the results on HPC and accelerator platforms (i.e., Intel Xeon and Xeon Phi)
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using different sparse matrix types from Florida Matrix Collection.

3.3 EPEM Shared Memory Machine Model

Generally speaking, the energy consumption of a parallel algorithm is the sum of i) static
energy (or leakage) Estatic, ii) dynamic energy of computation Ecomp and iii) dynamic energy
of memory accesses Emem. The static energy Estatic is proportional to the execution time of
the algorithm while the dynamic energy of computation and the dynamic energy of memory
accesses are proportional to the number of computational operations and the number of
memory accesses of the algorithm, respectively [68]. As a result, in the new EPEM energy
complexity model the energy complexity of a multithreaded algorithm is analyzed based
on its span complexity [24] (for the static energy), work complexity [24] (for the dynamic
energy of computation) and I/O complexity (for the dynamic energy of memory accesses)
(cf. Section 3.4).

This section describes shared-memory machine models supporting I/O complexity analy-
sis for parallel algorithms. We first describe the parallel external memory (PEM) model [12]
used for analyzing the energy scalability of parallel algorithms on shared memory multicore
platforms [67] and explain why the PEM model is not appropriate for analyzing the energy
complexity of multithreaded algorithms. We then describe the ideal distributed cache (IDC)
model [39] that is used in the EPEM energy complexity model.

3.3.1 The PEM Model

The PEM model [12] is an extension of the Parallel Random Access Machine (PRAM)
model that includes a two-level memory hierarchy. In the PEM model , there are n cores (or
processors) each of which has its own private cache of size Z (in bytes) and shares the main
memory with the other cores (cf. Figure 13). Unlike other I/O models for multicore platforms
[16, 17], the PEM model enables analyzing the I/O complexity of parallel algorithms without
additional assumption on how the cores are connected nor how the algorithm tasks are
scheduled. In the PEM model, data is transferred between the shared memory and the
cache in the form of blocks of size B (i.e., cache lines). The number of parallel block transfers
between the shared memory and the caches is defined as I/O complexity. Namely, when n
cores access n distinct blocks from the shared memory simultaneously, the I/O complexity
in the PEM model is O(1) instead of O(n).

Like the PRAM shared-memory parallel model, the PEM model has three variations
according to how multiple cores access the same block of shared memory, namely: Concur-
rent Read, Concurrent Writes (CRCW); Concurrent Read, Exclusive Write (CREW) and
Exclusive Read, Exclusive Write (EREW). In the cases of exclusive write (i.e., CREW and
EREW), there are write conflicts between n simultaneous writes to the same block in the
main memory. A solution to the conflict is to serialize the n writes, resulting in n I/Os. The
I/O complexity of n conflicting writes can be improved to O(log n) by using extra memory
to combine the writes in a binary tree fashion [12].
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Figure 13: A Shared Memory Machine Model with Private Caches

3.3.2 The IDC Model

Although the PEM model is appropriate for analyzing the I/O complexity of parallel al-
gorithms in terms of time performance [12], we have found that the PEM model is not
appropriate for analyzing parallel algorithms in terms of the dynamic energy of memory ac-
cesses. In fact, even when the n cores can access data from the main memory simultaneously,
the dynamic energy consumption of the access is proportional to the number n of accessing
cores (because of the load-store unit activated within each accessing core and the energy
compositionality of parallel computations [46, 74]), rather than a constant as implied by the
PEM model.

As a result, we choose the ideal distributed cache (IDC) model [39] to analyze I/O
complexity of multithreaded algorithms in terms of dynamic energy consumption. Like the
PEM model, the IDC model has n cores and a two-level memory hierarchy as shown in Figure
13. Each core has its own private cache of size Z, which cannot be accessed by the other
cores, and shares the main memory with the other cores. All the inter-core communication
is conducted through writing to and reading from the main memory. The core must have
data in its cache in order to operate on the data and the data is transferred between the
main memory and its cache in blocks of size B (i.e., cache line size).

Unlike the PEM model, the IDC model defines I/O complexity (or cache complexity) of
a computation as the number of cache misses caused by the computation on an ideal cache
starting and ending with an empty cache. An ideal cache is a fully associative cache that
uses optimal offline cache replacement policy. If a core does not have the data word it wants
to access in its private cache, it incurs a cache miss to bring the data from the main memory
to its private cache. The private caches are non-interfering, namely the number of cache
misses incurred by a core can be analyzed independently of the other cores’ actions. Since
the cache complexity of m misses is O(m) regardless of whether or not the cache misses are
incurred simultaneously by the cores, the IDC model reflects the aforementioned dynamic
energy consumption of memory accesses by the cores.

However, the IDC model is mainly designed for analyzing the cache complexity of divide-
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and-conquer algorithms, making it difficult to apply to general multi-threaded algorithms
targeted by our new EPEM energy model. Constraining the new EPEM energy model to the
IDC model would limit the applicability of the EPEM model to a wide range of multithreaded
algorithms.

In order to make our new EPEM energy model applicable to a wide range of multithreaded
algorithms, we show that the cache complexity analysis using the traditional (sequential)
ideal cache (IC) model [37] can be used to find an upper bound on the cache complexity
of the same algorithm using the IDC model (cf. Lemma 1). As the sequential execution
of multithreaded algorithms is a valid execution regardless of whether they are divide-or-
conquer algorithms, the ability to analyze the cache complexity of multithreaded algorithms
via their sequential execution in the EPEM energy model improves the usability of the EPEM
model.

Let Q1(Alg,B, Z) and QP (Alg,B, Z) be the cache complexity of a parallel algorithm Alg
analyzed in the (uniprocessor) ideal cache (IC) model [37] with block size B and cache size
Z (i.e, running Alg with a single core) and the cache complexity analyzed in the (multicore)
IDC model with P cores each of which has a private cache of size Z and block size B,
respectively. We have the following lemma:

Lemma 1. The cache complexity QP (Alg,B, Z) of a parallel algorithm Alg analyzed in the
ideal distributed cache (IDC) model with P cores is bounded from above by the product of P
and the cache complexity Q1(Alg,B, Z) of the same algorithm analyzed in the ideal cache
(IC) model. Namely,

QP (Alg,B, Z) ≤ P ∗Q1(Alg,B, Z) (17)

Proof. (Sketch) Let Qi
P (Alg,B, Z) be the number of cache misses incurred by core i during

the parallel execution of algorithm Alg in the IDC model. Because caches do not interfere
with each other in the IDC model, the number of cache misses incurred by core i when
executing algorithm Alg in parallel by P cores is not greater than the number of cache
misses incurred by core i when executing the whole algorithm Alg only by core i. That is,

Qi
P (Alg,B, Z) ≤ Q1(Alg,B, Z) (18)

or

P∑
i=1

Qi
P (Alg,B, Z) ≤ P ∗Q1(Alg,B, Z) (19)

On the other hand, since the number of cache misses incurred by algorithm Alg when it
is executed by P cores in the IDC model is the sum of the numbers of cache misses incurred
by each core during the Alg execution, we have

QP (Alg,B, Z) =
P∑
i=1

Qi
P (Alg,B, Z) (20)
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From Equations 19 and 20, we have

QP (Alg,B, Z) ≤ P ∗Q1(Alg,B, Z) (21)

We also make the following assumptions regarding platforms.

• Algorithms are executed with the best configuration (e.g., maximum number of cores,
maximum frequency) following the race-to-halt strategy.

• The I/O parallelism is bounded from above by the computation parallelism. Namely,
each core can issue a memory request only if its previous memory requests have been
served. Therefore, the work and span (i.e., critical path) of an algorithm represent the
parallelism for both I/O and computation.

3.4 Energy Complexity in EPEM model

This section describes two energy complexity models, a platform-supporting energy complex-
ity model considering both platform and algorithm characteristics and platform-independent
energy complexity model considering only algorithm characteristics. The platform-supporting
model is used when platform parameters in the model are available while platform-independent
model analyses energy complexity of algorithms without considering platform characteristics.

3.4.1 Platform-supporting Energy Complexity Model

This section describes a methodology to find energy complexity of algorithms. The energy
complexity model considers three groups of parameters: machine-dependent, algorithm-
dependent and input-dependent parameters. The reason to consider all three parameter-
categories is that only operational intensity [105] is insufficient to capture the characteristics
of algorithms. Two algorithms with the same values of operational intensity might consume
different levels of energy. The reasons are their differences in data accessing patterns leading
to performance scalability gap among them. For example, although the sequential version
and parallel version of an algorithm may have the same operational intensity, they may
have different energy consumption since the parallel version would have less static energy
consumption because of shorter execution time.

E = εop ×Work + εI/O × I/O + P sta ×max(T comp, Tmem) (22)

E = εop ×Work + εI/O × I/O +max(πop × Span, πI/O ×
I/O × Span

Work
) (23)

The energy consumption of a parallel algorithm is the sum of i) static energy (or leakage)
Estatic, ii) dynamic energy of computation Ecomp and iii) dynamic energy of memory accesses
Emem: E = Estatic +Ecomp +Emem. The static energy Estatic is the product of the execution
time of the algorithm and the static power of the whole processor. The dynamic energy of
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Table 6: Platform Parameter Description

Machine Description

P sta Static power of a whole chip
P op Dynamic power of an operation
P I/O Power to transfer one cache line
N Maximum number of cores in the platform
M Number of cycles per cache line transfer
F Number of cycles per operation
Freq Platform frequency
Z Cache size of a single processor

Table 7: EPEM Model Parameter Description

Machine Description

εop dynamic energy of one operation (1 core)
εI/O dynamic energy of a random access (1 core)
πop static energy when performing one operation
πI/O static energy of a random data access
B cache block size

Algorithm Description

Work Number of work in flops of the algorithm
Span The critical path of the algorithm
I/O Number of cache line transfer

SpMV Input Description

n Number of rows
nz Number of nonzero elements
nr Maximum number of nonzero in a row
nc Maximum number of nonzero in a column
β Size of a block
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Table 8: Platform parameter summary. The parameters of the first nine platforms are
derived from [21] and the parameters of the two new platforms are found in this study.

Platform Processor εop(nJ) πop(nJ) εI/O(nJ) πI/O(nJ)

Nehalem i7-950 Intel i7-950 0.670 2.455 50.88 408.80
Ivy Bridge i3-3217U Intel i3-3217U 0.024 0.591 26.75 58.99
Bobcat CPU AMD E2-1800 0.199 3.980 27.84 387.47
Fermi GTX 580 NVIDIA GF100 0.213 0.622 32.83 45.66
Kepler GTX 680 NVIDIA GK104 0.263 0.452 27.97 26.90
Kepler GTX Titan NVIDIA GK110 0.094 0.077 17.09 32.94
XeonPhi KNC Intel 5110P 0.012 0.178 8.70 63.65
Cortex-A9 TI OMAP 4460 0.302 1.152 51.84 174.00
Arndale Cortex-A15 Samsung Exynos 5 0.275 1.385 24.70 89.34

Xeon 2xIntel E5-2650l v3 0.263 0.108 8.86 23.29
Xeon-Phi Intel 31S1P 0.006 0.078 25.02 64.40

computation and the dynamic energy of memory accesses are proportional to the number of
computational operations Work and the number of memory accesses of the algorithm I/O,
respectively [68]. Since computation time and memory-access time can be overlapped, the
execution time of the algorithm is the maximum value of computation time and memory-
access time. Therefore, the energy consumption of algorithms is computed by Equation
22.

The computation time of parallel algorithms is proportional to the span complexity of
the algorithm, which is T comp = Span×F

Freq
where Freq is the processor frequency, and F

is the number of cycles per operation. The memory-access time of parallel algorithms in
the EPEM model is is proportional to the I/O complexity of the algorithm divided by
its I/O parallelism. As I/O parallelism is bounded by the computation parallelism (cf.
Section 3.3), I/O parallelism is divided by Work

Span
. The memory-access time Tmem becomes:

Tmem = I/O×Span×M
Work×Freq where M is the number of cycles per cache line transfer. If an algorithm

has T comp greater than Tmem, the algorithm is a CPU-bound algorithm. Otherwise, it is a
memory-bound algorithm.

The summary of platform parameters are listed in Table 6. The EPEM energy complexity
model in Equation 22 is simplified to Equation 23, where the mathematical meaning of εop,
εI/O, πop, and πI/O are described in the Equation 24, 25, 26, and 27. The model considers
the parameters listed in Table 7. The parameter values of recent computing platforms are
summarized in Table 8. How to obtain the platform parameters is discussed in Section 3.6.3.

The dynamic energy of one operation by one core εop is the product of the consumed power
of one operation by one active core P op and the time to perform one operation. Equation 24
shows how εop relates to frequency Freq and time per operation F . Similarly, the dynamic
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energy of a random access by one core εI/O is the product of the consumed power by one
active core performing one I/O (i.e., cache-line transfer) P I/O and the time to perform one
cache line transfer computed as M/Freq (cf. Equation 25). The static energy of operations
πop is the product of the whole chip static power P sta and time per operation. The static
energy of one I/O πI/O is the product of the whole chip static power and time per I/O,
shown by Equation 26 and 27.

εop = P op × F

Freq
(24)

εI/O = P I/O × M

Freq
(25)

πop = P sta × F

Freq
(26)

πI/O = P sta × M

Freq
(27)

3.4.2 CPU-bound Algorithms

If an algorithm has computation time longer than time for accessing data (i.e., CPU-bound
algorithms): T comp ≥ Tmem, the EPEM energy complexity model becomes Equation 28 and
29.

E = εop ×Work + εI/O × I/O + P sta × Span× F
Freq

(28)

or
E = εop ×Work + εI/O × I/O + πop × Span (29)

3.4.3 Memory-bound Algorithms

If an algorithm has data-accessing time longer than computation time (i.e., memory-bound
algorithms): Tmem ≥ T comp, energy complexity becomes Equation 30 and 31.

E = εop ×Work + εI/O × I/O + P sta × I/O × Span×M
Work × Freq

(30)

or

E = εop ×Work + εI/O × I/O + πI/O ×
I/O × Span

Work
(31)

3.4.4 Platform-independent Energy Complexity Model

This section describes the energy complexity model that is platform-independent and con-
siders only algorithm characteristics. When the platform parameters (i.e., εop, εI/O, πop,
and πI/O) are unavailable, the energy complexity model is derived from Equation 23. The
platform parameters are constants and can be removed from the Equation 23. Assuming



D2.3: Power models, energy models and libraries 42

πmax = max(πop, πI/O), after removing platform parameters, the platform-independent en-
ergy complexity model are shown in Equation (32).

E = O(Work + I/O +max(Span,
I/O × Span

Work
)) (32)

3.5 A Case Study - SpMV Energy Complexity

SpMV is one of the most common application kernels in Berkeley dwarf list[13]. It computes
a vector result y by multiplying a sparse matrix A with a dense vector x: y = A × x.
SpMV is a data-intensive kernel and has irregular memory-access patterns. The data access
patterns for SpMV is defined by its sparse matrix format and matrix input types. There
are several sparse matrix formats and SpMV algorithms in literature. To name a few, they
are Coordinate Format (COO), Compressed Sparse Column (CSC), Compressed Sparse Row
(CSR), Compressed Sparse Block (CSB), Recursive Sparse Block (RSB), Block Compressed
Sparse Row (BCSR) and so on. Three popular SpMV algorithms, namely CSC, CSB and
CSR are chosen to validate the proposed energy complexity model. They have different
data-accessing patterns leading to different values of I/O, work and span complexity. Since
SpMV is a memory-bound application kernel, Equation 29 is applied.

3.5.1 Compressed Sparse Row

CSR is a standard storage format for sparse matrices which reduces the storage of matrix
compared to the tuple representation [69]. This format enables row-wise compression of A
with size n× n (or n×m) to store only the non-zero nz elements. Let nz be the number of
non-zero elements in matrix A. The work complexity of CSR SpMV is Θ(nz) where nz >= n
and span complexity is O(nr + log n) [20], where nr is the maximum number of non-zero
elements in a row. The I/O complexity of CSR in the sequential I/O model of row-major
layout is O(nz) [15] namely, scanning all non-zero elements of matrix A costs O(nz

B
) I/Os

with B is the cache block size. However, randomly accessing vector x causes the total of
O(nz) I/Os. Applying the proposed model on CSR SpMV, their total energy complexity are
computed as Equation 33.

ECSR = O(εop × nz + εI/O × nz + πI/O × (nr + log n)) (33)

3.5.2 Compressed Sparse Column

CSC is the similar storage format for sparse matrices as CSR. However, it compresses the
sparse matrix in column-wise manner to store the non-zero elements. The work complexity
of CSC SpMV is Θ(nz) where nz >= n and span complexity is O(nc + log n), where nc is
the maximum number of non-zero elements in a column. The I/O complexity of CSC in
the sequential I/O model of column-major layout is O(nz) [15]. Similar to CSR, scanning
all non-zero elements of matrix A in CSC format costs O(nz

B
) I/Os. However, randomly
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ECSB = O(εop × (
n2

β2
+ nz) + εI/O × (

n2

β2
+
nz

B
) + πI/O ×

(n
2

β2 + nz
B

)× (β × log n
β

+ n
β
)

(n
2

β2 + nz)
) (35)

Table 9: SpMV Complexity Analysis

Complexity CSC CSB CSR

Work Θ(nz) [20] Θ(n
2

β2 + nz) [20] Θ(nz) [20]

I/O O(nz) [15] O(n
2

β2 + nz
B

) [this report] O(nz) [15]

Span O(nc+ log n) [20] O(β × log n
β

+ n
β
) [20] O(nr + log n) [20]

updating vector y causing the bottle neck with total of O(nz) I/Os. Applying the proposed
model on CSC SpMV, their total energy complexity are computed as Equation 34.

ECSC = O(εop × nz + εI/O × nz + πI/O × (nc+ log n)) (34)

3.5.3 Compressed Sparse Block

Given a sparse matrix A, while CSR has good performance on SpMV y = A × x, CSC has
good performance on transpose sparse matrix vector multiplication y = AT ×x, Compressed
sparse blocks (CSB) format is efficient for computing either Ax or ATx. CSB is another
storage format for representing sparse matrices by dividing the matrix A and vector x, y to
blocks. A block-row contains multiple chunks, each chunks contains consecutive blocks and
non-zero elements of each block are stored in Z-Morton-ordered [20]. From Beluc et al. [20],
CSB SpMV computing a matrix with nz non-zero elements, size n×n and divided by block
size β × β has span complexity O(β × log n

β
+ n

β
) and work complexity as Θ(n

2

b2
+ nz).

I/O complexity for CSB SpMV is not available in the literature. We do the analysis of
CSB manually by following the master method [24]. The I/O complexity is analyzed for the
algorithm CSB SpMV(A,x,y) from Beluc et al. [20]. The I/O complexity of CSB is similar
to work complexity of CSB O(n

2

β2 + nz), only that non-zero accesses in a block is divided by

B: O(n
2

β2 + nz
B

). The reason is that non-zero elements in a block are stored in Z-Morton order

which only requires nz
B

I/Os. The energy complexity of CSB SPMV is shown in Equation
35.

From the complexity analysis of SpMV algorithms using different layouts, the complexity
of CSR, CSC and CSB are summarized in Table 9.
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Figure 14: Performance (time) comparison of two parallel CSC SpMV implementations. For
a set of different input matrices, the parallel CSC SpMV using Cilk out-performs Matlab
parallel CSC.

3.6 Validation of EPEM Model

This section describes the experimental study to validate the EPEM model, including: de-
scribing SpMV implementation and sparse matrix types used in this validation (cf. Section
3.6.1), introducing the two experimental platforms and how to obtain their parameters for
the EPEM model(cf. Section 3.6.3) and discussing the validation results.

3.6.1 SpMV Implementation

We want to conduct complexity analysis and experimental study with two SpMV algorithms,
namely CSB and CSC. Parallel CSB and sequential CSC implementations are available
thanks to the study from Buluç et al. [20]. Since the optimization steps of available parallel
SpMV kernels (e.g., pOSKI [3], LAMA[36]) might affect the work complexity of the algo-
rithms, we decided to implement a pure parallel CSC using Cilk and Pthread. To validate
the correctness of our parallel CSC implementation, we compare the vector result y from
y = A ∗ x of CSC and CSB implementation. The comparison shows the equality of the two
vector results y. Moreover, we compare the performance of the our parallel CSC implemen-
tation with Matlab parallel CSC-SpMV implementation. Matlab also uses CSC layout as
the format for their sparse matrix [41]. Our CSC implementation has out-performed Matlab
parallel CSC kernel when computing the same targeted input matrices. Figure 14 shows the
performance comparison of our CSC SpMV implementation and Matlab CSC SpMV kernel.
The experimental study of SpMV energy consumption is then conducted with CSB SpMV
implementation from Buluç et al. [20] and our CSC SpMV parallel implementation.

3.6.2 SpMV Matrix Input Types

We conducted the experiments with nine different matrix-input types from Florida sparse
matrix collection [28]. Each matrix input has different properties, including size of the matrix
n × m, the maximum number of non-zero of the sparse matrix nz, the maximum number
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Table 10: Sparse matrix input types. The maximum number of non-zero elements in a
column nc is derived from [20].

Matrix type n m nz nc

bone010 986703 986703 47851783 63
kkt power 2063494 2063494 12771361 90
ldoor 952203 952203 42493817 77
parabolic fem 525825 525825 3674625 7
pds-100 156243 517577 1096002 7
rajat31 4690002 4690002 20316253 1200
Rucci1 1977885 109900 7791168 108
sme3Dc 42930 42930 3148656 405
torso1 116158 116158 8516500 1200

of non-zero elements in one column nc. Table 10 lists the matrix types in this experimental
validation.

3.6.3 Experiment Set-up

For the validation of the EPEM model, we conduct the experiments on two HPC platforms:
one platform with two Intel Xeon E5-2650l v3 processors and one platform with Xeon Phi
31S1P processor. The Intel Xeon platform has two processors Xeon E5-2650l v3 with 2× 12
cores, each processor has the frequency 1.8 GHz. The Intel Xeon Phi platform has one
processor Xeon Phi 31S1P with 57 cores and its frequency is 1.1 GHz. To measure energy
consumption of the platforms, we read the PCM MSR counters for Intel Xeon and MIC
power reader for Xeon Phi.

3.6.4 Identifying Platform Parameters

We apply the energy roofline approach [22, 21] to find the platform parameters for the two
new experimental platforms, namely Intel Xeon E5-2650l v3 and Xeon Phi 31S1P. The energy
roofline study [21] has also provided a list of other platforms including CPU, GPU, embedded
platforms with their parameters considered in the Roofline model. Thanks to authors Choi
et al. [21], we extract the parameters required for the EPEM energy complexity model from
their platform data. Along with the two HPC platforms used in this validation, we provide
parameters required in the energy complexity model for a list of available platforms. The
parameter values of recent computing platforms for further uses are listed in Table 8.
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Figure 15: Algorithm comparison of CSB and CSC SpMV energy consumption from the
EPEM model estimation and experimental measurement on Intel Xeon platform. The EPEM
model is able to predict that the CSC SpMV algorithm consumes more energy than the CSB
SpMV algorithm, on different matrix input types.

3.6.5 Validating EPEM Using Different SpMV Algorithms

Figure 15 and 16 show the energy prediction and measurement of CSB SpMV and CSC
SpMV algorithms on two platforms Xeon and Xeon Phi. From the model-estimated data,
CSB SpMV consumes less energy than CSC SpMV on both platforms. Even though CSB has
higher work complexity than CSC, CSB SpMV has less I/O complexity than CSC SpMV.
Firstly, the dynamic energy cost of one I/O is much greater than the energy cost of one
operation (i.e., εI/O >> εop) on both platforms. Secondly, CSB has better parallelism than
CSC, computed by Work

Span
, which results in shorter execution time. Both reasons contribute

to the less energy consumption of CSB SpMV.
The measurement data confirms that CSB SpMV algorithm consumes less energy than

CSC SpMV algorithm, shown in the Figure 15 and 16. For all input matrices, the model has
predicted precisely that CSB SpMV consumes less energy than CSC SpMV algorithm.

3.6.6 Validating EPEM Using Different Input Types

To validate the EPEM model regarding input types, the experiments have been conducted
with nine matrix types listed in Table 10. The model can capture the energy-consumption
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Figure 16: Algorithm comparison of CSB and CSC SpMV energy consumption from the
EPEM model estimation and experimental measurement on Intel Xeon Phi platform. The
EPEM model is able to predict that the CSC SpMV algorithm consumes more energy than
the CSB SpMV algorithm, on different matrix input types.

relation among different inputs. The increasing order of energy consumption of different
matrix-input types are shown in Table 11, from both model estimation and experimental
study. For instance, in order to validate the comparison of energy consumption for different
input types, a validated table as Table 13 is created for CSC SpMV on Xeon to compare
model prediction and experimental measurement. For nine input types, there are 9×9

2
−9 = 36

input relations. If the relation is correct, meaning both experimental data and model data
are the same, the relation value in the table of two inputs is 1. Otherwise, the relation
value is 0. From Table 13, there are 34 out of 36 relations are the same for both model
and experiment, which gives 94% accuracy on the relation of the energy consumption of
different inputs. Similarly, the input validation for CSC and CSB on both Xeon and Xeon
Phi platforms is provided in Table 12.

3.6.7 Validating The Applicability of EPEM on Different Platforms

The energy comparison of CSB and CSC SpMV is predicted for eleven platforms listed in
Table 8. Like two Xeon and Xeon Phi 31S1P platforms used in experiments, Figure 17 shows
the prediction that CSB SpMV consumes less energy than CSC SpMV, on all platforms listed
in Table 8. This confirms the applicability of EPEM model to compare energy consumption
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Table 11: Comparison of Energy Consumption of Different Matrix Input Types.
Algorithm CSB CSB CSC CSC CSB CSB CSC CSC

Platform model-X exprmt-X model-X exprmt-X model-XP exprmt-XP model-XP exprmt-XP

Increasing sme3Dc pds-100 pds-100 pds-100 sme3Dc pds-100 pds-100 parabolic
Energy torso1 parabolic sme3Dc parabolic torso1 parabolic sme3Dc pds-100
Consumption pds-100 sme3Dc parabolic sme3Dc pds-100 Rucci1 parabolic Rucci1
Order parabolic Rucci1 Rucci1 Rucci1 parabolic sme3Dc Rucci1 sme3Dc

Rucci1 kkt torso1 kkt ldoor kktr torso1 rajat31
kkt torso1 kkt torso1 bone010 torso1 kkt kkt
ldoor rajat31 rajat31 rajat31 Rucci1 rajat31 rajat31 ldoor
bone010 ldoor ldoor ldoor kkt ldoor ldoor torso1
rajat31 bone010 bone010 bone010 rajat31 bone010 bone010 bone010

Table 12: Comparison accuracy of SpMV energy consumption computing different input
matrix types

Algorithm CSB CSC

Xeon 75% 94%
Xeon Phi 63.8% 80.5%

Table 13: CSC Energy Comparison of Different Input Matrix Types on Xeon

Correctness pds-100 parabolic sme3Dc Rucci1 kkt torso1 rajat31 ldoor bone010
pds-100 x 1 1 1 1 1 1 1 1
parabolic x 0 1 1 1 1 1 1
sme3Dc x 1 1 1 1 1 1
Rucci1 x 1 1 1 1 1
kkt x 0 1 1 1
torso1 x 1 1 1
rajat31 x 1 1
ldoor x 1
bone010 x
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Figure 17: Energy Comparison of CSB and CSC SpMV on eleven different platforms.

of algorithms for different input types on different platforms.

3.6.8 Validating the Platform-independent Energy Complexity Model

From Equation 34 and 35, the platform-independent energy complexity for CSC and CSB
SpMV are derived as Equation 36 and 37, respectively.

ECSC = O(2× nz + (nc+ log n)) (36)

ECSB = O(2× n2

β2
+ nz × (1 +

1

B
) + β × log

n

β
+
n

β
) (37)

We validate the platform-independent energy complexity of CSC and CSB SpMV with ex-
perimental results. The platform-independent energy complexity also shows the accurate
comparison of CSC and CSB SpMV computing different matrix types shown in Figure 18.
Both platform-independent and platform-supporting models can predict which SpMV algo-
rithm consumes more energy. The difference between the energy complexity of CSC and
CSB using the platform-independent model is not very clear for all the input types except
”ldoor” while in the platform-supporting model, the difference is clear for each input types
and consistent with the experiment results in terms of which algorithm consumes less energy
for the input types. Comparing energy consumption of different input types requires more
detailed information of the platforms. Therefore, the platform-independent model is only
applicable to predict which algorithm consumes more energy.

3.7 Conclusion

In this study, energy models for algorithms to predict energy consumption of an application
have been devised. Based on the analysis of application complexity such as work complexity,
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Figure 18: Comparison of platform-dependent and platform-supporting energy complexity
model. Both models can predict that CSC SpMV consumes more energy than CSB SpMV.

I/O complexity and span complexity, the energy complexity of applications is predicted.
Moreover, a case study is conducted to demonstrate how to use the model and predict energy
consumption of sparse matrix vector multiplication (SpMV) on three different layouts (i.e.,
CSC, CSR and CSB). This prediction is validated for the two SpMV algorithms on two HPC
platform with nine different input matrix types from Florida matrix collection. The results
show the precise prediction on which algorithm and which platform consumes more energy.
The EPEM energy complexity model gives the algorithm designers the insight to choose
which design of algorithm to use for their application to minimize energy consumption.

In the future, we would extend our work in two directions:

• We want to develop a run-time framework which can choose the least energy-consumption
implementations among the available kernels at run-time using the proposed energy
model. Selecting the most suitable implementations helps to minimize energy con-
sumption.

• Nowadays, there are executable frameworks that connect different platforms to one
task scheduler. Selecting the most energy-efficient platforms or system configurations
to run applications is one of the techniques to achieve energy optimization. In order
to do so, the energy models need to be able to model the details of each platform. We
want to improve and use the energy models to compare the energy consumption of
applications on different platforms.
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4 Energy Model for Lock-free Data-structures with Low-

level of Disjoint-access Parallelism

4.1 Introduction

Lock-free programming provides highly concurrent access to data and has been increasing
its footprint in industrial settings, e.g. Intel’s Threading Building Blocks Framework [62],
the Java concurrency package [1] and the Microsoft .NET Framework [2]. Providing a mod-
eling and an analysis framework capable of describing the practical performance of lock-free
algorithms is an essential, missing resource necessary to the parallel programming and al-
gorithmic research communities in their effort to build on previous intellectual efforts. The
definition of lock-freedom mainly guarantees that at least one concurrent operation on the
data structure finishes in a finite number of its own steps, regardless of the state of the oper-
ations. On the individual operation level, lock-freedom cannot guarantee that an operation
will not starve. The analysis frameworks that currently exist in the literature focus on such
worst-case behavior and are far from capturing the behavior observed in practice.

The goal of this section is to provide a way to model and analyze the practically observed
performance of lock-free data structures. In the literature, the common performance measure
of a lock-free data structure is the throughput, i.e. the number of successful operations per
unit of time. It is obtained while threads are accessing the data structure according to an
access pattern that interleaves local work between calls to consecutive operations on the
data structure. Although this access pattern to the data structure is significant, there is no
consensus in the literature on what access to be used when comparing two data structures.
So, the amount of local work could be constant ([80, 92]), uniformly distributed ([56, 30]),
exponentially distributed ([102, 32]), null ([66, 76]), etc., and more questionably, the average
amount is rarely scanned, which leads to a partial covering of the contention domain.

We propose here a common framework enabling a fair comparison between lock-free data
structures, while exhibiting the main phenomena that drive performance, and particularly
the contention, which leads to different kinds of conflicts. As this is the first step in this
direction, we want to deeply analyze the core of the problem, without impacting factors
being diluted within a probabilistic smoothing. Therefore, we choose a constant local work,
hence implying a constant access rate to the data structures. In addition to the prediction of
the data structure performance, our model provides a good back-off strategy, that achieves
the peak performance of a lock-free algorithm.

Two kinds of conflict appear during the execution of a lock-free algorithm, both of them
leading to additional work. Hardware conflicts occur when concurrent operations call atomic
primitives on the same data: these calls collide and conduct to stall time, that we name here
expansion. Logical conflicts take place if concurrent operations overlap: because of the lock-
free nature of the algorithm, several concurrent operations can run simultaneously, but only
one can logically succeed. We show that the additional work produced by the failures is not
necessary harmful for the system-wise performance.

We then show how throughput, that we consider here as the performance criterion, of a
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general class of lock-free algorithms can be computed by connecting these two key factors
in an iterative way. We start by estimating the expansion probabilistically, and emulate the
effect of stall time introduced by the hardware conflicts as extra work added to each thread.
Then we estimate the number of failed operations, that in turn lead to additional extra
work, produced by the failed retries. We continue our computation by computing again the
expansion on a system setting where those two new amounts of work have been incorporated,
and reiterate the process; the convergence is ensured by a fixed-point search.

We consider the class of lock-free algorithms that can be modeled as a linear composi-
tion of fixed size retry loops. This class covers numerous extensively used lock-free designs
such as stacks [98] (Pop, Push), queues [80] (Enqueue, Dequeue), counters [30] (Increment,
Decrement) and priority queues [76] (DeleteMin).

To evaluate the accuracy of our model and analysis framework, we performed experiments
both on synthetic tests, that capture a wide range of possible abstract algorithmic designs,
and on several reference implementations of extensively studied lock-free data structures,
namely stacks, queues, counters and priority queues. Our evaluation results reveal that our
model is able to capture the behavior of all the synthetic and real designs for all different
numbers of threads and sizes of parallel work (consequently also contention). Our model
follows the performance behavior of the data structures exactly in low contention, when our
lower and upper bounds meet in one line with the observed behavior; and follows closely also
the performance in high contention. We also evaluate the use of our analysis as a tool for
tuning the performance of lock-free code by selecting the appropriate back-off strategy that
will maximize throughput by comparing our method with against widely known back-off
policies, namely linear and exponential.

The rest of this section is organized as follows. We discuss related work in Section 4.2,
then the problem is formally described in Section 4.3. We consider the logical conflicts in
the absence of hardware conflicts in Section 4.4, while in Section 4.5, we firstly show how
to compute the expansion, then combine hardware and logical conflicts to obtain the final
throughput estimate. We describe the experimental results in Section 4.6.

4.2 Related Work

Many studies have been conducted to estimate retry loop interferences and shared memory
contention, which are two main components of our model. Anderson et al. [10] evaluate the
performance of lock-free objects in real-time system by emphasizing the impact of retry loop
interferences. Tasks can be preempted during the retry loop execution which can lead to
interference, thus to an inflation in retry loop execution due to retries. They obtain upper
bounds for the number of interferences under various priority based scheduling schemes in
the uniprocessor setting for periodic real-time tasks. Also, conflicts in transactional memory
and critical section contention reveal significant conceptual similarities with the retry loop
interferences. Eyerman et al. [35] provide a probabilistic model which estimates critical
section contention. Assuming total randomness in the critical section entry times, they
formulate the contention in terms of the parallel, critical section granularities and probability
contention for any two critical sections. In their model, Yu et al. [106] represent execution as
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a Markov chain and formulate state transition probabilities by considering arrival rate and
service time for transactions together with other parameters to come up with the conflict
rate.

Furthermore, performance implications of shared memory contention have been explored
in various studies. Dwork et al. [33] provide lower bounds for the contention on shared
resources for well-known problems. Intel [61] conduct an empirical study to illustrate per-
formance and scalability of locks. It is shown that the critical section size, the time interval
between releasing and re-acquiring the lock and number of threads contending the lock are
vital parameters. Experiments reveal the increasing significance of contention with decreas-
ing critical section size. Empirical analysis of atomic instructions, such as CAS, is done by
David et al. [27], where latencies, which depend on the cache line state, are illustrated. Also,
they experimentally compare various locks and atomic instructions under different levels of
contention to highlight the impact of memory contention.

Failed retries do not only lead to useless effort but also degrade the performance of
successful ones by contending the shared resources. By pointing out this fact, Alemany et
al. [6] design non-blocking algorithms with operating system support.

Alistarh et al. [8] introduce a model for a class of lock-free structures, which is same
as the structure targeted in our study. Their work is more oriented towards introducing a
new methodology to analyze lock-free structures; in contrast our model targeting to predict
throughput. They model execution as a Markov chain by considering per-process states
under a stochastic scheduler. In order to relate per-process performance with system wide
performance, they lift the Markov chain which composes per-process states using the assump-
tion of process uniformity. Under stochastic scheduler assumption, they reveal the unfairness
among processes in terms of number of steps taken in short intervals, which in turn leads to
increase in success rate, as one process takes enough steps to complete its operation. Based
on this, they provide upper bounds on number of steps, system-wise and thread-wise, to com-
plete an operation. The difference between scheduling assumptions makes the comparison
between their and our bounds not trivial, not to say incongruous.

4.3 Problem Statement

4.3.1 Running Program and Targeted Platform

We aim at evaluating the throughput of a multi-threaded algorithm that is based on the
utilization of a shared lock-free data structure. Such a program can be abstracted by the
Procedure AbstractAlgorithm (see Figure 19) that represents the skeleton of the function
which is called by each spawned thread. It is decomposed in two main phases: the parallel
section, represented on line 3, and the retry loop, from line 4 to line 7. A retry starts at
line 5 and ends at line 7.

As for line 1, the function Initialization shall be seen as an abstraction of the delay
between the spawns of the threads, that is expected not to be null, even when a barrier is
used. We then consider that the threads begin at the exact same time, but have different
initialization times.
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Procedure AbstractAlgorithm

1 Initialization();
2 while ! done do
3 Parallel Work();
4 while ! success do
5 current ← Read(AP);
6 new ← Critical Work(current);
7 success ← CAS(AP, current, new);

Figure 19: Thread procedure

parallel section
successful retry
failed retry

initialization

Figure 20: Legend of Figures 21, 22, 24, 25, 26.

The parallel section is the part of the code where the thread does not access the shared
data structure; the work that is performed inside this parallel section can possibly depend
on the value that has been read from the data structure, e.g. in the case of processing an
element that has been dequeued from a FIFO (First-In-First-Out) queue.

In each retry, a thread tries to modify the data structure, and does not exit the retry
loop until it has successfully modified the data structure. It does that by firstly reading the
access point AP of the data structure, then according to the value that has been read, and
possibly to other previous computations that occurred in the past, the thread prepares the
new desired value as an access point of the data structure. Finally, it atomically tries to
perform the change through a call to the Compare-And-Swap (CAS) primitive. If it succeeds,
i.e. if the access point has not been changed by another thread between the first Read and
the CAS, then it goes to the next parallel section, otherwise it repeats the process. The retry
loop is composed of at least one retry, and we number the retries starting from 0, since the
first iteration of the retry loop is actually not a retry, but a try.

We analyze the behavior of AbstractAlgorithm from a throughput perspective, which is
defined as the number of successful data structure operations per unit of time. In the context
of Procedure AbstractAlgorithm, it is equivalent to the number of successful CASs.

The throughput of the lock-free algorithm, that we denote by T , is impacted by several
parameters.

• Algorithm parameters: the amount of work inside a call to Parallel Work (resp.
Critical Work) denoted by pw (resp. cw).



D2.3: Power models, energy models and libraries 55

Cycle

T0

T1

T2

T3

Figure 21: Execution with one wasted retry, and one inevitable failure

Cycle
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Figure 22: Execution with minimum number of failures

• Platform parameters: Read and CAS latencies (rc and cc respectively), and the number
P of processing units (cores). We assume homogeneity for the latencies, i.e. every
thread experiences the same latency when accessing an uncontended shared data, which
is achieved in practice by pinning threads to the same socket.

4.3.2 Examples and Issues

We first present two straightforward upper bounds on the throughput, and describe the two
kinds of conflict that keep the actual throughput away from those upper bounds.

4.3.2.1 Immediate Upper Bounds

Trivially, the minimum amount of work rlw (-) in a given retry is rlw (-) = rc + cw + cc, as we
should pay at least the memory accesses (hence Read latency rc and CAS latency cc) and
the critical work cw in between.

Thread-wise: A given thread can at most perform one successful retry every pw +rlw (-)

units of time. In the best case, P threads can then lead to a throughput of P/(pw + rlw (-)).
System-wise: By definition, two successful retries cannot overlap, hence we have at

most 1 successful retry every rlw (-) units of time.
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Altogether, the throughput T is bounded by

T ≤ min

(
1

rc + cw + cc
,

P

pw + rc + cw + cc

)
,

which can be rewritten as

T ≤
{ 1

rc+cw+cc
if pw ≤ (P − 1)(rc + cw + cc)

P
pw+rc+cw+cc

otherwise.
(38)

4.3.2.2 Conflicts

Logical conflicts Equation 38 expresses the fact that when pw is small enough, i.e.
when pw ≤ (P − 1)rlw (-), we cannot expect that every thread performs a successful retry
every pw + rlw (-) units of time, since it is more than what the retry loop can afford. As a
result, some logical conflicts, hence unsuccessful retries, will be inevitable, while the others,
if any, are called wasted.

However, different executions can lead to different numbers of failures, which end up
with different throughput values. Figures 21 and 22 depict two executions, where the
black parts are the calls to Initialization, the blue parts are the parallel sections, and
the retries can be either unsuccessful — in red — or successful — in green (the legend is
displayed in Figure 20). We experiment different initialization times, and observe different
synchronizations, hence different numbers of wasted retries. After the initial transient state,
the execution depicted in Figure 22 comprises only the inevitable unsuccessful retries, while
the execution of Figure 21 contains one wasted retry.

We can see on those two examples that a cyclic execution is reached after the transient
behavior; actually, we show in Section 4.4 that, in the absence of hardware conflicts, every
execution will become periodic, if the initialization times are spaced enough. In addition, we
prove that the shortest period is such that, during this period, every thread succeeds exactly
once. This finally leads us to define the additional failures as wasted, since we can directly
link the throughput with this number of wasted retries: a higher number of wasted retries
implying a lower throughput.

Read & cw
Previously expanded

CAS
Expansion

CAS

Figure 23: Expansion

Hardware conflicts The requirement of atomicity compels the ownership of the data
in an exclusive manner by the executing core. This fact prohibits concurrent execution of
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atomic instructions if they are operating on the same data. Therefore, overlapping parts of
atomic instructions are serialized by the hardware, leading to stalls in subsequently issued
ones. For our target lock-free algorithm, these stalls that we refer to as expansion become
an important slowdown factor in case threads interfere in the retry loop. As illustrated in
Figure 23, the latency for CAS can expand and cause remarkable decreases in throughput
since the CAS of a successful thread is then expanded by others; for this reason, the amount
of work inside a retry is not constant, but is, generally speaking, a function depending on
the number of threads that are inside the retry loop.

4.3.2.3 Process

We deal with the two kinds of conflicts separately and connect them together through the
fixed-point iterative convergence.

In Section 4.5.1, we compute the expansion in execution time of a retry, noted e, by
following a probabilistic approach. The estimation takes as input the expected number of
threads inside the retry loop at any time, and returns the expected increase in the execution
time of a retry due to the serialization of atomic primitives.

In Section 4.4, we are given a program without hardware conflict described by the size of
the parallel section pw (+) and the size of a retry rlw (+). We compute upper and lower bounds
on the throughput T , the number of wasted retries w, and the average number of threads
inside the retry loop Prl. Without loss of generality, we can normalize those execution times
by the execution time of a retry, and define the parallel section size as pw (+) = q+r, where q
is a non-negative integer and r is such that 0 ≤ r < 1. This pair (together with the number
of threads P ) constitutes the actual input of the estimation.

Finally, we combine those two outcomes in Section 4.5.2 by emulating expansion through
work not prone to hardware conflicts and obtain the full estimation of the throughput ac-
cording to the model parameters that have been described in Section 4.3.1.

4.4 Execution without hardware conflict

We show in this section that, in the absence of hardware conflicts, the execution becomes
periodic, which eases the calculation of the throughput. We start by defining some concepts:
(f, P )-cyclic executions are a special kind of periodic executions such that within the shortest
period, each thread performs exactly f unsuccessful retries and 1 successful retry. The well-
formed seed is a set of events that allows us to detect an (f, P )-cyclic execution early, and
the gaps are a measure of the quality of the synchronization between threads. The idea is
to iteratively add threads into the execution and show that the periodicity is maintained.
Theorem 1, on page 60, establishes a fundamental relation between gaps and well-formed
seeds, while Theorem 2, on page 63, proves the periodicity, relying on the disjoint cases
depicted on Figures 24, 25 and 26. We recall that the complete version of the proofs can
be found in [14], together with additional Lemmas. Finally, we exhibit upper and lower
bounds on throughput and number of failures, along with the average number of threads
inside the retry loop.
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Figure 24: New thread does not lead to a reordering
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Figure 25: Reordering and immediate new seed

T0

T1

T2

T3

Figure 26: Reordering and transient state
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4.4.1 Setting

In preamble, note that the events are strictly ordered (according to their instant of occur-
rence, with the thread id as a tie-breaker). As for correctness, i.e. to decide for the success
or the failure of a retry, we need instants of occurrence for Read and CAS; we consider that
the entrance (resp. exit) time of a retry is the instant of occurrence of the Read (resp. CAS).

4.4.1.1 Notations and Definitions

We recall that P threads are executing the pseudo-code described in Procedure AbstractAlgorithm,
one retry is of unit-size, and the parallel section is of size pw (+) = q + r, where q is a non-
negative integer and r is such that 0 ≤ r < 1. Considering a thread Tn which succeeds at
time Sn; this thread completes a whole retry in 1 unit of time, then executes the parallel
section of size pw (+), and attempts to perform again the operation every unit of time, until
one of the attempt is successful. We note Rk

n the kth retry so that Rk
n = Sn + 1 + q + r + k.

Also, at a given time t where not any thread is currently succeeding, the next successful
attempt will be at time

min
n∈{0,...,P−1}

{Rk
n = Sn + 1 + q + r + k > t ; Sn is the last success of Tn},

and n gives the thread number of the successful thread.

Definition 1. An execution with P threads is called (C,P )-cyclic execution if and only if
(i) the execution is periodic, i.e. at every time, every thread is in the same state as one
period before, (ii) the shortest period contains exactly one successful attempt per thread,
(iii) the shortest period is 1 + q + r + C.

Definition 2. Let S = (Ti, Si)i∈{0,...,P−1}, where Ti are threads and Si ordered times, i.e.
such that S0 < S1 < · · · < SP−1. S is a seed if and only if for all i ∈ {0, . . . , P − 1}, Ti does
not succeed between S0 and Si, and starts a retry at Si.

We define f (S) as the smallest non-negative integer such that S0 + 1 + q + r + f (S) >
SP−1 + 1, i.e. f (S) = max (0, dSP−1 − S0 − q − re). When S is clear from the context, we
denote f (S) by f .

Definition 3. S is a well-formed seed if and only if for each i ∈ {0, . . . , P −1}, the execution
of thread Ti contains the following sequence: firstly a success beginning at Si, the parallel
section, f unsuccessful retries, and finally a successful retry.

Those definitions are coupled through the two natural following properties:

Property 1. Given a (C,P )-cyclic execution, any seed S including P consecutive successes
is a well-formed seed, with f (S) = C.

Proof. Choosing any set of P consecutive successes, we are ensured, by the definition of a
(f, P )-cyclic execution, that for each thread, after the first success, the next success will be
obtained after f failures. The order will be preserved, and this shows that a seed including
our set of successes is actually a well-formed seed.
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Property 2. If there exists a well-formed seed in an execution, then after every thread has
succeeded once, the execution coincides with an (f, P )-cyclic execution.

Proof. By the definition of a well-formed seed, we know that the threads will first succeed
in order, fails f times, and succeed again in the same order. Considering the second set
of successes in a new well-formed seed, we observe that the threads will succeed a third
time in the same order, after failing f times. By induction, the execution coincides with an
(f, P )-cyclic execution.

Together with the seed concept, we define the notion of gap that we will use extensively in
the next subsection. The general idea of those gaps is that within an (f, P )-cyclic execution,
the period is higher than P × 1, which is the total execution time of all the successful retries
within the period. The difference between the period (that lasts 1 + q + r + f) and P ,
reduced by r (so that we obtain an integer), is referred as lagging time in the following. If
the threads are numbered according to their order of success (modulo P ), as the time elapsed
between the successes of two given consecutive threads is constant (during the next period,
this time will remain the same), this lagging time can be seen in a circular manner: the
threads are represented on a circle whose length is the lagging time increased by r, and the
length between two consecutive threads is the time between the end of the successful retry
of the first thread and the begin of the successful retry of the second one. More formally, for
all (n, k) ∈ {0, . . . , P − 1}2, we define the gap G

(k)
n between Tn and its kth predecessor based

on the gap with the first predecessor:{
∀n ∈ {1, . . . , P − 1} ; G

(1)
n = Sn − Sn−1 − 1

G
(1)
0 = S0 + q + r + f − SP−1

,

which leads to the definition of higher order gaps:

∀n ∈ {0, . . . , P − 1}; ∀k > 0;G(k)
n =

n∑
j=n−k+1

G
(1)
j mod P .

For consistency, for all n ∈ {0, . . . , P − 1}, G(0)
n = 0.

Equally, the gaps can be obtained directly from the successes: for all k ∈ {1, . . . , P − 1},

G(k)
n =

{
Sn − Sn−k − k if n > k
Sn − SP+n−k + 1 + q + r + f − k otherwise

(39)

Note that, in an (f, P )-cyclic execution, the lagging time is the sum of all first order
gaps, reduced by r.

4.4.2 Cyclic Executions

Theorem 1. Given a seed S = (Ti, Si)i∈{0,...,P−1}, S is a well-formed seed if and only if for

all n ∈ {0, . . . , P − 1}, 0 ≤ G
(f)
n < 1.
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Proof. Let S = (Ti, Si)i∈{0,...,P−1} be a seed.

(⇐) We assume that for all n ∈ {0, . . . , P − 1}, 0 < G
(f)
n < 1, and we first show that the

first successes occur in the following order: T0 at S0, T1 at S1, . . . , TP−1 at SP−1, T0 again at
Rf

0 . The first threads that are successful executes their parallel section after their success,
then enters their second retry loop: from this moment, they can make the first attempt of
the threads, that has not been successful yet, fail. Therefore, we will look at which retry of
which already successful threads could have an impact on which other threads.

We can notice that for all n ∈ {0, . . . , P − 1}, if the first success of Tn occurs at Sn, then
its next attempts will potentially occur at Rk

n = Sn + 1 + q + r + k, where k ≥ 0. More

specifically, thanks to Equation 39, for all n ≤ f , Rk
n = SP+n−f + G

(f)
n + k. Also, for all

k ≤ f − n,

Rk
n − SP+n−f+k = − (SP+n−f+k − SP+n−f − k) +G(f)

n

= G(f)
n −G

(k)
P+n−f+k

Rk
n − SP+n−f+k = G(f−k)

n , (40)

and this implies that if k > 0,

SP+n−f+k −Rk−1
n = 1−G(f−k)

n . (41)

We know, by hypothesis, that 0 < G
(f−k)
n < 1, equivalently 0 < 1−G(f−k)

n < 1. Therefore
Equation 40 states that if a thread Tn′ starts a successful attempt at SP+n−f+k, then this
thread will make the kth retry of Tn fail, since Tn enters a retry while Tn′ is in a successful
retry. And Equation 41 shows that, given a thread Tn′ starting a new retry at SP+n−f+k, the
only retry of Tn that can make Tn′ fail on its attempt is the (k − 1)th one. There is indeed
only one retry of Tn that can enter a retry before the entrance of Tn′ , and exit the retry after
it.
T0 is the first thread to succeed at S0, because no other thread is in the retry loop at

this time. Its next attempt will occur at R0
0, and all thread attempts that start before SP−f

(included) cannot fail because of T0, since it runs then the parallel section. Also, since all
gaps are positive, the threads T1 to TP−f will succeed in this order, respectively starting at
times S1 to SP−f .

Then, using induction, we can show that TP−f+1, . . . , TP−1 succeed in this order, respec-
tively starting at times SP−f+1, . . . , SP−1. For j ∈ {0, . . . , f − 1}, let (Pj) be the following
property: for all n ∈ {0, . . . , P − f + j}, Tn starts a successful retry at Sn. We assume
that for a given j, (Pj) is true, and we show that it implies that TP−f+j+1 will succeed at
SP−f+j+1. The successful attempt of TP−f+j at SP−f+j leads, for all j′ ∈ {0, . . . , j}, to the
failure of the j′th retry of Tj−j′ (explanation of Equation 40). But for each Tj′ , this attempt
was precisely the one that could have made TP−f+j+1 fail on its attempt at SP−f+j+1 (ex-
planation of Equation 40). Given that all threads Tn, where n > P − f + j + 1, do not start
any retry loop before SP−f+j+1, TP−f+j+1 will succeed at SP−f+j+1. By induction, (Pj) is
true for all j ∈ {0, . . . , f − 1}.
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Finally, when TP−1 succeeds, it makes the (f − 1 − n)th retry of Tn fail, for all n ∈
{0, . . . , f − 1}; also the next potentially successful attempt for Tn is at Rf−n

n . (Naturally, for
all n ∈ {f, . . . , P − 1}, the next potentially successful attempt for Tn is at R0

n.)
We can observe that for all n < P , j ∈ {0, . . . , P − 1− n}, and all k ≥ j,

Rk−j
n+j −Rk

n = Sn+j + k − j − (Sn + k)

Rk−j
n+j −Rk

n = G
(j)
n+j, (42)

hence for all n ∈ {1, . . . , f}, Rf−n
n −Rf

0 = G
(n)
n > 0.

As we have as well, for all n ∈ {f +1, . . . , P −1}, R0
n > R0

f , we obtain that among all the

threads, the earliest possibly successful attempt is Rf
0 . Following TP−1, T0 is consequently

the next successful thread in its f th retry.
To conclude this part, we can renumber the threads (Tn+1 becoming now Tn if n > 0,

and T0 becoming TP−1), and follow the same line of reasoning. The only difference is the
fact that TP−1 (according to the new numbering) enters the retry loop f units of time before
SP−1, but it does not interfere with the other threads, since we know that those attempts
will fail.

There remains the case where there exists n ∈ {0, . . . , P − 1} such that G
(f)
n = 0. This

implies that f = 0, thus we have a well-formed seed.

(⇒) We prove now the implication by contraposition; we assume that there exists n ∈
{0, . . . , P − 1} such that G

(f)
n > 1 or G

(f)
n < 0, and show that S is not a well-formed seed.

We assume first that an f th order gap is negative. As it is a sum of 1st order gaps, then
there exists n′ such that G

(1)
n′ is negative; let n′′ be the highest one.

If n′′ > 0, then either the threads T0, . . . , Tn′′−1 succeeded in order at their 0th retry, and
then Tn′′−1 makes Tn′′ fail at its 0th retry (we have a seed, hence by definition, Sn′′−1 < Sn′′ ,

and G
(1)
n′′ < 0, thus Sn′′−1 < Sn′′ < Sn′′−1 + 1 ), or they did not succeed in order at their first

try. In both cases, S is not a well-formed seed.
If n′′ = 0, let us assume that S is a well-formed seed. Let also a new seed be S ′ =

(Ti, S ′i)i∈{0,...,P−1}, where for all n ∈ {0, . . . , P−2}, S ′n+1 = Sn, and S ′0 = SP−1−(q+1+f+r).

Like S, S ′ is a well-formed seed; however, G
(1)
1 is negative, and we fall back into the previous

case, which shows that S ′ is not a well-formed seed. This is absurd, hence S is not a
well-formed seed.

We assume now that every gap is positive and choose n0 defined by: n0 = min{n ; ∃k ∈
{0, . . . , P − 1}/G(k)

n+k > 1}, and f0 = min{k ; G
(k)
n0+k

> 1}: among the gaps that exceed 1, we
pick those that concern the earliest thread, and among them the one with the lowest order.

Let us assume that threads T0, . . . , TP−1 succeed at their 0th retry in this order, then T0,
. . . , Tn0 complete their second successful retry loop at their f th retry, in this order. If this
is not the case, then S is not a well-formed seed, and the proof is completed. According to
Equation 42, we have, on the one hand, Rf0−1

n0+1−Rf0
n0

= G
(1)
n0+1, which implies Rf0

n0+1−1−Rf0
n0

=

G
(1)
n0+1, thus Rf

n0+1 − (Rf
n0

+ 1) = G
(1)
n0+1; and on the other hand, R0

n0+f0
− Rf0

n0
= G

(f0)
n0+f0
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implying Rf−f0
n0+f0

−
(
Rf
n0

+ 1
)

= G
(f0)
n0+f0

− 1. As we know that G
(f0)
n0+f0

−G(1)
n0+1 = G

(f0−1)
n0+f0

< 1

by definition of f0 (and n0), we can derive that Rf
n0+1− (Rf

n0
+ 1) > Rf−f0

n0+f0
− (Rf

n0
+ 1). We

have assumed that Tn0 succeeds at its f th retry, which will end at Rf
n0

+ 1. The previous
inequality states then that Tn0+1 cannot be successful at its f th retry, since either a thread
succeeds before Tn0+f0 and makes both Tn0+f0 and Tn0+1 fail, or Tn0+f0 succeeds and makes
Tn0+1 fail. We have shown that S is not a well-formed seed.

Theorem 2. Assuming r 6= 0, if a new thread is added to an (f, P−1)-cyclic execution, then
all the threads will eventually form either an (f, P )-cyclic execution, or an (f + 1, P )-cyclic
execution.

Proof. We only give the sketch of the proof, that decomposes the Theorem into three Lemmas
which we describe here graphically:

• If all gaps of (f + 1)th order are less than 1, then every existing thread will fail once
more, and the new steady-state is reached immediately. See Figure 24.

• Otherwise

– Either: everyone succeeds once, whereupon a new (f, P )-cyclic execution is formed.
See Figure 25.

– Or: before everyone succeeds again, a new (f, P ′)-cyclic execution, where P ′ ≤ P ,
is formed, which finally leads to an (f, P )-cyclic execution. See Figure 26.

4.4.3 Throughput Bounds

Firstly we calculate the expression of throughput and the expected number of threads inside
the retry loop (that is needed when we gather expansion and wasted retries). Then we
exhibit upper and lower bounds on both throughput and the number of failures, and show
that those bounds are reached. Finally, we give the worst case on the number of wasted
retries.

Lemma 2. In an (f, P )-cyclic execution, the throughput is

T =
P

q + r + 1 + f
. (43)

Proof. By definition, the execution is periodic, and the period lasts q + r + 1 + f units of
time. As P successes occur during this period, we end up with the claimed expression.

Lemma 3. In an (f, P )-cyclic execution, the average number of threads Prl in the retry loop
is given by

Prl = P × f + 1

q + r + f + 1
.
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Proof. Within a period, each thread spends f + 1 units of time in the retry loop, among the
q + r + f + 1 units of time of the period, hence the Lemma.

Lemma 4. The number of failures is not less than f (-), where

f (-) =

{
P − q − 1 if q ≤ P − 1
0 otherwise

, and accordingly, T ≤
{ P

P+r
if q ≤ P − 1

P
q+r+1

otherwise.

(44)

Proof. According to Equation 43, the throughput is maximized when the number of failures
is minimized. In addition, we have two lower bounds on the number of failures: (i) f ≥ 0, and
(ii) P successes should fit within a period, hence q+ 1 + f ≥ P . Therefore, if P − 1− q < 0,
T ≤ P/(q + r + 1 + 0), otherwise,

T ≤ P

q + r + 1 + P − 1− q
=

P

P + r
.

Remark 1. We notice that if q > P − 1, the upper bound in Equation 44 is actually the
same as the immediate upper bound described in Section 4.3.2.1. However, if q ≤ P − 1,
Equation 44 refines the immediate upper bound.

Lemma 5. The number of failures is bounded by

f ≤ f (+) =

⌊
1

2

(
(P − 1− q − r) +

√
(P − 1− q − r)2 + 4P

)⌋
, and accordingly,

the throughput is bounded by

T ≥ P

q + r + 1 + f (+)
.

Proof. We show that a necessary condition so that an (f, P )-cyclic execution, whose lagging
time is `, exists, is f×(`+r) < P . According to Properties 1 and 2, any set of P consecutive
successes is a well-formed seed with P threads. Let S be any of them. As we have f failures
before success, Theorem 1 ensures that for all n ∈ {0, . . . , P − 1}, G(f)

n < 1. We recall that

for all n ∈ {0, . . . , P − 1}, we also have G
(P )
n = `+ r.

On the one hand, we have

P−1∑
n=0

G(f)
n =

P−1∑
n=0

n∑
j=n−f+1

G
(1)
j mod P

= f ×
P−1∑
n=0

G(1)
n

P−1∑
n=0

G(f)
n = f × (`+ r).
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On the other hand,
∑P−1

n=0 G
(f)
n <

∑P−1
n=0 1 = P .

Altogether, the necessary condition states that f × (` + r) < P , which can be rewritten
as f × (q + 1 + f − P + r) < P . The proof is complete since minimizing the throughput is
equivalent to maximizing the number of failures.

Lemma 6. For each of the bounds defined in Lemmas 4 and 5, there exists an (f, P )-cyclic
execution that reaches the bound.

Proof. According to Lemmas 4 and 5, if an (f, P )-cyclic execution exists, then the number
of failures is such that f (-) ≤ f ≤ f (+).
We show now that this double necessary condition is also sufficient. We consider f such that
f (-) ≤ f ≤ f (+), and build a well-formed seed S = (Ti, Si)i∈{0,...,P−1}.

For all n ∈ {0, . . . , P − 1}, we define Si as

Sn = n×
(
q + 1 + f − P + r

P
+ 1

)
.

We first show that f (S) = f . By definition, f (S) = max (0, dSP−1 − S0 − q − re); we
have then

f (S) = max

(
0,

⌈
(P − 1)×

(
q + 1 + f − P + r

P
+ 1

)
− q − r

⌉)
= max

(
0,

⌈
(P − 1− q − r) + (q + 1 + f − P + r)− q + 1 + f − P + r

P

⌉)
f (S) = max

(
0,

⌈
f − q + 1 + f − P + r

P

⌉)
.

Firstly, we know that q+1+f−P ≥ 0, thus if f = 0, then the second term of the maximum
is not positive, and f (S) = 0 = f . Secondly, if f > 0, then according to Lemma 4,
(q + 1 + f − P + r)/P < 1/f ≤ 1. As we also have (q + 1 + f − P + r)/P ≥ 0, we conclude
that f (S) =

⌈
f − q+1+f−P+r

P

⌉
= f .

Additionally, for all n ∈ {0, . . . , P − 1},

G(f)
n =

{
Sn − Sn−f − f if n > f
Sn − SP+n−f + 1 + q + r otherwise

=

{
n×

(
q+1+f−P+r

P
+ 1
)
− (n− f)×

(
q+1+f−P+r

P
+ 1
)
− f

n×
(
q+1+f−P+r

P
+ 1
)
− (P + n− f)×

(
q+1+f−P+r

P
+ 1
)

+ 1 + q + r

=

{
f × q+1+f−P+r

P

−(P − f)− (q + 1 + f − P + r) + f × q+1+f−P+r
P

+ 1 + q + r

G(f)
n = f × w + r

P
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As w ≤ 0 and f ≤ 0, G
(f)
n > 0. Since f ≤ f (+), G

(f)
n < 1. Theorem 1 implies that S is a

well-formed seed that leads to an (f, P )-cyclic execution.
We have shown that for all f such that f (-) ≤ f ≤ f (+) there exists an (f, P )-cyclic

execution; in particular there exist an (f (+), P )-cyclic execution and an (f (-), P )-cyclic exe-
cution.

Corollary 1. The highest possible number of wasted repetitions is
⌈√

P − 1
⌉

and is achieved

when P = q + 1.

Proof. The highest possible number of wasted repetitions w̃(P ) with P threads is given by

w̃(P ) = f (+) − f (-) =

⌊
1

2

(
−a(P ) +

√
a(P )2 + 4P

)
− f (-)

⌋
.

Let a and h be the functions respectively defined as a(P ) = q+ 1−P + r, which implies
a′(P ) = −1, and h(P ) = (−a(P ) +

√
a(P )2 + 4P )/2− f (-), so that w̃(P ) = bh(P )c.

Let us first assume that a(P ) > 0. In this case, q ≤ P − 1, hence f (-) = 0. We have

2h′(P ) = 1 +
−2a(P ) + 4

2
√
a(P )2 + 4P

2h′(P ) = 2×
2− a(P ) +

√
a(P )2 + 4P

2
√
a(P )2 + 4P

Therefore, h′(P ) is negative if and only if
√
a(P )2 + 4P < a(P ) − 2. It cannot be true

if a(P ) < 2. If a(P ) ≥ 2, then the previous inequality is equivalent to a(P )2 + 4P <
a(P )2− 4a(P ) + 4, which can be rewritten in q+ 1 + r < 1, which is absurd. We have shown
that h is increasing in ]0, q + 1].

Let us now assume that a(P ) ≤ 0. In this case, q > P − 1, hence f (-) = P − q − 1, and

h′(P ) =
(
a(P ) +

√
a(P )2 + 4P

)
/2 − r. Assuming h′(P ) to be positive leads to the same

absurd inequality q + 1 + r < 1, which proves that h is decreasing on [q + 2,+∞[.
Also, the maximum number of wasted repetitions is achieved as P = q + 1 or P = q + 2.

Since

h(q + 1) =
1

2

(
−r +

√
r2 + 4P

)
>

1

2

(
−(r + 1) +

√
r2 + 4P

)
= h(q + 2),

the maximum number of wasted repetitions is w̃(q + 1). In addition,

1

2

(
−r +

√
4P
)

< h(q + 1) <
1

2

(
−r +

√
r2 +

√
4P
)

√
P − r

2
< h(q + 1) <

√
P

√
P − 1 ≤ h(q + 1) <

√
P

We conclude that the maximum number of wasted repetitions is
⌈√

P − 1
⌉
.
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4.5 Expansion and Complete Throughput Estimation

4.5.1 Expansion

Interference of threads does not only lead to logical conflicts but also to hardware conflicts
which impact the performance significantly.

We model the behavior of the cache coherency protocols which determine the interaction
of overlapping Reads and CASs. By taking MESIF [42] as basis, we come up with the follow-
ing assumptions. When executing an atomic CAS, the core gets the cache line in exclusive
state and does not forward it to any other requesting core until the instruction is retired.
Therefore, requests stall for the release of the cache line which implies serialization. On the
other hand, ongoing Reads can overlap with other operations. As a result, a CAS introduces
expansion only to overlapping Read and CAS operations that start after it, as illustrated in
Figure 23. As a remark, we ignore memory bandwidth issues which are negligible for our
study.

Furthermore, we assume that Reads that are executed just after a CAS do not lead to
expansion (as the thread already owns of the data), which takes effect at the beginning of a
retry following a failing attempt. Thus, read expansions need only to be considered before
the 0th retry. In this sense, read expansion can be moved to parallel section and calculated
in the same way as CAS expansion is calculated.

To estimate expansion, we consider the delay that a thread can introduce, provided that
there is already a given number of threads in the retry loop. The starting point of each CAS
is a random variable which is distributed uniformly within an expanded retry. The cost
function d provides the amount of delay that the additional thread introduces, depending
on the point where the starting point of its CAS hits. By using this cost function we can
formulate the expansion increase that each new thread introduces and derive the differential
equation below to calculate the expansion of a CAS.

Lemma 7. The expansion of a CAS operation is the solution of the following system of
equations: e′ (Prl) = cc ×

cc
2

+ e (Prl)

rc + cw + cc + e (Prl)

e
(
P

(0)
rl

)
= 0

, where P
(0)
rl is the point where expansion begins.

Proof. We compute e (Prl + h), where h ≤ 1, by assuming that there are already Prl threads
in the retry loop, and that a new thread attempts to CAS during the retry, within a proba-
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bility h.

e (Prl + h) = e (Prl) + h×
∫ rlw(+)

0

d (t)

rlw (+)
dt

= e (Prl)+
(∫ rc+cw−cc

0

d (t)

rlw (+)
dt+

∫ rc+cw

rc+cw−cc

d (t)

rlw (+)
dt+

∫ rc+cw+e(Prl)

rc+cw

d (t)

rlw (+)
dt+

∫ rlw(+)

rc+cw+e(Prl)

d (t)

rlw (+)
dt
)
h

= e (Prl)+
(∫ rc+cw

rc+cw−cc

t

rlw (+)
dt+

∫ rc+cw+e(Prl)

rc+cw

cc

rlw (+)
dt
)
h = e (Prl)+h×

cc2

2
+ e (Prl)× cc

rlw (+)
.

This leads to
e (Prl + h)− e (Prl)

h
=

cc2

2
+ e (Prl)× cc

rlw (+)
. When making h tend to 0, we

finally obtain

e′ (Prl) = cc ×
cc
2

+ e (Prl)

rc + cw + cc + e (Prl)
.

4.5.2 Throughput Estimate

There remains to combine hardware and logical conflicts in order to obtain the final upper
and lower bounds on throughput. We are given as an input an expected number of threads Prl
inside the retry loop. We firstly compute the expansion accordingly, by solving numerically
the differential equation of Lemma 7. As explained in the previous subsection, we have
pw (+) = pw + e, and rlw (+) = rc + cw + e + cc. We can then compute q and r, that are the
inputs (together with the total number of threads P ) of the method described in Section 4.4.
Assuming that the initialization times of the threads are spaced enough, the execution will
superimpose an (f, P )-cyclic execution. Thanks to Lemma 3, we can compute the average
number of threads inside the retry loop, that we note by hf (Prl). A posteriori, the solution
is consistent if this average number of threads inside the retry loop hf (Prl) is equal to the
expected number of threads Prl that has been given as an input.

Several (f, P )-cyclic executions belong to the domain of the possible outcomes, but we
are interested in upper and lower bounds on the number of failures f . We can compute them
through Lemmas 4 and 5, along with their corresponding throughput and average number
of threads inside the retry loop. We note by h(+)(Prl) and h(-)(Prl) the average number of
threads for the lowest number of failures and highest one, respectively. Our aim is finally
to find P

(-)
rl and P

(+)
rl , such that h(+)(P

(+)
rl ) = P

(+)
rl and h(-)(P

(-)
rl ) = P

(-)
rl . If several solutions

exist, then we want to keep the smallest, since the retry loop stops to expand when a stable
state is reached.

Note that we also need to provide the point where the expansion begins. It begins when
we start to have failures, while reducing the parallel section. Thus this point is (2P−1)rlw (-)

(resp. (P − 1)rlw (-)) for the lower (resp. upper) bound on the throughput.

Theorem 3. Let (xn) be the sequence defined recursively by x0 = 0 and xn+1 = h(+)(xn). If

pw ≥ rc + cw + cc, then P
(+)
rl = limn→+∞ xn.
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Proof. First of all, the average number of threads belongs to ]0, P [, thus for all x ∈ [0, P ],
0 < h(+)(x) < P . In particular, we have h(+)(0) > 0, and h(+)(P ) < P , which proves that
there exist one fixed point for h(+).

In addition, we show that h(+) is a non-decreasing function. According to Lemma 3,

h(+)(Prl) = P × 1 + f (-)

q + r + f (-) + 1
,

where all variables except P depend actually on Prl. We have

q =

⌊
pw + e

rlw (-) + e

⌋
and r =

pw + e

rlw (-) + e
− q,

hence, if pw ≥ rlw (-), q and r are non-increasing as e is non-decreasing, which is non-
decreasing with Prl. Since f (-) is non-decreasing as a function of q, we have shown that if
pw ≥ rlw (-), h(+) is a non-decreasing function.

Finally, the proof is completed by the theorem of Knaster-Tarski.

The same line of reasoning holds for h(-) as well. As a remark, we point out that when
pw < rlw (-), we scan the interval of solution, and have no guarantees about the fact that
the solution is the smallest one; still it corresponds to very extreme cases.

4.5.3 Several Retry Loops

We consider here a lock-free algorithm that, instead of being a loop over one parallel section
and one retry loop, is composed of a loop over a sequence of alternating parallel sections
and retry loops. We show that this algorithm is equivalent to an algorithm with only one
parallel section and one retry loop, by proving the intuition that the longest retry loop is
the only one that fails and hence expands.

4.5.3.1 Problem Formulation

In this subsection, we consider an execution such that each spawned thread runs Proce-
dure Combined in Figure 27. Each thread executes a linear combination of S independent
retry loops, i.e. operating on separate variables, interleaved with parallel sections. We note
now as rlw

(+)
i and pw

(+)
i the size of a retry of the ith retry loop and the size of the ith parallel

section, respectively, for each i ∈ {1, . . . , S}. As previously, qi and ri are defined such that

pw
(+)
i = (qi + ri)× rlw

(+)
i , where qi is a non-negative integer and ri is smaller than 1.

The Procedure Combined executes the retry loops and parallel sections in a cyclic fashion,
so we can normalize the writing of this procedure by assuming that a retry of the 1st retry
loop is the longest one. More precisely, we consider the initial algorithm, and we define i0 as

i0 = min argmaxi∈{1,...,S} rlw
(+)
i .
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We then renumber the retry loops such that the new ordering is i0, . . . , S, 1, . . . , i0 − 1, and
we add in Initialization the first parallel sections and retry loops on access points from
1 to i0 — according to the initial ordering.

One success at the system level is defined as one success of the last CAS, and the through-
put is defined accordingly. We note that in steady-state, all retry loops have the same
throughput, so the throughput can be computed from the throughput of the 1st retry loop
instead.

4.5.3.2 Wasted Retries

Lemma 8. Unsuccessful retry loops can only occur in the 1st retry loop.

Proof. We note (tn)n∈[1,+∞[ the sequence of the thread numbers that succeeds in the 1st

retry loop, and (sn)n∈[1,+∞[ the sequence of the corresponding time where they exit the
retry loop. We notice that by construction, for all n ∈ [1,+∞[, sn < sn+1. Let, for
i ∈ {2, . . . , S} and n ∈ [1,+∞[, (Pi,n) be the following property: for all i′ ∈ {2, . . . , i}, and
for all n′ ∈ {1, . . . , n}, the thread Ttn′ succeeds in the ith retry loop at its first attempt.

We assume that for a given (i, n), (Pi+1,n) and (Pi,n+1) is true, and show that (Pi+1,n+1)
is true. As the threads Ttn and Ttn+1 do not have any failure in the first i retry loops, their
entrance time in the i+ 1th retry loop is given by

sn +
i∑

i′=1

(rlw
(+)
i′ + pw

(+)
i′ ) + pw

(+)
i+1 = X1 and sn+1 +

i∑
i′=1

(rlw
(+)
i′ + pw

(+)
i′ ) + pw

(+)
i+1 = X2,

respectively. Thread Ttn does not fail in the i+ 1th retry loop, hence exits at

X1 + rlw
(+)
i+1 < X1 + rlw

(+)
1 = sn +X2 − sn+1 < X2.

As the previous threads Tn−1, . . . , T1 exits the ith retry loop before Tn, and next threads Tn′ ,
where n′ > n+1, enters this retry loop after Tn+1, this implies that the thread Ttn+1 succeeds
in the i+ 1th retry loop at its first attempt, and (Pi+1,n+1) is true.

Procedure Combined
1 Initialization();
2 while not(done) do
3 for i ← 1 to S do
4 Parallel Work(i);
5 while not(success) do
6 current ← Read(AP[i]);
7 new ← Critical Work(i,current);
8 success ← CAS(AP, current, new);

Figure 27: Thread procedure with several retry loops
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Regarding the first thread that succeeds in the first retry loop, we know that he successes
in any retry loop since there is no other thread to compete with. Therefore, for all i ∈
{2, . . . , S}, (Pi,1) is true. Then we show by induction that all (P2,n) is true, then all (P3,n),
etc., until all (PS,n), which concludes the proof.

Theorem 4. The multi-retry loop Procedure Combined is equivalent to the Procedure AbstractAlgorithm,
where

pw (+) = pw
(+)
1 +

S∑
i=2

(
pw

(+)
i + rlw

(+)
i

)
and rlw (+) = rlw

(+)
1 .

Proof. According to Lemma 8 there is no failure in other retry loop than the first one;
therefore, all retry loops have a constant duration, and can thus be considered as parallel
sections.

4.5.3.3 Expansion

The expansion in the retry loop starts as threads fail inside this retry loop. When threads
are launched, there is no expansion, and Lemma 8 implies that if threads fail, it should be
inside the first retry loop, because it is the longest one. As a result, there will be some stall
time in the memory accesses of this first retry loop, i.e. expansion, and it will get even
longer. Failures will thus still occur in the first retry loop: there is a positive feedback on
the expansion of the first retry loop that keeps this first retry loop as the longest one among
all retry loops. Therefore, in accordance to Theorem 4, we can compute the expansion by
considering the equivalent single-retry loop procedure described in the theorem.

4.6 Experimental Evaluation

We validate our model and analysis framework through a set of successive steps, from syn-
thetic tests, capturing a wide range of possible abstract algorithmic designs, to several ref-
erence implementations of extensively studied lock-free data structure designs that include
cases with non constant parallel section and retry loop.

4.6.1 Setting

4.6.1.1 Single retry loop

We have conducted experiments on an Intel ccNUMA workstation system. The system is
composed of two sockets, that is equipped with Intel Xeon E5-2687W v2 CPUs with fre-
quency band 1.2-3.4 GHz. The physical cores have private L1, L2 caches and they share
an L3 cache, which is 25 MB. In a socket, the ring interconnect provides L3 cache accesses
and core-to-core communication. Due to the bi-directionality of the ring interconnect, un-
contended latencies for intra-socket communication between cores do not show significant
variability.

Our model assumes uniformity in the CAS and Read latencies on the shared cache line.
Thus, threads are pinned to a single socket to minimize non-uniformity in Read and CAS
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Figure 28: Synthetic program

latencies. In the experiments, we vary the number of threads between 4 and 8 since the
maximum number of threads that can be used in the experiments are bounded by the
number of physical cores that reside in one socket.

In all figures, y-axis provides the throughput, which is the number of successful operations
completed per millisecond. Parallel work is represented in x-axis in cycles. As mentioned
in Section 4.4, the graphs contain the high and low estimates, corresponding to the lower
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and upper bound on the wasted retries, respectively, and an additional curve that shows the
average of them.

As mentioned before, the latencies of CAS and Read are parameters of our model. We
used the methodology described in [27] to measure latencies of these operations in a bench-
mark program by using two threads that are pinned to the same socket. The aim is to bring
the cache line into the state used in our model. Our assumption is that the Read is conducted
on an invalid line. For CAS, the state of the cache line could be exclusive, forward, shared
or invalid. Regardless of the state of the cache line, CAS requests it for ownership, that
compels invalidation in other cores, which in turn incurs a two-way communication and a
memory fence afterwards to assure atomicity. Thus, the latency of CAS does not show neg-
ligible variability with respect to the state of the cache line, as also revealed in our latency
benchmarks.

As for the computation cost, the work inside the parallel section is implemented by a
dummy for-loop of Pause instructions.

4.6.2 Synthetic Tests

For the evaluation of our model, we first create synthetic tests that emulate different design
patterns of lock-free data structures (value of cw) and different application contexts (value
of pw). As described in the previous subsection, in the Procedure AbstractAlgorithm, the
amount of work in both the parallel section and the retry loop are implemented as dummy
loops, whose costs are adjusted through the number of iterations in the loop.

Generally speaking, in Figure 28, we observe two main behaviors: when pw is high, the
data structure is not contended, and threads can operate without failure. When pw is low,
the data structure is contended, and depending on the size of cw (that drives the expansion)
a steep decrease in throughput or just a roughly constant bound on the performance is
observed.

The position of the experimental curve between the high and low estimates, depends on
cw . It can be observed that the experimental curve mostly tends upwards as cw gets smaller,
possibly because the serialization of the CASs helps the synchronization of the threads.

For the cases with considerable expansion, it is expected to have unfairness among
threads. This fact loosens the validity of our deterministic model that assumes uniformity
and presumably leads to underestimation of throughput.

Another interesting fact is the waves appearing on the experimental curve, especially
when the number of threads is low or the critical work big. This behavior is originating
because of the variation of r with the change of parallel work, a fact that is captured by our
analysis.

4.6.2.1 Several retry loops

We have created experiments by combining several retry loops, each operating on an inde-
pendent variable which is aligned to a cache line. In Figure 29, results are compared with
the model for single retry loop case where the single retry loop is equal to the longest retry
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Figure 29: Multiple retry loops with 8 threads

loop, while the other retry loops are part of the parallel section. The distribution of fails
in the retry loops are illustrated and all throughput curves are normalized with a factor of
175 (to be easily seen in the same graph). Fails per success values are not normalized and a
success is obtained after completing all retry loops.

4.6.3 Treiber’s Stack

The lock-free stack by Treiber [98] is one of the most studied efficient data structures. Pop

and Push both contain a retry loop, such that each retry starts with a Read and ends with
CAS on the shared top pointer. In order to validate our model, we start by using Pops. From
a stack which is initiated with 50 million elements, threads continuously pop elements for a
given amount of time. We count the total number of pop operations per millisecond. Each
Pop first reads the top pointer and gets the next pointer of the element to obtain the address
of the second element in the stack, before attempting to CAS with the address of the second
element. The access to the next pointer of the first element occurs in between the Read and
the CAS. Thus, it represents the work in cw . This memory access can possibly introduce a
costly cache miss depending on the locality of the popped element.

To validate our model with different cw values, we make use of this costly cache miss
possibility. We allocate a contiguous chunk of memory and align each element to a cache
line. Then, we initialize the stack by pushing elements from contiguous memory either with
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Figure 30: Pop on Treiber’s stack

a single or large stride to disable the prefetcher. When we measure the latency of cw in Pop

for single and large stride cases, we obtain the values that are approximately 50 and 300
cycles, respectively. As a remark, 300 cycles is the cost of an L3 miss in our system when
it is serviced from the local main memory module. To create more test cases with larger
cw , we extended the stack implementation to pop multiple elements with a single operation.
Thus, each access to the next element could introduce an additional L3 cache miss while
popping multiple elements. By doing so, we created cases in which each thread pops 2, 3,
etc. elements, and cw goes to 600, 900, etc. cycles, respectively. In Figure 30, comparison
of the experimental results from Treiber’s stack and our model is provided.

As a remark, we did not implemented memory reclamation for our experiments but one
can implement a stack that allows pop and push of multiple elements with small modifications
using hazard pointers [79]. Pushing can be implemented in the same way as single element
case. A Pop requires some modifications for memory reclamation. It can be implemented by
making use of hazard pointers just by adding the address of the next element to the hazard
list before jumping to it. Also, the validity of top pointer should be checked after adding
the pointer to the hazard list to make sure that other threads are aware of the newly added
hazard pointer. By repeating this process, a thread can jump through multiple elements and
pop all of them with a CAS at the end.
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Algorithm 1: Multiple Pop

1 Pop (multiple)
2 while true do
3 t = Read(top);
4 for multiple do
5 if t = NULL then
6 return EMPTY;
7 hp* = t;
8 if top != t then
9 break;

10 hp++;
11 next = t.next;

12 if CAS(&top, t, next) then
13 break;

14 RetireNodes (t, multiple);

4.6.4 Shared Counter

In [30], the authors have implemented a “scalable statistics counters” relying on the following
idea: when contention is low, the implementation is a regular concurrent counter with a CAS;

cw = 0, threads = 4

5000

10000

15000

0 1000 2000 3000 4000 5000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Case Low High Average Real

(a) 4 threads

cw = 0, threads = 6

4000

8000

12000

16000

0 2000 4000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Case Low High Average Real

(b) 6 threads

cw = 0, threads = 8

5000

7500

10000

12500

15000

0 2000 4000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Case Low High Average Real

(c) 8 threads

Figure 31: Increment on a shared counter
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when the counter starts to be contended, it switches to a statistical implementation, where
the counter is actually incremented less frequently, but by a higher value. One key point of
this algorithm is the switch point, which is decided thanks to the number of failed increments;
our model can be used by providing the peak point of performance of the regular counter
implementation as the switch point. We then have implemented a shared counter which is
basically a Fetch-and-Increment using a CAS, and compared it with our analysis. The result
is illustrated in Figure 31, and shows that the parallel section size corresponding to the peak
point is correctly estimated using our analysis.

4.6.5 DeleteMin in Priority List
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Figure 32: DeleteMin on a priority list

We have applied our model to DeleteMin of the skiplist based priority queue designed
in [76]. DeleteMin traverses the list from the beginning of the lowest level, finds the first
node that is not logically deleted, and tries to delete it by marking. If the operation does not
succeed, it continues with the next node. Physical removal is done in batches when reaching
a threshold on the number of deleted prefixes, and is followed by a restructuring of the list
by updating the higher level pointers, which is conducted by the thread that is successful in
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redirecting the head to the node deleted by itself.
We consider the last link traversal before the logical deletion as critical work, as it con-

tinues with the next node in case of failure. The rest of the traversal is attributed to the
parallel section as the threads can proceed concurrently without interference. We measured
the average cost of a traversal under low contention for each number of threads, since traver-
sal becomes expensive with more threads. In addition, average cost of restructuring is also
included in the parallel section since it is executed infrequently by a single thread.

We initialize the priority queue with a large set of elements. As illustrated in Figure 32,
the smallest pw value is not zero as the average cost of traversal and restructuring is intrin-
sically included. The peak point is in the estimated place but the curve does not go down
sharply under high contention. This presumably occurs as the traversal might require more
than one steps (link access) after a failed attempt, which creates a back-off effect.

4.6.6 Enqueue-Dequeue on a Queue
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Figure 33: Enqueue-Dequeue on Michael and Scott queues

In order to demonstrate the validity of the model with several retry loops (see Sec-
tion 4.5.3), and that the results covers a wider spectrum of application and designs from the
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ones we focused in our model, we studied the following setting: the threads share a queue,
and each thread enqueues an element, executes the parallel section, dequeues an element,
and reiterates. We consider the queue implementation by Michael and Scott [80], that is
usually viewed as the reference queue while looking at lock-free queue implementations.

Dequeue operations fit immediately into our model but Enqueue operations need an
adjustment due to the helping mechanism. Note that without this helping mechanism, a
simple queue implementation would fit directly, but we also want to show that the model
is malleable, i.e. the fundamental behavior remains unchanged even if we divert slightly
from the initial assumptions. We consider an equivalent execution that catches up with the
model, and use it to approximate the performance of the actual execution of Enqueue.

Enqueue is composed of two steps. Firstly, the new node is attached to the last node of
the queue via a CAS, that we denote by CASA, leading to a transient state. Secondly, the
tail is redirected to point to the new node via another CAS, that we denote by CASB, which
brings back the queue into a steady state.

A new Enqueue can not proceed before the two steps of previous success are completed.
The first step is the linearization point of operation and the second step could be conducted
by a different thread through the helping mechanism. In order to start a new Enqueue,
concurrent Enqueues help the completion of the second step of the last success if they find
the queue in the transient state. Alternatively, they try to attach their node to the queue
if the queue is in the steady state at the instant of check. This process continues until they
manage to attach their node to the queue via a retry loop in which state is checked and
corresponding CAS is executed.

The flow of an Enqueue is determined by this state checks. Thus, an Enqueue could
execute multiple CASB (successful or failing) and multiple CASA (failing) in an interleaved
manner, before succeeding in CASA at the end of the last retry. If we assume that both states
are equally probable for a check instant which will then end up with a retry, the number
of CAS s that ends up with a retry are expected to be distributed equally among CASA and
CASB for each thread. In addition, each thread has a successful CASA (which linearizes the
Enqueue) and a CASB at the end of the operation which could either be successful or failed
by a concurrent helper thread.

We imitate such an execution with an equivalent execution in which threads keep the
same relative ordering of the invocation, return from Enqueue together with same result.
In equivalent execution, threads alternate between CASA and CASB in their retries, and both
steps of successful operation is conducted by the same thread. The equivalent execution
can be obtained by thread-wise reordering of CAS s that leads to a retry and exchanging
successful CASB s with the failed counterparts at the end of an Enqueue, as the latter ones
indeed fail because of this success of helper threads. The model can be applied to this
equivalent execution by attributing each CASA-CASB couple to a single iteration and represent
it as a larger retry loop since the successful couple can not overlap with another successful
one and all overlapping ones fail. With a straightforward extension of the expansion formula,
we accomodate the CASA in the critical work which can also expand, and use CASB as the
CAS of our model.
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In addition, we take one step further outside the analysis by including a new case, where
the parallel section follows a Poisson distribution, instead of being constant. pw is chosen
as the mean to generate Poisson distribution instead of taking it constant. The results are
illustrated in Figure 33. Our model provides good estimates for the constant pw and also
reasonable results for the Poisson distribution case, although this case deviates from (/ex-
tends) our model assumptions. The advantage of regularity, which brings synchronization
to threads, can be observed when the constant and Poisson distributions are compared. In
the Poisson distribution, the threads start to fail with larger pw , which smoothes the curve
around the peak of the throughput curve.

4.6.7 Discussion

In this subsection we discuss the adequacy of our model, specifically the cyclic argument,
to capture the behavior that we observe in practice. Figure 34 illustrates the frequency
of occurrence of a given number of consecutive fails, together with average fails per success
values and the throughput values, normalized by a constant factor so that they can be seen on
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the graph. In the background, the frequency of occurrence of a given number of consecutive
fails before success is presented. As a remark, the frequency of 6+ fails is gathered with 6.
We expect to see a frequency distribution concentrated around the average fails per success
value, within the bounds computed by our model.

While comparing the distribution of failures with the throughput, we could conjecture
that the bumps come from the fact that the failures spread out. However, our model captures
correctly the throughput variations and thus strips down the right impacting factor. The
spread of the distribution of failures indicates the violation of a stable cyclic execution (that
takes place in our model), but in these regions, r actually gets close to 0, as well as the
minimum of all gaps. The scattering in failures shows that, during the execution, a thread
is overtaken by another one. Still, as gaps are close to 0, the imaginary execution, in
which we switch the two thread IDs, would create almost the same performance effect. This
reasoning is strengthened by the fact that the actual average number of failures follows the
step behavior, predicted by our model. This shows that even when the real execution is not
cyclic and the distribution of failures is not concentrated, our model that results in a cyclic
execution remains a close approximation of the actual execution.

4.6.8 Back-Off Tuning
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Figure 35: Comparison of back-off schemes for Poisson Distribution

Together with the analysis comes a natural back-off strategy: we estimate the pw cor-
responding to the peak point of the average curve, and when the parallel section is smaller
than the corresponding pw , we add a back-off in the parallel section, so that the new parallel
section is at the peak point.

We have applied exponential, linear and our back-off strategy to the Enqueue/Dequeue
experiment specified above. Our back-off estimate provides good results for both types
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of distribution. In Figure 35 (where the values of back-off are steps of 115 cycles), the
comparison is plotted for the Poisson distribution, which is likely to be the worst for our back-
off. Our back-off strategy is better than the other, except for very small parallel sections,
but other back-off strategies should be tuned for each value of pw .

We obtained the same shapes while removing the distribution law and considering con-
stant values. The results are illustrated in Figure 36.
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Figure 36: Comparison of back-off schemes for constant pw

4.7 Conclusion on Throughput Modeling

We have modeled and analyzed the performance of a general class of lock-free algorithms.
Thanks to this analysis, we have been able to predict the throughput of such algorithms,
on actual executions. The analysis relies on the estimation of two impacting factors that
lower the throughput: on the one hand, the expansion, due to the serialization of the atomic
primitives that take place in the retry loops; on the other hand, the wasted retries, due
to a non-optimal synchronization between the running threads. We have derived methods
to calculate those parameters, along with the final throughput estimate, that is calculated
from a combination of these two previous parameters. As a side result of our work, this
accurate prediction enables the design of a back-off technique that performs better than
other well-known techniques, namely linear and exponential back-offs.

As a future work, we envision to enlarge the domain of validity of the model, in order to
cope with data structures whose operations do not have constant retry loop, as well as the
framework, so that it includes more various access patterns. The fact that our results extend
outside the model allows us to be optimistic on the identification of the right impacting
factors. Finally, we also foresee studying back-off techniques that would combine a back-off
in the parallel section (for lower contention) and in the retry loops (for higher robustness).
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Figure 37: Average Power Consumption for Treiber’s Stack (Pop operation)

4.8 Energy Modelling and Empirical Evaluation

We introduced our power model and the power impacting factors in D2.1 [50]. Here, we
combine them with our performance model that is illustrated in Section 4. By doing so, we
aim to come up with the average power consumption predictions for the parallel programs
that use fundamental concurrent lock-free data structures.

In D2.1, we decompose the power into two orthogonal bases, each base having three
dimensions. On the one hand, we define the model base by separating the power into static,
active and dynamic power. On the other hand, the measurement base corresponds to the
components that actually dissipates the power,i.e. CPU, memory and uncore, in accordance
with RAPL energy counters. We recall that we are interested only in the dynamic component
of power, since we determine the static power and the activation power, that do not depend on
the data structure implementation or the application that uses the concurrent data structure.
Our performance model does not cover the cases where the inter-socket communication takes
place. Here, we do not present the dynamic memory and uncore power evaluations because
they are insignificant (i.e. close to 0 for all cases) when there are not memory accesses
(parallel work is composed of multiplication instructions) or inter-socket communication
(threads are pinned to the same socket).

In D2.1, we illustrate that CPI (cycles per instruction) is the main impacting factor for
the dynamic CPU power. And, CPI reaches to a high value during the execution of data
structure operations. This is because the retry loops are composed of read accesses and CASs
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Figure 38: Average Power Consumption for Shared Counter (Increment operation)

which typically lead to costly cache misses in a concurrent environment. In contrast, one
could expect to observe a lower value of CPI in the application specific parts of the parallel
program, i.e. parallel work. This is because computations presumably are executed in the
application specific part and the concurrent data structures are used for the communication.
That is why, we emulate the parallel work with a for-loop of multiplication instructions.
In this region of the parallel program, CPI gets low as a multiplication instruction can be
executed within almost a cycle so we observe an increase in the dynamic CPU power during
the execution of the parallel work. As we expect two different average power behaviours in
these two regions, we build our reasoning over the ratio of execution time that the threads
spend in the retry loops. Thanks to our performance model, we can predict this ratio for
each value of the parallel work, the number of threads and the data structure operation. We
can also generalize our performance predictions to a whole clock frequency domain with a
straightforward evaluation of the model parameters for each frequency (i.e. pw , cw , CAS
and rc).

Dynamic CPU power does not scale linearly with the frequency, instead shows a super-
linear behaviour (see D2.1). We handle this issue by taking power measurements for each
frequency. For each data structure operation and frequency, we run the parallel program
for two values of pw that corresponds to a low and a high contention case. respectively
(i.e. where the ratio of time spent in retry loop is 0.05 and 0.5) with 8 threads for a given
duration. Using RAPL energy counters, we measure the energy consumption for these cases.
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Figure 39: Average Power Consumption for MS Queue (Enqueue operation)

Then, we use these values to extract the average power consumption for each phase (retry
loop and parallel work) of the parallel program. Recall that we know the static and activa-
tion component of power so we can extract the dynamic component for memory, uncore and
CPU power.

The average power consumption (for each of the memory, CPU and uncore components)
for the retry loop (PowRL) and the parallel work (PowPW ) can be obtained as follows: (by
using the two energy measurements for pw values corresponding to two different ratios of
execution time spent in the retry loops):

PowAverage = Threads × (PowRL × RatioRL + PowPW × (1− RatioRL))

Based on the estimation of PowPW and PowRL, for each frequency and data structure
operation, we provide average power predictions that span the whole parallel work and the
number of threads domain. This is simply done by plugging the RatioRL, that is provided
by our performance model, to the formula above. In Figures 37, 38, 39, 40, we present
the results for a set of fundamental lock-free data structure operations, namely for Micheal
and Scott Queue (Enqueue and Dequeue operations), Treiber’s Stack (Pop operation) and
Shared Counter (Increment operation). In the figures, lines and points represent predictions
and actual measurements, respectively.

In all the figures, we observe a similar behaviour. Dynamic CPU power decreases when
pw decreases. We know that pw is a key aspect that influences the contention on the data
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Figure 40: Average Power Consumption for MS Queue (Dequeue operation)

structure, equally with the the ratio of time that threads spend in the retry loop. With the
decrease of pw , CPI increases and dynamic CPU power reduces.
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5 Energy Evaluation on Myriad2 for Multiway Aggre-

gation on Streaming Applications

5.1 Introduction

5.1.1 Background

Nowadays due to the fact that multiprocessors can reach high levels of performance and
efficiency, they are employed in almost all areas of engineering. The increase in number
of transistors was until recently a widely used approach in order to improve performance.
This trend introduced power consumption issues, additional design complexity of computing
systems and wire delays because of complicated designs adopted. Due to all these aforemen-
tioned issues arising, a shift has been observed towards multicore systems, improving in this
way parallelism and performance [40].

Having multiple processors working in parallel on the same or different tasks, translates
into multiple processes trying to communicate and synchronize, a trend that provides an
interesting challenge especially when space availability and energy consumption are limited
resources, as is the case for embedded systems.

The data structures that are used play essential role for the communication to become
more efficient. In the context of streaming applications, data flows from one stage to the
other via data structures in order to be processed and used further by an application. The
way this communication takes place defines the effectiveness of the application, the level of
difficulty it can deal with and its applicability to crucial projects with major impact for the
society.

Extensive research on how to increase performance of a computing system has already
been conducted within the High Performance Computing (HPC) community and the results
and solutions obtained match the needs of the embedded systems field [84]. Furthermore
power consumption becomes a major issue in HPC as the energy cost of a supercomputer
facility’s operation after some years almost equals the cost of the hardware infrastructure.

Due to the fact that power consumption consists one of the main constraints the HPC
community will have to deal with in future systems and as this is an important issue that
embedded systems try to confront, it is the turn of HPC to adopt solutions utilized by
embedded systems [85].

So far embedded platforms utilize mutual exclusion or interrupt handling in order to
achieve synchronization, while lock-based and lock-free approaches are adopted by the HPC
community. As there is a convergence between the two fields and one can benefit from the
other, it is interesting to search how solutions provided by the HPC field can be adjusted
to embedded multicore platforms in this context and how much improvement we can get by
such an initiative. Additionally the improvement in power consumption that we can get out
of such an investigation can be useful to HPC in the future.

The work presented here aims to make a research on data structures suited for embedded
systems and investigate trade-offs between different implementations in terms of energy
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consumption, memory utilization and performance. Through this investigation the focus
will be on data streaming applications implementing multiway aggregation of the received
data.

Although efficient data structures for a concurrent environment have been studied ex-
tensively, the issue of appropriate data structures for data streaming applications has been
neglected [44]. Concurrent data structures play a major role between aggregation stages,
through the parallelism and the load balancing role that they can offer in this kind of ap-
plications. For this reason such an application will be developed and based on the research
conducted on concurrent data structures, an efficient solution providing lower latency, bigger
throughput and energy efficiency at the data aggregation function of the application will try
to be achieved.

We examin already existing algorithms and solutions of concurrent data structures, with
specific interest in energy, space and performance trade-offs. The shared data structure is the
queue as it consists one of the most widely used data structures in embedded applications.
The algorithms analyzed provide solutions for the Single-Producer-Single-Consumer (SPSC)
problem.

The data streaming application runs on Myriad 2 platform and evaluation is realized in
terms of how many messages containing application data can be processed each millisecond
for given fixed workloads. Furthermore power consumption is measured in order to evaluate
how many Joules are needed for the processing of a message.

Next section will introduce latest researches conducted on the subject. Section 5.2 ex-
plains the type of application this work takes into consideration and how concurrent data
structures are used within such kind of applications. Following, Section 5.3 gives a brief
overview of the platform on which evaluation will be conducted, together with the issues
concerning memory handling when cache memory is used. Subsequently Section 5.4 con-
tains theory concerning algorithms for concurrent data structures, essential to keep up with
the rest of the document. Section 5.7 continues with the evaluation results of the chosen
algorithms in order to observe their performance on the platform before they are used in the
final application whose evaluation comes right after in Section 5.8. Finally, a discussion on
the results and some final thoughts are provided in Section 5.9.

5.1.2 Related Work

In 2013 Cederman et al. [44] investigate about the neglected field of concurrent data struc-
tures on the context of efficiency in data streaming aggregation. As it has already been
mentioned, data structures play a major role between aggregation stages and parallelism in
some of the stages is a challenging issue to address. Through this work it is shown that
for this type of applications lock-based or lock-free approaches do not matter as much as
the data structure itself that is used. New types of data structures have been implemented
giving better throughput and less latency than already existing queue based approaches.

In 2014 Papadopoulos et al. [84] try to look into the future where the number of cores per
chip will be increased. As currently used lock based techniques for synchronization between
contending threads over shared data has some disadvantages and do not scale well as the
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number of cores increases (due to increased contention), lock-free solutions introduced by
the HPC field are adjusted for use in a multicore embedded platform in order to find out
how much we can improve in terms of performance depending on the solution tested. The
shared data structure used for this work is the queue. As a result of the investigation 29.6%
increase in the performance of the platform was obtained.

Again in 2014 Papadopoulos et al. [85] conduct an investigation on concurrent queue
implementations inspired by the HPC domain adjusted to an embedded multicore platform.
This time along with performance evaluation, power consumption is taken into consideration
and 6.8% less power dissipation is achieved while the lock free implementations provide lower
execution times by 28.2% compared to lock based approaches. As mentioned to this work,
as the number of cores per chip will increase in the future, lock free solutions will be more
attractive and there is plenty of room for improvement.

5.2 Data streaming aggregation

In this section multiway data streaming aggregation is explained in order to further under-
stand the type of problem we aim to investigate and give a solution to.

5.2.1 Data streaming

Data streaming constitutes a new paradigm which processes incoming information of a sys-
tem in real time instead of following the classic way of storing the received data in order
to process them later on. This need is imperative nowadays as the amount of data that
needs to be processed on a daily basis by a contemporary system can be really big rendering
solutions that abide by the store-and-process paradigm non-practical.

5.2.2 A Stream and Multiway Streams

A stream is a flow of incoming tuples containing fields related to data that need to be
communicated by an application along with a timestamp provided by the producer of a
tuple [45]. In the context of a multiway aggregation, multiple input streams are sent to an
aggregator which processes them in order to produce a deterministic output depending on
what the application wants to extract from the given data.

5.2.3 Aggregation

An example of an aggregation application would be smart metering data out of which an
aggregator sums up the amount of Watts that have been consumed by a house or a whole
district. An aggregator may be stateful or stateless depending on the nature of an applica-
tion and whether it needs an aggregator to hold some kind of state throughout the whole
processing phase.

In case of stateful aggregators, time is divided in windows within which state is held.
Windows are set either according to time or according to tuples. They have a certain size
declaring the amount of time or incoming tuples for which they are valid and they also



D2.3: Power models, energy models and libraries 90

have an advance parameter which sets the boundaries of the next window depending on the
previous one.

As an example, if tuples of last ten minutes are grouped together every 5 minutes this
means that we have windows of size ten and advance five. The windows that would be
created in this way would be [0, 10), [5, 15), [10, 20) and so on. The same holds for tuple
based approaches where for example ten last tuples are grouped together every five incoming
tuples.

According to [45] the functionality of an aggregator consists of four main stages :

1. Add stage: Fetch tuples from each input stream.

2. Merge stage : Merge and sort fetched tuples according to timestamp.

3. Update stage : Update the state of windows a tuple contributes to.

4. Output stage : Forward output tuples to the next aggregation stage.

In this work, the focus is on the third and fourth stages of an aggregator. The first
and second stages are out of scope and are not taken into consideration as the application
deployed simulates already merged and sorted data.

5.2.4 Concurrent Data Structures

Under the context of multiway data streaming aggregation, concurrent data structures are
used between the different stages of the aggregation process in order for the communication
between different parties to be achieved.

The data structures used need to provide as much parallelism as possible, ease the com-
munication of tuples between different stages of the process and load balance the workload
so that all processes deal with similar amount of workload and none is potentially choked
creating a bottleneck. Lock-free approaches prove to increase throughput and start arising
research interest more and more, something that led to mainstream programming languages
to incorporate implementations in their standard libraries [45].

Two typical stream processing engines are Borealis [4] and StreamCloud [43]. For mul-
tiway aggregation to be achieved in these implementations, as depicted in Figure 41, tuples
from each input stream are placed in queues by multiple threads. On the other side there
is one consumer thread performing the merge, update and output stages of aggregation by
dequeuing each time the first tuple of each queue in order to make a decision on which tuple
should be processed next.

5.3 Myriad2 Hardware Platform

The complete specifications of Myriad2 Movidius processor can be found in Deliverable
D4.2 [?]. We recall here important information needed in our context.

The SHAVEs are processors designed for handling efficiently VLIW instructions, contain-
ing registers and functional units that enable SIMD operations and provide high parallelism
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Figure 41: Aggregation example

and throughput. Used for performing intensive computational tasks. SHAVES also have
access to a 2KB L1 instruction cache which enables running code residing in DDR without
much delay and a 1KB L1 data cache. Additionally shaves have access to a 256KB L2 cache
memory following a write-back policy and featuring a 64-byte cache line. Applications on
SHAVES can be written in Assembly or C/C++.

CMX memory allows LEON and SHAVE processors to have low memory access cost in
contrast to DDR memory which depending on whether retrieved data are already cached
or not may incur high cost. For this reason CMX should be preferred for application data
manipulated by SHAVES.

CMX is divided in sixteen 128KB parts. Each SHAVE has a preferential port attached
to one of these parts, thus 128 × 12 = 1536KB are preferentially used by SHAVES. The
remaining 512KB can be used for other general purposes such as LEON OS timing critical
code.

A SHAVE may have access to any CMX part with the same cost. On the other hand the
resources used for routing between different CMX parts are finite. Furthermore an access to
a local CMX slice happens with lower energy consumption and in order to achieve optimal
performance, memory should be manipulated in such a way so that a SHAVE mostly accesses
data residing in its local part.

There exists a cache coherency protocol that handles the movement of data between the
DDR memory and the L1 and L2 caches of every SHAVE. However, due to the fact that using
DDR is much slower, CMX should be preferred. As CMX is not cached, cache coherency
is not an issue any more so the overhead incured by cache coherency protocols is avoided.
Furthermore all SHAVES have very fast access to all CMX memory.

In case DDR should be used (e.g too much data to be held by CMX) a better alternative
would be to use the DMA engine which allows whole blocks of memory to be fetched from
DDR to CMX much faster than when DDR is accessed directly and data get cached. The
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way DMA engine can be used is depicted in Figure 42.

Figure 42: DMA usage

5.4 Single-Producer-Single-Consumer algorithms

We present here some widely-used implementations of a FIFO queue, where a single entity
can enqueue elements and another single entity can dequeue elements.

A bounded buffer with a fixed number of slots is used and the producer can only insert
elements when the buffer is not full (in case the buffer is static) while the consumer may
consume when the buffer is not empty. Furthermore the FIFO property needs to be guar-
anteed, through which the elements removed by the consumer appear in the same order as
inserted by the producer.

In this case synchronization is a less complicated issue which can be overcome through
primitive linearizable stores which are faster than hardware synchronization primitives. As
CAS is not needed and there is only one producer and one consumer, the ABA problem,
which is a factor contributing to the previous algorithms being slower, is not taken into
consideration anymore.

5.4.1 Lamport’s algorithm

In 1983 Lamport introduces a lock-free algorithm that solves the SPSC problem [70]. The
approach uses a cyclic array as the data structure, is pretty straightforward and is depicted
below in Listing 1.

Listing 1: Lamport’s algorithm

i n t head = 0 ;
i n t t a i l = 0 ;
enqueue ( data ) {

whi le (AFTER( t a i l ) == head ) ; // wait , queue i s f u l l
queue [ t a i l ] = data ;
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t a i l = AFTER( t a i l ) ;
r e turn 0 ;

}
dequeue ( data ) {

whi le ( head == t a i l ) ; // wait , queue i s empty
data = queue [ head ] ;
head = AFTER( head ) ;
r e turn 0 ;

}
}

At the software level the proposed solution avoids explicit synchronization between the
processes, which communicate indirectly through atomic read and write operations on control
variables, namely head and tail according to Listing 1. On the other hand, the algorithm
does not take into consideration memory and cache coherency, a fact which renders the
solution the slowest one compared to the algorithms presented in this section.

Due to the fact that the control variables are shared, there are a lot of cache line transfers
induced as the producer and the consumer need to manipulate these variables (either read
them or write them) at every operation, generating a lot of invalidations and cache coherency
traffic. To make things worse, in case the control variables are not placed in separate cache
lines, there is a possibility their values get invalidated even when they are not actually
changed because of changes to a nearby memory location residing in the same cache line
[59].

Furthermore, in case the producer and the consumer work at the same speed to nearby
memory locations operations will be happening on the same cache line, obviously leading
to even more invalidations and cache line thrashing. For this phenomenon to be avoided,
the consumer should avoid manipulating elements in cache lines that will possibly change
(see temporal slip in Section 5.4.2) [59]. Finally the approach does not work for systems
running on weaker memory consistency models than sequential consistency and additional
fence operations would be needed if this would be the case, introducing more overhead.

5.4.2 Fast Forward algorithm

In 2008 Giaconomi et al. [40], design an efficient algorithm in order to provide better
throughput in a pipeline parallel application where packet processing is realized. In order
for the algorithm to be applicable to some weaker memory consistency models a memory
barrier needs to be placed before an enqueue takes place. A pseudocode of the algorithm is
provided below in Listing 2.

Listing 2: Fast Forward algorithm

i n t head = 0 ;
i n t t a i l = 0 ;
enqueue ( data ) {

whi le ( queue [ t a i l ] != NULL) ; // wait , queue i s f u l l
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queue [ t a i l ] = data ;
t a i l = AFTER( t a i l ) ;
r e turn 0 ;

}
dequeue ( data ) {

do {
data = queue [ head ] ;
}whi le ( data == NULL) ; // wait , queue i s empty

queue [ head ] == NULL;
head = AFTER( head ) ;
r e turn 0 ;

}
}

The approach is array based again and manages to decrease the amount of cache thrash-
ing, in comparison with Lamport’s algorithm in Listing 5.4.1. This is achieved through a
special element introduced, which indicates whether an array cell is or is not available for an
operation to occur. By synchronizing the processes in that way, head and tail are manipu-
lated only by the producer and the consumer respectively so no invalidations occur because
of these variables.

By introducing this special element though, a constraint is imposed, due to the fact
that the datatypes of elements that can be used are limited and the value used as a special
element is not possible to be used by the application [72]. A solution for this issue the
designers propose, is to have an additional array containing pointers indicating whether a
slot is empty or not. In case this solution is adopted, the issue that arises is that one more
access is necessary in order for an operation on the data structure to occur (i.e. one access
to the array holding the pointers and one access to the array holding actual data) and the
memory needs of the algorithm increase.

Cache thrashing may still occur though when the producer and the consumer operate on
array elements residing in the same cache line. For this reason temporal slip is suggested
by the designers, according to which the consumer is delayed for as much time as needed,
in order for the producer to fill one cache line. At this point it has to be noted that as
the algorithm is destined for pipeline parallel applications, in case stages of the pipeline
differ significantly in duration, temporal slip needs to be checked more often, increasing the
overhead incurred and eventually introducing cache line thrashing which the solution tries
to avoid in the first place [59].

Compared to Lamport’s algorithm, the approach proves to be approximately 3.7 times
more efficient performance wise and exhibits more stable behaviour. The algorithm’s per-
formance does not seem to be affected in cases where memory fences and variations to the
queue size, the workload, the core allocation or the pipeline stage duration are introduced.
As far as temporal slip is concerned, the overhead is minimal (1 ns). Finally the algorithm
scales well for processes that reside on the same or different chips.
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5.5 Batch Queue algorithm

In 2010 Preud’Homme et al. [59], design an array based algorithm, which as the name implies,
conscripts batch processing. The algorithm proves to be fast and takes into consideration
memory usage and cache coherency. A pseudocode demonstrating the logic of the algorithm
is given below in Listing 3.

Listing 3: Batch queue

i n t enq index = 0 ;
i n t deq index = 0 ;
bool i s F u l l = f a l s e ;
enqueue ( data ) {

queue [ enq index++] = data ;
enq index = enq index mod (2∗N) // N equa l s h a l f s i z e o f the array
i f ( enq index mod N == 0) { // h a l f queue f i l l e d

whi l e ( i s F u l l ) ;
i s F u l l = true ; // a l low consumer to consume

}
}
dequeue ( data ) {

i n t i ;
whi l e ( ! i s F u l l ) ; // wait f o r producer to f i l l h a l f queue
f o r ( i = deq index ; i < deq index + N; i++)

copy buf [ i − deq index ] = queue [ i ] ;
deq index = ( deq index + N) mod (2∗N) ;
i s F u l l = f a l s e ; // n o t i f y producer h a l f array i s emptied

}

The algorithm processes a whole batch of elements at a time. The queue is split in two
sub-queues where either the producer or the consumer works at a time. After the producer
has finished enqueuing in one sub-queue it signals this to the consumer who can now dequeue
the elements of the sub-queue while the producer keeps enqueuing to the other sub-queue.

Synchronization is achieved through one shared flag (the isFull variable in Listing 3) in
order for the swapping of the sub-queues to happen. When the producer finishes with filling
one sub-queue, it sets the flag in order to notify its part is full. Subsequently it waits for the
consumer to signal it emptied the other half of the queue by unsetting the flag, notifying it
is finished dequeuing and the producer can start filling the sub-queue again .

In order to achieve optimal performance two full cache lines are needed and the two
variables holding the indexes along with the flag, need to be placed in different cache lines,
otherwise a lot of unnecessary invalidations and cache coherency traffic will take place de-
creasing performance at a substantial level. The flag ensures the two processes work in
different cache lines, playing the role temporal slip does in Listing 2.

The algorithm provides high throughput and has small memory needs. On the other hand
it exhibits increased latency due to batch processing which increases overhead and requires
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high level of communication through a shared flag in order to work. So the algorithm is
suitable for applications with high L1 cache usage and relaxed latency requirements.

Performance wise an improvement of up to 10 times is observed in relation to Lamport’s
algorithm and a word sized data element can be sent through the queue within 19 − 125
cycles and 12.5− 40.6 nanoseconds depending on L1 cache pressure.

5.6 MCRingBuffer

Again in 2010, Patrick PC Lee et al. [72], propose an algorithm, aiming to keep up with
the bandwidth of the communication link for packet processing purposes (line rate packet
processing). The algorithmic design is presented below in pseudocode 4.

Listing 4: MCRingBuffer

/∗ Var iab le d e f i n i t i o n s ∗/
char cachePad0 [CACHE LINE ] ;

/∗ shared c o n t r o l v a r i a b l e s ∗/
v o l a t i l e i n t read ;
v o l a t i l e i n t wr i t e ;
char cachePad1 [CACHE LINE − 2 ∗ s i z e o f ( i n t ) ] ;

/∗ consumer l o c a l v a r i a b l e s ∗/
i n t l o ca lWr i t e ;
i n t nextRead ;
i n t rBatch ;
char cachePad2 [CACHE LINE − 3 ∗ s i z e o f ( i n t ) ] ;

/∗ producer l o c a l v a r i a b l e s ∗/
i n t loca lRead ;
i n t nextWrite ;
i n t wBatch ;
char cachePad3 [CACHE LINE − 3 ∗ s i z e o f ( i n t ) ] ;

/∗ cons tant s ∗/
i n t batchS ize ;
char cachePad4 [CACHE LINE − s i z e o f ( i n t ) ] ;

/∗ Enqueue func t i on ∗/
enqueue ( data ) {

i n t a f terNextWrite = AFTER( nextWrite ) ;
i f ( a f terNextWrite == loca lRead ) {

whi le ( a f terNextWrite == read ) ; // wait queue i s f u l l
loca lRead = read ;
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}
queue [ nextWrite ] = data ;
nextWrite = afterNextWrite ;
wBatch++;
i f ( wBatch >= batchS ize ) {

wr i t e = nextWrite ;
wBatch = 0 ;

}
r e turn SUCCESS;

}

/∗ Dequeue func t i on ∗/
dequeue ( data ) {

i f ( nextRead == loca lWr i t e ) {
whi le ( nextRead == wr i t e ) ; // wait queue i s empty
lo ca lWr i t e = wr i t e ;

}
data = queue [ nextRead ] ;
nextRead = AFTER( nextRead ) ;
rBatch++;
i f ( rBatch >= batchS ize ) {

read = nextRead ;
rBatch = 0 ;

}
r e turn SUCCESS;

}

The algorithm is lock-free and tries to take advantage of cache locality in order for access
in shared data to become more efficient. As it is shown in pseudocode 4, control variables
are carefully laid out in memory, separated by paddings wherever needed in order for cache
invalidations to be avoided. The approach of placing variables in memory in such a way is
called cache line protection.

By employing this strategy false sharing between the producer and the consumer is
avoided. As a consequence, when one of the processes invalidates a whole cache line by
changing one variable, the variables local to the other one are not affected as it is ensured
that they reside in different cache lines.

Aside from cache line protection which reduces cache coherency traffic, another important
design choice with impact on the performance of the algorithm is the batch updates of shared
control variables. Through the local variables to each process, the shared control variables
(read and write in the pseudocode provided) are sparsely changed. Each process consults
its variable that holds what the process thinks about the progress of the other process and
only reads the shared variable holding the actual progress of the other process when no
more progress can be made. The shared variables are updated by each process after a
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predetermined number of steps which separate the buffer in smaller parts.
As it is obvious this approach of batch updates can lead to wrongly not inserting data

to the buffer even if the buffer is not full (and not dequeuing data from the buffer even if
data are available) due to the fact that the shared variables are not updated yet. This may
happen when the incoming rate of data elements is too small. In order for this scenario to be
avoided, the authors suggest that the producer periodically inserts unused elements to the
queue, discarded by the consumer, used to make the shared variables be updated and have
progress. By making use of batch updates, the same effect as in the temporal slip approach
(see Section 5.4.2) or the flag used in BatchQueue (see Section 5.5) can be achieved without
needing any scheduling of the producer and the consumer.

As control and data elements are not merged like in the fast forward algorithm, the
approach supports generic datatypes and does not impose any limitation on the datatypes
than an application may use, rendering it completely independent. On the other hand,
compared to the other algorithms, the memory needs are increased as six variables are used
by the processes in order to synchronise. The approach works with systems supporting the
sequential consistency memory model while in order to be adopted to platforms with weaker
memory consistency, memory barriers need to be used.

The algorithm outperforms Lamport’s approach especially when batch updates are in-
troduced. The same holds for the fast forward algorithm for which though temporal slip
has not been used. It does not seem to perform well in case the buffer size is small as it
is probable that the producer cannot enqueue elements. In general, through this approach,
throughput of conventional lock-free solutions is improved by up to 5 times and cache misses
are considerably reduced. Furthermore processing throughput is augmented by up to 5.2
times for the single-threaded case and 1.9 times for the multi-threaded case.

5.7 Algorithms Evaluation

Due to constraints of the Myriad2 platform (not providing CAS functionality) and the
pipelined nature of the aggregation phase of a data streaming application, the algorithms
this evaluation focuses on are the four SPSC algorithms that have already been discussed
in the previous section. From now on FastForward is mentioned as FF, BatchQueue as BQ
and MCRingBuffer as MCR. The performance evaluation of these algorithms along with
Lamport’s design, is conducted in order to get an insight on the way they behave on the
platform.

In general, in order to take advantage of the platform specifications and achieve optimal
performance, issues already discussed in Section 5.3 are taken into consideration. Thus, if
possible, queues are placed in CMX (particularly in the CMX slice of one of the SHAVES
that manipulate the queue) and each shared variable is placed in the CMX slice of the
SHAVE that makes changes to it. If the queue size exceeds CMX capacity, the queue is
placed into DDR.

Leon OS boots and starts Leon RT from which it awaits a signal in order to initiate a
task that performs the energy measurement of the platform. Leon RT sends this signal right
before it turns on the SHAVES used for the evaluation. After signaling the beginning of the
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power measurement it starts measuring execution time and turns on the SHAVES. Once the
SHAVES finish their executions Leon RT stops measuring the execution time and signals to
Leon OS to stop the power measurement.

The first two SHAVES (SHAVE0 and SHAVE1) are used for the evaluations discussed
in this section. SHAVE0 plays the role of the producer while SHAVE1 runs the application
of the consumer. In case the queue used for communication is placed in CMX it is stored in
the slice of the producer (SHAVE0).

For the purposes of the evaluation, by one operation a pair of enqueue/dequeue is meant
and the percentages used for comparison, provide an approximation of the differences be-
tween the algorithms resulted from the average calculation over all different cases studied.
For each case, an algorithm is evaluated five times and the average of these evaluations is
used as the result in the final computation of the percentages provided.

5.7.1 Buffer Size Evaluation

The behaviour of the algorithms depending on the size of the queue at question is examined
in order to investigate how performance is affected.

In the following evaluation in case the buffer size is greater than 2048 elements the queue
is placed in DDR memory as CMX’s capacity is not enough. Furthermore DMA engine is
not used and data are directly accessed from DDR.

Prior to running the tests the buffers are already filled with data. In case buffer capacity
is 128 elements, the buffer is half filled while for all the other occasions buffers are filled with
150 elements. In this way temporal slip is achieved (producer begins 128 or 150 elements
ahead of the consumer) for all the algorithms as the producer and the consumer are working
on different cache lines when buffer is placed in DDR.

Batches are used by BQ (by design batches are equal to half the size of the queue) but not
for MCR. By not applying batches to MCR it means that the shared variables are updated
at every operation but still they are sparsely consulted by the processes (every 128 or 150
operations). Lamport and FF do not incorporate batches in their implementations by design.

Because of the nature of CMX memory, temporal slip does not need to be taken into
consideration when queues are placed in CMX as cache line thrashing is not an issue anymore.
Each element of the queue is 12 bytes (evaluation on the impact of the size of a data element
is investigated later in Section 5.7.3).

BQ proves to provide better throughput than any other algorithm for every single occasion
(Fig. 43). Specifically, the algorithm achieves better throughput by 24% than MCR, 40%
than FF and 42% than Lamport. This leads us to the conclusion that processing data in
batches and not immediately when they are available provides much better performance. As
the producer and the consumer are constantly working independently, needing to synchronize
only when they are done with their batch (a synchronization made through just a single
variable), a much more efficient design is achieved compared to all other algorithms which
perform checks on synchronization variables much more frequently.

On the down side of using batches, in case the queue is placed in DDR, it seems that
BQ is the only algorithm whose throughput is affected as the size increases. This happens
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because the bigger the queue the more the latency gets increased. A SHAVE has access to
a 1 KB L1 data cache. As a consequence performance is affected by how long data can be
kept in the L1 cache. As cache misses occur, processing delay is augmented and due to the
fact that long batches are used (half the size of the queue) the processing of the tuples gets
slowed down as well. As a consequence it can clearly be seen that throughput is decreased
as the size of the queue increases. For all other algorithms that do not make use of batches,
throughput does not seem to be affected.

It also needs to be noted that the input rate of elements is constant and the producer
runs at the same speed as the consumer. This is not the case though for the different stages
of aggregation that we investigate and it would not be surprising if the results shown here
would not apply later under the new circumstances.

Figure 43: Throughput comparison depending on the size of the queue used

Additionally it can be seen that FF is less efficient than any other algorithm when the
queue is placed in DDR. It performs even worse than Lamport’s algorithm even though it
surpasses it when the queue is placed in CMX. This happens as FF couples control with data
elements (i.e. a data element is checked in order to decide whether an enqueue or a dequeue
should happen). While all other algorithms synchronize processes through variables residing
in CMX, FF needs to access DDR or a cache in order to synchronize the producer and the
consumer, rendering it slower.

Although FF is slower than Lamport when queue is placed in DDR it is more energy
efficient by a slight difference although this is not always the case when the queue resides
in CMX. For all the test cases, the differences between the two are minor as when CMX is
used no caches are involved for cache thrashing to occur from Lamport and when DDR is
used and caches are involved, due to the fact that the queues are already filled with data
prior to execution, Lamport avoids cache thrashing as well.
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BQ also prevails in the energy consumption evaluation, constituting the most energy
efficient solution (Fig. 44). It is more energy efficient by a percentage of 23% from MCR
and 43% from Lamport and FF. As for the throughput evaluation earlier, it can be seen
that energy efficiency is affected by the size of the queue when it resides in DDR for the
same reason that throughput is affected as well. Cache misses mean slower processing of
tuples thus more busy waiting by the processes and consequently increased energy needs.
The rest of the algorithms that do not make use of batches do not seem to be affected and
demonstrate a stable behaviour either when CMX or DDR is used.

Figure 44: Energy comparison depending on the size of the queue used

Overall, with the exception of BQ when the queue is placed in DDR, the algorithms
exhibit a stable behaviour on the platform that is not affected by the size of the buffer
used for communication. Furthermore the inferiority of DDR over CMX is clearly shown as
throughput decreases when queues are placed in DDR while energy consumption increases.
BQ seems to be influenced the most when the queue is placed in DDR as its throughput
is decreased by 42% while its energy consumption is increased by 47%. On the other hand
Lamport is the algorithm affected the least, as its throughput is decreased by 29% while its
energy needs are augmented by 34%. Throughput for FF and MCR is affected at a similar
degree (around 34% slower) while for the former, energy needs increase by 33% and for the
latter energy consumption increases by 42%.

5.7.2 DMA engine test

Subsequently DMA engine is used when queues are placed in DDR in order to decide whether
it is suitable to use it for the algorithms tested, compared to accessing directly data from
DDR. The way DMA is designed to be used is already discussed in Figure 42.
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Tests were run for FF and MCR in order to decide what kind of applications DMA engine
favours the most (batch updates or single element update).

Figure 45: Throughput comparison when DMA used

DMA is not practical when used for single data element access (i.e Lamport, FastFor-
ward), as it is invoked every single time an element needs to be read in order to decide
whether an enqueue or a dequeue should happen (FastForward). This is a use case for which
DMA is not destined to be used in the first place and the results provided in Figures 45 and
46 enforce this fact. FF algorithm’s throughput is decreased by 89% when DMA is used
while energy consumption is increased by 91%.

On the other hand when batches of elements are fetched (for MCRingBuffer where 128
elements are fetched at a time), MCR design using DMA outperforms the case where data are
accessed directly from DDR, performance and energy wise (Fig. 45 and 47). Throughput is
increased by 66% while energy needs are diminished by 70%. The larger the blocks requested
by DMA are, the more efficiency is increased.

5.7.3 Data Element Size Evaluation

The performance of the algorithms is evaluated depending on the size of a data element
they store. For these tests the buffer size is fixed to 128 elements and buffers are half filled
prior to execution. Buffers always reside in CMX (the producer’s slice) so temporal slip is
not needed as the memory manipulated is not cached. Batches are only used by BQ as it
incorporates them by design (a batch equals half the capacity of the queue thus 64 elements
for these experiments). Batches are not used for MCR.

Once more BQ is superior than all other algorithms, MCR comes second, with FF and
Lamport following (Fig. 48). On average, BQ provides performance enhancement of the size
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Figure 46: Energy comparison when DMA used

Figure 47: Energy comparison between MCR and DMA MCR

of 27% compared to Lamport, 21% compared to FF and 16% compared to MCR. It is obvious
that as the size of a data element increases performance of the algorithms converges as more
calculations are performed before operations take place. As a consequence differences in
performance are smaller compared to the buffer size evaluation previously.

With respect to energy, FF is the only algorithm that seems to be affected as the element
size increases. Until the 64-byte element test, it is more energy efficient than MCR something
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Figure 48: Throughput comparison for variable data element size

that does not hold for the 128-byte element test with the margin increasing even more for
the 192-byte element test. All other algorithms exhibit stable behaviour as the element size
increases (Fig. 49). In particular BQ is more energy efficient than Lamport by 21%, FF by
15% and MCR by 12%. Again the small difference in energy consumption comes from the
fact that the algorithms converge as the size of the data elements increases.

Figure 49: Energy comparison for variable data element size
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5.7.4 Algorithms evaluation as the number of tuples to be processed increases

The processing speed and energy consumption of the algorithms is compared as the number
of elements that need to be processed by the system increases. Buffer capacity is fixed to
128 elements while a data element is 12 bytes. As for the previous evaluation, batches are
only incorporated in the BQ implementation (64 elements batches). Again the queue resides
in the CMX slice of the producer, thus temporal slip does not constitute an issue for these
tests.

As it is expected from previous evaluations, BQ proves to be the fastest algorithm in
this evaluation as well (Fig. 50). MCR follows next, with FF and Lamport coming third
and fourth respectively. BQ exhibits better throughput than MCR by 26%, FF by 42% and
Lamport by 45%.

Figure 50: Throughput evaluation as the number of tuples in the system increases

The same holds for the energy footprint of the algorithms, where BQ is more efficient
than MCR by 29%, FF by 43% and Lamport by 46% (Fig. 51).

5.8 Data streaming Aggregation Evaluation

The algorithms evaluated in the previous section are now used between the stages of a data
streaming aggregation process in order to decide on their suitability and performance under
the new circumstances. As previous evaluation has shown that use of data structures is most
effective when they reside in CMX, throughout this evaluation the data structures are placed
in CMX in order to benefit from a simpler and more efficient model of communication.

The same process described at Section 5.7 is used for execution time and energy mea-
surements while all twelve shaves are used for the tests performed. The queues connecting
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Figure 51: Energy evaluation as the number of tuples in the system increases

an aggregator with producers and the final aggregator can store 128 elements and they are
not filled with elements prior to execution. Batches are used only for the BQ case.

5.8.1 Approach

The aggregation process simulates smart metering data that have already been merged and
sorted by a node which plays the role of the producer of the tuples that will be emitted to
aggregators. The producer constitutes the first stage of the process.

The tuples produced contain a timestamp and a value representing the amount of Watts
that have been reported by a smart meter. Once aggregators receive the tuples, they ag-
gregate the values obtained according to timestamp. The aggregators constitute the second
stage within the process.

The time is divided in windows of four time units with two time units of advance. Win-
dows containing the aggregated values are reported to a final aggregator who reports the
total sum of each window and represents the third and final stage of the process.

The communication between the different stages of the process and their functionality is
implemented according to the following description :

Producer-Aggregator Communication
A producer communicates with each aggregator through a dedicated SPSC queue. It
waits until all the tuples sent have been received and once notified through a shared
variable that everything has been consumed, it informs aggregators that production is
finished in order for them to report last windows that have not yet expired.

Aggregators - Last Aggregator Communication
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The aggregators while consuming tuples, report for windows expired to the last aggre-
gator through a SPSC queue (same type of queue used by a producer to communicate
with an aggregator). They count how many messages are sent over to the last aggre-
gator in order to inform him when he is finished processing everything that has been
sent to him. Once this is true they state their inactivity to the last aggregator.

Last Aggregator
The last aggregator, aggregates values sent to him by every aggregator for each window.
Each window in the aggregator’s window list encompasses a contribution list stating
which second stage aggregator has reported on the specific window.

In order for a window to be reported a list holding which aggregator is still active or
inactive is checked in order to decide whether there will be somebody else that has not
yet reported on the window and will potentially do so.

The queues are checked in a round-robin fashion and the aggregator finishes only when
all second stage aggregators are inactive (which means everything has been processed).
Once everything has been processed, final windows that may have not yet been reported
are eventually reported.

The algorithm that needs to be treated with special care in this type of application is the
BQ. When using this data structure, it is likely that a consumer waiting for a producer to
fill a batch, does not eventually consume everything when the producer is finished. Such an
event may occur when a producer has not completely filled a batch. Thus a consumer will
never be informed for leftovers residing in the last batch which has not yet been processed.

As a consequence a producer cannot wait for consumers to consume everything in order
to inform them to make their final report like in all other algorithms. For this reason a
flag is introduced by a producer which informs that leftovers exist for a consumer when the
former states completion. Under this occasion, the index of the producer is consulted by
a corresponding aggregator in order to know which data elements to consume. In case a
producer has completely filled a batch before completion, it informs that no leftovers exist
so an aggregator may proceed straight to the final report.

This could have been the case for MCR as well as it separates the buffer in multiple
batches. As already discussed in the previous section though, when data structures reside
in CMX, it is not so beneficial to incorporate batches in the algorithm. As a consequence
shared variables are updated immediately and the above scenario is avoided.

5.8.2 Single producer variation

In this variation, one producer feeds tuples to ten aggregators in a round robin fashion and
one final aggregator is used (Fig. 52). All processes are run on SHAVES. SHAVE0 acts as the
producer while SHAVE1-SHAVE10 run the applications for the aggregators. SHAVE11 runs
the application of the final aggregator. The data structures reside on the CMX slices of the
second stage aggregators (i.e every aggregator holds the queues that make it communicate
with the producer and the final aggregator).
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Figure 52: Single producer aggregation

When used within aggregation, BQ performs much worse than every other algorithm
despite the fact that it is the most efficient in the evaluation of Section 5.7 (Fig. 53 and
54). Specifically MCR provides better throughput than all other algorithms, surpassing BQ
by 73%, Lamport by 7% and FF by 5%. Energy wise MCR is the most energy efficient
solution as well with BQ exhibiting the highest energy consumption needs. BQ needs 71%
more power than Lamport, 72% more power than FF and 76% more power than MCR.

Superiority of MCR holds due to synchroniztion being more efficient as shared variables
are consulted more sparsely than in other algorithms. The producer, as both of the processes
start from index zero, will consult the shared variable manipulated by the consumer only
when he fills the buffer and from then on every time it reaches the index at which it thinks the
consumer is currently working. The consumer also consults the shared variable manipulated
by the producer more sparsely as the producer is faster and fills some elements before the
consumer finishes the aggregation algorithm (producer only executes a for loop while a

Figure 53: Single producer aggregation throughput evaluation
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Figure 54: Single producer aggregation energy evaluation

consumer executes the aggregation algorithm).
Furthermore, the size of the queues used for communication seems to affect BQ’s per-

formance and energy consumption, as the bigger the capacity of a queue the longer the
consumer should wait to consume and thus more busy waiting is involved. For this reason
evaluation of differences between different sizes of queues is conducted in order to visualize
its effect in the algorithm’s performance in the context of aggregation.

As expected the capacity of the communication queues used have a major impact on the
algorithm’s performance (Fig. 55 and 56). When buffer size is doubled to 256 elements, a
decrease by 43% is observed in throughput while energy consumption is increased by 46%.

Figure 55: BQ buffer variation throughput evaluation
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Figure 56: BQ buffer variation energy evaluation

On the contrary when buffer size for communication between the stages of the aggregation
is reduced to half (64 elements), an increase in throughput by 38% is observed while energy
consumption is decreased by 41%.

5.8.3 Three producers variation

In this variation as depicted by Figure 57, three producers feed tuples to eight aggregators
which communicate their windows to a final aggregator. The same approach as for the single
producer variation concerning the placement of the data structures in memory holds (see
Section 5.8.2). Each producer feeds tuples to assigned consumers. In this way more pressure

Figure 57: Three producers aggregation
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Figure 58: Three producers aggregation - throughput comparison

on the queues is achieved and the initial workload is equally shared among the SHAVES.
Due to the fact that the producing phase of the process is faster than before, this approach
is expected to provide better performance.

The pattern observed in Figure 58 is the same as for the single producer variation in
Figure 53. The difference lies in that the algorithms, as expected, have become faster now
that three producers are used. MCR is more efficient by 75% from BQ, by 7% from Lamport
and by 6% from FF.

Figure 59: Three producers aggregation - energy comparison
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Figure 60: BQ buffer variation throughput evaluation

Energy wise, with the exception of BQ which exhibits 77% higher energy needs from all
other contenders, the rest of the algorithms exhibit similar behaviour (Fig. 59).

As for the single producer aggregation, BQ’s performance is dependent on the size of the
queues used (Fig. 60 and 61). When buffer capacity is doubled, throughput is reduced by
44% while energy consumption is increased by 45%. On the contrary, when buffer size is

Figure 61: BQ buffer variation energy evaluation
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Figure 62: Lamport aggregation - throughput comparison

reduced to half, throughput is increased by 39% while energy consumption is decreased by
40%.

Figures 62, 63, 64, 65, 66, 67, 68 and 69 demonstrate the improvement gained through
the second variation for every algorithm separately. The name of the algorithm followed
by the number one, corresponds to the evaluation of the algorithm for the single producer

Figure 63: Lamport aggregation - energy comparison
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Figure 64: FF aggregation - throughput comparison

aggregation. The name of the algorithm followed by the number three, corresponds to the
evaluation of the algorithm for the aggregation where three producers are used.

BQ’s performance and energy consumption do not have that much big of a difference for
the two different scenarios. When using three producers, although tuples may be communi-
cated faster to and from the second stage aggregators at the beginning, the pace of the last

Figure 65: FF aggregation - energy comparison
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Figure 66: BQ aggregation - throughput comparison

aggregator stays the same as for the single producer version.
As a consequence aggregators may also wait longer for the last aggregator to consume

everything from one batch until they stop busy waiting. Although initially there is an
improvement in the stages up until the second stage aggregators, the application loses at the
last stage of communication which also slows down the processing of incoming tuples by the

Figure 67: BQ aggregation - energy comparison
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Figure 68: MCR aggregation - throughput comparison

aggregators, a fact which with its turn slows down the producers as well.
Table 14 provides the improvement gained by every algorithm from using three instead

of a single producer for the aggregation.
A remark worth taking into consideration, is that apart from BQ’s behaviour, data

retrieved from the investigation on aggregation resemble the pattern seen in data element
evaluation, especially for data element size larger than 64 bytes (see Fig. 48 and 49). This
is because the evaluation on data element size, in a way simulates occasions where some

Figure 69: MCR aggregation - energy comparison
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Table 14: Improvement from using three producers instead of one
Lamport FF BQ MCR

Throughput 12% 12% 6% 3%
Energy 26% 25% 2% 10%

work is performed between enqueues and dequeues. This is also what happens during the
aggregation phase as well, where different aggregation processing algorithms are run from
stage to stage corresponding to the work performed at the data element evaluation. This
explains why MCR does not have the same advantage over the other algorithms as in other
types of evaluation performed in Section 5.7.

5.9 Discussion and Conclusion

5.9.1 Research aim and main findings

The emergence of multicore platforms destined for embedded systems hosting computa-
tionally demanding applications, requires that limitations of these systems are taken into
consideration in order to achieve optimal performance. Algorithmic design of concurrent
data structures used in such applications play a major role on performance and energy con-
sumption during the execution time, rendering their investigation a necessity for the research
community.

Although extensive research has been conducted on concurrent data structures, their use
and evaluation in data streaming applications and specifically in the aggregation phase has
been neglected. For this reason four SPSC algorithms are used within the aggregation phase
of a data streaming application evaluated on the embedded platform Myriad 2 in order to
research their behaviour and applicability under the new circumstances.

Performance evaluation of the algorithms alone, corresponds to the behavior observed
in a data streaming aggregation context as well, with the exception of BatchQueue, which
shows that adopting data structures that employ batch processing of big batches is not the
way to go. The smaller the batches the better the performance.

The winner of the investigation turns out to be MCRingBuffer as it manages to synchro-
nize its processes more efficiently than other algorithms by making use of shared variables
more sparsely. It needs to be noted that batches were not used for MCRingBuffer, as they
did not seem to provide much of a difference on Myriad 2.

Furthermore the algorithms provide a much more efficient solution than lock-based ap-
proaches which, along with interrupt handling, provide the main ways of synchronization for
embedded systems nowadays. The performance gains through the use of lock-free approaches
over lock-based ones range from 83% to 97%, a fact that is quite encouraging, demonstrating
the potential of these kinds of algorithms on embedded devices.
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6 Libraries of Energy-efficient and Concurrent Data

Structures

In this section, we describe our study on libraries of concurrent search trees.

6.1 Concurrent Search Trees

Recent research suggested that the energy consumption of future computing systems will be
dominated by the cost of data movement [26]. As predicted by Dally, accessing data from
nearby memory in a 10nm chip is 75× more energy efficient than accessing them from across
the chip. Therefore, in order to construct energy efficient software systems, data structures
and algorithms must support not only high parallelism but also fine-grained data locality.
Moreover, the fine-grained data locality should be portable across platforms.

Concurrent trees are fundamental data structures that are widely used in different con-
texts such as load-balancing [29, 52, 93] and searching [5, 18, 19, 25, 31, 34]. Most of the
existing highly-concurrent search trees are not considering the fine-grained data locality. The
non-blocking concurrent search trees [19, 34] and Software Transactional Memory (STM)
search trees [5, 18, 25, 31] have been regarded as the state-of-the-art concurrent search trees.
They have been proven to be scalable and highly-concurrent. However these trees are not
designed for fine-grained data locality. Prominent concurrent search trees which are often
included in several benchmark distributions such as the concurrent red-black tree [31] by Or-
acle Labs and the concurrent AVL tree developed by Stanford [18] are not designed for data
locality either. It is challenging to devise search trees that are portable, highly concurrent
and fine-grained locality-aware. A platform-customized locality-aware search trees [65, 91]
are not portable while there are big interests of concurrent data structures for unconventional
platforms [53, 48]. Concurrency control techniques such as transactional memory [57, 54]
and multi-word synchronization [55, 47, 71] do not take into account fine-grained locality
while fine-grained locality-aware techniques such as van Emde Boas layout [88, 103] poorly
support concurrency.

However, there are no studies discussing the effect of portable fine-grained locality on
energy efficiency and performance (e.g., throughput) in concurrent search trees. This work
aims to provide insights into whether it would be worthwhile to develop portable fine-grained
locality-aware concurrent search trees, and what improvements and drawbacks can be ex-
pected from such solutions with respect to energy-efficiency and performance.

Evaluating the effect of portable fine-grained locality on energy efficiency and perfor-
mance in concurrent search trees is challenging, mainly because practical fine-grained locality-
aware concurrent search trees for a platform are usually customized for the particular plat-
form and therefore not portable. To the best of our knowledge, the DeltaTree and GreenBST
is the only practical portable fine-grained locality-aware concurrent search tree [100, 101].

Please note that the names of our trees have been changed according to comments we
have received since 2013. DeltaTree that was described in the previous deliverables (i.e.,
D2.1 [46] and D2.2 [49]) and our technical report uploaded to Arxiv.org in 2013 [99] is a
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non-blocking and locality-aware concurrent search tree. Our SIGMETRICS’15 poster [101]
presents DeltaTree, a lock-based homogeneous B-link tree with vEB-layout nodes, and it is
the same tree as the Balanced ∆Tree found in the previous deliverables. GreenBST is a
lock-based heterogeneous B-link tree with vEB-layout nodes, which is a more improved tree
than DeltaTree and is the same tree as the Heterogeneous ∆Tree found in the previous
deliverables.

We present the study on the effect of portable fine-grained locality on energy efficiency
and performance in concurrent search trees. We found portable fine-grained locality-aware
concurrent search tree can reduce the energy cost incurred by data movement within a
system, and also achieve the best energy efficiency and performance over the evaluation
platforms (cf. Table 15).

6.2 Benchmarks and Profiles of Concurrent Search Trees

To evaluate our conceptual idea of a locality-aware concurrent search tree, we compare
GreenBST energy consumption and throughput with three prominent concurrent search trees
(cf. Table 16). GreenBST is a concurrent B+tree based on the locality-aware concurrent
search tree layout [101] and is an improved tree than DeltaTree. LFBST is the state-of-the-art
fast concurrent non-blocking binary search tree. B-link (CBTree) tree is a concurrent B+tree
that has been around for decades but still popular due to its effectiveness and practicality.
Moreover, B-link tree also still used as a backend in popular database systems such as
PostgreSQL1 [87]. Citrus is an example of a concurrent search tree that uses read-copy-
update (RCU), which is normally found in operating system internals, to handle concurrent
operations within its data structure.

Besides energy efficiency and throughput, we also profile the cache and branching behav-
ior of the tested trees to determine whether data-locality optimization can be translated into
better energy efficiency and higher throughput. The experimental benchmarks were con-
ducted on Intel high performance computing (HPC) platform, an ARM embedded platform,
an accelerator platform based on the Intel Xeon Phi architecture (MIC platform) (cf. Table
15).

We measured the energy efficiency (in operations/Joule) and throughput (in opera-
tions/second) of all the trees in this evaluation. Energy efficiency indicators in opera-
tions/Joule were calculated using the number of operations (rep = 5,000,000) divided by
the total CPU and DRAM energy consumption for the whole operations. The ARM and
Myriad2 platforms were equipped with a built-in on-board power measurement system that
was able to measure the energy of all CPU cores and memory (DRAM) continuously in real-
time. For the Intel HPC platform, the Intel PCM library using built-in CPU counters was
used to measure the CPU and DRAM energy. Energy indicators on MIC platform were col-
lected by polling the /sys/class/micras/power interface every 50 milliseconds. Throughput
indicators in operations/second were calculated using (rep = 5,000,000) operations divided
by the maximum time the threads need to finish the whole operations.

1https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README
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Name HPC ARM MIC Myriad2

System Intel Haswell-EP Samsung Exynos5
Octa

Intel Knights Cor-
ner

Movidius Myriad2

Processors 2x Intel Xeon E5-
2650L v3

1x Samsung
Exynos 5410

1x Xeon Phi 31S1P 1x Myriad2 SoC

# cores 24 (without hyper-
threading)

− 4x Cortex A15
cores
− 4x Cortex A7
cores

57 (without hyper-
threading)

− 1x LeonOS core
− 1x LeonRT core
− 12x Shave cores

Core clock 2.5 GHz − 1.6 GHz (A15
cores)
− 1.2 GHz (A7
cores)

1.1 GHz 600 MHz

L1 cache 32/32 KB I/D 32/32 KB I/D 32/32 KB I/D − LeonOS (32/32
KB I/D)
− LeonRT (4/4 KB
I/D)
− Shave (2/1 KB
I/D)

L2 cache 256 KB − 2 MB (shared,
A15 cores)
− 512 KB (shared,
A7 cores)

512 KB − 256 KB (LeonOS)
− 32 KB (LeonRT)
− 256 KB (shared,
Shave)

L3 cache 30 MB (shared) - - 2MB ”CMX”
(shared)

Interconnect 8 GT/s Quick Path In-
terconnect (QPI)

CoreLink Cache
Coherent
Interconnect (CCI)
400

5 GT/s Ring Bus
Interconnect

400 GB/sec Inter-
connect

Memory 64 GB DDR3 2 GB LPDDR3 6 GB GDDR5 128 MB LPDDR II
OS Centos 7.1 (3.10.0-229

kernel)
Ubuntu 14.04
(3.4.103 kernel)

Xeon Phi uOS
(2.6.38.8+mpss3.5)

RTEMS (MDK
15.02.0)

Compiler GNU GCC 4.8.3 GNU GCC 4.8.2 Intel C Compiler
15.0.2

Movidius MDK
15.02.0

Table 15: We use 4 different benchmark platforms to evaluate tree’s energy efficiency and
performance.

All trees were pre-filled with init values to simulate trees that partially fit into the last
level cache. We used init = 8,388,607 for the benchmarks on the Intel HPC and MIC
platforms and init = 4,194,303 for the benchmarks on the ARM platform.

Combination of update rate u = {0, 50} and selected number of threads were used for
each run. Update rate of 0 equals to 100% search, while 50 update rate equals to 50% search
and 50% insert/delete operations out of rep operations. All involved operations were using
randomly generated values v ∈ (0, init × 2], v ∈ N as their parameter. The same range was
also used to generate random numbers for the init values.

To ensure fair comparisons, all of the tree benchmark programs were using a unified
benchmark source code that was linked directly during compilation. We also had set the UB
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# Algorithm Ref Description Synchronization Code authors Data structure
1 GreenBST - Locality aware con-

current search tree
lock-based this report b+tree

2 LFBST [82] Improved non-
blocking binary
search tree

lock free UT Dallas binary tree

3 CBTree [73] Concurrent B+tree
(B-link tree2)

lock-based this report b+tree

4 Citrus [11] RCU-based search
tree

lock-based Technion binary tree

Table 16: List of evaluated concurrent tree algorithms. These algorithms are sorted by
synchronization type.

values of the GreenBST and the CBTree’s B+tree order to their respective values so that
each GNode and each CBTree’s pages were within the system’s page size of 4KB. We used
POSIX thread library for concurrency on the HPC, ARM, and MIC platforms and running
threads were pinned to the available physical cores.

6.2.1 Energy Evaluation

In the HPC platform (cf. Figure 70), GreenBST is up to 50% more energy efficient than
CBTree as seen in the 100% searching case using 24 threads. For updates, GreenBST can
be 30% more efficient than CBTree in the 50% update benchmark using 12 threads.

In the ARM platform (cf. Figure 71), GreenBST is 100% more energy efficient than
CBTree in 50% update benchmark using 4 threads. Also, GreenBST is 75% more efficient
than the other trees in the 100% search benchmark using 4 threads.

In the MIC platform (cf. Figure 72), GreenBST is up to 90% more energy efficient than
CBTree in the 50% update benchmark using 57 threads. As for the search-only results,
GreenBST is 20% more efficient than CBTree in the 100% search case using 28 threads.

Energy results from the HPC, ARM, and MIC platforms highlight the advantage in
using the energy efficient and platform-independent locality-aware layout. GreenBST out-
performed the other concurrent search trees on the HPC, ARM, and MIC platforms that
have different memory hierarchies.

6.2.2 Throughput Evaluation

On the HPC platform (cf. Figure 73), GreenBST throughput is up to 50% faster than
CBTree in the 100% search using 24 threads. The 50% update throughput of GreenBST is
also 50% faster than CBTree when using 12 threads.

In the ARM platform (cf. Figure 74), GreenBST is 50% faster than CBTree in the 100%
search case using 4 threads. GreenBST is also 50% faster than CBTree in the 50% update
case using 4 threads.

In the MIC platform (cf. Figure 75), GreenBST is up to 100% faster than the other trees
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Figure 70: Energy comparison using 223 initial values on the HPC platform. GreenBST is
up to 50% more energy efficient than other trees in the 100% search benchmark using 12
threads (namely, on single CPU).

in 50% update case using 57 threads. GreenBST also outperforms CBTree by 20% in the
100% search case using 57 threads.

As in the previous energy evaluation sector, GreenBST has managed to outperform CB-
Tree, LFBST, and citrus tree. These benchmark results have proved the advantages of the
locality-aware layout on concurrent search tree. However, to provide insights into whether
these energy efficiency and throughput advantages are really caused by the higher degree of
locality that GreenBST has, we also collect and evaluate several key profiling results (i.e.,
cache miss and branch miss) of all the trees during the benchmarks.

6.2.3 Profiling Results

To gain more insight into which factors that have caused GreenBST’s good energy efficiency
and throughput, we extensively profiled all the trees in Table 16 when running the bench-
marks on the HPM, ARM, and MIC platforms.

The profiling result on the HPC platform (cf. Figure 76) has revealed that GreenBST has
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Figure 71: Energy comparison using 222 initial values on the ARM platform. GreenBST is
up to 100% more energy efficient than the other trees in the 50% update operation using 4
threads. Unfortunately, LFBST does not support the concurrent update operations on the
ARM 32-bit platform.

the lowest L3 cache miss ratio. On the side note, GreenBST’s branching performance is not
as efficient as CBTree, which is mainly because of the recursive locality-aware layout [101].
However, it is obvious that GreenBST’s efficient L3 cache performance eclipses its branching
weakness, as GreenBST is the best performing tree compared to other trees.

On the ARM platform (cf. Figure 77), the GreenBST’s L2 cache miss ratio is the lowest
compared to the other trees. Again, the branching performance of GreenBST is consider-
ably worse than the other trees, but it does not affect the GreenBST energy efficiency and
throughput because of the energy and time savings improvement obtained from the lower
data transfer.

Lastly, on the MIC platform (cf. Figure 78), the GreenBST’s L2 cache miss ratio is worse
than CBTree’s, however after careful inspection, the total data transferred is actually less
than CBTree’s that indicates GreenBST has a more efficient data re-use. Also, similar to
other platforms’ results, CBTree branch miss ratio is slightly lower than GreenBST’s because
of the recursive tree layout adopted by GreenBST.
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Figure 72: Energy comparison using 223 initial values on the MIC platform. GreenBST is
up to 90% more energy efficient than the other trees in the 50% update operation using 57
threads.
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Figure 73: Throughput comparison using 223 initial values on the HPC platform. GreenBST
is up to 50% faster than the other trees in the 100% search operation benchmark using 24
threads.

Profiling Results on a Cycle-accurate Platform Simulator

To obtain even more insights into whether fine-grained data locality is able to lower data
movements in a system, we tested the trees in Table 16 in the cycle-accurate computer
system simulator platform GEM5. We collect the trees’ load/write access to level 1, level 2,
level 3 caches and DRAM when running the 100% search/1-thread micro-benchmark using
4095 initial value.

The simulation results (cf. Table 17) shows GreenBST’s L3 and DRAM load and store
access are the lowest, despite having bigger L1 and L2 access compared to other trees.



D2.3: Power models, energy models and libraries 125

1 4 threads
0

1,000

2,000

3,000

4,000 Throughput

100% Search

op
er

a
ti

on
s/

se
co

n
d

GreenBST CBTree LFBST citrus

1 4 threads
0

1,000

2,000

3,000 Throughput

50% Update

op
er

a
ti

o
n

s/
se

co
n

d

GreenBST CBTree LFBST citrus

Figure 74: Throughput comparison using 222 initial values on the ARM platform. GreenBST
is up to 50% faster than other trees in 100% search operation with 4 threads. Unfortunately,
LFBST does not support the concurrent update operations on the ARM 32-bit platform.
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Figure 75: Throughput comparison using 223 initial values on the MIC platform. GreenBST
is up to 100% faster than the other trees in 50% update operation with 57 threads.

This indicates that most of GreenBST’s data load/store instructions are served within the
CPU, which implies that GreenBST can lower the number of data transfer between memory
hierarchy.

6.3 Locality-aware Concurrent Search Tree on Myriad2 platform

We have implemented DeltaTree that works on the Myriad2 platform. The main idea of
DeltaTree on Myriad2 platform is that we modify DeltaTree concurrency control while keep-
ing the DeltaTree’s original tree structure. The reason for the modification is because of
the lack of support for atomic operations and limited number of usable hardware mutex
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Figure 76: Profiling result on the HPC platform.

# of access GreenBST CBTree Citrus LFBST
L1 2451225 7227496 2408209 −
L2 49639 46907 81188 −
L3 1576 3002 13178 −

DRAM 1394 2142 3093 −

Table 17: Number of access as reported by the GEM5 system platform simulator. Unfortu-
nately, LFBST is not able to run on the GEM5 simulator because it was designed only for
64-bit platforms.

on Myriad2. To circumvent these limitations, we utilize LeonRT as a lock manager for the
shaves. With LeonRT acts as a lock manager, all shaves need to request a DeltaNode lock
from LeonRT before it can lock the DeltaNode for update and maintenance operation. Our
locking technique implementation uses only a shared array structure with 2× sv size, where
sv is the number of active shaves. Advanced locking techniques [51, 64, 75] can also be used.
For low latency lock operations, we put this lock structure in the Myriad2’s CMX memory.
All other DeltaTree structures (e.g., the tree itself) are placed in the DDR memory.
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Figure 77: Profiling result on the ARM platform.

We tested our DeltaTree implementation on Myriad2 against the concurrent B+tree
(Blink tree) [73]. The Blink tree implementation (CBTree) also utlized the same locking
technique and memory placement strategy as DeltaTree. Figure 79 shows that the energy
efficiency of DeltaTree is up to 4.7× better than CBTree in the 100% search using 12 shaves
on the Myriad2 platform. For the 5% update case, DeltaTree is 150% more energy efficient
than CBTree when using 1, 6, and 12 shaves. In terms of throughput on the Myriad2
platform, Figure 80 indicates that DeltaTree has up to 4× more throughput than CBTree
in the 100% search case when using all available 12 shaves.
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Figure 78: Profiling result on the MIC platform.
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Figure 79: Energy comparison using 220 initial values on an Myriad2 platform. DeltaTree is
up to 4.7× more energy efficient than CBTree in 100% search operation with 12 shaves.
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Figure 80: Throughput comparison using 220 initial values on an Myriad2 platform. Delta-
Tree is up to 4× faster than CBTree in 100% search operation with 12 shaves
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7 Conclusions

In this work, we have reported our current results on the new energy/power models modeling
the trade-off of energy efficiency and performance of data structures and algorithms; as well
as the latest prototype of libraries and programming abstractions.

• We have improved the power model for Myriad1 from the power models presented in
Deliverable 2.2.

• We have proposed a new energy complexity model for multithreaded algorithms. This
new general and validated energy complexity model for parallel (multithreaded) algo-
rithms abstracts away possible multicore platforms by their static and dynamic energy
of a computational operation and data access, and derives the energy complexity of a
given algorithm from its work, span and I/O complexity.

• We have continued the modelling of the performance and the energy consumption
of data structures on a CPU platform and need even less measurements points than
previously.

• We have investigated on the optimization of streaming applications on Myriad2, from
three points of view, which are performance, energy consumption, and space.

• We have implemented DeltaTree and a fast concurrent B-Tree on Myriad2 platform,
and have shown that a specialized ultra low-power embedded platform such as Movidius
Myriad2 can also benefit from the fine-grained locality data structures.

In the next steps of this work package, WP2 will continue the works of Task 2.1-2.4. The
future works are to continue develop novel concurrent data structures and novel adaptive
memory access algorithms. Moreover, identifying the best configuration (e.g., auto-tuning)
to run the algorithms is also considered in the next steps.
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Glossary

BRU Branch Repeat Unit (on SHAVE processor)
CAS Compare-and-Swap instruction
CMX Connection MatriX on-chip (shared) memory unit, 128KB (Movid-

ius Myriad)
CMU Compare-Move Unit (on SHAVE processor)
Component 1. [hardware component] part of a chip’s or motherboard’s cir-

cuitry; 2. [software component] encapsulated and annotated
reusable software entity with contractually specified interface and
explicit context dependences only, subject to third-party (software)
composition.

Composition 1. [software composition] Binding a call to a specific callee (e.g.,
implementation variant of a component) and allocating resources
for its execution; 2. [task composition] Defining a macrotask and
its use of execution resources by internally scheduling its constituent
tasks in serial, in parallel or a combination thereof.

CPU Central (general-purpose) Processing Unit
uncore including the ring interconnect, shared cache, integrated memory

controller, home agent, power control unit, integrated I/O module,
config Agent, caching agent and Intel QPI link interface

CTH Chalmers University of Technology
DAQ Data Acquisition Unit
DCU Debug Control Unit (on SHAVE processor)
DDR Double Data Rate Random Access Memory
DMA Direct (remote) Memory Access
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
DVFS Dynamic Voltage and Frequency Scaling
ECC Error-Correcting Coding
EXCESS Execution Models for Energy-Efficient Computing Systems
GPU Graphics Processing Unit
HPC High Performance Computing
IAU Integer Arithmetic Unit (on SHAVE processor)
IDC Instruction Decoding Unit (on SHAVE processor)
IRF Integer Register File (on SHAVE processor)
LEON SPARCv8 RISC processor in the Myriad1 chip
LIU Linköping University
LLC Last-level cache
LSU Load-Store Unit (on SHAVE processor)
Microbenchmark Simple loop or kernel developed to measure one or few properties

of the underlying architecture or system software
PAPI Performance Application Programming Interface



D2.3: Power models, energy models and libraries 142

PEPPHER Performance Portability and Programmability for Heteroge-
neous Many-core Architectures. FP7 ICT project, 2010-2012,
www.peppher.eu

PEU Predicated Execution Unit (on SHAVE processor)
Pinning [thread pinning] Restricting the operating system’s CPU scheduler

in order to map a thread to a fixed CPU core
QPI Quick Path Interconnect
RAPL Running Average Power Limit energy consumption counters (Intel)
RCL Remote Core Locking (synchronization algorithm)
SAU Scalar Arithmetic Unit (on SHAVE processor)
SHAVE Streaming Hybrid Architecture Vector Engine (Movidius)
SoC System on Chip
SRF Scalar Register File (on SHAVE processor)
SRAM Static Random Access Memory
TAS Test-and-Set instruction
TMU Texture Management Unit (on SHAVE processor)
USB Universal Serial Bus
VAU Vector Arithmetic Unit (on SHAVE processor)
Vdram DRAM Supply Voltage
Vin Input voltage level
Vio Input/Output voltage level
VLIW Very Long Instruction Word (processor)
VLLIW Variable Length VLIW (processor)
VRF Vector Register File (on SHAVE processor)
Wattsup Watts Up .NET power meter
WP1 Work Package 1 (here: of EXCESS)
WP2 Work Package 2 (here: of EXCESS)


