
A Low-Cost Set CRDT Based on Causal Lengths
Weihai Yu and Sigbjørn Rostad

UIT - The Arctic University of Norway

Tromsø, Norway

weihai.yu@uit.no

Abstract
CRDTs, or Conflict-free Replicated Data Types, are data ab-

stractions that guarantee convergence for replicated data.

Set is one of the most fundamental and widely used data

types. Existing general-purpose set CRDTs associate every

element in the set with causal contexts as meta data. Manip-

ulation of causal contexts can be complicated and costly. We

present a new set CRDT, CLSet (causal-length set), where

the meta data associated with an element is simply a natu-

ral number (called causal length). We compare CLSet with

existing general purpose CRDTs in terms of semantics and

performance.

CCS Concepts: • Theory of computation → Distributed

computing models; • Computing methodologies→ Con-

current algorithms; • Information systems→ Data repli-

cation tools.

Keywords: state-based CRDT, replication, eventual consis-
tency, availability

ACM Reference Format:
Weihai Yu and Sigbjørn Rostad. 2020. A Low-Cost Set CRDT Based

on Causal Lengths. In 7th Workshop on Principles and Practice of
Consistency for Distributed Data (PaPoC ’20), April 27, 2020, Herak-
lion, Greece. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3380787.3393678

1 Introduction
CRDTs, or Conflict-free Replicated Data Types, are abstrac-

tions for data replicated at different sites [10]. CRDT data are

guaranteed to be strongly eventually consistent [10]. A site

queries and updates its local replica without coordination

with other sites. When any two sites have applied the same

set of updates, they reach the same state, regardless of the

order in which the updates are applied.

Set is a fundamental and widely used data type. There

exist a number of general-purpose set CRDTs that allow

for concurrent addition and removal of elements. Common

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PaPoC ’20, April 27, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7524-5/20/04.

https://doi.org/10.1145/3380787.3393678

to these set CRDTs, every element is associated with some

causal contexts as meta data. Manipulation of causal contexts

could be complicated. It could also be costly, for instance,

when there are many sites involved or the sites are dynamic.

We present a new general-purpose set CRDT, causal-length

set CLSet, based on an abstraction called causal length. For

every element, the associated meta data is simply a natural

number, namely the causal length of the element.

We discuss the semantics of different set CRDTs and run

some benchmarks to compare their performance.

2 CRDT Preliminary
There are two families of CRDT approaches, namely state-

based and operation-based [10]. We focus on state-based

CRDTs. The possible states of a state-based CRDT must form

a join-semilattice [6], which is a sufficient condition for con-

vergence. Briefly, the states form a join-semilattice if they

are partially ordered with ⊑ and a join ⊔ of any two states

always exists (s1 ⊔ s2 gives the least upper bound of s1 and
s2). State updates must be inflationary. That is, the new state

supersedes the old one in ⊑. The merge of two states is the

result of a join.

GSet(E)
def

= P(E)

add(s, e)
def

= {e} ∪ s

addδ (s, e)
def

=

{
{e} if e < s

{} otherwise

s ⊔ s ′
def

= s ∪ s ′

in(s, e)
def

= e ∈ s

all(s)
def

= s

{a,b, c}

{a,b} {a, c} {b, c}

{a} {b} {c}

{}

Figure 1. GSet CRDT and Hasse diagram of states

Figure 1 (left) shows GSet, a state-based CRDT for grow-

only sets, where E is a set of possible elements, ⊑
def

= ⊆, ⊔
def

=

∪, add is a mutator (update operation), and in and all are
queries. Obviously, an update through add(s, e) is an infla-

tion, because s ⊆ {e} ∪ s . Figure 1 (right) shows the Hasse
diagram of the states in a GSet. A Hasse diagram shows only

the “direct links” between states.

As originally presented in [10], a message for an update

is the data state of the replica in its entirety. This could be

costly in practice. Delta-state CRDTs address this issue by

https://doi.org/10.1145/3380787.3393678
https://doi.org/10.1145/3380787.3393678
https://doi.org/10.1145/3380787.3393678


PaPoC ’20, April 27, 2020, Heraklion, Greece Weihai Yu and Sigbjørn Rostad

only sending join-irreducible states [2, 5]. Basically, join-

irreducible states are elementary states and every state in

the join-semilattice can be represented as a join of some

join-irreducible state(s). In Figure 1, addδ is a delta-mutator

that returns join-irreducible states, which are singleton sets

(boxed in the Hasse diagram).

GSet is an example of an anonymous CRDT, since the

definitions of its mutators are not specific to the sites that

perform the updates. Two concurrent executions of the same

mutation, such as add({},a), fulfill the same purpose.

A CRDT for general-purpose sets with both addition and

removal operations can be designed as causal CRDTs [2]

such as ORSet (observed-remove set [4, 8, 9]). Report [9]

presented ORSet as an operation-based CRDT. Figure 2 is a

state-based ORSet based on [8]. Figure 5 shows the states of

a single element in ORSet. We describe the figure in more

detail in Section 5 where we compare ORSet with CLSet.

ORSet
def

= s : E ↪→ P(dots) × P(dots)

addi (s, e)
def

= s{e 7→ ⟨fst(s(e)) ∪ {nexti }, snd(s(e))⟩}

addδi (s, e)
def

= {e 7→ ⟨{nexti }, {}⟩}

removei (s, e)
def

= s{e 7→ ⟨fst(s(e)), snd(s(e)) ∪ fst(s(e))⟩}

removeδi (s, e)
def

= {e 7→ ⟨{}, fst(s(e))⟩}

s ⊔ s ′
def

= {(e 7→ ⟨fst(s(e)) ∪ fst(s ′(e)),

snd(s(e)) ∪ snd(s ′(e))⟩

| e ∈ dom(s) ∪ dom(s ′)}

in(s, e)
def

= fst(s(e)) ⊃ snd(s(e))

all(s)
def

= {e | e ∈ dom(s) : fst(s(e)) ⊃ snd(s(e))}

Figure 2. ORSet CRDT

Basically, every element is associated with two causal

contexts, in terms of a partial function
1
. A causal context is a

set of event identifiers, also known as dots. A dot is typically
represented as a pair of a site identifier and a site-specific

sequence number [1]. nexti generates a new dot at site i . An
addition or removal is achieved with inflationary updates

of the associated causal contexts. Using causal contexts, we

are able to tell explicitly which additions of an element have

been later removed. However, maintaining causal contexts

for every element can be costly, even though it is possible

to compress causal contexts into version vectors, especially

under causal consistency.

1
Given a (total) function f : dom(f ) → Y where dom(f ) ⊆ X . A partial
function f : X ↪→ Y maps x to ⊥Y if x < dom(f ), where ⊥Y is the bottom
element of Y . For natural numbers N, ⊥N = 0. For P(S ) ordered with ⊆,

⊥P(S ) = {}. Using partial function conveniently simplifies the specification

of some mutators and the join operation.

In the following, we design a new general-purpose set

CRDT. It is anonymous and is based on the abstraction of

causal length. Note that all causal CRDTs are named, i.e. not
anonymous.

3 Causal length
The key issue that a general-purpose set CRDT must address

is how to identify the causality between the different addition

and removal updates. We achieve this with the abstraction

of causal length, which is based on two observations.

First, the additions and removals of a given element occur

in turns, one causally dependent on the other. A removal is

an inversion of the last addition it sees. Similarly, an addition

is an inversion of the last removal it sees (or none, if the

element has never been added).

Second, two concurrent executions of the same mutation

of an anonymous CRDT fulfill the same purpose and there-

fore are regarded as the same update. Seeing one means

seeing both (such as the concurrent additions of the same

element in GSet). Two concurrent reversions of the same

update are also regarded as the same one.

Figure 3 shows a scenario where three sites A, B and C
concurrently add and remove element a. When sites A and

B concurrently add a for the first time, with updates a1A and

a1B , they achieve the same effect. Seeing either one of the

updates is the same as seeing both. Consequently, states s1A,
s2A, s

1

B and s1C are equivalent as far as the addition of a is

concerned.

Following the same logic, the concurrent removals on

these equivalent states (with respect to the addition of a)
are also regarded as achieving the same effect. Seeing one

Site A Site B Site C

{} s0A {} s0B {} s0C

a1A : add(s
0

A,a)

{a} s1A

a1B : add(s
0

B ,a)

{a} s1B

{a} s2A
{a} s1C

a2A : remove(s2A,a)
{} s3A

a2B : remove(s1B ,a)
{} s2B

{} s3B

{} s4B

a2C : remove(s1C ,a)
{} s2C

a3B : add(s
4

B ,a)

{a} s5B

{a} s6B

{} s3C

{a} s4C

a4C : remove(s4C ,a)
{} s5C

Figure 3. A scenario of concurrent set updates



A Low-Cost Set CRDT Based on Causal Lengths PaPoC ’20, April 27, 2020, Heraklion, Greece

Table 1. States of set element a

states as equivalence classes scl all(scl )

s0A {} {} {}

s1A {{a1A}} {⟨a, 1⟩} {a}

s2A {{a1A,a
1

B }} {⟨a, 1⟩} {a}

s3A {{a1A,a
1

B }, {a
2

A}} {⟨a, 2⟩} {}

s0B {} {} {}

s1B {{a1B }} {⟨a, 1⟩} {a}

s2B {{a1B }, {a
2

B }} {⟨a, 2⟩} {}

s3B {{a1A,a
1

B }, {a
2

B }} {⟨a, 2⟩} {}

s4B {{a1A,a
1

B }, {a
2

A,a
2

B }} {⟨a, 2⟩} {}

s5B {{a1A,a
1

B }, {a
2

A,a
2

B }, {a
3

B }} {⟨a, 3⟩} {a}

s6B {{a1A,a
1

B }, {a
2

A,a
2

B ,a
2

C }, {a
3

B }} {⟨a, 3⟩} {a}

s0C {} {} {}

s1C {{a1B }} {⟨a, 1⟩} {a}

s2C {{a1B }, {a
2

C }} {⟨a, 2⟩} {}

s3C {{a1B }, {a
2

B ,a
2

C }} {⟨a, 2⟩} {}

s4C {{a1A,a
1

B }, {a
2

A,a
2

B ,a
2

C }, {a
3

B }} {⟨a, 3⟩} {a}

s5C {{a1A,a
1

B }, {a
2

A,a
2

B ,a
2

C }, {a
3

B }, {a
4

C }} {⟨a, 4⟩} {}

of them is the same as seeing all. Therefore, states s3A, s
2

B , s
3

B ,

s4B , s
2

C and s3C are equivalent with regard to the removal of a.
Now we present the states of element a as the equivalence

classes of the updates, as shown in Table 1. The concurrent

updates that see equivalent states and achieves the same

effect are in the same equivalent classes. For example, up-

dates a1A and a1B are in the same equivalent class because

they see equivalent states s0A and s0B and achieve the same

effect, i.e. adding element a into the set. In [11], we made a

more rigorous description of the equivalence classes in the

context of support for concurrent undo.

Given this representation, we can observe the following:

• Performing a new local update adds a new equivalence

class that contains only the new local update.

• Merging two states is the same as the union of the

equivalent classes.

• A site determines whether an element is in the set

by counting the number of equivalence classes that

the site currently observes, rather than the specific

updates contained in the classes.

Due to the last observation, we can represent the state of

an element with a single number, the number of equivalence

classes. We call that number the causal length of the element.

The scl column of Table 1 lists the states of element a in

terms of causal lengths.

CLSet(E)
def

= E ↪→ N

add(s, e)
def

=

{
s{e 7→ s(e) + 1} if even

(
s(e)

)
s if odd

(
s(e)

)
addδ (s, e)

def

=

{
{e 7→ s(e) + 1} if even

(
s(e)

)
{} if odd

(
s(e)

)
remove(s, e)

def

=

{
s if even

(
s(e)

)
s{e 7→ s(e) + 1} if odd

(
s(e)

)
removeδ (s, e)

def

=

{
{} if even

(
s(e)

)
{e 7→ s(e) + 1} if odd

(
s(e)

)
(s ⊔ s ′)(e)

def

= max
(
s(e), s ′(e)

)
in(s, e)

def

= odd
(
s(e)

)
all(s)

def

= {e | odd
(
s(e)

)
}

Figure 4. CLSet CRDT

4 CLSet CRDT
Figure 4 shows the CLSet CRDT. Notice that the state s is a
partial function: s(e) = ⊥N = 0 when an element e has never
been added and thus not in the domain of s .

An element e is in the set when its causal length is an odd

number. A local addition has effect only when the element is

not in the set. Similarly, a local removal has effect only when

the element is actually in the set. A local addition or removal

simply increments the causal length of the element by one.

For every element e in s and/or s ′, the new causal length of e
after merging s and s ′ is the maximum of the causal lengths

of e in s and s ′.

5 Comparison with existing set CRDTs
CLSet is a direct application of our earlier work on undo sup-

port for CRDTs [11]. It is obvious that addition and removal

are inverse (i.e. undo) updates of one another. One reason for

us to exercise this particular application to set here is that

set is such a fundamental and versatile data type. Another

reason is that we would like to make comparison to existing

general-purpose set CRDTs in some detail.

Figure 5 shows the states of a single element in ORSet (de-

scribed in Section 2 and Figure 2). In the figure, 1A, 2A, . . . are
the dots corresponding to the addition instances originated

at site A. The states in the same shaded area correspond to

the states with the same causal length.

ORSet and CLSet handle the states in red color in Figure 5

differently. For the concurrent addition and removal of the

same element in these states, ORSet applies the add-wins

semantics [3], which is different from CLSet. An alternative

semantics of set CRDTs is remove-wins. For the blue states



PaPoC ’20, April 27, 2020, Heraklion, Greece Weihai Yu and Sigbjørn Rostad

⟨{2A, 2B }, {1A, 1B }⟩

⟨{1A, 2B }, {1A, 1B }⟩⟨{2A, 1B }, {1A, 1B }⟩

⟨{1A, 2B }, {1B }⟩⟨{2A, 1B }, {1A}⟩

⟨{2B }, {1B }⟩⟨{2A}, {1A}⟩

⟨{1A, 1B }, {1A, 1B }⟩

⟨{1A, 1B }, {1B }⟩⟨{1A, 1B }, {1A}⟩

⟨{1B }, {1B }⟩⟨{1A}, {1A}⟩

⟨{1A, 1B }, {}⟩

⟨{1B }, {}⟩⟨{1A}, {}⟩

⊥

Figure 5. States of a single element in ORSet

in Figure 5, a remove-wins set has different effects from both

an add-wins set and a CLSet.

Add-wins sets and remove-wins sets handle addition and

removal updates in an asymmetric way (as their names in-

dicate). In an add-wins set, a remove operation regards ev-

ery individual addition update as distinct and only cancels

the effects of the addition updates it sees at the time of

the removal. On the other hand, an add operation handles

the set of concurrent removal updates as indistinguishable

and cancels all their effects. For example, the addition up-

date represented with the state ⟨2A, 1A⟩ in Figure 5 cancels

the effects of removal updates represented with the states

⟨{1A}, {1A}⟩, ⟨{1B }, {1B }⟩, ⟨{1A, 1B }, {1A, 1B }⟩, and eventu-

ally also future removal updates such as (not shown in the

figure) ⟨{3B }, {3B }⟩ etc.
Although different semantics may all be acceptable in

a concurrent system, we argue that the CLSet semantic is

more appropriate, as it “neutralizes” add-wins and remove-

wins semantics and handles add and removal operations in

a symmetric manner.

LWW-Element-Set
2
[9] is another general-purpose set

CRDT that allows concurrent addition and removal of ele-

ments
3
. It associates every element with two timestamps,

one for addition and one for removal. The updates of a single-

element state are inflationary on the timestamps. The (add

2
LWW stands for Last Writer Wins.

3
AWLWWSet and RWLWWSet in [2] are similar variations.

⟨2, 2⟩, {2A, 2B }

⟨1, 2⟩, {2B }⟨2, 1⟩, {2A}

⟨1, 2⟩, {1A, 2B }⟨2, 1⟩, {2A, 1B }

⟨0, 2⟩, {2B }⟨2, 0⟩, {2A}

⟨1, 1⟩

⟨1, 1⟩, {1A}⟨1, 1⟩, {1B }

⟨0, 1}⟩⟨1, 0⟩

⟨1, 1⟩, {1A, 1B }

⟨0, 1⟩, {1B }⟨1, 0⟩, {1A}

⊥

Figure 6. States of a single element in TFAWSet

or remove) operation with a greater timestamp wins. Similar

to CLSet, LWW-Element-Set is an anonymous CRDT and

the size of the meta data associated with each element is

constant. The semantics of set operations depend on the

semantics of the timestamps. For example, with hybrid logic

clock [7], if event e1 happens before event e2, their corre-
sponding clock values t1 and t2 have the property t1 < t2.
Thereby, a removal update cancels the effects of all the addi-

tion updates it sees (similar to add-wins) together with a few

more concurrent addition updates with smaller clock values.

Similarly, an addition update cancels the effects of all the re-

moval updates it sees (similar to remove-wins) together with

a few more concurrent removal updates with smaller clock

values. Apparently nodes with faster clocks tend to have a

higher chance to win the competition. LWW-Element-Set

with hybrid logic clock “mixes” in a sense the semantics of

add-wins and remove-wins.

Tombstones are the metadata associated with the elements

that have been removed from the set. Report [4] presented

a tombstone-free set CRDT. It is based on the causality be-

tween a removal and the additions it observed. Such causality

can be captured with a set-wise (i.e. shared by all elements)

version vector. More specifically, an addition of an element

is considered to be removed if the element is absent in the

set but the addition instance is covered by the version vector.

Figure 6 shows the Hasse diagram of the states of an element

in a tombstone-free add-wins set (TWAWSet). Here a state is



A Low-Cost Set CRDT Based on Causal Lengths PaPoC ’20, April 27, 2020, Heraklion, Greece

TFAWSet
def

= (E ↪→ P(dots)) × P(dots)

addδi (⟨m, c⟩, e)
def

= ⟨{e 7→ d},d⟩ where d = {nexti (c)}

removeδi (⟨m, c⟩, e)
def

= ⟨{},m(e)⟩

⟨m, c⟩ ⊔ ⟨m′, c ′⟩
def

= ⟨{e 7→ d ′′ | e ∈ dom(m) ∪ dom(m′)

∧ d ′′ , {}},

c ∪ c ′⟩

where d =m(e),d ′ =m′(e) and

d ′′ = (d ∩ d ′) ∪ (d − c ′) ∪ (d ′ − c)

in(⟨m, c⟩, e)
def

= e ∈ dom(m)

all(⟨m, c⟩)
def

= dom(m)

Figure 7. TFAWSet delta-state CRDT

represented as a pair of a set-wise version vector and a set of

dots for the addition instances that have not been removed.

The shape of the Hasse diagram is exactly the same as that

of the ORSet CRDT (Figure 5).

The report [4] adopted a mixed operation-based and state-

based approach. Figure 7 shows TFAWSet presented in [2]

(where it is named AWSet). The states of a TFAWSet is rep-

resented as a pair of a partial function and a dot set (known

as a causal context). For two TFAWSet states (m(e), ce ) and
(m′(e), c ′e ) concerning element e , the partial order is defined

as (m(e), ce ) ⊏ (m′(e), c ′e )
def

= (ce ⊂ c ′e ) ∨ (ce = c ′e ∧m(e) ⊃
m′(e)). This is somewhat counter-intuitive: the partial order

⊏ is defined with the ⊃ rather than the ⊂ relation on the

dot sets of addition instances. This ordering is enforced by

the join operation, which removes the dots of the addition

instances observed by subsequent removal updates. In Fig-

ure 6, the ⊏ order between the states with same version

vector value ⟨1, 1⟩ are decided by the ⊃, not ⊂, relation of

the dots of the addition instances of the same element.

When the system enforces causal message delivery, the

causal contexts can be compressed into version vectors. The

CRDT is thereby tombstone-free.

Compared to CLSet, TFAWSet requires causal delivery for

tombstone elimination, which is a stronger requirement. It

could outperform CLSet if the vast majority of elements are

removed. The elements that remain in the set are associated

with more metadata than CLSet. The actual amount depends

on the number of additions that have not been removed.

6 Performance
We have run some experiments to study the performance of

three set CRDTs, namely CLSet, ORSet and TFAWSet. We

25

30

35

40

45

50

55

60

65

0 0.2 0.4 0.6 0.8 1

E
x
e
c
u
t
i
o
n
t
i
m
e
(
m
s
)

Fraction of removal updates

CLSet

TFAWSet

ORSet

Figure 8. Time for concurrent updates and merges

have implemented CLSet and ORSet in Elixir, and adapted

an open source implementation for TFAWSet.
4

We ran the benchmarks using the Benchee
5
library with

Elixir 10.1 (OTP 22.2) on Ubuntu Linux 18.04. The computer

has an Intel Xeon CPU E3-1245 v5 at 3.50GHz and 32GB Ram.

Since we ran all the benchmarks in a single Erlang process

(thread), the number of CPU cores does not play any role.

We first study how well the three CRDTs perform updates

and merges. For each CRDT, we set up 10 instances that are

initiated with 1000 elements. The sets may have up to 2000

elements during each execution (i.e, there are initially 1000

empty “slots”). For each execution, we update the CRDTs in

iterations. In every iteration, we perform concurrently 2 to

5 random updates locally at 2 to 5 randomly chosen CRDT

instances. Then all instances merge with these updates. The

next iteration starts as soon as the current one finishes. The

execution finishes after 500 updates. We vary the fraction of

removal updates.

To make the comparison fair, we do not allow existing

elements to be added into an ORSet or a TFAWSet (which

we believe is more appropriate than the original design in

Figures 2 and 7).

Figure 8 shows the average time spent to finish the bench-

mark executions. To our surprise, TFAWSet took longer time

to finish the executions than ORSet in all of the situations. It

turns out that computing d ′′
in Figure 7 contributed to the

longer execution time, at least with this current implementa-

tion. Notice that the number of updates applied on a single

element is typically very low. The sizes of the dot sets in

ORSet are therefore typically very small. On the other hand,

the sizes of the causal contexts in TFAWSet depends on the

number of CRDT instances (or nodes), which is typically

4
We removed the “map” part of the AWLWWMap CRDT available at

https://github.com/derekkraan/delta_crdt_ex.
5https://github.com/bencheeorg/benchee



PaPoC ’20, April 27, 2020, Heraklion, Greece Weihai Yu and Sigbjørn Rostad

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0 0.2 0.4 0.6 0.8 1

M
e
m
o
r
y
p
e
r
i
n
s
t
a
n
c
e
(
M
B
)

Fraction of removal updates

CLSet

TFAWSet

ORSet

Figure 9. Memory consumption per CRDT instance

higher than the number of updates that have been applied

on a single element.

The memory consumption of the CRDTs (Figure 9) shows

a similar pattern as the execution time. TFAWSets consume

more memory because it generates significant amount of in-

termediate data while merging the updates. Since the bench-

marks are run intensively within a single Erlang process, the

intermediate data have not got the chance to be garbage col-

lected. Garbage collection may reduce the memory footprint

of TFAWSets at the cost of additional CPU cycles.

We have also run the benchmarks to see how well the

CRDTs perform the all query. We set up the CRDTs by first

adding 1000 elements and then removing a fraction of them.

We run the query benchmarks with these CRDTs.

Figure 10 shows the average time to perform the queries.

For all CRDTs, the execution time decreases with the increase

of the fraction of the elements that are removed. This is due to

the decreased sizes of the query results. As the consequence

of tombstone elimination, the execution time on TFAWSets

decreases much faster. Still, CLSet out-performs TFAWSet

when up to two thirds of the elements remain in the set.

7 Conclusion
We have presented CLSet, a general-purpose state-based set

CRDT. The only metadata associated with a set element is a

single natural number called causal length, which captures

the causality of concurrent set updates. CLSet has low run-

time overhead compared to existing general-purpose set

CRDTs.

Acknowledgments
The first author thanks the members of the COAST team

at INRIA-LORIA in France, in particular Claudia-Lavinia

Ignat and Victorien Elvinger, for inspiring discussions. The

authors also thank the anonymous reviewers for insightful

comments that help us make improving revisions.

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Q
u
e
r
y
e
x
e
c
u
t
i
o
n
t
i
m
e
(
µ
s
)

Fraction of elements removed

CLSet

TFAWSet

ORSet

Figure 10. Time for performing the all query

References
[1] Almeida, P. S., Baqero, C., Gonçalves, R., Preguiça, N. M., and

Fonte, V. Scalable and accurate causality tracking for eventually con-

sistent stores. In 14th IFIP WG 6.1 International Conference Distributed
Applications and Interoperable Systems (DAIS) (2014), LNCS 8460,

Springer, pp. 67–81.

[2] Almeida, P. S., Shoker, A., and Baqero, C. Delta state replicated

data types. J. Parallel Distrib. Comput. 111 (2018), 162–173.
[3] Bieniusa, A., Zawirski, M., Preguiça, N. M., Shapiro, M., Ba-

qero, C., Balegas, V., and Duarte, S. Brief announcement: Seman-

tics of eventually consistent replicated sets. In 26th International Sym-
posium on Distributed Computing (DISC) (2012), LNCS 7611, Springer,
pp. 441–442.

[4] Bieniusa, A., Zawirski, M., Preguiça, N. M., Shapiro, M., Ba-

qero, C., Balegas, V., and Duarte, S. A optimized conflict-free

replicated set. Rapport de recherche 8083, INRIA, (October 2012).
[5] Enes, V., Almeida, P. S., Baqero, C., and Leitão, J. Efficient Synchro-

nization of State-based CRDTs. In IEEE 35th International Conference
on Data Engineering (ICDE) (April 2019).

[6] Garg, V. K. Introduction to Lattice Theory with Computer Science
Applications. Wiley, 2015.

[7] Kulkarni, S. S., Demirbas, M., Madappa, D., Avva, B., and Leone, M.

Logical physical clocks. In Principles of Distributed Systems (OPODIS)
(2014), LNCS 8878, Springer, pp. 17–32.

[8] Meiklejohn, C., and Van Roy, P. Lasp: a language for distributed,

coordination-free programming. In the 17th International Symposium
on Principles and Practice of Declarative Programming (2015), pp. 184–

195.

[9] Shapiro, M., Preguiça, N. M., Baqero, C., and Zawirski, M. A

comprehensive study of convergent and commutative replicated data

types. Rapport de recherche 7506, INRIA, (January 2011).

[10] Shapiro, M., Preguiça, N. M., Baqero, C., and Zawirski, M.

Conflict-free replicated data types. In 13th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, (SSS) (2011),
pp. 386–400.

[11] Yu, W., Elvinger, V., and Ignat, C.-L. A generic undo support for

state-based CRDTs. In 23rd International Conference on Principles of
Distributed Systems (OPODIS2019) (2020), vol. 153 of LIPIcs, pp. 14:1–
14:17.


	Abstract
	1 Introduction
	2 CRDT Preliminary
	3 Causal length
	4 CLSet CRDT
	5 Comparison with existing set CRDTs
	6 Performance
	7 Conclusion
	Acknowledgments
	References

