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Summary 
Antimicrobial resistance (AMR) in bacteria (often referred to as antibiotic resistance) is one of 
the major public health challenges of our time. AMR can be described as the ability of a 
bacterium to withstand the effects of an antimicrobial agent. In addition to antimicrobial 
agents used for treatment and prophylaxis in humans, animals, and plants, chemical 
susbtances, such as biocides and heavy metals, may also induce resistance in bacteria 
against antimicrobial agents used in human and veterinary medicine.  
   
In June 2016, the Norwegian Environment Agency requested the Norwegian Scientific 
Committee for Food Safety (VKM) to conduct a literature review regarding development of 
bacterial resistance to biocides and heavy metals and cross-resistance to antimicrobial 
agents (e.g., antibiotics) in bacteria, with the following mandate:  
 

1. List chemical substances that may contribute to increased antimicrobial resistance. 
2. Describe the substances listed in question 1 that are used/in use in Norway and 

assess which fields of applications that have the potential to contribute to increased 
resistance. 

3. Range the substances according to field of application that is assumed to have the 
strongest effect on development of resistance, based on characteristics and 
amount used. 

4. Identify knowledge gaps according to the effect of these substances on 
development of resistance. 
 

In order to answer the mandate, VKM appointed a working group consisting of two members 
of the Panel on Microbial Ecology, and one external expert, to prepare a draft opinion 
document and answer the questions. The Panel on Microbial Ecology has reviewed and 
revised the draft prepared by the working group and approved the opinion document 
“Antimicrobial resistance due to the use of biocides and heavy metals: a literature review”. 
 
A biocide is defined as an active chemical molecule that controls the growth of, or kills, 
bacteria and other microorganisms in a biocidal product. The biocides are classified into 4 
main groups according to their application categories and further sub-divided into 23 product 
groups. In this assessment, we focus on biocides with potential antibacterial activity and 
their ability to induce antimicrobial (antibiotic) resistance in bacteria. These products belong 
mostly to main group 1; Disinfectants. Disinfectants include products used in human 
hygiene, veterinary hygiene, water treatment, and products used in the field of food and 
feed, but excludes cleaning products that are not intended to have a biocidal effect, 
including washing liquids, powders, and similar products. 
 
Heavy metals are naturally occurring elements that have a high atomic weight and a density 
that is at least 5 times greater than that of water. Some heavy metals have been used as 
antimicrobial agents since antiquity, but often their modes of action have remained unclear. 
They are able to induce toxicity at low levels of exposure. In this report we have chosen to 
include the following elements in the category “heavy metals”: silver (Ag), arsenic (As), 
cadmium (Cd), copper (Cu), mercury (Hg), and zinc (Zn). The selection is based on their 
area of use and on their ability to induce AMR. 
 
Although most biocides and heavy metals are known to be high volume products, the 
working group was not able to obtain detailed data on the amounts used in Norway. 
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However, there is no doubt that the production and usage volumes and the area of 
application for several of these substances are several orders of magnitude higher than 
those of antimicrobial agents used in therapy and prophylaxis.  
 
This Opinion document is not a traditional risk assessment, but a literature study that 
presents and compiles the available information regarding resistance development in 
bacteria due to use/misuse of biocides and heavy metals. Exposure assessment and risk 
characterization have therefore been excluded.      
 
The following definitions regarding probability of biocides and heavy metals inducing AMR in 
bacteria are used:  
 

 Highly likely - is expected to occur in most circumstances  
 Likely - could occur in many circumstances 
 Unlikely - could occur in some circumstances  
 Highly unlikely (effectively zero) - may occur only in very rare circumstances  

 
The most commonly used chemical substances with the potential to induce AMR and cross or 
co-resistance in bacteria are the heavy metals, copper, zinc, and cadmium (“highly likely”). 
Phenols, especially triclosan, surface-active agents, especially quaternary ammonium 
compounds (QACs), and the heavy metals arsenic and mercury are classified in the category 
“likely”. The components in the “unlikely” group are aldehydes, biguanides, organic acids, 
inorganic acids, antimicrobial dyes, diaminides, and silver. 
 
It should be noted that a number of uncertainties are associated with assigning these 
substances to particular categories of probabilities/likelihoods (highly likely, likely, unlikely, 
and highly unlikely) in this assessment. Bacteria are living organisms that are continually 
changing their genetic compositions, and are able to adapt rapidly to altered living 
conditions. Furthermore, the concentrations of the substances to which the bacteria are 
exposed affects the probability of inducing resistance. 
 
This report reviews the literature describing the current situation with regards to 
development of resistance in bacteria due to biocides and heavy metals. The current 
situation and genetic and phenotypic status may change as bacteria continue to adapt to 
exposure to biocides/heavy metals and antimicrobial agents at varying doses, durations, and 
combinations.  
 
Data gaps  
There is a lack of knowledge regarding the diverse reservoir of AMR in the environment 
including soil, sediment, water, air, wild plants, and animals that are impacted by biocides 
and heavy metals. We have not been able to gather sufficient data on the amount of the 
different biocides and heavy metals that end up, unintentionally, in the environment in 
Norway and the extent to which such exposure, alone or in combination with other 
antimicrobials, may result in development of AMR in microbial communities. Furthermore, 
limited data are available regarding use/misuse/presence of biocides and heavy metals in 
consumer products. Knowledge regarding development of resistance in bacteria due to use 
of biocides or heavy metals in cosmetic products is lacking. 
 
 
Key words: VKM, assessment, literature study, Norwegian Scientific Committee for Food 
Safety, Norwegian Environment Agency, biocides, disinfectants, heavy metals, antimicrobial 
resistance, antibiotic resistance, antibiotics.  
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Sammendrag på norsk 
Antimikrobiell resistens (vanligvis kalt antibiotikaresistens) er et raskt voksende problem i 

hele verden. Antimikrobiell resistens (AMR) kan beskrives som en bakteries evne til å motstå 

virkningen av et antimikrobielt middel (antibiotika). Antimikrobielle midler (antibiotika) 

brukes for å behandle og forebygge sykdom hos mennesker, dyr og planter. Bruk av slike 

midler kan føre til antimikrobiell resistens. Kjemiske forbindelser som biocider og 

tungmetaller kan også føre til utvikling av antimikrobiell resistens.  

Miljødirektoratet ba Vitenskapskomiteen for mattrygghet (VKM) i juni 2016 om å 

gjennomføre et litteratursøk om utvikling av bakteriell resistens mot biocider og tungmetaller 

og kryssresistens mot antimikrobielle midler, med følgende mandat: 

 1. Liste opp hvilke kjemiske stoffer som kan ha resistensdrivende effekt hos 

 mikroorganismer. 

2. Beskrive hvilke av disse kjemiske stoffene som er brukt/brukes i Norge, og vurdere 

hvilke bruksområder som potensielt kan ha resistensdrivende effekt. 

3. Foreta en rangering av hvilke kjemiske stoffer og bruksområder som antas å være 

mest resistensdrivende, basert på stoffenes egenskaper og bruksomfang i Norge. 

 4. Identifisere kunnskapshull vedrørende effekten av kjemiske stoffer på 

 resistensutvikling. 

For å svare på forespørselen, satte VKM ned en arbeidsgruppe bestående av to medlemmer 

fra faggruppen for mikrobiell økologi og en ekstern ekspert, til å forberede et utkast til 

rapport. Faggruppen i mikrobiell økologi har gjennomgått og revidert utkastet og godkjent 

rapporten.  

Et biocid er definert som et aktivt kjemisk molekyl som kontrollerer veksten til eller dreper 

bakterier og andre mikroorganismer. Biocidene er klassifisert i fire hovedgrupper etter 

biocidenes bruksområder, og videre delt inn i 23 produktgrupper. I denne litteraturstudien 

har vi sett på biocider med potensiell antibakteriell aktivitet og deres evne til å utvikle 

antimikrobiell (antibiotika) resistens i bakterier. Vi har hovedsakelig omtalt produkter som 

tilhører hovedgruppe 1; desinfeksjonsmidler. Desinfeksjonsmidler inkluderer produkter som 

brukes til menneskelig hygiene, veterinær hygiene, vannbehandling og produkter som 

brukes i mat og fôr. Vi har ikke omtalt rengjøringsprodukter som ikke er ment å ha en biocid 

effekt, som vaskemidler og lignende produkter. 

Tungmetaller er naturlig forekommende elementer med høy atomvekt, og med 5 ganger 

høyere egenvekt enn vann. Noen tungmetaller har blitt brukt som antimikrobielle midler 

siden antikken, men gjennom det meste av historien har tungmetallenes 

virkningsmekanisme vært ukjent. Tungmetaller er giftige i lave konsentrasjoner. I denne 

rapporten har vi valgt å inkludere og behandle følgende elementer i kategorien 

"tungmetaller": sølv (Ag), arsen (As), kadmium (Cd), kobber (Cu), kvikksølv (Hg) og sink 

(Zn). Disser er valgt på grunn av deres antimikrobielle effekt og evnen til å indusere 

antimikrobiell resistens (antibiotikaresistens). 

De fleste biocider og tungmetaller tilføres naturen i større mengder, men arbeidsgruppen har 

ikke funnet gyldige data over hvilke mengder som brukes årlig i Norge. Det er imidlertid 
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ingen tvil om at produksjons- og bruksvolum for flere av disse produktene er flere titalls 

ganger høyere enn de antimikrobielle midlene som anvendes i behandling og forebygging.  

Denne rapporten er ikke en tradisjonell risikovurdering, men en litteraturstudie som 

presenterer og sammenstiller tilgjengelige opplysninger om resistensutvikling hos bakterier 

som skyldes bruk eller misbruk av biocider og tungmetaller. Eksponeringsvurdering og 

risikokarakterisering er derfor ikke inkludert i rapporten. 

Sannsynligheten for at biocider/tungmetaller kan føre til utvikling av resistens hos bakterier 

er definert på følgende måte: 

• Svært sannsynlig - forventes å skje i de fleste tilfeller 

• Sannsynlig - kan skje i mange tilfeller 

• Usannsynlig - kan oppstå i enkelte tilfeller 

• Svært lite sannsynlig - kan forekomme bare i svært sjeldne tilfeller 

De vanligste anvendte kjemiske forbindelser med potensiale for å utvikle AMR og kryss eller 

ko-resistens hos bakterier er tungmetallene kobber, sink og kadmium. De er klassifisert i 

kategorien svært sannsynlig. Fenoler, spesielt triklosan, overflateaktive stoffer, spesielt 

kvartære ammoniumforbindelser, og tungmetallene arsen og kvikksølv, er klassifisert i 

kategorien sannsynlig. Komponentene i den usannsynlige gruppen er aldehyder, biguanider, 

organiske syrer, uorganiske syrer, fargestoffer, antimikrobielle diaminides og sølv. 

Plasseringen av de ulike forbindelsene i en bestemt kategori av sannsynligheter er assosiert 

med usikkerhet. Bakterier er levende organismer som endrer sine gener kontinuerlig, og er 

derfor i stand til å tilpasse seg endrede levekår raskt. I tillegg vil konsentrasjonen av de 

kjemiske forbindelsene ha effekt på sannsynligheten for å føre til resistens. 

I denne rapporten har vi gjennomgått litteratur som beskriver dagens situasjon med hensyn 

til utvikling av resistens i bakterier som blir eksponert for biocider og tungmetaller. 

Bakterienes genetiske og fenotypiske status kan imidlertid fortsette å endre seg. Bakteriene 

kan derfor fortsette å tilpasse seg eksponering mot av biocider og tungmetaller og andre 

antimikrobielle midler med variable doser, varighet og kombinasjoner. 

Kunnskapshull  

Det er mangel på kunnskap om utbredelsen av antimikrobiell resistens i naturlige miljøer 

som jord, sedimenter, vann, luft, ville planter og dyr som er påvirket av biocider og eller 

tungmetaller. Vi har ikke vært i stand til å samle tilstrekkelige data på mengden av de ulike 

biocider og tungmetaller som ender opp utilsiktet i miljøet i Norge, og i hvilken grad en slik 

eksponering alene eller i kombinasjon med andre antimikrobielle midler (antibiotika) kan føre 

til utvikling av antimikrobiell resistens i mikrobielle samfunn. Videre er det begrensede data 

tilgjengelig om bruk/misbruk/mengde biocider/tungmetaller i produkter til forbruker. VI 

mangler også kunnskap om utvikling av resistens hos bakterier som skyldes bruk av biocider 

eller tungmetaller i kosmetiske produkter. 

 

Stikkord: VKM, risikovurdering, Vitenskapskomiteen for mattrygghet, Miljødirektoratet, 

biocider, desinfeksjonsmidler, tungmetaller, antimikrobiell resistens, antibiotika resistens.  
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Abbreviations and/or glossary 

Abbreviations 

 
ACP  Enoyl-Acyl carrier protein 
 
AgNP  Silver nanoparticles 
 
AMR  Antimicrobial resistance 
 
ARB  Antimicrobial resistant bacteria 
 
ARG  Antimicrobial resistance gene 
 
BC  Benzylalkonium chloride 
 
CoNS  Coagulase-negative staphylococci 
 
ECDC  European Centre for Disease Prevention and Control 
 
EFSA  European Food Safety Authority 
 
EMA  European Medicines Agency 
 
EPS  Extracellular polymeric substance 
 
EUCAST    European Committee for Antimicrobial Susceptibility Testing 
 
FAO  Food and Agricultural Organisation of the United Nations 
 
HGT  Horizontal gene transfer 
 
IUPAC  International Union of Pure and Applied Chemistry 
 
MMC  Minimum metal co-selective concentration 
 
MDR              Multidrug resistant  
 
MIC               Minimum inhibitory concentration  
 
MMC              Minimum metal co-selective concentration 
 
MRSA  Methicillin-resistant Staphylococcus aureus 
 
MRSE  Methicillin-resistant Staphylococcus epidermidis 
 
MSSA  Methicillin-susceptible Staphylococcus aureus 
 
NFSA  Norwegian Food Safety Authority 
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NORM            The Norwegian monitoring programme for AMR in human pathogens 
 
OPA  Ortho-phthalaldehyde 
 
PT  Product type 
 
QACs  Quaternary ammonium compounds  
 
RND  Resistance-nodulation-cell division protein family 
 
ROS  Reactive oxygen species  
 
SCCP  Scientific Committee on Consumer Products 
 
SCENIHR The Scientific Committee on Emerging and Newly Identified Health Risks 
 
ToR  Terms of reference 
 
VKM  Norwegian Scientific Committee for Food Safety 
 
VRE               Vancomycin-resistant enterococci 
 

WWTP  Wastewater treatment plant 
 
WHO  World Health Organization 
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Glossary 
 

Acquired resistance: Resistance to a particular antimicrobial agent to which the 
microorganism was previously susceptible. The change in resistance level is the result of 
genetic changes in a microorganism due to mutation(s), the acquisition of foreign genetic 
material, or a combination of both mechanisms.  
 
Antibiotics: Traditionally refers to natural organic compounds produced by microorganisms 
that act in low concentrations against other microbial species, mostly bacteria. Today 
“antibiotics” also includes synthetic (chemotherapeutic) and semi-synthetic compounds 
(chemically modified antibiotics) with similar effects.  
 
Antimicrobial agents: A general term for the drugs (antibiotics), chemicals, or other 
substances that either kill or inhibit the growth of microbes. The concept of antimicrobials 
applies to antibiotics, disinfectants, preservatives, sanitizing agents, and biocidal products in 
general.  
 
Antimicrobial resistance: A property of microorganisms that confers the capacity to 
inactivate or exclude antimicrobials, or a mechanism that blocks the inhibitory or killing 
effects of antimicrobials. 
 
Antiseptic agent: A chemical substance that kills or inhibits the growth and development 
of microorganisms, but has such low toxicity that it can safely be used on living tissue. 
 
Bactericidal agent: An antimicrobial agent capable of killing bacteria.  
 
Bacterostatic agent: An antimicrobial agent that inhibits the growth of bacteria. 
 
Biocide/Biocidal products: Active substances and preparations containing one or more 
substances intended to destroy, deter, render harmless, prevent the action of, or otherwise 
exert a controlling effect on any harmful organism by chemical or biological means. 
 
Biocide resistance: When non-antibiotic antimicrobial agents (i.e., biocides) are 
considered, the word “resistance” is used in a similar way when a strain is not killed or 
inhibited by a concentration attained in practice (the in-use concentration) and in a situation 
where: 1) a strain is not killed or inhibited by a concentration to which the majority of strains 
of an organism are susceptible, or 2) bacterial cells are not killed or inhibited by a 
concentration acting upon the majority of cells in that culture (SCENHR, 2009). 
 
Biofilm: Microbial biofilms are populations of microorganisms that are concentrated at an 
interface (usually solid/liquid) and typically surrounded by an extracellular polymeric slime 
matrix. Floccs are suspended aggregates of microorganisms surrounded by an extracellular 
polymeric slime matrix that is formed in liquid suspension.  
 
Chemotherapeutics: Compounds with antimicrobial effect that are synthesized in the 
laboratory and that have no natural reserve in the environment. In modern popular literature 
chemotherapeutics and antibiotics are commonly referred to as “antibiotics”. 
 
Clone (bacteria): Bacterial isolates that, although they may have been cultured 
independently from different sources in different locations and perhaps at different times, 



 

 

VKM Report 2016: 63  13 

still have so many identical phenotypic and genotypic traits that the most likely explanation 
for these similarities is a common origin within a relevant timespan.  
 
Conjugation: Transfer of genetic material between different bacterial cells by direct cell-to-
cell contact.  
 
Co-resistance: Resistance occurring when the genes specifying different resistant 
phenotypes are genetically linked, for example by being located together on a mobile genetic 
element (e.g., a plasmid, transposon, or integron). 
 
Cross-resistance: Resistance occurring when the same or similar mechanism(s) of 
resistance applies to different antimicrobials.  
 
Disinfectant: Antimicrobial agents that are applied to non-living objects to destroy 
microorganisms that are living on the objects. 
 
Disinfection: Use of physical procedures or chemical agents (disinfectants) to destroy most 
microbial forms (mainly on inanimate material, but also on skin surfaces). Disinfectants are 
often not effective against bacterial spores. 
 
Fungicide: An agent that destroys fungi or inhibits their growth. 
 
Germicide: An agent destroying many different microorganisms, also called disinfectant. 
 
Heavy metal: Naturally occurring elements that have a high atomic weight and a density at 
least 5 times greater than that of water. 
 
Heavy metal resistance: Bacteria are considered to be resistant to heavy metals when: 1) 
a strain is not killed or inhibited by a concentration to which the majority of strains of a 
organism are susceptible, or 2) when bacterial cells that are not killed or inhibited by a 
concentration acting upon the majority of cells in that culture. 
 
Indicator bacteria: Bacteria that are used to measure the hygienic conditions of food, 
water, processing environments etc. Indicator bacteria are not usually pathogenic, but their 
presence indicates that the product or environment tested may be contaminated with 
pathogenic bacteria, often originating from the same reservoirs as the indicator organisms.  
 
Intrinsic resistance: A natural property of an organism resulting in decreased 
susceptibility to a particular antimicrobial agent.  
 
Isolate (bacteria): A bacterial isolate is a single isolation in pure culture from a speciemen. 
 
Microbiota: Collective term for microflora (i.e., any type of microorganism) that may be 
found within a given environment. 
 
Minimum Inhibitory Concentration (MIC): The lowest concentration of a given agent 
that inhibits growth of a microorganism under standard laboratory conditions. MIC data can 
provide information about the activity of antimicrobials (Seiler and Berendonk, 2012).  
  
Normal flora: Indigenous microbial flora of human/animal external and internal surfaces 
like the skin, mouth, and gastrointestinal tract, and the upper respiratory tract. The normal 
flora contains numerous bacterial species, and numerous strains within each species. 
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Although it may contain opportunistic pathogens, the vast majority are symbiotic or 
commensals that contribute to general health, as well as to colonization resistance. However, 
some of these low-virulence bacteria of the normal flora may, under certain circumstances, 
become opportunistic pathogens.  
   
Sanitizer: An agent that reduces microbiological contamination. 
 
Selection (bacteria): A process by which some bacterial species or strains of bacteria in a 
population are selected for due to having a specific growth or survival advantage over other 
microorganisms. Antibacterial substances may provide a more resistant sub-population with 
such an advantage, enabling them to increase their relative prevalence.  
 
Sterilization: The process of destroying all microorganisms (including spores). 
 
Strain (bacteria): A subset of a bacterial species differing from other bacteria of the same 
species by some minor, but identifiable, difference.  
 
Susceptibility: Describes the extent to which an antimicrobial agent affects a target 
microorganism.  
 
Transduction: Transfer of genetic material from one bacterium to another via 
bacteriophages (viruses that infect bacteria and are integrated into the host genome). 
  
Transformation: Direct uptake from the environment of fragments of naked DNA and their 
incorporation into the cell’s own genome.  
 
Tuberculocide /mycobacteriocide: Any agent that kills tubercle bacilli (Mycobacterium 
tuberculosis) or other mycobacteria.  
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Background as provided by the Norwegian Food Safety 
Authority/ Norwegian Environment Agency 
The Norwegian Environment Agency refers to the assignment letter to VKM regarding risk 
assessment for 2016 and hereby ask VKM to perform a literature review on antimicrobial 
resistance due to the use of biocides and heavy metals.  
 
Background 
Development of antimicrobial resistance is a fast growing problem in the world. The national 
strategy against antibiotic resistance for 2015-2020 of the Norwegian government highlights 
that this problem must be considered in a holistic perspective, where human health and 
animal health and environment interact. Use of antibiotics may result in development of 
resistance, but other factors may also play a role. The presence of resistant bacteria in 
different environments, such as soil, water, sea, sediments and wild animals may all 
contribute to development of resistant bacteria of pathological relevance. Other substances 
such as biocides (disinfectants) and heavy metals may also play a role in the development of 
antibiotic resistance. However, more information is necessary about these factors. The 
strategy of the Norwegian government, which noted that increased knowledge on 
development of antibiotic resistance should be one goal, is based on the report 
"Antibiotikaresistens – kunnskapshull og aktuelle tiltak (2014)" prepared by an expert group. 
In this report, the presence of different substances in Norwegian environment and how 
these might contribute to the spread of antibiotic resistance are identified as areas where 
more information is necessary.  
 
The goal of the current assignment is to compile available information on those substances 
that are most relevant to analyse further in relation to the presence and increase in 
resistance, with focus on the Norwegian environment. Available literature and relevant 
information on different substances (including naturally existing compounds) such as 
biocides and heavy metals, and their possible role in the development of antimicrobial 
resistance, should be assessed and included in the report.   
 

Terms of reference: 
1. List substances that may contribute to increased antimicrobial resistance. 
2. Describe the substances listed in question 1 that are in use in Norway and 
assess those fields of application that have the potential to contribute to 
increased resistance. 
3. Range the substances, according to field of application, that are assumed 
to have the greatest effect on the development of resistance, based on their 
characteristics and the amount used. 
4. Identify knowledge gaps regarding the effects of these substances on 
development of resistance.  

 
Studies that are relevant for understanding the effects of substances such as biocides and 
heavy metals on the development of AMR should be reviewed. The focus should particularly 
be on field of application and on substances that spread to the environment and are of 
relevance in Norway. Environments in this context include soil, sediment, water, air, wild 
plants, and animals. The assessment should not address antimicrobial agents alone, but their 
role in relation to these other substances may be discussed.  
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1. Introduction 
Antimicrobial resistance (AMR) in bacteria (commonly referred to as antibiotic resistance) is 
now considered as one of the major public health challenges of our time (WHO, 2015). In 
Europe, the European Centre for Disease Prevention and Control (ECDC) and the European 
Medicines Agency (EMA) have estimated that more than 25 000 extra deaths annually are 
associated with AMR. The economic burden of this amounts to an estimated € 1.534.100.000 
annually (ECDC/EMEA, 2009). 
 
The use of antimicrobial agents is intrinsically linked to the occurrence of bacterial resistance 
against these compounds. Antimicrobial agents are widely used for the treatment and 
prevention of diseases in humans, animals, and less commonly in crop plants. In addition to 
antimicrobial agents used for prophylaxis and treatment, heavy metals, used for example in 
animal farming and aquaculture, might promote the spread of AMR via co-selection. In this 
assessment, we focus on heavy metals with antibacterial activity and assess their capacity to 
promote AMR in bacteria.  
 
According to the Directive 98/8/EC of the European Parliament and Council of the 16 
February 1998, biocidal products are defined as active substances and preparations 
containing one or more active substances, intended to destroy, render harmless, prevent the 
action of, or otherwise exert a controlling effect on any harmful organisms by chemical or 
biological means. 
Biocides are composed of heterogeneous groups of natural and synthetic substances that 
can deter, render harmless, or exert a controlling effect on microorganisms by biological or 
chemical means (Barah, 2013). There are many biocidal substances in the market that act in 
different ways and sometimes several biocides are combined within a single product to 
increase the overall efficacy. Ideally, the combined action of all the biocides in a product 
should be greater than the sum of the individual actions (synergy). Biocides could be 
classified according to their chemical structure or according to their clinical and non-clinical 
application. According to the EC Product Directive 98/(/EC (BPD), which was adopted by the 
European parliament in 1998, biocides are classified into four main groups according to their 
application categories and further sub-divided into 23 product groups. For more information 
see Appendix 1. 
 
Main group 1: Disinfectants 
This group includes products used in human hygiene, veterinary hygiene, water treatment, 
and products used in the food and feed area, but excludes cleaning products that are not 
intended to have a biocidal effect, including washing liquids, powders, and similar products. 
 
Main group 2: Preservatives 
Unless otherwise stated these product types include only products such as preservatives for 
products during storage, film preservatives, wood preservatives, fibre, leather, rubber and 
polymerized materials preservatives, construction material preservatives, preservatives for 
liquid-cooling and processing systems, slimicides, and working or cutting fluid preservatives 
to prevent microbial and algal development. 
 
Main group 3: Pest control.  
Chemical pesticides that are used to control attacks by insects, parasites (nematodes), fungi, 
and bacteria on plants. 
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Main group 4: Other biocidal products: These include antifouling products, embalming 
products, and taxidermist fluids. 
 

In this opinion, we focus on the biocides with potential antibacterial activity and their 
ability to induce AMR in bacteria. These are largely products that belong to main 
group 1; disinfectants. 
 
Heavy metals are naturally occurring elements with a high atomic weight and a density at 
least 5 times greater than that of water. Some heavy metals have been used as antimicrobial 
agents since antiquity, but their modes of action are often unclear. They are able to induce 
toxicity at low levels of exposure. According to the International Union of Pure and Applied 
Chemistry (IUPAC), the term "heavy metal" may be a "meaningless term" because there is 
no standardized definition of a heavy metal 
(https://www.iupac.org/publications/ci/2001/november/heavymetals.html). Appendix 2 lists 
all the current definitions of the term "heavy metal" that the author (John H. Duffos) has 
been able to trace in scientific dictionaries or in other relevant literature. It should be noted 
that the term is frequently used without an associated definition, presumably by authors who 
thought that there was consensus about the meaning of the term. The table in Appendix II 
shows that is assumption is wrong and explains some of the confusion in the literature and 
in related policies and regulations. Some light metals or metalloids are toxic, but some high-
density metals are not. For example, cadmium is generally considered a heavy metal, with 
an atomic number of 48 and specific gravity of 8.65, whereas gold is typically not toxic, but 
has an atomic number of 79 and a specific gravity of 18.88. For any given metal, the toxicity 
varies widely, depending on the allotrope or oxidation state of the metal. This example 
further illustrates the confusion that surrounds the term “heavy metals”.  
 
In addition to the use of heavy metals as biocides, there has been an increasing ecological 
and global public health concern in recent years associated with environmental 
contamination by heavy metals. Due to their high degree of toxicity, arsenic, cadmium, 
chromium, lead, and mercury rank among the priority metals that are of considerable public 
health significance. They are all systemic toxicants that are known to induce multiple organ 
damage, even at relatively low levels of exposure. These metals are also classified as either 
“known” or “probable” human carcinogens based on epidemiological and experimental 
studies showing an association between exposure and cancer incidence in humans and 
animals (Tchounwou et al., 2012).   
 
In environmental ecosystems, there is an intricate interaction between heavy-metal 
contaminants and native microorganisms. These organisms have developed unique 
resistance mechanisms that allow them to survive and, in some instances, remove/reduce 
the concentrations of contaminants in their environments. The use of natural microorganisms 
found in soil, water, and sludge was pioneering in the field of bioremediation, a treatment 
that uses naturally occurring organisms to break down hazardous substances into less toxic 
or non-toxic substances (Monachese et al., 2012). Although important issues, both heavy 
metal toxicity and bioremediation are not mentioned in the ToR and are not covered in this 
report. 
 
In this report we have chosen to include the following elements in the category “heavy 
metal”: silver (Ag), arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), and Zinc (Zn), 
because of their usage area and their ability to induce AMR in bacteria. 
 
Some studies suggest that metal contamination in natural environments could have an 
important role in the maintenance and proliferation of AMR (Alonso et al., 2001; Summers et 
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al., 1993). This is of particular concern considering that heavy metals of anthropogenic 
origin, like agricultural and aquacultural practices, are currently several orders of magnitude 
greater than levels of pharmaceutically-produced antimicrobial agents (Stepanauskas et al., 
2005). Unlike antibiotics, metals are not subject to degradation and therefore represent a 
long-term selection pressure. Thus, there are concerns regarding the potential of metal 
contamination to maintain a pool of AMR genes in both natural and clinical settings.  
 
After use, antimicrobials, including biocides residues and heavy metals, along with 
antimicrobial-resistant bacteria (ARB) and antibmicrobial resistance genes (ARGs) may be 
introduced to soil and water through sewage systems, direct excretion, land application of 
biosolids or animal manures as fertilizers, and irrigation with wastewater or treated effluents. 
The presence of active antimicrobial compounds and their metabolites in environmental 
compartments may also select for resistance in environmental bacterial communities or 
microbiota, which is defined as a collective term for microflora (i.e., any type of 
microorganism) that may be found within a given environment. 
 
For the purpose of this report, environment is defined as the natural environment (or 
“outdoor” environment) for which exposure to the considered substances was not intended. 
Indoor environments, like hospitals and livestock housing, were excluded. Four 
environmental compartments were identified: 

 Soil  
 Water 
 Air/dust, and 

 Wildlife (animals and plants). 

Wildlife (animals and plants) was categorized as an environmental compartment because 
these are not treated with antimicrobial agents, and their carriage of AMR bacteria is most 
likely explained by uptake of bacteria resistant to selective agents from the natural 
environment (Huijbers et al., 2015). 
 
In this literature review, the panel focuses on the current body of knowledge regarding the 
role of substances such as biocides and heavy metals as components in the selection and co-
selection of antimicrobial (e.g., antibiotic) resistance in the environment (Figure 1).  
 
As this report is not a traditional risk assessment, but a literature review that presents and 
compiles the available information regarding resistance development in bacteria due to 
exposure to biocides and heavy metals, the risk assessment steps of exposure assessment 
and risk characterization have been excluded.      
 
 
 



 

 

VKM Report 2016: 63  19 

 

Figure 1. Schematic diagram of environmental compartments, contamination sources, exposure-
relevant sites, and processes affecting survival and spread of bacteria, including antimicrobial 

(antibiotic) resistant bacteria (Davies and Davies, 2010), with permission from American Society for 

Microbiology.  

1.1 Literature 

1.2 Search strategy 
The search was conducted in PubMed using the terms; different disinfectant agents (listed in 
Table 3), Title/Abstract] AND Antimicrobial resistance [Title/Abstract] AND Review 
[Title/Abstract] using the Advanced Search Builder provided in PubMed 
(www.ncbi.nlm.nih.gov/pubmed) and resulted in 1588 citations (07. July 2016). Similar 
searches using the same terms, but different heavy metals listed in Table 3 resulted in 570 
citations. 

 Inclusion criteria 

We limited our search to review articles. Searches that included original articles resulted in 
several thousand papers. These could not be assessed during the time period available, but 
some studies were included in some special cases (See Table 3). 

 Exclusion criteria 

Articles describing development of resistance in microorganisms other than bacteria, such as 
viruses, fungi, and parasites, were excluded as these were not part of the mandate. Articles 
that were not in English or a Scandinavian language (Swedish, Danish, and Norwegian) were 
excluded. 
 

http://www.ncbi.nlm.nih.gov/pubmed
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2. Hazard identification  
Hazard identification is implicit in the title of this opinion and in the terms of reference (ToR).  
The issue of AMR in the environment is addressed either as a direct hazard or as an indirect 
hazard through resistance transfer.  

 The direct hazard is an antimicrobial resistant pathogenic/apathogenic bacterium.  
 The indirect hazard arises through resistance transfer. In this case, the hazard is the 

resistance gene. 

 In some cases both hazards may occur; a resistant bacterium may transfer an additional 
genetic element to another resistant bacterium, enhancing the resistance level. 

3. Hazard characterisation  

Theoretical background  

3.1 Modes of action of biocides 

In contrast with chemotherapeutic agents, biocides have multiple target sites within the 
microbial cell and the overall damage to these target sites results in the bactericidal effect. 
Bacteriostatic effects, usually achieved by a lower concentration of a biocide, might 
correspond to a reversible activity on the cytoplasmic membrane and/or the temporal 
impairment of enzymatic activity. The bacteriostatic mechanism(s) of action of a biocide is 
less documented and a primary target site within the cell might be involved (Maillard, 2002). 
 
The following factors may influence the efficacy of disinfectant agents: 
• Innate resistance of microorganisms 
• Number and location of microorganisms 
• Concentration and potency of the disinfectant agent 
• Physical and chemical factors (e.g., pH, temperature, salt) 
• Organic and inorganic materials 
• Duration of exposure 
• Biofilms  

3.2 Resistance mechanisms against biocides 

Disease-causing bacteria can be described as being clinically resistant if they have a low 
probability of responding to a drug, even if the maximum dose of antimicrobial agent is 
administered (EUCAST, 2000). Degrees of susceptibility in bacteria are often defined in terms 
of the minimum inhibitory concentration (MIC) of an antimicrobial agent to prevent bacterial 
growth, and bacteria are defined as being resistant to an antimicrobial agent, when the MIC 
is significantly higher than that of its wild type counterpart. MIC determinations have been 
used in many studies as an indicator of the ability of bacteria to change their susceptibility to 
a biocide (Russell, 2002b; Walsh et al., 2003).  
Bacteria can become resistant to biocides by using one or several of the pathways listed 
under. These pathways include both intrinsic and acquired resistance: 
 

a Biofilm formation 
b Change in the bacterial cell wall permeability (barrier)  
c Use of efflux pumps  
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d Enzymatic degradation/inactivation of biocides 
e Target modification 
f Release of undamaged gene(s) 
g Alternative/unknown pathways.  

 
As biocides have multiple target sites in a microbial cell, the emergence of general bacterial 
resistance is unlikely to be caused either (i) by a specific modification of a target site or (ii) 
by a by-pass of a metabolic process. Resistance generally emerges from a 
mechanism/process causing the decrease of the intracellular concentration of biocide under 
the threshold that is harmful to the bacterium. Several mechanisms based on this principle 
(mode of action) have been well-described, including change in cell envelope, alteration in 
permeability, efflux and degradation (SCENHR, 2009). Some of the resistance mechanisms 
are intrinsic (or innate) to the micro-organism, whereas others have been acquired (e.g., 
mutation, the acquisition of resistant determinants) through forced mutations or through the 
acquisition of mobile genetic elements (Poole, 2002). Innate mechanisms can confer high-
level bacterial resistance («unsusceptibility») to biocides (Table 1). 
  

Table 1. Bacterial mechanisms of resistance to biocides (SCENHR, 2009). 

Mechanisms  Nature            Level of   
susceptibility to 
other biocides1  

Cross-
resistance  

Permeability  intrinsic (acquired)  no  yes  

Efflux  intrinsic/acquired  reduced  yes  

Degradation  acquired/intrinsic  reduced  no  

Mutation (target site)  acquired  reduced  no2  

Phenotypic change  Following exposure  reduced  yes  

Induction (stress 
response)  

Following exposure  variable  yes  

1to other biocides - level of susceptibility defined according to the concentration of biocides  
2 not to other biocides, but cross-resistance with specific antibiotics. 

3.3 Biocides with known antibacterial activity 

In this opinion, only biocides belong to main group I (see Appendix 1), for which information 
about bacterial resistance is available in the public domain, will be discussed. The list of 
representative active substances classified on the basis of their chemical groups is presented 

in Table 2. 
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Table 2. List of active molecules in biocidal products classified on the basis of chemical 
groups (SCENHR, 2009). As this table is from 2009, we take the proviso that some of the 
active substances in this table may now be banned in EU. 

 

 
 
9 Estimated production in EU for m-cresol is greater than 1,000 tonnes per year (Dye et al. 
2007). 
10 USA: > 500 tonnes (Calafat et al. 2008). 
11 Estimated production in EU for triclosan is 10-1,000 tonnes per year (Dye et al. 2007). 
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12 Surface-active agents may not necessarily be used as active in a formulation, but as 
surfactants. 
13 Bronopol tonnage is estimated from 10 to 1,000 tonnes per year in the EU (Dye et al. 
2007). 
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3.4 Mode of action of heavy metals 
Metals are elements characterized as being good conductors of electricity and heat. They 
form ions and ionic bonds with non-metals. In a metal, atoms readily lose electrons to form 
cations that are surrounded by delocalized electrons. This behaviour is responsible for the 
conductivity and for the antimicrobial effects (Fraise et al., 2012). Heavy metals may be toxic 
to bacteria and this microbial toxicity may be due to their chemical affinity to thiol groups of 
macro-biomolecules, but also depends on the solubility of the metal compounds under 
physiological conditions (Lemire et al., 2013; Yazdankhah et al., 2014).  
Several possible modes of action of heavy metals have been reported (Lemire et al., 2013): 

a- Protein dysfunction 
b- Production of reactive oxygen species (ROS) and antioxidant depletion 
c- Impaires membrane function 
d- Interference with nutrient uptake 
e- Genotoxicity 

These mechanisms have been reviewed by Lemire et al. (2013) and are shown in Figure 2. 
   

 

Figure 2. Exemplified mode of action of heavy metals (Lemire et al., 2013). These mechanisms of toxicity are 

specific to particular metal species.  a | Metals can lead to protein dysfunction. b | They can also lead to the 
production of ROS and depletion of antioxidants. c | Certain metals have been shown to impair membrane 
function. d | Some can interfere with nutrient assimilation. e | They can also be genotoxic. Solid arrows represent 
pathways in which the underlying biochemistry has been elucidated, whereas dashed arrows represent a route of 
toxicity for which the underlying biochemical mechanism is unclear. ALAD, δ-aminolevulinic acid dehydratase; 
FbaA, fructose-1,6-bisphosphate aldolase; NQR, NADH:quinone oxidoreductase; PDF, peptide deformylase; PvdS, 
a σ-factor (σ24) from Pseudomonas aeruginosa. With permission from Nature Publishing Group. 
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3.5 Heavy metals with known antibacterial activity 
Probably the most commonly used toxic metals or metalloids in medicine and agriculture 
have been mercury (Hg), copper (Cu), silver (Ag), arsenic (As) and antimony (Sb), and zinc 
(Zn). Other inorganic or organic metal compounds, such as lead (Pb) (Trotter, 1990), tin 
(Sn)  (Cooney and Wuertz, 1989), bismuth (Bi) (Ge and Sun, 2007; Mahony et al., 1999), 
gold (Au) (Novelli et al., 1999), cerium (Ce) (Garner and Heppell, 2005), palladium (Pd), 
(Cooney and Wuertz, 1989; Ray et al., 2007), tellurite (Te) (Taylor, 1999), thallium (Tl) 
(Kazantzis, 2000), and gallium (Ga) (Chitambar, 2010), have also been used because of their 
antimicrobial properties, although their areas of use have been limited. In addition, 
compounds containing gold (Au), platinum (Pt), palladium (Pd), vanadium (V), rhodium (Rh), 
titanium (Ti), iridium (Ir) and other rare metals have been used recently in medical 
diagnostics or imaging, as radiotherapeutics, or as anti-arthritis and anticancer therapeutics 
(Abrams and Murrer, 1993; Desoize, 2004; Zhang and Lippard, 2003).  
 
In this assessment we focus only on the heavy metals Ag, As, Cd, Cu, Hg, and Zn, because 
of their broad usage, except Hg, and their ability to induce resistance in bacteria.  

3.6 Heavy metals: mechanisms of resistance 
 
In order to avoid cellular toxicity to elevated exposure to heavy metals, bacteria have 
evolved mechanisms of metal tolerance. Both the mechanisms of resistance and tolerance to 
heavy metals are discussed in the review article of Seiler and Berendonk (2012). The authors 
concluded that, like antimicrobial agents, heavy metals might promote the spread of AMR via 
co-selection. 
 
There are three general mechanisms that may result in heavy metal resistance. These are 
illustrated in Figure 3:  

1- The first mechanism is the complex formation or sequestration of toxic metals (Silver 
and Phung, 1996). Upon metal binding, the concentration of the free toxic ions in the 
cytoplasm is minimized. Biosorption of toxic metals is known from cell membranes, 
cell walls, and extracellular polymeric substance (EPS) of biofilms (Harrison et al., 
2007). For example, the EPS matrix and the polysaccharides contained have been 
reported to bind heavy metals (Teitzel and Parsek, 2003). Thus, the metal tolerance 
of bacteria belonging to that biofilm was enhanced.  

2- The second mechanism of resistance to toxic metals is detoxification through 
reduction of intracellular ions (Nies, 1999). A well-understood example is mercury 
reductase, encoded by the merA gene. This MerA protein reduces Hg2+ to the less 
toxic Hg0 (Schiering et al., 1991). Hg0 will then diffuse out of the cell, due to its low 
evaporation point (Nies, 1999). 

3- Finally, excretion of toxic ions by efflux systems is the third mechanism of heavy 
metal resistance (Nies and Silver, 1995). The cation/proton antiporter Czc, known, for 
example, from Alcaligenes eutrophus, mediates resistance to the metal ions Cd2+, 
Zn2+, and Co2+ by removal of metals from the cytoplasm though the inner and outer 
membrane to the surrounding environment (Silver and Phung, 1996).  
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Figure 3. Overview of metal resistance mechanisms for acidophiles (Wheaton et al., 2015), Free 

access. 

Most data regarding biocides/heavy metals resistance are collected from studies using 
planktonic phase micoorganisms (unattached micro-organisms living freely in suspension) 
rather than microorganisms in more natural conditions, such as in a biofilm. Notably, gene 
expression in microorganisms living in a biofilm differs from that in planktonic cells, and the 
concentration of an agent needed to kill microorganisms in biofilms may be 10-500 times 
higher than in the planktonic phase. 

3.7 Horizontal gene transfer (HGT) 
While AMR properties in bacteria are transferred from one generation to the next by vertical 
gene transfer within the same bacterial species, horizontal gene transfer (HGT) may occur 
both within the same species and between different bacterial species, including unrelated 
bacterial species. 
HGT may occur within and between bacterial species by conjugation, transformation, or 
transduction (see glossary), as has been described extensively in a review article by 
(Huddleston, 2014) and illustrated in Figure 4.  
 
 

 

Figure 4. Different mechanisms involved in HGT. Bacteria and Archaea can acquire new genes, or 
variant copies of existing genes from genetically distant relatives through HGT. This can occur through 

the uptake of extracellular DNA (transformation), cell-to-cell transfer through surface appendages 

(conjugation), and viral import (transduction) (Stewart, 2013), with permission from Nature Publishing 
Group. 

https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiDz5vU5s_NAhUJYpoKHStuAkUQjRwIBw&url=http://www.mdpi.com/2075-163X/5/3/397&psig=AFQjCNGn8y0xXIrFvvePrUwpMHBdBAemXQ&ust=1467377853662824&cad=rjt
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Multiple resistance in bacteria may occur either by co-resistance or cross-resistance (see 
glossary). The environment acts as a reservoir of bacteria of enormous density and species 
diversity, as well as being a reservoir for hundreds to thousands of known AMR genes with 
the mechanisms in place for HGT of any genes (Huijbers et al., 2015). 

3.8 Drivers for AMR 
All uses of antimicrobials, including biocides and heavy metals, in human and veterinary 
medicine, including aquaculture and agriculture, may be important drivers for the 
development of AMR in bacteria. The spread of AMR does not necessarily respect 
phylogenetic or ecological borders (Nielsen et al., 2014). Resistance to a certain antimicrobial 
agent can be selected, even by the use of other agents like antimicrobials, sanitizers, and 
some metal-containing compounds. The mobility of these AMR genes is attributed to their 
residence on mobile genetic elements – plasmids, transposons, and integrons (IFT, 2006). 
 

Assessment  

3.9 Literature 
Titles and abstracts of all citations identified were screened and those that did not relate to 
the terms of reference were excluded. Of those of potential relevance, the full text was 
obtained and assessed whether it was of relevance to this Opinion. Review articles that 
focused on bacteria with reduced susceptibility against biocides and/or heavy metals with 
antibacterial activity were included in this assessment, except for biocide anilides and the 
heavy metals arsenic and cadmium as there was a lack of data in the review articles 
regarding the effects of these three compounds on resistance. Table 3 shows the number of 
review articles included in this assessment. 
We have not identified any reports of studies of the Norwegian environment in which the 
effects of biocides (listed in the Table 3) or heavy metals (Table 3) on microbiota in 
animals/humans or on microorganisms in the environment were investigated.  

Table 3. Literature search in PubMed, using the terms name of the biocides or heavy metals 
AND Antimicrobial resistance AND Review. 

Biocides or heavy 

metals 

PubMed 

N= 

number 

Excluded 

n 

Included 

n 

Comments 

Phenols 

 

 Triclosan 

202 

 

47 

194 

 

32 

18 

 

15 

Triclosan is reported as an 

important agent in this 

group that induces 

resistance in bacteria. 

Alcohol 0 0 0  
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Biocides or heavy 

metals 

PubMed 

N= 

number 

Excluded 

n 

Included 

n 

Comments 

Aldehyde 

 

42 

 

      98 

37 

 

63 

 

5 

 

35 

New literature search 

using the terms: Aldehyde 

AND biocide AND 

Antimicrobial resistant 

bacteria. 

The search was limited to 

publications from 2000-

2016 

Anilides 

 Salicylanilide 

 

 Carbanilides 

 

 

24 

21 

41 

 

24 

21 

41 

0 

0 

0 

New search was 

performed, using the 

terms “Antimicrobial” 

resistance” AND 

“Salicylanilide” and 

“Antimicrobial” resistance” 

AND “Carbanilides”     

Peroxygen 

 Hydogen 

peroxide 

 

 Peracetic acid 

 

101 

7 

 

101 

7 

 

0 

0 

 

Biguanide 

 Chlorhexidine 

  

 Alexidine 

  

 Polymeric 

biguanides 

 

85 

7 

7 

 

74 

7 

7 

 

9 

0 

0 

 

QACs (quaternary 

ammonium 

compounds) 

83 65 18 

 

 

Organic acids 

Inorganic acids 

19 

2 

18 

2 

1 

0 
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Biocides or heavy 

metals 

PubMed 

N= 

number 

Excluded 

n 

Included 

n 

Comments 

Acridine 

Triphenylmethane 

Quinones 

30 

2 

81 

28 

1 

81 

2 

1 

0 

 

Diaminides 16 16 0  

Fungicides* 41 

 

 

632 

40 

 

 

13 

1 

 

 

0 

Search words; 

“Antibiotic resistance + 

fungicides+Review” 

“Antibiotic resistance + 

fungicides” 

Arsenic 35 

200 

32 

153 

3 

47** 

 

Review articles 

Search words; «Arsenic 

AND antimicrobial AND 

resistance AND bacteria  

Copper 44 31 13  

Mercury 12 8 4  

Silver 65 61 4  

Zinc 81 76 5  

Cadmium 2 

131 

2 

29 

0 

102 

Review articles 

Original articles using the 

terms cadmium AND 

antimicrobial resistant 

bacteria 

Totals 2158 1264 264  

 
*Using the terms “antibiotic resistance” AND “Fungicides” AND “Review” resulted in 41 articles. Using 

the terms “antibiotic resistance” AND “Fungicides” resulted in 632 articles. Only 14 articles fulfilled the 
inclusion criteria. None of these articles were relevant except for the articles on the so-called DMI 

fungicides (Gisi, 2014). These fungicides belong to the azole group, and are used to control 
pathogenic fungi in agriculture, veterinary medicine, and human medicine.  

**30 articles from bacteria isolated from animal/human, 17 from bacteria from environmental origin 

 Biocides 

The biocides market represents 10-11 billion euros in Europe and has been growing at 4-5% 
per annum for the last 15 years. This market is also predicted to continue expanding during 
the next years (for further information see http://www.pan-europe.info/campaigns/biocides). 
Whereas pesticides legislation plans for more sustainable use of pesticides in agriculture and 
up-to-date statistics on sales and use, no such demands have been proposed for biocides. 

http://www.pan-europe.info/campaigns/biocides
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In this assessment, the chemical structure of biocides, and not the area for use, have been 
used for classification. We focus on biocides in category 1; disinfectant agents, as the 
products in this group are used because of their antimicrobial properties. 
  
Below we discuss the mechanisms of antimicrobial action and mechanisms of resistance for a 
list of disinfectant agents, used in different settings.  

Table 4. Alcohols 

Chemical 

group 

Alcohol R-OH (R: aliphatic/aromatic) 

Active 

molecules 

 

This group is composed of several active substances, listed in Table 2. 

However, ethyl alcohol (ethanol), methyl alcohol (methanol), and 

isopropyl alcohol (isopropanol) are the most widely used as biocides 

(McDonnell and Russell, 1999). Based on their chemical structure, they 

can be divided into aliphatic (e g., ethanol, isopropanol) and aromatic 

alcohols (e.g., benzyl alcohol). 

Mechanisms 

of action 

 

The exact mechanism of action for alcohols as biocides is still to be 

determined, but due to their increased efficacy in the presence of 

water, it is generally believed that alchohol causes membrane damage, 

thereby inducing inhibition of cell wall synthesis, rapid denaturation of 

proteins, and inhibition of DNA and RNA synthesis, with subsequent 

interference with metabolism and cell lysis (McDonnell and Russell, 

1999). 

Antimicrobial 

activity 

 

Alchohols have generally rapid bactericidal activity. Their antimicrobial 

activity is optimal in concentration range of 60-90 %; within this range 

alcohols exhibit rapid broad spectrum activity against vegetative 

bacteria (including Mycobacteria spp.), some, but not all, viruses, and 

fungi. Although they are not sporicidal, alcohols are known to have 

reversible features of inhibiting sporulation and spore germination 

(Barah, 2013).   

Uses 

 

Most aliphatic alcohols are used as antiseptics and disinfectant agents 

and some can be used as preservatives (chlorbutanol and broponol). 

Aromatic alcohols are mainly used as as preservatives (benzyl alcohol, 

phenylethanol and phenoxy ethanol). 

Antimicrobial 

resistance 

Searches with the terms; alcohol AND Antimicrobial resistance in 

PUBMED did not identify any articles that provided information on 

bacterial species with reduced susceptibility/resistance against alcohols.  

Resistance in 

environmental 

bacteria 

See above; AMR 
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Conclusion Alcohols have high and rapid bactericidal effects on both Gram-positive 

and Gram-negative bacteria. Despite the long history of use of alcohols 

as non-antibiotic biocides, no bacteria have been reported to have 

developed resistance towards alcohols.       

 

Table 5. Aldehydes 

Chemical group Aldehydes R-CHO 

Active 

molecules 

 Glutaraldehyde                             

 Formaldehyde                               

 Ortho-phthalaldehyde (OPA) 

 Other aldehydes 

Mechanisms of 

action 

Aldehydes act by alkylating various chemical groups associated with 

proteins and DNA/RNA, resulting in subsequent cross-linking of 

macromolecules (Rutala and Weber, 2008).  

Antimicrobial 

activity 

Most aldehydes currently used as biocides (see above), have both 

bactericidal and sporicidal activity  (Rutala and Weber, 2008).  

Uses 

 

Usage areas for aldehydes are reviewed in McDonnell and Russell 

(1999):  

Glutaraldehyde has been recommended for disinfection/sterilization of 

some medical equipment, notably cystosopes and anaesthetic 

equipment. Due to the carcinogenic effects of glutaraldehyde, this use 

has been minimized.                                                       

Formaldehyde is used as a disinfectant in both liquid and gaseous states. 

Vapour-phase formaldehyde is used in disinfection of sealed rooms and 

treatment of warts. It is also used to inactivate bacterial products in the 

process of toxoid vaccine production.   

Disinfection with OPA is indicated for semi-critical instruments that come 

into contact with mucous membranes or broken skin, such as specula, 

laryngeal mirrors, and internal ultrasound probes. OPA has been 

suggested as a replacement for glutaraldehyde in endoscope 

disinfection. 
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Antimicrobial 

resistance 

 

Searches with the terms “Aldehyde” AND “Antimicrobial resistance”  AND 

“Review” gave 42 papers. Three of these reviews indicate 

tolerance/resistance against aldehydes in bacteria (Russell, 2002a; 

Russell, 2002b; Savluchinske-Feio et al., 2006). A further literature 

search using the terms “Aldehyde” AND “Biocide” AND “Antimicrobial 

resistant bacteria”, limited to the period 2000-2016 gave 98 articles,of 

which 35 reported reduced susceptibility/tolerance in different bacterial 

species such as Pseudomonas (Kampf et al., 2013; Selvaraju et al., 

2011; Simoes et al., 2011; Tschudin-Sutter et al., 2011; Vikram et al., 

2015), Bacillus (Herruzo Cebera, 2005; March et al., 2012; Moeller et al., 

2012; Simoes et al., 2011), Mycobacterium (Lorena et al., 2010; Mitsui 

et al., 2005; Svetlikova et al., 2009; Wang et al., 2005), Helicobacter 

(Chiu et al., 2009), and E. coli  (Dorsey and Actis, 2004).    

Phenotypic adaptation to glutaraldeyde in the bacterial species examined 

is generally associated with genetic change(s). In E. coli VU3695, the 

gene encoding resistance against aldehyde contains both a chromosomal 

copy and a plasmid copy of adhC actively expressed, with the latter 

involved in resistance to exogenous formaldehyde (Dorsey and Actis, 

2004). Correlation between resistance against aldehyde and the MIC of 

the antibiotic classes was reported in many of the studies. Therefore, 

there is concern that widespread use of glutaraldehyde and OPA in 

clinical settings may select for drug-resistant bacteria (Svetlikova et al., 

2009). 

Bacteria can survive aldehyde-based disinfection and may pose a cross-

contamination risk to patients. 

Resistance in 

environmental 

bacteria 

 

A formaldehyde-tolerant bacterial strain designated as DM-2 strain has 

been used to biodegrade formaldehyde. The cells, precultivated in the 

presence of 400 ppm of formaldehyde, were able to degrade 

formaldehyde in a minimal medium supplemented with up to 400 ppm of 

formaldehyde in the presence of 3 % NaCl (Yamazaki et al., 2001). No 

other studies regarding development of resistance towards aldehyde in 

bacteria of environmental origin were identified.   

Conclusion Bacterial species that are exposed to aldehydes used for 

disinfection/sterilization of certain types of medical equipment may 

develop insusceptibility/adaptation against aldehydes. A possible link has 

been observed between resistance against aldehyde and clinically 

important antimicrobial agents. Due to the restricted use of aldehydes as 

disinfectants, resistance against aldehydes and cross-resistance against 

antimicrobial agents may not pose a major problem in the environment.    
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Table 6. Anilides 

Chemical 

group 

Anilides 

General structure: C6H5NHCO-R 

Active 

molecules 

 Salicylanilide  

 Diphenylureas (carbanilides), including triclorcarban 

Mechanisms 

of action 

 

These compounds owe their bacteriostatic action to their ability to 

discharge part of the proton-motive force, therby inhibiting processes 

dependent upon it (active transport and energy metabolism). They may 

also act by absorbing to, and destroying the semipermeability of, the 

cytoplasmic membrane (McDonnell and Russell, 1999).   

Antimicrobial 

activity 

Mainly active aginst Gram-positive bacteria and significantly less active 

against Gram-negative bacteria and fungi. 

Uses 

 

Anilides are rarely used clinically. Triclocarban, the most studied anilide, 

is used mostly in antiseptic soaps, deodorants, and other household 

products. Triclocarban is one of the most potent agents in the 

diphenylureas (carbanilides) family and inhibits growth of many Gram-

positive bacteria, including MRSA and VRE (Walsh et al., 2003). 

Antimicrobial 

resistance 

 

Searches with the terms; Anilides AND Antimicrobial 

resistance/Salicylanide AND Antimicrobial resistance / carbanide AND 

Antimicrobial resistance did not identify any articles that provided 

information on bacterial species with reduced susceptibility/resistance 

against anilides. 

Resistance in 

environmental 

bacteria 

See above; AMR 

Conclusion Anilides are mostly active against Gram-positive bacteria, including 

MRSA and VRE, and also Mycobacterium, but have less/no activity 

against Gram-negative bacteria. No information was identified regarding 

reduced susceptibility or development of resistance against anilides and 

the most used active molecules (salicylanilide, diphenylureas 

(carbanilides) including triclorcarban). 

 

Table 7. Phenols 

Chemical group Phenols (C6H6O) 
Phenols are mainly synthetic chemicals, but also occur naturally in 
algae and plants. The synthetic group is composed of cerosols, non-
coal tar phenols, halophenols, nitrophenols, and bisphenols. 

Active molecules 
 

See Table 3, for active molecules belonging to this group. The most 
well known active molecule in this group with antibacterial activity is 
triclosana. 
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Mechanisms of 
action 

At low concentrations, triclosan, which is a broad-spectrum 
antibacterial agent, inhibits bacterial fatty acid synthesis at the 
enoyl-acyl carrier protein (ACP) reductase (FabI) step. 
Low concentrations of triclosan discharges membrane potential in E. 
faecalis. 
Low concentrations of fentichlor and triclosan inhibit energy-
dependent uptake of amino acids  
Dinitrophenol interferes with membrane energy (ATP synthesis).  
For more information see SCENHR (2009) 

Antimicrobial 
activity 

Reports on the antimicrobial efficacy of commonly used phenols 
show that they are bactericidal, fungicidal, virucidal, and 
tuberculocidal (Rutala and Weber, 2008). 

Uses 
 

Phenols are used for their antiseptic, disinfectant, or preservative 
properties, depending on compound (McDonnell and Russell 1999).  
The largest single use of phenol is to make plastics, but it is also 
used to make caprolactam (to make nylon 6 and other man-made 
fibres) and bisphenol A (used to make epoxy and other resins). It is 
also used as a slimicide (to kill bacteria and fungi in watery slimes), 
as a disinfectant, and in medical products (Agency for Toxic 
Substances and Disease Registry (ATSDR 1998) 
(https://www.atsdr.cdc.gov/ToxProfiles/Index.asp). 

Antimicrobial 
resistance 
 

Triclosan is the most active molecule with antibacterial activity and 
with the ability to induce antibacterial resistance in this chemical 
group.  Although, the bactericidal activity of triclosan involves action 
on multiple cellular targets, several studies have demonstrated that 
at sub-lethal concentrations triclosan inhibits a specific bacterial 
target, ACP reductase (FabI enzyme) in Escherichia coli, 
Pseudomonas aeruginosa, and Staphylococcus aureus, or its 
homologue, the InhA gene in Mycobacterium smegmatis and 
Mycobacterium tuberculosis (Yazdankhah et al., 2006). This mode of 
action may allow triclosan to induce resistance and cross-resistance 
in bacterial cells (Saleh et al., 2011). 
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Resistance in 
environmental 
bacteria 

In the risk assessment regarding the use of triclosan in cosmetics – 
development of AMR in bacteria (VKM, 2005), it was concluded that:  
“Little information exists regarding the incidence of triclosan 
resistance amongst environmental bacteria. Two soil isolates, 
Pseudomonas putida and Alcaligenes xylosoxidans spp. denitrificans, 
expressed high levels of resistance to triclosan due to production of 
an enzyme that degraded triclosan. The extensive use of triclosan in 
household, industrial and clinical settings results in widespread 
disposal, commonly into the wastewater system, which ultimately 
leads to environmental deposition; triclosan has been found in 
wastewater, environmental sediments, and aquatic biota.  The 
presence of triclosan at sub-lethal concentrations in the environment 
may lead to the emergence of resistance amongst environmental 
bacteria. Much of the research regarding development of AMR 
involves pathogenic bacteria and is restricted to cultivable, 
facultative anaerobe bacteria. Knowledge about the impact of 
triclosan use on commensal, non-cultivable and obligate anaerobes, 
which are the predominant bacteria in the oral cavity, gut, and skin 
flora, is limited. These bacteria may constitute pools of resistance 
determinants potentially transferable to human pathogens.” 
We could not identify any new information in the literature regarding 
the effect of triclosan on development of AMR in bacteria of 
environmental origin.  

Conclusion Triclosan was identifed as the substance in the phenol group that 
induces resistance in bacteria from different origins. The literature 
search in PubMed identified 47 review articles on triclosan, of which 
14 discussed resistance of bacteria due to use of triclosan and 
possible cross-resistance to antibiotics. Two of these 14 articles 
concluded that development of resistance in bacteria due to use  of 
triclosan is questionable (Gilbert and McBain, 2001; Sreenivasan and 
Gaffar, 2002) , however, the other 12 papers (Aiello and Larson, 
2003; Carey and McNamara, 2014; Giuliano and Rybak, 2015; Heir 
et al., 2001; Leaper et al., 2011; Levy, 2002; McArthur et al., 2012; 
Poole, 2002; Saleh et al., 2011; Schweizer, 2001; Weber and Rutala, 
2006; Yazdankhah et al., 2006), mostly published during the last ten 
years, are concerned with the use of triclosan in different settings. 
As has been stated by Giuliano and Rybak (2015), resistance to 
triclosan and cross-resistance to antimicrobials have been 
consistently demonstrated in laboratory settings, although overall 
resistance rates and cross-resistance rates in the community setting 
are low.  

aNorwegian Scientific Committee for Food Safety performed a risk assessment on the use of triclosan in cosmetics 
– development of antimicrobial resistance in bacteria (VKM, 2005). An updated assessment was performed in 
2007 after the Scientific Committee on Consumer Products (SCCP) of European Commission had discussed the 
assessment report from 2005 (VKM, 2007).  
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Table 8. Peroxygen compounds 

Chemical 

group 

Peroxygen compounds  

Active 

molecules 

 

 Hydrogen peroxide H2O2 

 Peracetic acid (C2H4O3) is a mixture of acetic acid (CH3COOH) and 

hydrogen peroxide (H2O2)   

Both hydrogen peroxide and peracetic acid are considered to be high level 

disinfectants due to their highly reactive hydroxyl radicals (Al-Adham et 

al., 2013). 

Mechanisms 

of action 

 

Hydrogen peroxide: Hydrogen peroxide acts as an oxidizing agent by 

producing hydroxyl free radicals that attack essential cell components, 

including lipids, proteins, and DNA (Linley et al., 2012). 

Peracetic acid: not fully understood, but may denature proteins, disrupt 

cell wall permeability, and oxidize sulphydryl and sulphur bonds in 

proteins, enzymes, and other metabolites (Block, 2001).  

Antimicrobial 

activity 

 

Hydrogen peroxide: broad-spectrum efficacy against bacteria and their 

spores, viruses, and fungi. In general, greater activity is seen against 

Gram-positive bacteria than Gram-negative bacteria. However, the ability 

of bacteria to produce catalase can increase tolerance when lower 

concentrations are used.  

Peracetic acid: a more potent biocide than hydrogen peroxide, being 

sporicidal, bactericidal, virucidal, and fungicidal at low concentrations.  

Uses 

 

Hydrogen peroxide: Hydrogen peroxide is widely used for disinfection, 

sterilization, and antiseptic use, particularly in applications where its 

decomposition into non-toxic by-products is important. The use of 

hydrogen peroxide for treatment against sea lice infections in salmon 

farming has increased from zero in 2008 to more than 30000 tonnes in 

2014 (https://www.fhi.no/hn/legemiddelbruk/fisk).  

Peracetiic acid: Mainly used as a disinfectant for wastewater effluents. Its 

other application is as a low-temperature liquid sterilant for medical 

devices, flexible scopes, and haemodialyzers, but it is also used as an 

environmental surface sterilant (McDonnell and Russell, 1999). 
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Antimicrobial 

resistance 

Data demonstrating that bacteria can develop insusceptibility/resistance 

to peroxygen compounds are lacking. However, catalases and NADH 

peroxidase (Ahp) are primary scavengers in many bacteria, and their 

activities and physiological impacts have been demonstrated through 

phenotypic analysis and direct measurements of H2O2 clearance in vivo. A 

wide variety of additional enzymes have been proposed to serve similar 

roles: thiol peroxidase, bacterioferritin comigratory protein, glutathione 

peroxidase, cytochrome c peroxidase, and rubrerythrins. Each of these 

enzymes can degrade H2O2 in vitro, but their contributions in vivo remain 

unclear (Mishra and Imlay, 2012). 

Resistance in 

environmental 

bacteria 

See above; AMR 

Conclusion Both hydrogen peroxide and peracetic acid are considered to be high level 

disinfectants due to their highly reactive hydroxyl radicals. Bacterial 

species that have developed resistance to pyroxygenes have not been 

identifed, probably because the active substances have several targets in 

bacterial cells. However, enzymes like catalases and NADH peroxidase 

(Ahp) are primary scavengers in many bacteria, but their role in vivo 

remains unclear. 

 
 

Table 9. Biguanides 

Chemical 

group 

Biguanides 

Active 

molecules 

 Chlorhexidine 

 Alexidine 

 Polymeric biguanides 

Mechanisms 

of action 

 

Various modes of action for different biguanide compounds have been 

identified (McDonnell and Russell, 1999): 

Chlorhexidine: both bactericidal and bacteriostatic mechanisms of action, 

mainly dependent on membrane disruption. In addition, some reports 

link its mechanism of action to the inhibition of membrane-bound ATPase  

Alexidine: a more rapid bactericide and produces a significantly faster 

alteration in membrane permeability than chlorhexidine. 

Polymeric biguanides: unlike chlorhexidine, but like alexidine, these cause 

domain formation of the acidic phospholipids of the cytoplasmic 

membrane. 



 

 

VKM Report 2016: 63  39 

Antimicrobial 

activity 

 

Chlorhexidine: wide spectrum of activity against both Gram-positive and 

Gram-negative bacteria. Some bacteria, notably strains of Proteus and 

Providencia spp., may be highly resistant against biguanides. 

Chlorhexidine is not sporicidal, but prevents development and outgrowth 

of spores without inhibiting germination. It is not lethal against acid fast 

bacteria such as Mycobacterium (Al-Adham et al., 2013). 

Alexidine: more rapidly bactericidal and produces a significantly faster 

alteration in membrane permeability than chlorhexidine (McDonnell and 

Russell, 1999). 

Polymeric biguanides: polymeric biguanides, such as vantocil, are active 

against Gram-positive and most Gram-negative bacteria. However, they 

are not sporicidal (McDonnell and Russell, 1999).  

Uses 

 

Chlorhexidine: its common applications are attributed to its long-lasting 

broad-spectrum efficacy and substantivity for the skin. One of the most 

commonly used biocides in antiseptic products, particularly in 

handwashing and dental and oral products. In addition, it can be used as 

a disinfectant and preservative. It is usually used as an active ingredient 

in mouthwash designed to reduce plaque, gingival inflammation, and 

bleeding. 

Alexidine: applications of alexidine are similar to those of chlorhexidine. 

Polymeric biguanides (e.g., vantocil): used as general disinfection agents 

in the food industry and, very successfully, for disinfection of swimming 

pools.   
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Antimicrobial 

resistance 

 

Chlorhexidine: Nine of 85 articles identified discussed development of 

resistance in bacteria due to use of chlorhexidine. The results concur with 

the conclusions form the VKM risk assessment from 2010 (VKM, 2010) in 

which development of resistance in bacteria due to use of chlorhexidine 

in cosmetic products was assessed. It was concluded that: “Intrinsic 

resistance mechanisms towards chlorhexidine are particularly 

characteristic of Gram-negative bacteria, but also of bacterial spores, 

mycobacteria, and, under certain conditions, staphylococci also display 

such mechanisms. There are limited published data on acquired 

chlorhexidine resistance in bacteria, but from those available, acquired 

resistance towards chlorhexidine has been described from members of 

the Streptococcus spp., Staphylococcus spp,. and Enterobacteriaceae. 

This resistance may result from increased expression of chromosomally 

located efflux pumps, acquisition of plasmid-encoded efflux pumps, or 

changes in susceptibility by other presently unknown mechanisms”. 

Alexidine: No articles were identified in the literature review. Due to 

mechanisms of action that are similar to those of chlorhexidine, 

information regarding development of resistance in bacteria to 

chlorhexidine are also applicable to alexidine. 

Polymeric biguanides: no articles were identified in the literature review, 

but due to mechanisms of action that are similar to those of 

chlorhexidine, information regarding development of resistance in 

bacteria to chlorhexidine are also applicable to polymeric biguanides. 
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Resistance in 

environmental 

bacteria  

 

In 2010, VKM assessed development of resistance in bacteria due to use 

of chlorhexidine in cosmetic products. The bacteria were assessed from 

different niches, including environment (VKM, 2010) . It was concluded 

that: 

“As chlorhexidine compounds enter the environment via the sewage 

system they will inevitably act on microbes found here. In a study by 

Lawrence et al. (2008), the effects of chlorhexidine on microbial biofilms 

from river water were examined. The authors observed significant effects 

of chlorhexidine at a concentration of 100 µg/L on the protozoan, algal, 

cyanobacterial and bacterial biomass. At this concentration a virtual 

elimination of the protozoan community in the biofilms was observed, 

resulting in lowered grazing activity. Nuñez and Moretton (2007) 

examined the bacterial resistance pattern to several disinfectants, 

including chlorhexidine, in hospital sewage effluents in Buenos Aires. 

Between 103 and 106 chlorhexidine-resistant bacteria/100 mL were 

isolated from the samples. The bacterial population resistant to 

disinfectants consisted mainly of members of the Enterobacteriaceae 

family, Staphylococcus spp., and Bacillus spp. Bacterial isolates were 

tested for their resistance patterns by an agar dilution method, with 

chlorhexidine in increasing concentrations. The chlorhexidine MIC in the 

resistant bacteria isolated from the hospital sewage ranged from 50 to 

150 mg/L, and included Shigella dysenteriae, Shigella flexneri, Proteus 

vulgaris, Aeromonas hydrophila, Alcaligenes sp., Acinetobacter sp. and 

Pseudomonas aeruginosa. The authors conclude that hospital effluents 

are of importance in the bacterial resistance selection process, 

particularly in the case of disinfectants. 

Conclusion There are limited published data on acquired resistance to biguanides, 

including chlorhexidine resistance in bacteria. However, from the 

information available, acquired resistance towards chlorhexidine has been 

described from members of Streptococcus spp., Staphylococcus spp., and 

Enterobacteriaceae. Resistance against chlorhexidine may be due to: a) 

increased expression of chromosomally located efflux pumps; b) 

acquisition of plasmid-encoded efflux pumps; or c) other presently 

unknown mechanisms. No cross-resistance or co-resistance between 

biguanides and other antimicrobial agents has been reported.   
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Table 10. Surface-active agents 

Chemical 

group 

Surface-active agents 

 

Active 

molecules 

 

Surface-active agents (surfactants) have two regions in their molecular 

structure, one a hydrocarbon, water-repellent (hydrophobic) group, and 

the other a water-attracting (hydrophilic) group. Depending on the 

basis of the charge or absence of the hydrophilic group, surface-active 

agents are classified (McDonnell and Russell, 1999) into: cationic 

agents, for example quaternary ammonium compounds (QACs), anionic 

agents, nonionic agents, and amphoteric (ampholytic) agents. The 

cationic agents, as exemplified by QACs, are the most commonly used 

antiseptics and disinfectants. 

Mechanisms 

of action 

 

QACs predominantly act on the cytoplasmic membrane. The action 

involves association of positively charged quaternary nitrogen with the 

head group of acidic-phospholipids, before integration of the 

hydrophobic tail into the hydrophobic membrane core. At high 

concentrations, QACs solubilize hydrophobic cell membrane components 

by forming mixed micellar aggregates (Gilbert and Moore, 2005). 

Disruption and denaturation of structural proteins and enzymes has 

been suggested as other mechanisms behind antimicrobial activity 

(Fredell, 1994). 

Antimicrobial 

activity 

 

QACs have antimicrobial effects against a broad range of 

microorganisms including vegetative bacteria, yeasts, moulds, and 

algae, and can inhibit germination of bacterial spores and growth of 

vegetative bacteria, yeasts, moulds and algae. Growth inhibition by 

QACs is higher for Gram-positive bacteria and algae than for Gram-

negative bacteria and moulds. 

Uses 

 

Commonly applied QACs include benzalkonium chloride (BC), also 

known as alkyl-benzyl-dimethyl-ammonium chloride, and cetrimonium. 

There is widespread use of QACs as disinfectants in ordinary 

environmental sanitation of surfaces such as floors, furniture, and walls. 

QACs are also used in food hygiene, food pressing industries, hospitals 

fabric-softening agents, foam depressants, and antistatic agents in 

many consumer products. 
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Antimicrobial 

resistance 

 

In 2009 VKM performed a risk assessment entitled “Quaternary 

ammonium compounds in cosmetic products” and concluded that: “It is 

evident that resistance towards QACs is widespread among a diverse 

range of microorganisms, and that microbial resistance to QACs is 

facilitated by several mechanisms. Currently available literature on 

development of resistance due to QACs in cosmetics is lacking. 

However, it is likely that QACs in such products will add to the selection 

pressure towards more QAC-resistant microorganisms among the skin 

and mouth flora. Furthermore, there is increasing evidence of co-

resistance and cross-resistance between QACs and a range of other 

unrelated antibacterial agents, as antibiotics and disinfectants. Thus, 

the contribution to increased occurrence of resistance to clinically 

important antimicrobial agents by QACs in cosmetic products cannot be 

excluded” (VKM, 2009). In the current assessment, all 18 review articles 

that discussed development of resistance due to use of QACs confirmed 

a link between QAC resistance and resistance against clinically 

important antibiotics. Five of these review articles have 

supported/confirmed the publication of VKM’s risk assessment from 

2009.  
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Resistance in 

environmental 

bacteria  

 

As QACs enter the environment they may be expected to act on 

microbes occurring there. Kümmerer et al. (1997) found BC at 

concentrations of 4 to 5 mg/l-1 in hospital effluent water, and QACs are 

reported to be effective against aquatic microorganisms at these 

concentrations (Tubbing and Admiraal, 1991). Sutterlin et al. (2008b) 

reported toxicity of BC alone, and in mixtures with other anionic 

compounds, toVibrio fisheri and Pseudomonas putida. In a study by 

McBain et al. (2004), the effects of QACs on bacterial community 

dynamics and antimicrobial susceptibility in a drain microcosm with 

mixed cultures were examined. In this study, QAC exposure caused 

both increased susceptibility among some strains (Pseudomonas spp. 

and Enterococcus saccharolyticus), and decreased susceptibility to 

QACs among other strains (Psesudomonas spp., Eubacterium spp., 

Chryseobacterium spp., Ralstonia spp., and Aranicola spp.). The effects 

of QACs on microbes in biological wastewater treatment plants (WWTP) 

are well known; nitrifying bacteria used in biological filters in sewage 

treatment plants seem to be particularly affected, as QACs interfere 

with their normal uptake of ammonium (Sutterlin et al., 2008a). Several 

studies suggest that WWTP are reservoirs for diverse mobile antibiotic 

resistance elements. In an article regarding development of AMR in 

bacteria isolated from wastewater, the authors studied the occurrence 

of plasmids belonging to the IncP-a group. These are self-transmissible, 

and transfer to, and replicate in, a wide range of hosts. These elements 

carry determinants conferring resistance to nearly all clinically relevant 

antimicrobial drug classes, to heavy metals, and to QACs used as 

disinfectants against bacteria from animal, human and plant origin 

(Schluter et al., 2007). 

Conclusion Among the cationic agents, QACs are the most commonly used 

antiseptics and disinfectants. They are used as disinfectants in food 

hygiene, food processing industries, hospitals, fabric-softening agents, 

foam depressants, and antistatic agents in many consumer products. 

Many published reports describe development of resistance in bacteria 

from different niches, including the environment, due to use /misuse of 

QACs. These bacteria may develop resistance, not only against QACs, 

but also against other biocides and clinically relevant antimicrobial 

agents.  
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Table 11. Organic and inorganic acids: esters and salts 

Chemical 
group 

Organic and inorganic acids: esters and salts  

Active 
molecules 

 Acetic acid, propionic acid, butyric acid, caprylic acid, formic 
acid, undecanoic acid, sorbic acid, benzoic acid, lactic acid, 
salicylic acid, dehydroacetic acid. 

 Sulphur dioxide, sulphites, and bisulphites, esters of p-
hydroxybenzoic acid (parabens), vanillic acid esters. 

Mechanisms 
of action 

 

The efficacy of acidic agents is linked to the concentration of hydrogen 
(H+) that destroys the amino acid bond in proteins, modifies the 
cytoplasmic pH, and precipitates proteins. 

Many acid preservatives act by preventing the uptake of substrate, 
which depends on a proton-motive force for entry into the cell; in other 
words, they act as uncoupling agents. Further details can be found in 
Al-Adham et al. (2013). 

Antimicrobial 
activity 

 

Organic acids: The efficacy of an organic acid as an antimicrobial agent 
depends on two factors – its hydrophobicity and how much completely 
undissociated acid is present. These molecules inhibit the outgrowth of 
both bacterial and fungal cells, and sorbic acid is also reported to inhibit 
the germination and outgrowth of bacterial spores (Brul and Coote, 
1999). 

Organic acids also improve the digestibility of proteins and amino acids 
and the absorption of minerals (Omogbenigun et al., 2003), modulate 
endocrine and exocrine secretions, and influence mucosal morphology 
(Parttanen, 1991). Whether these effects can be applied to all animal 
species is unresolved. In chickens fed ad libitum, the pH in the 
intestinal tract is not altered by the addition of formic or propionic acid 
(Thompson and Hinton, 1997), and the pH in the proventriculus and the 
gizzard is very acidic per se. 

The use of organic acids may reduce the lipopolysaccharides layers in E. 
coli, making it more susceptible to organic acids (Novoa-Garrido et al., 
2009).  

Inorganic acids: The antimicrobial activity of inorganic acids may be due 
to low pH, which can denature cell walls and proteins, and destroy 
DNA/RNA. 
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Uses 

 

Some organic acids, both aliphatic and aromatic, and one or two 
inorganic acids are used as preservatives, especially in the food 
industry. Some, for example benzoic acid, are also used in preservation 
of pharmaceutical products; others (salicylic, undecylenic and benzoic 
acids) have been used for topical treatment of fungal infections of the 
skin.  

Organic acids like formic acid, benzoic acid, citric acid, and fumaric acid, 
including compounds derived from plants, are also used in poultry and 
swine  production, as additives to animal feed (Diarra and Malouin, 
2014; Thormar, 2012). 

Vinegar, containing acetic acid, has been used for wound dressing for 
some bacterial infections caused by bacteria like Pseudomonas (Nagoba 
et al., 2013). 

Organic acids are used in high volume as feed additives in animal 
production. However, the quantities of these organic acids used in 
Norway are unknown.   

Hydrochloric acid and sulphuric acid are sometimes used in veterinary 
disinfection. Hydrochloric acid is sporicidal at low concentrations and 
has been used for disinfecting hides and skin contaminated with 
anthrax spores. Sulphuric acid is not sporicidal, even at high 
concentrations, but in some countries is used, usually with phenol, for 
decontamination of floors, feed boxes, and troughs. 

Antimicrobial 
resistance 

The literature search identified 19 review articles on organic acids and 
no articles on inorganic acids.  

Tolerance/resistance to organic acids was discussed in one review 
article, which is summarized here: Microbial resistance to weak organic 
acids can involve various mechanisms. For bacteria, significant 
knowledge exists on their intrinsic, non-inducible resistance 
mechanisms against these compounds. Gram-positive bacteria do not 
possess an outer membrane, hence preservatives can easily enter these 
cells and their intrinsic resistance is relatively low. In Gram-negative 
bacteria, resistance mechanisms are more complicated as these 
organisms possess an inner and an outer membrane. The latter 
membrane has a clear role in modulating the accessibility of a cell to 
preservatives and other small molecules; the lipopolysaccharide layer is 
of crucial importance in this respect (Brul and Coote, 1999).  

We are not aware of data that indicate development of resistance 
against inorganic acids in bacteria.  

Resistance in 
environmental 
bacteria  

See above; AMR 
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Conclusion Acidic agents destroy the amino acid bond in proteins, modify 
cytoplasmic pH, and precipitate proteins. Both organic and inorganic 
acids may inhibit outgrowth of both bacterial and fungal cells, and 
sorbic acid is also reported to inhibit germination and outgrowth of 
bacterial spores. 

Some studies indicate that bacterial species may develop 
tolerance/resistance against organic acids. Genetic determinants have 
not been identified/characterized in bacteria with tolerance to organic 
acids. Development of resistance/tolerance and even intolerance 
towards organic acids may be transient and reversible.  

Other studies indicate that bacteria like E. coli may be more susceptible 
to organic acids, due to reduction of lipopolysaccharides.  

Development of resistance against inorganic acids has not been 
reported.  

 
Table 12. Antimicrobial dyes 

Chemical 

group 

Antimicrobial dyes 

 

Active 

molecules 

 

Three main groups with application as microbiocidal agents: 

 Acridines (e.g., acridine orange) 

 Triphenylmethane (e.g., crystal violet) 

 Quinones (e.g., benzoquinine); natural dyes that give colour to 

many plants and animals. 

Mode of 

action 
Acridines: High affinity interaction with DNA. The polycyclic and planar 

structure of acridines is inserted between base pairs of DNA. This 

intercalation will interfere with major metabolic processes (Al-Adham et 

al., 2013).  

Triphenylmethane: interference with cell wall structure 

(Vasanthakumari, 2007).  

Quinones: multiple effects on DNA (Lown, 1983)                                                

Antimicrobial 

activity 

 

Acridines: generally active against Gram-negative bacteria, but do not 

display a selective action against Gram-positive bacteria, nor are they 

inactivated by serum. 

Triphenylmethane: mostly active against Gram-positive bacteria and 

less against Gram-negative bacteria. 

Quinones: toxicity to bacteria, moulds, and yeasts. 
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Uses 

 

Acridines: the major use has been treatment of wounds around 1940s. 

Some new derivates with anticancer activity. 

Triphenylmethane: Triphenylmethane is the basic skeleton of many 

synthetic dyes called triarylmethane dyes, many of them are pH 

indicators.  

Quinones: one large-scale industrial application of quinones is for 

production of hydrogen peroxide.  

Antimicrobial 

resistance 

 

MRSA and MRSE strains containing qac gene are more resistant against 

acridine and triphenylmethane. This is believed to be due to an efficient 

efflux system in the resistant strains (Leelaporn et al., 1994; Paulsen et 

al., 1996a; Paulsen et al., 1996b) .  

Resistance in 

environmental 

bacteria  

See above; AMR 

Conclusion Antimicrobial dyes, such as acridines, triphenylmethane, and quinones, 

are used in different areas, although the areas of application are 

limited. The agents, mainly acridines and triphenylmethane, may induce 

resistance in bacteria due to activation of efflux systems. Resistance in 

bacteria of environmental origin was not identified.  

The clinical relevance of resistance against antimicrobial dyes in 

bacteria remains uncertain.  

 

Table 13. Halogen-releasing agents 

Chemical 

group 

Halogen-releasing agents 

 

Active 

molecules 

 Chlorine-releasing agent 

 Bromine-releasing agent: not commonly used, therefore not 

discussed further  

 Iodine-releasing agent 

Mechanisms 

of action 

 

Chlorine-releasing agent: The exact mechanism by which chlorine 

destroys microbial cells is unknown, but it is believed that chlorine 

activity aganst bacteria may involve several targets, like oxidation of 

proteins.    

Iodine-releasing agent: Iodine derivatives rapidly penetrate into 

microorganisms and attack thiol groups of proteins, resulting in cell 

death (McDonnell and Russell, 1999). 
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Antimicrobial 

activity 

 

Chlorine-releasing agent: Bactericidal against both Gram-positive and 

Gram-negative bacteria, sporicidal (depends on pH).   

Iodine-releasing agent: Although less reactive than chlorine, iodine is 

bactericidal, fungicidal, tuberculocidal, virucidal, and sporicidal (Gottardi 

and Karl, 1991).  

Uses 

 

Halogen-releasing agents are traditionally used for both antiseptic and 

disinfectant purposes in swimming pools, public pools, drinking water, 

sewage/wastewater, and in fish farms.  

Bromine-related compounds, such as ammonium bromide and alkaline 

bromine derivatives, are rarely used. 

Antimicrobial 

resistance 

No information regarding development of resistance in bacteria due to 

use of halogen-releasing agents were identified. 

Resistance in 

environmental 

bacteria 

No information regarding development of resistance in bacteria of 

environmental origin due to use of halogen-releasing agents were 

identified. 

Conclusion Halogen-releasing compounds are the most significant microbiocidal 

halogens, which are traditionally used for both antiseptic and 

disinfectant purposes. No information regarding development of 

resistance in bacteria due to use of halogen-releasing agents were 

identified. 

 
Diamidines  
The isethionate salts of two aromatic diamidine compounds, propamidine and 
dibromopropamidine, have been used as antibacterial agents. Clinically, diamidines are used 
for the topical treatment of wounds. The exact mechanism of action is unknown, but 
believed to inhibit oxygen uptake and induce leakage of amino acids (McDonnell and Russell, 
1999). No information regarding development of resistance in bacteria against diamidines 
was identified.  
 
Other biocides 
Other biocides, such as quinoline and isoquinoline derivatives, derivatives of 1,3-dioxane, 
derivatives of imidazole, isothiazolones, derivatives of hexamine, terpenes, and vapour-phase 
disinfectants listed in Table 1 have not been discussed in this assessment as reports on the 
development of resistance in bacteria against these agents were not identified in the 
literature.  

 Heavy metals  

Heavy metals with the potential to induce AMR has little to do with density, but rather 
concerns chemical properties. Although heavy metals are naturally occurring elements that 
are found throughout the Earth’s crust, most environmental contamination and human 
exposure result from anthropogenic activities, such as mining and smelting operations, 
industrial production and use, and domestic and agricultural/aquaculture use of metals and 
metal-containing compounds (He et al., 2005; Herawati et al., 2000). 
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This is of particular concern, given that the anthropogenic levels of heavy metals used are 
currently several orders of magnitude greater than the levels of antibiotics. Unlike antibiotics, 
metals are not subject to degradation and can therefore represent a long-term selection 
pressure (Stepanauskas et al., 2005). There are concerns regarding the potential of metal 
contamination to maintain a pool of antibiotic-resistance genes in both natural and clinical 
settings. In addition to metals, other toxicants are implicated in the co-selection of antibiotic 
resistance, including QACs and anti-fouling agents and detergents (Chapman, 2003; Sidhu et 
al., 2001). 
 
In this assessment, the heavy metals themselves, rather than their areas of use, have been 
used for classification. The mechanisms of antimicrobial action and mechanisms of resistance 
of heavy metals are considered to be universal. This information has already been provided 
under Hazard characterization and discussed further for some heavy metals, if available.  
 
In the following, we concentrate on a limited number of the most important and most widely 
used heavy metals in medicines and agriculture, including copper, zinc, silver, mercury, and 
arsenic, and microbial resistances to these metals. In addition, we discuss cadmium because 
of its high occurrence in animal feed and food. We also briefly discuss the current uses of 
these antimicrobial metals, and the importance of the genetic legacy and dissemination of 
bacterial resistance to antimicrobial metals in bacteria and the genetic elements carrying 
multiple AMRs, both to metals and to other antimicrobial agents.  

Table 14. Arsenic 

Chemical 

group 

Arsenic (As)  

Not a true heavy metal, but semi metal 

Mechanisms 

of action 

The exact mechanism of action is not known. For general information, 

refer to section 3.5., Mechanisms of action of heavy metals. 

Antimicrobial 

activity 

 

Activity has been reported against several bacterial species, including 

pathogenic bacteria such as Campylobacter  (Shen et al., 2014), S. 

aureus /CoNS (Argudin and Butaye, 2016; Argudin et al., 2016), Listeria 

monocytogenes (Lee et al., 2013), Salmonella (Joerger et al., 2010), E. 

coli (Chen et al., 2015), Yersinia enterocolitica (Mallik et al., 2012). 

Uses 

 

Agricultural and non-medical uses of arsenic compounds have included 

wood preservatives (particularly chromated copper arsenate), 

herbicides, rodenticides, defoliants (Agent Blue used in the Vietnam war 

was a mixture of dimethylarsenic acid (cacodylic acid) and its sodium 

salt (Cooksey, 2012), and fungicides. 

Arsenic has variously been used in antispasmodics, sedatives, 

haematinics, for treating skin disorders, in eye and cancer treatments, 

and for the treatment of a wide range of ailments, including 

trichomoniasis, malaria, ulcers, and syphilis (Liu et al., 2008). 

Arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), 

has been used as a feed additive in the poultry industry for growth 

promotion (Shen et al., 2014).  
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Antimicrobial 

resistance 

 

Arsenic tolerance in bacteria is usually mediated by the gene products 

of the widespread ars operon that has been extensively studied (Carlin 

et al., 1995; Rosen, 2002). Although the organization of ars operons 

varies greatly between strains, there are some core genes that are 

almost always present: the simple gene set conferring basal resistance 

consists of the three-gene operon arsRBC as present in the E. coli 

genome (Carlin et al., 1995) and on S. aureus plasmid pI258 (Silver, 

1998). 

Mechanisms of resistance against arsenic in bacterial species have been 

reviewed by (Kruger et al., 2013), and (Hobman and Crossman, 2015). 

The main cross-resistance between arsenic and antimicrobial agents 

may be activation of efflux pumps.   

Resistance in 

environmental 

bacteria  

Resistance against arsenic in bacterial species from different niches has 

been reported. Abbas et al. (2014) and Novo et al. (2013) isolated 

different bacterial  species from seawater, and a novel bacterial strain 

belong to Enterobacteriaceae was isolated as part of a project aimed at 

screening metal-contaminated soils for arsenic-resistant bacteria in 

China (Su et al., 2012). Nine morphologically distinct potent arsenate-

tolerant bacteria were shown to be related to Micrococcus varians, 

Micrococcus roseus, Micrococcus luteus, Pseudomonas maltophilia, 

Pseudomonas sp., Vibrio parahaemolyticus, Bacillus cereus, Bacillus 

smithii, and Bacillus smithii isolated from surfacewater and groundwater 

in Nepal (Shakya et al., 2012). Other arsenic-tolerant isolates were 

found in various niches: Bacillus indicus sp. nov., an arsenic-resistant 

bacterium was isolated from an aquifer (Suresh et al., 2004), Bacillus 

arsenicus sp. nov., an arsenic-resistant bacterium isolated from a 

siderite concretion (Shivaji et al., 2005), Pseudomonas aeruginosa 

isolated from natural waters (de Vicente et al., 1990), and Listeria 

monocytogenes isolated from the environment of turkey-processing 

plants (Mullapudi et al., 2008). 

Conclusion Arsenic has been used for thousands of years in various forms as an 

antimicrobials in medicine until recently. The high concentration of As in 

groundwater in many countries is a human health problem. Arsenic 

compounds were previously extensively used in impregnation of wood, 

but has been prohbited in Norway since 2002. The discovery of 

antibiotics and new organic antimicrobial compounds during the 

twentieth century resulted in a general decline in the clinical use of 

heavy metals like As. As is active against both Gram-positive and Gram-

negative bacteria. Bacteria from different ecological niches may develop 

resistance against arsenic and the main cross-resistance between 

arsenic and antimicrobial agents may be activation of efflux pumps.  
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Table 15. Copper 

Chemical 
group 

Copper (Cu) 
 
 

Mechanisms 
of action 
 

Copper interacts readily with molecular oxygens. Its radical character 
makes copper very toxic. Copper toxicity is based on the production of 
hyperoxide radicals and on interaction with cell membranes (Nies, 
1999). 
For general information, refer to section 3.5, Mechanisms of action of 
heavy metals. 

Antimicrobial 
activity 
 

Copper is toxic to prokaryotes and eukaryotes, even at high cellular 
concentrations (Gaetke and Chow, 2003), and copper involvement in 
phagosomal killing of bacteria engulfed by macrophages is now 
recognized as an important defence mechanism (German et al., 2013). 

Uses 
 

Copper compounds are used as wood preservatives, in antifouling 
paints, and as molluscicides (Borkow and Gabbay, 2009). In agriculture, 
copper compounds have been used as antimicrobial, algicidal, 
pesticidal, and antifungal agents, and as animal feed additives. Copper 
sulphate solutions were used for antifungal treatment of seed grains in 
the eighteenth century. In the late nineteenth century, Bordeaux 
mixture (copper sulphate and calcium hydroxide) and Burgundy mixture 
(copper sulphate and sodium carbonate) were widely used to control 
mildew on grape vines, and to control fungal and bacterial diseases of 
seeds or plants (Russell, 2005 ). These inorganic antifungal agents are 
still widely used in plant protection, even in ‘organic’ agriculture. Copper 
sulphate is allowed, alongside zinc chloride, oxide or sulphate, as an 
additive in animal and poultry feed. 
Farmed animals, such as pigs and poultry, receive additional Cu in their 
diets via supplements in their compound feed, and also as an 
alternative to in-feed antibiotics for growth promotion. 
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Antimicrobial 
resistance 
 

Of 44 review articles identified in our search in PubMed search, 13 
discussed development of resistance towards Cu in different bacterial 
species and most of these discussed development of resistance in 
bacteria due to use of Cu as feed additive in animals like poultry and 
pigs.  
In the review article of Yazdankhah et al. (2014), which was based on 
VKM’s risk assessment  entitled: “Zinc and copper in pig and poultry 
production: fate and effects in the food chain and the environment” 
(VKM, 2014),  the development of resistance and cross-resistance 
between Cu and clinically used antibiotics in enterococci and E. coli 
were discussed. It was concluded that the development of resistance to 
Cu in enterococci is associated with the presence of a Cu-resistance 
gene (tcrB), which is often located on a plasmid. In enterococci, the Cu-
resistance gene, tcrB, was shown to be associated with resistance to 
the macrolide antibiotic erythromycin (ermB) (Amachawadi et al., 2011; 
Freitas et al., 2011; Jacob et al., 2010). A conjugation study 
demonstrated co-transfer of tcrB and ermB genes between E. faecium 
and E. faecalis (Amachawadi et al., 2011). Transferable tcrB has been 
reported in enterococci isolated from piglets, calves, poultry, as well as 
humans, in Denmark. Several studies performed in Denmark show a 
link between resistance to Cu and resistance to macrolides and also to 
glycopeptides (vancomycin) in enterococcal isolates of pig origin 
(Aarestrup et al., 2002). The authors concluded that the Cu-resistance 
gene occurs frequently in these isolates, in geographical areas where 
Cu sulphate is being used in large amounts as feed additive. This may 
have contributed to co-selection of resistance against macrolides and 
glycopeptides. Macrolides, like erythromycin, are commonly used in 
veterinary and human medicine.  
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Resistance in 
environmental 
bacteria  
 

In a risk assessment performed by VKM in 2014 entitled: “Zinc and 

copper in pig and poultry production: fate and effects in the food chain 

and the environment”, the development of resistance in bacteria of 

environmental origin was assessed (VKM, 2014). VKM’s Panel on animal 

feed concluded that: “The content of Cu in manure has been shown to 

be especially high from pigs and poultry, and from other farmed 

animals receiving a high portion of their diet from Cu added animal 

feed.” 

In bacterial isolates isolated from environmental samples, elevated 

tolerance (higher MIC) values to Cu was detected in several species, 

like Pseudomonas and E. coli. In six studies, the bacteria showed higher 

tolerance to either Zn or Cu or both. A link between resistance to Cu in 

bacteria found in the environment and resistance to the examined 

antibiotics were observed in all studies. The combined expression of 

antibiotic and metal resistance in bacteria isolated from the 

environment may be caused by selection resulting from metals present 

in environments rich in Zn and Cu. The source of Cu is not always 

identified in environmental studies, but Cu is currently accumulating in 

many soils as a result of current agricultural practices, where this trace 

element is often present in animal manure and sewage sludge spread 

on agricultural soils. Whereas antibiotics present in animal manure and 

sewage sludge may be degraded rapidly, the metals are persistent and 

may accumulate in soil. Bacterial isolates of environmental origin, with 

resistance to Zn or Cu, are frequently resistant to more antibiotics than 

isolates of animal origin.  

Conclusion Copper compounds are widely used as wood preservatives, in 
antifouling paints, and as molluscicides, and in agriculture as 
antimicrobial, algicidal, pesticidal and antifungal agents, and as animal 
feed additives. 
Resistance to Cu has been reported, both in bacteria isolated from 
human and animals, and in bacteria of environmental origin. Resistance 
against Cu may be linked to resistance against erythromycin (erm) or 
vancomycin (van) in enterococci. Resistance towards copper is 
frequently encoded by genes located on plasmids and transposons and 
is often transferable between bacterial species. Such resistance genes 
may be transferred to other bacteria and co-selection may occur. 
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Table 16. Mercury 

Chemical 

group 

Mercury (Hg)  

Mechanisms 

of action 

 

Mercury toxicity has been attributed to the inactivation of enzymes and 

interference with other protein functions by the tight binding of 

mercuric ions to thiol and imino nitrogen groups in these, or the 

displacement of other metal cofactors from enzymes. Mercuric ions also 

bind to nucleotides and lipids, interfering with DNA function and 

contributing to lipid peroxidation. Mercuric ions and organomercurials 

have the ability to pass rapidly through biological membranes, and 

organomercurials are highly lipid soluble (Clarkson and Magos, 2006). 

Antimicrobial 

activity 

Mercury is active (toxic), both against Gram-positive and Gram-negative 

bacteria. 

Uses 

 

Organic and inorganic mercury compounds have been widely used in 

agriculture and medicine. Mercury was heavily used in the cellulose 

industry and fjord sediments are still heavily polluted from the use of 

mercury in the cellulose industry. Mercury was used to protect plant 

seeds in the soil from fungus attack, and organic compounds containing 

mercury were used in agriculture to control plant diseases from the late 

nineteenth century until the 1970s, with aryl, aloxyl, and alkyl 

organomercurials becoming widely used in the 1950s, particularly as 

antifungal seed dressings, but also as pesticides and fungicidal sprays 

(Huisingh, 1974). The largest current use of mercury in a healthcare-

associated role is in dental amalgam, which typically contains 43–54  % 

mercury, 20–35  % silver, 15  % tin, 10  % copper, and 2  % zinc, 

depending on the formulation (Franke, 2007). There has been debate 

about the safety of mercury amalgam fillings and whether their use has 

negative effects on human health or may select for mercuric ion-

resistant bacteria. 

Mercury-containing antimicrobial usage is in decline and likely to be 

eliminated. The use of thiomersal/thimerosal as a vaccine preservative 

has been subject to vigorous debate and controversy, and it has been 

banned in some countries. Other mercury-containing disinfectants 

include merbromin (Mercurochrome) and nitromersol that have been 

superseded or withdrawn from use in the US or Europe (Hobman and 

Crossman, 2015). 
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Antimicrobial 

resistance 

 

Resistance to mercuric ions is believed to be an ancient resistance 

mechanism, evolving after the biosphere became widely oxygenated, 

and has been found in Bacteria and Archaea (Barkay et al., 2010). The 

mechanism of mercuric ion resistance to inorganic mercuric ions 

(narrow-spectrum resistance) is unusual for a metal ion resistance 

mechanism and counterintuitive. Rather than direct efflux of the metal, 

the simplest inorganic mercuric ion resistance operon in Gram-negative 

bacteria from Tn 501, encodes proteins that chaperone divalent 

mercuric ions (Hg2+) in the periplasm. The mechanism of mercuric ion 

resistance in Gram-positive bacteria is broadly the same as that in 

Gram-negative bacteria, but details of the regulation and mercuric ion 

import systems differ slightly (Hobman and Crossman, 2015). 

In Gram-negative enteric bacterial species, mercury-resistance genes 

are often found on plasmids and are associated with transposons / 

integrons (Foster, 1987; Khesin and Karasyova, 1984; Silver and Phung 

le, 2005). Similar mobile units are found in S. aureus and enterococci 

(Foster, 1987; Zscheck and Murray, 1993). More recently, oral 

streptococci and other oral genera have been shown to have reduced 

susceptibility to mercury, although, in general, the mechanisms of 

resistance have not been identified (Summers et al., 1993). Summers et 

al. (1993) suggested that mercury released from amalgams might act 

as a selective agent for both mercury-resistant and antibiotic-resistant 

oral and intestinal bacteria because of the link between mercury-

resistant and antibiotic-resistant genes. Given that amalgam is a 

common restorative material used worldwide, this mercury source has 

the potential to have a considerable effect on the composition of the 

normal human flora. Unlike antibiotics, which are usually taken for short 

periods separated by long intervals without use, once an amalgam 

filling is in place, low levels of mercury are released for extended time 

periods or the life of the filling (Roberts, 2002). 

Resistance in 

environmental 

bacteria  

We have not identified any review articles that report Hg resistance in 

bacteria of environmental origin. However, since mercury occurs 

naturally in soil and water, the presence of such bacteria cannot be 

excluded. 

Conclusion Organic and inorganic mercury compounds have been widely used in 

agriculture and medicine. Usage of antimicrobials containing mercury is 

in decline and likely to be eliminated. Plasmid/transposon-mediated 

resistance to inorganic and organic mercury compounds by hydrolases 

and reductases has been extensively studied, but its significance 

remains uncertain. As mercury is a natural material found in soil and 

water, it is highly likely that Hg-resistant bacteria will be identified in 

bacterial species of environmental origin. Resistance aginst Hg with co-

resistance and cross-resistance against clinically relevant antimicrobial 

agents has been identified in bacteria. 
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Table 17. Silver 

Heavy metal Silver (Ag) 

 

Mechanisms 

of action 

 

Silver ions are highly toxic to all microorganisms, probably due to 

disruption of membrane respiratory electron transport chains and 

components of DNA replication (Feng et al., 2000). 

Silver ions cause inhibition of respiration, membrane damage, and 

destruction of the proton-motive force. The interaction of Ag+ with thiol 

groups in membrane proteins/enzymes is thought to be a major toxicity 

mechanism; data suggest that the key toxicity event is interactions 

between Ag+ and respiratory chain enzymes (Holt and Bard, 2005). 

Antimicrobial 

activity 

There is no known beneficial role for silver in metabolism and it is 

highly toxic to bacteria (Nies 1999). Silver is active against both Gram-

positive and Gram-negative bacteria. 

Uses 

 

In agriculture, Ag may be used as silver iodide (AgI) for cloud seeding, 

but the first use of silver as an antibacterial is reported to have 

occurred over 2000 years ago in drinking water containers. Silver is still 

widely used in water filters and other treatments for potable water, or 

as an algicide for swimming pools Hobman and Crossman (2015). 

One noticeable increase in the use of antimicrobial metal products is 

that of silver in consumer and ‘lifestyle’ products. Over the past 20 

years or so, silver-containing plasters, clothes, water filters, and 

personal hygiene and consumer products have been produced 

worldwide (Edwards-Jones, 2009; Silver, 2003; Silver and Phung le, 

2005), and the use of antimicrobial silver nanoparticles  (AgNPs) in 

products is also rising (Chaloupka et al., 2010), including examples 

where they have been integrated into household items, such as 

computer keyboards, washing machine drums, air conditioners, and 

refrigerators. 

AgNPs have received considerable attention due to their significant 

antimicrobial properties. There are many reports on the physical, 

chemical, and biological syntheses of colloidal AgNPs. As ecofriendly 

and sustainable methods are needed, biological systems like bacteria, 

fungi, and plants are being used to synthesize these AgNPs (Singh et 

al., 2015). 
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Antimicrobial 

resistance 

 

Molecular and genetic evidence for silver resistance in Enterobacter 

cloacae isolated from skin wounds and medical devices has been 

reported. The same bacterial strain was isolated from leg ulcers of an 

elderly woman (Landsdown and Williams, 2007). 

Bacterial silver resistance, like that to other toxic metal ions, is 

frequently encoded by genes located on plasmids (Davis et al., 2005; 

Gupta et al., 2001), but also sometimes found encoded on the 

chromosome, reviewed by Silver and Phung (1996). 

Although bacterial silver resistance has been reported sporadically since 

the 1960s (see (Chopra, 2007; Clement and Jarrett, 1994)), the 

pMG101 sil system remains the only system characterized in any detail 

at the genetic level. 

Resistance in 

environmental 

bacteria   

We did not identify any articles regarding development of resistance 

against Ag in bacteria of environmental origin. However, the occurrence 

of such bacterial isolates is not unlikely. 

Conclusion A literature search using the terms “Antimicrobial resistance” AND 

“silver” resulted in 65 review articles, most of which addressed use of 

silver and AgNPs for treatment/prevention of infection, and only 4 

articles discussed development of Ag resistance. Silver is one of several 

topical antiseptics that are  gaining popularity again, partly due to the 

rise of antibiotic-resistant genotypes. The clinical incidence of silver 

resistance remains low, and emergence of resistance can be minimized 

if the level of silver ions released from products is high and the 

bactericidal activity is rapid. 

 
 

Table 18. Zinc 

Heavy metal Zinc (Zn) 

 

Mechanisms 

of action 

 

Zinc ions are known to inhibit multiple activities in bacterial cells, such 

as glycolysis, transmembrane proton translocation, and acid tolerance 

(Phan et al., 2004). Although ZnO nanoparticles may be lethal to 

bacteria (bactericidal), zinc ions are likely only able to inhibit 

proliferation (bacteriostatic). 

Trace elements like Zn may be toxic to bacteria and this may be due to 

their chemical affinity to thiol groups of macro-biomolecules, but may 

also be dependent on the solubility of the metal compounds under 

physiological conditions (Yazdankhah et al., 2014). 

Antimicrobial 

activity 

Zn2+ has bactericidal effects on both Gram-positive and Gram-negative 

bacteria, as well as spores that are resistant to high temperature and 

high pressure (Azam et al., 2011). 
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Uses 

 

Farmed animals, such as pig and poultry, receive supplementary Zn 

(dietary ZnO and CuSO4) via compound feed, as well as in medical 

remedies (Yazdankhah et al., 2014). Zn and Cu in animal feed are 

usually in concentrations in excess of their nutritional requirements and 

are intended for prevention of diarrhoeal disease, and also as an 

alternative to in-feed antibiotics for growth promotion (Amachawadi et 

al., 2011; Cavaco et al., 2011). 

Zinc has been used as nanoparticles as an alternative to antibiotics and 

disinfectants, especially in biomedical applications. Zinc oxide 

consumption has increased in globally, and it is one of the most popular 

nanoparticles (Seil and Webster, 2011), with its photocatalytic activity 

under light illumination utilized in different industries, especially textiles 

and polymers (Montazer et al., 2013). The safety of ZnO and its 

compatibility with human skin make it a suitable additive for textiles 

and surfaces that come into contact with the human body (Liu et al., 

2014).  
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Antimicrobial 

resistance 

 

Of 81 review articles identified in our search in PubMed search, five 

articles discussed development of resistance in bacteria due to use of 

Zn as a feed additive for animals like poultry and pigs.  

In the review article of Yazdankhah et al. (2014), which was based on 

VKM’s risk assessment entitled “Zinc and copper in pig and poultry 

production fate and effects in the food chain and the environment” 

(VKM, 2014), the development of resistance and cross-resistance 

between Zn and clinically used antibiotics against staphylococci, 

enterococci, and E. coli were discussed. An association in staphylococci 

between resistance to Zn and resistance to methicillin has been 

demonstrated. The study performed by Cavaco et al. (2011) found that 

MRSA strains from pigs from European countries, Canada, and China 

had a high prevalence of Zn resistance (mainly associated with the czrC 

gene), whereas the corresponding MSSA were susceptible. A similar 

association between resistance to Zn and resistance to methicillin was 

also observed in samples from veal farms from the Netherlands. 

However, in Norway and countries within EU methicillin is not the drug 

of choice for treatment of infection in veterinary medicine. Knowledge 

regarding the source of methicillin–Zn-resistant staphylococci in animals 

is lacking. It is not clear whether the methicillin-resistant staphylococci 

in animals are of human origin and have been resistant to Zn after 

exposure to feed, or whether the Zn-resistant staphylococci have been 

resistant to methicillin due to exposure to antibiotic(s). 

A publication from Germany (Bednorz et al., 2013) showed a higher 

diversity of E. coli clones in piglets fed with diets supplemented with Zn 

than in the background control group. The proportion of multi-resistant 

E. coli was significantly higher in the Zn group than in the control 

group. The authors suggested two possible mechanisms for their 

results: 1) co-selection via Zn resistance, as some of the isolates 

demonstrated both Zn-resistance and AMR; 2) enhanced plasmid 

uptake under the influence of Zn, as the authors detected several 

resistance plasmids in isolates from the Zn-feeding group. Identical 

clones were not present in the control group. 
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Resistance in 

environmental 

bacteria  

In a risk assessment  entitled: “Zinc and copper in pig and poultry 

production fate and effects in the food chain and the environment” 

(VKM, 2014), development of resistance in bacteria of environmental 

origin was assessed. VKM’s Panel on animal feed concluded that: “The 

content of Zn in manure has been shown to be especially high from 

pigs and poultry and from other farmed animals receiving a high portion 

of their diet from compound feed.” 

In bacterial isolates found in the environment, elevated tolerance 

(higher MIC values) to Zn was detected in several species like 

Pseudomonas sp., E. coli, and in culturable bacteria from sludge, soil, 

and water samples. The bacteria in five studies showed higher 

tolerance to either Zn or Cu or both. A link between resistance to Zn in 

bacteria from the environment and resistance to the antibiotics 

examined was noted in all studies. The combined expression of 

antibiotic and metal resistance in bacteria isolated from the 

environment may be due to selection resulting from metals present in 

environments rich in Zn and Cu. In the environmental studies, the 

source of Zn/Cu is not always identified, but Zn/Cu is caccumulating in 

many soils as a result of current agricultural practices; these trace 

elements are often present in animal manure and sewage sludge that 

are spread on agricultural soils. Whereas antibiotics present in animal 

manure and sewage sludge may be degraded rapidly, the metals are 

persistent and may accumulate in soil. Bacterial isolates of 

environmental origin, with resistance to Zn or Cu, are frequently 

resistant to more antibiotics than isolates of animal origin. 

Conclusion Farmed animals, such as pigs and poultry, receive additional Zn via 

supplementary elements in their compound feed, as well as in medical 

remedies. In addition, Zn is used in humans in combination with some 

antibiotics, like bacitracin or erythromycin, for treatment of wound 

infections. Zinc has been used as nanoparticles as an alternative to 

antibiotics and disinfectants, especially in biomedical applications. 

Enteral bacteria, both commensal and pathogenic, in farmed animals 

have been shown to develop resistance to Zn and concomitant cross-

resistance to antimicrobial agents. Such bacteria may be transferred to 

other animals and to humans. Resistance to Zn, which is mainly 

associated with the czrC gene has been reported, in bacteria isolated 

from humans, animals, and from the environment. Resistance against 

Zn may be linked to resistance against methicillin in S. aureus and Zn 

supplementation in animal feed may increase the proportion of multi-

resistant E. coli in gut microbiota. Resistance genes against Zn may be 

transferred to other bacteria. 
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Table 19. Cadmium 

Heavy metal Cadmium (Cd) 

 

Mechanisms 

of action 

 

Specific mechanims of action have not been described. The effects may 

be summed up under the general headings: “thiol-binding and protein 

denaturation”, ”interaction with calcium metabolism and membrane 

damage”, “interaction with zinc metabolism”, and “loss of protective 

function”. The dsbA encoding gene for a product required for disulphite 

formation, leads to Cd sensitivity in Gram-negative bacteria (Nies, 

1999). 

Antimicrobial 

activity 

Cd is considered as the most toxic heavy metal, especially against 

microorganisms. The activity of Cd is against both Gram-positive and 

Gram-negative bacteria.  

Uses 

 

Cd has no known biological function in either animals or humans, but 

mimics the actions of other divalent metals that are essential to diverse 

biological functions (EFSA, 2009). Human exposure to cadmium is 

possible through a number of sources including employment in primary 

metal industries, consuming contaminated food, smoking cigarettes, 

and working in cadmium-contaminated workplaces, with smoking being 

a major contributor (Paschal et al., 2000).  

Antimicrobial 

resistance 

 

Using the terms “cadmium”  AND “Antimicrobial resistance” AND 

“Review” identified two articles, neither of which were relevant and are 

therefore not included here. 

Using the terms “cadmium”  AND “Antimicrobial resistant bacteria” 

identified 131 articles, of which 102 were relevant and discussed 

development of resistance against Cd in bacteria. Resistance against 

Cd, with a possible link to other heavy metals, QACs, and clinically 

relevant antimicrobial agents has been observed and was discussed in 

many of these articles.    

Resistance against Cd in bacteria is based on Cd efflux. In Gram-

negative bacteria, Cd seems to be detoxified by an RND-driven system 

like Czc, which is mainly a Zn exporter, and Ncc, which is mainly a 

nickel exporter. Resistance against Cd in S. aureus and other Gram-

positive bacteria is associated with CdA pump or other CdA like proteins 

(Nies, 1999). 
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Resistance in 

environmental 

bacteria  

Of the 102 articles identified (see above), 38 addressed development of 

resistance in bacteria of environmental origin and discussed 

development of resistance against Cd with possible links to other heavy 

metals, QACs, and clinically relevant antimicrobial agents. 

Cyanobacteria contain methallothionein. Amplification of the smt 

methallothionein locus has been reported to increase Cd resistance and 

deletion of the locus decrease Cd resistance (Nies, 1999). 

Several studies have reported Cd resistance in bacteria from 

wastewater (Anssour et al., 2016), and in heterotrophic aerobic bacteria 

from marine hydrothermal vent fields (Farias et al., 2015).  

Conclusion Cd has no known biological function in either animals or human. Its 

presence in animal feed and food for human consumption is 

undesirable, due to its toxicity and carcinogenicity. Several studies have 

shown development of resistance against Cd in bacteria and cross-

resistance to other heavy metals, biocides like QACs, and also 

antimicrobial agents. 

 

3.10 Use of biocides and heavy metals in Norway 
 
Although most biocides and heavy metals are known to be high volume products, the 
Working group was not able to obtain exact data, from Norway regarding use of different 
active substances within disinfectant agents and all heavy metals included in this report.  
 
According to data provided by the Norwegian Environmental Agency, approximately 14000 
tonnes of disinfectant agents (types 1, 2, 3, 4 or 5) were used in 2015 (see appendix 1 for 
definitions of types 1-5). The most commonly used in Norway, with the highest volume of 
disinfectant agents are: ethanol, sodium hypochlorite, propan-2-ol, propan-1-ol, QAC, H2O2, 
peracetic acid, pentapotassium bis(peroxymonosulphate) bis(sulphat), glutaral, and 2-
phenoxyethanol (personal communication, Espen Wigaard). 

 Biocides 

In the following we summarize the use of biocides and heavy metals in different areas 
(SCENHR, 2009): 

A- Biocides in health care: Disinfectants (mainly group I) are used in the 
decontamination process of patient-care devices, environmental surfaces, and intact 
skin. Some of the most commonly used biocides in this area are: ethyl or isopropyl 
alcohol, iodophor solution, phenols, QACs, sodium hydrochlorite, glutaraldehyde, 
H2O2, hypochlorite, and peracetic acid. 
 

B- Biocides used on skin and mucosa: Antiseptic agents differ from disinfectants, in 
that they may be used on non-intact skin and mucosa. Some of the biocides most 
commonly used as disinfectants and antiseptics are alcohol (ethanol, isopropanol, n-
propanol), iodophores (povidone-iodine), QACs, and triclosan. 

 



 

 

VKM Report 2016: 63  64 

C- Biocides in consumer products: 
a. Cosmetics and personal care products: Biocides in this group are 

regulated by the EU Directive 76/768/EEC. The main function of these 
compounds in cosmetics is protection of the products from microbial 
degradation. Some of the most commonly used in this area are: alcohol, 
QACs, chlorhexidine, and triclosan.  

b. Household products: The use of biocides in household products is not 
regulated in the EU. Many detergents may contain cationic surfactants and 
QACs. Cleaning product formulations for private homes may be similar to 
those used in industry, and in public and private buildings. Surfaces coated 
with biocides like triclosan and metallic ions (e.g., Ag, Cu) have been used 
with the intention of preventing or reducing the growth of microorganisms. 

c. Triclosan in consumer products and textiles: Triclosan is used in 
cosmetic products, toothpaste, cleaning products, paints, textiles, and plastic 
products.    
 

D- Biocides in food production: Disinfectant agents, like QACs and alcohols, are 
widely used for the disinfection of production plants and food containers, and the 
control of bacterial growth in food and drinks. This is regulated by Directive 98/8/EC. 
In addition, biocides may be used as preservatives in foods with the intention of 
prolonging the shelf-life of food-stuffs by protecting them from deterioration caused 
by microorganisms.  
 

E- Biocides in animal husbandry:  
a. Cleaning and disinfection of farm buildings, particularly between batches of 

animals. 
b. Creating barriers, such as in the use of footdips outside animal houses, and 

disinfecting vehicles and materials during outbreaks of infectious diseases. 
c. Direct application (e.g., teat dips) 
d. Preservation (e.g., eggs, semen)  

Some of the most commonly used biocides in veterinary medicines are: H2O2, 
acetic acid, QACs, glutaraldehyde, formaldehyde, and isopropanol. 
In addition, biocides may be used as preservatives in feeds with the intention of 
prolonging the shelf-life of feedstuffs by protecting them from deterioration 
caused by microorganisms. 
 
Biocide use in fish farming: For decontamination of fish farms, fish eggs, ponds, 
and equipment. These include iodophores, metallic salts, halogenic compounds, 
aldehydes, H2O2, QACs, and antimicrobial dyes (Directive 98/8/EC).  

 
In  Norway, the following biocides are used for disinfection of poultry farms:  

 Virocid, which contains alkyldimethylbenzylammonium chloride, 
didecyldimethylammonium chloride, glutaraldehyde, and propan-2-ol. 

 Neoprednisan, containing Preventol CMK (p-Chloro-m-cresol). 
 CID2000, containing hydrogen peroxide, peracetic acid, and acetic acid. 

The following disinfectant agents are approved for use in aquaculture in Norway: 
(http://www.mattilsynet.no/fisk_og_akvakultur/akvakultur/desinfeksjon/godkjente_desinfeksj
onsmidler_i_akvakultur.802):  

 Virocid, containing alkyldimethylbenzylammonium chloride, 
didecyldimethylammonium chloride, glutaraldehyde, and propan-2-ol. 

http://www.mattilsynet.no/fisk_og_akvakultur/akvakultur/desinfeksjon/godkjente_desinfeksjonsmidler_i_akvakultur.802
http://www.mattilsynet.no/fisk_og_akvakultur/akvakultur/desinfeksjon/godkjente_desinfeksjonsmidler_i_akvakultur.802
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 Kick-Start, which contains hydrogen peroxide, acetic acid, peracetic acid, stabilizer, 
and surfactant agent. 

 Aqua Des, which contains peracetic acids. 
 Perfectoxid, which contains hydrogen peroxide, acetic acid, and peracetic acid. 
 NORMEX Desinfecta: Ozone  
 Grotanol 3025 (changed name from Buraton 3025), (Mixture of 5-chloro-2-methyl-

2H-isothiazol-3-one and 2-Methyl-2H-isothiazol-3-one), Glutaral, 5-chloro-2-methyl-
2H-isothiazol-3-one, and 2-Methyl-2H-isothiazol-3-one. 

 ADDI AQUA, peracetic acid. 
 Redoxzon, ozone. 
 AquaZone, ozone/biofilteration and hydrogen peroxide and UV. 
 Hygi-Des, hydrogen peroxide, acetic acid, and peracetic acid. 

F- Biocides in food of animal origin: Biocides may be used to remove surface 
bacterial contamination from products of animal origin such as poultry carcasses. 

G- Biocides in the environment: Biocides may be used for a variety of applications 
like water treatment and wastewater treatment. 

 Heavy metals 

Heavy metals have multiple uses in industrial, domestic, agricultural, medical, and 
technological applications. This has led to their wide distribution in the environment, raising 
concerns over their potential effects on human health and the environment (Tchounwou et 
al., 2012). Heavy metals like lead, arsenic, mercury, aluminum, zinc, chromium, and iron 
are found in a wide variety of personal care products, including lipstick, whitening 
toothpaste, eyeliner, and nail color. Some metals are intentionally added as ingredients, 
whereas others are contaminants  (http://www.safecosmetics.org/get-the-facts/chemicals-
of-concern/lead-and-other-heavy-metals/#sthash.PMwCk7le.dpuf). 
 
Heavy metals used in industrial, domestic, and technological products 
According to data provided by the Norwegian Environmental Agency, heavy metals like Ag, 
Hg, Cd, Cu, As, and Zn may be used in different industrial, domestic, and technological 
producs (Table 20). Based on these data, the amounts of heavy metals used in various 
products in Norway can be ranked by quantity as follows: Zn> Cu> Cd> As> Ag >Hg 
(personal communication, Espen Wigaard).  
 

Table 20. Heavy metals used in different industrial, domestic, and technological products, 
but not agricultural products, in Norway. 

Heavy 
metals 

Derivatives Amount  Usage area 

Zn 

 

Zinc oxide, Zinc sulphate, 

Zinc chloride, Zinc 

sulphide, Zinc octoate 

>100.000 

tonnes 

Ship building, repair and 

maintenance of ships and 

boats, paints and varnishes, 

Antifoulants (PT21). 

Raw materials (industrial use). 

Cu 
 

Cu, Copper dioxide  100-100.000 

tonnes 

Antifoulants (PT21). 
Raw materials (industrial use). 

http://www.safecosmetics.org/get-the-facts/chemicals-of-concern/lead-and-other-heavy-metals/#sthash.PMwCk7le.dpuf
http://www.safecosmetics.org/get-the-facts/chemicals-of-concern/lead-and-other-heavy-metals/#sthash.PMwCk7le.dpuf
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Cd 

 

Cadmium oxide, 

Cadmium sulphide, Cd 

100-1000 

tonnes 

Repair and maintenance of 
ships and boats, paints and 
varnishes, antifoulants (PT21), 
jointless floors. 
Raw materials (industrial use). 

As 
 

Arsenic, Arsenic trioxide 10-100 
tonnes 

Paints and varnishes, jointless 
floors, raw materials (industrial 
use). 

Ag 
 

Silver, Silver nitrate, 
Silver cholride 

1-10 tonnes Biocidal products for human 
hygiene (PT1), biocidal 
products within public health 
and nursing (PT2). 

Hg 
 

Mercury 1-10 kg* Raw materials (industrial use). 

*Mostly as contaminant 

 
Heavy metals (Zn, Cu) used in agriculture 
Cu and Zn are the most commonly used heavy metals applied in large quantities in Norway, 
being mainly used as feed additive for pigs and poultry. The approximate total amount of 
complete compound feed produced for pigs in Norway in 2012, based on the reported 
production from the three main industry organisations was 469,000 tonnes. The 
corresponding total amount of compound feed for poultry in 2012 was 428,000 tonnes. The 
concentrations of Zn and Cu in the complete compound feed, asreported by the different 
producers, are fairly similar (VKM, 2014). In complete compound feed for pigs in Norway in 
2012, the estimated total amounts of Zn and Cu were 66,733 kg and 10,886 kg, respectively. 
In complete compound feed for poultry in Norway in 2012, the corresponding total amounts 
of Zn and Cu were 48,369 kg and 7,980 kg, respectively.   
These figures are based on turnover of the various categories of compound feed and their 
concentrations of Zn and Cu reported from the industry organisations.  
 
The estimated amount of Zn in medical remedies in 2012 was 4,130 kg (data for Normin 
Sink, only). This amount of Zn represents an addition of 67 % to the Zn in complete feed for 
piglets.  No medical remedies based on Cu are registered in Norway. In addition, Zn and Cu 
can be found in drinking water, barn installations, and other environments. 
 
In the last ten years, a number of nanoparticles like AgNPs and Zn nanoparticles have 
received considerable attention. Due to their significant antimicrobial properties they have 
been integrated into household items, such as computer keyboards, washing machine 
drums, air conditioners, and refrigerators. 
 
Heavy metals from human activity in the environment  
Environmental levels of heavy metals are closely monitored at selected sites. The general 
trend in Norway is decreasing leakage of Cu, Hg, Pb, and Cd 
(http://www.norskeutslipp.no/no/Komponenter/Avfall/EE-
produkter111/?ComponentType=avfall&WasteComponentPageID=109&SectorID=600), but 
steady levels of Zn (measured in sewage). However, dietary supplementation of Zn in animal 
production and heavy use of Cu as net pen antifouling in aquaculture may have the potential 
to create local concentrations of these chemicals that are of concern for AMR development.  
 
There is no doubt that the production volumes and the use area for several biocide products 
and heavy metals are several orders of magnitude higher than those of antimicrobial agents 
used in therapy and prophylaxis. 
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3.11 Summary of hazard characterization 
 
The main hazards with respect to use of chemicals are related to development of AMR and 
their role as drivers of AMR (e.g., resistance against antibiotics) through co-resistance or 
cross-resistance. Thus, a central question is concerned current trends with respect to levels 
of release to the environment. Release of chemicals like biocides (in particular disinfectants) 
and heavy metals, together with antimicrobial agents from agriculture, hospitals, and 
industry, has the potential of to create local concentrations that promote spread of AMR. 
 
Mechanisms of cross-resistance are well described in laboratory experiments for several 
chemicals used as disinfectants, in particular phenols, like triclosan, and cationic agents, like 
QACs. These mechanisms include both metabolic and genetic changes in the bacteria. 
Although the levels of disinfectant use in Norway are not certain, the international trends are 
clear. The “infection control market” shows a steady growth; infection control in food-
producing animals, both terrestrial and aquatic, is also a driver. These trends will therefore 
amplify these hazards in the future.  
 
In addition, some heavy metals (notably Zn and Cu) can drive AMR through co-selection, as 
described in section 3.4. Environmental levels of heavy metals are closely monitored at 
selected sites in Norway and the general trend is decreasing release of Cu, Hg, Pb, and Cd, 
but steady levels of Zn (measured in sewage). However, dietary supplementation of Zn in 
animal production and heavy use of Cu as net pen antifoulant in aquaculture may have the 
potential to create local concentrations of these chemicals of concern for AMR development.  
 

Discussion 

3.12 Resistance and cross-resistance between biocides and 
antimicrobial agents 

Resistance to biocides in microorganisms resulting from the use of the same biocide is well 
documented. But whether one biocide will induce resistance to other biocides is less clear. 
One mechanism is a mutation in one gene resulting in the organism becoming resistant to 
another biocide from the same chemical group. Another mechanism is the resistance 
mechanism being an efflux pump that is also able to export other similar biocides so 
efficiently that the concentration inside the cell falls below the toxic level.  
 
Laboratory studies with bacteria have shown that a biocide might also co-select for 
resistance to antibiotics, but whether this occurs in nature has not yet been resolved. There 
is very little research in this field, but a EU project: “Confronting the clinical relevance of 
biocide induced antibiotic resistance (BIOHYPO)” investigated whether use of biocides such 
as triclosan, QACs, chlorhexidine, and sodium hypochlorite, in the food-chain would result in 
a clinically relevant increase in AMR in human pathogens. 
 
The conclusions from this project were that resistance is usually selected by the antibiotic 
itself, but that biocides might also co-select for resistance to antibiotics. Although resistance 
to biocides is poorly defined at the mechanistic level, different in vitro studies have shown 
that mutants presenting low susceptibility to biocides also have reduced susceptibility to 
antibiotics. However, regarding studies on natural bacterial isolates, this EU project claims 
that no clear conclusions can reached as to whether use of biocides results in acquired 
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antibiotic resistance in bacteria. (cordis.europa.eu/result/rcn/56830_en.html) (Oggioni et al., 
2013).  
 
In 2005, an expert panel convened by the FDA concluded by a vote of 11-to-1 that use of 
topical antiseptics does not provide a measurable benefit to consumers (FDA, 2005). Studies 
focused on household settings, rather than the outdoor environment, showed that the 
development and proliferation of drug resistance is likely. One unexplored locale is sewage 
sludge, where an abundance of pathogens, multiple antimicrobials, and extended contact 
times creates a large and risky setting for the emergence of drug resistance (Halden, 2014). 
 
We have not identified any publication that demonstrates a link between development of 
antimicrobial (antibiotic) resistance under natural conditions due to the use of fungicides in 
agriculture.  

3.13 Cross-resistance between heavy metals and antimicrobial 
agents 

The literature search using the terms “heavy metal” and “antimicrobial resistance” produced 
a high number of papers, as reviewed in section 2. The most important compounds linked to 
AMR in this group were Cu and Zn, but examples of AMR driven by Hg and Cd were also 
found (Seiler and Berendonk, 2012). Urbanization, combined with industrial and agricultural 
activity, are sources of heavy metal contamination of the environment, resulting in levels 
that exceed the concentrations reached by natural geochemical processes (Grecco, 2011). 
Atmospheric deposits of heavy metal contamination increased steadily in Europe from the 
industrial revolution (1850) until the 1970s, but have since declined. The same trend has 
been observed in Norway (NTNU, 2001). However, the input of heavy metals to the 
environment from the agricultural sector is still rising, resulting in increasing levels in topsoil 
and waters (Monteiro et al., 2010). In salmon farming, more than 1000 metric tonnes of Cu 
were used for antifouling of net pens in 2014 (Skarbøvik et al., 2014). In high 
concentrations, Cu can both cause damage to sensitive species and result in long-term 
adverse effects in the aquatic environment. The authorities in Norway expect breeders to 
utilise more environmentally friendly methods, so that the use of Cu can be reduced. Fish 
farmers are obliged to measure the levels of copper in sediments under and around fish 
farms (http://www.miljostatus.no/tema/hav-og-kyst/fiskeoppdrett/kobber-og-andre-
kjemikalier-i-fiskeoppdrett/). Heavy metals, like Zn, Cu, Hg, and Cd, occur as additives or 
contaminants in animal feed and fertilizers, leading to a steady supply to agricultural 
environments, and to both land and water by runoff. These anthropogenically caused 
elevations in heavy metals constitute a selective pressure on the local microbiota, and may 
result in resistance development. This resistance can be co-transferred to resistance towards 
antibiotics of medical importance. In some environments, antibiotics from sewage or 
agricultural activities may expose bacteria to a co-selective environment, increasing the 
chances of AMR development. Reuse of water for agricultural irrigation and use of liquid 
sludge as fertilizer are areas where heavy metals and antibiotics may meet in a co-selective 
environment, with the potential to drive the development of AMR. Seiler and Berendonk 
(2012) tried to rank the most important drivers of metal-induced AMR by combining datasets 
for environmental heavy metal concentrations with data from co-selection experiments in 
both the laboratory and the field. Heavy metal levels that elevated antibiotic MIC levels were 
considered as minimum metal co-selective concentration (MMC). Studies where the heavy 
metal concentrations in environmental matrices (water, sediment, sewage, and manure) 
were  ≥ MMC were found for Cd, Cu, Ni, Hg, Pb, and Zn more frequently than studies with 
the opposite ratio.  
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Most studies indicate a MMC ratio >1 for Cu and Zn. This suggests that co-selective levels of 
several heavy metals can be found in different environments where bacteria occur in high 
numbers. Although compelling, these findings from combined datasets needs verification in 
controlled laboratory experiments in which the conditions used mimic, as far as possible,  
natural environmental conditions. Correlation does not equal causation, and false positives 
may exist. However, mechanisms of co-selection for the individual heavy metals, notably Cu 
and Zn, have been described, providing rational explanations for the observed effects. In 
order to monitor these developments, there is an urgent need for standardization of 
resistance testing in environmental samples, in the same way as has been developed for 
clinical samples.  
 
In a perspective article summarizing the results from the EU COST action “Detecting 
evolutionary hotspots of antibiotic resistance in Europe, TD0803”, the authors propose the 
development of global databases that collect and collate information about AMR at local, 
national, and global levels (Berendonk et al., 2015). Controlling the release of potentially 
resistance driven chemicals to evolutionarily environmental hotspots of antibiotic resistance, 
where bacteria, antibiotics, resistance genes, and co-selecting environmental factors (like 
heavy metals) meet, for example urban and agricultural sewage, and industrial (in particular 
pharmaceutical and food production) wastewater, is of great importance.  
 
We did not identify any publications that demonstrated a link between resistance against 
heavy metals and concomitant resistance against heavy metals and fungicides in fungal 
species. 

Probability characterisation  
 
Although the risk characterization generated by a qualitative risk assessment should ideally 
be based on numerical data for exposure assessment and hazard characterization, it is more 
generally of a descriptive or categorical nature, that is not directly tied to a more precisely 
quantified measure of risk. 
As this report is not a traditional risk assessment, but a literature survey that presents and 
compiles available information regarding resistance development in bacteria due to 
use/misuse of biocides and heavy metals, risk characterization has been excluded here.      
The following definitions are used, based upon the Biosafety Resource Book published by 
FAO in 2011 (Sensi et al., 2011): 

 Highly likely - is expected to occur in most circumstances  
 Likely - could occur in many circumstance 
 Unlikely - could occur in some circumstances  
 Highly unlikely (negligible or effectively zero) - may occur only in very rare 

circumstances   

Table 21 illustrates the probability/likelihood of occurrence of resistance in bacteria in 
environments associated with the use of biocides and heavy metals. These definitions are 
not only based on the ability of biocides /heavy metals to induce resistance and co-resistance 
or cross-resistance in bacteria, but also based on their volume and applications, and their 
use in different setting. The concentrations can be of importance when considering the 
specific environments. 
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Table 21. Biocides and heavy metals and their potential to induce resistance and cross/co-
resistance in bacteria against antimicrobial agents. 

 
Probability/

likelihood 

Chemical group Examples 

Highly likely Copper (Cu), zinc (Zn), cadmium (Cd)  

 

Likely 

 

Phenols, surface-active agents, arsenic (As), 

mercury (Hg 2+) 

Triclosan, QACs 

Unlikely Aldehydes, biguanides, organic acids, 

inorganic acids, antimicrobial dyes, diamides, 

silver (Ag) 

Glutaraldehyde, 

formaldehyde, 

chlorhexidine, acetic 

acid, formic acid, 

acridine, 

triphenylmethane, 

quinones 

Highly 

unlikely 

Alcohol, anilides, peroxygens, halogen-

releasing agents, diamidines 

Ethanol, salicylanilide, 

carbanilide, H2O2, 

chlorine, bromine, 

iodine 

 

4. Uncertainties 
The degree of confidence in the final estimation of risk depends on the variability, 
uncertainty, and assumptions identified in all the previous steps. According to EFSA’s 
guidance regarding uncertainties, assessments must state clearly and unambiguously the 
uncertainties that have been identified and their impact on the overall assessment outcome 
(https://www.efsa.europa.eu/sites/default/files/consultation/150618.pdf).  
In this assessment, a number of uncertainties have been identified related to the probability 
of formation of, and dissemination of, AMR due to the use of biocides and heavy metals to 
the environment. Many of these uncertainties are caused by data gaps and a lack of 
quantitative framework.  
 
Detailed data on the current and future use of biocides in Norway, along with their 
environmental levels, are not readily available. Without these data, estimating the selective 
pressure that could potentially induce increased AMR is challenging. In contrast, 
environmental levels of heavy metals in soil, sewage, and sediments are analysed at regular 
intervals and may therefore be used for exposure considerations. However, the present 
methods for determination of AMR in environmental samples is primarily based on culture 
studies (± antibiotics) or on the presence of antimicrobial resistance genes (ARGs) (by qPCR 
or sequencing), methods that do not fully capture the potential for co-selection with biocides 
or heavy metals.  
 
There are also uncertainties regarding the ability of, and extent of. Biocides and/or heavy 
metal-resistant bacterial strains to colonize humans or animals, and the ability of their 
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resistance genes to be transferred to resident bacterial species in the environment. The issue 
of AMR in the environment is addressed either as a direct hazard or as an indirect hazard 
through resistance transfer, as noted in hazard identification.  
 
The uncertainties identified are as follows: 

• AMR requires greater understanding of the genetic interactions and spread that occur 
in environmental bacteria. 

• AMR is an evolving situation; those factors that may promote/reduce the transmission 
of bacteria resistant to antimicrobials, and their corresponding gene determinants, 
have not been identified.  

• The complex chemistry of environmental heavy metals may pose a challenge to the 
applicability of controlled laboratory experiments investigating co-selection of 
resistance to a single heavy metal and antimicrobial compounds.   

• For uncertainties regarding laboratory methods, see data gaps. 
• Quantitative approaches are largely lacking. 
• HGT events can rarely be traced back to enable identification of the specific 

conditions and circumstances that gave rise to the event 

 

5. Conclusions (with answers to the 
terms of reference) 

 

1. List substances that may contribute to increased antimicrobial resistance.  

 
Table 21 gives an overview of biocides and heavy metals and their potential to induce 
resistance and cross-resistance and/or co-resistance against antimicrobial agents in bacteria. 
The most common chemical compounds with the potential to induce resistance and cross or 
co-resistance against antimicrobial agents in bacteria are the heavy metals copper, zinc, and 
cadmium (highly likely). Phenols, especially triclosan, and surface-active agents, especially 
QACs, arsenic, and mercury are categorised as likely. However, aldehydes, biguanides, 
organic acids, inorganic acids, antimicrobial dyes, diaminides, and silver are categorised as 
unlikely.    
 

2. Describe the substances listed in question 1 that are in use in Norway and 
assess those fields of application that have the potential to contribute to 
increased resistance.  

3. Range the substances, according to field of application, that are assumed 
to have the greatest effect on development of resistance, based on their 
characteristics and the amount used.  

 
All the chemicals listed in Table 21 are used in Norway.  
Zinc and copper are used as additives to animal feed. As rather high amounts are used, we 
regard these two elements as the most potent AMR driving substances in Norway, after the 
antimicrobials themselves.  
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QACs are used in large amounts as biocides to clean and disinfect equipment in the industry, 
and may have a resistance-driving effect in some locations. There is also some concern that 
that may drive AMR when used in cosmetics.  
 
Following the significant reduction in the use of arsenic, and mercury in Norway, we regard 
the probability of development of antimicrobial cross-resistance by these substances as 
unlikely. In our opinion, all the chemicals categorised as being in the unlikely or highly 
unlikely group, do not represent a risk for driving the development of AMR in the 
environment. 

 
4. Identify knowledge gaps regarding the effects of these substances on 
development of resistance.  
 

We have been unable to obtain data on the amounts of the different biocides and heavy 
metals that may be released into the environment in Norway, and whether these amounts 
singly, or in combination, may promote development of AMR. There is a lack of data 
regarding use/misuse/presence of biocides and/or heavy metals in consumer products. 
Knowledge of the effects of the disinfectant agents, chlorhexidine and QACs, and heavy 
metals in cosmetic products on the selection of cross-resistance against antimicrobial agents 
is lacking. 
 
Further information is provided in section 6 Data gaps.   
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6. Data gaps 
General 

- No validated and standarised methods for determination of resistance to 
biocides and heavy metal are available. 

- Detailed data regarding the amounts of biocides and heavy metals spread 
across different usage areas are lacking. 

- Data regarding the use/misuse/presence of biocides/heavy metals in 
consumer products are lacking. 

- In vitro data indicate that sub-lethal concentrations of biocides and/or heavy 
metals may promote non-susceptibility/resistance in bacteria. However, 
epidemiological data regarding the public health relevance are lacking. 

- Most data regarding biocides/heavy metals resistance are collected from 
studies using planktonic phase micoorganisms (unattached micro-organisms 
living freely in suspension) rather than microorganisms in more natural 
conditions, such as in a biofilm. 

- There is a lack of data regarding the role of biocides and/or heavy metals in 
different man-made matrices in inducing resistance in bacteria. 

- Validated methods that can demonstrate a relationship between the dose 
response and the threshold triggering the emergence of resistance to biocides 
and/or heavy metals resistance are not available. 

- Environmental monitoring programmes regarding undesirable effects, 
including resistance development in bacteria, are lacking. 

- Data regarding the development of resistance in non-pathogenic and 
environmental bacteria are sparse. 

- There is a lack of knowledge regarding the effects of biocides and/or heavy 
metals on wildlife and natural ecosystems. 

- Data regarding the contribution of HGT to resistance in the environment are 
sparse.  

- Data regarding a possible link between development of resistance against 
heavy metals to biocides, and vice versa, are sparse. 

- Data regarding disinfectant agents and/or heavy metals in Norway, specifically 
their application and spread to the environment (including soil, sediment, 
water, air, wild plants and animals) are lacking. 

- Although, there are some studies regarding resistance of environmental 
bacteria to biocides and/or heavy metals, there is a lack of monitoring 
information, and knowledge about the clinical impact in 
humans/animals/plants is lacking.  

Biocides 

- Data regarding the stability and fate of biocides in the environment are 
lacking. 

- There is a lack of in vivo data regarding the development of resistance due to 
use of biocides. 

Heavy metals 
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- The distributions of resistance to heavy metals in the different ecosystems are not 
known. 

- Data regarding development of resistance due to natural amounts of heavy metals in 
the environment are lacking. 

- Analysis of resistance in environmental microbial samples is not standardized as it is 
for MIC for clinical samples. 
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Appendix 1  
 
ECHT (European Chemical Agency) ECHA > Regulations > Biocidal Products 
Regulation > Product-types  

(https://echa.europa.eu/regulations/biocidal-products-regulation/product-types) 

Product-types  

In Annex V to the BPR the biocidal products are classified into 22 biocidal product-types, grouped in four main 
areas. As a result of excluding biocidal products used as preservatives for food and feedstock from the scope, 
there is one less product type compared to the previous directive.  

 

Number Product-type Description 

Main group 1: Disinfectants 
These product types exclude cleaning products that are not intended to have a biocidal effect, including washing liquids, 
powders and similar products. 

PT 1 Human hygiene Products in this group are biocidal products used for human 
hygiene purposes, applied on or in contact with human skin or 
scalps for the primary purpose of disinfecting the skin or scalp. 

PT 2 Disinfectants and 
algaecides not intended 
for direct application to 
humans or animals 

Used for the disinfection of surfaces, materials, equipment and 
furniture which are not used for direct contact with food or 
feeding stuffs. Usage areas include, inter alia, swimming pools, 
aquariums, bathing and other waters; air conditioning systems; 
and walls and floors in private, public, and industrial areas and in 

other areas for professional activities. 
 
Used for disinfection of air, water not used for human or animal 
consumption, chemical toilets, waste water, hospital waste and 
soil. 
 
Used as algaecides for treatment of swimming pools, aquariums 
and other waters and for remedial treatment of construction 
materials. 
 
Used to be incorporated in textiles, tissues, masks, paints and 
other articles or materials with the purpose of producing treated 
articles with disinfecting properties. 

PT 3 Veterinary hygiene Used for veterinary hygiene purposes such as disinfectants, 
disinfecting soaps, oral or corporal hygiene products or with anti-
microbial function. 
 
Used to disinfect the materials and surfaces associated with the 
housing or transportation of animals. 

PT 4 Food and feed area Used for the disinfection of equipment, containers, consumption 
utensils, surfaces or pipework associated with the production, 
transport, storage or consumption of food or feed (including 
drinking water) for humans and animals. 

http://echa.europa.eu/
http://echa.europa.eu/regulations
http://echa.europa.eu/regulations/biocidal-products-regulation
http://echa.europa.eu/regulations/biocidal-products-regulation
http://echa.europa.eu/regulations/biocidal-products-regulation/product-types
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Used to impregnate materials which may enter into contact with 
food. 

PT 5 Drinking water Used for the disinfection of drinking water for both humans and 
animals. 

  

Number Product-type Description 

Main group 2: Preservatives 
Unless otherwise stated these product-types include only products to prevent microbial and algal development. 

PT 6 Preservatives for 
products during 
storage 

Used for the preservation of manufactured products, other than 
foodstuffs, feeding stuffs, cosmetics or medicinal products or 
medical devices by the control of microbial deterioration to ensure 
their shelf life. 
Used as preservatives for the storage or use of rodenticide, 
insecticide or other baits. 

PT 7 Film preservatives Used for the preservation of films or coatings by the control of 
microbial deterioration or algal growth in order to protect the 
initial properties of the surface of materials or objects such as 
paints, plastics, sealants, wall adhesives, binders, papers, art 
works. 

PT 8 Wood preservatives Used for the preservation of wood, from and including the saw-mill 
stage, or wood products by the control of wood-destroying or 

wood-disfiguring organisms, including insects. This product type 
includes both preventive and curative products. 

PT 9 Fibre, leather, rubber 
and polymerised 
materials preservatives 

Used for the preservation of fibrous or polymerised materials, such 
as leather, rubber or paper or textile products by the control of 
microbiological deterioration. 
This product-type includes biocidal products which antagonise the 
settlement of micro-organisms on the surface of materials and 
therefore hamper or prevent the development of odour and/or 
offer other kinds of benefits. 

PT 10 Construction material 
preservatives 

Used for the preservation of masonry, composite materials, or 
other construction materials other than wood by the control of 
microbiological and algal attack. 

PT 11 Preservatives for liquid-
cooling and processing 
systems 

Used for the preservation of water or other liquids used in cooling 
and processing systems by the control of harmful organisms such 
as microbes, algae and mussels. 
Products used for the disinfection of drinking water or of water for 
swimming pools are not included in this product-type. 
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PT 12 Slimicides Used for the prevention or control of slime growth on materials, 
equipment and structures, used in industrial processes, e.g. on 
wood and paper pulp, porous sand strata in oil extraction. 

PT 13 Working or cutting fluid 
preservatives 

Products to control microbial deterioration in fluids used for 
working or cutting metal, glass or other materials. 

  

Number Product-type Description 

Main group 3: Pest control 

PT 14 Rodenticides Used for the control of mice, rats or other rodents, by means 
other than repulsion or attraction. 

PT 15 Avicides Used for the control of birds, by means other than repulsion or 
attraction. 

PT 16 Molluscicides, 
vermicides and products 
to control other 
invertebrates 

Used for the control of molluscs, worms and invertebrates not 
covered by other product types, by means other than repulsion or 
attraction. 

PT 17 Piscicides Used for the control of fish, by means other than repulsion or 
attraction. 

PT 18 Insecticides, acaricides 
and products to control 
other arthropods 

Used for the control of arthropods (e.g. insects, arachnids and 
crustaceans), by means other than repulsion or attraction. 

PT 19 Repellents and 
attractants 

Used to control harmful organisms (invertebrates such as fleas, 
vertebrates such as birds, fish, rodents), by repelling or 
attracting, including those that are used for human or veterinary 
hygiene either directly on the skin or indirectly in the environment 
of humans or animals. 

PT 20 Control of other 
vertebrates 

Used for the control of vertebrates other than those already 
covered by the other product types of this main group, by means 
other than repulsion or attraction. 

 

Number Product-type Description 

Main group 4: Other biocidal products 
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PT 21 Antifouling 
products 

Used to control the growth and settlement of fouling organisms 
(microbes and higher forms of plant or animal species) on vessels, 
aquaculture equipment or other structures used in water. 

PT 22 Embalming and 
taxidermist fluids 

Used for the disinfection and preservation of human or animal corpses, 
or parts thereof. 
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Appendix 2 
Chemistry International, Vol. 23, No. 6, November 2001 

"Heavy Metals"- A Meaningless Term  

(https://www.iupac.org/publications/ci/2001/november/index.html) 

 

Definitions of heavy metal: Survey of current usage (April 2001).  

 

Definitions in terms of density (specific gravity) 

 metals fall naturally into two groups–the light metals with densities below 4, and the 

heavy metals with densities above 7 [3] 

 metal having a specific gravity greater than 4 [5, 6] 

 metal of high specific gravity, especially a metal having a specific gravity of 5.0 or 

greater [22] 

 metal with a density greater than 5 [8, 23] 

 metal with a density greater than 6 g/cm3 [24] 

 metal with a density of 5.0 or greater [25] 

 metal whose specific gravity is approximately 5.0 or higher [7] 

  (in metallurgy) any metal or alloy of high specific gravity, especially one that has a 

density greater than 5 g/cm3 [9] 

 metal with a density higher than 4.5 g/cm3 [10] 

 metal with a density above 3.5-5 g/cm3 [12] 

 element with a density exceeding 6 g/cm3 [11] 

Definitions in terms of atomic weight (mass) 

 metal with a high atomic weight [26] 

 metal of atomic weight greater than sodium [13] 

 metal of atomic weight greater than sodium (23) that forms soaps on reaction with 

fatty acids [14] 
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 metallic element with high atomic weight (e.g., mercury, chromium, cadmium, 

arsenic, and lead); can damage living things at low concentrations and tend to 

accumulate in the food chain [27] 

 metallic element with an atomic weight greater than 40 (starting with scandium; 

atomic number 21); excluded are alkaline earth metals, alkali metals, lanthanides, 

and actinides [15] 

 metal with a high atomic mass [28] 

 heavy metals is a collective term for metals of high atomic mass, particularly those 

transition metals that are toxic and cannot be processed by living organisms, such as 

lead, mercury, and cadmium [29] 

 metal such as mercury, lead, tin, and cadmium that has a relatively high atomic 

weight [30] 

 rather vague term for any metal (in whatever chemical form) with a fairly high 

relative atomic mass, especially those that are significantly toxic (e.g., lead, 

cadmium, and mercury). They persist in the environment and can accumulate in plant 

and animal tissues. Mining and industrial wastes and sewage sludge are potential 

sources of heavy metal pollution [31]. 

 a metal such as cadmium, mercury, and lead that has a relatively high relative atomic 

mass. The term does not have a precise chemical meaning [32]. 

 metal with a high relative atomic mass. The term is usually applied to common 

transition metals such as copper, lead, or zinc [33]. 

Definitions in terms of atomic number 

In biology: 

 in electron microscopy, metal of high atomic number used to introduce electron 

density into a biological specimen by staining, negative staining, or shadowing [34] 

 in plant nutrition, a metal of moderate to high atomic number, e.g., Cu, Zn, Ni, or Pb, 

present in soils owing to an outcrop or mine spoil, preventing growth except for a 

few tolerant species and ecotypes [34] 

In chemistry: 

 the rectangular block of elements in the Periodic Table flanked by titanium, hafnium, 

arsenic, and bismuth at its corners but including also selenium and tellurium. The 

specific gravities range from 4.5 to 22.5 [17]. 

 any metal with with an atomic number beyond that of calcium [35] 
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 any element with an atomic number greater than 20 [36] 

 metal with an atomic number between 21 (scandium) and 92 (uranium) [16] 

 term now often used to mean any metal with atomic number >20, but there is no 

general concurrence [20] 

Definitions based on other chemical properties 

 heavy metals is the name of a range of very dense alloys used for radiation screening 

or balancing purposes. Densities range from 14.5 for 76% W, 20% Cu, 4% Ni to 16.6 

for 90% W, 7% Ni, 3% Cu [37]. 

 intermetallic compound of iron and tin (FeSn2) formed in tinning pots that have 

become badly contaminated with iron. The compound tends to settle to the bottom 

of the pot as solid crystals and can be removed with a perforated ladle [38]. 

 lead, zinc, and alkaline earth metals that react with fatty acids to form soaps. "Heavy 

metal soaps" are used in lubricating greases, paint dryers, and fungicides [39]. 

 any of the metals that react readily with dithizone (C6 H5 N), e.g., zinc, copper, lead, 

etc. [40]. 

 metallic elements of relatively high molecular weight [41]. 

Definitions without a clear basis other than toxicity 

 element commonly used in industry and generically toxic to animals and to aerobic 

and anaerobic processes, but not every one is dense or entirely metallic; includes As, 

Cd, Cr, Cu, Pb, Hg, Ni, Se, and Zn [42] 

 outdated generic term referring to lead, cadmium, mercury, and some other elements 

that generally are relatively toxic in nature; recently, the term "toxic elements" has 

been used. The term also sometimes refers to compounds containing these elements 

[18]. 

Definitions preceding 1936 

 guns or shot of large size [1] 

great ability [2] 
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