SVERS,

UiT The Arctic University of Norway

Faculty of Science and Technology

Department of Computer Science

Diggi
A Distributed Serverless Runtime for Developing Trusted Cloud Services

Anders Tungeland Gjerdrum
A dissertation for the degree of Philosophiae Doctor — July 2020

This thesis document was typeset using the UiT Thesis KTEX Template.
© 2020 — http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Til Jan-Henry (1956 - 2018)

Abstract

Cloud computing offers the convenience of outsourcing storage and processing
power to a public shared environment. Physical infrastructure is managed
by the cloud provider, allowing hosted services to be deployed without any
upfront investment. Cloud infrastructure may additionally manage deployment,
migration, scalability, and fault tolerance, transparently from the hosted service.
Serverless computing, and more specifically Faas, is a natural continuation of
this trend, narrowing the computational scope down to individually deployable
cloud functions, which are scalable and billable on demand.

Contemporary cloud services require that sensitive data such as user identi-
fiable information be protected from unauthorized access. However, a conven-
tional cloud security threat models assumes that the underlying public cloud
infrastructure can be trusted. Physical attacks on server hardware conducted by
an unfaithful employee may compromise the entire software stack. Moreover, a
compromised operating system or hypervisor may directly inspect information
in less privileged execution contexts.

Dedicated hardware such as TEEs mitigate such attacks by enabling privi-
leged application containers, protected from inspection by the untrusted under-
lying system. Intel SGX introduces one such hardware system implementing
support for hosting secure segments of code and data (enclaves) on commodity
x86-64 platforms. Enclaves may be attested remotely, however the attestation
evidence is limited to the enclave’s initial state. SGX is considered feature rich
compared to similar TEES, however, the threat model of SGX leads to some
architectural intrinsics which may impact the runtime performance.

This thesis present the design and implementation of Diggi; an efficient
trusted cloud function runtime implemented in SGX. Diggi enables the devel-
opment of secure applications, composed of multiple persistent and accountable
cloud functions which may be jointly authenticated through co-attestation. We
demonstrate that the design of Diggi is practical, and additionally, that it reduces
the overhead of SGX compared with standard runtime execution techniques.
We further demonstrate the applicability of Diggi by implementing two pseudo-
real application workloads demonstrating a database management system and
a machine learning inference pipeline on top of the Diggi runtime.

Acknowledgements

I would like to express my sincere gratitude to those who made this dissertation
possible.

First of all, i would like to thank UiT: The Arctic University of Norway,
for hosting me and funding my research for the last 4 years, it has been an
honor.

I would also like to extend my gratitude towards the technical staff and
administration, both at the department and faculty level. Particularly i would
like to thank Svein Tore, Jan, Maria, Kai-Even, Jon Ivar and Ken Arne for being
able to answer just about any inquiry, be it acquisition of hardware, sick-leave
or other administrative work; simplifying my life as a Phd-student.

My co-advisors, Havard, Dag and Robbert have contributed with endless
discussions on core computer science problems, and have thought me the fun-
damentals of distributed systems research, and for that i am forever grateful.
I would also like to thank the other Phd-students at our lab: Magnus, En-
rico, Tor-Arne, and Aakash, for valuable insights and interesting discussions.
Additionally, i would like to thank Robert, Lars, Helge and Eleanor for their
direct contributions to Diggi, both engineering work and in-depth discussion on
trusted distributed systems. Moreover, Fred, for much needed input on scientific
writing.

Research is hard on the spirit, and i would especially like to thank all my
friends and family for supporting me and cheering me on throughout this
process.

Lastly, a huge thank you to my life partner, Sigrun, without whom, none of
this would have been possible. I love you.

Contents

Abstract

Acknowledgements

List of Figures

Acronyms

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

1.8

Trusted Execution Environments
Thesis Statement
Scope and Limitations
Methodology
Research Context
Impact e e
Summary of Contributions
1.7.1 PublicationI
1.7.2 PublicationIlandIIl
1.7.3 PublicationIV
1.7.4 PublicationV
1.7.5 NovelConcepts
Outline e

2 Serverless Computing

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

Advantages of Serverless Computing
The Cloud Function Abstraction
PricingModel,
Architecture
Challenges
Comparable Concepts
Proprietary Implementations
271 AWSLambda
2.7.2 AzureFunctions
2.7.3 Google Cloud Functions
Open Source Implementations

Vil

iii

xi

vii

3

CONTENTS

2.9 FaaSs in Research Literature 26
210 SumMmaryo . e e e e e e e e e e e e 26
Trusted Execution Environments 27
3.1 Intel Software Guard Extensions 28
3.1.1 SecurityModel 29
3.1.2 Known Vulnerabilities 30
3.1.3 Enclave Lifecycle 32
3.14 MemoryModel, 36
3.1.5 Attestationl e e 39
3.1.6 Context Switches. 42
3.1.7 Side-Channel Attacks and Mitigation 44
3.2 ARMTrustZone 45
3.3 Additional Trusted Hardware Systems 47
34 Summary o. ..o e e e e e e 48
Design 49
4.1 SGXBenchmark 50
4.1.1 EnclaveCreation 51
4.1.2 Memory Management 52
4.1.3 Context Switches., 54
4.1.4 Multithreading 55
4.2 Performance principles 56
4.3 Trusted Serverless Runtime 58
4.4 Design e e e e e 60
4.4.1 Diggi Persistent and Accountable Cloud Functions . . 61
4.4.2 An Asynchronous Trusted Runtime 63
4.4.3 Deployment and authentication 65
4.5 Summary Lo e e e e e e e 66
Cloud Function API 67
5.1 Lifecycle management 70
5.2 Asynchronous Programming. 71
5.3 Programming Language 73
54 Legacy e e 74
5.5 Deployment 77
5.6 Summary. 78
Runtime 79
6.1 TaskScheduler 80
6.1.1 Physical Threads 81
6.1.2 Virtual Threads 82
6.1.3 Oversubscription of Physical Threads 82

6.2 Messagingo e e e 83

CONTENTS ix

6.2.1 Concurrentqueuingo ... 84

6.2.2 Message structure 87

6.2.3 MessageFlows 87

6.3 Ephemeral Storage. 90
6.4 Accountability L. 93
6.5 Untrusted Runtime 95
6.6 The Diggi Trusted Root 96
6.7 SUMMATY« v v i it e e e e e e e e 99

7 Evaluation 101
7.1 Experimental Setup 102
7.2 Cohosting Cloud Functions 103
721 Cold-start. 106

7.3 Communication Overhead 107
7.4 Trusted Runtime System Call Translation 109
7.4.1 Supporting Legacy Libraries in Diggi Cloud functions 111

7.5 Accountable Cloud Functions 117
7.6 Use Case: A neural network image classification pipeline . . 118
7.7 Summary . . o.o. ..l e e e e 123

8 Discussion 125
8.1 Mitigating and improving SGX-based systems 125
8.2 Formal Methods, Verifiable Execution and Policy Enforcement 127
8.3 Secure Analytics and Storage systems 128
8.4 Trusted runtimesinTEEs 130
8.5 Distributed Systems and Coordination 132
8.6 Summary e e e e e 134

9 Concluding Remarks 135
9.1 Conclusion 135

9.2 FutureWork 138

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

Conceptualization of a sample serverless architecture: a) Sim-
plify complex APIs by aggregation. b) Allows change-based
triggers to implement propagation of information. c¢) Allows
batch oriented tasks for triggering analytics workflows. A re-
active version may trigger analytics similarly tob).
Invoking a cloud function in a serverless application frame-
work. The client first requests execution through a REST-full
API, the front-end forwards the request to the controller, which
authenticates and schedules it for execution. The result is
stored, and may be retrieved through a subsequent request. .
The cloud computing continuum of abstractions.

The SIGSTRUCT certificate structure identifies a deployable
enclave and corresponding author. Additionally, it contains
valid entry points (OENTRY), version and product line iden-
tifiers, and feature (attribute) masks to specify enabled CPU-

SDK interacting with the SGX kernel driver to create an en-
clave. Implemented via pseudo-character device, controllable
through the ioctl systemcall.
The SECS stores metadata for each unique enclave.
Enclave memory organization and initialization procedure.
Each enclave is mapped to physical memory pages through
the EPCM. The initialization procedure sequentially measures
each page for comparison with the SIGSTRUCT.
Conceptual presentation of the Intel SGX remote attestation
process. 1) Intel provisions Py to the physical chip during
the manufacturing process. 2) The provisioning enclave sub-
mits a signature to IAS, proving an authentic Pk, and in re-
sponse receives Ar. 3) Quoting enclave decrypts the stored
Ay from storage, signs the proposed report producing the
Quote. 4) The ISV receives the quote, checks the measure-
ment and requests IAS to verify the signature.
State transition diagram describing the lifecycle of an en-
clave [46]. e

Xi

17

19
21

32

33
34

35

40

43

Xii

4.1

4.2

4.3

4.4
4.5

4.6

4.7

4.8

4.9

LIST OF FIGURES

Sequence of events involved in measuring time spent inside
enclaves [65]. To obtain the measurement between +0 and
t1, each point must exit the enclave to reach the timing facil-
ity (get_time). The timing delta captures the entry and exit

labeledinred [65]. 50
Latency as a function of number of enclaves created simulta-
neously, for differing sizes of enclaves [65]. 51
Paging overhead in nanoseconds as a function of time elapsed
while writing sequentially to enclave memory [65]. 52
Enclave transition cost as a function of buffer size [65]. . . . 53
Execution overhead for multiple threads pinned to a single
core, with page-fault events occurring [62]. 54
Execution overhead for multiple threads running on separate
logical cores, with page-fault events occurring [62]. 55

State diagram representing the lifecycle and transitional events

of a Diggi cloud function. Idle is an internal state, hidden
from the cloud function developer. 61
A chain of callbacks (tasks) implementing a flow. Each task
executes independently, however serialized. The flow progresses

by invoking the next following the completion of a precursor

task. . .. 64
A cloud function interleaving multiple flows onto a single
thread. Blocking operations are writable tasks, where the con-
tinuation is scheduled once the results are produced. 64

4.10 The circular measurement problem: Each cloud function, F,

5.1

5.2

6.1

6.2

includes the two others in its own measurement, which alters
the others measurements. 66

Interleaving of three flows on a queue of tasks; blue is the
polling flow, while red and green are separate flows process-
ing items retrieved. Cloud functions may interleave commu-

nication and processing on a single thread. 72
An example Diggi application configuration, consisting of two
functions; an echo-function and a load-function. 77

The Diggi daemon process layout. Each function receives a
dedicated enclave and trusted runtime, but shares the un-
trusted runtime with all cohosted functions in regular process
MEMOTY. . « « « v v v e e e e e e e e e e e e e e e 80
Virtual threading in the trusted runtime; The physical thread
performs a context switch between two virtual threads. Thread
1 may receive messages pending the return of a read opera-
tionon Thread O [63]. o v v o oo .. 83

LIST OF FIGURES Xiii

6.3 Shared memory queue and memory objects used for exit-less
communication [63]. o 84

6.4 An example use of the Diggi messaging API; asynchronous
continuation-style flow between two functions, an echo func-

tion and a load function [63]. 88
6.5 Function state preservation using encrypted ephemeral stor-
ageinDiggi [63]. 92

6.6 The cloud function attestation process. Each function indi-
vidually authenticates themselves to the trusted root. Once
all are authenticated, the trusted distributes session keys to
each. By the transitive property, each attested cloud function
may now trust one another [63]. 97

7.1 Experimental setup synthesizing an untrusted cloud. Each phys-
ical host represents a Diggi Node running the deamon process
for deploying cloud functions. The terminal client serves as

the Trusted Root external to the untrusted cloud. 103
7.2 Average throughput for cohosted instances vs. average round-

triptime. 104
7.3 Total throughput for cohosted instances vs. average round

triptime. e e e e 105
7.4 Average cold start deployment latency for Diggi cloud func-

tions executing in SGX and outside. 106

7.5 (1) Throughput measurements for the baseline and Diggi cloud
functions. (2) Round-trip time for the baseline measurements
and the Diggi runtime. 108
7.6 A comparison of asynchronous (exit-less) write latency in Diggi
versus synchronous (ocalls) and gLibc as a baseline. 110
7.7 A comparison of asynchronous (exit-less) read latency in Diggi
versus synchronous (ocalls) and gLibc as a baseline. 110
7.8 Tx/m vs. concurrent dedicated threads to Diggi server instance.113
7.9 Tx/m for different configurations, load generated on the same
host. e 115
7.10 Average latency for cohosted instances vs. total throughput. . 116
7.11 Execution time for 5 seconds of TPC-C transaction mix load,
including bootstrapping initial tables. 118
7.12 A machine learning pipeline implemented as Diggi cloud func-
tions, shielded by the Diggi trusted runtime, deployed and
authenticated by the trusted root. 119
7.13 The Diggi configuration for a neural network training pipeline,
consisting of 5 components, implemented as Diggi persistent
functions. L 120
7.14 Sample hand written digits from the MNIST dataset. 121

Xiv LIST OF FIGURES
7.15 The training and prediction overhead for a 2-layer fully con-
nected feed-forward perceptron neural network, in SGX and
regular DRAM respectively. Training is measured on a 784 x
40 batch matrix, with 40 samples. Prediction is measured by
classifying the digit of a single image. 122

7.16 Loss ratio on training data and the Mean Square Error(MSE)
asepochs progress. 123

Acronyms

AEX Asynchronous Enclave Exit

AP Application Processor

API Application Programming Interface
ARM Advanced RISC Machine

ASIC Application-Specific Integrated Circuit
ASLR Address-Space Layout Randomization
ATM Automatic Teller Machine

AWS Amazon Web Services

AXI Advanced eXtnesible Interface

CDN Content Delivery Network

CISC Complex Instruction-Set Computer
CLR Common Language Runtime

CPU Central Processing Unit

CU Computation Unit

DBMS Database Management System

DMA Direct Memory Access

DNS Domain Name System

DRAM Dynamic Random-Access Memory
EPC Enclave Page Cache

EPCM Enclave Page Cache Map

EPID Enhanced Privacy ID

FaaS Function-as-a-Service

GDPR General Data Protection Regulation
HIPAA Health Insurance Portability and Accountability Act
HMAC Hash-based Message Authentication Code
HTTP Hypertext Transfer Protocol

IaaS Infrastructure-as-a-Service

IAS Intel Attestation Service

IIC Integrated Circuit Card

IOT Internet of Things

IPC Inter-Process Communication

IPI Inter-Processor Interrupt

ISA Instruction Set Architecture

ISV Independent Software Vendor

JIT Just-In-Time

XV

XVi

JVM Java Virtual Machine

LE Launch Enclave

MAC Message Authentication Code
MEE Memory Encryption Engine
MMU Memory Management Unit
MSE Mean Square Error

NIC Network Interface Card

NUMA Non-Uniform Memory Access
OLTP OnlLine Transaction Processing
OS Operating System

PE Provisioning Enclave

PGP Pretty Good Privacy

PRM Processor Reserved Memory
QE Quoting Enclave

QPI Quick Path Interconnect

RDMA Remote Direct Memory Access
RISC Reduced Instruction-Set Computer
RNG Random Number Generator
ROM Read-Only Memory

RPC Remote Procedure Call

RTSP Real-Time Streaming Protocol
RTT Round Trip Time

SDK Software Development Kit
SECS SGX Enclave Control Structure
SEP Secure Enclave Processor

SGX Software Guard eXtensions

SHTTP Secure Hypertext Transfer Protocol

SIM Subscriber Identity Module
SLOC Source Lines Of Code

SMC Secure Monitor Call

SMM System Management Mode
SMT Simultaneous Multi-Threading
SoC System-on-a-Chip

SSA Save State Area

STL Standard Template Library
TCB Trusted Computing Base

TCP Transmission Control Protocol
TCS Thread Control Structure

TEE Trusted Execution Environment
TLB Translation Lookaside Buffer
TLS Transport Layer Security

TPM Trusted Platform Modules

TSX Transactional Synchronization Extentions

VA Version Array

ACRONYMS

ACRONYMS XVii

VM Virtual Machine

VMM Virtual Machine Monitor
WAL Write Ahead Log

WAN Wide Area Network

Introduction

Connectivity is considered an essential part of modern life. The Internet offers
new ways to manage personal memory, interaction, and consumption through
online services such as cloud storage, social media, instant messaging, and
online shopping. Connected devices perceive and record large quantities of
personal information enabling online services to infer and provide intelligent
capabilities to end-users. Monetization occurs through the promise of access
to rich, convenient and delightful services in exchange for targeted advertise-
ment.

Physical infrastructure for hosting online services is often managed by a
public cloud; an Infrastructure-as-a-Service (1aas) provider. Delegating the
management of infrastructure reduces operational expenses, increases service
reliability, and provide more predictable cost estimates [59]. The risk of invest-
ment is reduced, as cloud infrastructure is rented rather than owned.

Hosting privacy sensitive data and computations in a public cloud requires
that services trust the underlying infrastructure. Infrastructure may be com-
promised by exploits or tampering, rendering the upper layers of the software
and hardware stack visible to an attacker. An unfaithful employee of the cloud
provider could potentially mount a privileged physical attack against a hosted
service. Additionally, software may contain misconfigurations or bugs, which
cause involuntary information leakage. System software is particularly suscep-
tible to bugs and misconfigurations due to the complex nature of low-level
engineering. Supply-chains may also be compromised by tampered infrastruc-
ture, where logging devices may be placed on hardware system buses [150].
Given these concerns, privacy-compliant online services should implement
techniques to shield application software and data from the untrusted infras-

2 CHAPTER 1 / INTRODUCTION

tructure.

For modern cloud services, composability and separation of concerns simplify
scaling and fault tolerance. Microservices provide a composable abstraction for
developing complex and highly scalable cloud services [130]. Unlike traditional
monolithic services, microservices are developed as multiple single-purpose dis-
tributed units of application logic. These loosely coupled components present a
composite service through well defined networking protocols such as Hypertext
Transfer Protocol (HTTP), Apache Thrift [11] or Google Remote Procedure Call
(RPC) [73]. Microservices are commonly deployed at scale using container
technology, implementing an isolated and virtually dedicated Operating Sys-
tem (0OS) despite a shared infrastructure. Deployment, fault tolerance and
scaling is simplified using technologies such as Docker Swarm [54] or Kuber-
netes [34].

Serverless computing [37] iterates on these technological achievements to
offer automatically managed cloud infrastructure. Cloud Functions, or Faas,
are the primary manifestation of this paradigm, reducing the unit of scal-
able computation to individual event-driven functions, deployed on demand.
Events may trigger function invocation through client requests, message queues,
database changes, or timer-based operations. Complex online services may be
implemented as collections of cloud functions interacting in synchrony.

Most major cloud providers support cloud functions, including Aws Lambda
Functions [16], Microsoft Azure Functions [17], and Google Cloud Functions [42].
This single-purpose service-oriented abstraction automates many properties of
cloud software, including fault tolerance, scalability, availability, and placement.
Application code is decoupled from explicit knowledge of the underlying com-
puting resources, allowing services to automatically scale on demand, hence
the moniker serverless computing [82]. Compared to traditional cloud hosting
in which servers are rented per time unit, serverless functions are rented per
invocation [99].

This thesis investigates techniques for shielding contemporary cloud services
from an untrusted infrastructure, including the replacement of current shield-
ing techniques with more efficient ones. We include a preliminary analysis
of available technological foundations for securing software in an untrusted
environment, and additionally a selective empirical study of eligible technol-

0gy.

1.1 Trusted Execution Environments

Modern commodity processors implement hardware support for shielding
applications from an underlying system [153] [124]. TEEs enable hosted code
to execute in secure and trusted compartments without requiring explicit trust
in the underlying platform. Distinct CPU modes separate secure and non-secure

1.1 / TRUSTED EXECUTION ENVIRONMENTS 3

execution; providing the ability for secure modules to remain encrypted in
memory during execution. The system bus will prohibit all access requests to
secure memory from the non-secure execution mode. Code executing inside a
secure module is able to prove the correctness of both software and hardware
to a third party. This is achieved through software attestation, a process in
which the trusted hardware produces a quote, containing a signed hash of the
secure modules’ code and data. The key used to sign the hash, or measurement,
is derived from material unique to the hardware platform. By serving this quote
upon request, the secure module is able to prove the following two properties:
the identity of the initial state (code and data), and the authenticity of the
hardware platform, firmware and trusted platform services.

The most mature and available TEE is Intel SGX. Although proprietary,
SGX has since release received significant scrutiny from the research commu-
nity [14, 22, 31, 180, 116, 194, 158, 164, 75, 138, 190, 195, 177]. Most Intel CPUSs
developed after 2015 support SGX, both in server-grade hardware and client
desktops/laptops’.

SGX allow multiple mutually distrusting enclaves to run concurrently on a
single physical host. This property is unique to SGX, whereas other TEEs only
provide a single secure world per physical host [153]. All parts of the secure plat-
form are implemented in signed firmware or hardware [46] and no operation
conducted by the trusted hardware is visible to the untrusted host operating
system. We observe that the compartmentalization of software, emblematic
of serverless computing, lends itself elegantly to the enclave programming
abstraction.

SGX enclaves are compiled and deployed as regular shared library ob-
jects, however, limited by memory consumption. During boot-up, SGX-cabable
firmware sets aside a range of dedicated physical memory exclusively for SGX.
This is currently restricted to 128MB. Over-subscribing memory will cause phys-
ical pages to be multiplexed among multiple enclaves; similar to conventional
virtual memory. There is, however, an additional performance penalty for mul-
tiplexing secure memory [65]. The initial version of SGX only permits enclaves
to statically allocate memory at creation time, an issue addressed in a later
revision [125]

Enclaves execute in a higher privilege-level than the surrounding system,
yet relies on untrusted system software to handle interrupt processing and
resource management. Interrupts generated by system software and hardware
must explicitly exit this privileged mode before being serviced. This indirection
adds a significant performance penalty.

Enclaves may be authenticated by remote attestation, however submitted
evidence is solely based on the initial measurement identifying its predicate
state. As execution progresses, state is mutated, diverging from the initial
identity. For long running enclaves, authenticating the initial state is a weaker

1. github.com/ayeks/SGX-hardware

4 CHAPTER 1 / INTRODUCTION

identity for the mutated state.

The threat model for enclaves further provides no guarantee for verifiability
of execution. An enclave may be interrupted or subverted by the host, and de-
termining whether an event has verifiably occurred requires additional security
measures.

Code executing inside an SGX enclave considers the environment outside to
be untrustworthy, including the operator of the hardware. The untrusted soft-
ware and hardware may actively attempt to subvert execution in order to gain
access to data. SGX protects the integrity and confidentiality of code and data
inside an enclave. The authenticity of the hardware platform, firmware and
code executing inside an enclave may be verified remotely through attestation.
Secrets may, following a successful attestation process, be securely provisioned
to the enclave through a confidential and integrity preserving communication
channel. All interaction with the outside world is visible to an attacker and may
be stored, modified and replayed back to the enclave at any point. SGX does
not protect against exploitable side-channel attacks such as cache analysis [75],
however modifications to software and/or hardware have proven to harden
systems against such attacks [133]

SGX, and TEEs in general, do not protect from denial-of-service attacks which
prevent application code from progressing. The underlying system may actively
withhold resources, such as network packets, memory pages, I/O-resources or
thread time-slices.

1.2 Thesis Statement

Serverless computing is a contemporary cloud service abstraction which sim-
plify deployment, scale, management and billing of distributed applications in
a public cloud [99].

Physical attacks, bugs and misconfigurations may compromise cloud infras-
tructure, rendering less privileged services exposed. A protected runtime should
shield privacy-sensitive data from an untrusted cloud and protect the authen-
ticity and verifiability of execution. TEEs enable cloud hosted, and authentic
software, shielded from an untrusted underlying infrastructure.

Developing an efficient serverless application runtime capable of TEEs re-
quires significant work in analysis, design and engineering.

The main hypothesis of this thesis is therefore:

TEEs can be leveraged to build a secure and efficient serverless
application runtime for trusted computing in a public cloud.

This thesis will have particular focus on the design and implementation of
Diggi, a distributed runtime for secure native cloud functions.

1.3 / SCOPE AND LIMITATIONS 5

To evaluate the applicability of TEE in context of serverless computing, we
conduct a precursory survey of serverless computing systems, detailing the
opportunities and challenges in implementing a secure serverless runtime.
The set of capabilities supported by SGX suggests it to be the most applicable
TEE for cloud computing. To validate this claim, we compare it to alternative
candidate TEEs and capable trusted hardware systems.

A comprehensive baseline performance analysis of the programming prim-
itives comprising the SGX platform will allow us to deduce a set of general
advisory principles for implementing efficient and secure systems using Intel
SGX. Insights gathered from this analysis will then be integrated, along with
the threat model, into a complete system outlining the design requirements of
the Diggi runtime.

To demonstrate that the Diggi runtime is practical, we will implement a
prototype satisfying these requirements. Our evaluation will confirm this prac-
ticality, by micro and macro benchmarks. This includes a layered analysis of the
compounding effects of different security measures implemented in Diggi. Ad-
ditionally, to demonstrate applicability of our prototype system, we implement
a rudimentary application simulating a privacy-sensitive workload.

1.3 Scope and Limitations

We design and implement a prototype serverless runtime for trusted execution
in a public cloud. Completeness is not a first-order concern and throughout,
this thesis assumes a set of properties at the boundary of our limited prototype
design:

* Cloud providers are able to host Diggi on top of bare-metal physical hosts
or equivalent virtual machines which make SGX capabilities available to
the guest Os.

* Legislative requirements may altogether prohibit hosting certain privacy-
sensitive data in a public cloud. However, we conjecture that the tech-
niques described here may partially alleviate articles in regulatory frame-
works such as the General Data Protection Regulation (GDPR) [60] or
the Health Insurance Portability and Accountability Act (HIPAA) [80].

* Although automatic management and scaling of cloud functions is a
core feature of serverless computing, we refrain from discussing it in
significant detail in this dissertation. We consider this an engineering
problem, orthogonal to the focus of this thesis. We primarily focus on the
development of a secure runtime for hosting cloud functions, and where
applicable, we demonstrate scaling potential to support this claim.

* Diggi assumes a crash-stop [32] model for all distributed processes, and
assume benign execution of authenticated functions in TEEs. Runtime

6 CHAPTER 1 / INTRODUCTION

behaviour violating these preconditions, will cause the system to inten-
tionally crash.

* Although Diggi cloud functions demonstrate persistence, we consider
state in functions to be ephemeral and state is not replicated. However,
persistence is not a fundamental limitation to serverless computing;
future system may include the ability to maintain distributed persisted
state, with application-tailored consistency models.

» Serverless platforms isolate the host operating system and cohosted
tenants using virtual machines. Diggi supports cross-tenant isolation
but does not implement host protection. We consider this problem com-
plementary and previous works demonstrate that a solution is practi-
cal [14] [85].

1.4 Methodology

Modern science may be defined as the endeavor of repeated systematic study
of phenomenon, both ethereal and physical. It encompasses the organization of
knowledge into verifiable or reproducible claims, of which further study is built
upon. Following controversy, scientific progress is achieved when reaching
consensus on claimed truths. Natural, or formal sciences, follow the hypo-
deductive method [68]. Observations of processes or phenomena lead to the
formation of a generalization in form of a hypothesis, tested by logical deduction
or experiments. This process is iterated until the test results matches the
expected outcome, i.e there are no errors in the experiment.

The final report of the ACM Task Force on the Core of Computer Science [43]
presents a new taxonomy for classifying computing as a science. Computing
research is rooted in three paradigms, theory, abstraction and design. Theory is
the foundation for logical reasoning and mathematical sciences. Abstraction is
the applied method of natural sciences, where the formation of hypothesis and
models are validated through experiments. Design is defined by the iterative
process of solving problems based on specification and implementation.

Theory is rooted in mathematics and consists of the following procedure:

1. Describe or characterize the phenomenon.

2. Pose a hypothesis based on the characterization.

3. Prove the hypothesis by way of logical deduction to determine the truth-
fulness of the characteristics.

4. Analyze the results, testing the proof to the object or phenomenon in
observation.

These steps are iterated for as long as errors or inconsistencies are present.

1.4 / METHODOLOGY 7

Abstraction is founded in the experimental scientific method with 4 distinct
stages:

1. Form a hypothesis based on the reasoned relationship of phenomenons
or expected logical outcomes.

2. Construct a model representing this hypothesis, and predict observed
behaviour.

3. Design experimental parameters to increase the certainty of the phe-
nomenons.

4. Collect and analyze empirical evidence from the resulting experiments
in congruence with the initial hypothesis.

The stages may be iterated upon until the hypothesis successfully predicts
observed behaviour.

Design is founded in the practical engineering discipline, and involve the
following steps:

1. Based on a series of observation, state a set of requirements for which a
system must fulfill.

2. Design and implement a prototype system according to these specifica-
tions.

3. Construct a set of tests to evaluate the system in conformance with the
initial requirements.

These steps may be repeated until the requirements are fulfilled.

The paradigms are archetypes of the scientific method, and computer science
borrows from all three. In algorithm research, the construction of algorithms
to model the characteristics of a phenomenon and the formal proof thereof,
are funded in theory.

In machine learning, or computational intelligence, hypotheses are formed
based on a expected correlation of separate phenomenon. A learned model
is then constructed to predict this correlation, and experiments validate the
conformance through classification.

Software engineering describes an initial problem statement through require-
ments and specifications of a system, which is implemented and its validity
tested in conformance with the requirements. Although all computer science is
permeated by theory, computer science is not only a science of the artificial [51].
Information processes and computing preexist the earliest descriptions of phys-
ical computing devices.

This thesis is funded in the subfield of computing referred to as systems
research, mixing abstraction, theory and design. We use abstraction to describe

8 CHAPTER 1 / INTRODUCTION

the proprietary Intel SGX platform, and test our hypothesis by experimental
measurements. Additionally theory, to reason about the security properties of
our hypothetical system, proposing algorithmic solutions to preserve confiden-
tiality, integrity and authenticity. Based on the proposed hypotheses, we design
a system model through a set of requirements. We then implement a prototype
system, Diggi, and evaluate its conformance with stated requirements through
experimentation.

1.5 Research Context

The research presented in this dissertation was conducted in the context of
the Corpore Sano research group, exploring the intersection between computer
science and life sciences. Notable research targets elite sports performance de-
velopment and injury prevention, preventive healthcare, large scale population
screening, and epidemiological health studies. By applying systems research
to these fields, Corpore Sano aims to disrupt state-of-the-art monitoring and
analysis within the field. In support of these goals, systems research conducted
by the group covers all abstraction of the software stack. This includes data
collection and processing, big data and machine learning applications, fault
tolerance, and software mechanism for privacy and policy enforcement.

The Corpore Sano center is a natural continuation of research conducted
as part of the iAD (information Access Disrupted) research group, funded by
the Norwegian Research council as a center for research driven innovation
(SFI 2007-2015). To place this dissertation in context, we summarize relevant
previous research contributions by the group.

With the advent of commodity support for hardware based virtual machines,
the public cloud enable consolidation of computing resources to provide 1aas.
The Vortex omni-kernel [111] implements a cloud centric operating system
from the ground up to support resource isolation between tenants. Vortex
introduced a novel approach to resource scheduling and attribution using
message aggregates which delegate messaging resources based on policy.

The Internet revolution lead to vast improvements in indexed knowledge,
and introduce information retrieval tools to a global audience. To ensure the
relevance of retrieved content, sophisticated processing tools and computa-
tion pipelines are necessary. Cogset [179] implements a distributed big-data
processing engine based on the map-reduce pattern [48] exploring a novel
approach to scheduling compute tasks based on data-locality, leading to an
increase in performance relative to competing systems [191].

In publish subscribe systems, active queries are able to process streams of
information, ensuring responsive and practical inference on data. Streaming
queries are generally stateful constructs which are difficult to distribute across
multiple physical hosts. Brenna et al. [29] extend the Cayuga [28] stream

1.5 / RESEARCH CONTEXT 9

processing engine to enable scalable distribution of queries represented through
non-deterministic finite state automata.

Peer-to-peer systems promises a highly scalable way of organizing computing
resources into structured or unstructured groups. Systems which implement
decentralized computing are more fault tolerant and elastic than their central-
ized counterparts. The blockchain [170] is the most prominent example of a
decentralized architecture which share a common ancestry to these systems.
Fireflies [98] implemented a practical scalable overlay network which supports
Byzantine Fault-Tolerant (BFT) membership agreement. By organizing mem-
bers into a probabilistically verifiable pseudo-random network, attackers are
unable to modify membership views of correct participants.

Cloud providers promise large scale computation for enterprises at low
cost and low risk of investment. However, enterprises may have restrictions in
migrating workloads onto the cloud. Policies such as lack of vendor lock-in,
hybrid clouds, data locality, and retention, require precisely tagged and de-
scribed data. Balava [131] investigates data migration between heterogeneous
cloud providers using metacode, including combinations of private and public
(hybrid) clouds. Balava reduces vendor lock-in, and enables timely migration
of on-premise software stacks onto the cloud.

Content Delivery Networks (CDNs) provide a simple way of caching read-
only data close to consumers, such as video on-demand services. This read-only
infrastructure is not well suited to handle write workloads and dynamically
adaptable content. Jovaku [140] investigates reusing existing cloud infrastruc-
ture to create a middle-tier caching layer using the Domain Name System
(DNS).

Ensuring authentic access to sensitive data is adamant to develop secure
distribution. Renesse et al. [148] implement a mobile smart access control
abstraction through meta-code embedded in x509 certificates. LoNet [97] im-
plements policy enforcement through automated transparent information-flow
de-identification enforced by an inter-positioned reference monitor between
data and requestor.

Proof of concept implementations of these systems address many initial
questions emerging from the cloud revolution. As cloud technology has ma-
tured, more diverse frameworks which simplify development of cloud services
push more of the management responsibility onto the infrastructure provider.
The container abstraction lets the developer focus on software development,
rather than operating system management. Serverless computing reduces the
scope of computing further, automating management and scaling completely.
As more aspects of cloud software is managed by cloud providers, consumers
still require strict privacy and security guarantees for software executing in
the public cloud. This thesis focuses mainly on the mechanism necessary for
secure distributed analytics and data processing in the cloud.

10 CHAPTER 1 / INTRODUCTION

1.6 Impact

Outside of publications, the work presented in this dissertation have afforded
several distinct and noteworthy contributions and collaborations which are
listed here.

As part of special curriculum requirements for master students at UiT: The
Arctic University of Norway, two student project assignments were written based
on the foundations of Diggi. These explored the development of an encrypted
file system in SGX supporting durable storage of secrets, and an investigative
survey on software replacements for TEEs using homomorphic encryption
schemes.

In his master thesis Hoff [83] developed a distributed in-memory key-value
store for caching sensitive data built on top of the Diggi runtime. The prototype
achieved practical performance, demonstrating the applicability of Diggi.

Part of the dissertation period included a research internship at Microsoft
Research Systems Group in Redmond, Washington. The internship lead to
explicit acknowledgement for contributions made to published work [161].
Additionally, it awarded co-authorship on two US patent [35][36], and a sub-
mitted journal article detailing Multi-Version Concurrency Control, pending
review [162].

As part of the development of Diggi, posters introducing core aspects of
the design were presented at ACM SIGOPS Symposium on Operating Systems
Principles 2017 Shanghai, China, and the ACM SIGOPS 1st Summer School on
Advanced Topics in Systems 2018. Several talks on the foundations of Diggi
have been made as part of seminars related to the masters level course "INF-
3203: Advanced Distributed Systems" at UiT. Diggi is moreover part of the official
curriculum for the spring semester of 2020.

1.7 Summary of Contributions

This thesis is based on the work presented in [64, 65, 62, 25, 63]. We map
the individual contributions in each publication to the work presented in this
thesis, and list the novel concepts.

1.7.1 Publication |

Anders T Gjerdrum et al. “Implementing informed consent as information-flow
policies for secure analytics on ehealth data: Principles and practices.” In: 2016
IEEE First International Conference on Connected Health: Applications, Systems
and Engineering Technologies (CHASE). 1EEE, 2016, pp. 107-112

1.7 / SUMMARY OF CONTRIBUTIONS M

This paper introduces the CSano architecture, which outlines a privacy-
compliant distributed system architecture for curation and processing of privacy-
sensitive data gathered from cyber-physical systems. CSano introduces the
concept of vaults for storing gathered data and Computation Units (CUs) for
processing data. Vaults and CUs are composed into a distributed processing
pipeline where information-flow policies, enforced through security labels, en-
sure that taint does not cross isolation boundaries in a multi-tenant pipeline.
CSano describes a distributed tamperproof log structure in which all events
in the processing pipeline are logged. Accountability is achieved through de-
terrence in view of a possible audit. An audit process may replay the logging
events to determine the correctness of processed data. The audit process may
additionally prove revocation of rights in the event where consent is withdrawn
from the system. Computational units and vaults are implemented as individ-
ual containers, isolated from one another. Vaults are implemented as personal
mysql databases hosted in separate containers. The cohosting potential for
multi-tenant environments is demonstrated empirically, achieving practical
cohosting of 70 separate vaults.

This work introduces the foundation for Diggi, presenting an initial proto-
type distributed application runtime for protecting privacy-sensitive data. It
introduces the concept of accountable reproduction of application execution
and tenant/user isolation of compute and storage resources. However, this
work does not protect from a malicious host, and requires a high degree of
trust in the cloud infrastructure, an issue addressed in later work.

1.7.2 Publication Il and Il

Anders T Gjerdrum et al. “Performance of Trusted Computing in Cloud Infras-
tructures with Intel SGX.” In: CLOSER. SCITEPRESS, 2017, pp. 668-675

This paper explores the performance implications of hosting software in
SGX enclaves. We evaluate the technology by constructing a set of micro-
architectural benchmarking experiments targeting key traits of the SGX plat-
form, including context-switching, memory management and deployment. We
analyze the empirical evidence from the experiments in conformance with de-
tailed descriptions of the internals, and devise a set of programming principles
for developing efficient software with Intel SGX.

Anders T Gjerdrum et al. “Cloud Computing and Service Science: 7th Inter-
national Conference, CLOSER 2017, Porto, Portugal, April 24-26, 2017, Revised
Selected Papers.” In: vol. 864. Springer, 2018, pp. 1-18

A selection of papers from the conference where subsequently invited to
contribute extended versions for the Springer Cloud Computing and Services

12 CHAPTER 1 / INTRODUCTION

Science Journal. The extended journal version included additional benchmarks
on multithreading performance, and principles recommending asynchrony to
maximize system utilization.

The Diggi runtime is built from the ground-up to satisfy these princi-
ples.

1.7.3 Publication IV

Eleanor Birrell et al. “SGX Enforcement of Use-Based Privacy.” In: Proceedings
of the 2018 Workshop on Privacy in the Electronic Society. WPES 18. Toronto,
Canada: ACM, 2018, pp. 155167

This work evaluates several architectural layouts for for interposing refer-
ence monitoring to enforce use-based privacy. By delegating enforcement to
authenticated SGX enclaves external to the trust domain, distributed systems
may reduce data transfers by enforcing data access remotely, local to the host
consuming the data. Program attestation may enforce fine-grained policies as
the attestation evidence is inherently tied to evidence of usage.

The evaluation was implemented in an early incarnation of the Diggi runtime
prototype, and the concepts introduced here further influence the design of

Diggi.

1.7.4 PublicationV

Anders T Gjerdrum et al. “Diggi: A Secure Framework for Hosting Native Cloud
Functions with Minimal Trust.” In: The 1st IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems, and Applications (TPS). 1IEEE,
2019

This work introduces Diggi, a distributed cloud function runtime for hosting
native privacy-sensitive applications in an untrusted Faas cloud. Functions
in Diggi are developed through an asynchronous flow-based programming
abstraction. This abstraction enables efficient usage of limited SGX resources,
maximizing the cohosting potential per server instance of Diggi. Diggi im-
plements co-attestation of cloud function to implement distributed trusted
architectures, consisting of hundreds of cloud functions. We evaluate the ef-
ficiency of Diggi and demonstrate that our solution is practical, reducing the
TCB compared to previous work. To the best of our knowledge, Diggi is the first
asynchronous native FaaS runtime for hosting trusted cloud functions using
TEEs.

This work presents the core runtime and security properties of the Diggi
prototype, including secure ephemeral storage, co-attestation, asynchronous

1.8 / OUTLINE 13

execution, and communication via tasks and flows.

1.7.5 Novel Concepts

Founded in the publications listed above and additional research, a we summa-
rize the core novel concepts introduced in this thesis:

Persistent cloud functions: To broaden the spectrum of applications which
may be implemented via cloud functions, we introduce persistence. Each func-
tion may securely manage ephemeral session state, available throughout its
lifetime. A function may additionally be sticky, and implement multi-request
session interaction, beneficial for streaming workflows.

Accountable function execution: We introduce a message-based dynamic
attestation process for identifying enclave software beyond initial attestation.
By storing message exchanges in a tamperproof logging structure, functions
in Diggi are accountable. This property further extends to non-deterministic
functions. Execution may be audited by replaying messages and comparing
the expected result to the dynamic attestation proof.

Shielded native cloud function execution runtime: We design and imple-
ment an efficient, native and fully asynchronous shielded runtime for cloud
function execution. The runtime adopts best practices for shielded software
in SGX, including low memory footprint, exit-less communication and careful
partitioning of program logic.

Protocol for multiparty co-attestation: We extend the Intel-provided stock
attestation protocol and introduce a multiparty secure attestation and key

distribution protocol for distributed applications. A cloud function may identify
and authenticate several other cloud functions in a non-trusted cloud.

1.8 Outline

This thesis is structured as follows:

Chapter 2 studies serverless systems, including challenges and opportunities
for serverless computing in an untrusted cloud.

Chapter 3 describe several Trusted Execution Environments and other hardware-
based trusted computing systems, with particular emphasis on SGX.

14 CHAPTER 1 / INTRODUCTION

Chapter 4 conducts a baseline experimental analysis on the micro-architectural
features of the SGX TEE. Based on the outcome, we derive 7 performance prin-
ciples for designing efficient SGx-capable software. We then derive a set of
functional and non-functional requirements for which a secure and efficient
serverless cloud application runtime must satisfy. Based on these requirements,
we introduce the design of Diggi.

Chapters and 6 details the Diggi prototype implementation, securing server-
less applications from an untrusted cloud. The prototype implementation
includes a trusted asynchronous micro runtime, ephemeral state protection,
record-and-replay accountability, system call translation for legacy libraries,
cloud function deployment and co-attestation.

Chapter 7 evaluates the prototype implementation, and demonstrates the
practicality of the system design through analysis and discussion of the empir-
ical results. To demonstrate applicability, we introduce a sample application
implemented as as a collection of Diggi cloud functions.

Chapter 8 discusses Diggi in the context of relevant and topically similar
related work.

Chapter 9 presents concluding remarks, discussing contributions, along with
opportunities for future research.

Serverless Computing

Cloud computing enables the development of scalable software, through rented
hardware resources on-demand [59]. Serverless computing [82] [99] extends
this by empowering developers to create complex and demanding online ser-
vices without any up-front investment. Serverless applications are able to au-
tomatically scale on platform engagement, and costs are directly proportional
to revenue streams such as click-based advertisement. This linear relation-
ship reduces commercial risk for businesses interested in developing online
services.

A distinction is made between renting computing capabilities (Serverfull),
versus paying for computations (Serverless). Services dynamically scale the
allocated physical infrastructure based on incoming request load, and ser-
vice owners only pay the cost of resources actually consumed. Contrary to
Infrastructure-as-a-Service (1aas), Faas provides a simple and fine-grained
interface through stateless, reactive singular units of computation called cloud
functions.

Serverless is incorrectly used for an assortment of concepts boasting au-
tomatic scalability. Serverless also defines a finegrained and self-contained
compute unit separate from infrastructure [21]. The scope of this treatment is
therefore limited to Faas, or Cloud Functions.

15

16 CHAPTER 2 / SERVERLESS COMPUTING

2.1 Advantages of Serverless Computing

Serverless is, despite what the name suggests, dependent on servers. However,
developing serverless applications arguably involves less management than
the conventional counterparts. Operational concerns such as scalability, load-
balancing, deployment, availability, geo-location are automatically manageable
by cloud infrastructure software. The full software stack, ranging from Virtual
Machine (VM)s to application libraries, is transparently managed by the cloud
provider. This leads to a potentially lower bar for onboarding developers, as
much of the complexity of the cloud is hidden.

From the cloud provider’s point of view, decoupling execution and man-
agement simplifies the upgrade procedure. Less heterogeneous runtime en-
vironments also simplify the development and testing of cloud infrastructure
software. A cloud provider may also exercise flexibility in choosing the physical
hardware required hosting cloud functions. Renting 1aas implies specifying
the tier of resources to claim, including storage capacity, network bandwidth
and compute capabilities [59]. Faas however, allows computing instances
from multiple generations of hardware, increasing longevity of infrastructure
investments.

Pricing per function-invocation reduces the risk of investment for both the
cloud consumer and provider. Consumers may develop services where costs
are directly proportional to engagement. For providers, datacenter resource
consumption is tied to revenue, mirroring the cost of power. Additionally,
packing fine-grained units of compute efficiently onto physical hosts permits
higher infrastructure utilization.

2.2 The Cloud Function Abstraction

Cloud functions are stateless, event-driven, and independently scalable unit
of application logic. Statelessness simplifies scalability and load balancing as
functions are not required to keep multi-session data. Subsequent requests
for a service may be directed to any available instance, or a new, triggering a
scale-out. Functions requiring state are traditionally coupled with secondary
storage components such as databases or blob storage. Persisted state services
are often long running, and cost is therefore harder to precisely estimate.

Serverless computing is considered more beneficial for compute-intensive
tasks or applications with bursty access patterns. For IO bound services, par-
titioning the application architecture into separate functions may be cost-
efficient, however, increase development complexity.

Major providers support cloud function development through a wide variety
of programming languages, either natively or through workarounds allowing
arbitrary code execution. The most popular natively supported choices are

2.3 / PRICING MODEL 17

[:} Cloud function % Event
l:> Client request —— Action

Storage

b)

Insert
newsfeed

Newsfeed

N

Change

Subscriptions

Insert
Subscription
Insert
Auth Token
9]
" . " Insert Get Trigger Ti
POST api/functions/clickadd Click Event Metadata metadata analytics fmer

Figure 2.1: Conceptualization of a sample serverless architecture: a) Simplify com-
plex APIs by aggregation. b) Allows change-based triggers to implement
propagation of information. c¢) Allows batch oriented tasks for triggering
analytics workflows. A reactive version may trigger analytics similarly to
b).

POST
api/functions/newsubscription

New
Subscription

Authentication

ali

Golang, Python, C# and Node.js (JavaScript). The natively supported among
each, offer more tightly integrated library and infrastructure support as opposed
to workarounds.

Cloud functions are reactive, listening for particular events which trigger the
execution of the functions. Typical event-triggers include database changes, or
more complex operations such as newsfeed subscriptions or social media ac-
count creation. Events may be triggered on timed intervals, similar to cron-jobs,
performing maintenance tasks, and batch processing. Similar to microservices,
cloud functions are single purpose units of computations, and may be composed
into more complex services, as illustrated in Figure 2.1. Complex cloud APIs
may be aggregated by cloud functions into simpler client-facing APIs. Events
may lead to other function invocations, which again produces new events to
create a chain of computing behaviour.

2.3 Pricing Model

Attribution of cost in serverless architectures is fine-grained; cloud functions
are invoked on-demand and priced per invocation. This allows developers to
precisely monitor the cost of operation of a service, and automatically scale out
in the event of a request surge.

A Faas-runtime attempts to optimize execution of cloud functions to maxi-
mize placement. Assuming hardware has a fixed cost of acquisition per unit Cy,
including power, space rental, developer costs etc. Given a set of invocations
per host Iy, an optimal execution plan for hosting cloud functions on a given

18 CHAPTER 2 / SERVERLESS COMPUTING

host will maximize the utilizations ratio (UR},):

URy = max I—h
Cn Ch
Maximizing utilization may be solved by either minimizing the cost of hardware
or increasing invocations per hardware unit.

Provisioning cloud functions must also be efficient, and execution latency
is directly proportional to utilization. Considering a cloud function which
takes 10s to complete and an additional o.5s to provision. Given that the
resource is occupied for the duration, this would imply a theoretical 10 percent
underutilization.

Although billed per invocation, most Faass additionally charge for longevity
of invocation, and particularly long running functions are restricted by de-
sign [16]. Precision in attribution therefore comes at the expense of functional-

ity.

2.4 Architecture

Multi-tenancy is a predicate for efficient consolidation of hardware resources in
serverless computing. Cloud functions executing in the context of different ten-
ants must therefore be isolated; both by fair resource scheduling, and confiden-
tially, ensuring no information leakage across tenants. Serverless infrastructure
implements several techniques to isolate function execution. Most commonly in
VMs, encapsulating execution environments into separate instances. To reduce
the overhead of provisioning and execution, other mechanisms for isolation
may be used in combination, such as containers [2] [78]. Redundant layers pro-
vide host protection and efficient tenant runtime provisioning. Unikernels [118]
hosted on top of vMs, library operating systems inside containers [144] and
high-level language runtimes [44] [74] [95] are also possible isolation mech-
anism. A common technique to offset some of the provisioning cost of VMs,
containers, and runtimes, is to create pools of dormant compute capability
which are preallocated in anticipation of request load. Additionally, runtimes
belonging to the same tenant may be reused to save provisioning costs. Some
support ephemeral (temporary) storage for cloud functions, erased once the
runtime is decommissioned.

To implement scheduling for cloud function invocations, a fault-tolerant
distributed queuing system must be in place. The queue must accept request
and schedule them in a timely manner onto free execution slots as advertised
by the physical hosts. If cloud functions are required to be idempotent, as is
the case for most, the failure model may be simplified. Stricter exactly-once[24]
execution semantics may be substituted for at-least-once. Functions with side-
effects, such as a financial transaction, must internally ensure that "double

2.5 / CHALLENGES 19

POST api/functions/myfunctio
Ticket Id:3

>
.
E Letrg, Invok
3 p nvokers
eSU/[

Execution Queue

Figure 2.2: Invoking a cloud function in a serverless application framework. The client
first requests execution through a REST-full API1, the front-end forwards
the request to the controller, which authenticates and schedules it for
execution. The result is stored, and may be retrieved through a subsequent
request.

Front-end
Controller

Front-end

Front-end

spending" is detected and corrected.

Figure 2.2 depicts how a serverless application framework invokes a cloud
function. The frontend receives the request through a stateless interface, and
forwards it to the controller. The controller authenticates the requester and
authorizes the access, fetches the corresponding function and places it on the
execution queue. Once placed on the queue, it receives a ticket id. Depending
on how functions are scheduled, the queued request is eventually assigned
to an invoker, a VM or container. The output, or result, is then persisted in a
database under the corresponding id. The invoker issues an additional request
to obtain the result of the function execution.

2.5 Challenges

The latency for provisioning resources in a serverless runtime significantly
impacts the total revenue for a cloud provider by how many functions are
charged per time-unit for a given physical host. The overhead, or cold start la-
tency, should therefore be minimal. Isolation capabilities such as containers and
virtual machines serve multiple purposes; security isolation, preventing infor-
mation leakage, and service management. In current serverless infrastructure,
these present overlapping functionality by redundant security measures [178].
A JavaScript engine shares isolation capabilities provided by the underlying
container, VMs or both.

A cold start penalty may partially be caused by virtual machine or con-
tainer deployment. For optimized serverless runtimes, pre-provisioned virtual
machines are specialized for a particular tenant during the cold start pro-
cess [178]. Bootstrapping the language runtime environment and function

20 CHAPTER 2 / SERVERLESS COMPUTING

binary may additionally contribute to latency. Dormant functions may exist
in a pre-provisioned state, referred to as warm start. Mismanaged capacity
planning (pre-provisioning) may additionally cause the execution queue to
grow boundless. Chained functions which fan-out execution, may propagate
latency or increase demand. This may have cascading effects for composite
serverless applications where an increase in load from a function upstream
may unpredictably increase load downward in the chain [126].

In addition to temporal restrictions, cloud functions have a fixed limit on
temporary storage and memory usage. Cost is attributed per invocation and
determining the execution time for individual cloud functions is difficult. A
common problem is scheduling request queues without the ability to precisely
determine execution time. A pessimistic scheduling approach might under-
provision functions to target hosts, however, over-provisioning may violate QoS
constraints.

Conventional cloud functions are only suitable for developing a particular
class of applications. Software library support is often restrictive and applica-
tion developers must adhere to the suite of APIs available in a given runtime
environment. Scaling stateful application services while maintaining consis-
tency is considered a non-trivial problem. Services such as Spanner [45] and
DynamoDB [49] attempt to relax consistency requirements, but essentially
require complex agreement protocols [112] to manage distribution of state.
Cloud functions are therefore ordinarily limited to stateless applications.

2.6 Comparable Concepts

The concept of serverless may arguably not be constrained to the cloud, however,
may be interpreted as a symbiotic construct to edge computing. In Fog/Edge
computing, IoT devices with serverless application constructs may offset some
of the bandwidth cost by performing upstream evaluation on sensor data prior
to ingestion by cloud services [163].

Platform-as-a-Service (PaaS) predates Faas, however serve a similar pur-
pose. Paa$S provides a full-fledged application framework and storage service
for developing automatically scalable web applications [72]. Cloud functions
serve as a more lightweight generalization of the concepts initially made avail-
able through PaaS [99]. Figure 2.3 illustrates where Faas fit into the cloud
computing continuum compared to other common abstractions.

The concept of a software construct executing single purpose operations
based on requests, bears similarity to mobile software agents [96] [105]. A
software agent is a computer program which acts on behalf of a program or
end user to achieve a prescribed task. Software agents do not require user
interaction and are self activated. Agents may furthermore be persistent, exist
in a waiting state while perceiving context, and at any point autonomously

2.6 / COMPARABLE CONCEPTS

CaaS
laaS

— FaaS
— Paa$S

Figure 2.3: The cloud computing continuum of abstractions.

21

decide to activate itself. There are no architectural limitations in serverless com-
puting which prohibit this comparison. Serverless functions may be triggered
by temporal parameters, essentially implementing this behaviour. Although
traditionally serverless computing does not demonstrate persistence, we argue
that it is not an innate property of the paradigm.

Google Azure AWS
Edge No No Lambda@Edge
Max longevity 5408 600s! 900s
Arbitrary code ? No Yes

Storage Options

Object, Cloud, File,
Block, Firebase,

Azure Blob, Queue,
Files, CosmosDB,

AWS S3, DynamoDB,
Aurora, RDS, SQS,

(Docker)

and Cloud SQL and Table and Kinesis Streams
Max Memory 2GB 1.5GB* 3GB
Isolation? GVisor Windows Nanoserver | EC2 container service

(Amazon Linux)

Native Languages

Node.js, Go, Python

C#, Java, JavaScript,
PowerShell, Python,

Java, Go, PowerShell,

Node,js, C#, Python, Ruby

TypeScript
Request Size 10MB No Limit 6MB3
Composition Cloud Composer Azure Logic Apps, Step Functions
(Apache Airflow) Durable Functions

Table 2.1: A comparison of the major cloud providers’ Faas offerings.

1. Consumption plan
2. Not including language runtime
3. For synchronous functions

22 CHAPTER 2 / SERVERLESS COMPUTING

2.7 Proprietary Implementations

The largest public cloud providers all offer Faas as part of their suite of cloud
services [16][17][42]. We detail the similarities and differences between these
platforms where reliable documentation is available, a summary of which is
shown in table 2.1. All provide automatic scalability, fault tolerance, infrastruc-
ture management and broad support of cloud service connectors. Functions
may implement sophisticated conditions for activation, including modifications
to storage and temporal triggers for maintenance tasks. All offer pricing mod-
els driven by cost attribution per invocation. All support development through
JavaScript and Python, but only AWS support API extensions for arbitrary
function binaries.

Cloud functions are hosted in containers to simplify deployment, addition-
ally hosted in virtual machines. While containers offer resource and depen-
dency isolation, vMs are traditionally considered more appropriate tools for
security isolation. However, colocated tenants on a single VM are vulnerable
to side-channel attacks [149]. Wang et al. [184] demonstrate colocation of
cloud functions from multiple tenants for Azure cloud functions. No successful
colocation was observed for AWS or Azure. Investigations [184] confirm that
cloud functions for all major providers are hosted on heterogeneous hardware
transparent to the developer, optimizing infrastructure utilization.

Wang et al. [184] studies the characteristics of the three public cloud server-
less platforms described, by way of large scale deployment and runtime ex-
periments. All serverless platforms studied exhibit relatively high cold-start
latencies. And the non-native runtimes studied show a significant overhead
on compute heavy workloads. No multisession function support is mentioned
in any of the publicly available documentation. Multiple requests will not
necessarily hit the same runtime container, and to support sessions, functions
instead require external storage with strong consistency. Stateful services are
implemented via function composition frameworks, coupling stateless cloud
functions with storage services.

2.7.1 AWS Lambda

AWS Lambda is the most mature public Faas platform, launched in 2014.
Each Lambda is hosted inside a container which again are hosted in per-
tenant dedicated vMs. Tenant separation only applies to developer identi-
ties and the implementer must ensure that different application tenants, be-
longing to the same developer identity, do not share containers [184]. AWS
supports Lambda development through multiple language runtimes; an ex-
ample implemented in JavaScript is listed in 2.1. This function may be con-
figured to respond to storage events, client events or other function requests.

2.7 / PROPRIETARY IMPLEMENTATIONS 23

// EventName: HelloFunction

exports.handler = (event, context, callback) => {
callback (null, "Hello," + event.who + "!");
¥;
// Event Configuration
{
"who": "AWS Step Functions"
b
// State Machine Definition
{
"Comment": "A Hello World example",
"StartAt": "HelloWorld",
"States": {
"HelloWorld": {
llTypeH: V|TaSkll’
"Resource": "aws:lambda:*...*: HelloFunction",
"End": true
b
b
}

Listing 2.1: Example Lambda Step Function, consisting of a event function, configu-
ration and state machine definition.

AWS Step Functions allow developers to create workflows which combine
Lambdas, storage services and other autoscaling services to create application
workflows. Steps are executed as a state machine consisting of individual events
with inputs and outputs, crafting long-running workloads for applications.
Figure 2.1 illustrates the state machine definition for a simple step function.
Examples of use include machine-learning inference, big data ingestion and
batch processing, revenue stream report generation, and subscription services
for email newsletters.

Lambdas scale automatically based on load and provide fault tolerant access
across availability zones within each geolocated region. Execution parameters
may specify pre-provisioned resources for applications requiring lower latency.
Pre-provisioned functions incur an additional cost per unit of memory (GB per
seconds) allocated.

Lambdas are essentially restricted containers allowing execution of arbitrary
code, simplified through developer APIs for code submission and preparation.
Once Lambdas complete, the execution context is suspended along with all
processes executing within that container. The architecture reuses execution
contexts for subsequent function execution and memory objects may persist
across invocations, however, container reuse is not guaranteed.

Execution contexts additionally provide temporary filesystem storage which
remains throughout its lifetime. Lambdas reuse execution contexts between
invocations to reduce cold-start latency. This is not a deterministic property of

24 CHAPTER 2 / SERVERLESS COMPUTING

the system, and cannot be used to reliably preserve function state.

AWS Lambda manages all system software and library packages, limiting
developers to the provided software modules. To ease developer transition in
the event of changes to software library support, Amazon lists the planned
deprecation time for various software runtimes in the Lambda developer
guide.

2.7.2 Azure Functions

Azure functions, similarly to AWS, support a variety of different programming
languages. Package managers for C# and JavaScript, nuGet and NPM are
supported, providing more flexibility in application composition. Like Lambdas,
Azure also supports pre-warmed functions, with an additional cost as a fixed
price per time unit.

Azure supports Durable Functions, which is a framework for designing stateful
applications similar to Step Functions. These implement a dedicated function
composition pattern; with orchestrator, entity, activity and client functions.
Orchestrator functions are used to organize the execution of other durable
functions in a function app. Activity functions are general purpose and act as
the most basic unit of work in durable function composition. They may be used
for any task requiring I/0 or compute, and are considered stateless. Activity
functions may be orchestrated in any way, in parallel, serially or as a chain.
Reliability is achieved by entity functions, declared to store state in an append
only record store, providing eventual consistency guarantees for transactional
data. This property also enables audit through stored historical records of
a functions state, called the Durable Task Framework. All persisted state in
durable functions is stored in Azure Storage transparently, and high availability
is achieved by deploying passive function state in parallel to separate failover
regions. As is, functions are required to be idempotent and the framework
guarantees at-least once semantics during execution of functions.

Client functions act as an initial request point triggering an orchestration of
durable functions to create application behaviour. Like AWS, Azure supports
trigger APIs connected to external cloud services, such as Azure Blob Storage,
Data Lake and hybrid cloud connected software. Azure functions run in a
custom runtime on top of a dedicated per-instance container. Although not
specified by public documentation, we speculate that the container service is
additionally hosted in a virtual machine.

2.7.3 Google Cloud Functions

Google cloud functions offer very similar set of features compared to the previ-
ously detailed proprietary Faas platforms. However, through a comparatively

2.8 / OPEN SOURCE IMPLEMENTATIONS 25

reduced selection of programming languages; Go, JavaScript and Python. Func-
tions are separated into multiple types:

* HTTP functions - trigger on explicit request events, either by clients or
other functions.

* Background functions - trigger on service events, such as changes in cloud
storage, analytics, and timed events.

Like Azure and AWS, developers are expected to implement idempotent
functions, however semantics differ among function types. Background functions
are invoked at-least once while HTTP functions are invoked at-most once.

Cloud functions are hosted in GVisor [78] container sandboxes. Gvisor
implements a hardened container runtime, with dedicated per-container kernel
to limit the interaction with the host 0S. Conventional containers are vulnerable
to privilege escalation attacks, and previous efforts have demonstrated the
ability to escape containment [66]. This hardening would allow multi-tenancy
in containers, which could improve function packing (Utilization). This is,
however, not confirmed by any public documentation.

2.8 Open Source Implementations

Baldini et al. [20] introduce the first open source serverless computing frame-
work for developing cloud native event-based mobile applications. OpenWhisk
implements Faas through what it refers to as actions and triggers which are
bound together by via rules. This triple is packaged and deployed in docker con-
tainers to provide automatic scaling capabilities. Figure 2.2 illustrates a proto-
type architectural composition inspired by the OpenWhisk architecture.

Actions may be implemented in multiple high-level languages, including
binary code hosted in Docker containers. Functions may be configured to
trigger on a multitude of event types, including everything from Internet of
Things (10T)-based sensor readings to database changes. OpenWhisk uses
a Nginx frontend to handle incoming trigger requests, and Apache Kafka to
manage reliable request queues for function execution. Access control lists,
authentication metadata, function code, parameters, session state and results
are all stored in CouchDB. A custom load-balancer handles scheduling of
requests for execution onto correct request queues for execution in containers.
Containers may be located in virtual machines if necessary. Once requests are
stored on the queues, an execution id is returned to the trigger source for
asynchronous execution. A synchronous mode also exists in which the trigger
waits for completion.

IBM Cloud Functions [86] are based on Apache OpenWhisk, sporting similar
capabilities to that of AWS, Azure and Google Cloud. OpenLambda [82], Open-

26 CHAPTER 2 / SERVERLESS COMPUTING

FaaS [160], the Fn Project [58] and Iron Functions [135] are other noteworthy
examples of open source Faas frameworks.

2.9 Faas in Research Literature

Akkus et al. [4] implement a high performance serverless runtime using
application-level sandboxing and a hierarchical message bus. Sand claims
to provide lower latency, better resource efficiency, and more elasticity than
existing platforms, and achieves a 43 percent speedup compared to OpenWhisk.
Sprocket [10] introduces a video processing framework which uses intra-video
parallelism to create a low latency scalable and cost efficient serverless pipeline
built on Aws Lambda. Kaffes et al. [100] argue the case for a cluster-level
centralized scheduler for serverless computing. They claim to reduce load skew
and queuing in function deployments, and reduce the interference between
cohosted functions.

Jangda et al. [94] examine the unique properties of serverless computing, and
present formal descriptions of these, outlining some of the inherent problems
with this computing abstraction. They examine the problems of maintaining
state in serverless functions, privacy implications of runtime reuse to avoid cold
start, and idempotent execution. The authors argue that these problems may
be further increased for function composition. By defining a naive function as
the ideal, without state persistence, concurrency and idempotency, the authors
are able to define precisely when these low-level runtime internals can be
ignored by developers.

Alpernas et al. [7] introduce dynamic information flow control to manage
taint in cloud functions. This work recognizes the problem of large Trusted Com-
puting Base (TCB)s in monolithic cloud applications and leverages serverless
application composition to reduce taint propagation for unmodified applica-
tions.

2.10 Summary

This chapter has discussed the architectural background for serverless comput-
ing, detailing several deployed cloud services available for use, demonstrating
the advantages of a simplified cloud computing paradigm.

Despite the benefits, all contemporary cloud services require that applications
trust the underlying infrastructure. In the next chapter we will detail hardware
systems which protect applications and services from an untrusted underlying
system.

Trusted Execution
Environments

Services hosted in a public cloud trade convenience for security, implicitly trust-
ing the surrounding infrastructure owned and operated by the cloud provider.
TEEs implement general computing capabilities in shielded application contain-
ers, accommodating secure software despite an untrusted software/hardware
stack. This section details the attributes of serverless computing and several
widely available trusted hardware systems precluding the design of a trusted
cloud-computing runtime.

Modern Reduced Instruction-Set Computer (RISC)/Complex Instruction-Set
Computer (CISC) processors partition software into separate privilege groups.
The highest privileged mode, or level of access, is granted rights which are
a superset of lower privileged modes. For example, an operating system has
the ability to access memory pages and persisted data belonging to a process
executing in the less privileged user-level execution mode. The process abstrac-
tion allows for portable and modular software decoupled from the underlying
system architecture, including physical media, concurrency, and memory man-
agement. Processes moreover fail independently without compromising the
integrity of system software.

This computing model assumes that system software is more trustworthy
than less privileged software. Modern operating systems are considered highly
complex constructs, which have repeatedly been shown to be vulnerable to
exploits compromising its integrity [33]. Because of the privilege layer abstrac-
tion present in modern processor architectures, this implicitly compromises

27

28 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

the integrity of all lower privileged software.

In cloud-native services, where the public cloud provider hosts infrastructure
and system software, it is reasonable to require protection from a potentially
malicious underlying infrastructure. Unfaithful servants with physical access
to the hardware may further attempt to compromise the security of hosted
software.

TEEs are isolated execution constructs which grant the ability to develop
secure application modules despite a potentially malicious environment. De-
pending on implementation, a secure module is shielded from inspection by
most non-secure software and hardware, including the hypervisor, operating
system and process runtime. Code executing inside a secure module is able to
prove the correctness of both software and hardware to a third party through
remote software attestation. The Global Platform Consortium claims the term
TEE through specific standards detailing system architecture and secure ap-
plication APIs [67]. We apply a broader description of the term, as described
above.

The following section describes different approaches to implementing TEES,
comparing their strengths and weaknesses. Based on reasoning which will
become apparent, particular emphasis is held on describing Intel SGX. The
different approaches to TEEs guard against different types of attacks, and
where practical we will make the distinction.

3.1 Intel Software Guard Extensions

Intel SGX extends the x86 instruction-set first introduced for the Skylake gener-
ation of Intel’s Core microarchitecture [124]. SGX enclaves contain application
code and data segments which are shielded from the underlying operating
system and other non-trusted physical hardware. By shielded, we imply that
the content is confidential, and the integrity of the enclave is preserved. En-
clave code may use most of the instructions available in the x86-64 Instruction
Set Architecture (1SA), which enables existing software libraries to be ported
into secure modules at near-native performance. Distinct privilege modes sep-
arate secure and non-secure execution, and architectural modifications to the
processor cores and Memory Management Unit (MMU) implement shielded
enclave memory. The system bus will protect against unsolicited access requests
to enclave memory by non-privileged execution modes. SGX holds a smaller
inherent TCB than other mechanisms for authenticating software, comprising
the enclave, CPU package and the secure firmware implementation.

Enclaves may be authenticated remotely via attestation, which enables ex-
ternal services such as clients to verify the identity of an enclave. To attest
an enclave, trusted hardware constructs a quote, containing a signed hash of
the secure modules’ code and data pages. The signature is generated by a

3.1/ INTEL SOFTWARE GUARD EXTENSIONS 29

key uniquely identifying a known benign TEE hardware platform instance. By
serving this quote, the enclave is able to prove to a requestor exactly what
code is executing, and the identity of the underlying hardware platform in-
stance.

SGX is mostly implemented in the CPU microcode-architecture, not accessible
from the operating system, executing underneath the 1SA abstraction. The
microcode facility in modern x86 processors enable complex instructions to be
implemented as a composition of multiple simpler instructions. This essentially
bridges the gap between the CISC architecture which the instruction set exposes
to system software, and a RISC architecture executing on the processor cores.
By implementing more complex operations in microcode, development time for
new processor functionality is significantly reduced, and microcode firmware
may be updated to account for bugs and vulnerabilities in processors after
manufacturing.

The internals of SGX are sparsely described in literature released by the
manufacturer [87] [88]. However, Costan and Devadas [46] provide a com-
prehensive introduction to the internals of SGX based on publicly released
developer guides, the Intel x86-64 Software Developer Manual and patent ap-
plications, bridging the knowledge gaps with qualified conjecture. Serving as a
de facto source for SGX internals within the research community, we base most
of our description on the details in this comprehensive treatment. This section
only describes the details which are necessary for reasoning about the design
and implementation of Diggi. We refer to this treatment for a more complete
description of the SGX implementation.

McKeen et al. [125] introduce improvements to SGX by adding dynamic
paging to the SGX specifications. Hardware supporting this improvement was
not available to us during the work on this thesis. These modifications are
considered incremental and does not significantly impact the security model
nor the design choices made in this thesis.

3.1.1 Security Model

Traditional operating system or hypervisor software consider application soft-
ware containers to be untrusted, and access to privileged resources are medi-
ated though software interrupts or system call operations. Policies set by the
operating system specifies resource consumption and access to physical data
for processes.

Privileged system software have unrestricted access to the execution context
of less privileged containers. SGX is built around the assumption that system
software may itself be compromised. Non-trusted software, firmware and
hardware may actively attempt to subvert the execution of enclaves in order
to involuntarily leak secrets.

Adversaries may attempt to mount physical attacks which tap the system

30 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

bus in order to record memory accesses between the CPU package and Dy-
namic Random-Access Memory (DRAM). Additionally, malicious peripheral
devices attached to the system bus may attempt to construct Direct Memory
Access (DMA) requests targeting memory regions holding enclave secrets. SGX
outsources memory management of enclave memory to system software, and
although pages are encrypted, adversaries may still attempt to replay or swap
evicted pages to manipulate the program flow in an enclave. During a page-
fault, eviction policy alters the mapping between the linear virtual addresses
seen by a process/enclave and the corresponding physical address. These stale
entries in the Translation Lookaside Buffer (TLB) must be invalidated to ac-
count for changes in physical memory mapping. Adversaries may exploit these
stale translations to alter program flow inside an enclave. A more sophisticated
approach may attempt to swap the evicted pages on persisted media, or un-
trusted DRAM, preserving the virtual mapping but altering the contents of the
pages.

Generally, the untrusted environment may attempt to record, modify, and
replay any information or operations performed by enclaves in order to subvert
the security of an enclave.

We assume that the correctness of a TEE’s hardware and software platform
may be attested remotely. Secrets should only be provisioned to the platform
following a successful authentication across a secure communication channel.
All code and data inside an authenticated TEE is considered confidential and
integrity protected.

3.1.2 Known Vulnerabilities

The sGX security model does not protect against side-channel attacks, a class
of vulnerabilities which TEEs generally are not well equipped for. SGX exposes
several vectors for mounting side-channel attacks aimed at extracting secrets
from enclave memory.

Cache timing attacks are proven to be practical [27] and among the most
powerful, as they are mountable from non-privileged execution modes. A
malicious enclave may utilize high resolution timers to infer information about
a cohosted victim enclave. By exploiting architectural details about how Intel
x86-64 processors synchronize on-core caches, an attacker may artificially
construct memory operations targeting the same cache lines as the victim
enclave. By interrogating these lines, the attacker is able to populate them,
and infer which lines are accessed in the victim enclave by identifying cache
misses through timed measurements. Data-dependent memory operations will
then reveal the contents of the surveyed memory addresses.

Since SGX memory is managed by system software, page-fault operations
also leak information to the untrusted system [185]. An attacker may target
data dependent computations via memory management in system software.

3.1/ INTEL SOFTWARE GUARD EXTENSIONS 31

While cache timing attacks are able to infer access at the resolution of a cache
line (64 bytes), this attack vector may only observe page-level operations at
4KB intervals, reducing its potency.

SGXs system-bus memory reads and writes are encrypted before exiting the
cpu-package, however, address-references are not. These may be observed
by an attacker tapping the Quick Path Interconnect (QPI). Although data-
dependent memory-fetches may leak information, policies such as prefetching
and multicore cache-coherency protocols may generate noise, which reduces
the practicality of such attacks.

An attacker may infer information on executing processes by performing
power analysis external to the host. Measuring the power draw of hardware may
allow an attacker to infer complexity of cryptographic operations on the host
computer. Additionally, thermal inspection of hardware may leak information
on internal processes from a distance.

Approaches described above may be deployed in combination with other
attacks to increase precision. Some of these side-channels may be closed by
clever engineering techniques such as oblivious memory [187, 156]. However,
due to the high manufacturing and development cost, it is impractical to
implement protection mechanisms against all side-channels. Hunt et al. [84]
discuss the orthogonal design criteria for modern operating system, trading
performance and interference for security. Caching, multiplexing and resource
sharing will leak data between hosted environments. A complete redesign of
modern system software is necessary to mitigate these vulnerabilities.

Physical attacks against SGX capable CPUs may reveal secrets directly from
the core-die, however, have a considerable up-front cost in equipment and
analysis. Additionally, dismantling the CPU core in order to observe the cpu
logic internals through electron microscopy is a destructive, difficult and error-
prone process.

Software is inherently dependent on physical hardware to execute computer
instructions, making denial-of-service attacks by the underlying system very
hard to protect against. The system may withhold resources, such as memory
pages, network packets, kernel scheduler time-slices or power.

Developers of SGX applications must ensure the integrity of the develop-
ment process prior to deployment. The development environment must have
a trusted and verified software stack including the operating system and com-
piler, and be hosted on trusted physical hardware, with vetted developers and
operators.

SGX is vulnerable to IAGO attacks [38] by the untrusted host operating
system. Call-gate operations, ingress or egress to the enclave, may be hijacked
to deliver false information. System software should not be trusted with pro-
cedures which alter the program flow. Hardware based Random Number Gen-
erators (RNGs) or high-resolution timers served by operating system device
drivers may be modifiable by an attacker. Examples include uniform distribu-
tion scheduling, randomized sample selection, or encryption algorithms. The

32 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

Signature

OENTRY
Measurement

Version
Attributes
Vendor
Date

Figure 3.1: The SIGSTRUCT certificate structure identifies a deployable enclave and
corresponding author. Additionally, it contains valid entry points (OEN-
TRY), version and product line identifiers, and feature (attribute) masks
to specify enabled cPU-modes.

attacker may attempt to alter program flow to escalate privileges or disclose
secrets. SGX implements dedicated services for obtaining secure randomness
and secure time.

Design choices in hardware may additionally impact the security of SGX en-
claves. Simultaneous Multi-Threading (SMT) features in modern CPUs, imple-
ment a shared execution pipeline for hardware threads. Instruction scheduling
into pipeline segments by two distinct threads may leak timing information.
Rowhammer [103] exploits hardware bugs in DRAM cell storage to trigger
bit-flips in neighboring memory cells. Seaborn and Dullien [159] demonstrate
how this bug may be exploited to gain unsolicited kernel privileges. Both vul-
nerabilities may be modified to target a SGX enclave, as illustrated by Jang
et al. [93].

Weichbrodt et al. [188] detail a tool for exploiting synchronization bugs in
SGX software by precise control over thread scheduling and artificial Asyn-
chronous Enclave Exit (AEX) interrupts.

3.1.3 Enclave Lifecycle
Describing the runtime execution model of SGX is contingent on first under-

standing how enclaves are developed and deployed onto an initially untrusted
system.

Compilation. Enclaves are distributed to the host computer as shared library
objects (.so). Developers compile the enclave binary along with support li-
braries, and packages it together with the SIGSTRUCT, illustrated in Figure 3.1.

The SIGSTRUCT is a certificate data structure holding the enclave and author

3.1/ INTEL SOFTWARE GUARD EXTENSIONS 33

L~ Enclave Process

SGX_CREATE()

Figure 3.2: SDK interacting with the SGX kernel driver to create an enclave. Imple-
mented via pseudo-character device, controllable through the ioctl system
call.

identity data, the measurement, and the versioning and capability mask detail-
ing which architectural extensions the enclave supports. The measurement is
a 256-bit SHA-2 sequential hash of all compiled code and data segments. This
preserves a proof of the relative page ordering in memory, as illustrated during
the initialization procedure in Figure 3.4. The shared library object represents
the recipe which the target SGX platform must use to identically recreate the
memory layout as captured by the measurement.

The SIGSTRUCT-certificate is signed by the developers private key, PpDr i
The corresponding public key (le))u »)» certificate and binary is then distributed
to the target physical host.

Deployment. During deployment, privileged system software is tasked with
initializing the enclave. The SGX device driver manages enclave memory indi-
rectly through dedicated instructions. Figure 3.2 illustrates the device interac-
tion between the Linux kernel driver and the Intel SGX SDK embedded in a
non-privileged process hosting the enclave.

The host process delivers the SIGSTRUCT, enclave binary and public key PpDu b
to the kernel through the SGX-SDK. To begin deployment, the SGX driver issues
a special instruction, ECREATE, which creates a SECS allocated in the Enclave
Page Cache (EPC). Each enclave has a unique SECS, responsible for storing
and maintaining metadata about the enclave, including its base linear address
in process memory and its size(ELRANGE), illustrated in Figure 3.3.

Additionally, the SECS contains data from the SIGSTRUCT; the author certifi-
cate, enclave version id, architectural extension masks, and the measurement
created when loading the enclave.

The SECS is stored in enclave memory, however unlike other enclave sup-
port data structures, it is only accessible through SGX instructions. Mapping

34 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

Author cert
Version
ELRANGE
Init
TCS
Measurement
Attributes

Figure 3.3: The SECS stores metadata for each unique enclave.

the SECS page into an enclave’s address-space would allow it to modify its
own measurement, compromising the security model. All SGX instructions are
parametrized on virtual addresses and the SECS address is used to uniquely
identify an enclave. ECREATE sets the Init-field in the SECS to false, signify-
ing that the enclave is not yet initialized. All SGX instructions expecting an
initialized enclave will check the SECS, and fails the operation if not.

SGX supports multiple, mutually distrusting, enclaves per physical host, either
inside the same process or in multiple.

Thread Control Structure. ECREATE additionally allocates Thread Control
Structures (TCSs) for each logical processor expected to execute inside a
given enclave. During development, authors must specify how many TCS to
provision and the legal entry points to the enclave. Processors may only enter
enclave-mode through predefined call gates, and the the TCS stores valid entry
points (OENTRY) defined by the SIGSTRUCT during compilation. Predefined
entry points avoid uncontrolled jumps into enclave-memory, skipping crucial
protection mechanisms developed to validate and sanitize input on entry.

The TCs additionally stores segment registers used for thread-local storage
inside enclaves. Similarly to SECS, TCS may only be accessed by the SGx
microcode architecture.

Each TCS references multiple Save State Areas (SSAs) organized contiguously
in EPC memory following the TCS. The content of an SSA is populated with a
thread’s execution context prior to egress out of enclave mode. This includes
the general registries, stack information, instruction pointer, and architectural
dependent extensions such as the floating point context, SSE and AVX.

Loading enclave pages. The SECS is mapped to the physical pages owned by
the enclave through the EPCM, also allocated in the Processor Reserved Memory
(PRM). These include TCS and SSA datastructures, in addition to regular code

3.1/ INTEL SOFTWARE GUARD EXTENSIONS 35

Process
Memory EPC EPCM

EPCM Entry
EPCM Entry
EPCM Entry
EPCM Entry
A N EPCM Entry

\/
4kb page ?\ EPCM Entry

4kb page

Measurement
EINIT

Init: True

EPCM Entry
EPCM Entry

4kb page
. EEXTEND
4kb page '

]
W 4o page eexteno [N SHA-2
]

ELRANGE —

4kb page

SHA-2

EEXTEND SHA-2

Figure 3.4: Enclave memory organization and initialization procedure. Each enclave
is mapped to physical memory pages through the EPCM. The initializa-
tion procedure sequentially measures each page for comparison with the
SIGSTRUCT.

and data pages. Pages may only be added to the enclaves linear address-
space while the SECS is in the uninitialized state via the EADD instruction,
additionally used for adding TCS pages.

The EADD instruction accepts as input each page’s linear address, the access
permission bits, the target memory page, and SECS address. The target memory
page is then copied into a free EPC-page tagged via the EPCM, as belonging
to the target enclave.

The SECS base address (ELRANGE) is used to place the position independent
code into the correct virtual enclave address mapping preserving memory
ordering and measurement integrity, as illustrated in Figure 3.4.

EADD is issued repeatedly by system software for each code and data page
belonging to the enclave binary. Each is followed by one or more EEXTEND
instructions which update the enclave measurement using the SHA-2 secure
hashing algorithm. This measurement is used to verify the integrity of the
loaded enclave conforming to the developer specifications via the measurement
stored in the SIGSTRUCT, and additionally by software attestation.

The Launch Enclave. Once loaded into EPC-memory, an Intel-provided
Launch Enclave (LE) establishes the authenticity and integrity of the enclave.
The LE compares the measurement against the contents of the SIGSTRUCT
and validates the SIGSTRUCT-certificate using the developers public key, Pfu b
A token is issued to system software upon the successful completion of this
process. This token is input to the EINIT instruction which finalizes the enclave
and the measurement. EINIT moreover sets the initialized field in the SECS,
after which no more pages may be added to the enclave. Once the initialization

36 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

process reveals that the signature and measurement matches that of the loaded
segments, the enclave is considered successfully loaded and may be executed.
The EINIT token may be stored and reused to avoid redundant steps during
subsequent enclave invocations. Costan and Devadas [46] conjecture that pre-
provisioned architectural enclaves such as the LE, hold hardcoded signatures
enabling them to execute without a token.

Enclave Teardown. An authentic enclave executed by a correctly behaving
SGX implementation will, within the limits of the security model, guarantee
erasure when enclave operations halt. The teardown procedure is initiated by
the host process in synchrony with the enclave. Enclaves expect that a benign
process defers teardown until the enclave finishes execution.

System software is responsible for de-allocating enclave memory by issuing
the EREMOVE instruction targeting each page individually. The mapping be-
tween the enclave identified by the SECS and the page is invalidated by setting
the valid bit in the corresponding EPCM to zero. Additionally, EREMOVE veri-
fies that no thread is executing inside the enclave of the target page, failing if
the check is affirmative. This check serves to stop address translation attacks
where pages are reused while a thread is still active. Contents of removed
EPC pages are purged prior to becoming available for allocation. Lastly, the
SECS and associated TCSs/SSAs are invalidated, at which point the enclave is
considered successfully removed.

Evicted pages situated in regular DRAM are deallocated by benign system
software. However, should the system be compromised, any recorded pages
are still encrypted.

3.1.4 Memory Model

During the boot-up procedure of an sGX-enabled CPU, firmware prepares a
contiguous region of memory exclusively for use by the SGX implementation.
This region, referred to as PRM, sets aside a maximum of 128MB of physical
DRAM only accessible from SGX microcode and enclave-mode. PRM is again
divided into 4KB pages, collectively referred to as the EPC.

SGX shares a similar virtual memory layout to regular process memory. This
simplifies development as existing applications may be ported with relative
ease into SGX. Attempts to read or write to memory addresses within the
PRM from a non-privileged mode is prohibited. This includes both kernel (ring
o) and user (ring 3) privilege-modes. Given a prohibited memory reference,
write operations will be ignored completely while reads will invariably return
a specific value (-1) [87].

Each enclave maintains exclusive access and ownership of allocated EPC
pages, preventing secure shared memory. However, enclaves may share infor-

3.1/ INTEL SOFTWARE GUARD EXTENSIONS 37

mation via the untrusted process memory address space, as all enclaves may
read and write unrestricted the host process’ heap. Inversely, SGX does not
architecturally restrict enclaves from being mapped into multiple processes’
address space. However, as a simplification, we treat each enclave as belonging
to a single process.

Virtual enclave memory organizes enclave pages into a continuous range (EL-
RANGE), specified in the SECS. Addresses outside this range are mapped to
the same memory layout as the host process, illustrated in Figure 3.4. Only
memory within the enclave range is protected by the SGX security model, and
any access to the host process memory reveals information to the untrusted sys-
tem. Accessing untrusted memory is the practical vessel for which parameters
to/from enclave entry/exit operations are delivered.

DMA transactions targeting memory addresses within the PRM region are re-
jected by the on-core memory controller. This prevents PCI-E connected devices,
Network Interface Cards (NICs) or other peripherals from accessing protected
memory regions. EPC pages are encrypted on write-back from the last-level
cache into DRAM by the Intel Memory Encryption Engine (MEE). Attackers
are not able to infer the content of memory pages stored in DRAM, however,
cached memory regions in the on-core caches are kept in plaintext.

Host support. The first revision of SGX released along the Ice Lake generation
of the Intel x86-64 core architecture, supports dynamically loading pages after
initialization [125]. This enables large enclaves to be initialized with partially
evicted pages, lazily loaded upon request. The revised version additionally
permits more PRM to be set aside. We refrain from discussing these alterations
further, since the work presented in this thesis predates general availability for
hardware supporting these revisions.

Linux systems support virtual enclave paging through kernel driver exten-
tions [89]. Developers may specify arbitrarily large enclaves, at the cost of
multiplexing available physical memory. Windows does not augment the mem-
ory management system to support page eviction from PRM, and therefore has
a fixed upper limit of enclave memory usage. It is unclear if this is an artifact of
Windows kernel design limiting extendibility or security concerns as a result
of side-channels exposed by EPC page eviction [185].

EPC Memory Multiplexing. To efficiently utilize available PRM, unused
enclave pages are encrypted and evicted to DRAM. This enables practically un-
restricted enclave memory usage, however with a performance penalty.
EPC-pages are assigned to enclaves via the operating system’s virtual memory
manager. The EPCM keeps track of EPC-pages by maintaining a map between
the SECS and EPC-pages assigned to a particular enclave. Each EPCM entry
stores bit fields specifying the read, write and execute permissions along with al-
location and eviction state for a given page. The operating system should not be

38 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

able to access the EPC or EPCM, and consequently, page-evictions/-assignments
are handled indirectly by the kernel through SGX instructions.

When an enclave attempts to access a page not present in the EPCM, a
page-fault interrupt triggers an AEX. Along with all other registry context, the
lowermost bits of the CR2 registry specifying the intra-page fault address are
flushed prior to exit. The kernel observes the page-level faulting address, but
is unable to infer intra-page access patterns. Prior to eviction, any additional
logical processor cores executing within the affected enclave also perform an
AEX.

Stale address translations from another processor core may modify program
behavior during page eviction. Each page targeted for eviction is tagged as
blocked in the corresponding EPCM entry to ensure no new address translations
are cached in the TLB. Any reference to a blocked page either via address
translation or SGX-instructions will trigger a page-fault interrupt.

The operating system is expected to expel threads from enclaves with blocked
pages through an Inter-Processor Interrupt (IPI), triggering an AEX for each
thread. To ensure compliance, the SGX implementation keeps track of all
threads in enclaves with blocked pages.

Eviction. Page evictions are implemented through the EWB instruction, which
encrypts subject pages using an ephemeral symmetric key only known to the
SGX implementation. EWB first ensures the target page is blocked, and the
ETRACKED instruction confirms that the relevant TLB entries are flushed. En-
cryption keys are purged during power transitions, rendering evicted pages
unintelligible. Each page is integrity protected by a Hash-based Message Au-
thentication Code (HMAC) stored in dedicated EPC pages (Version Arrays
(vAs)). These pages may themselves be evicted from the EPC creating a tree-
like structure where leaf-nodes are enclave pages.

These precautions guard against page inspection, modification, address trans-
lation manipulation, and replay attacks from a malicious system. Encrypted
pages are stored in preallocated regions in DRAM managed by system software.
Since page-fault interrupts triggers an AEX for each affected logical processor,
the page eviction process is considered quite costly. To amortize this cost SGX
supports batching eviction operations together. Not being able to inspect intra-
page fault address patterns reduces the ability for memory management to
predict access patterns and implement smart prefetching policies.

Assignment. Once the eviction process is complete, the resulting free EPC
pages are populated by the faulting enclave. The virtual page number is
extracted from the upper bits of the faulting address in the CR2 registry. The
operating system memory manager retrieves the encrypted page from a map,
indexed by the virtual page number. The ELDB/ELDU instruction then decrypts
and copies the page into the free EPC page, and verifies the HMAC-tag saved

3.1/ INTEL SOFTWARE GUARD EXTENSIONS 39

in the corresponding VA entry. The difference between ELDB and ELDU is that
the former sets the blocked state of the page to 1, whereas the latter does not.
ELDB is intended for Virtual Machine Monitor (vMM)s which must restore the
correct state of a page, and uses ELDB or ELDU depending on the state when it
was evicted. Regardless, ELDB/ELDU marks the VA entry as empty, preventing
an attacker from reintroducing the page in a subsequent page-fault. Once the
operating system is finished processing the page-fault, control is passed back
to the enclave thread. It subsequently restores the execution context saved in
the SSA, and retries the faulting instruction.

3.1.5 Attestation

SGX enclaves may be authenticated remotely via software attestation. The
initial state is represented by the measurement constructed during enclave
initialization. Platform and enclave authenticity is guaranteed by requesting
that the Quoting Enclave (QE) sign this measurement using a key derived
from the Attestation Key Ag; creating a Quote. The QE is a pre-provisioned
enclave endowed with special privileges, allowing it to access Ay directly. Ay is
provisioned to the platform instance via the Provisioning Enclave (PE), another
privileged pre-provisioned enclave, as illustrated in Figure 6.6.

Local Attestation. To facilitate secure communication between the PE and
QE, a mechanism for generating shared secrets is required. Local attestation
allows enclaves to prove its identity to another using the EREPORT instruction.
The instruction creates a cryptographic report bound by a Message Authen-
tication Code (MAC) covering a custom provided message and the enclave
certificate and measurement. The MAC is computed by a symmetric key only
known to the SGX implementation and the target enclave. The report may be
shared with the target enclave through untrusted memory. The recipient may
then verify the authenticity by issuing the EGETEKEY instruction, returning a
report key used to verify the MAC. This report key is derived by a combination
of an embedded secret in the processor and the target enclave’s measurement.
The target enclave may similarly again issue its own report to the initial enclave.
By implementing the Diffie-Hellman Key-Exchange protocol [52] through the
custom message field in the report, a stable secure channel may be established
between the two entities. This symmetric key may be used for sharing authen-
ticated secrets to the target enclave. The report scheme does not include any
guarantees for freshness, and any secure encryption protocol channel must
provide such guarantees.

Enclave identities and measurements are uniquely tied to a versioning
scheme, allowing multiple versions of enclaves without changing encryption
keys. The sGX implementation allows local attestation to migrate secrets be-

40 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

Generates
Seal Key (Sk) 1)
Provisioning Key (Pk
CPU g Key (Pk)
Pk
2)
L Proof of Pk Intel
Provisioning N Attestation
Enclave :
sk Attestation Key (Ak) Service
Encrypt{{Ak}g, ‘
System Verify
Storage Q
Provision 4)
y 3) . Secrets ~ y
Quoting Sign Rp Developer ndependent
Software
Enclave Enclave
Quote (Q) Q Vendor
Get Report (Rp) Verify

Measurement

Figure 3.5: Conceptual presentation of the Intel SGX remote attestation process. 1) In-
tel provisions Py to the physical chip during the manufacturing process.
2) The provisioning enclave submits a signature to IAS, proving an au-
thentic Pk, and in response receives Ag. 3) Quoting enclave decrypts the
stored Ay from storage, signs the proposed report producing the Quote.
4) The ISV receives the quote, checks the measurement and requests IAS
to verify the signature.

tween different versions of the same enclave. This is however only one-way;
migrating secrets from older (deprecated) enclaves to newer versions of the
same enclave.

During deployment, the SIGSTRUCT loads the SECS with a PRODVN and a
SVN identifier, indicating the product and enclave software version, respectively.
Included in all measurements, these distinguish different versions of the same
enclave. Pre-provisioned enclaves (QE, LE) also include version numbers. The
attestation procedure may then prove that the SGX implementation is up to
date and reject requests from deprecated implementations.

Provisioning Enclave. An SGX-capable CPU stores two secrets, the seal secret
and the provisioning secret, burnt into the chips E-fuses. The provisioning secret

3.1/ INTEL SOFTWARE GUARD EXTENSIONS 41

is generated by Intel and stored in a secret database. During the production of
an SGX-enabled CPU, Intel’s key generation process will provision this secret to
the CPU. The seal secret is generated inside the processor after manufacturing
and not known to Intel. Both are input to a derivative process resulting in
the symmetric keys retrieved via the EGETKEY instruction. EGETKEY enables
enclaves to retrieve two keys, the report key described above, and the seal
key. By this scheme, the key distribution achieves perfect forward secrecy. An
attacker who compromises the key-generation process, will not reveal the key
generated by EGETKEY and universally compromise the security of SGX.

The Provisioning enclave is able to retrieve the attestation key A from the
Intel Attestation Service (I1AS)s by proving ownership of the provisioning secret
Py. Ak is then encrypted using a specifically derived seal key Sy targeting the
QE, and persisted to system storage.

These steps happen during the process of bootstrapping the SGX imple-
mentation, and possibly in the event of software/firmware upgrades. Before
they can use the service, developers are enrolled to the attestation service
manually. The provisioning enclave must verify the developer signed measure-
ment (SIGSTRUCT) in order to retrieve the attestation key.

Remote Attestation. The process of attestation begins by a requester, or
Independent Software Vendor (ISV), issuing a request for the enclave to au-
thenticate itself. The enclave is provisioned according to the steps outlined in
Section 3.1.3 on an untrusted platform and able to receive information from
the 1SV through an insecure communication channel. Secrets may only be
provisioned to the enclave after this process completes.

After receiving an attestation-request, the enclave asks the QE to sign a report
generated by EGETREPORT, similar to local attestation. The quoting enclave
decrypts Ar and signs the report. For remote attestation, the MAC is replaced
with a signature produced by Ay. The attestation key uses Intel’s Enhanced
Privacy ID (EPID) group signature scheme, which provides anonymity for
signing participants. The quote is then forwarded via 1SV to the IAS, verifying
that Ay signed the quote. The 1SV is expected to hold the measurement
identifying a valid enclave and compare it to the retrieved measurement from
the quote.

The SGX SDK contains a message preparation API for remote attestation
which implements a modified SIGMA protocol [107, 182]. This includes a Diffie-
Hellman key exchange on top of the report exchange to establish an authentic
symmetric key encrypted channel for communication between the 1Sv and
enclave. We defer a detailed description of the protocol to Section 6.6, in the
context of Diggi.

42 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

3.1.6 Context Switches

Enclaves execute in what is essentially a higher privileged cpu-mode than all
other software, including operating system kernel, hypervisiors, and System
Management Mode (SMM). When not in enclave-mode, any references to PRM
is rejected by the memory controller. However, enclave execution is still mapped
inside the same address-space as the host process. This abstraction protects
system software from buggy or malicious code executing inside enclaves.

Enclaves support multithreading, however, all threads are created in non-
privileged user-mode and enter enclave-mode explicitly. Code executing in
enlave-mode is prohibited from issuing system calls or interrupts not explicitly
handled by the SGX implementation. This implies that all interaction with host
system software (0S) or the host process, must be invoked through enclave
exit operations. The enclave developer defines call-gates or entry-points along
with entry or exit parameters during development. These are loaded as part of
the SECS when initializing the enclave, in the OENTRY-field.

Synchronous Transition. The EENTER instruction causes the executing
thread to switch privilege level to enclave-mode, and invoke a controlled jump
by setting the instruction pointer to a predefined point in EPC memory, as
specified by the OENTRY field in the TCS.

The EENTER instruction accepts the virtual address of a single TCS as
input. Additionally, SGX verifies that the TCS contains at least one SSA for
capturing enclave context information. Prior to entry, the execution context
for the thread is saved, for use once the thread eventually exists enclave-mode.
For production enclaves, EENTER moreover checks and disables debugging and
instrumentation features implemented in the processor core, such as the ability
to set hardware breakpoints and hardware event sampling.

This operation bares similarity to other call-gate mechanisms, such as virtual
machine entry/exits. However, EENTER may only be invoked from privilege
level 3 (user level).

EENTER is invoked through the sSGx SDK, which additionally sets aside
a memory region within the ELRANGE to stacks. To protect against IAGO-
attacks [38], parameters entering an enclave must be diligently validated
and integrity checked. The trusted system marshals and boundary checks
parameters before copying any potential arguments into the enclave from
untrusted memory.

An enclave may exit synchronously, either to complete execution gracefully
or to fetch information from the untrusted system. A thread may only invoke
the EEXIT instruction while executing in enclave-mode. Prior to eXit, enclave
software saves the execution context in EPC memory, before restoring the
stack pointer and instruction pointer to its contents prior to entry. If an enclave
performs an outbound call to an untrusted resource, the enclave creates the

3.1/ INTEL SOFTWARE GUARD EXTENSIONS 43

EADD
EEXTEND

Non-

- ECREATE —
existing

Uninitialized

EINIT
EGETKEY EREMOVE
EREPORT

EENTER

ERESUME Initialized

Not in use

Initialized
In use

EEXIT
EBLOCK

EBLOCK
ETRACK AEX ETRACK
ELDU, ELDB ELDU, ELDB

EWB

Figure 3.6: State transition diagram describing the lifecycle of an enclave [46].

stack and instruction registries to the expected function in untrusted memory.
The return of an outbound call is managed through an EENTER instruction.
If more SSA structures are available, the enclave may perform nested calls via
EENTER targeting an OENTRY inside the outbound call.

A state transition diagram representing the lifecycle of an enclave is depicted
in Figure 3.6.

Asynchronous Transition. In the event of an interrupt, system software with
direct access to memory mapped device interfaces must be able to service that
interrupt. For enclaves, this requires any logical core affected by the interrupt
to exit enclave mode first. The processor triggers an AEX which first restores the
execution state prior to enclave entry, and then prepares stack and instruction
registries pointing to an asynchronous exit handler in process memory. The
location of this exit handler is specified by the EENTER instruction when
entering the enclave.

The enclave saves the execution state into a free SSA entry and subsequently
scrubs all registries by setting them to predetermined values, before exiting.
After exit, the operating system’s interrupt handler assumes control and traps
execution to a dedicated handler in privileged mode (ring o). In the special
event of a page-fault, the uppermost bits of the CR2 registry is left unchanged
to ensure the page-level address is readable by the kernel handler.

Once the interrupt is serviced, control returns to the asynchronous exit
handler in process memory. The handler invokes the ERESUME instruction
which accepts a TCs virtual address to the faulting thread as input. ERESUME
uses the last occupied SSA to restore execution context to the faulting address
in enclave-memory.

In the event of a page-fault for a given enclave, system software is expected
to issue an IPI triggering an AEX for all logical processors. A TLB shoot-down

44 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

then invalidates the affected memory translations, to ensure that stale address
translations for EPC memory pages are not served by the MMU. The ETRACK
instruction ensures that pages are blocked from being targeted by other SGX-
instructions while waiting for a TLB flush by system software.

3.1.7 Side-Channel Attacks and Mitigation

Side-channels are a class of vulnerabilities where information systems causes
unwanted side-effects that may be monitored by an attacker to illicit informa-
tion. Examples relevant to SGX include cache, page-fault, timing and power
analysis. By using analysis, an attacker may learn a statistical correlation be-
tween the information emitted by an operation, and particular programmatic
behaviour. An attack which targets an encryption scheme may reduce the cryp-
tographic key space into a problem which may be solved brute force within a
reasonable amount of time[193].

Kocher et al. [104] demonstrate practical cache-based side-channel attacks
for modern intel x86 based cPUs. The only mitigation of which is to disable
branch prediction logic in the CPU. Additionally, hyper-threading (SMT) has
also been explained as a source of side-channel. However, the consequence of
disabling these is a significant reduction in performance and any system should
carefully assess the tradeoff.

Controlled channel attacks are a class of side-channel attacks which target
the shared caching infrastructure common in commodity operating systems.
Xu et al. [192] detail a practical attack against the page-fault mechanism
of shielded systems such as Overshadow [40] and Haven [22] despite only
revealing page-granular addresses.

Brasser et al. [27] introduce the first practical shared cache side-channel
attack against SGX. This work assumes a malicious privileged 0S, which grants
access to noiseless high resolution monitoring of cache evictions, reducing the
sample requirements in a prime-and-probe attack. Lee et al. [114] introduce
branch shadowing. This is a technique which exploits the branch prediction
algorithm for modern processors to infer fine grained execution control of en-
claves. SGX does not flush the branch history when transitioning out of enclave
mode, which is exploited to predict the content of enclave memory.

Wang et al. [186] present a systematic exploration of the side-channel threats
in the SGX virtual memory subsystem. The paper proposes circumvention tech-
niques for reducing the side-channel size by decreasing the AEX count.

Van Bulck et al. [180] introduce a powerful practical side-channel attack en-
abling the extraction of keys from an SGX enclave. By exploiting Spectre [104],
Foreshadow is able to extract launch keys from the pre-provisioned LE, allowing
them to forge and launch unsolicited production enclaves.

Ahmad et al. [3] counter system call snooping, pagefault-based and cache-
based timing attacks for SGX-enabled filesystems. By using path-ORAM [168],

3.2 / ARM TRUSTZONE 45

confidential file systems used in SGX are shielded from such attacks. Zheng
et al. [195] uses similar oblivious memory techniques to mask memory access
patterns inside enclave memory. T-SGX [164] introduces a technique for eradi-
cating caching side-channel attacks by using the Transactional Synchronization
Extentions (TSX) for transactional memory. T-SGX disallows prime and probe
cache attacks by using transactional memory in which cache operations by an
attacker on a region partaking in a transaction, will trigger an abort on the
operation. This abort interrupt is relayed to the enclave application, leaving
the operating system oblivious to the operation. T-SGX claims it able to isolate
the effect of cache snooping, and expunge this distinct attack vector completely.
Oleksenko et al. [133] improve upon this work for concurrently accessed pages
and caches. Additional research by Orenbach et al. [136], proposes a set of
modifications to the ISA which hide page level access from the host and give
the enclave full control over its own page-faults.

Schwarz et al. [158] introduce SGX-capable malware, which uses prime and
probe cache side-channel attacks to infer information about cohosted mutually
distrusting enclaves. Additionally, this work was the first to describe a technique
which uses SGX to conceal malicious code from anti-malware software.

3.2 ARM TrustZone

Similarly to Intel, ARM processors implement modular security extensions
enabling secure containers which may execute on an untrusted software stack.
ARM Trustzone [13] specifies a set of intellectual property modules, which
when combined, shield application containers from an untrusted system. A
licensed manufacturer may selectively implement the modules required by the
target threat-model.

Multiple System-on-a-Chips (SOCs) specifications, ranging from microcon-
trollers (Coretex-M) to mobile device chips (Coretex-A) implement TrustZone
components. Manufactured socs with TrustZone capabilities include Qual-
comms QSEE, Huawei’s TrustedCore, Kinbi from Trustonic and AMDs Advanced
Processing Units (APU)-coprocessors.

Fundamentally, TrustZone separates all hardware and software into two
isolated worlds; a secure world and a normal world. Each physical core is
virtualized into a secure and non-secure core. Hardware then multiplexes
between these two modes for concurrent execution.

Main memory is partitioned into ranges with dedicated cache lines for the
secure and non-secure world respectively. They are separated by a bit set
on all Advanced eXtnesible Interface (AXI)-bus requests to protect against
unauthorized access from non-secure hardware. This does, however, require
TrustZone-capable hardware modules to enforce the separation. TrustZone-
aware caches enforce the memory policy of the secure world by appropriately

46 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

setting the bit for memory requests. Each capable core implements separate
address translation units for secure and nonsecure world, simplifying virtual
memory management. Dedicated cache-lines and separate MMUs reduce the
potential for side-channels, contrary to the shared architecture of SGX.

The TrustZone specifications describe support for secure peripherals, ex-
clusively mapped to the secure world across the AX1-bus. Moreover, in order
to provide secure memory able to withstand physical attacks, a TrustZone-
aware memory controller, encryption unit, and a DMA-controller are necessary.
However, since TrustZone is a modular design these are not mandatory.

In the boot-up procedure, all TrustZone capable cores are initially placed in
secure mode, which configures the TrustZone platform by executing firmware
stored in an on-chip ROM.

Context Switches between these worlds happen by invoking a Secure Monitor
Call (sMcC); an instruction which allows pre-specified messaging between the
worlds. The invocation causes execution to trap into a dedicated monitor mode
which forwards control to a predefined handler specified in the Monitor Vector
Base Address Register (MVBAR) only accessible from the secure world. This
monitor must also handle hardware exceptions and correctly route them to the
target world.

The secure world has unrestricted access to non-secure memory, and system
software may share information between the worlds using shared memory.
Some ARMvS designs do not implement the SMC and rather handle transitions
in shared memory.

Contrary to SGX, TrustZone only hosts a single secure world per soc and if
one application misbehaves, the integrity of all other cohosted applications are
compromised.

TrustZone implements few restrictions on the capabilities of software hosted
in a secure world. Secure exceptions and explicit interrupt handling enable
extensive control for system software, contrary to SGX. However, to support rich
secure APIs, such as program attestation, complex system software is required.
OP-TEE [134] implements support for the Global Platform consortium’s TEE
client API-specifications [172] for hosting trusted applications in an ARM-based
TEE. OP-TEE incurs a significantly larger TCB than that of a SGX-based enclave.
This comparison, however, excludes the insufficiently described microcode
architecture of the SGX platform.

Since Advanced RISC Machine (ARM) only provide reference designs for
modules (TrustZone Blocks), reasoning about the security properties of combi-
nations of modules is challenging. Moreover, hardening TrustZone has proved a
daunting task [141], as a wide array of vulnerabilities have surfaced in different
implementations thereof.

3.3 / ADDITIONAL TRUSTED HARDWARE SYSTEMS 47

3.3 Additional Trusted Hardware Systems

Unlike TEEs, which provide integrated selective shielding of application mod-
ules, secure co-processors implement hardware modules external to the main
processing unit. Secure co-processors vary in complexity, but may include a
processing unit, I/0 controller, main memory and firmware/operating system
hosted in a physically separated and protected environment. Mostly imple-
mented as special purpose processors for storing secrets and authentication-
assistance, we list some of the most commonly deployed here, and point out
core aspects of the security model for each.

The Trusted Platform Modules (TPM) [91] is an international standard for
implementing a secure cryptographic processor. The co-processor implements
software attestation by measuring the initial state of the entire software stack
on the physical host, leading to weaker security properties compared to SGX.
This measurement includes the 0S and device drivers, and it follows that
combinations of composite system software makes it impossible to distinguish a
correct software stack using the measurement value. The TPM may additionally
be used to store cryptographic keys, an example of which is the BitLocker disk
encryption scheme[1].

Integrated Circuit Card (11C) [92] or smart cards embed an integrated circuit
chip onto a "card". Early incarnations of smart cards provide tamperproof and
immutable storage on chip, for purposes such as handling account balance, and
preventing double spending situations. Modern incarnations contain a secure
microcontroller with embedded memory, implementing a RISC processor, often
based on the ARM architecture. These store the internal operating system in
Read-Only Memory (ROM), with additional non-volatile memory on-chip for
storing applications and data. More complex IICs may implement MM Us which
provide isolation mechanisms for applications executing on chip. Additionally,
some offer Java Virtual Machine (JvM) support [41] for developing Java appli-
cations, which may be deployed to multiple different architectures.

1IC is implemented in a variety of technologies including GSM Subscriber
Identity Module (sim) for mobile telephony authentication, 2-factor authen-
tication schemes, and Automatic Teller Machine (ATM) networks. The smart
card may interface with external components through either physical contact,
or close proximity radio frequency. This interface also provides electrical power
to the chip, through physical connectors or electromagnetic induction. The
interface exposed by the smart card is not inter-positioned as a mandatory
operation in software executing on a general purpose CPU, and therefore, may
not protect against a malicious software stack.

Modern Apple mobile devices have a dedicated security co-processor for
storing sensitive information, called the Secure Enclave Processor (SEP)[77].
The SEP implements biometric access control (Touch ID) to avoid key manage-
ment at the server-side, while providing authenticated offline access. The SEP
chip implements hardware-based random number generation and encrypted

48 CHAPTER 3 / TRUSTED EXECUTION ENVIRONMENTS

memory, protecting stored data in the event of a compromised kernel. Com-
munication between the traditional kernel, and the coprocessor occurs on an
isolated interrupt-driven shared memory Inter-Process Communication (IPC)
channel. Pages allocated to the secure enclave are guarded by a special bit mask,
and we speculate that the SEP shares a MMU with the common cores, enforcing
access to shared memory accordingly. This is, however, unconfirmed by public
documentation. The secure enclave has a dedicated ROM storing secure-boot
firmware, which establishes trust before booting a dedicated operating system.
The operating system, SEPOS, is based on the 1.4 microkernel architecture [55],
and signed by Apple. The secure-boot ROM creates an ephemeral encryption
key used to encrypt the device memory used by the secure coprocessor. Follow-
ing, the 0s kernel signature is verified by the boot procedure before control is
passed to the kernel initialization routine.

Depending on chip-model, integrity is guarded by either a memory protec-
tion key (> A7) or an integrity-tree in later chips (A11). The integrity-tree
is authenticated by the memory protection key and itself guarded by nonces
stored on on-chip SRAM. According to reverse engineering efforts [119], SEPOS
does not implement stack hardening with cookies or Address-Space Layout
Randomization (ASLR), reducing the security of the SEP. The secure enclave
considers the Application Processor (AP) untrusted, however, the interface
exposed through shared memory 1PC, and the complexity of applications run-
ning on the SEP poses a significant attack surface. Moreover, implementing an
entire secure microkernel increases the TCB significantly. If protected memory
share MMU or caches with the regular APs, a side-channel attack may leak
information to the untrusted system.

3.4 Summary

This chapter has discussed the architectural background for serverless comput-
ing, detailing several deployed cloud services available for use, demonstrating
the advantages of a simplified cloud computing paradigm.

Despite the benefits, all contemporary cloud services require that applications
trust the underlying infrastructure. Several widely available commodity hard-
ware solutions for establishing trust exist. However, most are either severely
limited in the security guarantees provided for software, have severe perfor-
mance limitations or include large parts of the software stack as part of the
TCB. Intel SGX provides the desirable trait of having a relative small attestable
software stack with sufficient support for hosting software systems at near-
native performance. Moreover, SGX is available in most Intel produced CPUs
after 2016 (Skylake), increasing the potential for widespread adoption of a
trusted serverless system.

Design

Based on our preliminary study on serverless computing (Chapter 2) and
TEEs (Chapter 3), we present the following observations:

* Fine grained units of computation allow increased utilization of server
hardware via smart scheduling, however, resource sharing of physical
infrastructure requires secure isolation between tenants.

* Current runtimes isolate cohosted functions in separate vMs and/or
containers, detrimental to performance [123].

* Cloud infrastructure is implemented through complex systems software.
Exploits, misconfigurations, bugs or unfaithful operators may compro-
mise hosted applications.

* Privacy-sensitive data may implement use-based policies, and accountabil-
ity mechanisms are necessary to establish policy compliance [25] [64] [97].

» Stateless serverless abstractions simplify scalability, however, reduce
adoption for applications requiring persistence of session or state.

We conjecture that existing serverless runtimes are unable to sufficiently
shield applications from an untrusted public cloud. A conjecture shared by simi-
lar efforts, surveying the potential and challenges of serverless systems[99][81].

We determine that Intel SGX is the most suited TEE for designing an efficient
and trusted distributed system. However, SGX is a proprietary technology, and
previous research lack a comprehensive performance analysis.

This chapter is structured as follows: First we present a precursory perfor-
mance analysis of SGX, followed by a set of principles and requirements for
designing a trusted serverless system. Lastly, we present the design of Diggi;

49

50 CHAPTER 4 / DESIGN

Application Enclave

enclave_ecall()

/

\ enclave_ecall()
t0_ocall()
/

get_time()

\ t0_ocall()

At

. — tl_ocall()

get_time()

t
|
|
|
|
|
l
|
|
|
* \ t1_ocall()

ANNAN

Figure 4.1: Sequence of events involved in measuring time spent inside enclaves [65].
To obtain the measurement between t0 and t1, each point must exit the
enclave to reach the timing facility (get_time). The timing delta captures
the entry and exit labeled in red [65].

an efficient and accountable trusted serverless runtime.

4.1 SGX Benchmark

To capture the intrinsic behaviour of SGX, we derive a set of experiments
tailored to isolate the enclave runtime cost of memory consumption, thread
management, context switching, and provisioning. Our experimental setup
uses an Intel Core i5-6500 CPU @ 3.20 GHz with 4 logical cores and 2 X 8 GB
of DDR3 DIMM DRAM. Dynamic frequency scaling and low energy hibernation
are disabled throughout our experiments to avoid interference. We set the
PRM size to its maximum alotted 128 MB. The experiments are hosted on the
Ubuntu 14.04 Linux distribution, loaded with Intel’s open source kernel SGX
driver.!

The current setup of SGX hardware does not support RDTSC or any other
native timing facilities in enclave-mode. Measurements must exit enclave-mode
for each point in time and consequently, all intervals therefore include the time
taken to enter and exit the enclave, described as the sequence of events detailed

1. https://github.com/o10rg/linux-sgx-driver

4.1/ SGX BENCHMARK 51

le+09 \
4 kb
9e+08 ~ 16 kb — : -
64 kb —
8e+08 - 256 kb :]
1mb ——
'g 7e+08 4 mb ' 7]
o 6e+08 - . : .
C
©
£ 5e+08 |- . : .
>
e 4e+08 - : : e
8 o
8 3e+08
2e+08
le+08
0
0 20 40 60 80 100
Enclaves

Figure 4.2: Latency as a function of number of enclaves created simultaneously, for
differing sizes of enclaves [65].

in Figure 4.1.

4.1.1 Enclave Creation

Each sGXx-capable cPU may host multiple enclaves, and tenants in a public
cloud may share physical resources while remaining isolated from each-other
and the underlying system.

The cost of enclave deployment directly impacts responsiveness of hosted
cloud services. Low-latency enclave creation is therefore a primary concern
for mission critical systems. To examine this cost, we measure the latency of
concurrently deployed enclaves per host as a function of enclave size, illustrated
in Figure 4.2. We observe that creation time increases linearly proportional to
the size of the enclave. This linearity conforms with our expectations, as each
page of a deployed enclave is loaded from binary and measured sequentially;,
described in Section 3.1.3; once the enclave grows in size, so too does pages
measured. Additionally, we observe that the experiment produces a surge of
page-fault events once the total memory consumption increases beyond the
physically available PRM.

We observe that creation costs are similar for enclaves less than or equal
to 64KB in size. For small enclaves, we conjecture that the dominant factor is
metadata initialization; the SECS, TCS and SSA.

It is reasonable to assume that capable software consumes more than 4MB
of memory, and we may therefore conclude that the cost of enclave creation

52 CHAPTER 4 / DESIGN

is significant. For systems requiring real-time responsiveness, pre-provisioning
may prove advantageous, at the cost of increasing PRM consumption.

4.1.2 Memory Management

Hosting complex and demanding software in enclave-mode increases pressure
on memory management, as detailed in Section 3.1.4. Depleting the PRM
will cause enclave pages to be evicted with increasing intensity proportional
to the oversubscription. To precisely quantify this overhead, we construct an
experiment which forces oversubscription, and measure the overhead at both
kernel and user-level.

The subject enclave is configured to consume twice the amount of physically
available PRM, and the experiment progresses by writing bytes selectively to
each 4KB page in a contiguous region of enclave memory. The enclave will not
physically fit all pages in PRM, triggering evictions to regular DRAM.

Figure 4.3 illustrates this overhead as observed by both the kernel page-
fault handler and the enclave. The y-axis denotes the cost and the x-axis the
elapsed time, in nanoseconds. The red dots mark page eviction events and
latency as observed by the kernel, and the black solid line represents total time
spent in the kernel page-fault handler. The green line visualizes time spent
writing to a particular region of memory as observed by the enclave. Enclave-
mode measurements additionally include the cost of entry/exit, as illustrated
in Figure 4.1.

120000

I I I
User level memory access

EPC kernel page fault
100000 - EPC kernel page eviction event . il

80000 |- o]

60000 - : : : :) : -

latency (nano sec)

40000

20000

0 | [| | | |
0 2e+06 4e+06 6e+06 8e+06 le+07 1.2e+07

elapsed time (nano sec)

Figure 4.3: Paging overhead in nanoseconds as a function of time elapsed while
writing sequentially to enclave memory [65].

4.1/ SGX BENCHMARK 53

300

250 -

200 -

150

Time (u sec)

100

50 -

0 \ \ \ \ \ \
0 65536 131072 196608 262144 327680 393216 458752

Buffer Size (byte)

Figure 4.4: Enclave transition cost as a function of buffer size [65].

The experiment demonstrates the impact of page-fault operations for large
enclaves, and additionally the initial provisioning of the enclave. Each cluster
of evictions made by the kernel is correlated with increased memory write
latency as observed by the enclave. We further observe that the kernel assumes
a sequential access pattern, prefetching contiguous pages when evicting cluster
of enclave pages. We base this on the observation that following each page-
fault, the enclave is repeatedly allowed to touch an identical number of pages
without interruption. Additionally, intra-page information is scrubbed from
CR2 prior to enclave exit, and the kernel page-fault mechanism is therefore
unable to infer access patterns internal to each page.

We observe that oversubscription of enclave memory is costly, and conclude
that enclave memory should be used conservatively by applications. The ex-
periment additionally demonstrates that PRM resources are not exhausted
despite observable oversubscription. We conjecture the reason is a lack of pre-
dictable access-patterns observed by the kernel. For enclaves on a dedicated
host, there is an opportunity for developers to optimize EPC usage based on
predetermined access patterns.

Our experiments demonstrate that paging has a profound impact on per-
formance, and a natural follow-up would be to measure the performance
characteristics of dynamic paging support proposed in the SGX version 2 speci-
fications.

54 CHAPTER 4 / DESIGN

10000 T T T T T
: : : Thread 0
9000 ~ : : : Thread 1 n
—_ : : : Thread 2 |+i+—
g 8000 ~ i Thread 3 |+++— |
0 : : :
o 7000 ~ _
C : : :
©
= 6000 : : : -
> : : :
e 5000 + : i : : -
© 4000 - : i -
3000 &
2000 | | | | |
)) o))
e,xg exg e,xg @xo er
N 3V) 3 \P)
’\(0 ’\f) '\,(‘0 ’\6) ’\‘O

elapsed time(nano sec)

Figure 4.5: Execution overhead for multiple threads pinned to a single core, with
page-fault events occurring [62].

4.1.3 Context Switches

Enclaves must be able to communicate with the external system in order to be
practical. The rate at which information and control may be transferred into
and out of enclave-mode is critical in determining the potential performance
of shielded software.

To evaluate the predicted overhead, we measure the cost of switching be-
tween non-privileged and enclave-mode. Additionally, as part of the switch, we
measure the cost of transferring information into enclave memory for process-
ing.

Figure 4.4 illustrates this latency as a function of buffer size, simulating
information transfer into the enclave. Latency increases linearly with transfer
size, as the buffer grows beyond 64KB. As detailed in section 3.1.4, enclave-
mode reads information directly from the host address space into enclave
memory. The MEE then encrypts target cache-lines written back to PRM from
the L3 on-core cache.

Based on these operations we conclude that enclave transitions (context
switches) and data-transfers are costly if invoked frequently as part of the
hot-path in application execution. Services employing SGX to shield select
application logic should partition code to minimize data transfer between non-
privileged and enclave-mode. We additionally observe that the cost may be
compounded by page-fault events for large enclaves.

4.1/ SGX BENCHMARK 55

10000 I
Core 0

9000 : : Core 1 A
. Core2 —
& 8000 I Core3 —]
(]
o 7000 |- H
C
©
S 6000 |- \ : -
9
S 5000 |
et
© 4000

3000 Mk s N]

2000 | | | | | |

o o o o o
0)(0 er Q,XQ Q,XQ er XQO)
% K A & $ >
N o o o o o
~ N ~ N N >

elapsed time(nano sec)

Figure 4.6: Execution overhead for multiple threads running on separate logical cores,
with page-fault events occurring [62].

4.1.4 Multithreading

Web-scale data processing requires concurrent algorithms to operate efficiently
on modern computers. SGX supports concurrent enclave execution, however,
documentation suggests that interrupt processing may incur a significant over-
head for multithreaded code. Before servicing an interrupt, all threads on the
affected logical core must exit enclave-mode. Page-fault and timer interrupts
are both examples which frequently invoke AEX.

We elicit this overhead by repeating the memory management experiment
from Section 4.1.2, for multiple concurrent threads. We measure the access
time of writing to contiguous regions of memory inside an enclave as a function
of elapsed time. The experiment uses two different thread affinity techniques
to demonstrate the impact on performance. We use the available 0s-scheduler
affinity capabilities to force threads onto distinct logical processor cores, re-
ferred to as pinning.

For each experiment, thread O (green) triggers page-fault events by sequen-
tially writing to memory, while the others measure scheduler frequency. Sched-
uler frequency is measured as a timed interval with no operations in between,
executed in a loop. Software threads then detect if the scheduler dequeues
execution to multiplex across other logical cores.

The first experiment, illustrated in 4.5, pins multiple software threads onto
the same logical core (hardware thread). We observe that in addition to page-
faults, software threads pinned to the same core are subject to timer interrupts.
Timer interrupts will cause affected threads to exit, in order to transfer control

56 CHAPTER 4 / DESIGN

between software threads, as described in 3.1.6.

Inversely, for the second configuration we observe that threads affinitized
to separate logical cores, are not impacted by page-fault, as illustrated in 4.6.
As expected, individual logical cores are independently interrupted without
interference.

4.2 Performance principles

Founded in the experimental observations made in the previous section, we
deduce a set of performance recommendations in form of guiding principles
for designing efficient SGX-capable software.

In 4.1.3 we observe that buffer size is the dominant factor for enclave entry
cost, particularly visible for buffers above 64 KB in size. We conjecture that
for smaller buffers, the enclave memory write operations only hit the on-core
cache, avoiding the cost incurred when encrypting last-level cache evictions to
PRM. We suspect that increasing the buffer-sizes will cause more write-back
operations to PRM. Our principle therefore states:

The Cohesion Principle. Applications should partition its logical components
such that data-copy across the enclave boundary is minimized.

Following this, a possible design would be to place all application logic
into a single enclave. Haven [22] is a prominent example of this approach,
implementing a library OS inside enclave memory.

However, this contradicts the observations in 4.1.2, which demonstrate the
significant cost incurred by excessive memory consumption. Although a limited
resource, the available pool of EPC memory is not exhausted by the experiment,
even in the presence of high memory contention. As detailed in 3.1.4, the intra-
page faulting address is not revealed to the untrusted kernel memory manager,
making it difficult to predict memory access patterns. We therefore state that:

The Access Pattern Principle. Prior knowledge about an application’s memory
consumption and access pattern may be used to optimize kernel enclave memory
management.

Section 4.1.1 demonstrates the latency of enclave creation as a function of
size. By pre-provisioning whenever service load patterns can be predicted, the
application is able to hide some of this cost. However, once an enclave is used,
it might be tainted with secret data. Recycling enclaves to a common pool can
therefore potentially leak secrets from one domain to the next; invalidating
the isolation guarantees. We therefore state that:

The Pre-provisioning Principle. Application authors able to accurately predict
enclave usage, should pre-provision enclaves in a disposable pool of resources that

4.2 / PERFORMANCE PRINCIPLES 57

guarantees no reuse between isolation domains.

The enclave creation procedure includes provisioning a SECS, one TCS
for each logical core executed inside an enclave, and at least one SSA for
each thread. Costan and Devadas [46] suggest that to simplify the hardware
implementation, some of these structures are allocated at the beginning of
an EPC page dedicated to that instance. If we assume this is true for all data
structures managed by SGX, enclaves executing on 4 logical cores may have at
least 9 pages (34 KB) of metadata in total allocated to it, excluding code and
data segments.

To offset the cost of having multiple enclaves, application authors should
consider security separation as a continuous scale. Role-, or tenant-based iso-
lation might be sufficient for some services, rather than individual isolation of
all users. Application authors should precisely determine the required gran-
ularity of isolation, as a finer granularity includes the added cost of enclave
creation.

Executing multiple software threads from the same core inside a single
enclave degrades concurrent performance. Although non-enclave execution
behaves similarly, the overhead associated with enclave page-faults becomes
significant when memory footprint increases. In a multi-enclave system, assign-
ing additional software thread to the same logical core will cause them to be
multiplexed between enclaves and the host system. Each software thread must
exit the enclave when switching context, incurring an additional overhead. As
a consequence, the number of software threads in enclave-mode should ideally
not exceed the logical core count for a given system. We therefore establish
the following principle:

The Affinity Principle. Enclave applications should not affinitize multiple soft-
ware threads to the same logical core.

Section 4.1.3 demonstrates the baseline cost of enclave entry/exit operations.
It follows that to reduce the overhead incurred by transitions, threads should
remain in enclave-mode once provisioned. We therefore state:

The Pinning Principle. Application authors should pin threads to enclaves to
avoid costly transitions.

Threads may alternatively transport data egress/ingress through efficient
message queuing/polling. To handle both simultaneously, each operation
must either execute on a dedicated thread, or implement non-blocking queu-
ing/polling, serviceable from a single thread. The latter conserves logical core
use, and is preferable given the Affinity Principle defined above. These consid-
erations produce the following principle:

The Asynchrony Principle. All execution inside enclaves should be asynchronous.

Threads are pinned inside enclaves to amortize transition cost, however,

58 CHAPTER 4 / DESIGN

thread count should not exceed logical core count. Core logic executing in
enclave-mode should remain responsive at all time, servicing both incoming
requests and processing data. Rather than allocating multiple threads to the
same enclave, execution should be fully asynchronous, increasing resource
utilization and improving overall application performance.

4.3 Trusted Serverless Runtime

Serverless cloud infrastructure reduces the need for explicit management of
resources, however, privacy-compliant services requires implicit trust in the
underlying infrastructure. Trusted Execution Environments (TEEs) and more
specifically, Intel SGX, implements the necessary security model to decouple
trust between a hosted cloud services and its underlying infrastructure.

Based on the challenges for serverless computing stated in Section 2.5, the
security model presented in Section 3.1.1, and the performance principles
derived in the previous section, we introduce a set of functional and non-
functional requirements for designing a trusted serverless runtime using Intel
SGX:

Functional: Shielded Privacy-compliant application services require a run-
time capable of maintaining confidentiality and integrity of execution, its mem-
ory, persisted state and communication. The untrusted system may attempt to
read and modify the control-flow and state of an application. Moreover, per-
sisted memory and communication may be subject to replay attacks where stale
state is presented to the runtime by the untrusted system. Runtime services
should, when possible, securely request services from the untrusted system
and augment operations to safeguard the security of the runtime.

Functional: Authentication Application services executing on an untrusted
platform must be able to remotely authenticate itself. Before any secrets are
provisioned, clients must be able to know: who is executing the request, and
what that function does. Without the ability to authenticate applications re-
motely, a malicious system may modify application behavior undetected by the
client. Once the client provisions secret data, despite shielded execution, the
modified application may be coerced into disclosing secrets to the untrusted
system. Distributed applications should similarly be able to jointly authenticate
individual components, establishing composite trust.

Functional: Revocation Secrets provisioned to cloud services should only
be persisted while the service is active. Additionally, continuous consent by
the end user is required to store personal identifiable data. GDPR specifies

4.3 / TRUSTED SERVERLESS RUNTIME 59

strong rights for revocation on behalf of end-users through the right to be
forgotten, and services must provably purge consumer state on request. A
consumer should be able to revoke data from a cloud service, and securely purge
remanence from memory or persisted media. Revocation should moreover be
accountable and applications may, during an audit, submit evidence to prove
the revocation.

Functional: Accountability Actions performed by trusted applications, in-
cluding revocation should be verifiable. A untrusted platform may withhold
infrastructure resources such that operations are delayed indefinitely. A secure
application runtime should produce irrefutable evidence proving the authentic-
ity of committed operations. For privacy-sensitive data subject to access control
policies, verifiable evidence on how data is processed and stored, provides proof
of compliance.

SGX measurements serve as proof of the initial state, however, long running
applications alter internal state. Any operation which mutates program state
should therefore be logged. Authenticating programs beyond the initial state
becomes intractable as the state diverges. Applications may additionally im-
plement non-deterministic behavior through temporal or random information,
which complicate reproducibility. To ensure non-reputability, any side-effects
on function state should be stored securely. In the event of an audit, deter-
ministically reproducing interactions with the environment and observing the
alterations to application state will uniquely define application execution.

Functional: Persistence Although existing serverless systems predominantly
treat cloud functions as a stateless construct, we argue that the definition
should not be restricted by a higher order feature. Systems which require
strict serializability for persisted state should implement support on top of
the serverless abstraction. Protocols such as Real-Time Streaming Protocol
(RTSP) require identifiers to track concurrent sessions and synchronize delivery
streams. Persistence include the ability for preserving connection mapping
between serverless execution and consuming clients for multi-step requests.
Such state is persisted, but not permanently stored, the loss of which does
not have fatal consequences for the service. We define such persistent state as
ephemeral.

Non-Functional: Efficiency Applications hosted in rented cloud infrastruc-
ture are billed as time-per-rented-unit. For organizations, lower infrastruc-
ture costs imply more capacity for growth, through scale or investment. User-
engagement will have a measurable cost to infrastructure spendings, and min-
imizing this equation while providing the same service is an important goal.
Additionally, increasing the cohosting potential drives the cost down for con-
sumers. A contemporary cloud application runtime must therefore be efficient.

60 CHAPTER 4 / DESIGN

This requirement may have multiple improvement dimensions, including mem-
ory footprint, compute, storage, provisioning time, scalability, throughput and
latency.

Non-Functional: Reducing Trust Bugs, misconfigurations and exploits may
violate privacy-compliance and leak personal data to an untrusted party. It
follows that reducing the probabilistic vulnerability of a trusted system implies
reducing the TCB. The TCB of an application is defined through the complexity
of surrounding software, implicitly defined as trustworthy. We measure this
empirically through Source Lines Of Code (SLOC) [5]. Correctly partitioning
runtime components into what must be trusted and what may be left untrusted
requires careful systems engineering. The bisection should be such that security
is preserved while reducing the assumptions on trust in the system, and with
minimal impact on application performance.

Non-Functional: Practicality For a technology to garner widespread adop-
tion, it must be simple to use. The economy of scale states that an increase
in production will trigger a proportional saving per unit sold. For cloud, this
implies that an increase in adoption will trigger synergy by consolidation
and homogenization of infrastructure investments. Trends in cloud computing
skew towards simplicity, rather than breath of choice. A contemporary cloud
application platform should provide a simple and familiar programming inter-
face enabling development of powerful cloud services. This computing model
should abstract away security concerns and provide support for integrating
legacy software. Serverless computing [99] is one such abstraction; complex
and rich application services may be implemented through cloud functions, with
minimal infrastructure management.

Non-Functional: Granularity Aside from the underlying system, individual
cloud functions should be able to specify colocation trust. Multiple cloud func-
tions executed in the context of a single consumer, may share security context.
Colocated functions not trusting one another should execute in separate se-
curity contexts. Separate functions hosted in the same context may trust one
another if jointly authenticated.

4.4 Design

The following section introduces the design of Diggi; an efficient and secure
serverless runtime. Diggi is designed from the ground up as an asynchronous
runtime exclusively based on message-passing, conforming to the principles
outlined in Section 4.2. Diggi cloud functions are shielded from the underly-

4.4 | DESIGN 61

Runtime
Control

Figure 4.7: State diagram representing the lifecycle and transitional events of a Diggi
cloud function. Idle is an internal state, hidden from the cloud function
developer.

ing system, and additionally, verifiable via message record-and-replay. Diggi
supports deep revocation of data via ephemeral encryption of session state.
Collections of cloud functions may be deployed and jointly authenticated to
create complex trusted serverless applications.

4.4.1 Diggi Persistent and Accountable Cloud Functions

Diggi implements persistent cloud functions which allow continuous sessions
which may last for the longevity of the host, or until a cloud function explicitly
shuts down. Invokers may additionally create multiple sessions per cloud
function instance, and each cloud function may host multiple session types
simultaneously. Figure 4.7 illustrates the lifecycle states and transition events
which each cloud function must implement.

Idle cloud function instances may temporarily enter a dormant state, re-
linquishing resources to other cloud functions. Functions are subsequently
revived by the trusted runtime once incoming requests are detected. This state
transition does not require intervention from the function programmer. This
is similar to conventional Faas systems implementing a pre-provisioned (hot-
state) function. Following the Pre-Provisioning Principle, however, separately
isolated persistent cloud functions cannot be reused or repurposed by another
security domain, as it is tainted by information belonging to the former.

Diggi does not concern discoverability, as it is outside of the scope of this
thesis, but expects a repository to store identifiable running functions. Man-
aging cloud functions as persistent entities requires us to relax idempotency.
Functions are long lived, implying that all invocations will have side-effects
that alter subsequent requests in a session. Additionally, if we assume a faulting
function may prove crash-stop[32] fault tolerance to an invoker via remote
software attestation, Byzantine faults become crash-faults.

62 CHAPTER 4 / DESIGN

To maximize the potential of cohosted functions per physical host, the run-
time performance is important and functions in Diggi are developed as native
C/C++ components. Just-In-Time (JIT) compiled language runtimes such as
the Common Language Runtime (CLR) implement highly efficient program-
ming languages, and previous work have demonstrated the ability to host
non-native languages in SGX [30]. However, native compiled code continues
to be the most performant, and arguably consume less memory for loaded
executables and library extensions. Compiled languages additionally reduce
the TCB, as they do not require a dedciated virtual machine or interpreter
runtime. Such runtimes may comprise millions of lines of code, not including
the standard libraries and external dependancies.

Diggi permits applications to invoke legacy code with minimal changes by
exposing selected C/C+ + standard library and POSIX-like system services to
cloud functions.

A deployed enclave is identified through the author certificate, attestation
key, and measurement. In Diggi, the measurement represents the initial state of
a cloud function hosted in an enclave. Long-running persistent invocations will
diverge significantly from this initial state, reducing congruity with its initial
identity. Under the security model for SGX, enclaves do not protect against
denial-of-service attacks, preventing function invocation. A claim presented to
an invoker regarding the correct execution of a function should be tested.

Accountability is achieved through the capture and replay of state mutations
for individual cloud functions. All interactions are realized through message-
passing, and we represent these state mutations as the collection of messages
sent and received. Although a cloud function may read state directly from
the untrusted system, we expect an initially identifiable cloud function and
runtime to only use a monitored media for communication. Given a single cloud
function f(msg;) where msg is the input message to the cloud function. The
initial state of the function is state;,;; and for each message msg; processed
by the function, the next state becomes:

state; 1 = msg; + state;

Mutated state for message i uniquely identifies a cloud function beyond the
initial measurement performed during enclave initialization, as described in
section 3.1.3. State transitions for a given function is stored in an encrypted,
non-reputable message-log for verification [8]. By storing messages, Diggi
supports individual replay of cloud functions in the event of an audit. Cloud
functions also consume randomness and temporal services through messages,
and mutated state may be identified despite non-determinism by logging these
parameters.

Cloud functions may implement stateful applications through ephemeral
state. State is only local to individual functions, and its lifetime is limited to
the host systems lifetime. Since regular memory is abundant and cheap, state
is persisted in DRAM, however, through the same security model as provided

4.4 | DESIGN 63

by SGX. Preservation is best effort, and should the host become unavailable,
all state is purged. Applications which require durability and fault tolerance
must implement it explicitly through state replication, or alternatively, log
replay.

In-memory state may in theory be stored in enclave memory, however, con-
trary to the recommendations detailed in the Size- and Pre-Provisioning Princi-
ples (4.2). Should EPC be multiplexed, cloud functions may interfere with other
colocated functions, increasing the variance in request latency. Explicit state
management further allow dormant functions to remain deployed without
consuming EPC memory.

State allocated to a given cloud function may only be accessed by that unique
cloud function, or a derived version of that function. Despite storing state in
the untrusted system, Diggi ensures that revocation of state is supported by
ephemeral encryption keys. State encryption is uniquely tied to the cloud
function identity, rendering encrypted data useless without an authentic cloud
function.

4.4.2 An Asynchronous Trusted Runtime

The Affinity, Pinning and Asynchrony Principles stated in 4.2, leads to an
execution model where application threads are permanently pinned in enclave-
mode. Over-provisioning of software threads onto hardware threads should
be avoided, and ideally, dedicated to separate cloud function runtimes. To
maximize the utilization of each, the trusted enclave runtime is implemented
as a non-blocking system.

Communication occur through asynchronous message-passing, where all in-
ternal APIs, including storage, networking and threading, are serviced through
messages.

Multi-session communication with clients or other cloud functions is imple-
mented by an abstraction allowing callbacks (tasks) to be registered as contin-
uations of invoked operations. Application logic is implemented as chains of
such task invocations, or flows, as illustrated in 4.8. Flows are stored in a task
list, which saves intermediate state, forwarded to the next invoker.

Cloud functions are reactive and sessions are triggered on the receipt of a
message sent by an invoker. A persistent cloud function is able to host mul-
tiple sessions simultaneously where communication processing and business
logic are interleaved onto the same physical thread. Figure 4.9 illustrates
multiple concurrent flows, interleaved onto the same physical thread. Block-
ing operations, interacting with slower APIs such as I/0 and networking, are
wait-able through runtime hooks, allowing separate flows to execute in the
interim.

64 CHAPTER 4 / DESIGN

Flow «[f }—\ ,

Task List

Figure 4.8: A chain of callbacks (tasks) implementing a flow. Each task executes
independently, however serialized. The flow progresses by invoking the
next following the completion of a precursor task.

Thread Flow 1{ }
interleaving
g h
1}

Lo o]\- _/{ /
{) i

Figure 4.9: A cloud function interleaving multiple flows onto a single thread. Blocking
operations are writable tasks, where the continuation is scheduled once
the results are produced.

4.4 | DESIGN 65

4.4.3 Deployment and authentication

Diggi cloud functions are composable, where functions may be chained together
to form more complex functionality, creating secure and verifiable distributed
applications. A manifest stores all configuration parameters and placement
information for an application expressed as a collection of cloud functions.
Diggi then uses this information to distribute and deploy cloud functions to
physical hosts. The manifest contains the following information:

* Physical location; Which functions should be deployed to a given physical
host.

* Communication permissions; Which functions are allowed to communi-
cate, and which may allow external communication through a function
proxy.

* Resource usage; The allocations of memory, compute, and storage, for a
given cloud function.

* Static resources; Configuration parameters unique to a given cloud func-
tion.

During the process of loading a new application, the manifest is bundled
together with function executables and shipped to target hosts, which deploy
the necessary resources. Before deployment, the host ensures that the binary is
compiled by a known authority and that the content is authentic through the
enclave initialization process outlined in Section 3.1.3. The manifest is injected
into the binary before measurement, ensuring it becomes part of the identity.
The manifest indicates which functions have joint communication abilities and
each must individually authenticate themselves, before establishing a joint
confidential channel for communication.

We assume that an open architecture permits the attestation service and keys
be controlled explicitly. Ideally, under the security model presented, a cloud
function application should not have a single root of trust. This authentication
scheme would require each cloud function to embed information which iden-
tify other correct cloud functions and attestation keys. However, embedding
this information alters the measurement, invalidating others embedded mea-
surement. Measurement information may alternatively be delivered through
a signed measurement at runtime requiring a trusted principal to sign and
deliver measurements. Additionally, this would permit stale measurements
unless enclaves store an identifier, which again leads to the problem of circular
joint measurement. Figure 4.10 illustrates the circular measurement problem.

It is arguably impossible to not prescribe trust external to the enclave, yet
in its minimal form we can assume a single root of trust. Diggi implements a
trusted principal, ensuring the authenticity of reported quotes, and on behalf
of each, certifies the joint authenticity of the deployed collection of functions.

66 CHAPTER 4 / DESIGN

b..; = measure(a;,c;)

a;,; = measure(b,c) Ci.1 = measure(a;,b;)

Figure 4.10: The circular measurement problem: Each cloud function, F, includes the
two others in its own measurement, which alters the others measure-
ments.

Additionally, as mentioned in Section 3.1.1, SGX assumes a trusted development
environment for compiling, measuring and signing cloud functions prior to
deployment. For simplicity we can assume these are the same principal.

4.5 Summary

To efficiently support shielded execution of application software in an untrusted
cloud, we evaluate Intel Software Guard eXtensions (SGX). We demonstrate
that although SGX is an attractive Trusted Execution Environment (TEE), there
are intrinsic properties of the platform which require careful system design.
Our analysis shows that thread management, call-gate transitions, memory
management and application partitioning must be first-class concerns when
designing an efficient application cloud runtime with SGX.

Based on this analysis and threat model for privacy compliant services,
we state a set of functional and non-functional requirements for designing a
trusted serverless runtime. These requirements lead to the design of Diggi; a
persistent, accountable and shielded serverless runtime. Diggi is designed to
support simple development of secure applications hosted in a public cloud. The
next chapters will detail the implementation of a prototype trusted serverless
runtime satisfying the Diggi design.

Cloud Function API

The Diggi serverless runtime is designed to shield applications from an un-
trusted public cloud. Diggi enables the development of complex distributed
cloud services through the persistent accountable cloud function abstraction. The
next two chapters will detail our prototype implementation of the Diggi system,
introduced in the previous chapter, specifically conforming to the requirements
stated in Section 4.3.

This chapter details the services endpoints available for developing secure,
persistent and accountable cloud functions on top of the Diggi prototype
runtime supporting Intel SGX.

67

68 CHAPTER 5 / CLOUD FUNCTION API

void func_echo_cb(msg async_response_t *resp)

{
auto api = (DiggiAPI*)resp—>context;
auto mm = api—>GetMessageManager ();
auto new_msg = mm>allocateMessage (resp—>msg, resp—>msg—>size);
new_msg—>dest = resp—>msg—>sIc;
new_msg—>src = resp—>msg—>dest;
memcpy (new_msg—>data, resp—>msg—>data, resp—>msg—>size);
mm—>Send (new_msg) ;
b
void func_init (DiggiAPI *api)
{
auto mm = api—>GetMessageManager ();
mm>registerTypeCallback (function_echo_cb, ECHO MESSAGE, api);
}
void func_start(DiggiAPI *api)
{
//noop
b
void func_stop (DiggiAPI *api)
{
auto log = api—>GetLogObject ();
log—>Log (LRELEASE, "Stopping._the_echo—function\n");
}

Listing 5.1: An example using the Diggi runtime API to implement an echo function.
func_init registers a callback task for handling incoming messages of the
type ECHO_MESSAGE. The callback receives a msg_async_response_t, en-
capsulating the inbound message and a discretionary context pointer.

The Diggi cloud function runtime exposes a set API-endpoints for developers
of cloud functions, comprising functionality for concurrency, configuration,
debugging, storage, and communication. All runtime operations and APIs are
asynchronous (non-blocking) to maximize the potential utilization per thread.
Functions are persistent, and sessions enable an invoker to request the same
instance repeatedly, implemented as flows. These behave similarity to reactive
programmable systems [18], where dynamic queries observe incoming data
streams and apply processing rules on-demand. Reactive programming is
beneficial for several application architectures including stream processing
analytics, publish subscribe systems, and video on-demand services; all of
which are difficult to implement in conventional stateless Faas systems. An
example function implementing an echo server which retransmits incoming
data back to the sender, is shown in Listing 5.1.

69

class DiggiAPI : public IDiggiAPI {

IThreadPool * tpool;

IStorageManager * stomanager;

IMessageManager * msgmanager;

INetworkManager * netmanager;
ISignalHandler * shandler;

ILog * logr;

aid_t aid;

sgx_enclave _id t enclaveid;

public:

b

void * dl_handle;
json_node configuration;

DiggiAPI(

IThreadPool * pool,
IStorageManager * smngr,
IMessageManager * mmngr,
INetworkManager * nmngr,
ISignalHandler * sighandler,
ILog * log,

aid_t id,

void * handle);

IThreadPool * GetThreadPool ();
IStorageManager * GetStorageManager ();
IMessageManager * GetMessageManager ();
INetworkManager * GetNetworkManager ();
sgx_enclave_id_t GetEnclaveld ();
ISignalHandler * GetSignalHandler ();
void * GetDIHandle ();

ILog * GetLogObject ();

aid_t Getld ();

json_node & GetFuncConfig ();

Listing 5.2: The Diggi cloud function API class definition which acts as the aggregate

API, gathering a collection of interfaces comprising the joint functional-
ity available to Diggi cloud functions. These include individual APIs for
storage, networking, messaging, concurrency, signaling and logging.

70 CHAPTER 5 / CLOUD FUNCTION AP

5.1 Lifecycle management

Figure 4.7 illustrates the lifecycle of a Diggi cloud function. To handle lifecycle
events, each cloud function must implement three event callback handlers: init,
start, and stop, as demonstrated in Listing 5.1 These handlers are invoked by
the Diggi runtime to notify the cloud function of significant events altering
execution state.

* Init — Before application-defined task callbacks are allowed to execute,
the runtime prepares communication primitives, stacks, storage interface
and other internal data structures. The init event callback, defined by
the cloud function, is ran once these initialization procedures are com-
pleted. This callback is executed serially by the runtime and may block
to guarantee that all preconditions are met before the cloud function
begins servicing incoming requests. The init function is a utility for de-
velopers which should prepare function-specific internal state, initialize
libraries, etc. The callback receives the Diggi API object as input, exposing
all runtime services available to the cloud function, detailed in Listing
5.2. Once the callback is completed, the Diggi runtime expects that the
cloud function is ready for execution, and will begin forwarding inbound
messages.

* Start — Once ready, the start event callback is triggered by the runtime to
notify the function that it is ready to process requests. Both the init and
start callback are triggered on the primary thread of the cloud function.
However, unlike init this operation must be non-blocking. If the cloud
function has multiple threads, the start event will be scheduled on the
thread with the lowermost identity.

* Stop - Cloud functions persist for as long as the cloud function or run-
time permits. When the execution of a cloud function ends, a stop event
callback is triggered, either by the function itself or the runtime. Prior
to invocation, the runtime attempts to relinquish all dedicated threading
resources. Any nested task callback operations remaining in the cloud
function are aborted, and the physical thread resources returned to the
runtime. Cloud functions are permitted to gracefully terminate, reducing
the potential for races in multithreaded cloud functions. The callback
is invoked by the runtime on a separate runtime thread to ensure any
blocking operations internal to the cloud function do not prevent termi-
nation. This is a mandatory operation, implying that the runtime expects
the function to cooperate in the cleanup process. Diggi does not guaran-
tee that all shutdown events will be preceded by a notification via this
callback. In the event of a system crash, this will be ignored.

* Idle The system allows dormant functions which are not participating
in active request processing to relinquish resources and enter an idle
state. The runtime periodically polls for incoming requests and upon

5.2 / ASYNCHRONOUS PROGRAMMING 71

the receipt, returns resources to the cloud function. The cloud function
does not require idle-aware programming; the runtime transparently
suspends and awakes cloud functions.

5.2 Asynchronous Programming

Asynchronous programming allows computational events to execute separately
without a global synchronized clock. In an asynchronous system all possible or-
dering of computational events are valid and must be handled correctly. Cloud
functions in Diggi are implemented as continuation-style asynchronous task
callbacks, allowing efficient scheduling of runtime operations. These chains
of operations (tasks) are in Diggi referred to as flows, which are the primary
building block for application logic in persistent cloud function. This abstrac-
tion renders the following properties for asynchronous programming of cloud
functions. The Diggi programming model is more restrictive than pure asyn-
chrony, where any ordering, causal or otherwise is permitted. However, we
present the Diggi API as asynchronous given the following assumptions. For a
given thread:

* Non-Blocking: All causally dependent operations which await a response
must asynchronously schedule that continuation to allow other operations
to execute in the interim.

* Starvation-free: All operations which are compute-intensive must grace-
fully share resources by yielding control to other operations periodically.

* Intra-flow order: All operations internal to a particular asynchronous flow
will maintain causal ordering when executed asynchronously.

* Inter-flow interleaving: Operations on separate flows may be interleaved
and reordered.

Through flows, cloud functions are able to handle message delivery and
business logic for a given function concurrently on a single thread without
context-switches and enclave interrupts, which increases the co-hosting poten-
tial.

72 CHAPTER 5 / CLOUD FUNCTION AP

B Flow 2 Flow 3
{funcfhandle}
{ func_handle } { func_handle }
{ func_poll }

{ func_poll } ‘ J
{ func_handle } { func_finalize } .
{func_finalize}

Figure 5.1: Interleaving of three flows on a queue of tasks; blue is the polling flow,
while red and green are separate flows processing items retrieved. Cloud
functions may interleave communication and processing on a single thread.

void func_poll (DiggiAPI * api)

{
if (item_ present(pollable))
{
api—>GetThreadPool()—>Schedule (func_handle, api);
}

//Reschedule to periodically poll resource
api—>GetThreadPool()—>Schedule (func_poll, api);

}
void func_handle (DiggiAPI * api)
{
auto item = get(pollable);
api—>GetThreadPool()—>Schedule (func_finalize , api);
}
void func finalize (DiggiAPI * api)
{
free (item)
}

Listing 5.3: Example code illustrating the asynchronous polling pattern. These flows
may alternatively be serialized into one flow by rescheduling func pool
in func_finalize. Both patterns permit interleaving separate operations.

Listing 5.3 presents this phenomenon for a single cloud function through a
simplified representation of the continuation-style pattern. Figure 5.1 illustrates
an example execution plan demonstrating one (of many) correct orderings of
interleaved asynchronous flows onto a task queue consumed by a single thread.
One implements a periodic item polling, while the other handles available
items. In the illustration, two separate items become available, resulting in

5.3 / PROGRAMMING LANGUAGE 73

three flows (red, blue, green).

The Diggi runtime is itself internally implemented through tasks and flows,
and all Diggi APIs exposes a consistent pattern for passing state between tasks,
illustrated in Listing 5.4.

task (arg)
{
internal state = input.operation();
schedule (task_next, internal state);
h
task_next(void *internal state)
{
internal_state.next_operation ();
b

Listing 5.4: An example pseudocode pattern illustrating how Diggi preserves asyn-
chronous state and delivers it to the next task, once ready.

This approach solves a common problem in asynchronous systems; preserv-
ing state between asynchronous operations adds complexity to the system. By
allowing Diggi to manage state internally, we minimize the boilerplate code
necessary for asynchronous communication, and additionally incur a potential
reduction in TCB.

5.3 Programming Language

Cloud functions are commonly developed in high-level programming languages,
such as JavaScript or Python. High-level languages are beneficial for rapid devel-
opment, as most of the low-level details such as explicit memory management
and library loading are handled automatically by the runtime. Because of this
simplicity, high-level languages also have a bigger developer base than their
low-level counterparts. High-level languages offer features such as automated
memory management by garbage collection and byte code interpretation for
portability across different hardware platforms. Some high-level languages
provide JIT compilation which ship code in an intermediate language repre-
sentation, which is then compiled on-demand to native platform dependent
code. This ensures higher performance without sacrificing portability.

As a general rule, simplification is a tradeoff which inherently sacrifices per-
formance. Code requiring precise performance tuning, such as cache alignment,
memory management, lock-free concurrent programming, and instruction set
extensions such as x86 AVX, SSE or TSX will benefit from explicit control over
the underlying architecture.

Additionally, high-level languages contribute negatively to the TCB of a
trusted enclave, requiring more runtime code and system libraries than its

74 CHAPTER 5 / CLOUD FUNCTION AP

compiled counterpart. JIT-ed languages require dynamic linking and memory
mapping features not available in the first revision of SGX. Supporting inter-
preted languages in SGX is straightforward, however, loading generic virtual
machines into an enclave violates the ability to perform program attestation.
Arbitrary programs may execute inside the enclave, and careful engineering is
required to ensure the identity of interpreted code is included in the attestation
evidence. Arbitrary code execution additionally increases the attack-surface of
the enclave. Runtime and library support for high-level languages incur a larger
memory footprint, contrary to the Size Principle stated in Section 4.2.

Enclave-mode permits direct access to host process memory, similar to other
TEEs. Interpreted languages may provide memory safety, reducing the potential
for memory reference bugs which accidentally writes unshielded data to a non-
trusted memory location.

Rust is a high-performant, lean, compiled language which mediates memory
safety problems inherent in C/C+ + development during compile-time, disal-
lowing null pointer references and enforcing explicit pointer-object attribution
and ownership [122]. Diggi currently supports cloud functions through C and
C++, with on-going work to support the Rust programming language in the
future.

The SGX SDK supports enclave development through C/C++ out of the box,
including library support for most of Standard Template Library (STL) and
gLibc. However, this excludes all functionality which require system services,
such as network, filesystem, time, crypto and peripheral devices.

5.4 Legacy

Ideally, Diggi would be able to support a broad software library, enabling all
applications to be developed as native asynchronous and flow-based cloud
functions, reducing the need for external dependencies. This is, however, im-
practical due to the the increased TCB and memory consumption required [22].
Additionally, existing software libraries are often tied directly to the host system
call api exposed by the 0S. To support existing (legacy) software libraries in a
shielded serverless systems, Diggi exposes runtime constructs to allow cloud
functions to implement select storage, concurrency, and networking system
calls; securely and asynchronously.

Traditional blocking system calls in procedural programming expect execu-
tion to transfer control to the system for processing halting execution of the
caller. Diggi cloud functions are dependent on wait-free task execution to max-
imize thread utilization. Existing software depending on blocking procedures
to synchronize application progress cannot easily be refactored. To avoid costly
context-switches, operations must be fulfilled through exit-less asynchronous
message-passing.

5.4 / LEGACY 75

Diggi saves the execution context of calling code and allow a dedicated
translator to prepare an asynchronous message representing the operation
which is then delivered to the untrusted system. The translator must, depending
on operation, protect the integrity and confidentiality of the message. The
untrusted system then processes the message via a server, interacting directly
with the host operating system. The response is then delivered back to the
translator and the task scheduler then restores the execution context of calling
code before returning to the caller with the translated results. During this
procedure the caller yields control, permitting concurrent operations to be
scheduled on the task queue, as depicted in Figure 4.8.

Each translated system call will increase the exposure for Iago-based at-
tacks [38]. Some may be emulated in enclave-mode, avoiding the need for
interacting with the untrusted system. Networking operations do not change
the security model based on an untrusted system, as Wide Area Network (WAN)
communication is expected to be protected by Transport Layer Security (TLS)
or application layer specific measures such as Pretty Good Privacy (PGP) and
Secure Hypertext Transfer Protocol (SHTTP). Other system calls such as time
and rand are difficult to emulate in enclave-mode, and impossible to shield
by translation. These may be fetched or pre-provisoned (cached) from a re-
mote trusted resource. SGX supports trusted time and randomness through
dedicated platform services (Intel Management Engine). However, these are im-
plemented in firmware and only retrievable through pre-provisioned platform
enclaves which incur a significant invocation overhead.

To support legacy software which require system interaction, a cloud function
implements for each external service, a translators and server pair, as illustrated
in Listing 5.5. The server implements the untrusted host system interaction,
while the translator mediates system call access and protects the confidentiality
and integrity of translated system call operation.

Applications must themselves ensure that the translator shields the system
call arguments correctly, and validates the return parameters, to ensure no
tampering. For data system calls, such as network and storage, this implies
ensuring confidentiality and integrity protection. Translator-server pairs are
satisfied as messages and may be distributed across multiple machines, trans-
parent to the calling software. For example, secure timestamps may be pushed
from a trusted machine external to the public cloud. Depending on the syn-
chronization requirements of the calling software, timestamps may be cached
if only monotonicity is required. Cloud function-specific translators allow each
to tune the semantic behaviour and security of system calls individually. The
caveat, however, is an increase in complexity for developing cloud functions,
where each must implement support for bespoke system call operations. How-
ever, exposing a simplified translator-server API to cloud function developers
reduces this complexity.

76 CHAPTER 5§ / CLOUD FUNCTION API

\\ Server

void open_server_task(void *msg, int status)

{
auto ctx = (msg_async_response_t *)msg;
auto ptr = ctx—>msg—>data;
mode_t md = Pack::unpack<mode t>(&ptr);
int oflags = Pack::unpack<int>(&ptr);
int encrypted = Pack::unpack<int>(&ptr);
/* assumes null terminated character */
const char *path = (const char *)ptr;

/* Direct system call */
int fd = __real_open(path, oflags, md);

auto msg n = api—>GetMessageManager()—>allocateMessage (
ctx—>msg,
sizeof (int));

msg n—>src = ctx—>msg—>dest;

msg n—>dest = ctx—>msg—>Ssrc;

auto ptrt = msg n—>data;

Pack::pack<int>(&ptrt, fd);

api—>GetMessageManager()—>Send (msg n, nullptr, nullptr);

}

\\ Translator
int open_translator_task (const char *path, int oflags, mode_t mode)
{
char *path n = normalizePath ((char *)path);
auto path length = strlen(path_n);
size _t request_size = sizeof(int)
+ sizeof(mode_t)
+ sizeof(int)
+ path _length
+ 1;
auto msg = api—>GetMessageManager()—>allocateMessage (
"Server—Destination",
request_size ,
CALLBACK,
CLEARTEXT) ;
msg—>type = FILEIO_OPEN;
/* Marshall */
auto ptr = msg—>data;
Pack::pack<mode_t>(&ptr, mode);
Pack:: pack<int>(&ptr, oflags);
Pack::pack<int>(&ptr, (int)encrypted);
memcpy(ptr, path n, path length + 1);
mngr—>Send (msg, set_response, ctx);
msg_t *single p_response;
msg t **double_p_response = &single p response;
double_p_response = nullptr;
/* Wait and yield to task queue */
auto return_msg = wait _for _response(double_p_response);
Unmarshal results\
int fd = Pack::unpack<int>(&return_msg—>data);
return fd;

}

Listing 5.5: A server/translator pair implementing the open system call. For brevity,
this example does not include code for encryption or integrity protection.

5.5 / DEPLOYMENT 77

"Diggi—node—1": {
"network":"192.168.1.137:6000",
"functions": {},

"enclave": {

"functions": {
"echo—function@1": {
"skip—attestation": "1",
"threads": "1"}}}},

Diggi—node—2": {

"network": "192.168.1.138:6000",

"

"functions": {
"load —function@1": {
"skip—attestation": "1",
"master" : ”1”,
"package—size": "87040",
"connected—to": "echo—function@1",

"threads": "1",
"duration": "10" }}}

Figure 5.2: An example Diggi application configuration, consisting of two functions;
an echo-function and a load-function.

5.5 Deployment

Serverless applications may be composed of multiple persistent cloud functions,
specified through an application configuration. The application configuration
specifies co-hosting properties, placement and resource usage. Each cloud
function has a sub-configuration for specifying custom input parameters. Rich
configuration options may simplify development, however, generalize the cloud
functions. General code will reduce the identity properties of enclave measure-
ment. To avoid generalizability, the sub-configuration is itself compiled and
linked into each function binary, becoming part of the enclave identity by
measurement. An example application configuration is listed in 5.2, which
implements a server (echo-function) based on Listing 5.1 interacting with a
client (load-function).

During compilation, the configuration is used as a recipe for creating the
units of deployable binaries, later distributed to the target hosts. The build
environment must be hosted on a fully trusted software and hardware stack,
and able to communicate securely with the trusted principal authority for
program authentication.

For each individual cloud function, the build environment creates a deploy-
ment key pair, {P;,S;}. The binary B; and the sub-function configuration
C; is measured and signed by the private key Sy, forming the SIGSTRUCT
certificate:

Cert; = Sign(Sg;, Measurement;(B;, C;))

Each F; includes the binary B;, per function deployment configuration C; and

78 CHAPTER 5§ / CLOUD FUNCTION API

the certificate Cert;:
F; = {Cert;,{B;,Ci, }}

Before cloud functions are deployed to physical hosts, a daemon host process
and untrusted runtime must be initialized. The Diggi trusted root distributes
binaries according to the placement specifications in the application configura-
tion. For the deployable set of functions Dy, the individual function bundles
and the per-node config C are distributed to a given node N:

DN = {Fl,Fg, ...Fi,CN}

The daemon process deploys applications according to the configuration by
creating an enclave for each cloud function binary as described in section 3.1.3.
The LE compares the actual measurement of the cloud function binary against
the expected measurement and signature:

Vi, Verify(Fi, Pgi) A (Mp = M;)

Once completed, the cloud function may be certain that it is an authentic cloud
function signed by the trusted root, identical to the binary submitted by the
developer.

5.6 Summary

This chapter details the implementation of the Diggi API for developing secure
serverless applications in an untrusted cloud, through a collection of persis-
tent, shielded and accountable cloud functions. Diggi is implemented from
the ground up to support a performant trusted runtime in SGX, through asyn-
chronous programming. The Diggi API facilitates cloud function development
through an asynchronous task and flow based abstraction built on top of effi-
cient message-passing interfaces. Cloud functions may implement rich features
through existing libraries by translating system dependancies into transla-
tor/server pairs, where procedural system call operations are translated into
asynchronous messages. The next chapter will detail the Diggi daemon process,
the trusted and untrusted asynchronous runtime, responsible for efficiently
hosting collections of shielded cloud functions.

Runtime

A Diggi serverless application may be composed of multiple distributed cloud
functions communicating to deliver a composite service. Diggi is designed to
be hosted on physical hardware or alternatively, a virtual machine interacting
with the SGX driver directly, capable of mapping enclave memory into a guest
operating system process. This section details the implementation of the Diggi
runtime prototype for shielded, persistent and accountable cloud function
execution. Our prototype comprises some 31K lines of C/C++ code, 17K of
which implements the trusted runtime.

For each host, Diggi is executed by a single daemon process, referred to
as a Diggi node. Inside the process’ address-space, cohosted functions share
a single untrusted runtime, handling deployment and lifecycle management,
configuration, messaging, networking, and filesystem interaction.

Each distinct cloud function implements a dedicated trusted runtime within
their respective enclave’s address-space, as illustrated in Figure 6.1. The trusted
runtime is responsible for handling message delivery, state preservation, thread-
ing/concurrency, and attestation/key exchange.

To shield applications from an untrusted system, the trusted runtime must
ensure the integrity, authenticity and confidentiality of cloud functions con-
tained within an enclave. All communication with the untrusted runtime and
other cloud functions must additionally be shielded. In the absence of a denial
of service attack, we expect a benign untrusted runtime to correctly delegate
resources and deliver messages to the trusted runtime. The trusted runtime
is responsible for, under the performance principles outlined in section 4.2,
managing these resources optimally.

A first-order concern for the implementation of a trusted runtime is reducing

79

80 CHAPTER 6 / RUNTIME

Process Memory

.............. Enclave Memory

Diggi Function (...)

Trusted Runtime
POSIX Asynchronous

[] API

Storage Manager

Thread
Sealing
Scheduler
DNS Thread
Messaging

Network Manager

Secure Message

. Manager
................. Asynchronous F | — Virua
---------- Message Manager Session handler registry Threading

Worker
Pool

Network File System

Untrusted Runtime Service Service Scheduling

Deployment

Figure 6.1: The Diggi daemon process layout. Each function receives a dedicated
enclave and trusted runtime, but shares the untrusted runtime with all
cohosted functions in regular process memory.

memory consumption and TCB for a cloud function; a trade-off between
performance and security. The Cohesion Principle recommends a bisection
which reduces communication between the trusted and untrusted system, yet
that reduction may imply more complexity in the trusted runtime.

6.1 Task Scheduler

The trusted runtime delegates units of scheduled computations through tasks.
Tasks are placed onto task queues, consumed by physical threads through a
lock-free scheduler; the API of which is listed in 6.1.

Physical threads may schedule tasks for execution on other threads through
inter-thread messaging. Each logical core allocated to a cloud function manages
a dedicated task queue, addressable via this API. Tasks are submitted by placing
a callback and argument pair onto a task queue. The scheduler consumes tasks
from each queue in FIFO order, preserving intra-flow order of execution. FIFO
execution guarantees the following: given well behaved co-operative flows
where tasks complete within a given timed interval, if a flow is allowed to
execute a task, it will be able to progress by scheduling another. That task will
eventually execute, i.e starvation-free.

6.1 / TASK SCHEDULER 81

class ThreadPool : public IThreadPool
{
public:

ThreadPool(size t threads, threading mode t mode);
~ThreadPool ();
// Create a new thread identifier
unsigned get thrd _id ();
// Explicitly yield execution and saves stack
// and prepares another virtual thread for execution.
void Yield ();
// Schedule a task to be executed
// on current physical thread
void Schedule(async_cb_t cb, void *args);
// Schedule a task to be executed
// on target physical thread
void ScheduleOn(size t id, async_cb_t cb, void *args);
// Get current physical thread id,
// relative to the current trusted runtime
int currentThreadld ();
// Get physical thread count
// assigned to the current trusted runtime
size_t physicalThreadCount ();
// Get current virtual thread count.
size t currentVThreadlId ();
// Align stack for new virtual thread
static void alignstack(void * ptr);
// Loop for processing tasks off the task queue.
// One for each physical thread.
static void SchedulerLoop(void *ptr, int status);
// Entry function for provisioning
// physical threads to trusted runtime.
void InitializeThread ();
// Stop scheduler loop and purge all task queues
void Stop ();
// Check if task scheduler is alive.
bool Alive ();

s

Listing 6.1: API for the lock-free trusted runtime task scheduler. Physical and virtual

threads are provisioned during cloud function initialization, and each
physical function is addressable through inter-thread messaging.

6.1.1 Physical Threads

Cloud functions support two threading-modes, shared or dedicated. During the
initialization procedure, the untrusted runtime delegates a physical core to a
cloud function by feeding it to the enclave via a special entry point. A single
cloud function may have an unbounded amount of physical cores delegated
to it, determined by the application configuration. Once inside the enclave,
threads are captured by the task scheduler, and begin executing tasks on behalf

82 CHAPTER 6 / RUNTIME

of the cloud function.

Given the availability of physical resources, each cloud function receives
dedicated cores for execution, following the Affinity Principle defined in Section
4.2. However, oversubscription will cause threads to be shared among multiple
cloud functions. Shared threads are multiplexed between different enclaves
incurring additional overhead through AEX, as described in Section 3.1.6.

6.1.2 Virtual Threads

To support legacy software, code which expects blocking behaviour is simulated
as a multithreaded system in Diggi. The trusted runtime implements virtual
non-preemptive threading through a cooperative FIFO scheduler. Each pinned
physical thread in a particular cloud function is mapped to a set of virtual
enclave-mode threads. Each virtual thread receives a dedicated stack and
execution context, which the assigned physical thread switches between as
illustrated in Figure 6.2. Non-preemption is a design property derived from the
Affinity Principle in Section 4.2. Preemptive thread scheduling would induce
an enclave exit for interrupt-driven context switches.

Virtual threading permits a blocking operation to yield control to the task
scheduler, allowing concurrent tasks to execute while waiting for the response.
The execution context and stack is preserved in the interim, enabling a per-
ceived synchronous application to asynchronously process multiple requests on
a single physical thread. Each physical thread may have an unrestricted amount
of virtual threads allocated to it, only limited by memory usage. Figure 6.2
illustrates a blocking read task which permits another virtual thread to execute
while waiting for fulfillment.

The trusted runtime implements partial pthread support for concurrent pro-
gramming in cloud functions, fully realized through virtual threads. Threads
may be created, started, joined and destroyed from within the cloud function.
Additionally, pthread mutexes synchronize perceived concurrent operations by
yielding control to the task scheduler on contention.

6.1.3 Oversubscription of Physical Threads

Ideally, Diggi should not oversubscribe physical thread resources. Section 4.1.4
demonstrates the performance impact of sharing physical threading resources
between multiple enclaves. However, if the trusted runtime detects that a
cloud function is idle, physical threads are relinquished pending new requests.
Threading resources allocated to idle functions may be distributed to active
functions in the interim. This retains performance in the presence of oversub-
scription, as long as a subset of cloud functions are idle so that shared physical
threads may act as though they are dedicated.

6.2 / MESSAGING 83

Thread Stack 1

== | ThreadPool::Yield ()
iostub_SetResponse_nofree ()
StorageManager::async_read_cb ()
SecureMM::decryptAndDeliver ()
SecureMM::Recievelnternal ()
SecureMM::RecieveAsync ()
AsyncMM::async_source_cb ()
AsyncMM::async_message_pump ()

ThreadPool::SchedulerLooplnternal ()
Thread Stack 0 ThreadPool::alignstack ()

ThreadPool::Yield () = cogo ()
iostub_wait_for_response () ThreadPool::SchedulerLoop ()
read ()

boron_base_start ()
ThreadPool::SchedulerLooplnternal ()
ThreadPool::alignstack ()

Thread init==${ cogo ()

ThreadPool::SchedulerLoop ()

Figure 6.2: Virtual threading in the trusted runtime; The physical thread performs
a context switch between two virtual threads. Thread 1 may receive
messages pending the return of a read operation on Thread o [63].

The trusted runtime detects an idle function by tracking the incoming request
frequency. If a function receives no incoming requests for a given configurable
observational period, the runtime revokes scheduling of its thread for linearly
increasing segments of time. These threading resources are relinquished to
the untrusted runtime, which distributes them to other functions. The trusted
runtime receives resources to periodically poll for incoming messages, and
upon the arrival of a message, the idle function is re-assigned its threading
resources. Packet polling intervals must be carefully tuned so not to impact
other cloud functions significantly, yet reduce the start latency when a request
arrives for a dormant function.

6.2 Messaging

The trusted runtime implements a single message-passing abstraction used by
all services. Both internal concurrency, storage and system calls (Translator-
Server-pairs), as well as external communication between cloud functions are
implemented through this single abstraction. Messaging is implemented as
tasks and flows, complementing the task based abstraction described in the
previous section. Conforming to the Pinning Principle stated in Section 4.2, all
messages are relayed through an exit-less and asynchronous communication
channel.

Diggi messages provide a minimal, efficient, secure and reliable interface

84 CHAPTER 6 / RUNTIME

Process Memory

Trusted Runtime Enclave

Trusted Service

Send () AllocateMessage() Recv ()

-
Object
P
0y
Nt

Message
Object

Outbound
Queue

Message
Object

Message
Object

Message
Object

Untrusted

) Untrusted service
Runtime

Figure 6.3: Shared memory queue and memory objects used for exit-less communica-
tion [63].

between cloud functions. However, more complex feature such as service discov-
ery, publish-subscribe, automatic endpoint code generation and interoperability
should be implemented on top. We expect application developers to implement
necessary service protocol schemes through native Diggi messages, such as
Thrift, protobuf or AMQP.

6.2.1 Concurrent queuing

Exit-less communication is achieved through concurrent queues. Threads
pinned inside the trusted runtime send messages by placing them onto an
outbound queue, readable by the untrusted system. Inversely, the trusted run-
time polls another queue for inbound messages, writable by the untrusted
system. The enclave memory model detailed in Section 3.1.4 explains that SGX
allows enclaves to read and write to memory in the host process’ address space.
Queues used for communicating are stored in untrusted memory to allow read
and write access from both parties, as illustrated in Figure 6.3. A concurrent
thread in the untrusted system produces messages onto the inbound queue and
consumes messages of the outbound queue for a given trusted runtime.

6.2 / MESSAGING 85

Serializable access to concurrent data structures requires synchronization,
however, our design requires all computations to be wait-free. We solve the
bounded buffer problem by implementing a multi-producer multi-consumer
lock-free queuing algorithm modified from work presented by Krizhanovsky
[108].

Given that a queue has free slots available for placement, this algorithm im-
plements wait-free consumption and production onto the queue. In the event
of an empty or full queue, the operation aborts immediately and control will
return to the caller, allowing other tasks to execute concurrently. Synchroniza-
tion among multiple threads is realized through atomic memory operations.
Additionally, each thread holds a unique view of the concurrent queue-state
during read/write operations. The algorithm permits the following operations
given contention:

* Read-ahead: A thread may consume available messages beyond the
lowermost tail as long it does not exceed the lowermost head.

* Write-ahead: A thread may produce messages onto the queue beyond
the lowermost head, as long as it does not exceed the lowermost tail.

Before attempting an operation on the queue, each concurrent thread records
the latest global head and tail into its local state. These may lag behind
the actual head and tail, and on concurrent accesses, an atomic operation
acts as the arbiter. The non-committed must retry for an operation on an
item beyond the contended. Although lock-free, on highly concurrent access,
the algorithm is wait-free for consumption but not for production. The Diggi
runtime implementation of the algorithm is shown in Listing 6.2.

86 CHAPTER 6 / RUNTIME

void produce(void *message, size t prod thrd)

{
thrd [prod_thrd].head = global head;
thrd [prod_thrd].head = atomic_inc(global head);
while (thrd[prod thrd].head >= last_tail + qgsize){
auto min_tail = global tail;
for (size t i = 0; i < cons_thrds; ++i){
auto tmp_ tail = thrds[i]. tail;
memory_barrier ();
if (tmp_tail < min_tail)
min_tail = tmp_tail;
h
last_tail = min_tail;
if (thrds[prod thrd].head < last_tail + qsize)
break;
memory_barrier ();
b
q[thrds[prod_thrd].head & gmask] = message;
thrds[prod thrd].head = max_value;
}
void *consume(size t cons_thrd)
{
if (!thrds[cons_thrd].in_progress){
thrds[cons_thrd]. tail = global tail;
thrds[cons_thrd]. tail = atomic_inc(global_tail);
thrds[cons_thrd].in_progress = 1;
b
if (thrds[cons_thrd]. tail >= last_head){
auto min_heas = global head;
for (size t i = 0; i < prod_thrds; ++i) {
auto tmp_head = thrds[i].head;
memory_barrier ();
if (tmp_head < min_head)
min_head = tmp_head;
b
last_head = min_head;
if (thrds[cons_thrd]. tail < last_head)
break;
return NULL;
b
void *message = q[thrds[cons_thrd].tail & gmask];
thrds[cons_thrd]. tail = max_value;
thrds[cons_thrd].in_progress = 0;
return message;
i

Listing 6.2: Send and receive queue implementation; Wait-free for all operations ex-
cept send on a full queue. Both update the local view before attempting
enqueue/dequeue.

6.2 / MESSAGING 87

6.2.2 Message structure

To protect the confidentiality and integrity of messages, the trusted runtime
encrypts each outbound message using an AES-128-GCM symmetric-key and a
unique session nonce for replay protection. Messages are encrypted in enclave
memory and copied into free messages buffers in untrusted memory.

Applications may implement redundant methods for protecting confiden-
tiality and integrity, such as TLS or PGP. Similarly, runtime services such as
ephemeral storage implement bespoke protection using authenticated block
encryption. The trusted runtime therefore supports a non-encrypted mode,
where messages are sent as plaintext.

Plaintext messages are populated directly onto the outbound message buffers,
avoiding additional memory operations. Inversely on receive, plaintext mes-
sages are directly consumable by the cloud function. All messages inbound
to the enclave are explicitly validated by the trusted runtime to avoid IAGO
attacks [38].

A message datastructure contains the following members:

msg = (t,d,s,i,b,c,p)

The message type t is customizable by cloud functions and distinguish between
multiple message purposes. The source s and destination d uniquely identifies
the message source and message destination. For each session between two
communicating parties, i identifies the next task in a flow, designated as the
recipient of this message. b is payload size and c¢ holds the intra-session
identifier, used for sorting out of order delivery of messages. Lastly, p contains
the payload.

Individual Cloud functions are addressable through a 64 bit internal identi-
fier:

fia = {t,n,t,m,a}

where t signifies the function type, n and t address the physical node and
thread, m identifies the mode and a the attestation group identifier.

6.2.3 Message Flows

Messaging in Diggi is implemented using the asynchronous programming
model described in 5.2, where cloud functions are implemented through tasks
composed into flows. For messages, two fundamental communication modes
exist, type- or flow-based. All initial messages begin as a typed message, and
cloud functions subscribe to the receipt of messages of a given message type.
Type subscriptions are defined through a triple consisting of the type, task
callback and context object, stored in the trusted runtime. A cloud function

88 CHAPTER 6 / RUNTIME

echo-function load-function

’ registerTypeCallback(function_echo_cb, type, context_s)‘ ’ allocateMessage(server, size) ‘ *begin flow*

id1
’ function_echo_cb(msg_c, context_s) H Send(msg_c, response_cb, context_c) ‘

’ allocateMessage(msg_c, size) ‘

Send(msg_s) { response_cb(msg_s, context_c)

end flow endAsync(msg_s)

Figure 6.4: An example use of the Diggi messaging API; asynchronous continuation-
style flow between two functions, an echo function and a load func-
tion [63].

may produce an unbound number of different simultaneous type subscrip-
tions, distinguishing multiple different message end-points. As an example, a
cloud function may accept client requests defined by one distinct type, and
configuration- or control-requests via another type subscription. Whenever a
typed message is received by the runtime, it is handled by the task callback
stored when the cloud function subscribe to the type.

Following a typed request, cloud functions may implement a multi-step
communication session through a message flow. Messages sent as responses
are allocated by the messaging API using the originating request message,
as illustrated in Listing 5.1. The response generates a flow-id, or i, set in the
message header described above. This identifier is used by all subsequent tasks
executed by either side of the communication channel for the longevity of the
flow. When sending a response, a single-use task callback and context object
tuple is stored by the trusted runtime. The next response for the given flow-id
triggers the stored task, receiving the inbound message as input in addition to
a discretionary context object for managing state. A given cloud function may
implement an unbound amount of additional tasks, defining complex protocols
and business logic.

The trusted runtime supports multiple concurrent flows, tasks and registered
types for a single cloud function. However, for a unique flow id, the response
will always invoke the associated task callback. An example flow based message
exchange implementing both sides of the interaction detailed in Listing 5.1, is
depicted in Figure 6.4. Typed callbacks are not single-use and may be invoked
multiple times, contrary to flow based callbacks, which must be defined for
each subsequent step of the flow. Once a flow ends execution, the last response
will be sent without a callback task, causing the runtime to clear the flow id
from the message and tear down support session state stored to keep track
of task execution. On the receiving end, the lack of flow-id will also cause a

6.2 / MESSAGING 89

teardown of session state. One-way messages, not expecting a response, are
similarly sent without a task callback. These do not generate a flow id, as they
only target the initial typed subscription task callback set up by the opposing
communicating endpoint. The Diggi messaging API is defined in Code Listing
6.3.

class SecureMessageManager: public IMessageManager
{
public:
std : :map<uint64_t, key_exchange context t> callback map;
std : :map<std :: string , aid_t> name_servicemap;
TamperProofLog *tamperproofLog inbound;
TamperProofLog *tamperproofLog outbound;
// Constructor
SecureMessageManager (
IDiggiAPI *dapi,
ITASAPI *api,
[AsyncMessageManager *mngr,
std : :map<std ::string , aid _t> nameservice_updates,
int expected_thread,
IDynamicEnclaveMeasurement *dynMR,
ICryptolmplementation *crypto,
bool record_func,
bool trusted root func _role);
// Destructor
~SecureMessageManager () ;
// Allocate message for destination based on HRN,
msg t *allocateMessage(std::string destination,
size_t payload_size,
msg_convention_t async,
msg_delivery_t delivery);
// Allocate message for destination based on 64bit address.
msg t *allocateMessage(aid t destination,
size_t payload_size,
msg_convention_t async,
msg delivery t delivery);
// Allocate response message based on incomming.
msg t *allocateMessage (msg_t *msg, size_t payload_size);
// End Message flow
void endAsync(msg t *msg);
// Send message.
void Send(msg t *msg, async_cb t task, void *contextobject);
// Get map of reachable functions (HRN, unique identifier)
std : :map<std :: string , aid_t> getfuncNames();
// Stop message recording (used for shutdown)
void StopRecording ();
¥
Listing 6.3: The messaging API for developing flow-based asynchronous messaging
between cloud functions.

The trusted runtime delivers messages by periodically polling the inbound
message queue. Messages off the queue are delivered to the correct task

90 CHAPTER 6 / RUNTIME

callback by looking up the type and flow id in an internal index structure.
The task scheduler ensures that messages are delivered to the correct task
and on the correct thread. All message task responses in Diggi are guaranteed
to surface on the same thread as the original request. Multithreaded cloud
functions are individually addressable per thread, specified in the recipient
field of a message.

The trusted runtime may reach a condition where it is able to deliver requests
faster than the cloud function can process them. Over-consumption of incoming
requests may cause the host enclave to reach its memory limit and subsequently
crash. The task scheduler handles this by throttling incoming message requests,
limited to a finite number of parallel tasks in flight at any given moment.

6.3 Ephemeral Storage

Cloud-scale services implementing stateful computing require the ability to
store large amounts of information. The trusted runtime could store informa-
tion in enclave memory, but experiments conducted in Section 4.1.2 suggest
that oversubscription of the EPC incurs a significant overhead. To avoid provi-
sioning large enclaves, state which is not part of the most recently used pool
of application objects is stored in non-enclave memory.

The trusted runtime implements shielded ephemeral storage of cloud func-
tion state through an asynchronous storage API listed in 6.4. Each unit of
storage persisted by a given cloud function is referred to as a state object. State
objects may persist across cloud function lifetimes, for the longevity of the Diggi
node. In the event of node failure, state is permanently lost, a property we
define as ephemeral. Applications depending on fault-tolerant storage should
implement state replication explicitly.

6.3 / EPHEMERAL STORAGE 91

class StorageManager : public IStorageManager
{
IDiggiAPI *func_context;
ISealingAlgorithm *sealer;
std : :map<int, int> pending write_map;
std : :map<int, off t> lseekstatemap;
crc_vector_t block 2 crc;
std : :map<int, off t> size of file;
std ::map<std :: string , int> object name to_id;
std : :map<int, std::string> object_id to_name;
public:
// Constructor
StorageManager (IDiggiAPI *context, ISealingAlgorithm *seal);
// Retrieve Current state of replay vector table
void GetCRCReplayVector(crc_vector_t **vectors);
// Set replay vector table
void SetCRCReplayVector(crc_vector_t *vectors);
// Close the interaction on a state object
void close(int object_id, bool omit from_log);
// Seek to an internal offset within the state object.
int seek(int object id, int offset, int whence);
// Open a state object given a object name.
void async_open (const char *object name,
async_cb_t task,
void *context,
bool encrypted,
bool omit from log);
// Read from a state object
void async_read (int object_id,
size_t nbyte,
async_cb_t task,
void *context,
bool encrypted,
bool omit_from_log);
// Write to a state object
void async_write (int object_id,
const void *buf,
size_t nbyte,
async_cb_t task,
void *context,
bool encrypted,
bool omit from log);
//Destructor
~StorageManager () ;
¥
Listing 6.4: Interface implementing persistent ephemeral storage for cloud functions.
Access is initiated by retrieving an object identifier from a human read-
able name. This identifier is used for subsequent operations on the state
object.

Exit-less state preservation is implemented asynchronously through message
flows, as discussed in the previous section. Storage is organized as individ-

92 CHAPTER 6 / RUNTIME

Untrusted Memory

Physical
representation

Header —>-

Ciphertext =—»

Figure 6.5: Function state preservation using encrypted ephemeral storage in
Diggi [63].

ual objects, addressable via human readable names. Objects may be partially
read/written to and expand in size. An internal position indicator directs
the current point within an object. Read and write operations are translated
to encrypted blocks in the trusted runtime and relayed to the untrusted sys-
tem through messages. Blocks are stored as a virtually contiguous buffer in
untrusted memory and each distinct cloud functions encrypts state using differ-
ent keys. Blocks stored in untrusted memory are additionally protected from
unsolicited modification and data-replay.

The cipher-text representation of an encrypted block expands in size com-
pared to its plaintext counterpart. The block header includes size s and MAC-
tags tmac, while the encrypted payload contains a CRC-32 hash h.,. of the
plaintext for a given block:

block = {s, tmac, enc{hcyc, payload}}

Blocks are encrypted using a 128bit AES-GCM cipher, derived from a combina-
tion of the SGX platform seal key, embedded in hardware, and the SIGSTRUCT
certificate signature. Blocks can only be decrypted by the same physical hard-
ware and a cloud function signed by the same developer key. This property
allows multiple cloud functions signed by the same developer to share persisted
state. Multiple versions of a cloud function may moreover share the encrypted
state, simplifying the upgrade procedure. A stricter mode which additionally
requires an identical cloud function measurement is also configurable. The
absence of an authenticated cloud function renders session state stored in
untrusted memory useless, guaranteeing revocation.

6.4 / ACCOUNTABILITY 93

Replay protection. While blocks written to untrusted ephemeral storage are
encrypted and protected from modifications, a malicious attacker may subvert
the execution of an instance by serving stale data back to the application.
Replay attacks for communication primitives and replay attacks for storage
differ in one significant aspect, data entries should be remembered and replayed.
However, only the last entry stored at a given location should be returned upon
an explicit request.

The trusted runtime implements a replay protection protocol where each
block of encrypted data is associated with a 32 bit value defining the block
version. Each stored object is associated with a block vector, and all read/write
operations targeting blocks within an object must correctly check/update each
version number. Block versions are derived from a CRC32! hash of the plaintext
block data, stored in an encrypted field of the persisted cipher-text.

To ensure performant lookup, this vector table is stored in enclave memory.
Given an encrypted block size of 4 KB, the corresponding vector table will
account for 1MB of enclave memory per GB of data written. Large objects may
increase the memory footprint, and as an optimization, block vector arrays
may themselves be stored in separate state objects to reduce enclave memory
consumption.

Given a write operation to a particular block, the associated vector is updated,
encrypted and stored along with the block in untrusted memory. Any subsequent
reads of the block will compare the contents of the block header with the
expected entry in the vector block table. Algorithm 1 outlines the protocol
steps.

The vector block scheme is partially inspired by the enclave memory integrity
implementation detailed in section 3.1.4. Given a pre-existing persisted state
object, the associated vector block array may be delivered securely to the
runtime from a trusted source during cloud function deployment. An empty
state object is represented initially by an empty block vector. Block vectors
expand dynamically as the stored state object increases in size.

Replay protection requires serializability and the trusted runtime therefore
does not support concurrent operations on the same block. Multithreaded cloud
functions are instead expected to implement synchronization explicitly.

6.4 Accountability

SGX cannot protect against denial of service, where the underlying infrastruc-
ture reduces or revokes computing resources for an ongoing trusted enclave
computation. Determining whether a cloud function has verifiably executed is
important for non-idempotent operations with side-effects, such as transferring

1. https://create.stephan-brumme.com/crc32/

94 CHAPTER 6 / RUNTIME

Algorithm 1 Block vector operations

1: procedure CHECK BLOCK RANGE
bi « Index of block

2:
3: cnt < Block read count
4: for i < bito cnt + bi do
5: if Hash(i) # Stored(j) then
6: goto error
return ok

1: procedure UPDATE BLOCK RANGE
bi < Index of block
cnt « Block write count
for j « bi to cnt + bi do
if Hash(j) # Stored(j) then
goto error
else

Stored(j) «— Hash(j) + 1
return ok

funds between two accounts. An untrusted system may claim the operation
concluded, despite the contrary. For such operations to be verifiable, a cloud
function must be able to prove that it executed correctly.

Cloud functions are identifiable through the enclave measurement repre-
senting its initial state. However, identifying long-running functions is difficult
when state diverges from the initial measurement.

The trusted runtime implements accountability for Diggi cloud functions
through the ability to record and replay execution thereof. As described in 4.4.1,
we define the identity of a cloud function as the state predicate i(0) initially
derived from the enclave measurement. Following the first input message, the
next identity of a cloud function becomes:

i(1) = i(0) + i(messager)
For any following state x the identity is defined by:
i(x) = i(x — 1) + i(messagey)

To identify any given state, the trusted runtime stores the derived state. The
premise of trusting recorded state verification evidence requires a trusted
runtime with a known predicate state. Auditing the execution of a cloud
function may be realized through two different modes, each with different
tradeoffs.

The first mode implements a dynamic attestation module creating a new
state identifier for each incoming message. The state identifier is derived
through the same process as initial enclave measurement, a SHA-256 hash of

6.5 / UNTRUSTED RUNTIME 95

the inbound message. The function preserves sequential ordering by hashing
each state and its predecessor state as follows:

state; = hash(state;_1 + message;), Vi

The identity of a cloud function after i messages is represented by state;.
A hypothetical cloud function may after 1000 received messages deliver its
identity stateyggo as proof of execution. For deterministic cloud functions, this
proof will guarantee that a cloud function executed without interference by
the untrusted system. This mode only requires that the final state is preserved,
and a successful audit will arrive at the same concluding state.

For non-deterministic cloud functions, using temporal or random input, iden-
tity will differ between executions, making verification difficult. To support
verification of non-deterministic cloud functions Diggi implements a tamper-
proof log for storing message states. The message-states are stored as an
append only data structure encrypted in untrusted memory using the storage
interface defined in Listing 6.4. Two logs are stored, one for input state and
one for output state. As described in section 6.3 encryption keys for storage
are uniquely tied to cloud function identity. This guarantees that only a cloud
function from the same issuer will be able to read the tamperproof log. Non-
deterministic operations such as gettime() and rand() are realized through
translators into asynchronous messages, as described in Section 5.4. Just as all
other interactions, these operations are recorded on the tamperproof log. To
verify the cloud function execution through an audit, a reference cloud function,
signed by the developer, is loaded into the trusted runtime. The runtime replays
the tamperproof log input to the cloud function, comparing the actual output
messages with the expected. If the output differs or the execution is incomplete,
the reference implementation will have evidence of tampering.

Both modes require one additional execution to audit the cloud function. The
prior only stores a current state hash value and is more memory conserving. A
fully replay-able audit in the presence of non-deterministic execution requires a
full record of all internal state. Audit procedures are only executed if necessary,
and we expect that accountability achieves deterrence through the perceived
probability of an audit.

6.5 Untrusted Runtime

Cloud functions deployed on the same physical host, share an untrusted run-
time responsible for lifecycle management and intra-node message delivery.
To maximize co-hosting potential, satisfying the Pinning Principle defined
in section 4.2, the untrusted runtime consumes as few dedicated threads as
possible.

96 CHAPTER 6 / RUNTIME

We implement the untrusted runtime as an asynchronous system with the
task and flow computing abstraction detailed in section 5.2. A polling task
repeatedly schedules itself onto the task scheduler, as defined by the pattern
in Listing 5.3. The task polls inbound messages from network and outbound
messages from the individual cloud function queues. An outbound message
object is moved from the respective queue to the correct outbound socket
defined by the destination cloud function identifier. Incoming messages are
likewise consumed from the network interface and delivered to the correct
input queue. Diggi messaging is protocol agnostic, but requires that the un-
derlying communication media provides error correction and reliable packet
delivery. Inter-node communication is in its current form implemented across
non-blocking TCP sockets.

During deployment, the untrusted runtime reserves physical threads for mes-
sage processing and delivery. The default allocates a single physical thread to
the untrusted runtime, however many-core systems may allocate several.

The untrusted runtime bootstraps execution by loading the trusted runtime
and cloud function into SGX enclaves according to the deployment config-
uration; one for each defined cloud function. Once the trusted runtime is
initialized, physical threads enter the enclave and are captured by the trusted
runtime task scheduler.

Message queues are allocated by the untrusted runtime and delivered to
each trusted runtime during initialization. Each receive a dedicated input
queue which may be addressed by the untrusted runtime and other cloud
functions directly. Depending on the recipient, the trusted runtime chooses
a target queue for relaying messages. Dedicated queues exist for ephemeral
storage, operating system "servers" and outbound inter-node messages. Queues
only store pointers to message objects, and the untrusted runtime maintains
a global pool of free message object buffers concurrently consumable by all
cloud functions. The process is illustrated in Figure 6.3.

6.6 The Diggi Trusted Root

The SGXs security model requires a trusted principal for secure application
deployment and joint software attestation of cloud functions. Three principals
exist for an SGX application; the build environment compiling and distributing
binaries, IAS responsible for identifying a correct hardware platform, and the
developer service, which deploys and authenticates the enclave. All require an
implicitly trusted underlying infrastructure, and distributing these roles may
increase scalability, but also increase the TCB.

Section 4.4.3 describes how a serverless application may be composed of
multiple distinct enclaves. These are compiled and signed according to the
application configuration, and delivered to the target host for deployment.

6.6 / THE DIGGI TRUSTED ROOT 97

Although conceptually different, Diggi implements compilation, deployment,
key distribution and authentication into a single principal; the trusted root.
The trusted root is hosted and owned exclusively by the service developer,
external to the cloud, and interacts with Diggi node processes hosted in a
public cloud.

During deployment, the trusted root measures and signs each cloud function
binary, creating the SIGSTRUCT certificate, used by SGX to authenticate a
binary. This certificate is stored by the trusted root in an index, for use during
the attestation process.

The platform attestation key, described in 3.1.5 is made available to the
trusted root, used to verify quotes. SGX requires this key material be integrated
into a fuse array embedded in the hardware during the manufacturing process.
This design is a departure from the actual architecture of SGX which does
not disclose the attestation key to developers. We simulate the attestation key
available through the Diggi trusted root. Diggi is not inherently tied to the SGX
platform and we conjecture that an open TEE architecture replaces the IAS
by enabling application developers to provision hardware secrets to platforms

directly.
@ Sk = session key

1: DH key exchange + Attestation
2: Provision Function Session keys

Figure 6.6: The cloud function attestation process. Each function individually authen-
ticates themselves to the trusted root. Once all are authenticated, the
trusted distributes session keys to each. By the transitive property, each
attested cloud function may now trust one another [63].

Once the trusted root successfully deployed all binaries in an application
configuration to the respective Diggi host nodes, it awaits requests for attes-

98 CHAPTER 6 / RUNTIME

tation. Cloud functions are divided into attestation groups, as defined in the
application configuration. The application configuration specifies the granular-
ity of attestation groups. An application may have multiple attestation groups
per service, depending on the tradeoffs between resource consumption and
individual access control and authentication. A cloud function cannot belong
to multiple attestation groups.

Each cloud function requests an attestation for its allocated attestation
group from the trusted root. This protocol is derived from a modified Sigma
protocol [9] which piggybacks the delivery and verification of attestation
evidence on-top of the Diffie-Hellman symmetric key exchange. The Intel SGX
SDK provides an API for message preparation in each step for attesting a single
client. We modify the protocol to implement multi-party co-attestation.

Each cloud function is compiled with a static public key tr,, for which
the trusted root stores the corresponding private key trs. The initial request
contains the SGX quote signed by the QE, a nonce and the Diffie-Hellman [52]
initial modulo p, base g, and exponent g¢ sent to the trusted root, encrypted
using tr:

d
encer,(p. g. Qe n.g*) — TR

The trusted root decrypts the message using the private key tr,, and sends a
request to the Intel attestation authority, with the received quote. The attesta-
tion authority may then, based on the signature of the received quote, verify
that the attestation key used by the QE to sign the quote belongs to a valid
hardware platform. The trusted root then verifies that the measurement in the
quote Q. is identical to the SIGSTRUCT certificate. If the process is successful,
the trusted root then responds to the client, with a response to the initial nonce
n, and the exponent ¢?, signed by the private key t7;:

send
CF —— sigy; (9", nr)

The host then verifies the signature using the public key tr,.

The process is repeated for all participants in the attestation group. Attes-
tation verifies to all functions jointly, the initial state of each function and the
authenticity of the hardware platform where each function is executing. Once
concluded, the chain of trust within an attestation group follows from the

transitive property, if
trust

and
trust

TR —— CF,'+1
where CF are cloud functions and TR is the trusted root, then

trust

CFi —— CFJVI,]

6.7 / SUMMARY 99

The trusted root completes the attestation by distributing session keys to all
participants, encrypted by the trusted roots own session key. All cloud functions
within a group may now communicate across a secure and authenticated
channel. The high-level steps of this protocol is illustrated in Figure 6.6.

Multiple mutually distrusting attestation groups may be cohosted simultane-
ously; either through the same or different trusted roots. For a single attestation
group, only a single trusted root may complete the co-attestation protocol. We
expect attestation groups to be bounded in size. A single attestation group
should not require scalability per trusted root.

6.7 Summary

This section has detailed the Diggi prototype runtime for shielding cloud
function execution from an untrusted public cloud using the Intel Software
Guard eXtensions (SGX) Trusted Execution Environment (TEE). Through an
asynchronous task scheduler and flow messaging API, Diggi efficiently utilizes
threading resources to maximize function hosting. Accountable cloud functions
may prove a correct execution through recorded state transitions in a tamper-
proof log which may be replayed in the event of an audit. Cloud functions may
additionally store shielded ephemeral data in the untrusted system, without im-
pacting responsiveness or cohosted functions. Serverless applications consisting
of multiple cloud functions are compiled, deployed and authenticated jointly
using the trusted root principal, demonstrating how a distributed serverless
application may be hosted securely on untrusted infrastructure.

Evaluation

Chapter 4 describes the design of Diggi, a secure serverless runtime for hosting
secure online services in an untrusted public cloud. Based on this design,
we developed a prototype system to support efficient use of the SGX TEE,
detailed in the previous chapter. To investigate the thesis conjecture, we must
evaluate whether Diggi is efficient enough to demonstrate a practical potential.
This chapter will detail the evaluation of our prototype implementation, and
moreover seek to answer the following research questions:

* Research Question 1: To demonstrate a practical design, our prototype
runtime should be applicable and add value. Can Diggi be applied to create
contemporary secure cloud services for managing privacy sensitive data?

* Research Question 2: Securing software systems from an untrusted
public cloud will inherently add overhead in each measure taken, but an
efficient system should minimize this overhead. What is the penalty in
performance of executing cloud functions in the Diggi trusted runtime, and
can this overhead be characterized as reasonable?

* Research Question 3: Ensuring high utilization of hardware is an impor-
tant goal in the design of serverless systems, and runtimes should aspire
to pack as many cloud functions onto the same host as efficiently possi-
ble. How does cloud functions scale per host, and are resources distributed
optimally among cohosted instances?

* Research Question 4: Accountable cloud functions require explicit pro-
tection and storage to ensure that a verifiable proof is preserved during
function execution. What is the overhead of storing a full transcript of cloud
function execution vs. storing the final measurement, and additionally, what

101

102 CHAPTER 7 / EVALUATION

is the cost of an audit operation?

7.1 Experimental Setup

To answer the research questions stated above, we evaluate our prototype on an
experimental setup which synthesizes the expected infrastructure environment
of an untrusted public cloud. Cloud infrastructure consists of racks of connected
server-grade computing resources, with high-speed interconnect between racks,
and aggregate backbone connections between multiple racks in a datacenter.
We synthesize the hardware configuration of a single rack in a public cloud
by connecting multiple physical machines together on a dedicated physical
network. Each host runs an Ubuntu 16.04 Linux-based 0s along with version
2.5 of the Intel SGX SDK and kernel driver. A single Diggi daemon process
is provisioned per physical machine, capable of hosting the necessary cloud
functions.

All experiments are carried out on Dell R330 servers with Xeon E3-1270 v6
3.8 GHz processors with 4 cores (8 Hyper Threads), configured with 64 GB
UDIMM DDR4 RAM and 10GBaseT Intel X540 NICs connected together by a
Dell Networking N1524 10 Gbit Ethernet switch. Each is configured with 8 Dell
1.2 TB 10K RPM 400-AHNO hard drives connected through a Symbios Logic
MegaRAID SAS-3 3108 raid controller with a 1 GB write cache, configured
in RAID 5 (striped with parity). We disable CcPU frequency throttling and
other power management features across all machines, and set the PRM to its
maximum allowed 128 MB.

The interconnect between nodes is dedicated to Diggi traffic, and all external
connections to WAN occur through a separate network on a 1Gbit NIC, as
illustrated in Figure 7.1. All experiments are configured such that each Diggi
node dedicates one logical core for intra-node message processing. The Diggi
runtime may be hosted outside SGX without any major modifications to the
codebase. To illustrate the inherent overhead, we selectively compare against
baseline experiments hosted in regular memory.

Except where evident from context, all measurements are performed on pre-
deployed Diggi cloud functions with co-attestation and audit logging disabled.
The Diggi runtime is hosted in a dedicated environment which minimizes
interference. Unless explicitly stated, experimental results are displayed as
averages across 10 individual runs. For experiments where the relative standard
deviation is negligible, we omit error bars for clarity. Only experiments which
explicitly test resource sharing/contention across cloud functions demonstrates
a relative standard deviation above 2.4 percent.

7.2 / COHOSTING CLOUD FUNCTIONS 103

LAN
(Untrusted Cloud)

(Diggi Node) (Diggi Node)

Dell Dell
R330 R330
~—

Intel X540]

(Trusted Root)

WAN

Figure 7.1: Experimental setup synthesizing an untrusted cloud. Each physical host
represents a Diggi Node running the deamon process for deploying cloud
functions. The terminal client serves as the Trusted Root external to the
untrusted cloud.

7.2 Cohosting Cloud Functions

Section 2.3 describes the importance of maximizing utilization; packing more
cloud functions onto each physical host increases the revenue. Diggi cloud
functions are cohosted without virtualization since SGX isolates each trusted
runtime from the underlying system and other cloud functions. Additional
security isolation is redundant, and may instead increase the runtime overhead
of executing cloud functions.

As detailed in Section 3.1.4, once total memory consumption exceeds the
architectural limits, SGX will encrypt unused enclave pages and evict them to
untrusted DRAM, increasing memory access latency. In order to efficiently host
multiple isolated cloud functions per physical host, the Diggi trusted runtime
is built from the ground to conserve memory usage.

We evaluate the packing potential of cohosted Diggi cloud functions by
measuring the overhead of hosting a collection of isolated simple functions on
the same physical host. The function of choice is the echo-function listed in
5.1, which returns whatever messages it receives immediately to the sender.
Because of its simplicity, this provides us with a lower bound on memory usage
per secure runtime, and an indication of optimal per-node scaling for Diggi
cloud functions.

We measure the throughput as the number of messages processed by each
echo function, and additionally, the Round Trip Time (RTT) between the request
and response as observed by the load-generating function. Each echo function
consumes a total of 2.2MB including the trusted runtime, and we expect to be
able to host 40 parallel functions per host before exhausting the pool of physical
trusted memory(PRM). Once the physical threshold is reached, latency and
throughput performance decreases due to memory multiplexing.

Each cloud function is initially allocated a single physical thread and two

104 CHAPTER 7 / EVALUATION

9 j
] -—Concurrent Functions
8 3
o]
37 7
~ |
36 7
E-
a5
(] 3
€4 1
<
3 3
© 1
22 1
<]
1 7
0 E Il Il Il 96
0 2000 4000 6000 8000

Average RTT (U sec)

Figure 7.2: Average throughput for cohosted instances vs. average round-trip time.

virtual threads, each with 64KB of memory set aside for the runtime stack.
By allocating just two virtual threads to each, the Diggi runtime is able to
handle blocking system call operations while preserving memory consumption
from stack allocation. However, once the number of deployed cloud functions
per host exceeds the logical core count, each physical thread is shared across
multiple functions, which may impact performance. High resolution timers
are not available in enclave mode, and so to accurately measure RTT, the
load generating functions are executing in regular process memory. Load
generating functions and echo-functions are hosted on separate physical hosts,
connected by a high-speed interconnect, as illustrated in figure 7.1, where each
load-generating function targets exactly one echo-function.

To avoid warmup latency for TCP handshake operations, each connected
Diggi node uses a single connection to send and receive data to another node. To
minimize the probability of a network link becoming the bottleneck, we disable
the TCP send buffer (Nagle) algorithm for all connections, and use a small Diggi
message size of 1KB. Our intuition is that a high packet rate will increasingly
stress the non-blocking runtime and packet-scheduling in each node, rather
than saturate the network. Figure 7.2 illustrates the average perceived per-
function end-to-end latency and throughput of the echo experiment as the
amount of cohosted echo-functions increases.

Figure 7.3 displays the total throughput measured for all cohosted functions
over the average per-function latency measured. We observe that the total
throughput peaks at around 7 cohosted functions, the point at which Diggi
must share the 7 available logical cores (1 set aside for message scheduling)
among multiple enclaves. While this suggests that the experiment is CPU bound,
the runtime is still able to delegate resources fairly across 12 functions without
decreasing the total throughput or latency significantly and even more across

7.2 / COHOSTING CLOUD FUNCTIONS 105

28910 ——Concurrent Functions

15

=
o

Total K messages/ sec

[82]

0 2000 4000 6000 8000
Average RTT (U sec)

o

Figure 7.3: Total throughput for cohosted instances vs. average round trip time.

24 functions without significant increases in latency. This suggest that the cap
on throughput is dominated by network bandwidth.

Although the interconnect is expected to carry roughly 1.1 GB per second,
disabling packet buffering and transmitting small messages reduce this poten-
tial significantly. Additionally, to simplify the experiment, each load generating
function only schedules a single message exchange at-a-time, awaiting the
response of the prior, between each exchange.

The variance in both experiments increases above 7 cores, illustrating re-
source interference between cloud functions. All threading resources are shared
preemptively through virtual threads, and as the cohosted functions grow in
number, interrupts will trigger AEX-operations to share physical cores among
multiple enclaves, contributing to the variance in results. Diggi additionally
maps cloud functions to available cores in round-robin, and as more enclaves
are forced to share cores, the throughput variance drops.

We allocate a single core for message scheduling, and the total throughput
experiment reveals that this is sufficient for serving 7 cloud functions, without
becoming the bottleneck. For processors with more parallelism, increasing the
cores allocated to message scheduling is necessary to ensure further vertical
scaling. However, logical cores share some caching, bus bandwidth and pipeline
execution steps which will limit scalability for each added core in the event
of a pipeline stall. For increased vertical scalability, Diggi should implement
Non-Uniform Memory Access (NUMA)-awareness to handle non-uniform access
patterns by separate NUMA-cores accessing main memory.

106 CHAPTER 7 / EVALUATION

7 Non SGX (3 SGX

400
350
300
250
200
150
100
50

Average latency cold start (ms)

4
% . |\ | ml

Concurrent functions deployed

50 100

Figure 7.4: Average cold start deployment latency for Diggi cloud functions executing
in SGX and outside.

7.2.1 Cold-start

Section 2.5 describes the challenge of cold-start provisioning serverless systems.
Reducing cold-start latency for cloud functions is essential for application
responsiveness and maximizing revenue potential. We measure the cold-start
performance of Diggi as the persieved latency of concurrently deployed cloud
functions. We additionally compare the responsiveness to a baseline consisting
of a non-SGX cloud function hosted in regular process memory. Each cloud
function implements the echo-function detailed above, using roughly 2.2MB of
PRM.

As expected, function deployment inside SGX is on average 4x slower than the
baseline. For this experiment, cloud functions have not been preprocessed by
SGX in any form, and launching an enclave therefore includes the binary mea-
surement and signature verification for each function. Deploying 100 functions
concurrently on a single physical host in Diggi renders an average cold-start
latency of 149 ms.

Precisely comparing the Diggi prototype implementation against existing
proprietary systems is not possible due to the lack of documentation and
peer-reviewed literature. As an approximation, Wang et al. [184] conduct a
series of black-box-experiments revealing the cold and warm-start latency of
cloud functions hosted by AWS, Google, and Azure, listed in Table 7.1. These
experiments measure the network (end-to-end) latency as experienced by
an invoker targeting a datacenter within the same region. This includes the
cost of allocation, scheduling and provisioning physical resources, as detailed

7.3 / COMMUNICATION OVERHEAD 107

Service Cold Start Warm Start Runtime
Azure Functions 3640ms 320ms 3320ms
Google Cloud Functions 493ms 79ms 414ms
AWS Lambda 265ms 25ms 240ms
Diggi n/a n/a 149ms

Table 7.1: The cold and warm-start performance of several serverless cloud providers
compared to the Diggi runtime. Runtime overhead is calculated by subtract-
ing warm-start from cold-start.

in Section 2.4. The Diggi prototype consists of a secure serverless runtime
for deploying cloud functions, excluding some of the necessary architectural
components required to implement a full Faas framework. Consequentially,
our experiments only measure the runtime overhead of provisioning cloud
functions. The majority of the warm-start overhead reported by Wang et al.
[184] may be attributed to authentication, load-balancing and network latency.
We arrive at a probable number for comparing the runtime provisioning costs
by by subtracting this figure from the cold start measurement, as displayed by
the third column in Table 7.1.

Diggi does not use virtual machines or containers for isolation, and despite
the overhead of SGX, the runtime cost of provisioning isolated function in-
stances is comparable to these competing systems. However, based on the
heterogeneous hosting environment of our synthetic cloud and the proprietary
public clouds listed, the results may vary.

Ephemeral Storage The previous experiments have all demonstrated a low-
ermost boundary for provisioning Diggi cloud functions, with a peak memory
consumption of 2.2MB of PRM. Additional memory consumption caused by ap-
plication state will increase this figure and impact the cold start performance as
SGX enclaves must measure and account for all memory consumption during
deployment. The experiment conducted in Section 4.1.1 demonstrates that
the cost of enclave provisioning increases as a function of its size. The Diggi
runtime avoids this overhead by allowing applications to manage state through
ephemeral storage, persisted across function lifetimes without impacting the
provisioning cost.

7.3 Communication Overhead

Diggi communication primitives may be implemented on top of a reliable
communication protocol of choice. The current prototype implements inter-
node communication using TCP. To evaluate the overhead of hosting functions
inside of enclaves, we evaluate the end-to-end latency and throughput of

108 CHAPTER 7 / EVALUATION

1000 D ERRR] 500
—_ Lt .. ey Q
. . e
o . . 2 Q oo
()] i (%} i
KQ e 3
o 800 2 =400 &
ot FEE
= i @
2
= i E ey
2 = e
: e
£ 600 o E 300 L
3 22l
Qo i Q s
< s = che
2 = i)
[sTy) e B
2 400 - 200
S © e
[e] e bttt
= £ = st
< &5 =} EEee
2 @]]
- G el
200 o e 100 e
i e
3 e
ik Kl
sastee]
s
e
0 0 R
& &
& «° N
° & 4
K N

Figure 7.5: (1) Throughput measurements for the baseline and Diggi cloud functions.
(2) Round-trip time for the baseline measurements and the Diggi runtime.

message delivery in Diggi compared to a baseline.

Similar to the previous experiment we use two functions, a load generating
and an echo function hosted on two distinct physical machines. The experiment
measures the throughput and RTT of a message to be delivered back to the
sender. To be able to use high resolution timers, we host the load-generating
function in regular process memory.

As a baseline, we evaluates the peak Transmission Control Protocol (TCP)
bandwidth and latency between two physical machines in our synthetic cloud
infrastructure rack using iperf!. To achieve a fair mix between latency and
throughput performance we set the TCP write buffer size to 128KB for both
iperf and Diggi, and the load-generating function to 128KB per Diggi message.
iperf uses all available cores to generate load onto the network, and is able to
achieve a maximum TCP-layer throughput of 1.08GB per second, compared to a
theoretical peak load of 1.1GB per second across the data link layer of the 10Gbit
interconnect. We expect no packet-loss between the two physically connected
machines, and attribute this difference to additional transport and IP-layer
message header information. Diggi is able to achieve 1.04GB per second using
only 4 load-generating functions each using a single logical core, demonstrating
that the experiment is network bound. The difference in maximum throughput
is here attributed to the additional message header information, sent as part of
the Diggi message. Messaging in Diggi adds 42 psec to the latency (9 percent),
which we consider negligible. This overhead is caused by additional message

1. https://iperf.fr/

7.4 [/ TRUSTED RUNTIME SYSTEM CALL TRANSLATION 109

scheduling and encryption in the Diggi runtime.

7.4 Trusted Runtime System Call Translation

In order for the Diggi runtime to be practical, cloud functions may import
legacy libraries by implementing secure system dependent access explicitly
through translator/server pairs, as detailed in Section 5.4. We demonstrate
the overhead of translated system calls in Diggi by implementing simple file
system operations and measuring the performance overhead compared to a
baseline.

Figure 7.6 and 7.7 demonstrate the latency of reads and write operations
as a function of block sizes. We compare the native execution speed of the
gLibc library against encrypted IO operations which explicitly exit the en-
clave (ocalls), and Diggi translated exit-less (async) 10; both with and without
encryption.

The baseline gLibc benchmark is executed in regular memory with no en-
cryption. Block encryption is dependent on the write size and we observe that
the latency increases exponentially for write operations, both for ocalls and
exit-less translations. Read operations are less impacted by encryption since
they are not re-entrant. However, ocalls degrade significantly in performance
for larger reads, and we theorize that this is due to memory multiplexing for
large reads copied across the enclave boundary, similar to the results presented
in Section 4.1.3.

Compared to the gLibc baseline, there is a significant added cost of executing
IO operations in SGX. For 10 originating from within SGX, there is at least 5-10x
slowdown, not including encryption. However, there is a noticeable performance
benefit for both reads and writes by using asynchronous (exit-less) IO in Diggi
as opposed to explicit context switches (ocalls). Unencrypted asynchronous
write operations are less impacted by larger write sizes since they do not exhibit
the re-entrant behaviour required by encrypted writes.

Experiments are subject to spikes in latency for IO operations interfacing
with the operating system. We attribute this to file system and/or RAID con-
troller caching, which intermittently trigger expensive cache-miss behaviour.
Additionally, ocalls are increasingly impacted by intermittent expensive enclave
page-faults due to the additional memory operations required to complete each
IO request.

In its current form, the Diggi trusted runtime does not cache any intermediate
data in trusted memory, but rather pushes all writes out of the enclave imme-
diately. Caching blocks inside the trusted runtime may increase performance
but also increase enclave memory consumption.

110 CHAPTER 7 / EVALUATION

Iml LIIIII

16Kb 32Kb
Block Size - Syscall Write

180
160

Average | sec/write

e el

N B OO 0 O N D
O O O O o o o

o

Mocall Oasync Masync encrypted [Oglibc

Figure 7.6: A comparison of asynchronous (exit-less) write latency in Diggi versus
synchronous (ocalls) and gLibc as a baseline.

18
16
14
12
10

Average u sec/read

I h b

16Kb 32Kb
BIock Size - Syscall Read

o N B OO

Wocall Oasync [async encrypted Oglibc

Figure 7.7: A comparison of asynchronous (exit-less) read latency in Diggi versus
synchronous (ocalls) and gLibc as a baseline.

7.4 [/ TRUSTED RUNTIME SYSTEM CALL TRANSLATION 1M

7-4.1 Supporting Legacy Libraries in Diggi Cloud functions

To demonstrate the portability of existing software, we include the SQLite32
Database Management System (DBMS) library in a cloud function and imple-
ment the necessary system call translators and servers. The SQLite3 library
comprises some 128K lines of code, and aside from compiling, no modifications
were made to support it in the Diggi trusted runtime. UNIX Large File System
and Write-Ahead-Logging mode, requiring shared memory, was disabled by
compiler flags. Extending library support, providing associated data structures,
and translating system call operations securely, added some 5K lines of code3 to
the trusted runtime. Although this increases the complexity of the trusted run-
time, the bulk of this code implements system call translators, encryption and
pthread support, potentially reusable by subsequent library translations.

System calls are implemented by translating requests to secure messages
which are relayed to servers in the untrusted runtime interfacing directly with
the host 0S. Any such interaction with the untrusted system may leak informa-
tion, given data dependent access. Each translation is prepared independently
to ensure minimal leakage of information by integrity protection and encryp-
tion.

More work could reduce the number of translations further by emulating
more behaviour in enclave-mode. However, this would increase the complexity
and TCB of the trusted runtime.

Table 7.2 and 7.3 list the system calls and library support implemented to
support this particular scenario. For system calls which are not translated,
and library operations outside of pthread support, we emulate the behaviour
expected by SQLite3 in the trusted runtime to avoid security issues and reduce
complexity. Other legacy libraries may require more complex (true) behaviour
for these operations. To evaluate the performance of the ported library, we
implement a cloud function able to serve as a OnLine Transaction Processing
(oLTP) database, by using the SQLite3 library, and evaluate the resulting
performance against a TPC-C transaction mix load.

The TPC-C benchmark models a series of warehouses with stock changing
hands, and orders and payments processed*. We execute TPC-C in full through
a simple database protocol implemented on top of Diggi messages. Prior to
each experiment, TPC-C loads content simulating a set of warehouses into
the database. For all experiments, unless stated otherwise, we configure the
benchmark to load the content simulating a single warehouse, and each exper-
imental iteration generate transactional load for 10 seconds against the target
database. The loading phase serves as a warmup for issuing transactional load
to the system, and as the experiments will illustrate, we do not see signifi-

2. https://www.sqlite.org
3. Measured using the Source Lines of Code (SLOC) tool.
4. http://www.tpc.org/tpce/

12

CHAPTER 7 / EVALUATION
System Call Implementation Technique
Istat Translation
stat Translation
fstat Translation
close Translation
access Translation
fsync Translation
Iseek Translation
open Translation
read Translation
write Translation
unlink Translation
umask permissions are allways 0777 because file is encrypted
readlink Identical path
getpid Static process identity
time Monotonically incremented
getcwd Single Directory
fentl (Multi-Process file locking) No-Op
geteuid static user identity
nanosleep Yield to runtime task scheduler

Table 7.2: System calls required by the SQLite3 library, and implementation techniques
to securely serve them from within the Diggi trusted runtime.

Standard Library Support

Implementation Technique

pthread_mutex_init
pthread_mutex_lock
pthread_mutex_unlock
pthread_mutex_trylock

pthread_create

pthread_join
errno
sysconf

atomic compare and swap

atomic + yield to scheduler

atomic compare and swap

atomic compare and swap

atomic + yield to scheduler

atomic + yield to scheduler

set according to error

static value, SQLite3 only asks for pagesize

Table 7.3: Standard library additions and implementation techniques to support
SQLite3 in a Diggi trusted runtime.

7.4 [/ TRUSTED RUNTIME SYSTEM CALL TRANSLATION 113

3,5

N
N w

-
wv

\.‘\.1'\.'\'\
SRR
S,
S
S
S
S
Y
N

1 2 3 4 5 6

Concurrent threads

[EEY

K New Order Tx/min

o
&

W
}

o

Figure 7.8: Tx/m vs. concurrent dedicated threads to Diggi server instance.

cant variance in results across multiple runs. We report the performance as
new-order transactions committed per minute, as is common.

The cloud function implements SQL-query requests from clients and IO
operations exit-less and concurrently on a single physical thread. Because
TPC-C is dependent on runtime randomness and high-resolution timers, we
do not execute the TCP-C benchmark in trusted memory. However, we do not
expect this to significantly impact performance measurements; rather slightly
decrease the potential load put onto the OLTP cloud function.

Concurrency. SQLite3 implements concurrency via the pthread library, and
we demonstrate the multiprocessing performance by varying the physical
core count dedicated to the OLTP cloud function. The Diggi runtime pthread
implementation uses the trusted runtime task scheduler to distribute concurrent
operations across physical threads. If the pthread library expects more than
the cloud function is allotted, virtual threads are used instead.

Figure 7.8 illustrates new order transactions per minute as given by TPC-C
benchmark versus different core count allocated to the OLTP cloud function.
Our findings are in tune with the expected concurrency scaling, as write-
transactions in SQLite3 require exclusive database access. The best per-thread
performance is achieved using two dedicated hardware threads for each in-
stance. As the dedicated core count grows, Diggi delegates an increasing
amount of cores to the trusted runtime, leaving less resources for external mes-
saging and system call servers. The limited concurrency of the SQLite3 engine
decreases the utility of adding cores beyond 2. However, prior work [146] has
demonstrated that enabling Write Ahead Log (WAL) may improve performance
in SQLite3 by a factor of 28x.

The experiment additionally illuminates a curious result where the single

14 CHAPTER 7 / EVALUATION

core experiment is underperforming. This issue did not surface for in-memory
workloads, and we expect this hyper-linear vertical scalability to be attributed
to an increasingly hot filesystem or RAID controller cache. Additionally, the
raid controller may optimize reads/writes based on drive head position for
multiple simultaneous requests, beneficial for concurrent IO.

Runtime Overhead. Based on the prior experiment on concurrency, two ded-
icated cores achieved the best performance and we evaluate this configuration
of the OLTP cloud function against 7 other non-standard configurations, listed
here:

* Baseline, In-Memory: SQLite3 configured as in-memory executing on
two threads in regular process memory.

* Baseline, 1 thread, In-Memory: SQLite3 configured as in-memory exe-
cuting on a single thread in regular process memory.

* In-Memory, 1 thread (SGX): SQLite3 configured as in-memory executing
on a single thread in enclave mode.

* Baseline, Durable: SQLite3 configured as using the file system executing
on two threads in regular process memory.

* In-Memory (SGX): SQLite3 configured as in-memory executing on two
threads in enclave mode.

* Durable, No encryption (SGX): SQLite3 configured as using the file
system executing on two threads in enclave mode, without encryption
or integrity protection.

* Durable (SGX): SQLite3 configured as using the file system executing
on two threads in enclave mode.

* Ephemeral Storage: SQLite3 configured to store data in diggi ephemeral
object storage, on a single thread.

Based on initial experimentation, we observed that our setup was network
bound and favors Diggi by closing the performance gap, only resulting in a
2x decrease in performance compared to the In-Memory Baseline. To reduce
potential slowdown from networking and more precisely determine the runtime
overhead, we ran the experiment against TCP-C benchmark clients on the same
Diggi node. The overhead compared to the baseline is now measured as a
5x slowdown in performance, as seen in Figure 7.9. This is consistent with
observations made by comparable experiments in SCONE, with SQLite3 hosted
in Secure Containers [14].

We observe that the in-memory configurations are increasingly impacted by
lock contention, compared to the durable counterparts. The best in-memory
performance is achieved by using a single thread for both enclave and regular
process memory experiments. This is expected as SQLite3 implements strict
serializability for write transactions via mutex locks. For durable configurations,

7.4 [/ TRUSTED RUNTIME SYSTEM CALL TRANSLATION 15

60
50
£
£ 40
ﬁ w
S 30
S \
2
2 20 \
p4
10 \
0 N
Durable, Durable Baseline, In-Memory,In-Memory Baseline, Baseline, 1 Ephemeral
No (SGX) Durable 1thread (SGX) In-Memory thread, In- Storage
encryption (SGX) Memory
(SGX)

Figure 7.9: Tx/m for different configurations, load generated on the same host.

Diggi achieves higher performance with two threads both for regular process
memory and SGX, as the system is able to increasingly saturate blocking writes
via multiple virtual and physical threads.

We note the cost of Diggi is significant compared to configurations running
in untrusted memory. Performance of TPC-C is reduced by 40 percent with
IO encryption turned on, and running Diggi in memory within SGX without
any IO operations yields a significant improvement in performance over that
of durable. The peak memory consumption for all configurations except the
in-memory, never exceed 13Mb. Although the in-memory configuration exhibits
the best performance in isolation, it will impact the cold start performance, and
additionally, the memory access latency of cohosted cloud functions.

Lastly, we implement a dedicated runtime configuration which instead of
translators, use Diggi ephemeral object storage to persist SQLite3 data. The
experiment illustrates the performance of ephemeral storage compared to the
in-memory SGX configuration, where ephemeral storage results in a 67 percent
drop in new order transactions per minute. We chose a single warehouse
as the TPC-C configuration across all experiments to illustrate the best case
situation for in-memory configurations of an enclave database. Our preliminary
experiments on SGX memory performance suggests that the performance gap
between ephemeral storage and enclave in-memory execution will likely narrow
if executed against a larger database consisting of more warehouses.

We implemented Diggi to safely and efficiently enable co-location of multiple
mutually distrusting cloud functions on the same host, despite the performance
limitations introduced by Intel SGX. The in-memory SGX configuration will
increase deployment time, as demonstrated in Section 4.1.1. Additionally, it
exhausts all available PRM for a given host, which decrease the expected

16 CHAPTER 7 / EVALUATION

1

25 —— Concurrent Clients

T

20

T

=
(]

T

Latency (ms)

funy
o

TN T T T TN T N ST T TN T T ST TN S T T Y S S S|

T

 +—4—-r-r-—-+-+r+r—-r+t++—t+-—+tt+—-—tt—+

100 150 200 250 300 350 400 450 500 550 600 650
Total Operations/Sec

Figure 7.10: Average latency for cohosted instances vs. total throughput.

per-instance performance for cohosted OLTP cloud functions.

Cohosting OLTP cloud functions. Section 7.2 illustrate the optimal cohost-
ing potential for a simple cloud function, allowing us to scale to 24 cohosted
cloud functions without significant drop in latency. We repeat this experiment
with a more complex example; the previously detailed OLTP cloud function,
hosted via system call translations.

For all iterations of this experiment we dedicate two logical cores to the
untrusted runtime, one for managing system call servers and the other for
message scheduling. Each operation consists of a select query retrieving 100
rows from a single database table.

Figure 7.10 shows the throughput (total operations per second) over average
latency of requests as experienced by each cloud function. We observe that
scaling concurrent Diggi instances beyond 6 cores reduces the average through-
put by 30 percent while increasing latency by 50 percent. Each host CPU has
8 logical cores and Diggi is therefore no longer able to dedicate threads to
separate instances and must schedule multiple on each core. We observe that
allocating two cores to the runtime is sufficient for serving 6 simultaneous
OLTP cloud functions.

Similar to the previous experiments, over-provisioning concurrent instances
beyond the available cores has a negative effect on performance. System call
servers initially receive dedicated cores, however are assigned resources from
the same pool as cloud functions. Once the round robin process completes

7.5 / ACCOUNTABLE CLOUD FUNCTIONS 117

an assignment round, it will assign leftover requestors to already occupied
cores. For 7 concurrent OLTP cloud functions, one of them becomes colocated
with the system call server, causing a dip in total throughput, not observed in
previous cohosting experiments.

Without over-provisioning, we observe that cohosted Diggi instances are not
particularly impacted by one another. Performance is expected to deteriorate
further when the total memory consumption grows beyond the physically
allotted 128MB.

7.5 Accountable Cloud Functions

Section 4.4.1 details the design of accountable cloud functions which may
capture state mutations consistently, allowing an auditor to verify function
execution. Section 6.4 details the implementation of this concept into the Diggi
trusted runtime, consisting of two distinct modes to establish accountability; a
single dynamic attestation proof or a recorded log.

The former minimizes storage requirements by only storing a 32 byte value
representing the current mutated state. Given a deterministic cloud function,
this value will not change for repeated executions, and may be used in a
subsequent audit process to prove that the cloud function executed as expected.
However, to support non-determinstic cloud functions, only a full record of
the execution state may prove that the cloud function executed correctly. We
evaluate these two modes of accountability against a baseline to detect the
overhead of execution.

Additionally, a full record log requires us to replay execution on a reference
implementation. To determine the cost of replaying messages, we measure the
time taken to execute the same experiment by simply replaying the previously
recorded input operations onto the OLTP cloud function.

Any cloud function implemented in the Diggi runtime may be accountable
as all state mutations happen through message-passing, including system call
translators.

To demonstrate that a complex cloud function may be accountable, we use
the OLTP cloud function from the previous experiment and test against a
TPC-C transaction mix load. Our tamperproof log design stores the content
asynchronously into Diggi ephemeral storage, and the performance of the log
structure hinges on this runtime service being performant.

We test the total runtime for a preconfigured TPC-C test, configured to
generate 5 seconds of transactional load targeting the OLTP cloud function
before completing execution. In Figure 7.11 we observe that recording a full
log of state mutations decreases performance by 42 percent compared to the
baseline (No-Record). Recording only the dynamic attestation proof for each
message-exchange results in no performance degradation for this inherently

18 CHAPTER 7 / EVALUATION

12,0 +

10,0 +

8,0 +

6,0 +

Seconds

4,0 +

S
S
S
S

_

R

OLTP (Log Record) OLTP (Dynamic Log Replay No-Record
Attestation)

0,0

Figure 7.11: Execution time for 5 seconds of TPC-C transaction mix load, including
bootstrapping initial tables.

IO bound experiment. We suspect that a CPU bound experiment may yet illicit
a degradation in performance. Replaying the inbound messages for our OLTP
cloud function exhibits similar performance to that of the recording experiment.
We attribute most of the overhead to encrypting/decrypting ephemeral stor-
age objects. The replay experiment runs the OLTP cloud function in isolation,
committing inbound messages from ephemeral storage to the cloud function
in the exact order they were recorded. These messages replay both interaction
with the TCP-C loading function and the system call translations. Both replay
and record functionality in the Diggi trusted runtime is implemented asyn-
chronously to reduce the impact on cloud function execution. However, the
translator servers and ephemeral storage facility in untrusted memory share
logical cores, which may impact performance slightly. An experiment stressing
the CPU may achieve a different performance profile.

7.6 Use Case: A neural network image
classification pipeline

The cloud enables processing and inference at scale, not generally cost-effective
in on-premise systems. We demonstrate that Diggi is practical by developing
an end-to-end application mirroring a real-world use case. We implement a

7.6 / USE CASE: A NEURAL NETWORK IMAGE CLASSIFICATION PIPELINE 119

7’
1

Trusted
Principal Trusted

Training

root function

function

Loader Predict

function

Ingest raw
data

Storage
function

function

Implicitly trusted Shielded by diggi

Figure 7.12: A machine learning pipeline implemented as Diggi cloud functions,

shielded by the Diggi trusted runtime, deployed and authenticated by the
trusted root.

cloud inference pipeline for neural network classification of images where data
and computations are shielded from the untrusted cloud by the Diggi runtime.
The pipeline consists of 5 distinct stages implemented as Diggi cloud functions,
organized into a single attestation group as illustrated in Figure 7.12:

Loader function: Responsible for preparing and ingesting imagery data,
storing it in cloud storage. The loader is analogous to a sensory service,
delivering raw sensor data to the pipeline.

Trusted root function: The trusted root is, as detailed in Section 6.6,
responsible for initializing a secure and authenticated communication
channel between all parties in the group through co-attestation.
Training function: The trainer initializes the neural network, and streams
data from the storage function in batches, applying them to the network
for training.

Predict function: Once complete the neural network is serialized and
persisted to structured storage. The predict function is then able to
retrieve the trained model, and classify new incoming samples.

Storage function: A secure data repository for storing structured train-
ing/test data and the trained models.

Training, predict and storage functions are shielded by the Diggi trusted runtime
individually, enabling them to be hosted in a public cloud. Listing 7.13 depicts
the Diggi configuration used for this application pipeline.

120 CHAPTER 7 / EVALUATION

"Diggi—node—1": {
"network": "127.0.0.1:6000",
"funcs": {
"trusted_root_func": {

"trusted -root": "1",
"threads": "1",
"messageencryption":
¥
"mnist_loader_ func": {
"skip—attestation": "0",
"train —sample—count": "60000",
"test —sample—count": "10000",
"threads": "1",
"messageencryption":
"attestation —group":

||1H

nan
0 >

nqn
1 >

"train —image—path":
"train-label-path":

"test —image—path":

"train —images—idx3—ubyte",
"train—labels —idx1—-ubyte",
"tl10k—images—idx3—ubyte",

"test—label—path": "tl0k-labels—-idx1—-ubyte",
"load—-target—db—func": "sql_server_func"

I3

"enclave": {

"funcs": {

"structured_storage func":

"record—func": "0",
"skip—attestation":
"attestation —group":
"threads": "1",
"messageencryption": "1",
"syscall —interposition":
"fileencryption": "1",
"in—memory": "0"

b,
neural_network_train_func": {
"skip—attestation": "0",
"attestation —group": "1",
"threads": "1",
"messageencryption": "1",
"syscall —interposition":
"output—layers": "10",
"hidden—layers": "300",
"epochs": "30",
"learning-rate": "0.1",
"data—source": "sql _server_ func"

uou
>
Hln
>

Hln
>

Hon
>

}7
"neural network predict_func": {
"skip—attestation": "0",
"attestation —group": "1",
chreadsll_ "1"

. >
"messageencryption": "1",

"syscall —interposition": "0",
"data—source": "sql_server_ func"

Fryy

Figure 7.13: The Diggi configuration for a neural network training pipeline, consisting
of 5 components, implemented as Diggi persistent functions.

7.6 / USE CASE: A NEURAL NETWORK IMAGE CLASSIFICATION PIPELINE 121

0000006022 p000CY2 000
/A T D U Y 22 BV e U B B SV A
2d2LAIIP2FLA2L22D2A2LA
3333333%353333333
H¥ ¢4 44949 ¢#v4d4d 4 N4
55358535 SS 55958554579
b G 6 bGGbbbceéedédbtoolb
T 777770720 2%F7 77
¥ 3 v 88 PP T &L
?7199999%99%49944919 9

Figure 7.14: Sample hand written digits from the MNIST dataset.

We test our learning pipeline on a well documented pattern recognition
benchmark, the MNIST handwritten digit dataset[113]. This dataset consists
of grayscale 28 by 28 pixel images depicting handwritten digits between o
and 10, each pixel occupying a byte, with associated labels. This benchmark
is commonly used as a reference point for developing image classifiers, and a
sample collection of the image data is depicted in Figure 7.14. We chose this
set over a more contemporary dataset such as imagenet[50], mainly to reduce
scope and complexity.

We implement a 2-layer fully connected feed-forward neural network in
C++ where each neuron models the perceptron with a sigmoid activation
function[151]. The MNIST database partitions images and labels into a training
set of 60,000 and a test set of 10,000 images, and we adjust the networks
parameters based on the outcome of the training set. We set the learn rate
to 0.1, and settle on 29 epochs for training. Each pixel is mapped to an input
neuron, totaling 784, and a single hidden layer is set to 300 neurons. The output
layer is set to 10 neurons, one for each class. Aside from normalization, no
pre-prosessing, dimensional reduction or component analysis were performed
on the raw input dataset. Imagery data is retrieved from structured storage in
batches of 40 to reduce memory consumption. Initial observations show that
regardless of data transfer costs, neural network training dominates pipeline
execution time.

The choice of hidden layer neurons are based on the results reported in
[113], and we observe a similar loss rate to that reported in this publication
on testing; 5.5 percent loss rate on the test dataset at 29 epochs. However,
we observe the Mean Square Error (MSE) and training loss-ratio to be low,
suggesting potential overfitting.

To evaluate the overhead of executing compute heavy workloads in SGX, we
compare the overhead of executing our training function in SGX versus the

122 CHAPTER 7 / EVALUATION

equivalent in regular process memory. Figure 7.15 compares the training time
of each batch of imagery data in enclave-mode compared to an identical run in
regular process memory. Enclave-mode exhibits 2.4x the overhead of regular
process memory. A batch size of 40 images of 784 bytes ensures that all can
fit inside a single memory page, most likely cached. Results isolate compute
cost from memory achieving a higher comparative performance than other
workloads with more memory intensive operations.

100000 [51349us

R
R
Erse N\
EERA S
R
— - R
Ko et
oo o £
(@) i
.
— :
5 10 1
(8} :
] 2
(%] 4
i 3
i 4
EEE
0 - fosRaacesRased 1
e
R 4
pri
R
pr
Ry
e
R
e
i
e
iy
e
EERRRRENEERR
fsasii
R
e
....... R
O PR e \

Training (SGX) Prediction Training Prediction
(SGX) (DRAM) (DRAM)

Figure 7.15: The training and prediction overhead for a 2-layer fully connected feed-
forward perceptron neural network, in SGX and regular DRAM respec-
tively. Training is measured on a 784 x 40 batch matrix, with 40 samples.
Prediction is measured by classifying the digit of a single image.

7.7 / SUMMARY 123

0,048
0,30 0,042
0,25 0,036

% 0,20 0,030

; 0,15 0,024 €

8 0,018
0,10 0,012
0,05 P95 00000000000 000000000aa 0,006
0,00 8 0408080 d—0m0—0—0—0—0—0—0—G——e—m0—0—0—0——6— 0,000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Epochs

-o-Loss ratio -—MSE

Figure 7.16: Loss ratio on training data and the Mean Square Error(MSE) as epochs
progress.

This proof-of-concept implementation only uses a single hardware thread for
training. Work to distribute load across multiple threads and multiple nodes are
left to future work. Additionally, our neural network implementation uses no
specialized library for matrix operations, SIMD or vector instructions (although
AVX and SSE are available in SGX). We expect performance to improve given
the application of these optimizations. Neural networks, and more contem-
porary convolutional neural networks (deep learning) are better trained on
massively data-parallel hardware architectures, such as GPUs, TPUs or FPGA
layouts. However, classification is cheap and may be served in sGX without
significant impact to performance. In our example, the Loader function is
placed on an implicitly trusted system. Trusted edge-computing may comple-
ment this pipeline by implementing secure sensory collection in an untrusted
environment.

7.7 Summary

We demonstrate that our prototype implementation of Diggi is efficient, prac-
tical, and despite the overhead associated with encrypted block storage and
secure memory, support responsive applications. Although we only evaluate
Diggi on the Intel SGX TEE, comparable facilities for AMD and ARM exhibit
similar operational characteristics; we expect that our concepts and ideas may
also apply there.

The next chapter will discuss Diggi in context of concurrent and related work,
with particular focus on trusted distributed system. Lastly we will conclude the
thesis by discussing the observations made here and map our findings in search

124 CHAPTER 7 / EVALUATION

of answers to the research questions initially stated, and furthermore present
the next steps for future scientific work on the material presented.

Discussion

Distributed systems are favorable in situations which require scale, availability
and fault tolerance. However, these systems require bespoke design decisions
for security where distributing state implies distributing secrets to multiple
physical locations. Distribution increases the attack surface (TCB) of a software
system, and complex inter-process relationships may moreover lead to bugs
which are traditionally hard to discover.

Diggi is designed and implemented to enable the development of secure
distributed services hosted in a untrusted public cloud. The work presented in
this thesis is in part influenced by, and topically situated, among a tapestry of
related research. This chapter presents a selection of the most relevant concepts
and systems which protect hosted applications from an untrusted underlying
system.

8.1 Mitigating and improving SGX-based systems

Native code executing in enclave memory is exposed to bugs or exploits which
trigger data-leaks to the writable host process’ memory address space. Systems
which instrument memory references [137] or implement memory safety as
part of a natively compiled language [183] are able to protect against ROP-style
attacks or stray pointers triggering unsolicited writes to untrusted memory.
Similarly, Kuvaiskii et al. [110] implement memory safety in SGX using tagged
memory pointers, which hide allocation metadata in the unused upper 32 bits
of each enclave memory reference.

125

126 CHAPTER 8 / DISCUSSION

Diggi supports legacy systems, by exposing a translator server abstraction
to simplify partitioning and porting existing systems into SGX. Similar efforts
simplify development by integrating enclave components as a programming
language extensions which minimize the porting work necessary to partition
applications into trusted and untrusted components [61].

Orenbach et al. [136] conceal the controlled side-channel in the SGX memory
model by proposing a set of modifications to the SGX ISA which gives an enclave
exclusive control over its own page faults.

Rollback attacks may return an application to a known good prior authentic
state in non-ideempotent systems triggering behaviour such as double spending.
Forking attacks are implemented by selectively rolling back state to different
clients for a given application. Diggi solves this problem by implementing
accountable cloud functions, where the burden of a provable interaction is
on the cloud function to submit evidence back to the client. Brandenburger
et al. [26] introduce Lightweight Collective Memory, a distributed protocol to
detect integrity and consistency violations among multiple participating system
clients, for operations with side-effects.

Diggi is built from the ground up to be efficient, adhering to the performance
principles outlined in Section 4.2. A large part of this work, revolves around
managing enclave memory usage and context switch frequency. The memory
integrity protection features for SGX incurs a significant overhead and Taassori
et al. [171] addresses the overhead by simulating an alternative organization
of the EPC into a variable arity unified tree (VAULT). Similar to our findings,
Weisse et al. [190] realize that context switches are expensive and implement
HotCalls. Through a spin-lock based mechanism, dedicated threads within and
outside are able to conduct system calls in synchrony, exhibiting close to native
performance.

Cloud services require elasticity to be efficient, and migrating runtimes is
therefore a requirement for capacity management. As discussed in Chapter 3,
SGX enclaves use ephemeral keys to encrypt both memory and sealed state,
uniquely tied to the hardware platform instance. Additionally, migration of
trusted enclaves is susceptible to fork and rollback attacks by the untrusted
cloud. Gu et al. [76] propose a secure protocol for live migration of SGX
enclaves. Alder et al. [6] extend this, by also supporting architectural services
such as monotonic counters and sealed data.

Intel SGX is an inherently proprietary system, several aspects of which are
confidential. Systems which interact with IAS to attest production enclave
signatures are required to be explicitly onboarded onto the SGX ecosystem.
Although Intel supports developer provisioned attestation keys, the process still
involves approval, and the reliance on, proprietary undocumented technology.
Chen et al. [39] propose OPERA, an open SGX attestation service decoupled
from Intels IAS. OPERA is a standalone, open source attestation service pro-
viding the same privacy-preserving and verifiable properties as IAS, without
relying on a single point of failure.

8.2 / FORMAL METHODS, VERIFIABLE EXECUTION AND POLICY ENFORCEMENTI27

Costan and Devadas [46] conduct a comprehensive security analysis of
SGX, falsifying some of its guarantees by explaining in detail exploitable
vulnerabilities within the architecture. These lead the authors to implement
Sanctum [47], an alternative hardware architectural extension providing many
of the same properties as SGX, but targeted towards the Rocket RISC-V chip
architecture.

8.2 Formal Methods, Verifiable Execution and
Policy Enforcement

As described above, despite the benefit of trusted execution, bugs, misconfig-
urations or system level attacks such as rollback or denial of service, require
additional measures to protect from an untrusted environment.

Moat [166] is a tool which utilizes formal verification to ensure the confiden-
tiality of code executing within enclaves. Based on precise adversarial models
and formal specification of SGX system properties, Moat uses information flow
analysis and automatic theorem evaluation to prove the confidentiality of
trusted execution.

Subramanyan et al. [169] introduce the concept of a trusted abstract platform
(TAP); a formal description of an ideal enclave system with a parametrizable
adversarial model. TAP presents machine checkable proofs showing that the
platform is confidential, integrity preserving and provides secure remote attes-
tation. Moreover, the authors additionally demonstrate how existing enclave
systems such as SGX and Sanctum implement secure enclaves under the re-
spective adversarial models.

Ferraiuolo et al. [57] acknowledge the extreme complexity of the SGX mi-
croarchitecture and its limited potential to mitigate design flaws and bugs.
Komodo decouples trusted hardware and securely hosted software through
a privileged software monitor. The correctness and security properties are
similarly machine-checkable through formalized proofs.

Delegated enforcement through trustable software constructs, mediates both
access latency for policy verification, and increases the potential richness of
remotely enforceable policies. Birrell et al. [25] evaluate multiple architectural
designs for implementing use-based policy enforcement using Intel SGX. Soft-
ware attestation enables reference monitor designs outsourcing enforcement
traditionally only executed at source. By moving logic closer to data via at-
tested enclaves, the overhead of policy enforcement is reduced. This work is
implemented on an early version of Diggi. Krahn et al. [106] recognize a similar
opportunity, and enable rich policy enforcement on storage separate from the
I/0 stack by using sGX. Policy Enhanced Secure Object Store (PESOS) may
host policy compliant data on untrusted systems. Matetic et al. [121] introduce

128 CHAPTER 8 / DISCUSSION

brokered delegation, which allow flexible delegation of credential and access
rights to third party systems, protected by TEEs. Djoko et al. [53] use SGX to
implement credential based access controll of storage resources protected by
SGX. Nexus avoids expensive re-encryption of storage as all access to physical
volumes occur through enclaves.

PeerReview [79] implements accountability in distributed systems, where
Byzantine failures are detectable and linked to faults. Moreover, a correct node
may prove itself against false accusations. PeerReview implements support for
these properties through a secure log of all messages transmitted by each node
in the system. PeerReview requires a correct node to be deterministic, sign
messages and periodically audit the system. SGX-Log [101] implements tamper-
proof and encrypted storage of system logs for use in an audit procedure, such
as forensic analysis. Similarly, CUSTOS [139] is a framework implementing
tamper evident audit procedures of Operating Systems using TEEs. CUSTOS
additionally implements a decentralized audit protocol, capable of real-time
detection of integrity violations. This approach bares similarity to Lightweight
Collective Memory [26], discussed in the previous section. LibSeal [15] im-
plements a non-repudable service log which is able to arbit claims for SLA
violations between a service provider and clients, through TEEs. LibSeal in-
terposes a TLS library mediating all network access, logging all interaction to
sealed storage.

8.3 Secure Analytics and Storage systems

Securing data processing pipelines and storage from an untrusted cloud is
made possible through progress in hardware design, encryption techniques
and algorithm research. For SGX specifically, hosting large volumes of data in
enclave memory is infeasible due to the expected overhead. Data replay attacks
may attempt to repeat stale information to hosted enclaves. Additionally, data-
dependent operations on sensitive data will inherently leak information to the
untrusted system.

EnclaveDB [145] partitions the Microsoft Hekaton in-memory SQL Server
by moving parts of the query processing into trusted memory. EnclaveDB
mitigates replay attacks by reusing transaction identifiers as nonces. The in-
memory Hekaton engine stores all memory slabs in PRM and is, due to memory
restrictions in current SGX hardware, only evaluated at scale on a simulated test
bench by injecting speculative performance penalty timings into the executable
binary. EnclaveDB briefly mentions hosting mutually distrusting database in-
stances within the Hekaton engine, however does not describe the concept
further. TrustedDB [19] and Cipherbase [12] support queries on encrypted data
using trusted hardware, however does not provide complete confidentiality
or integrity protection. Furthermore, the two are limited to custom hardware

8.3 / SECURE ANALYTICS AND STORAGE SYSTEMS 129

co-processors, not generally available on commodity platforms. Sartakov et
al. [154] implement a secure rack-scale in-memory database using SGX and
SQLite. Similarly to Diggi ephemeral storage, STANLite uses user-level paging
to efficiently use regular DRAM for data storage rather than the restrictive pool
of EPC. Additionally, STANLite uses Remote Direct Memory Access (RDMA) to
distribute storage across a rack of SGX capable systems. Weiser and Werner
[189] proposes a generic I/0 architecture for creating trusted paths connecting
generic peripheral devices securely to enclave software, without inspection
from the hypervisor or host Os.

More complex processing and lookup techniques require additional care to
not expose data-dependent operations to the host system. ObliDB [56] imple-
ments generic analytical query processing for SGX-capable DBMSs, protecting
execution from data-dependent processing. Similarly, Oblix [127] implements
an oblivious search index structure for protecting server index operations and re-
sponses from clients by doubly-oblivious data-structures. These data-structures
protect both client interrogation and server interrogation from inferring data-
dependent access patterns. X-Search [129] implements a private search engine
proxy, hosted in an software attested enclave. Queries are obfuscated via a
novel algorithm which packs k random past queriers, ORs them together, be-
fore submitting them to the search engine endpoint. Pires et al. [142] similarly
solves private web-search through a SGx-based client browser extension.

Ahmad et al. [3] implement a data oblivious filesystem by filtering read
and write operations to the host system through an ORAM protocol. A similar
approach may be implemented to shield against data-dependent access for
select system call translations and ephemeral storage in Diggi.

Similarly to storage, analysis of data may also expose information through
data-dependent processing. VC3 Schuster et al. [157] introduce a distributed
map-reduce system for trusted analytics in the cloud using SGX. VC3 runs on
unmodified Hadoop, however ensures that it, the operating system and hyper-
visor is held outside of the TCB. Zheng et al. [195] implement a distributed
oblivious analytics platform based on Apache Spark SQL. Opaque uses SGX
as an optimized memory cache to speed up oblivious memory operations. A
trade-of between generic implementation and performance leads Opaque to
implement oblivious relational queries through modifications to the Catalyst
query optimizer. Several distributed oblivious relational operations are pro-
posed, solving a broad category of filtering and data aggregation tasks.

Ohrimenko et al. [132] implement secure multi-party machine learning.
By storing datasets in enclaves, two untrusted parties may share data for
a joint machine learning task without sharing source data. Trained models
may then be downloaded for use into SGX enclaves. To avoid side-channels
they introduce data obliviousness which constructs data independent machine
learning algorithms for SVM, matrix factorization, neural networks, decision
trees and k-means clustering. We consider this work complementary to Diggi,
and other prior work have demonstrated the practical application of effective

130 CHAPTER 8 / DISCUSSION

general countermeasures against memory dependent side-channel attacks[164].
This work does not detail the differential privacy concerns of the joint trained
model nor the revocation procedure for guaranteed erasure once learning is
complete. Kiiciik et al. [109] apply this concept similarly by utilizing SGX to
solve privacy preserving multi-party energy metering.

Statistical inference on sensitive datasets will inherently contain traces of the
original data. Differential privacy is therefore very hard to ensure in trained
models. Each query towards a private model will leak some small delta of
information. Song et al. [167] evaluate the concept of "memorizing" a trained
model, through blackbox access, and demonstrate that the resulting model can
again demonstrate high predictive power. Mo et al. [128] similarly recognize
this problem and evaluate a framework for protecting the privacy of trained
Deep Neural Network (DNN)-models on TrustZone-capable edge devices.

8.4 Trusted runtimes in TEEs

The Diggi trusted runtime is designed from the ground up to support efficient
execution of cloud functions in SGX with a small TCB. Additionally, Diggi
implements support for legacy features by allowing selective implementation
of external system translators. Table 8.1 compares the TCB of Diggi as measured
by sLOC! to that of noteworthy similar trusted runtimes in SGX.

Baumann et al. [22] were the first to explore legacy applications executing
inside sGX. By modifying a library OS implementation of Windows 8 [144],
Haven is able to host unmodified applications entirely inside an SGX enclave.
The Haven TCB comprises some 5 million SLOC executing inside the enclave,
exposing a considerable attack surface. Haven implements block encryption
of IO, and stores nonces for replay protection separately, using Merkle-trees
for integrity-protection of data. This work predates the general availability of
SGX and all experimental evaluations are therefore conducted on a proprietary
emulator provided by Intel.

Ryoan [85] implements a distributed sandbox facilitating untrusted comput-
ing on secret data residing on third-party cloud services. Ryoan proposes a
new request oriented data-model where processing modules are activated once
without persisting data input to them. Ryoan creates a shielding construct
supporting mutual distrust between the application and the infrastructure
by combining sandboxing techniques with SGX. Through remote attestation,
Ryoan is able to verify the integrity of sandbox instances and protect exe-
cution. As Haven, Ryoan predates availability of SGX, and large parts of its
evaluation is conducted in an SGX emulator based on QEMU. A similar effort
by Goltzsche et al. [69] implements this concept in a 2-way sandbox to solve

1. https://dwheeler.com/sloccount/

8.4 / TRUSTED RUNTIMES IN TEES 131

resource accounting between two mutually distrusting parties.

Arnautov et al. [14] design a SGX-capable container runtime by investigating
the tradeoff between multiple designs supporting the execution of unmodified
legacy applications inside of SGX. Three different design configurations for
the partitioning of the application stack between the trusted and untrusted
environment are evaluated; a library 0sS, a standard application library, and
a minimal stub interface. Each choice holds several performance and security
tradeoffs. More importantly, this work demonstrates the performance gain
of implementing exit-less user-level threading and system calls, an approach
which has inspired the design of Diggi. Vaucher et al. [181] further expand
on SGX-capable containers and describe the design and implementation of
support inside the Kubernetes container orchestrator.

Tsai et al. [177] implement support for unmodified applications executing in
SGX by modifying the Graphene library 0s [176]. This work includes support
for multiprocessing applications using system features such as process fork
and I1PC. Eleos [138] improve upon this work to implement exit-less system
call operations and enclave controlled virtual memory management. This does
however require some modifications to existing applications as Eleos uses
software address translation via a C++ template pointer class for memory
references.

Tian et al. [173] implement a custom library OS kernel similar to Haven and
Graphene. SGXKernel uses techniques for asynchronous system calls adopted
from the work in SCONE. The authors argue that enclave managed system calls
replicate functionality present in commodity operating systems and advocate
only presenting a minimal stub interface to enclave-hosted legacy applications.
SGXKernel reports that its secure runtime comprises only 7K lines of code
excluding the 80K MUSL standard library. However, this work does not describe
how and if system-call integrity is preserved via encryption or replay prevention.
Due to these shortcomings, we do not list them as a viable candidate for
comparison in Table 8.1, as the threat model is potentially different.

Lind et al. [116] implement automatic application partitioning using static
data-flow analysis based on developer annotated source code. Sensitive com-
ponents are automatically placed inside the enclave, and transitions are signed
and encrypted. Analysis may move components into enclaves given evidence
of a potential performance improvement, however does not implement any
optimizations i.e. exit-less operations. Glamdring has a much lower TCB than
comparative solutions.

Panoply [165] focuses on reducing of TCB rather than performance, and much
like SCONE, Haven, and Graphene, enables execution of unmodified application
binaries. Panoply uses a minimal shim for trusted mediation of system services
implementing explicit enclave exit operations. Panoply does not implement IO
encryption nor detail how replay attacks may be prevented.

Goltzsche et al. [71] implement trusted execution of JavaScript through
TrustJS. TrustJS may be integrated into a commodity browser, providing servers

132 CHAPTER 8 / DISCUSSION

Secure runtime Haven Panoply Graphene SCONE Google V8 Ductape Diggi
SLOC 5 000K 20K 53K 97K 17 000K 185K 18K

Table 8.1: The SLOC of Diggi compared with similar work implementing secure run-
times in SGX. SLOC is a commonly used metric to measure the TCB of a
software system, indicating the implementation complexity and the circum-
ference of assumed trust. Measurements for SCONE, Graphene, Panoply,
Ducktape and Diggi exclude the Intel provided SGX SDK code as well as
stock implementations of standard libraries (glibc/musl). Depending on
use, we expect this to add roughly 100K SLOC. As an exception, Haven
depends on the Drawbridge library OS, and is likely not using gLibc.

with an attested client-side component for storing/processing.

8.5 Distributed Systems and Coordination

Remote attestation of processes simplify fault tolerance and distributed con-
sensus, by assuming that coordinated entities are benign once attested.

Behl et al. [23] present a hybrid state-machine replication protocol which
uses a trusted subsystem to assume a crash-stop fault model. This reduces the
overhead of solving Byzantine Fault Tolerance (BFT) in scalable distributed
systems. Li et al. [115] enable the creation of decoupled BFT clients through
trusted proxies situated on the server. Clients may transparently access a BFT
system through the proxy, where traditional client code is executed on the
server side. The benefit of this is easy upgradable consensus protocols, where
clients are able to access replicas regardless of protocol version. Bloxy [152]
expands on this concept and applies them to blockchain protocols.

Teechain [117] implements efficient off-blockchain transactions using TEEs
as a secure treasury for handling payment and settlement off-blockchain.
Treasuries are replicated in a committee and vote on settlements onto the
blockchain, asynchronously from the side-chain.

Lightweight client verification of blockchain payments may leak information
about the client transactions. Matetic et al. [120] leverage TEEs to protect
full node verification on behalf of a lightweight client, while also addressing
inherent side-channels exposed by the protocol.

Kim et al. [102] describe how the security and privacy of Tor anonymous
routing network can be enhanced by using TEEs. SGX-Tor reduces the possi-
bility for an adversary to inspect or modify the software state of a Tor node.
Additionally, the reduced trust model increases the potential to scale the Tor
network without implicitly trusting nodes.

Zhang et al. [194] introduce an authenticated data feed, Town Crier, to
consume trusted data sources in execution of autonomous smart contracts on
blockchains. TC acts as a mediation layer and backend store, between a smart

8.5 / DISTRIBUTED SYSTEMS AND COORDINATION 133

contract provider blockchain, and existing HTTPS enabled websites.

Brenner et al. [31] implement SecureKeeper, a secure Zookeeper variant in
SGX, which preserve the confidentiality and integrity of potentially sensitive
cloud configuration data.

In-network computing is proliferating in cloud infrastructures due to the
influx of capable routing hardware. Software Defined Networking (SDN) and
Network Function Virtualization (NFV) enable flexible backbone architectures,
but inspecting real-time traffic to make smart routing decisions comes at the
risk of privacy. Diggi shares some architectural traits with other persistent
distributed secure constructs such as network functions (NF). Poddar et al.
[143] use trusted hardware(SGX) to implement shielded NFs which only expose
encrypted traffic to the cloud provider and preserves the integrity of NFs.
Trach et al. [175] implement a similar concept through Secure Middleboxes
and Goltzsche et al. [70] propose outsourcing Middleboxes to network clients
through trusted computing.

Google Asylo2 and the Open Enclave Project?® implement trusted open source
frameworks for developing distributed TEE applications, decoupled from the
hardware mechanisms implementing shielded execution.

Brenner and Kapitza [30] implement a secure runtime for JavaScript FaaS
hosting, based on the minimal footprint Ducktape JavaScript engine, compris-
ing an order of magnitude more code than Diggi. They also evaluate the Google
V8 engine, which comprises some 17 million lines of code. Both use webpack to
allow dependency bundling of legacy applications by downloading all depen-
dent JavaScript code from the web. Code is read from untrusted storage into
the secure context, leaving the system susceptible to malicious code execution.
The benefit of measuring the initial enclave state using this approach is also
greatly reduced as enclaves are generic interpreters/runtimes which allow ar-
bitrary code to be executed without evidence in the initial attestation process.
Moreover, all cohosted functions share a single secure runtime environment,
and although interpreted, are subject to bugs which may cause information
leakage. For compatibility reasons, the Google V8 engine further requires all
enclave pages marked as writable, which reduces robustness in the presence
of bugs. Qiang et al. [147] implement a secure serverless runtime built on top
of the OpenLambda project, however, functions in OpenLambda are similarly
implemented in JavaScript and the runtime requires a significant amount of
code executing within the secure TEE context.

Trach et al. [174] mediate cold-start latencies in an SGX-based Faas by
using the second generation of SGX capable hardware, introduced in desktop
CPUs along with the 2019 Ice Lake generation of Intels Core architecture. By
using the new dynamic memory allocation feature [125], enclaves are able to
load and unload EPC pages on demand and in batches. Pages are loaded upon

2. https://github.com/google/asylo
3. https://openenclave.io/

134 CHAPTER 8 / DISCUSSION

access, reducing the startup-time for each function significantly. Similarly to
Diggi, Clemmy implements a novel messaging format for ensuring confidential
and integrity preserving communication across multiple functions. Clemmy
is implemented as a modification to the ApacheWhisk open source Faas
framework, using the SCONE POSIX runtime described above, where SGX
based functions are implemented on top of a Python interpreter. Additionally,
Clemmy is able to verify execution order among multiple functions. Diggi is
similarly able to verify function execution order, and unlike Clemmy, function
internal execution ordering by message logging.

EActors [155] implements a related persistent distributed trusted comput-
ing paradigm. Similar to Diggi, the EActors framework creates a simplified
concurrent abstraction for composing applications consisting of multiple en-
claves together. EActors are similarly focused on asynchrony (non-blocking)
execution, a small memory footprint, and a low TCB.

8.6 Summary

Our thesis is situated among a massive corpus of similar research into trusted
computing in an untrusted cloud. Concurrent efforts have inspired and vali-
dated our work, and additionally pinpoints the unique concepts and contribu-
tions which separate Diggi from the rest.

Several works implement trusted efficient runtimes, and some even in the
context of serverless systems. However, to the best of the authors knowledge,
Diggi is the only trusted serverless runtime supporting asynchronous flow-based
persistent cloud functions.

Techniques for optimization such as exit-less communication and memory
offloading via ephemeral storage are concepts which several related works use.
Systems for logging state mutations for verifiability have been implemented in
several domains, both for accountability and debugging. Trusted systems use
hardware support to create tamperproof logging of system metadata for use
in forensics. Diggi is, to the best of the authors knowledge, the only generic
POSIX-enabled trusted runtime capable of accountable execution using log
record and replay.

The next chapter will conclude this thesis answering our initial conjecture,
and additionally, highlight opportunities for further research in the context of

Diggi.

Concluding Remarks

This thesis presents Diggi; a trusted runtime system for implementing secure
accountable serverless applications on top of an inherently untrusted public
cloud. Our initial thesis aims to test the following conjecture:

TEESs can be leveraged to build a secure and efficient serverless
application runtime for trusted computing in a public cloud.

The security model presented in Section 3.1.1, the opportunities and chal-
lenges for serverless systems presented in 2.5, and the performance principles
derived in Section 4.2 resulted in a set of requirements for the design of a
trusted efficient and accountable serverless runtime. Based on these require-
ments, we subsequently design, implement and evaluate a prototype of the
Diggi runtime.

We conclude this thesis by discussing the experimental results from the
previous section and seek to answer the research questions stated conforming
to the design requirements and our initial conjecture. Additionally, we address
some of the limitations of Diggi and opportunities for further research.

9.1 Conclusion

In the previous chapter we initially stated four research questions which our
experimental evaluation seeks to answer. Moreover, the design and implemen-

135

136 CHAPTER 9 / CONCLUDING REMARKS

tation of Diggi is based on a set of functional and non-functional requirements
stated in section 4.3.

We first list each research question individually and argue that the evaluation
has provided sufficient evidence to corroborate an affirmative answer.

Research Question 1: Section 7.4.1 illustrates the ability for the Diggi run-
time implementation to host legacy libraries without modification in the trusted
runtime. Applications must implement translators of system interaction befit-
ting their application, and we demonstrate that doing so for an example library
illustrating that a high degree of system interaction is plausible and practical.
Additionally, Section 7.6 illustrates an end-to-end use case demonstrating that
rich applications may be securely developed on top of the Diggi runtime. The
MNIST handwritten digit dataset illustrates a real-world use case implementing
secure and trusted distributed inference pipeline on an untrusted underlying
infrastructure.

Research Question 2: All experiments compare the result of Diggi perfor-
mance against a baseline. Communication overhead adds 9 percent latency
overhead compared to the iperf baseline. System call translations add between
5-10x of overhead compared to direct interaction with the system call inter-
face, and message logging adds 42 percent to benchmark runtime to achieve
accountable cloud functions. The relative overhead of Diggi is in tune with
similar work [14], and the MINIST dataset and TPC-C benchmark demonstrate
the application of pseudo-real workloads. Regardless of these results, any ap-
plied use of Diggi should carefully analyze the tradeoff between security and
performance.

Research Question 3: Section 7.2 demonstrates the potential for cohosting
mutually distrusting could functions in distinct enclaves. Despite multiplexing
physical hardware resources, 24 echo server cloud functions are able to commu-
nicate across the network before the load function experiences any significant
latency overhead. Section 7.2.1 demonstrates that the responsiveness of deploy-
ing cloud function as the number of concurrent functions increase, achieves
an acceptable average latency of 150 ms for 100 cohosted cloud functions.
The echo function demonstrates the simplest logic for a Diggi cloud function,
consuming roughly 2.2MB of memory. Ephemeral storage ensures that this
figure does not grow significantly nor impact the cohosting potential. Each
cloud function may explicitly manage application state securely in untrusted
memory.

Research Question 4: Section 7.5 demonstrates the overhead of recording
all state mutations for a cloud function into a tamperproof encrypted message
log. Compared to the baseline, the impact on performance is significant. Al-

9.1 / CONCLUSION 137

ternatively, the cloud function may store a dynamic proof of execution, which
does not impact performance significantly. However, the persisted evidence
may then only be used to verify deterministic cloud functions.

Non-Functional Requirements Additionally, the experiments demonstrate
that the following non-functional requirements are met:

* Practicality: We demonstrate that existing systems and full-fledged dis-
tributed serverless applications are hostable in Diggi.

* Granularity: Composite applications may define the appropriate dis-
tributed security context through attestation groups.

* Efficiency: Exit-less system call translations demonstrate an increase
in performance compared to conventional ocalls. Moreover, reduced
memory consumption through Diggi ephemeral storage increases the
cohosting potential.

* Reducing Trust: Bespoke system interaction through explicitly imple-
mented translator/server pairs reduces the need for broadly implemented
system compatibility which would increase the attack surface and TCB.

Functional Requirements Argumentatively, the design and implementation
of Diggi satisfies the following functional requirements:

* Shielded: Intel SGX is used to develop a confidential and integrity pro-
tected runtime capable of hosting trusted computations and data in an
untrusted environment. The Diggi runtime and ephemeral storage ex-
tends the SGX security model to implement shielded data storage without
impacting cohosting potential.

* Authentication: Collections of Diggi cloud functions may be jointly au-
thenticated and identified through software attestation. We extend the
Intel provided software attestation protocol for multiparty attestation,
to support attestation groups.

* Revocation: All information in the Diggi runtime, including storage,
is encrypted using ephemeral keys derived from the sGX platform. In
the presence of hardware failure, these keys are discarded by the SGX
implementation, rendering persisted state useless. Additionally, given a
known attested trusted runtime, we may remotely attest the ability for the
system to use these ephemeral keys correctly and guarantee revocation.

* Accountability: By recording all inbound and outbound messages we
capture the set of state mutations which define a given cloud function
execution. All interactions with the external system, including temporal
or random events are recorded through the message interface. A refer-
ence implementation is able to decrypt and replay the interactions, and
verifiably decide if the cloud function executed correctly.

138 CHAPTER 9 / CONCLUDING REMARKS

* Persistence: Streaming services and reactive real-time analytics process-
ing services are examples of a class of systems which require a weaker
form of persist-able state; defined as ephemeral state. Diggi ephemeral
storage, together with persistent message endpoints which enable re-
peated interaction between unique cloud function instances, implement
persistent cloud functions.

We conclude that the initial thesis conjecture may be confirmed, based on
the outcome of the experimental evaluation and satisfaction of the functional
and non-functional requirements.

TEEs may be leveraged to build a secure and efficient serverless applica-
tion runtime for trusted computing in a public cloud.

Through the Diggi runtime, applications are protected from a potentially
malicious service environment, all while maintaining acceptable performance.
Additionally, distributed applications may identify themselves remotely through
software co-attestation, and be held accountable through verifiable execution.
The code implementing the Diggi prototype runtime is available as open source
on GitHub!.

9.2 Future Work

Serverless computing is at its core defined by precision in attribution, holding
a linear relationship between consumption and cost. Attribution of usage in a
cloud-driven revenue model, requires precisely measuring resource units. Diggi
implements system services, such as memory, storage and compute through
message-passing, meaning attribution of cost may be bound to delivery of
messages to the cloud function rather than a binary metric.

Host infrastructure may differentiate usage based on the resource consumed,
scaling out hardware components individually similar to Kvalnes et al. [111]. For
persistent cloud functions, attributing cost per invocation will underestimate
computational expenses, because of the potential longevity. Multiple models
for logging attribution require joint trust in the surrounding system. Intuitively,
it is the cloud providers responsibility to correctly attribute cost. The consumer
must then trust that resource usage is not over-stipulated. Inversely, if the
consumer is responsible for measurement, more granularity may be possible by
subdividing recorded consumption, shielded from the untrusted cloud provider.
An attribution arbiter, which both cloud and consumer agree is trustworthy by
attestation, may act on behalf of both to record usage correctly. This concept
is similar to the work presented by Goltzsche et al. [69].

Diggi implements a runtime prototype component of a traditional serverless

1. github.com/andersgjerdrum/diggi

9.2 / FUTURE WORK 139

system. A fully realized persistent cloud function framework requires managing
non-idempotency in execution. Conventional systems use reliable message
queues to implement at-least-once semantics, however Diggi persistent cloud
functions may have side-effects which require exactly-once execution.

Since the work on this thesis began, Intel has released a modified remote attes-
tation service, enabling developer provided attestation evidence. Additionally,
Open Enclaves attempt to create an open standard for enclave development
creating a hardware agnostic platform for developing trusted applications.
Moreover, cloud providers are beginning to support several types of trusted
computing services [9o]. Future work for Diggi involves supporting multiple
types of trusted hardware, decoupling the dependency on a particular TEE
and associated attestation services.

Diggi ephemeral storage is built on the realization that memory management
in SGX is costly. With the release of dynamic memory management for SGXV2,
enclaves may scale memory usage beyond the initial reserved. We still expect
an overhead associated with enclave memory operations, however the impact
brought on by this new memory model is unknown. Additionally, enclaves which
are able to add EPC pages at runtime must be accounted for in a revisited state
mutation recorder.

In the event of an audit, accountable cloud functions provide evidence to
the auditor, which replays the account against a reference implementation.
However, this does not solve non-repudiation in the event of an unavailable
system. Future work should explore how non-repudiation can be achieved by
logging results to a BFT ledger.

Operating systems, firmware, and all multi-user software such as databases,
web-servers and message queues are subject to interference by the host system.
Both software and hardware construct share caches, registries, pipelines, ALU
and peripheral storage bus interfaces, to name a few. Hunt et al. [84] discuss
the challenges of a shared system architecture in pursuit of performance versus
non-interference. Future work should investigate a reference design for solving
trusted shared-nothing runtimes in an untrusted cloud.

For resource isolation, modern operating systems are capable of isolating
resources with high precision using features such as ¢ groups or process groups,
additionally used in container technology. In its current form, Diggi is unable to
implement fairness among multiple cohosted cloud functions once threading
resources are oversubscribed. An architecture which allow enclave-managed
interrupt processing may enable fair scheduling of resources among mutually
distrusting participants.

Application-Specific Integrated Circuits (ASICs) such as GPU, TPU and FPGAs
demonstrate a considerable advantages for highly data-parallel workloads such
as convolutional neural networks, compared to conventional CPU architectures
(SISD). A high-performance data-parallel trusted processing system should
investigate how to protect analysis of data by multiple mutually distrusting
applications on shared Asic-hardware.

140 CHAPTER 9 / CONCLUDING REMARKS

The diggi serverless runtime is realized through a limited prototype imple-
mentation which demonstrate selective applicability for hosting sensitive data
in an untrusted cloud. Future research should evaluate the broader applicability
of Diggi for developing trusted distributed systems.

Bibliography

[1] AES-CBC + Elephant diffuser A Disk Encryption Algorithm for Windows

[2]

[3]

[4]

[5]

(6]

[7]

(8]

[9]

Vista. https://download.microsoft.com/download/0/2/3/0238acaf-
d3bf - 4a6d - b3d6 - 0aObe4bbb36e / BitLockerCipher200608 . pdf. Ac-
cessed: 2020-04-29.

Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori,
Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. “Firecracker:
Lightweight Virtualization for Serverless Applications.” In: 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20). 2020, PP. 419-434.

Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and
Byoungyoung Lee. “OBLIVIATE: A Data Oblivious Filesystem for Intel
SGX.” In: Proceedings of the Symposium on Network and Distributed
System Security (NDSS). NDSS, 2018.

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. “SAND: Towards
High-Performance Serverless Computing.” In: 2018 USENIX Annual
Technical Conference (USENIX ATC 18). USENIX, 2018, pp. 923-935.
Allan J. Albrecht and John E Gaffney. “Software function, source lines of
code, and development effort prediction: a software science validation.”
In: 6. IEEE, 1983, pp. 639-648.

Fritz Alder, Arseny Kurnikov, Andrew Paverd, and N Asokan. “Migrating
SGX enclaves with persistent state.” In: 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2018, pp. 195—-206.

Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk,
Mooly Sagiv, Thomas Schmitz, and Keith Winstein. “Secure serverless
computing using dynamic information flow control.” In: 2018.
Lorenzo Alvisi and Keith Marzullo. “Message logging: Pessimistic, op-
timistic, causal, and optimal.” In: vol. 24. 2. IEEE, 1998, pp. 149-159.
Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. “Inno-
vative technology for CPU based attestation and sealing.” In: Proceed-
ings of the 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy. Vol. 13. ACM, 2013.

141

https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/BitLockerCipher200608.pdf
https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/BitLockerCipher200608.pdf

142

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter.
“Sprocket: A serverless video processing framework.” In: Proceedings
of the ACM Symposium on Cloud Computing. ACM, 2018, pp. 263-274.
Apache Thrift. https://thrift.apache.org. Accessed: 2020-06-17.
Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Koss-
mann, Ravishankar Ramamurthy, and Ramarathnam Venkatesan. “Or-
thogonal Security with Cipherbase.” In: 6th Biennial Conference on
Innovative Data Systems Research (CIDR 13). Citeseer. Microsoft Re-
search, Jan. 2013.

Arm TrustZone Technology. https://developer.arm.com/ip-products/
security-ip/trustzone. Accessed: 2020-03-17.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, An-
dre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, et al. “SCONE: Secure Linux Containers
with Intel SGX.” In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX, 2016, pp. 689—703.
Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthuku-
maran, Christian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer,
David Eyers, and Peter Pietzuch. “LibSEAL: revealing service integrity
violations using trusted execution.” In: Proceedings of the 13th European
Conference on Computer Systems. ACM, 2018, pp. 1-15.

AWS Lambda. https://aws.amazon.com/lambda/. Accessed: 2020-03-
09.

Azure Functions documentation. https://docs . microsoft.com/en-
us/azure/azure-functions/. Accessed: 2020-03-12.

Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,
Stijn Mostinckx, and Wolfgang de Meuter. “A survey on reactive pro-
gramming.” In: vol. 45. 4. ACM, 2013, pp. 1-34.

Sumeet Bajaj and Radu Sion. “TrustedDB: A trusted hardware-based
database with privacy and data confidentiality.” In: vol. 26. 3. IEEE,
2014, pp. 752-765.

Ioana Baldini, Paul Castro, Perry Cheng, Stephen Fink, Vatche Ishakian,
Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, and Philippe Suter.
“Cloud-native, event-based programming for mobile applications.” In:
Proceedings of the International Conference on Mobile Software Engineer-
ing and Systems. ACM, 2016, pp. 287—288.

Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Alek-
sander Slominski, et al. “Serverless computing: Current trends and
open problems.” In: Research Advances in Cloud Computing. Springer,
2017, pp. 1-20.

Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding appli-
cations from an untrusted cloud with Haven.” In: vol. 33. 3. ACM, Aug.
2015, 8:1-8:26.

https://thrift.apache.org
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://aws.amazon.com/lambda/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/

BIBLIOGRAPHY 143

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Johannes Behl, Tobias Distler, and Riidiger Kapitza. “Hybrids on steroids:
SGX-based high performance BFT.” In: Proceedings of the Twelfth Euro-
pean Conference on Computer Systems. ACM, 2017, pp. 222-237.
Sumeer Bhola, Robert Strom, Saurabh Bagchi, Yuanyuan Zhao, and
Joshua Auerbach. “Exactly-once delivery in a content-based publish-
subscribe system.” In: Proceedings International Conference on Depend-
able Systems and Networks. IEEE, 2002, pp. 7-16.

Eleanor Birrell, Anders Gjerdrum, Robbert van Renesse, Havard Jo-
hansen, Dag Johansen, and Fred B. Schneider. “SGX Enforcement of
Use-Based Privacy.” In: Proceedings of the 2018 Workshop on Privacy in
the Electronic Society. WPES 18. Toronto, Canada: ACM, 2018, pp. 155—
167.

Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Riidi-
ger Kapitza. “Rollback and forking detection for trusted execution
environments using lightweight collective memory.” In: 2017 47th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 1EEE, 2017, pp. 157-168.

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. “Software grand exposure:
SGX cache attacks are practical.” In: 11th USENIX Workshop on Offensive
Technologies (WOOT 17). USENIX, 2017.

Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel
Ossher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker
White. “Cayuga: a high-performance event processing engine.” In:
Proceedings of the 2007 ACM SIGMOD International Conference on Man-
agement of Data. ACM, 2007, pp. 1100-1102.

Lars Brenna, Johannes Gehrke, Mingsheng Hong, and Dag Johansen.
“Distributed event stream processing with non-deterministic finite au-
tomata.” In: Proceedings of the 3rd ACM International Conference on
Distributed Event-Based Systems. ACM, 2009, pp. 1-12.

Stefan Brenner and Riidiger Kapitza. “Trust More, Serverless.” In: Pro-
ceedings of the 12th ACM International Conference on Systems and Storage.
SYSTOR 19. Haifa, Israel: ACM, 2019, pp. 33—43.

Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias
Lorenz, Christof Fetzer, Peter Pietzuch, and Riidiger Kapitza. “Secure-
keeper: confidential zookeeper using intel SGX.” In: Proceedings of the
17th International Middleware Conference. ACM, 2016, p. 14.

Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg.
“The primary-backup approach.” In: vol. 2. 1993, pp. 199-216.
Bugzilla, Kernel.org. https://bugzilla.kernel.org/. Accessed: 2020-
03-15.

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and
John Wilkes. “Borg, omega, and kubernetes.” In: vol. 14. 1. ACM, 2016,

Pp.- 70-93.

https://bugzilla.kernel.org/

144

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

BIBLIOGRAPHY

Miguel Castro, Dushyanth Narayanan, Aleksandar Dragojevic, Matthew
Renzelmann, Alexander Shamis, Richendra Khanna, Stanko Novakovic,
Anders Gjerdrum, and Georgios Chatzopoulos. Clock synchronization.
US Patent App. 15/933,214. Sept. 2019.

Miguel Castro, Dushyanth Narayanan, Aleksandar Dragojevic, Matthew
James Renzelmann, Alexander Shamis, Richendra Khanna, Stanko No-
vakovic, Anders Gjerdrum, and Georgios Chatzopoulos. Performing
transactions in distributed transactional memory systems. US Patent
App. 15/933,230. Sept. 2019.

Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slomin-
ski. “The Rise of Serverless Computing.” In: vol. 62. 12. ACM, Now. 2019,
44-54.

Stephen Checkoway and Hovav Shacham. “Iago attacks: why the sys-
tem call API is a bad untrusted RPC interface.” In: vol. 41. 1. ACM, 2013,
PP. 253-264.

Guoxing Chen, Yingian Zhang, and Ten-Hwang Lai. “OPERA: Open
Remote Attestation for Intel’s Secure Enclaves.” In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2019, pp. 2317-2331.

Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis, Pratap Subrahmanyam,
Carl A Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan RK Ports.
“Overshadow: a virtualization-based approach to retrofitting protection
in commodity operating systems.” In: vol. 42. 2. ACM, 2008, pp. 2-13.
Zhiqun Chen. Java card technology for smart cards: architecture and
programmer’s guide. Addison-Wesley Professional, 2000.

Cloud Functions. https://cloud . google . com/functions. Accessed:
2020-03-12.

D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe
Turner, and Paul R. Young. “Computing As a Discipline.” In: ed. by
Peter J. Denning. Vol. 32. 1. ACM, Jan. 1989, pp. 9—23.

Common Language Runtime (CLR) overview. https://docs.microsoft.
com/en-us/dotnet/standard/clr. Accessed: 2020-03-10.

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. “Spanner: Google’s globally
distributed database.” In: vol. 31. 3. ACM, 2013, p. 8.

Victor Costan and Srinivas Devadas. “Intel SGX Explained.” In: vol. 2016.
086. 2016, pp. 1-118.

Victor Costan, Ilia Lebedev, and Srinivas Devadas. “Sanctum: Minimal
hardware extensions for strong software isolation.” In: 25th USENIX
Security Symposium (USENIX Security 16). USENIX, 2016, pp. 857-874.
Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data
processing on large clusters.” In: vol. 51. 1. ACM, 2008, pp. 107-113.

https://cloud.google.com/functions
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://docs.microsoft.com/en-us/dotnet/standard/clr

BIBLIOGRAPHY 145

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. “Dynamo: amazon’s highly
available key-value store.” In: ACM SIGOPS Operating Systems Review.
Vol. 41. 6. ACM, 2007, pp. 205—220.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
“Imagenet: A large-scale hierarchical image database.” In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. leee. IEEE,
2009, Pp. 248—255.

Peter J. Denning. “Computing is a Natural Science.” In: vol. 50. 7. ACM,
July 2007, pp. 13-18.

Whitfield Diffie and Martin Hellman. “New directions in cryptography.”
In: vol. 22. 6. IEEE, 1976, pp. 644—654.

Judicael B Djoko, Jack Lange, and Adam J Lee. “NEXUS: Practical and
Secure Access Control on Untrusted Storage Platforms using Client-
side SGX.” In: 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2019, pp. 401—413.
Docker Swarm. https://docs.docker.com/engine/swarm. Accessed:
2020-06-17.

Kevin Elphinstone and Gernot Heiser. “From L3 to seL4 what have we
learnt in 20 years of L4 microkernels?” In: Proceedings of the 24th ACM
Symposium on Operating Systems Principles. ACM, 2013, pp. 133-150.
Saba Eskandarian and Matei Zaharia. “ObliDB: oblivious query pro-
cessing for secure databases.” In: vol. 13. 2. VLDB Endowment, 2019,
pp. 169-183.

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. “Komodo: Using verification to disentangle secure-enclave hard-
ware from software.” In: Proceedings of the 26th ACM Symposium on
Operating Systems Principles. ACM, 2017, pp. 287-305.

Fn Project. https://fnproject.io/. Accessed: 2020-03-14.

Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, and Ion Stoica.
“Above the clouds: A berkeley view of cloud computing.” In: vol. 28. 13.
2009, p. 2009.

General Data Protection Regulation. https://gdpr-info.eu/. Accessed:
2020-03-17.

Adrien Ghosn, James R Larus, and Edouard Bugnion. “Secured routines:
language-based construction of trusted execution environments.” In:
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX,
2019, pp. 571-586.

Anders T Gjerdrum, Robert Pettersen, Havard D Johansen, and Dag
Johansen. “Cloud Computing and Service Science: 7th International
Conference, CLOSER 2017, Porto, Portugal, April 24—26, 2017, Revised
Selected Papers.” In: vol. 864. Springer, 2018, pp. 1-18.

https://docs.docker.com/engine/swarm
https://fnproject.io/
https://gdpr-info.eu/

146

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]

[72]
[73]

[74]
[75]

[76]

BIBLIOGRAPHY

Anders T Gjerdrum, Havard D Johansen, Lars Brenna, and Dag Jo-
hansen. “Diggi: A Secure Framework for Hosting Native Cloud Func-
tions with Minimal Trust.” In: The st IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems, and Applications (TPS).
IEEE, 2019.

Anders T Gjerdrum, Havard D Johansen, and Dag Johansen. “Imple-
menting informed consent as information-flow policies for secure an-
alytics on ehealth data: Principles and practices.” In: 2016 IEEE First
International Conference on Connected Health: Applications, Systems and
Engineering Technologies (CHASE). IEEE, 2016, pp. 107-112.

Anders T Gjerdrum, Robert Pettersen, Havard D Johansen, and Dag
Johansen. “Performance of Trusted Computing in Cloud Infrastructures
with Intel SGX.” In: CLOSER. SCITEPRESS, 2017, pp. 668-675.

GKE Sandbox: Bring defense in depth to your pods. https://cloud.
google . com/blog/products/containers - kubernetes/gke - sandbox -
bring-defense-in-depth-to-your-pods. Accessed: 2020-030-14.
Global Platform Specification Library. https://globalplatform.org/
specs-library/?filter-committee=tee. Accessed: 2020-03-17.

Peter Godfrey-Smith. Theory and reality: An introduction to the philoso-
phy of science. University of Chicago Press, 2009.

David Goltzsche, Manuel Nieke, Thomas Knauth, and Riidiger Kapitza.
“AccTEE: A WebAssembly-based Two-way Sandbox for Trusted Re-
source Accounting.” In: Proceedings of the 2oth International Middleware
Conference. ACM, 2019, pp. 123-135.

David Goltzsche, Signe Riisch, Manuel Nieke, Sébastien Vaucher, Nico
Weichbrodt, Valerio Schiavoni, Pierre-Louis Aublin, Paolo Cosa, Christof
Fetzer, Pascal Felber, et al. “Endbox: Scalable middlebox functions
using client-side trusted execution.” In: 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2018, pp. 386-397.

David Goltzsche, Colin Wulf, Divya Muthukumaran, Konrad Rieck, Peter
Pietzuch, and Riidiger Kapitza. “Trustjs: Trusted client-side execution
of javascript.” In: Proceedings of the 10th European Workshop on Systems
Security. ACM, 2017, pp. 1-6.

Google App Engine. https://cloud.google.com/appengine. Accessed:
2020-03-11.

Google RPC. https://grpc.io. Accessed: 2020-06-17.

Google V8 Engine. https://v8.dev/. Accessed: 2020-03-10.

Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller.
“Cache attacks on Intel SGX.” In: Proceedings of the 1oth European
Workshop on Systems Security. ACM, 2017, p. 2.

Jinyu Gu, Zhichao Hua, Yubin Xia, Haibo Chen, Binyu Zang, Haibing
Guan, and Jinming Li. “Secure live migration of SGX enclaves on un-

https://cloud.google.com/blog/products/containers-kubernetes/gke-sandbox-bring-defense-in-depth-to-your-pods
https://cloud.google.com/blog/products/containers-kubernetes/gke-sandbox-bring-defense-in-depth-to-your-pods
https://cloud.google.com/blog/products/containers-kubernetes/gke-sandbox-bring-defense-in-depth-to-your-pods
https://globalplatform.org/specs-library/?filter-committee=tee
https://globalplatform.org/specs-library/?filter-committee=tee
https://cloud.google.com/appengine
https://grpc.io
https://v8.dev/

BIBLIOGRAPHY 147

[77]
[78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

trusted cloud.” In: 2017 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 1IEEE, 2017, pp. 225-236.
Manu Gulati, Michael J Smith, and Shu-Yi Yu. Security enclave processor
for a system on a chip. US Patent 8,832,465. Sept. 2014.

gVisor: Container Runtime Sandbox. https://github . com/google/
gvisor. Accessed: 2020-03-10.

Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. “PeerReview:
Practical accountability for distributed systems.” In: vol. 41. ACM, 2007.
Health Insurance Portability and Accountability Act of 1996. https :
/ / aspe . hhs . gov / report / health - insurance - portability - and -
accountability-act-1996. Accessed: 2020-03-17.

Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. “Server-
less computing: One step forward, two steps back.” In: 2018.

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
“Serverless computation with openlambda.” In: 8th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 16). USENIX, 2016.

Helge Hoff. “SecureCached. Secure caching with the Diggi framework.”
MA thesis. UiT Norges arktiske universitet, 2018.

Tyler Hunt, Zhipeng Jia, Vance Miller, Christopher J Rossbach, and
Emmett Witchel. “Isolation and Beyond: Challenges for System Secu-
rity.” In: Proceedings of the Workshop on Hot Topics in Operating Systems.
ACM, 2019, pp. 96-104.

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. “Ryoan: A distributed sandbox for untrusted computation on
secret data.” In: vol. 35. 4. ACM, 2018, p. 13.

IBM Cloud Functions. https://www.ibm.com/cloud/functions. Ac-
cessed: 2020-03-14.

Intel Software Developer’s Manual. https://www.intel.com/content/
dam / www / public / emea / xe / en / documents / manuals / 64 - ia - 32 -
architectures-software-developer-vol-3d-part-4-manual . pdf.
Accessed: 2020-03-17.

Intel Software Guard Extensions Programming Reference. https : //
software.intel.com/sites/default/files/managed/48/88/329298-
002.pdf. Accessed: 2020-04-29.

Intel(R) Software Guard Extensions for Linux* OS, linux-sgx-driver. https:
//github.com/intel/linux-sgx-driver. Accessed: 2020-03-17.
Introducing Azure confidential computing. https://azure.microsoft .
com/en-us/blog/introducing-azure-confidential-computing/. Ac-
cessed: 2020-06-17.

ISO/IEC 11889-1:2009 Information technology — Trusted Platform Mod-
ule. https://www.iso.org/standard/50970.html. Accessed: 2020-06-

23.

https://github.com/google/gvisor
https://github.com/google/gvisor
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://www.ibm.com/cloud/functions
https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://www.iso.org/standard/50970.html

148

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

BIBLIOGRAPHY

ISO/IEC 7816-2:2007 [ISO/IEC 7816-2:2007]. https://www.iso.org/
standard/45989.html. Accessed: 2020-03-17.

Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. “SGX-bomb:
Locking down the processor via rowhammer attack.” In: Proceedings of
the 2nd Workshop on System Software for Trusted Execution. ACM, 2017,
pp. 1-6.

Abhinav Jangda, Donald Pinckney, Samuel Baxter, Breanna Devore-
McDonald, Joseph Spitzer, Yuriy Brun, and Arjun Guha. “Formal Foun-
dations of Serverless Computing.” In: 2019.

Java Virtual Machine Technology Overview. https://docs.oracle.com/
javase/10/vm/ java-virtual -machine - technology - overview . htm.
Accessed: 2020-03-10.

Dag Johansen, Robbert van Renesse, and Fred B Schneider. “An intro-
duction to the TACOMA distributed system. Version 1.0.” In: Univer-
sitetet i Tromsg, 1995.

Hévard D Johansen, Eleanor Birrell, Robbert Van Renesse, Fred B
Schneider, Magnus Stenhaug, and Dag Johansen. “Enforcing privacy
policies with meta-code.” In: Proceedings of the 6th Asia-Pacific Work-
shop on Systems. ACM, 2015, pp. 1-7.

Havard D Johansen, Robbert Van Renesse, Ymir Vigfusson, and Dag
Johansen. “Fireflies: A secure and scalable membership and gossip
service.” In: vol. 33. 2. ACM, 2015, pp. 1-32.

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. “Cloud programming simplified: A
berkeley view on serverless computing.” In: 2019.

Kostis Kaffes, Neeraja J Yadwadkar, and Christos Kozyrakis. “Central-
ized Core-granular Scheduling for Serverless Functions.” In: Proceed-
ings of the ACM Symposium on Cloud Computing. ACM, 2019, pp. 158—
164.

Vishal Karande, Erick Bauman, Zhigiang Lin, and Latifur Khan. “SGX-
log: Securing system logs with SGX.” In: Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security. ACM,
2017, pp. 19-30.

Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu
Han. “Enhancing security and privacy of tor’s ecosystem by using
trusted execution environments.” In: 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17). USENIX, 2017,
Pp. 145-161.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. “Flipping bits in
memory without accessing them: An experimental study of DRAM
disturbance errors.” In: vol. 42. 3. ACM, 2014, pp. 361-372.

https://www.iso.org/standard/45989.html
https://www.iso.org/standard/45989.html
https://docs.oracle.com/javase/10/vm/java-virtual-machine-technology-overview.htm
https://docs.oracle.com/javase/10/vm/java-virtual-machine-technology-overview.htm

BIBLIOGRAPHY 149

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. “Spectre attacks: Exploiting speculative execution.” In:
2019 IEEE Symposium on Security and Privacy. IEEE, 2019, pp. 1-19.
David Kotz, Robert Gray, Saurab Nog, Daniela Rus, Sumit Chawla, and
George Cybenko. “Agent Tcl: Targeting the needs of mobile computers.”
In: vol. 1. 4. IEEE, 1997, pp. 58-67.

Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth,
Pramod Bhatotia, and Christof Fetzer. “Pesos: Policy enhanced secure
object store.” In: Proceedings of the 13th European Conference on Com-
puter Systems. ACM, 2018, pp. 1-17.

Hugo Krawczyk. “SIGMA: The ‘SIGn-and-MAc’approach to authenti-
cated Diffie-Hellman and its use in the IKE protocols.” In: Annual
International Cryptology Conference. Springer, 2003, pp. 400—425.
Alexander Krizhanovsky. “Lock-free multi-producer multi-consumer
queue on ring buffer.” In: vol. 2013. 228. Belltown Media, 2013, p. 4.
Kubilay Ahmet Kii¢lik, Andrew Paverd, Andrew Martin, N Asokan, An-
drew Simpson, and Robin Ankele. “Exploring the use of Intel SGX for
secure many-party applications.” In: Proceedings of the 1st Workshop on
System Software for Trusted Execution. ACM, 2016, pp. 1-6.

Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach,
Pramod Bhatotia, Pascal Felber, and Christof Fetzer. “SGXBOUNDS:
Memory safety for shielded execution.” In: Proceedings of the Twelfth
European Conference on Computer Systems. ACM, 2017, pp. 205—221.
Age Kvalnes, Dag Johansen, Robbert van Renesse, Fred B Schneider, and
Steffen Viken Valvag. “Omni-kernel: An operating system architecture
for pervasive monitoring and scheduling.” In: vol. 26. 10. IEEE, 2014,
Pp- 2849—2862.

Leslie Lamport et al. “Paxos made simple.” In: vol. 32. 4. ACM, 2001,
pp. 18—25.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
based learning applied to document recognition.” In: vol. 86. 11. IEEE,
1998, pp. 2278-2324.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. “Inferring Fine-grained Control Flow Inside SGX
Enclaves with Branch Shadowing.” In: 26th USENIX Security Symposium
(USENIX Security 17). USENIX, Aug. 2017, pp. 557-574-.

B. Li, N. Weichbrodet, J. Behl, P. Aublin, T. Distler, and R. Kapitza. “Troxy:
Transparent Access to Byzantine Fault-Tolerant Systems.” In: 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 1EEE, 2018, pp. 59—70.

Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David Eyers, Riidiger Kapitza, et al. “Glamdring: Automatic Application

150

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

BIBLIOGRAPHY

Partitioning for Intel SGX.” In: 2017 USENIX Annual Technical Conference
(USENIX ATC 17). USENIX, 2017, pp. 285—298.

Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Giin Sirer,
and Peter Pietzuch. “Teechain: a secure payment network with asyn-
chronous blockchain access.” In: Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles. ACM, 2019, pp. 63-79.

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon
Crowcroft. “Unikernels: Library operating systems for the cloud.” In:
vol. 41. 1. ACM, 2013, pp. 461—472.

Tarjei Mandt, Mathew Solnik, and David Wang. “Demystifying the
secure enclave processor.” In:

Sinisa Matetic, Karl Wiist, Moritz Schneider, Kari Kostiainen, Ghassan
Karame, and Srdjan Capkun. “BITE: Bitcoin Lightweight Client Pri-
vacy using Trusted Execution.” In: 28th USENIX Security Symposium
(USENIX Security 19). USENIX, 2019, pp. 783—-800.

Sinisa Matetic, Moritz Schneider, Andrew Miller, Ari Juels, and Srd-
jan Capkun. “Delegatee: Brokered delegation using trusted execution
environments.” In: 27th USENIX Security Symposium (USENIX Security
18). USENIX, 2018, pp. 1387-1403.

Nicholas D Matsakis and Felix S Klock II. “The rust language.” In: ACM
SIGAda Ada Letters. Vol. 34. 3. ACM, 2014, pp. 103-104.

Garrett McGrath and Paul R Brenner. “Serverless computing: Design,
implementation, and performance.” In: 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW).
IEEE, 2017, pp. 405—410.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. “Innova-
tive instructions and software model for isolated execution.” In: vol. 10.
1. HASP ISCA, 2013.

Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon John-
son, Rebekah Leslie-Hurd, and Carlos Rozas. “Intel® software guard
extensions (Intel® SGX) support for dynamic memory management
inside an enclave.” In: Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016. ACM, 2016, p. 10.

Dominik Meissner, Benjamin Erb, Frank Kargl, and Matthias Tichy.
“Retro-A: An Event-sourced Platform for Serverless Applications with
Retroactive Computing Support.” In: Proceedings of the 12th ACM Inter-
national Conference on Distributed and Event-based Systems. ACM, 2018,
pp. 76-87.

Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and
Raluca Ada Popa. “Oblix: An efficient oblivious search index.” In: 2018
IEEE Symposium on Security and Privacy. IEEE, 2018, pp. 279-296.

BIBLIOGRAPHY 151

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou,
Ilias Leontiadis, Andrea Cavallaro, and Hamed Haddadi. “DarkneTZ:
towards model privacy at the edge using trusted execution environ-
ments.” In: 2020.

Sonia Ben Mokhtar, Antoine Boutet, Pascal Felber, Marcelo Pasin, Rafael
Pires, and Valerio Schiavoni. “X-search: revisiting private web search
using Intel SGX.” In: Proceedings of the 18th ACM/IFIP/USENIX Middle-
ware Conference. ACM, 2017, pp. 198—208.

Sam Newman. Building microservices: designing fine-grained systems.
O’Reilly Media, Inc., 2015.

Audun Nordal, Age Kvalnes, Joseph Hurley, and Dag Johansen. “Balava:
Federating private and public clouds.” In: 2011 IEEE World Congress on
Services. IEEE, 2011, pp. 569-577.

Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebas-
tian Nowozin, Kapil Vaswani, and Manuel Costa. “Oblivious Multi-Party
Machine Learning on Trusted Processors.” In: 25th USENIX Security
Symposium (USENIX Security 16). USENIX, Aug. 2016, pp. 619-636.
Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein,
and Christof Fetzer. “Varys: Protecting SGX Enclaves from Practical
Side-Channel Attacks.” In: 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX, 2018, pp. 227—240.

OP-TEE Documentation. https://optee.readthedocs.io/en/latest/
index.html. Accessed: 2020-03-17.

Open Source Serverless Computing. https://open.iron.io/. Accessed:
2020-03-14.

Meni Orenbach, Andrew Baumann, and Mark Silberstein. “Autarky:
closing controlled channels with self-paging enclaves.” In: Proceedings
of the 15th European Conference on Computer Systems. ACM, 2020, pp. 1—
16.

Meni Orenbach, Yan Michalevsky, Christof Fetzer, and Mark Silberstein.
“CoSMIX: a compiler-based system for secure memory instrumentation
and execution in enclaves.” In: 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19). USENIX, 2019, pp. 555-570.

Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.
“Eleos: ExitLess OS services for SGX enclaves.” In: Proceedings of the
Twelfth European Conference on Computer Systems. ACM, 2017, pp. 238—
253.

Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates,
Christopher W Fletcher, Andrew Miller, and Dave Tian. “Custos: Prac-
tical tamper-evident auditing of operating systems using trusted exe-
cution.” In: Proceedings of the Symposium on Network and Distributed
System Security (NDSS). 2020.

Robert Pettersen, Steffen Viken Valvag, ;\ge Kvalnes, and Dag Johansen.
“Jovaku: Globally distributed caching for cloud database services using

https://optee.readthedocs.io/en/latest/index.html
https://optee.readthedocs.io/en/latest/index.html
https://open.iron.io/

152

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

BIBLIOGRAPHY

DNS.” In: 2014 2nd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering. IEEE, 2014, pp. 127-135.

Sandro Pinto and Nuno Santos. “Demystifying arm trustzone: A com-
prehensive survey.” In: vol. 51. 6. ACM, 2019, pp. 1-36.

Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara Bouchenak, An-
toine Boutet, Pascal Felber, Riidiger Kapitza, Marcelo Pasin, and Valerio
Schiavoni. “CYCLOSA: Decentralizing private web search through SGX-
based browser extensions.” In: 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS). 1EEE, 2018, pp. 467—477.
Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
“Safebricks: Shielding network functions in the cloud.” In: 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX, 2018, pp. 201-216.

Donald E Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and
Galen C Hunt. “Rethinking the library OS from the top down.” In:
Proceedings of the 16th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 2011,
PP. 291-304.

Christian Priebe, Kapil Vaswani, and Manuel Costa. “EnclaveDB: A
secure database using SGX.” In: 2018 IEEE Symposium on Security and
Privacy. IEEE. IEEE, 2018, pp. 264—278.

Dhathri Purohith, Jayashree Mohan, and Vijay Chidambaram. “The
dangers and complexities of SQLite benchmarking.” In: Proceedings of
the 8th Asia-Pacific Workshop on Systems. ACM, 2017, p. 3.

Weizhong Qiang, Zezhao Dong, and Hai Jin. “Se-Lambda: Securing
Privacy-Sensitive Serverless Applications Using SGX Enclave.” In: Inter-
national Conference on Security and Privacy in Communication Systems.
Springer, 2018, pp. 451-470.

Robbert van Renesse, Havard Johansen, Nihar Naigaonkar, and Dag Jo-
hansen. “Secure Abstraction with Code Capabilities.” In: Proceedings of
the 2013 21st Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. IEEE, 2013, pp. 542—-546.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
“Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds.” In: Proceedings of the 16th ACM Conference on
Computer and Communications Security. ACM, 2009, pp. 199—212.
Jordan Robertson and Michael Riley. The Big Hack: How China Used a
Tiny Chip to Infiltrate U.S. Companies. URL: https://www.bloomberg.
com/news/features/2018-10-04/the-big-hack-how-china-used-a-
tiny-chip-to-infiltrate-america-s-top-companies.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Tech. rep. California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies

BIBLIOGRAPHY 153

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Signe Riisch, Kai Bleeke, and Riidiger Kapitza. “BLOXY: Providing
Transparent and Generic BFT-Based Ordering Services for Blockchains.”
In: 38th International Symposium on Reliable Distributed Systems (SRDS
2019), Lyon, Campus La Doua, Lyon, France, October 1-4, 2019. 1EEE,
2019.

Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. “Using
ARM TrustZone to build a trusted language runtime for mobile applica-
tions.” In: ACM SIGARCH Computer Architecture News. Vol. 42. 1. ACM,
2014, pp. 67-80.

Vasily Sartakov, Nico Weichbrodt, Sebastian Krieter, Thomas Leich,
and Rudiger Kapitza. “STANlite—a database engine for secure data
processing at rack-scale level.” In: 2018 IEEE International Conference
on Cloud Engineering (IC2E). IEEE, 2018, pp. 23-33.

Vasily A Sartakov, Stefan Brenner, Sonia Ben Mokhtar, Sara Bouchenak,
Gaél Thomas, and Riidiger Kapitza. “EActors: Fast and flexible trusted
computing using SGX.” In: Proceedings of the 19th International Middle-
ware Conference. ACM, 2018, pp. 187—200.

Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. “ZeroTrace:
Oblivious Memory Primitives from Intel SGX.” In: vol. 2017. 2017, p. 549.
Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Mar-
cus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. “VC3: Trust-
worthy data analytics in the cloud using SGX.” In: 2015 IEEE Symposium
on Security and Privacy. IEEE, 2015, pp. 38-54.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. “Malware guard extension: Using SGX to conceal
cache attacks.” In: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2017, pp. 3—24-
Mark Seaborn and Thomas Dullien. “Exploiting the DRAM rowhammer
bug to gain kernel privileges.” In: vol. 15. UBM, 2015, p. 71.

Serverless Functions, Made Simple. https://www . openfaas . com/. Ac-
cessed: 2020-03-14.

Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chat-
zopoulos, Aleksandar Dragojevi¢, Dushyanth Narayanan, and Miguel
Castro. “Fast general distributed transactions with opacity.” In: Proceed-
ings of the 2019 International Conference on Management of Data. ACM,
2019, Pp. 433-448.

Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chat-
zopoulos, Anders T Gjerdrum, Dan Alistarh, Aleksandar Dragojevic,
Dushyanth Narayanan, and Miguel Castro. “Fast General Distributed
Transactions with Opacity using Global Time.” In: 2020.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. “Edge
computing: Vision and challenges.” In: vol. 3. 5. IEEE, 2016, pp. 637—
646.

https://www.openfaas.com/

154

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

BIBLIOGRAPHY

Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. “T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs.”
In: Proceedings of the Symposium on Network and Distributed System
Security (NDSS). 2017.

Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. “Panoply:
Low-TCB Linux Applications With SGX Enclaves.” In: Proceedings of the
Symposium on Network and Distributed System Security (NDSS). NDSS,
2017.

Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. “Moat:
Verifying Confidentiality of Enclave Programs.” In: Proceedings of the
2015 ACM SIGSAC Conference on Computer and Communications Security.
CCS "15. Denver, Colorado, USA: ACM, 2015, pp. 1169-1184.
Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. “Machine
learning models that remember too much.” In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp- 587-601.

Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. “Path ORAM: an extremely
simple oblivious RAM protocol.” In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & communications security. ACM, 2013, pp. 299—
310.

Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas,
and Sanjit A Seshia. “A formal foundation for secure remote execution
of enclaves.” In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 2435—2450.
Melanie Swan. Blockchain: Blueprint for a new economy. O’Reilly Media,
Inc., 2015.

Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. “VAULT:
Reducing paging overheads in SGX with efficient integrity verification
structures.” In: Proceedings of the 23rd International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems.
2018, pp. 665—678.

TEE Client API Specifications v1.0. https://globalplatform.org/specs-
library/tee-client-api-specification/. Accessed: 2020-03-17.
Hongliang Tian, Yong Zhang, Chunxiao Xing, and Shoumeng Yan.
“SGXKernel: A Library Operating System Optimized for Intel SGX.”
In: Proceedings of the Computing Frontiers Conference. CF 17. Siena,
Italy: ACM, 2017, pp. 35—44.

Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhatotia, and
Christof Fetzer. “Clemmys: Towards secure remote execution in FaaS.”
In: Proceedings of the 12th ACM International Conference on Systems and
Storage. ACM, 2019, pp. 44-54.

Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod
Bhatotia, and Christof Fetzer. “Shieldbox: Secure middleboxes using

https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/

BIBLIOGRAPHY 155

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

shielded execution.” In: Proceedings of the Symposium on SDN Research.
ACM, 2018, pp. 1-14.

Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain,
William Jannen, Jitin John, Harry A Kalodner, Vrushali Kulkarni, Daniela
Oliveira, and Donald E Porter. “Cooperation and security isolation of
library OSes for multi-process applications.” In: Proceedings of the oth
European Conference on Computer Systems. ACM, 2014, pp. 1-14.
Chia-Che Tsai, Donald E Porter, and Mona Vij. “Graphene-SGX: A
Practical Library OS for Unmodified Applications on SGX.” In: 2017
USENIX Annual Technical Conference (ATC). USENIX, 2017, pp. 645—
658.

Understanding serverless cold start. https://azure.microsoft.com/en-
us/blog/understanding-serverless-cold-start/. Accessed: 2020-03-
10.

Steffen Viken Valvag, Dag Johansen, and Age Kvalnes. “Cogset: a high
performance MapReduce engine.” In: vol. 25. 1. Wiley Online Library,
2013, pp. 2—23.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom,
and Raoul Strackx. “Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution.” In: 27th USENIX
Security Symposium (USENIX Security 18). 2018, pp. 991-1008.
Sébastien Vaucher, Rafael Pires, Pascal Felber, Marcelo Pasin, Valerio
Schiavoni, and Christof Fetzer. “SGX-aware container orchestration for
heterogeneous clusters.” In: 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2018, pp. 730-741.
Jesse Walker and Jiangtao Li. “Key exchange with anonymous authen-
tication using DAA-SIGMA protocol.” In: International Conference on
Trusted Systems. Springer, 2010, pp. 108-127.

Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran Duan,
Long Li, Yulong Zhang, Tao Wei, and Zhigiang Lin. “Towards Memory
Safe Enclave Programming with Rust-SGX.” In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2019, pp. 2333—2350.

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and
Michael Swift. “Peeking behind the curtains of serverless platforms.”
In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX,
2018, pp. 133—-146.

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yingian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. “Leaky
cauldron on the dark land: Understanding memory side-channel haz-
ards in SGX.” In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 2421-2434.

https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-start/
https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-start/

156

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

BIBLIOGRAPHY

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. “Leaky
Cauldron on the Dark Land: Understanding Memory Side-Channel
Hazards in SGX.” In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. CCS 17. ACM, 2017, pp. 2421~
2434.

Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Hubert Chan, Elaine
Shi, Emil Stefanov, and Yan Huang. “Oblivious data structures.” In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security. ACM, 2014, pp. 215—226.

Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Riidiger Kapitza.
“AsyncShock: Exploiting synchronisation bugs in Intel SGX enclaves.”
In: European Symposium on Research in Computer Security. Springer,
2016, pp. 440-457.

Samuel Weiser and Mario Werner. “Sgxio: Generic trusted I/0 path
for intel SGX.” In: Proceedings of the yth ACM Conference on Data and
Application Security and Privacy. ACM, 2017, pp. 261-268.

Ofir Weisse, Valeria Bertacco, and Todd Austin. “Regaining lost cycles
with HotCalls: A fast interface for SGX secure enclaves.” In: vol. 45. 2.
ACM, 2017, pp. 81-93.

Tom White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.
Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-channel
attacks: Deterministic side channels for untrusted operating systems.”
In: 2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 640—
656.

Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack.” In: 23rd USENIX
Security Symposium (USENIX Security 14). USENIX, Aug. 2014, pp. 719—
732.

Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi.
“Town Crier: An Authenticated Data Feed for Smart Contracts.” In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS 16. Vienna, Austria: ACM, 2016, pp. 270-
282.

Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa,
Joseph E Gonzalez, and Ion Stoica. “Opaque: An oblivious and en-
crypted distributed analytics platform.” In: 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17). USENIX,
2017, pp. 283—298.

Paper |

Paper Il

Performance of Trusted Computing in Cloud Infrastructures
with Intel SGX

Anders T. Gjerdrum, Robert Pettersen, Havard D. Johansen and Dag Johansen
UiT: The Arctic University of Norway, Tromsg, Norway

Keywords:

Abstract:

Privacy, Security, Cloud Computing, Trusted Computing, Performance.

Sensitive personal data is to an increasing degree hosted on third-party cloud providers. This generates strong

concerns about data security and privacy as the trusted computing base is expanded to include hardware com-
ponents not under the direct supervision of the administrative entity responsible for the data. Fortunately,
major hardware manufacturers now include mechanisms promoting secure remote execution. This paper stud-
ies Intel’s Software Guard eXtensions (SGX), and experimentally quantifies how basic usage of this instruction
set extension will affect how cloud hosted services must be constructed. Our experiments show that correct
partitioning of a service’s functional components will be critical for performance.

1 INTRODUCTION

Sensors and mobile devices record ever more aspects
of our daily lives. This is causing an influx of data
streams that feeds into potentially complex analytical
pipelines hosted remotely by various cloud providers.
Not only are the sheer amounts of data generated
cumbersome to store and analyze at scale; data might
also be accompanied by strict privacy requirements,
as is the case with smart home and health monitoring
devices (Gjerdrum et al., 2016).

Processing of sensitive and personal data in the
cloud requires the design of new Software-as-a-
Service (SaaS) architectures that are able to en-
force rigid privacy and security policies (Johansen
et al., 2015) throughout the entire hardware and soft-
ware stack, including the underlying cloud-provided
Infrastructure-as-a-Service (IaaS) components. Al-
though, commodity hardware mechanisms for trusted
computing have been available for some time (TCG
Published, 2011; Osborn and Challener, 2013), these
are often poised with performance and functional-
ity restrictions. Prior implementations by Intel, like
Trusted Platform Modules (TPM) and Trusted Execu-
tion Technology (TXT), are able to establish trust and
guarantee integrity of software, the latter also support-
ing rudimentary secure code execution.

Software Guard Extentions (SGX) (Anati et al.,
2013) is Intel’s new trusted computing platform that,
together with similar efforts by both ARM and AMD,
is quickly making general trusted computing a com-

668

Gijerdrum, A., Pettersen, R., Johansen, H. and Johansen, D.
Performance of Trusted Computing in Cloud Infrastructures with Intel SGX.
DOI: 10.5220/0006373706960703

modity. Fundamentally, SGX is an instruction set ex-
tension introduced with the Skylake generation of In-
tel’s Core architecture, supporting confidentiality, in-
tegrity and attestation of trusted code running on un-
trusted platforms. SGX is able to counter a multi-
tude of different software and physical attacks by the
construction of secure enclaves consisting of trusted
code and data segments. While SGX should be con-
sidered an iterative technology built on previous ef-
forts, it surpasses previous iterations both in terms of
performance and functionality. SGX is designed to
provide general secure computing facilities allowing
developers to easily port their existing legacy appli-
cations into SGX enabled enclaves. These properties
make SGX an attractive technology for cloud-based
SaaS architectures that handle person sensitive data.

SGX is a proprietary platform and prior knowl-
edge is based on limited documentation describing its
architecture. Furthermore, little is known about the
performance of the primitives provided by the SGX
platform and how to author software utilizing these
primitives while maximizing performance.

In this paper we analyze the performance charac-
teristics of the SGX technology currently available to
better understand how such technologies can be used
to enforce privacy policies in cloud hosted SaaS archi-
tectures. We analyze SGX primitives at a fine-grained
level and provide detailed performance evaluation of
the core mechanisms in SGX. The paper is structured
as follows: Section 2 outlines the relevant parts of the
SGX micro architecture while Section 3 outlines the

In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 668-675

ISBN: 978-989-758-243-1

Copyright © 2017 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

Performance of Trusted Computing in Cloud Infrastructures with Intel SGX

details of our microbenchmark. Section 4 provides
an informed discussion of our findings and Section 5
detail relevant work before concluding remarks.

2 INTEL SOFTWARE GUARD
EXTENTIONS (SGX)

SGX allows regular application threads to transition
into secure enclaves by issuing the special EENTER
special instructions to a logical processor. Entry is
initiated by performing a controlled jump into the en-
clave code, analogous to how entry into virtual ma-
chine contexts occurs. A process can only enter an en-
clave from ring 3, i.e user level, and threads running
in enclave mode are not allowed to trigger software
interrupts, also prohibiting the use of system calls.
An application which requires access to common Op-
erating System (OS) provided services, like the file
system, must be carefully designed so that its threads
exit enclave mode through application defined inter-
faces before invoking any system calls. Since SGX’s
Trusted Computing Base (TCB) does not include the
underlying OS, all such transitions, parameters, and
responses, must be carefully validated by the applica-
tion designer.

SGX allows multiple threads to execute inside the
same enclave. For each logical processor executing
inside an enclave a Thread Control Structure (TCS)
is needed. These data structures must be provisioned
before enclave startup, and are stored in the Enclave
Page Cache (EPC) main-memory pages set aside for
enclaves. Among other things, the TCS contains the
OENTRY field which is loaded into the instruction
pointer when entering an enclave. Before doing so,
SGX stores the execution context of the untrusted
code into regular memory, by using the XSAVE in-
struction, which then again is restored when exiting
the enclave. Stack pointers are not modified when
entering an enclave, however (Costan and Devadas,
2016) suggests that to avoid the possibility of exploits,
it is expected that each enclave set their stack pointer
to an area fully contained withing EPC memory. Pa-
rameter input to the enclave is marshalled into buffers,
and once the transition is done, enclave code can copy
data directly from untrusted DRAM memory. This is
not part of the native SGX implementation, rather a
convenience provided by the application SDK.

Threads exit enclaves either voluntarily through
synchronous exit instructions, or asynchronously by
service of a hardware interrupt occurring on the af-
fected logical core. Synchronous exits, through the
EEXIT instruction, causes the logical processor to
leave enclave mode. The instruction pointer as well

as the stack pointers are restored to their prior address
before entering the enclave. SGX does not modify
any instructions on enclave exit and so it is the au-
thors’ responsibility to clear them, to avoid leaking
secret information. In the case of an Asynchronous
Enclave Exit (AEX), a hardware interrupt such as a
page fault causes the processor to exit the enclave and
jump down to the kernel in order to service the fault.
Prior to this, SGX saves the execution context into
EPC memory for safekeeping, before clearing it so
that the OS is not able to infer any execution state
from the enclave. When the interrupt handler is done,
SGX restores the execution context and resumes exe-
cution.

2.1 The Enclave Page Cache

Memory used by enclaves is separated at boot time
from regular process DRAM memory into what is
called Processor Reserved Memory (PRM). This con-
tiguous region of memory is divided into 4 kb pages,
collectively referred to as the Enclave Page Cache
(EPC). EPC memory is only accessible inside the en-
clave or via the SGX instruction set. Neither system
software running at protection ring 0 (kernel mode)
or application code at ring 3 (user mode) are able to
access its memory contents directly, and any attempt
to read or write to it is ignored. Furthermore, DMA
access to PRM memory is prohibited by hardware to
guard against malicious peripheral devices attempt-
ing to tap the system bus. The confidentiality of the
enclave is guarded by Intel’s Memory Encryption En-
gine (MEE), which encrypts and decrypts memory at
the CPU package boundary, on the system bus right
after the L3 cache.

Similar to virtual memory, EPC page management
is handled entirely by the OS. However, EPC mem-
ory is not directly accessible to any system mode and
each page assignment is done through SGX instruc-
tions. The OS is responsible for assigning pages to
particular enclaves and evict pages to regular DRAM.
The current generation of SGX hardware only sup-
ports a maximum PRM size of 128 MB, but through
swapping, there are no practical limits to the size
of an enclave. The integrity of pages swapped out
is guaranteed by always checking an auxiliary data
structure also residing in PRM, called the Enclave
Page Cache Map. This datastructure contains the cor-
rect mappings between virtual addresses and Physical
PRM memory, as well as integrity checks for each
page. Each page can only belong to one enclave,
and as a consequence, shared memory between en-
claves is prohibited. They are however able to share
DRAM memory if residing inside the same process’

669

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

address space, and enclave memory is allowed to read
and write to untrusted memory inside that process.
The page eviction instruction also generates a liveness
challenge for each page, storing them in special EPC
pages for later comparison. These precautions guard
against a malicious OS trying to subvert an enclave by
either manipulating the address translation, explicitly
manipulating pages, or serving old pages back to the
enclave (replay attacks).

In order to guard against stale address translations
for executing enclaves, the processor does a coarse-
grained TLB shootdown for pages being evicted.
Page faults targeting a particular enclave will cause
the kernel to issue a Inter Processor Interrupt (IPI)
for all logical cores running inside of the enclaves in
question. This will cause each thread to do an AEX,
as mentioned above, and trap down to the kernel page
fault handler. Moreover, the lowermost 12 bits of the
virtual address at fault, stored in the CR2 registry, is
cleared so that the OS cannot infer any access pattern.
To amortize the cost of interrupting all cores execut-
ing inside a particular enclave for each page eviction,
the SGX implementation supports batching up to 16
page evictions together at a time.

2.2 Enclave Creation

SGX supports multiple mutually distrusting enclaves
on a single machine either within the same process’
address space or in different processes. Enclaves are
created by system software on behalf of an appli-
cation, issuing an ECREATE instruction. This will
cause SGX to allocate a new EPC page for the SGX
Enclave Control Structure (SECS) which stores meta-
data for each enclave. This is used by SGX instruc-
tions to identify enclaves, and among other things
map enclaves to physical EPC pages via the EPCM
structure. Before the enclave is ready for execut-
ing code, each initial code and data segment must be
added to enclave memory via the OS issuing specially
crafted instructions to the SGX implementation for
each page. The same instruction is also used to create
the TCS for each expected thread inside the enclave.
In addition, the OS driver issues updates for enclave
measurements used for software attestation. We re-
fer to the SGX developer manual for a description
of the SGX attestation process. When all pages are
loaded, the enclave is initialized and the enclave re-
ceives a launch token from a special pre-provisioned
enclave entrusted by Intel. At this point, the enclave
is considered fully initialized and no further memory
allocations may happen. Intels revised specifications
for SGX version 2 includes support for expanding en-
claves after initial creation by dynamic paging sup-

670

port. However, we refrain from further explanation as
hardware supporting these specifications has not been
released at this point.

When an enclave is destroyed, the inverse hap-
pens, as the OS marks each page used by the enclave
as invalid by the EREMOVE instruction. Before free-
ing the page, SGX makes sure that no logical pro-
cessor is executing inside the enclave that owns the
particular page. Finally, the SECS is deallocated if all
pages in the EPCM referring to that particular enclave
are deallocated.

3 EXPERIMENTS

To gain experience in how the next generation cloud-
based SaaS systems should be architected to best take
advantage of the SGX features in modern processors,
we ran a series of micro benchmarks on SGX-enabled
hardware. Our experimental setup consists of a Dell
Optiplex workstation with an Intel Core 15-6500 CPU
@ 3.20 GHz with four logical cores and 2 x 8§ GB of
DDR3 DIMM DRAM. To avoid inaccuracies caused
by dynamic frequency scaling, Intel Speedstep and
CStates were disabled in all our experiments. To
measure the peak performance of the architecture, we
also altered the PRM size in hardware setup to be the
maximum allowed 128 MB. We run the experiments
on Ubuntu 14.04 using the open source kernel mod-
ule for Intel SGX.! We instrumented the SGX ker-
nel module to record the operational costs. Based on
our understanding of the system we derived different
benchmarks testing various features of the platform.
Common for all experiments is the observation that
more iterations did not yield a lower deviation. This
may be attributed to noise generated by the rest of the
system. This noise is subtle, but significant since we
are measuring at fine-grained time intervals.

Note that the current iteration of SGX prohibits
use of the RDTSC instruction inside of enclaves, and
as such there are no natively timing facilities avail-
able inside enclaves. A later release reveals that the
updated specifications for SGX version one does sup-
port RDTSC inside enclaves. Hints suggests that this
might be distributable by means of an update to the
microcode architecture. We were, however, unsuc-
cessful in obtaining this update. Time measurements
performed throughout this experiment must therefore
exit the enclave before being captured. As a conse-
quence, we can only measure the total time taken be-
tween entering and exiting an enclave described as the
sequence of events depicted in Figure 1.

Uhttps://github.com/01org/linux-sgx-driver

Performance of Trusted Computing in Cloud Infrastructures with Intel SGX

t Application Enclave
| enclave_ecall() ~

| ~a enclave_ecall()
| / t0_ocall()
|

| get_time() <

I \ t0_ocall()
A 1)
| L tl_oca

| get_time() <

¢ I t1_ocall()

Figure 1: Sequence of events involved in measuring time
spent inside enclaves.

3.1 Entry and Exit Costs

In our first experiments, we look at the cost of enter-
ing and leaving an enclave. Understanding this cost
is important as it dictates how SGX enabled SaaS ser-
vices can partition its functionality between enclaved
and non-enclaved execution to minimize TCB size. A
prohibitively large cost of entry would necessitate a
reduction in the number of entry calls, and thus in-
creasing the amount of code and data residing inside
of the enclave, increasing the required TCB. The ex-
treme case being a full library OS that include almost
all the functionality an application requires within the
enclave (Baumann et al., 2014). The Intel Software
Developer Manual® suggests that the cost of entering
an enclave is also a function of the size of the data
copied into the enclave as a part of the entry. Thus,
if experiments show that the cost of large amounts of
data entering the enclave is prohibitively large, only
data requiring confidentiality should be copied into
the enclave.

300

250

200

150

Time (ms)

100

50 -

0 L L L L L L
0 65536 131072 196608 262144 327680 393216 458752

Buffer Size (byte)

Figure 2: Enclave transition cost as a function of buffer size.

Figure 2 shows the measured cost as a function
of increasing buffer sizes. As shown in the figure,

Zhttps://software.intel.com/en-us/articles/intel-sdm

the cost of transitioning into enclaves increases lin-
early with the buffer size. This experiment only uses
buffers as parameter while transitioning into the en-
clave. To be able to host the buffer inside the enclave,
its heap size must be sufficiently large. The observed
baseline cost with no buffer is the bare transition cost
for entering enclaves. This cost quickly becomes in-
significant as the buffer size increases. This behavior
is expected as this cost includes copying the buffers
into enclave memory on transitions, which invokes
the MEE for memory written to the enclave. To our
surprise, however, we observed that the baseline cost
only increased above 64 kb. One possible explanation
for this is that the pages may already be present in
EPC memory for buffer sizes smaller than 64 kb

For larger buffers the increased cost can also be
attributed to page faults caused by enclave memory
previously evicted to DRAM. This issue is further ex-
plored in the next experiment.

3.2 Paging

Another probable architectural trade-off is the logi-
cal assumption that an increase in TCB would reduce
enclave transitions but requires more PRM. As men-
tioned in Section 1, the PRM is a very limited re-
source in comparison to regular DRAM and the sys-
tem has a total of 128 MB of it. Moreover, any en-
clave is subject to the system software evicting EPC
pages when PRM resources becomes scarce. Any sys-
tem using SGX should factor in the cost of swapping
pages between PRM and regular DRAM. Figure 3 il-
lustrates this cost in enclaves as observed by both the
kernel and the user level enclave.

The y-axis is the discrete cost in nano seconds,
while the x-axis is time elapsed into the experiment.
We instrumented the OS kernel driver to measure the
time taken to evict pages out of EPC into DRAM de-
noted by red dots, as well as the total time spent inside
the page fault handler, shown by the black line.

120000

T T T
User level memory access

EPC kernel page fault
100000 EPC kernel page eviction event . -

80000 |-

60000 |-

40000

latency (nano sec)

haakanus asnsannnpnsa o]

20000 J(
0 1 Il 1 .
0 2e+06 4e+06 6e+06 8e+06 le+07 1.2e+07
elapsed time

Figure 3: Paging overhead in nano seconds as a function of
time elapsed while writing sequentially to enclave memory.

671

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

The green line denotes user level instrumentation
measuring the time it takes to write to a particular
address in EPC memory. Similarly to the prior ex-
periment, we are prohibited to make timing measure-
ments inside enclaves. Therefore, the user level mea-
surements include the baseline cost of entry and exit
of an enclave, notably with 4 byte buffers transition-
ing each way.

To induce enclave page faults we set the total en-
clave heap size to 256 MB, which is larger than the to-
tal amount of available EPC memory. Furthermore, to
hit each page we invoke write operations to each ad-
dress within the 4 kb page size sequentially along the
allocated memory space inside the enclave. As men-
tioned in Section 2, the only time enclaves are able
to allocate memory is before the EINIT instruction
is called by issuing EADD. Therefore, all memory
must be allocated before enclave execution begins.
We can clearly see at the beginning of the experiment
an increase in page faults occurring when trying to fit
256 MB of enclave memory into potentially 128 MB
of physical EPC memory.

Correlating the different events happening at user
level and kernel level we observe a strong relation-
ship between eviction events and increase in write
time at user level. One property of the system that
might increase this cost is the fact that evicting pages
causes AEX events for any logical processor execut-
ing within an enclave, as explained in Section 2.

We also observe that the kernel driver is operat-
ing very conservatively in terms of assigning EPC
pages to enclaves by the amount of page faults oc-
curring during execution. Moreover, as mentioned in
Section 2, the 12 lower bits of the virtual page fault
address is cleared by SGX before trapping down to
the page fault handler. Therefore, the driver is not
able to make any assumptions about memory access
patterns inside enclaves. Moreover, as Section 2 ex-
plains, liveness challenge data might also be evicted
of EPC memory, causing a cascade of page loads to
occur from DRAM. It is worth noting that our experi-
ment only uses one thread, and that all page evictions
issuing IPI only interrupt this single thread.

It is clear that high performance applications
might want to tune the OS support for paging to their
needs. If an application can predict a specific ac-
cess pattern, the kernel paging support should adapt
to this. Moreover, by optimizing towards exhaustive
use of the EPC memory, applications running inside
enclaves might be subject to fewer page faults.

Furthermore, initial setup will keep large amounts
of the enclave in memory, which might eliminate the
overhead of paging for some enclaves. This further-
more reduces overhead caused by IPI interrupts trig-

672

le+09 T
4 kb
9e+08 16 kb —— 4
64 kb ——
8e+08 256 kb - :
1mb ——
g 7e+08 4 mb -
o 6e+08
c
&
2 5e+08
>
2 4e+08 o
g i
& 3e+08 s ——
2e+08 [—
16408 . /
0l—""1 i
0 20 40 60 80 100

Enclaves

Figure 4: Latency as a function of number of enclaves cre-
ated simultaneously, for differing sizes of enclaves

gering AEX from the given enclave. Initially, the cre-
ation of large enclaves trigger memory allocations by
the kernel, and it might be necessary for application
developers to offset this initial cost by previsioning
enclaves.

3.3 Enclave Provisioning

Modern distributed system architectures increasingly
rely on modular programing paradigms and multi-
component software with possibly differing trust do-
mains. Such distributed systems often consist of sev-
eral third-party open source components, both trusted
and not. Moreover, separating both the unit of failure
and trust of such systems is often a good idea.

SGX supports the creation of multiple mutually
distrusting enclaves which can be used in such a mod-
ular design. As mentioned in Section 2 the SGX
programming model allows enclaves to communicate
with the outside using well defined interfaces, which
lends itself to an architecture where trust is compart-
mentalized into separate enclaves. Figure 4 illustrates
the additional cost in terms of provisioning latency
as a function of enclaves created simultaneously, and
we can clearly observe that the added cost in en-
clave creation increases linearly. Through multiple
iterations of this experiment we observe the added
cost by increasing enclave sizes. As demonstrated,
this added cost becomes increasingly significant when
provisioning multiple enclaves exceeding 256 kb in
size. As mentioned in Section 2, enclaves are created
by issuing specially crafted functions for each page of
code and data being allocated inside enclave memory.
It is worth mentioning that we observed a significant
amount of page faults occurring during enclave cre-
ation, and it is reasonable to assume that this is also
contributing to the cost. Furthermore, the observa-
tions made about entry cost for buffer sizes less than
64 kb shown in Figure 2, is further corroborated by
the fact that for enclave sizes less than 64 kb the pro-
visioning costs are nearly identical.

Performance of Trusted Computing in Cloud Infrastructures with Intel SGX

For application software requiring low latency op-
eration it might be necessary to pre-provision en-
claves to offset this cost in latency. However, this
approach might cause additional problems with collo-
cating them in EPC memory if the individual enclaves
are sufficiently large.

4 DISCUSSION

From our experiments in Section 3, we have identified
several important performance idiosyncrasies of SGX
that should be considered when constructing SGX en-
abled cloud services: the cost of entering and exiting
enclaves, the cost of data copying, the cost of provi-
sioning new enclaves and the cost of memory usage.

As mentioned in Section 2, entry and exit proce-
dures do similar amounts of work in terms of cost. As
our experiments show, the most significant cost factor
of transitioning is the buffer size input as argument to
the transition either through entry or exit. In particu-
lar, we observed a steep rise in data copy cost when
buffer sizes are larger than 64 kb. Our recommenda-
tion is therefore that:

Recommendation 1. Applications should partition
its functional components to minimize data copied
across enclave boundries.

One possible component architecture that follows
the guideline of Recommendation 1 would be to co-
locate all functionality into one single enclave, mak-
ing it largely self-sufficient. An example a system fol-
lowing such an approach is Haven (Baumann et al.,
2014), which reduces the interface between trusted
and untrusted code by co-locating a larger part of
the system software stack inside a single enclave by
means of a library OS. The efficiency of this ap-
proach, however, directly contradicts the observation
we made in Section 3.2, where we measured the over-
head associated with enclave memory being paged
in and out to regular DRAM. Because the EPC is a
scarce resource, system software aggressively pages
out enclave memory not being used. However, as our
experiments show, the page fault handler is overea-
ger, and fails to fully utilize EPC memory exhaus-
tively. Because of security concerns, the kernel is not
given the exact faulting address of each enclave page
fault, and therefore does not make any assumptions as
to the memory access patterns. We therefore recom-
mend that:

Recommendation 2. The size of an enclave should
not exceed 64 kb.

Recommendation 3. Prior knowledge about ap-
plication’s memory consumption and access pattern
should be used to modify the SGX kernel module in
order to reduce memory page eviction.

As our experiment shows, enclave creation is
costly and time consuming. To hide some of this cost,
the underlying OS can pre-provision enclaves when-
ever usage patterns can be predicted. However, once
used, an enclave might be tainted with secret data.
Recycling used enclaves to a common pool can there-
fore potentially leeks secrets from one process to the
next: invalidating the isolation guarantees. We there-
fore recommend that:

Recommendation 4. Application authors that can
accurately predict before-the-fact usage of enclaves
should pre-provision enclaves in a disposable pool of
resources that guarantees no reuse between isolation
domains.

The cost of enclave creation must also factor in
the added baseline cost of metadata structures asso-
ciated with each enclave. Provisioning an enclaves
must at least account for its SECS, one TCS structure
for each logical core executed inside an enclave, and
one SSA for each thread performing AEX. (Costan
and Devadas, 2016) explains that to simplify imple-
mentation, most of these structures are allocated at
the beginning of a EPC page, wholly dedicated to
that instance. Therefore, it is not out of line to con-
sider an enclave with 4 logical cores, having 9 pages
(34kb) allocated to it, excluding code and data seg-
ments. Applications should consider the added mem-
ory cost of separate enclaves in conjunction with the
relative amount of available EPC. Furthermore, to off-
set the cost of having multiple enclaves, application
authors should consider security separation at a con-
tinuous scale. Some security models might be content
with role based isolation, rather than call for an ex-
plicit isolation of all users individually. We therefore
recommend that:

Recommendation 5. Application authors should
carefully consider the granularity of isolation re-
quired for their intended use, as a finer granularity
includes the added cost of enclave creation.

At the time of writing, the only available hardware
supporting SGX are the Skylake generation Core
chips with SGX version 1. As our experiments show,
paging has a profound impact on performance, and
a natural follow-up would be to measure the perfor-
mance characteristics of the dynamic paging support
proposed in the SGX V2 specifications. However,

673

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

as mentioned earlier, Intel has yet to release any in-
formation regarding the arrival of SGX V2 enabled
chips. The imminent 8th generation Kaby Lake chips
do not include support, and the earliest likely release
will therefore as part of Cannon Lake in Q4 2017.

SGX supports attestation of software running on
top of untrusted platforms, by using signed hard-
ware measurements to establish trust between parties.
These parties could be either locally with two distinct
enclaves executing on the same hardware, or remotely
by help of Intel’s attestation service. In the future, it
would be interesting, in light of the large cost of en-
clave transition demonstrated above, to examine the
performance characteristics of a secure channel for
communication between enclaves.

S RELATED WORK

Several previous works quantifies various aspects of
the overhead associated with composite architectures
based on SGX. Haven (Baumann et al., 2014) im-
plements shielded execution of unmodified legacy ap-
plications by inserting a library OS entirely inside of
SGX enclaves. This effort resulted in architectural
changes to the SGX specification to include, among
other things, support for dynamic paging. The proof
of concept implementation of Haven is only evalu-
ated in terms of legacy applications running on top
of the system. Furthermore, Haven was built on a
pre-release emulated version of SGX, and the perfor-
mance evaluation is not directly comparable to real
world applications. Overshadow (Chen et al., 2008)
provide similar capabilities as Haven, but does not
rely on dedicated hardware support.

SCONE (Arnautov et al., 2016) implements sup-
port for secure containers inside of SGX enclaves.
The design of SCONE is driven by experiments on
container designs pertaining to the TCB size inside
enclaves, in which, at the most extreme an entire li-
brary OS is included and at the minimum a stub in-
terface to application libraries. The evaluation of
SCONE is, much like the evaluation of Haven, based
on running legacy applications inside SCONE con-
tainers. While (Arnautov et al., 2016) make the same
conclusions with regards to TCB size versus memory
usage and enclave transition cost as (Baumann et al.,
2014), they do not quantify this cost. Despite this,
SCONE supplies a solution to the entry exit prob-
lem we outline in Section 3, where threads are pinned
inside enclaves, and do not transition to the outside.
Rather, communication happens by means of the en-
clave threads writing to a dedicated queue residing in
regular DRAM memory. This approach is still, how-

674

ever, vulnerable to theads being evicted from enclaves
by AEX caused by IPI as part of a page fault.

(Costan and Devadas, 2016) describe the archi-
tecture of SGX based on prior art, released developer
manuals, and patents. Furthermore, they conduct a
comprehensive security analysis of SGX, falsifying
some of its guarantees by explaining in detail ex-
ploitable vulnerabilities within the architecture. This
work is mostly orthogonal to our efforts, however,
we base most of our knowledge of SGX from this
treatment on the topic. These prior efforts lead
(Costan et al., 2016) to implement Sanctum, which
implements an alternative hardware architectural
extension providing many of the same properties
as SGX, but targeted towards the Rocket RISC-V
chip architecture. Sanctum evaluates its prototype
by simulated hardware, against an insecure baseline
without the proposed security properties. (McKeen
et al., 2016) introduce dynamic paging support to the
SGX specifications. This prototype hardware were
not available to us.

Ryoan (Hunt et al., 2016) attempts to solve
the same problems outlined in the introduction, by
implementing a distributed sandbox for facilitating
untrusted computation on secret data residing on third
party cloud services. Ryoan proposes a new request
oriented data-model where processing modules are
activated once without persisting data input to them.
Furthermore, by remote attestation, Ryoan is able to
verify the integrity of sandbox instances and protect
execution. By combining sandboxing techniques with
SGX, Ryoan is able to create a shielding construct
supporting mutually distrust between the application
and the infrastructure. Again, Ryoan is benchmarked
against real world applications, and just like other
prior work, does not correctly quantify the exact
overhead attributed to SGX primitives. Furthermore,
large parts of its evaluation is conducted in an
SGX emulator based on QEMU, which have been
retrofitted with delays and TLB flushes based upon
real hardware measurements to better mirror real
SGX performance. These hardware measurements
are present for EENTRY and EEXIT instructions,
however do not attribute the cost of moving argument
data into and out of enclave memory. Moreover,
Ryoan speculate on the cost of SGX V2 paging
support, although strictly based on emulated mea-
surements, and assumptions about physical cost.

ARM TrustZone is a hardware security archi-
tecture that can be incorporated into ARMv7-
A, ARMV8-A and ARMVE-M on-chip sys-
tems (Ngabonziza et al., 2016; Shuja et al,
2016). Although the underlying hardware design,
features, and interfaces differ substantially to SGX,

Performance of Trusted Computing in Cloud Infrastructures with Intel SGX

both essentially provide the same key concepts of
hardware isolated execution domains and the ability
to bootstrap attested software stacks into those
enclaves. However, the TrustZone hardware can only
distinguish between two execution domains, and
relies on having a software based trusted execution
environment for any further refinements.

6 CONCLUSION

Online services are increasingly relying on third-party
cloud providers to host sensitive data. This tendency
brings forth strong concerns for the security and pri-
vacy of data owners as cloud providers cannot fully
be trusted to enforce the restrictive usage policies that
often govern such data. Intel SGX provides hardware
support for general trusted computing in commodity
hardware. These extensions to the x86 instruction set
establish trust through remote attestation of code and
data segments provisioned on non-trusted infrastruc-
ture, furthermore guaranteeing the confidentiality and
integrity of these from potentially malicious system
software.

Prior efforts demonstrate the capabilities of SGX
through rigorous systems capable of hosting large
legacy applications securely inside enclaves. These
systems, however, do not quantify the exact cost as-
sociated with using SGX. This paper evaluates the mi-
cro architectural cost of entering and exiting enclaves,
the cost of data copying, the cost of provisioning new
enclaves and the cost of memory usage. From this,
we have derived five recommendations for application
authors wishing to secure their cloud-hosted privacy
sensitive data using SGX.

ACKNOWLEDGMENTS

This work was supported in part by the Norwegian
Research Council project numbers 231687/F20. We
would like to thank the anonymous reviewers for their
useful insights and comments.

REFERENCES

Anati, 1., Gueron, S., Johnson, S., and Scarlata, V. (2013).
Innovative technology for cpu based attestation and
sealing. In Proceedings of the 2nd international work-
shop on hardware and architectural support for secu-
rity and privacy, volume 13.

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A.,
Priebe, C., Lind, J., Muthukumaran, D., O’Keeffe, D.,
Stillwell, M. L., Goltzsche, D., Eyers, D., Kapitza,

R., Pietzuch, P., and Fetzer, C. (2016). Scone: Se-
cure linux containers with intel sgx. In /12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 689-703, GA. USENIX
Association.

Baumann, A., Peinado, M., and Hunt, G. (2014). Shielding
applications from an untrusted cloud with Haven. In
11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI ’14). USENIX — Ad-
vanced Computing Systems Association.

Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P.,
Waldspurger, C. A., Boneh, D., Dwoskin, J., and
Ports, D. R. (2008). Overshadow: A virtualization-
based approach to retrofitting protection in commod-
ity operating systems. In Proc. of the 13th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASP-
LOS XIII, pages 2—-13, New York, NY, USA. ACM.

Costan, V. and Devadas, S. (2016). Intel sgx explained. In
Cryptology ePrint Archive.

Costan, V., Lebedev, 1., and Devadas, S. (2016). Sanctum:
Minimal hardware extensions for strong software iso-
lation. In USENIX Security, volume 16, pages 857—
874.

Gjerdrum, A. T., Johansen, H. D., and Johansen, D. (2016).
Implementing informed consent as information-flow
policies for secure analytics on eHealth data: Princi-
ples and practices. In Proc. of the IEEE Conference
on Connected Health: Applications, Systems and En-
gineering Technologies: The Ist International Work-
shop on Security, Privacy, and Trustworthiness in
Medical Cyber-Physical System, CHASE ’16. IEEE.

Hunt, T., Zhu, Z., Xu, Y., Peter, S., and Witchel, E.
(2016). Ryoan: A distributed sandbox for untrusted
computation on secret data. In Proceedings of the
12th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’16, pages 533-549,
Berkeley, CA, USA. USENIX Association.

Johansen, H. D., Birrell, E., Van Renesse, R., Schneider,
F. B., Stenhaug, M., and Johansen, D. (2015). Enforc-
ing privacy policies with meta-code. In Proceedings
of the 6th Asia-Pacific Workshop on Systems, page 16.
ACM.

McKeen, E., Alexandrovich, 1., Anati, I., Caspi, D., John-
son, S., Leslie-Hurd, R., and Rozas, C. (2016). Intel®
software guard extensions (intel® sgx) support for
dynamic memory management inside an enclave. In
Proceedings of the Hardware and Architectural Sup-
port for Security and Privacy 2016, page 10. ACM.

Ngabonziza, B., Martin, D., Bailey, A., Cho, H., and Mar-
tin, S. (2016). Trustzone explained: Architectural fea-
tures and use cases. In Collaboration and Internet
Computing (CIC), 2016 IEEE 2nd International Con-
ference on, pages 445-451. IEEE.

Osborn, J. D. and Challener, D. C. (2013). Trusted platform
module evolution. Johns Hopkins APL Technical Di-
gest, 32(2):536-543.

Shuja, J., Gani, A., Bilal, K., Khan, A. U. R., Madani, S. A.,
Khan, S. U., and Zomaya, A. Y. (2016). A survey of
mobile device virtualization: taxonomy and state of
the art. ACM Computing Surveys (CSUR), 49(1):1.

TCG Published (2011). TPM main part 1 design principles.
Specification Version 1.2 Revision 116, Trusted Com-
puting Group.

675

Paper Il

®

Check for
updates

Performance Principles for Trusted
Computing with Intel SGX

Anders T. Gjerdrum®™), Robert Pettersen, Havard D. Johansen,
and Dag Johansen

Department of Computer Science, UIT The Arctic University of Norway,
Tromsg, Norway
anders.t.gjerdrum@uit.no

Abstract. Cloud providers offering Software-as-a-Service (SaaS) are
increasingly being trusted by customers to store sensitive data. Com-
panies often monetize such personal data through curation and analy-
sis, providing customers with personalized application experiences and
targeted advertisements. Personal data is often accompanied by strict
privacy and security policies, requiring data processing to be governed
by non-trivial enforcement mechanisms. Moreover, to offset the cost of
hosting the potentially large amounts of data privately, SaaS compa-
nies even employ Infrastructure-as-a-Service (IaaS) cloud providers not
under the direct supervision of the administrative entity responsible for
the data. Intel Software Guard Extensions (SGX) is a recent trusted
computing technology that can mitigate some of these privacy and secu-
rity concerns through the remote attestation of computations, establish-
ing trust on hardware residing outside the administrative domain. This
paper investigates and demonstrates the added cost of using SGX, and
further argues that great care must be taken when designing system
software in order to avoid the performance penalty incurred by trusted
computing. We describe these costs and present eight specific principles
that application authors should follow to increase the performance of
their trusted computing systems.

Keywords: Privacy - Security + Cloud computing
Trusted computing - Performance

1 Introduction

Pervasive computing and the ongoing Internet of Things (IoT) revolution have
led to many new mobile recording and sensory devices that record ever more
facets of our daily lives. Captured data is often analyzed and stored by complex
ecosystems of cloud hosted services. Storing and analyzing large amounts of data
are non-trivial problems. Handling personal data such as smart home monitoring
systems and health tracking, only adds the to this complexity as data processing
might be governed by strict privacy requirements [1].

© Springer International Publishing AG, part of Springer Nature 2018

D. Ferguson et al. (Eds.): CLOSER 2017, CCIS 864, pp. 1-18, 2018.
https://doi.org/10.1007/978-3-319-94959-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94959-8_1&domain=pdf

2 A. T. Gjerdrum et al.

The curation and analysis of privacy sensitive personal data on third-
party cloud providers necessitate the design of a new Software-as-a-Service
(SaaS) architecture that is able to enforce rigid privacy and security policies
[2] throughout the entire software stack, including the underlying cloud pro-
vided Infrastructure-as-a-Service (IaaS). Commodity hardware components for
trusted computing have been available for some time [3,4], but the functionality
of existing solutions has been limited to establishing trust and guarantees on the
integrity of running software, and rudimentary support for secure code execution
(e.g., Intel Trusted Execution Technology).

In 2015, Intel introduced the Software Guard Extensions [5] as part of their
sixth generation Intel Core processor micro architecture (codenamed Skylake).
Together with complementary efforts by ARM and AMD, SGX is making general
trusted computing a commodity, providing confidentiality, integrity and attesta-
tion of code and data running on untrusted third-party platforms. SGX is able
to deter multiple different software and physical attacks by establishing secure
execution environments, or enclaves, of trusted code and data segments inside
individual CPUs. While SGX is an iterative technology building upon previous
efforts, it is more general in functionality allowing code execution inside enclaves
at native processor speeds, a significant performance improvement over previ-
ous efforts. SGX is designed with backwards compatibility in mind, allowing
developers to port sensitive logic from existing legacy applications into secure
enclaves. These properties make SGX a compelling technology for cloud based
SaaS hosting privacy sensitive data on untrusted third-party cloud providers.
SGX is a proprietary technology and prior knowledge of its characteristics is
mostly based on limited documentation by Intel. In particular, little is known
about the performance of the computing primitives comprising SGX and how
developers should best utilize these to maximize application performance.

This paper provide an in-depth investigation into key performance traits of
the Intel SGX platform. We provide a performance analysis of its low-level mech-
anisms and primitives, and describe several non-obvious idiosyncrasies related
to threading, context switching, and memory footprint. From our observations,
we derive 1 principles for developing more efficient software on this platform.

The remainder of this paper is structured as follows: Sect.2 outlines the
relevant parts of the SGX micro architecture while Sect. 3 outlines the details of
our micro benchmarks. Section 4 provides an informed discussion of our findings
and a set of derived principles intended for developers of trusted computing
systems. Section 5 details relevant work before concluding remarks.

2 Intel Software Guard Extensions (SGX)

Intel’s new general trusted computing platform enables the execution of code
on untrusted third-parties at native processor speed. Moreover, the platform
preserves the confidentiality and integrity of code and data segments running
inside what is referred to as enclaves. This section details the core mechanisms
comprising SGX, building a foundation for the performance analysis detailed in
Sect. 3.

Performance Principles for Trusted Computing with Intel SGX 3

2.1 Enclave Creation

Enclave code and data are distributed to runtime systems in form of a shared
library which is bundled together with what the developer reference refers to
as the SIGSTRUCT data structure. During the compilation of an enclave, a
hash, or measurement, of each code and data segment executable within the
shared library is computed and stored together with a signature generated by
the developers private key. This bundle is then distributed to the target third-
party platform together with the corresponding public key. During initialization,
the signature is verified against the public key and the measurement is recalcu-
lated and compared with the corresponding value inside the SIGSTRUCT. If
the signature matches that of the public key and the integrity of the code and
data segments are preserved, the enclave is allowed to execute. This establishes
a guarantee that only the expected enclave code and data from the expected
enclave author are successfully able to run on the third-party.

2.2 Entry and Exit

Regular application threads are able to enter secure enclaves by invoking the
EENTER instruction on a particular logical core. The thread then performs a
controlled jump into the enclave code, similar in operation to a call-gate. Threads
can only enter enclaves from privilege level 3 (user level).

Software interrupts are prohibited when running in encalve mode. As a con-
sequence, no system calls are allowed within enclaves. Applications requesting
access to common Operating System (OS) resources such as 10, must there-
fore explicitly exit the enclave prior to invocation. The application developer
explicitly defines these transitions and, in the presence of a potentially malicious
OS, all such transitions, parameters to these and responses must be carefully
validated.

Although threads cannot be instantiated in enclave mode, SGX allows multi-
ple threads to enter the same enclave and execute concurrently. For each logical
core executing inside a particular enclave, a Thread Control Structure (TCS) is
required to keep track of thread specific context. Before instantiation, these data
structures must be provisioned and stored in the Enclave Page Cache (EPC),
comprising pages explicitly set aside for enclaves. The TCS contains an OENTRY
field specifying the entry point for the thread, loaded into the instruction pointer
upon entry. Stack regions are not explicitly handled by the SGX microcode, how-
ever, as Costan and Devadas [6] state, the stack pointer is expected to be set
to a region of memory fully contained within the enclave during entry transi-
tion. Parameters input to the developer-specified entry points are marshaled and,
once the transition is done, copied into enclave memory from untrusted memory.
Although not handled by SGX directly, parameter marshaling and stack pointer
manipulation are managed under the hood by the SDK implementation which
most application authors will use for enclave development.

Threads may transition out of enclaves by means of two different mechanisms,
either synchronously trough the explicit EEXIT instruction, or asynchronously

4 A. T. Gjerdrum et al.

by service of a hardware interrupt. Synchronous exists will cause the thread to
leave enclave mode, restoring the execution context to its content prior to enclave
entry. Asynchronous Enclave Exit (AEX) is caused by a hardware interrupt such
as a page fault event. In this case all threads executing on the logical core affected
by the interrupt must exit the enclave and trap down to the kernel in order to
service the fault. Before exit, the execution context for all logical cores executing
within the enclave is saved and subsequently cleared to avoid leaking information
to the untrusted OS. When the page fault has been serviced, the ERESUME
instruction restores the context and the enclave resumes execution.

2.3 Enclave Memory

During boot-up of the CPU, a contiguous region of memory called Processor
Reserved Memory (PRM) is set aside from regular DRAM. Divided into 4kB
pages, only accessible inside the enclave or directly by the SGX instructions,
this region of memory is collectively referred to as the EPC. Any attempts to
either read or write EPC memory from both privileged level system software or
regular user level applications are ignored. Moreover, any Direct Memory Access
(DMA) request to this region is explicitly prohibited, deterring physical attacks
on the system bus by potentially malicious peripheral devices. Confidentiality is
achieved through Intels Memory Encryption Engine (MEE), further preventing
physical memory inspection attacks as enclave data is encrypted at the CPU
package boundary on the system bus right after the L3 cache.

Much the same as regular virtual memory, EPC pages are also managed
by the OS. However, these are handled indirectly through SGX instructions
as EPC memory is not directly accessible. The OS is responsible for assigning
pages to enclaves and evict unused pages to regular DRAM. Through memory
management, the physical limit of 128 MB is evaded by swapping EPC pages
and as such there is no practical limit to the size of enclaves. The integrity
and liveness of pages being evicted are guarded by an axillary data structure
also contained within the PRM, called the Enclave Page Cache Map (EPCM).
The EPCM maintains the mappings between virtual and physical addresses of
PRM memory. Moreover, it maintains for each page an integrity check and a
liveness challenge vector. These precautions guard against a malicious OS trying
to subvert an enclave by either manipulating the address translation, explicitly
manipulating pages, or serving old pages back to the enclave (replay attacks). In
this memory model, only one enclave can claim ownership of a particular page
at one given moment, and as a consequence shared memory between enclaves is
prohibited. Enclaves are however allowed to read and write directly to untrusted
DRAM inside the host process’ address space, and therefore two enclaves residing
within the same host process are able to share untrusted memory.

Because stale address translations may be exploited to subvert enclave
integrity, the processor performs a coarse-grained Translation Lookaside Buffer
(TLB) shootdown for each page subject to eviction. Given a page fault event on a
particular thread executing inside an enclave, all threads executing on that same
logical core must perform an AEX, as described in Sect.2.2. In order to avoid

Performance Principles for Trusted Computing with Intel SGX 5

information leakage stemming from memory access patterns inside enclaves, the
lowermost 12 bits of the faulting address, stored in the CR2 registry are cleared.
SGX instructions explicitly support batching up to 16 page evictions together
at a time, thus curtailing the cost of AEX for each page fault inside an enclave.

2.4 Enclave Initialization

SGX allows the creation of multiple, mutually distrusting enclaves, on the same
hardware instance. These can reside in either a single process’ address space or
multiple. To instantiate enclave system software the OS, on behalf of the applica-
tion, invokes the ECREATE instruction. This causes the underlying microcode
implementation to allocate a new EPC page for the SGX Enclave Control Struc-
ture (SECS), identifying each enclave and storing per-enclave operational meta-
data. Moreover, physical pages are mapped to enclave SECS through the EPCM
structure. Before initialization is complete, each separate code and data segment
must be added to enclave memory explicitly through the EADD instructions.
Similarly, each TCS is added for each logical core expected to execute within
the enclave. Once this process is complete the OS issues the EINIT instruction
which finalizes initialization and compares the enclave measurement observed to
the contents of the SIGSTRUCT. Upon completion, a launch token is generated
by a special pre-provisioned enclave trusted by Intel, at which point the enclave
is considered fully initialized. Once this process is completed, no further mem-
ory page allocations may happen. Intels revised specifications for SGX version 2
includes the possibility for dynamic paging support by means of the EEXTEND
command. However, we refrain from further comment, as hardware supporting
these features have not yet been released at the time of writing.

Inversely, during teardown of an enclave, the opposite operation is performed.
The OS tags each page as invalid, by issuing the EREMOVE instruction. Prior
to this, SGX verifies for each page that no threads attributed to that page
are executing inside the enclave. Lastly, the SECS is destroyed once all pages
referring to it through the EPCM are themselves deallocated.

2.5 Enclave Attestation

In order for applications to securely host privacy-sensitive software components
on platforms outside of their administrative domain, we need to establish trust.
This can be achieved through remote attestation, a process in which the remote
party proves its correctness to the initiator. Assuming an enclave has been cre-
ated and initialized as outlined above on an untrusted platform, the entity wish-
ing to establish trust with this enclave issues a request for proof. The code
inside this enclave then requests a Quote from the hardware, which consists of
the enclave measurement, in addition to a signature from the hardware platform
key. This quote is then sent to the requesting party which can themselves val-
idate the measurement compared to the expected provisioned enclave. Lastly,
the quote is sent to Intel for verification through their Intel Attestation Ser-
vice, which validates the signature against their own private key. These two in

6 A. T. Gjerdrum et al.

combination prove to the requesting party that the expected code and data
segments are running on a valid SGX-enabled platform.

3 Experiments

The next generation of SaaS systems should be designed from the ground up to
utilize trusted computing features in a performance optimal way. Therefore,
we conduct a series of micro benchmark experiments on a SGX-enabled CPU to
fully understand the micro architectural cost of trusted computing on commodity
hardware. Our experimental setup consists of a Dell Optiplex workstation with
an Intel Core 15-6500 CPU @ 3.20 GHz with four logical cores and 2 x 8 GB of
DDR3 DIMM DRAM. Dynamic frequency scaling, Intel Speedstep and CStates
are disabled throughout our experiments to avoid inaccuracies. We set the PRM
size to its maximum allowed 128 MB to measure the peak theoretical perfor-
mance of the platform. Our experiments ran on Ubuntu 14.04 using the open
source kernel module by Intel implementing OS support for SGX'. Furthermore,
this module has been modified with instrumentation in order to also capture the
operational cost from the system perspective. Based on our knowledge regarding
SGX, we have derived a set of benchmarks conjectured to capture core aspects
of the trusted computing platform. It is worth noting that for all our exper-
iments, more iterations did not yield a lower deviation. We attribute this to
noise generated by the rest of the system that while subtle, becomes significant
at fine-grained time intervals.

Application Enclave

enclave_ecall()

/

"~ enclave_ecall()
t0_ocall()
/

get_time()

T t0_ocall()

At

- tl_ocall()

get_time()

t
|
|
|
|
|
|
|
l
|
$ T~ t1 ocall()

ANNAN

Fig. 1. Sequence of events involved in measuring time spent inside enclaves [7].

! https://github.com/0lorg/linux-sgx-driver.

https://github.com/01org/linux-sgx-driver

Performance Principles for Trusted Computing with Intel SGX 7

The current generation of SGX does not support the use of the RDTSC
instruction or any other native timing facilities inside enclaves. Intel has later
released a microcode update to counter this problem, allowing for the RTDSC
instruction to execute inside enclaves. We are however unsuccessful, at the time of
writing, in obtaining a firmware update specific to our SKU through the correct
OEM. Measurements performed throughout the experiments must therefore exit
the enclave for each point in time. Consequently, all measurements therefore
include the time taken to enter and exit the enclave, described as the sequence
of events detailed in Fig. 1.

3.1 Entry and Exit Costs

With SGX, SaaS applications are able to influence the size of their Trusted
Computing Base (TCB) by partitioning application logic between trusted and
untrusted execution domains. In order to quantify any potential performance
trade-off, we examine the associated cost of enclave transitions. An optimal
application arrangement should conciser the following trade-off depending on
the transition cost: A high cost of transition would necessitate a reduction in the
overall amount of transitions and mediating this cost will increase the amount of
logic residing within the enclave, thus expanding the TCB. A prominent example
at one end of the spectrum is Heaven [8], in which an entire library OS is placed
within a secure enclave. Furthermore, details in the Intel Software Developer
Manual? suggest that the cost of entering an enclave should also factor in the
cost of argument data copied as part of the transition into the enclave. There-
fore, if the cost of data input to an enclave is high, only data requiring explicit
confidentiality and trust should be placed within the enclave.

Figure 2 depicts the measured cost in millisecond latency, as a function of
increasing buffer sizes. The cost of entering an enclave is observed to increase
linearly with the size of the buffer input as the argument. It is worth mentioning
that only buffer input to the enclave is considered. The experiment does not
include output buffers or return values from enclaves.

Hosting a buffer inside enclave memory requires that the enclave heap is
sufficiently large. Since enclave sizes are final after initialization, we set the heap
size to be equally large for all iterations of the experiment. From the graph, we
observe that the baseline cost of entering an enclave quickly becomes insignificant
as the buffer size increases. This behavior is not surprising, as the overall cost
includes the cost of copying memory into the enclaves which invokes the MEE
for each page written to the enclave. A curious observation, however, is the fact
that the baseline cost only increases linearly for buffers larger than 64 kB. This
could be explained by enclaves less than 64 kB being fully provisioned into EPC
memory at startup. Whereas for large buffers the cost may be attributed to lazily
loaded enclave memory, triggering page faults during the buffer copy operation.
This aspect is explored in detail in the following experiment.

2 https:/ /software.intel.com /en-us/articles/intel-sdm.

https://software.intel.com/en-us/articles/intel-sdm

8 A. T. Gjerdrum et al.

300 T T T T T T T

250 - 4

200 - 4

150 4

Time (ms)

100 4

50 4

0 | | | | | |
0 65536 131072 196608 262144 327680 393216 458752

Buffer Size (byte)

Fig. 2. Enclave transition cost as a function of buffer size [7].

3.2 Paging

Another aspect to consider in the application trade off between TCB and enclave
transition cost, is the fact that an increase in TCB would cause an increase in
PRM consumption. Moreover, as stated in Sect.2.3, PRM is a fairly limited
resource compared to regular memory and the depletion of this resource will
cause system software to evict EPC pages more aggressively. As such, any appli-
cation utilizing SGX should consider carefully the cost of enclave memory man-
agement, more specifically the cost of page swapping between EPC and regular
DRAM. Figure 3 illustrates this overhead as observed by both the OS kernel and
inside the enclave.

The y-axis is the discrete cost in nano seconds, while the x-axis is time elapsed
into the experiment. The SGX kernel module has been instrumented to measure
the latency of page eviction denoted by the red dots, and the total time spent
in the page fault handler, represented by the black solid line.

From the enclave perspective, the green line denotes the user level instru-
mentation and represents time spent writing to a particular address in enclave
memory. As mentioned in the experimental introduction, measurement primi-
tives are unavailable inside enclaves, and all user level measurements therefore
include the cost of entry and exit, including a 4 byte word as parameter input
each way.

To induce page faults, the experimental enclave heap size is set to 256 MB,
double that of the of the physical PRM size made available by hardware. More-
over, we invoke write operations on addresses located within each 4kB page
sequentially along the allocated memory address space inside the enclave.

Performance Principles for Trusted Computing with Intel SGX 9
120000 T T T T T T
: : User level memory access
EPC kernel page fault
100000 - EPC kernel page eviction event
0 BO000 [
%]
o
C
©
S 60000 [
>
1)
C
£ 40000
20000 -
O i 1 1 L 1

0 2e+06 4e+06 6e+06 8e+06 1.2e+07

elapsed time

le+07

Fig. 3. Paging overhead in nano seconds as a function of time elapsed while writing
sequentially to enclave memory [7]. (Color figure online)

Recall from Sect. 2 that all memory for a particular enclave must be allocated
prior to initialization. We observe from Fig.3 that prior to enclave startup, a
cluster of page fault events occur at the beginning of the experiment, correspond-
ing with our prior observations. The system is attempting to allocate memory
for an enclave of 256 MB while only being physically backed by 128 MB of EPC
memory.

The events occurring at user level can easily be correlated with the obser-
vations made in the page fault handler. For each increase in latency observed
from inside the enclave, a corresponding cluster of evictions occur in the page
fault handler. Moreover, the total time spent in the page fault handler coin-
cides with the write overhead observed at user level. Parts of the overhead can
be attributed to the fact that page faults cause AEX events to occur for each
logical core executing within the enclave, as detailed in Sect. 2.

Moreover, we observe that the SGX kernel module is behaving conserva-
tively in terms of page evictions, and is not exhausting EPC memory resources.
As detailed in Sect.2, the 12 lower bits of the virtual page fault address are
cleared by SGX before exiting the enclave and trapping down to the page fault
handler. Hence, system software is not able to make any algorithmic assump-
tions about memory access patterns to optimize page assignment. Furthermore,
liveness challenge vector data might also be evicted out of EPC memory, causing
a cascade of page loads to occur from DRAM. As a side note, this experiment
only uses a single thread, and all page evictions only interrupt this single thread.

In light of the prior discovery, high performance applications should consider
tuning the SGX page fault handler to their particular use case, given that the

10 A. T. Gjerdrum et al.

application is able to predict a specific access pattern. Moreover, regardless of
access pattern the SGX page fault handler should be optimized to allow exhaus-
tive use of EPC, such that applications running inside enclaves may be less
affected by page faults in high memory footprint scenarios.

The initial setup of enclaves will retain large amounts of the pages in EPC
memory, alleviating the overhead of paging in certain situations. Moreover, this
reduces the execution overhead caused by threads performing AEX. Given that
the cost of enclave setup is still a large factor, by the prior statements, it might
be advantageous for application developers to pre-provision enclaves.

3.3 Enclave Provisioning

Modular programming and componentized system organization are paradigms
commonly used in modern distributed systems. Applications consisting of pos-
sibly multiple trust domains and third-party open source components should
separate the unit of failure and trust to reduce the overall system impact.

By enabling the creation of mutually distrusting enclaves, SGX is able to sup-
port a modular application architecture. Section 2 explains how enclaves might
communicate with the untrusted application through well defined interfaces,
lending itself to compartmentalization of software into separate enclaves. To
capture the cost of using SGX through the scope of a modular software archi-
tecture, Fig.4 illustrates the cost in terms of provisioning latency as a func-
tion of enclaves created simultaneously for differently sized enclaves. We observe
that the added cost of enclave creation increases linearly for all sized enclaves,

le+09 T T T T
: 4 kb :
9€+08 [16 kb ———— e feeeeeeens e
64 kb ——
8e+08 [e 256 kb B =
‘ 1mb —— :
g Te+H08 [t 4dmb o R o
2 6€+08 [rrrrrrrrrr rrrrrrrrrr rrrrrrr -
C
©
£ 5408 [B T -
>
g 4e+08
3
L 3e+08
2e+08
le+08
0
0 20 40 60 80 100
Enclaves

Fig. 4. Latency as a function of number of enclaves created simultaneously, for differing
sizes of enclaves [7].

Performance Principles for Trusted Computing with Intel SGX 11

becoming significant for enclaves larger than 256 kB. As detailed in Sect. 2,
enclaves are created by allocating each page of code and data to the enclave
prior to initialization. During this experiment we observed a significant amount
of page faults further attributing to the creation cost. This is expected as the
size of enclaves combined with number of instances increases above that of the
physically available PRM. Our observations about buffers less than 64 kB from
Sect. 3.1 still stands, as we observe that the provisioning cost for enclaves less
than 64 kB is nearly identical.

To offset the latency of creation for enclave instances, real-time applications
should consider pre-provisioning them. However, as prior experiments show co-
locating multiple enclaves in EPC memory might result in additional cost if the
memory footprint is large enough.

3.4 Multithreading

The curation and analysis of large amounts of data use concurrency as a measure
to speed up processing of data elements. This is especially true for embarrassingly
parallel computations. One example is the distinct count aggregate operation,
where a large corpus of data is sectioned into buckets and where each can be
counted in parallel. Such computations require parallelism built into the run-
time. Fortunately, SGX provides the ability to run multithreaded operations
inside the same enclave. However, implementation details reveal that applica-
tions with high memory footprint might suffer from extensive page faults, which
can act as a barrier and in the worst cases degrade performance significantly. Fur-
thermore, as we argued earlier, applications with multiple tenants might want to
isolate analytics execution into separate enclaves, and it is therefore important
to consider how threads are delegated inside of enclaves.

To induce a high memory footprint we use the same technique as in Sect. 3.2,
where we create an enclave which exceeds in size the amount of available physical
PRM. We expect some performance degradation for multiple threads running on
the same logical core executing within the enclave. When a page fault occurs, all
threads running on the particular core must exit the enclave and block until the
page fault is serviced. Our experiment therefore consists of two modes, one where
we pin all threads to separate logical cores, and one where we pin all threads to
a single core. Both experiments dedicate a single thread to interrogating every
4kB page of the heap memory causing regular page faults to occur. Our test
bench has 4 logical cores so our experiment runs a total of 4 threads simulta-
neously for both experiments. The remaining threads are just busy-waiting in a
loop, measuring the time taken in each iteration. Figure5 illustrates 4 threads
pinned to 4 different cores where core 0 is interrogating memory and causing page
faults to occur as illustrated in the green spikes. We observe that there is no co-
dependency between threads, and the 3 remaining threads are not impacted by
interrupts occurring on the former (Fig.6).

Our second experiment demonstrates the opposite. We force all 4 threads to
be pinned to a single logical core, and as a consequence we observe that thread

12 A. T. Gjerdrum et al.

10000 T T T T T T T
9000 ... 3 i i Coref —

= S : ‘ [| Corell (S
[| | corez —

R

7000 |- AREE I A]

latency (nano sec)

6000
5000
4000
3000 y :) ;
2 O 0 0 1 1 1 1 1 Il
o o o o o
Q S S S S ;5%
& Qbe, Q,\e @ of X
N N N N N <
~ ~ N ~ ~ g

elapsed time(nano sec)

Fig. 5. Execution overhead for multiple threads running on separate logical cores, with
page fault events occurring. (Color figure online)

10000
9000
8000
7000
6000
5000
4000
3000
2000

T
read
read
read
ad

WN O

latency (nano sec)

g? T T T T T T

elapsed time(nano sec)

Fig. 6. Execution overhead for multiple threads pinned to a single core, with page fault
events occurring.

0, who is causing interrupts to occur, is blocking all other threads from execut-
ing while servicing the costly page faults. It is worth noting that this is how
threads behave in regular process address space when faced with a hardware
interrupt. However, page faults are more costly to perform in enclave memory
and more frequent as previous experiments show due to memory footprint con-
straints. Secondly, we observe that thread scheduling behaves differently as well.

Performance Principles for Trusted Computing with Intel SGX 13

Context switches between threads executing on the same logical core happens
multiple magnitudes more infrequently than regular threads executing outside
of enclaves. We theorize that this is a design choice when implementing enclave
support, because interrupts in enclaves are especially costly. Any context switch
would have to be induced by the timer hardware interrupt triggering the thread
to exit the enclave, and so it makes sense increasing the scheduler time slices to
amortize this cost.

4 Discussion

From the micro benchmarks detailed in Sect. 3, we pinpoint several performance
traits of SGX that should be taken into consideration when designing trusted
computing-enabled cloud services. We classify these individually as the cost of
entering and exiting enclaves, the cost of data copying, the cost of provisioning
new enclaves, the cost of memory usage and the cost of multithreaded execution.

Section 2 explained that the transitioning cost is uniform in terms of cost
with respect to direction. Moreover, the most significant cost is attributed to
the buffer size input as argument to the transition. More specifically, from Fig. 2
we observe a sharp rise in cost when buffer sizes are larger than 64 kB. We conjec-
ture that this is an architectural boundary, where encalves are pre-provisioned,
by default, with a given number of pages. Future iterations of SGX may alter
this behavior, opting for an increase in pre-provisioned pages. Our principles
therefore state:

The Size Principle. The size of an enclave should not exceed the architecturally
determined pre-provisioned memory resources.

The Cohesion Principle. Applications should partition its functional compo-
nents to minimize data copied across enclave boundaries.

Following the latter principle, a possible component architecture would be
to co-locate all application logic into a single, self-sufficient enclave. Haven [8],
is a prominent example of this approach. By means of a library OS, a large
part of the system software stack is placed within a single enclave, reducing the
interface between trusted and untrusted code. However, this approach directly
contradicts the observation made in Sect.3.2 regarding the cost of having a
large memory footprint. Since the EPC is a limited resource, the SGX page
fault handler promptly pages out enclave memory not being used. However,
the paging experiment demonstrates that the available pool of EPC memory is
not exhausted, even in the presence of high memory contention. As detailed in
Sect. 3.2, the faulting address is not provided as part of the page fault event and
the page fault handler is therefore not able to make any assumptions about the
memory access patterns. We therefore state that:

14 A. T. Gjerdrum et al.

The Access Pattern Principle. Prior knowledge about application’s memory
consumption and access pattern should be used to modify the SGX kernel module
i order to reduce memory page eviction.

Our experiments have demonstrated that enclave creation is costly in terms
of provisioning latency. By pre-provisioning enclaves whenever usage patterns
can be predicted, the application is able to hide some of this cost. However, once
used, an enclave might be tainted with secret data. Recycling used enclaves to
a common pool can therefore potentially leek secrets from one domain to the
next; invalidating the isolation guarantees. We therefore state that:

The Pre-provisioning Principle. Application authors that can accurately
predict before-the-fact usage of enclaves should pre-provision enclaves in a dis-
posable pool of resources that guarantees no reuse between isolation domains.

The cost of enclave creation must also factor in the added baseline cost of
storing metadata structures associated with each enclave in memory. Provision-
ing enclaves must at least account for its SECS, one TCS structure for each
logical core executed inside an enclave, and one SSA for storing secure execution
context for each thread. [6] details that to simplify implementation, most of these
structures are allocated at the beginning of an EPC page wholly dedicated to
that instance. Therefore, enclaves executing on 4 logical cores may have 9 pages
(34kB) in total allocated to it, excluding code and data segments. Applications
should consider the added memory cost of separate enclaves in conjunction with
the relative amount of available EPC. Furthermore, to offset the cost of hav-
ing multiple enclaves, application authors should consider security separation
at a continuous scale. Some security models might be content with role based
isolation, rather than call for an explicit isolation of all users individually. We
therefore state that:

The Isolation Principle. Application authors should carefully consider the
granularity of isolation required for their intended use, as a finer granularity
includes the added cost of enclave creation.

Executing multiple threads from the same core inside a single enclave
degrades the concurrent performance by blocking execution when servicing a
page fault. Although regular non-enclave execution behaves similarly, the over-
head associated with enclave page faults becomes significant when memory foot-
print increases. Moreover, latency critical applications will suffer because of the
increased time slices of thread interrupts initially thought to amortize the cost of
exiting enclaves when switching contexts. From this we deduce that the number
of threads executing inside enclaves should never exceed the logical core count
for a given system. We therefore establish the following principle:

The Affinity Principle. Applications should not affinitize multiple threads to
the same core.

Performance Principles for Trusted Computing with Intel SGX 15

Section 3.1 demonstrates the cost of transitioning into and out of an enclave,
and it becomes evident that to reduce the transitioning overhead threads should
be pinned inside enclaves. Enclave threads should rather transport data out of
the enclave through writing to regular DRAM and similarly poll for incoming
data. We therefore state:

The Pinning Principle. Application authors should pin threads to enclaves to
avoid costly transitions.

The prior statements lead us to the following principle:

The Asynchrony Principle. All execution inside enclaves should be asyn-
chronous.

Threads should be pinned inside enclaves to amortize transition cost and
total thread count should not exceed logical core count. Application authors
must therefore be diligent in terms of assigning threads to enclaves. Applica-
tions might further isolate contexts based on either user or tenant in different
mutually distrusting enclaves, each of which requires a dedicated thread. Core
logic executing inside enclaves should remain responsive at all time, servicing
both incoming requests and processing data. We therefore state that rather
than allocating multiple threads to the same enclave, all execution should be
fully asynchronous. This furthermore has the added benefit of high resource
utilization improving overall application performance.

At the time of writing, the only available hardware supporting SGX are the
Skylake generation Core chips with SGX version 1. Our experiments demonstrate
that paging has a profound impact on performance and a natural follow-up
would be to measure the performance characteristics of dynamic paging support
proposed in the SGX version 2 specifications.

SGX supports attestation of software running on top of an untrusted plat-
form, by using signed hardware measurements to establish trust between parties.
For future efforts it would be interesting, in light of the large cost of enclave
transition demonstrated above, to examine the performance characteristics of a
secure channel for communication between enclaves.

5 Related Work

Several previous works quantify various aspects of the overhead associated with
composite architectures based on SGX. Haven [8] implements shielded execution
of unmodified legacy applications by inserting a library OS entirely inside of SGX
enclaves. This effort resulted in architectural changes to the SGX specification to
include, among other things, support for dynamic paging. The proof-of-concept
implementation of Haven is only evaluated in terms of legacy applications run-
ning on top of the system. Furthermore, Haven was built on a pre-release emu-
lated version of SGX, and the performance evaluation is not directly comparable
to real world applications. Overshadow [9] provides similar capabilities as Haven,
but does not rely on dedicated hardware support.

16 A. T. Gjerdrum et al.

SCONE [10] implements support for secure containers inside of SGX enclaves.
The design of SCONE is driven by experiments on container designs pertaining
to the TCB size inside enclaves, in which, at the most extreme an entire library
OS is included and at the minimum a stub interface to application libraries. The
evaluation of SCONE is much like the evaluation of Haven, based on running
legacy applications inside SCONE containers. While Arnautov et al. [10] make
the same conclusions with regards to TCB size versus memory usage and enclave
transition cost as Baumann et al. [8], the paper does not quantify this cost.
Despite this, SCONE supplies a solution to the entry-exit problem we outline in
Sect. 3, where threads are pinned inside the enclave, and do not transition to the
outside. Rather, communication happens by means of the enclave threads writing
to a dedicated queue residing in regular DRAM memory. This approach is still,
however, vulnerable to threads being evicted from enclaves by AEX caused by
an Inter Processor Interrupt (IPI) as part of a page fault.

Costan and Devadas [6] describe the architecture of SGX based on prior art,
released developer manuals, and patents. Furthermore, they conduct a compre-
hensive security analysis of SGX, falsifying some of its guarantees by explaining
in detail exploitable vulnerabilities within the architecture. This work is mostly
orthogonal to our efforts, yet we base most of our knowledge of SGX from this
treatment on the topic. These prior efforts lead Costan et al. [11] to implement
Sanctum, an alternative hardware architectural extension providing many of the
same properties as SGX, but targeted towards the Rocket RISC-V chip archi-
tecture. This paper evaluates its prototype by simulated hardware, against an
insecure baseline without the proposed security properties. McKeen et al. [12]
introduce dynamic paging support to the SGX specifications. This prototype
hardware was not available to us.

Ryoan [13] attempts to solve the same problems outlined in the introduc-
tion, by implementing a distributed sandbox facilitating untrusted computing
on secret data residing on third-party cloud services. Ryoan proposes a new
request oriented data-model where processing modules are activated once with-
out persisting data input to them. Furthermore, by remote attestation, Ryoan
is able to verify the integrity of sandbox instances and protect execution. By
combining sandboxing techniques with SGX, Ryoan is able to create a shielding
construct supporting mutually distrust between the application and the infras-
tructure. Again, Ryoan is benchmarked against real world applications, and just
like other prior work, does not correctly quantify the exact overhead attributed
to SGX primitives. Furthermore, large parts of its evaluation is conducted in an
SGX emulator based on QEMU, which has been retrofitted with delays and TLB
flushes based upon real hardware measurements to better mirror real SGX per-
formance. These hardware measurements are present for EENTRY and EEXIT
instructions, but do not attribute the cost of moving argument data into and out
of enclave memory. Moreover, Ryoan speculates on the cost of SGX V2 paging
support, although strictly based on emulated measurements and assumptions
about physical cost.

ARM TrustZone is a hardware security architecture that can be incorporated
into ARMv7-A, ARMv8-A and ARMv8-M on-chip systems [14,15]. Although the

Performance Principles for Trusted Computing with Intel SGX 17

underlying hardware design, features, and interfaces differ substantially to SGX,
both essentially provide the same key concepts of hardware isolated execution
domains and the ability to bootstrap attested software stacks into those enclaves
[16]. However, the TrustZone hardware can only distinguish between two execu-
tion domains, and relies on having a software based trusted execution environ-
ment for any further refinements.

6 Conclusion

SaaS providers are increasingly storing personal privacy-sensitive data about
customers on third-party cloud providers. Moreover, companies monetize this
data by providing personalized experiences for customers requiring curation and
analysis. This dilution of responsibility and trust is concerning for data owners
as cloud providers cannot be trusted to enforce the, often government mandated,
restrictive usage policies which accompany privacy-sensitive data.

Intel SGX is part of a new wave of trusted computing targeting commodity
hardware and allowing for the execution of code and data in trusted segments
of memory at close to native processor speed. These extensions to the x86 ISA
guarantee confidentiality, integrity and correctness of code and data residing on
untrusted third-party platforms.

Prior work demonstrates the applicability of SGX for complete systems capa-
ble of hosting large legacy applications. These systems, however, do not quan-
tify the exact micro architectural cost of achieving confidentiality, integrity and
attestation for applications through the use of trusted computing. This paper has
evaluated the cost of provisioning, data copying, context transitioning, memory
footprint and multi-threaded execution of enclaves. From these results we have
distilled a set of principles which developers of trusted analytics systems should
use to maximize the performance of their application while securing privacy-
sensitive data on third-party cloud platforms.

Acknowledgments. This work was supported in part by the Norwegian Research
Council project numbers 263248/070 and 250138. We would like to thank Robbert
van Renesse for his insights and discussions, and anonymous reviewers for their useful
insights and comments.

References

1. Gjerdrum, A.T., Johansen, H.D., Johansen, D.: Implementing informed consent as
information-flow policies for secure analytics on eHealth data: principles and prac-
tices. In: IEEE Conference on Connected Health: Applications, Systems and Engi-
neering Technologies: The 1st International Workshop on Security, Privacy, and
Trustworthiness in Medical Cyber-Physical System, CHASE 2016. IEEE (2016)

2. Johansen, H.D., Birrell, E., Van Renesse, R., Schneider, F.B., Stenhaug, M.,
Johansen, D.: Enforcing privacy policies with meta-code. In: 6th Asia-Pacific Work-
shop on Systems, p. 16. ACM (2015)

18

10.

11.

12.

13.

14.

15.

16.

A. T. Gjerdrum et al.

Osborn, J.D., Challener, D.C.: Trusted platform module evolution. Johns Hopkins
APL Tech. Digest 32, 536-543 (2013)

TCG Published: TPM main part 1 design principles. Specification Version 1.2
Revision 116, Trusted Computing Group (2011)

Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, vol. 13 (2013)

Costan, V., Devadas, S.: Intel SGX explained. In: Cryptology ePrint Archive (2016)
Gjerdrum, A.T., Pettersen, R., Johansen, H.D., Johansen, D.: Performance of
trusted computing in cloud infrastructures with Intel SGX. In: 7th Interna-
tional Conference on Cloud Computing and Services Science, CLOSER 2017.
SCITEPRESS (2017)

Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with Haven. In: 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2014). USENIX Advanced Computing Systems Association
(2014)

Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.: Overshadow: a virtualization-based approach
to retrofitting protection in commodity operating systems. In: 13th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, pp. 2-13. ACM, New York (2008)

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J.,
Muthukumaran, D., O’Keeffe, D., Stillwell, M.L., Goltzsche, D., Eyers, D., Kapitza,
R., Pietzuch, P., Fetzer, C.: Scone: secure Linux containers with Intel SGX. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), GA, pp. 689-703. USENIX Association (2016)

Costan, V., Lebedev, 1., Devadas, S.: Sanctum: minimal hardware extensions for
strong software isolation. In: USENIX Security, vol. 16, pp. 857-874 (2016)
McKeen, F., Alexandrovich, I., Anati, I., Caspi, D., Johnson, S., Leslie-Hurd, R.,
Rozas, C.: Intel® software guard extensions (Intel® SGX) support for dynamic
memory management inside an enclave. In: Hardware and Architectural Support
for Security and Privacy 2016, p. 10. ACM (2016)

Hunt, T., Zhu, Z., Xu, Y., Peter, S., Witchel, E.: Ryoan: a distributed sandbox for
untrusted computation on secret data. In: 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2016, pp. 533-549. USENIX Associa-
tion, Berkeley (2016)

Ngabonziza, B., Martin, D., Bailey, A., Cho, H., Martin, S.: Trustzone explained:
architectural features and use cases. In: 2016 IEEE 2nd International Conference
on Collaboration and Internet Computing (CIC), pp. 445-451. IEEE (2016)
Shuja, J., Gani, A., Bilal, K., Khan, A.U.R., Madani, S.A., Khan, S.U., Zomaya,
A.Y.. A survey of mobile device virtualization: taxonomy and state of the art.
ACM Comput. Surv. (CSUR) 49, 1 (2016)

Pettersen, R., Johansen, H.D., Johansen, D.: Trusted execution on ARM Trust-
Zone. In: 7th International Conference on Cloud Computing and Services Science
(CLOSER 2017) (2017)

Paper IV

Session 5: Privacy Goals and Stategies

WPES’18, October 15, 2018, Toronto, ON, Canada

SGX Enforcement of Use-Based Privacy

Eleanor Birrell't
Pomona College
Claremont, CA
eleanor.birrell@pomona.edu
Havard Johansen*
UIT The Arctic Univ. of Norway
Tromse, Norway
haavardj@cs.uit.no

ABSTRACT

Use-based privacy restricts how information may be used, making
it well-suited for data collection and data analysis applications in
networked information systems. This work investigates the feasi-
bility of enforcing use-based privacy in distributed systems with
adversarial service providers. Three architectures that use Intel-
SGX are explored: source-based monitoring, delegated monitoring,
and inline monitoring. Trade-offs are explored between deployabil-
ity, performance, and privacy. Source-based monitoring imposes no
burden on application developers and supports legacy applications,
but 35-62% latency overhead was observed for simple applications.
Delegated monitoring offers the best performance against mali-
cious adversaries, whereas inline monitoring provides performance
improvements (0-14% latency overhead compared to a baseline
application) in an attenuated threat model. These results provide
evidence that use-based privacy might be feasible in distributed
systems with active adversaries, but the appropriate architecture
will depend on the type of application.

KEYWORDS

Use-based privacy; privacy enforcement; SGX

ACM Reference Format:

Eleanor Birrell, Anders Gjerdrum, Robbert van Renesse, Havard Johansen,
Dag Johansen, and Fred B. Schneider. 2018. SGX Enforcement of Use-Based
Privacy. In 2018 Workshop on Privacy in the Electronic Society (WPES’18),
October 15, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3267323.3268954

*This work was done while Birrell was a graduate student at Cornell.

TSupported in part by AFOSR grant F9550-16-0250 and NSF grant 1642120.
iSupported by the Research Council of Norway project numbers 250138, 263248, and
274451.

SSupported in part by NSF CSR 1422544, NIST 60NANB15D327 and 70NANB17H181,
and gifts from Huawei, Facebook, and Infosys.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WPES’18, October 15, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5989-4/18/10...$15.00
https://doi.org/10.1145/3267323.3268954

Anders Gjerdrum?*
UIT The Arctic Univ. of Norway
Tromsg, Norway
anders.t.gjerdrum@uit.no

Dag Johansen*
UIT The Arctic Univ. of Norway
Tromse, Norway
dag@cs.uit.no

155

Robbert van Renessed
Cornell University
Ithaca, NY
rvr@cs.cornell.edu

Fred B. Schneider’

Cornell University
Ithaca, NY
fbs@cs.cornell.edu

1 INTRODUCTION

Current approaches to privacy in networked information systems
are poorly suited to modern applications, where information is col-
lected without user awareness, and data sharing and data analysis
are pervasive. Our work explores the feasibility of enforcing an
alternate view, sometimes called use-based privacy [7, 8, 26], which
equates privacy with preventing harmful uses.

Instead of requiring informed consent from data subjects, use-
based privacy assumes there has been a societal evaluation that
has identified harmful uses. This evaluation presumably will have
balanced potential harms and potential benefits of information use—
and evaluated the countermeasures in place to prevent potential
harms—to determine which uses should be deemed harmful. A
system that avoids harmful uses is then considered to be privacy-
compliant.

Use-based privacy differs from most previous views of privacy
in three key ways:

e Use-based privacy policies do not depend on the preferences
of the individual data subject but instead focus on collective
norms.

o Use-based privacy policies describe how information may
be used rather than limiting access or transmission.

o Use-based privacy policies impose restrictions on how both
raw data and derived data may be used, and therefore govern
information flow through a system.

The first aspect of use-based privacy is philosophically distinct
from approaches such as notice and consent [9]—which empha-
size informed consent by data subjects—and from technologies
like P3P [11] that enable users to express individual preferences.
That aspect is instead similar to the philosophy of contextual in-
tegrity [1, 27, 28], which defines privacy for personal information
relative to an appropriate context. Whether a context is appropriate
is presumed to be determined by socially-defined informational
norms, which might depend on time, location, purpose, and/or par-
ticipating principals. So contextual integrity, like use-based privacy,
moves away from user-defined policies and informed consent, focus-
ing instead on elimination of harmful uses (as defined by informa-
tional norms). The second and third aspects, however, distinguish
use-based privacy from contextual integrity. Contextual integrity
ignores how sensitive information is used as it flows through a
networked information system and thus ignores derived data; it

https://doi.org/10.1145/3267323.3268954
https://doi.org/10.1145/3267323.3268954

Session 5: Privacy Goals and Stategies

focuses on mediating individual communications and evaluating
whether each data transmission is authorized. These philosophical
differences between use-based privacy and alternate views render
existing technical solutions ill-suited for guaranteeing use-based
privacy.

To ensure policy-compliance, use-based privacy policies must
be enforced whenever a principal uses a value. This can be accom-
plished by (1) blocking unauthorized uses—prevention—or (2) log-
ging all uses—deterrence through accountability. Both approaches in-
volve monitoring accesses, and both require the monitor to have the
appropriate use-based privacy policy and to be trusted to enforce
that policy. The monitor gets the appropriate policy if use-based pri-
vacy policies are tied to the data whose use they govern as a policy
tag; policy tags have been explored previously (e.g., [13, 23, 25, 40]).
To guarantee that the monitor is trusted, however, we need some
means for monitoring behavior by service providers—principals that
receive and use data. Existing approaches to monitoring focus exclu-
sively on read/write access control [6, 22] or on systems under the
control of a single trusted authority [29, 34] and thus are unsuited
for enforcing use-based privacy policies in distributed systems.

Recent developments in trusted hardware—e.g., Intel’s Software
Guard Extensions (SGX) [10]—offer a new basis for placing trust in
a monitor or other program. Using SGX, an untrusted principal can
provide a remotely-authenticatable proof or quote that attests some
program is running or has produced a given output. In this paper,
we investigate the feasibility of using Intel’s SGX hardware as a
root of trust, and we explore how we might leverage that root to
implement use-based privacy. An overview of relevant SGX features
is given in Section 2.3.

We explore three possible architectures for enforcing use-based
privacy in distributed systems with adversarial service providers.
In our source-based monitoring architecture, data sources—trusted
principals that store user data—run the monitors. Applications
(run by service providers) request data from data sources; only
those applications that provide appropriate credentials (e.g., SGX
quotes) can gain access to sensitive data (data that is limited by
policy to particular uses). The source-based monitoring architec-
ture provides strong privacy guarantees. It is also easily deployed,;
application developers do not need to handle or interpret policies,
and enforcement is compatible with legacy applications. However,
this architecture exhibits poor performance and incurs significant
overhead for many applications. The architecture is described in
Section 3 and performance measurements are given.

The performance limitations of source-based monitoring lead us
to consider an alternative architecture called delegated monitoring,
which improves throughput and reduces latency by locating the
monitor at the service providers. Delegated monitors act as prox-
ies for local applications and use SGX quotes to prove to a data
source that they are instances of a valid monitor; local applications
use SGX to locally authenticate with the delegated monitor in or-
der to gain access to data that is limited by policy to particular
uses. The architecture provides the same strong privacy guaran-
tees while demonstrating significant performance improvements
over source-based monitoring. However, delegated monitoring is
less easily deployed than source-based monitoring, because service

156

WPES’18, October 15, 2018, Toronto, ON, Canada

providers must run a delegated monitor and because local appli-
cations must interact with that monitor and store cached policies.
This architecture is described in Section 4.

The primary shortcoming of the delegated monitoring architec-
ture is noticeable latency overhead for applications that handle lots
of data or that enforce policies for fine-grained data. To eliminate
this overhead, we consider a final architecture, inline monitoring,
which has the monitoring code inlined directly into a monitored
service provider application. This final architecture offers the best
performance, particularly for applications that handle lots of data
or fine-grained policies. However, the architecture imposes a signif-
icant burden on application developers—programmers must imple-
ment their code with calls to the inlined monitor—and this approach
is only able to guarantee privacy compliance in an attenuated threat
model. This architecture is described in Section 5.

Given the trade-offs between deployability, performance, and
privacy, we believe that the appropriate architecture will depend
on the type of application. However, we view our results as posi-
tive evidence of the feasibility of enforcing use-based privacy in
distributed systems using SGX.

2 BACKGROUND

Values originate from a data source: a data subject or a third-party
data store that is trusted by the data subject. Each data source
(1) associates an appropriate policy tag (specifying a use-based
privacy policy) with each value, thereby creating a tagged value,
and (2) distributes tagged values only in ways that ensure policy
compliance.

Tagged values are received and processed by service providers.
Service providers might themselves produce derived values, which
must be given associated policy tags. We do not assume that service
providers are trusted; they might attempt to use values in a manner
that does not comply with the associated use-based privacy policy.

2.1 Threat Models

Use-based privacy policies specify use restrictions. Adversaries are
service providers that try to use a tagged value in a manner that
violates these restrictions. Threat models characterize assumptions
about possible service provider behaviors:

Accountable Service Providers. Service providers are
rational principals that act to optimize some utility function;
they might knowingly violate use-based privacy policies
under certain circumstances, for example, to increase prof-
its. The utility function gives significant negative weight
to being detected in a policy violation, so an accountable
service provider will not run code that results in a policy
violation that some auditor might detect. It suffices to de-
tect violations in order to guarantee policy compliance by
accountable service providers.

Malicious Service Providers. Service providers here
might knowingly violate use-based privacy policies by run-
ning code that results in a policy violation—even if that
violation might be detected. Such behavior must be pre-
vented. A monitor that implements prevention is needed
to enforce policy compliance by malicious service providers.

Session 5: Privacy Goals and Stategies

Accountable service providers are the appropriate threat model
if service providers are subject to legal consequences or negative
public relations. In other cases (e.g., if service providers can’t be
reliably identified or if they are irrational), service providers might
not conform to the defining assumptions for accountable service
providers and should instead be considered malicious.

2.2 Policy Language

We can express use-based privacy as Avenance policies [5]. Ave-
nance is a policy language based on reactive information flow spec-
ifications [19]; Avenance policies are interpreted as sets of privacy
automata in which the current state of each automaton gives use au-
thorizations. Syntactically, Avenance policies are JSON encodings
that can be parsed as lists of automata.

In the Avenance policy language, authorizations in a state s are
specified by conjunctions and disjunctions of authorization triples:
predicates expressed as triples (I,P,E), where | identifies an invoking
principal, P denotes a purpose, and E identifies some executable
binary. An executable type E should be used when the authorization
depends only on the program binary; purpose type P should be
used when the authorization depends on some binary-independent
context. | may be defined as a single principal or may be a role, P may
be drawn from a hierarchy of purpose labels, and E may be specified
by a binary hash or by a type drawn from a hierarchy of program
labels. I, P, or E may alternatively be the wildcard *, which matches
all principals (resp., purposes, executables). Compound components
I, P, or E are constructed using unions and intersections.

An authorization triple (I, P, E) specifies a predicate that allows
a use if the use satisfies all three component sets: I, P, and E. A
privacy automaton authorizes a use if the use is authorized by the
conjunctions and disjunctions of authorization triples specified by
the current state. And an Avenance policy authorizes a use if the
use is authorized by all of its privacy automata.

Automata state transitions are associated with environmental
events—which update the current authorizations associated with a
particular value—or synthesis events—which define the current au-
thorizations for derived values. These transitions together express
reactive policies. For example, a user might specify that a derived
value (created by combining that user’s data with other users’ data)
may be used for any use, but the raw data may only be used to
produce aggregate values. A privacy automata for this policy is
shown in Figure 1. Reactive policies are highly expressive, since
they can specify how the set of authorized uses changes as data are
transformed. However, defining such policies is likely to require
careful reasoning about the information flow through various prob-
lems; the challenges of defining Avenance policies that instantiate
a high-level goal are beyond the scope of this work.

Avenance policies are implemented in Java by the avenance
package [4] and in C by the library 1ibav [3]. Each implementation
defines classes (resp. structs) AvAuthTriple, AvState, AvRule, and
AvPolicy. The class AvPolicy (resp. header file av.h) defines a
public interface for parsing, creating, modifying, and serializing
Avenance policies; an excerpt from the Java interface is shown in
Figure 2.

157

WPES’18, October 15, 2018, Toronto, ON, Canada

aggregate
start — (%, %, aggregate) *

Figure 1: Example Avenance policy.

public class AvPolicy {
public AvPolicy(String p){...}
public AvPolicy(List<AvRule> rls){...}

public List<AvRule> getRules(){...}
public void addRules(List<AvRule> rls){...}

public Boolean checkPermission(String i, String p,
String e){...}
public AvPolicy transition(String e){...}

Figure 2: The interface for the Java implementation of the
Avenance policy language.

2.3 Intel SGX

Intel’s Secure Guard Extensions (SGX) are an extension to the Intel
x86 instruction set architecture. SGX uses chip-specific hardware
keys to enable the construction of secure execution containers called
enclaves; each enclave is isolated and supports data sealing, local
attestation, and remote attestation.

Enclave Isolation. SGX enclaves provide confidentiality! and in-
tegrity for programs (and their data) running inside the enclave.
This isolation is enforced by processor reserved memory set aside
during boot. This memory is only accessible to SGX microcode and
programs running within enclaves, and it is partitioned into 4k
pages, which are collectively referred to as the enclave page cache
(EPC). Pages in the EPC are exclusively associated with a particular
enclave and can only be accessed by that enclave. Information that
is paged-out of the EPC into regular DRAM is encrypted under a
hardware-derived key.

Data sealing. SGX enclaves are uniquely identified by an SGX
Enclave Control Structure, which includes a measurement—a 256-
bit digest of a cryptographic log recording the build process for the
enclave. This measurement is used by the key generation instruction
(along with secrets embedded in the SGX chip) to produce hardware-
derived sealing keys. Sealing keys for an enclave depend on both
the measurement of the enclave and the hardware keys of the chip;
sealed data can only be decrypted by the enclave that originally
sealed it. Data sealing can provide confidentiality and integrity for
audit logs and for tagged values that will be temporarily stored or
handled outside the enclave.

Local Attestation. Enclave measurements are also used for lo-
cal attestation, which allows one enclave to authenticate the pro-
gram that is running in another enclave. Local attestation (between
enclaves) uses a hardware-signed (HMAC’d) copy of the enclave
!Side-channel attacks that compromise confidentiality of SGX enclaves have been

identified [20, 41]; we assume such attacks cannot undermine the confidentiality of
tagged values handled by authorized enclaves.

Session 5: Privacy Goals and Stategies

measurement—the report—combined with a Diffie-Hellman key ex-
change protocol to prove the identity of the program in one enclave
to the second enclave. Local attestation is used for local program
authentication.

Remote Attestation. SGX implements remote attestation using
local attestation together with a pair of dedicated, Intel-authored
enclaves: a provisioning enclave and a quoting enclave. The provi-
sioning enclave requests an attestation key from Intel and stores
it sealed under a key that can only be derived by Intel-authored
enclaves. The quoting enclave retrieves the attestation key, veri-
fies the measurement using local attestation, and signs the mea-
surement together with an optional message; the resulting signed
measurement-message pair, called a quote, can be verified by a
remote principal using Intel’s Attestation Service.

Remote Authentication. Because communications between an
application enclave and the quoting enclave are mediated by an
untrusted (i.e., non-enclave) application, quotes can be replayed
by any program. To mitigate this threat, our remote attestation
protocol requires the application enclave to fetch an application
secret (s1, s2) from the remote server. The server must be able to
authenticate valid secrets (in our implementation, sy = H(s1; kps),
where kpg is a secret key unique to data source DS). An application
enclave sets sy as the message used during measurement genera-
tion and then requests a quote with that measurement, resulting
in a quote g(s2) that contains that message s;. To perform remote
authentication, the application enclave sends the pair (s1, g(s2)) to
the remote server. The server authenticates the secret, authenti-
cates the quote with Intel’s Attestation Service, and then uses the
authenticated credentials to make an authorization decision.

3 ENFORCEMENT BY SOURCE-BASED
MONITORING

The first step in designing an enforcement architecture for use-
based privacy is to decide which principal will be trusted to per-
form the monitoring. Principals are either data sources or service
providers; a monitor can be run at either. Since data sources are
trusted, it is natural to have data sources run the monitors. In this
source-based monitoring architecture, SGX can be used to determine
which applications (running remotely at a service provider) are
authorized to use a given value. Assuming that sensitive values can
be processed only by a standard set of data analytics functions?,
a source-based monitor can distinguish between authorized and
unauthorized applications and, therefore, can enforce use-based
privacy in the presence of malicious service providers. Moreover,
with all policy enforcement performed at the data source, applica-
tion developers do not need to handle policies or explicitly interact
with policy mechanisms, and policy enforcement is compatible with
legacy applications.

3.1 Designing a Source-based Monitor

Applications run by a service provider are decomposed into an

2The popularity of common data analytics packages including Scipy and Scikit-learn
provides evidence in favor of this assumption. Nonetheless, if future work disproves
this assumption, the enforcement mechanisms discussed in this work will continue to
provide privacy guarantees in the presence of accountable service providers.

158

WPES’18, October 15, 2018, Toronto, ON, Canada

untrusted app—run natively—and zero or more enclave apps—run
inside SGX enclaves. Each app may issue requests (r, x, c) to a data
source, where r is the type of request (e.g., GET values), x is a
reference to the requested data (required for requests that retrieve
values), and c is a set of credentials. Traditional authentication
tokens—e.g., OAuth tokens or signed statements—can attest to the
invoker type | and the purpose type P; we use SGX quotes as cre-
dentials for the executable type E, as described in Section 2.3. Upon
receiving a request, the monitor validates the request: it retrieves
the requested values (and their policy tags) from the data store and
then constructs a policy-compliant response. This architecture is
depicted in Figure 3a, and details (discussed below) are shown in
Figure 4.

To construct a privacy-compliant response to a request for data,
the monitor invokes an authentication layer to authenticate the re-
quest credentials and determine the use type—an authorization triple
(1, P, E)—for the application that issued the request. We consider
two possible approaches. In a prevention-based monitor, the authen-
tication layer compares the authenticated credentials to a whitelist
of known credentials in order to determine the use type. This results
in a monitor that enforces privacy compliance with malicious adver-
saries. Note that a prevention-based monitor is implicitly assumed
to know the functionality of all enclave apps (and their quotes) in
advance, and the pre-determined mapping between quotes and use
types is assumed to be error-free. In a detection-based monitor, the
authentication layer creates a log entry—including an identifier for
the service provider, the authenticated credentials, and the claimed
use type—and then accepts the claimed use type. Because a service
provider could lie about the use type, a detection-based monitor
does not guarantee privacy compliance by malicious adversaries.
Observe, however, that the audit log ensures that incorrect use
types can be detected after the fact, so a detection-based monitor
is sufficient to guarantee privacy compliance in the presence of
accountable adversaries.

After determining the use type, the monitor retrieves the re-
quested values (and their policy tags) from the data store. It then
invokes a authorization layer, which compares the use type to the
use-based privacy policy defined by the policy tags—which defines
authorized use types—and constructs a policy-compliant response.
The details of how this response is constructed are implementation-
specific and are discussed in Section 3.2.

Since use-based privacy expresses restrictions on how derived
values may be used, the monitor is also responsible for computing
derived policies and associating them with derived values. To do so,
the monitor maintains a taint store that maps applications to the
Avenance policy(s) of the values that that application has received.
Each time the monitor sends values to an application, it adds the
corresponding policies to the taint store entry for that application.
When the monitor receives a new value x from an application, it
first invokes the authentication layer to authenticate the request
credentials and determine the use type (I, P, E) and the application
identifier aid. It then looks up the policy(s) p associated with aid in
the taint store, invokes the transition triggered by the executable
type E(aid) to produce a derived policy p’, constructs a tagged
value (x, p’), and stores the new tagged value in the data store.

Session 5: Privacy Goals and Stategies

WPES’18, October 15, 2018, Toronto, ON, Canada

) App Authent.
Monitor L
ayer
] N | 4
| N App |
2 4
Data Data
N
Store App Store
Service
Data Source Data Source
Provider

App | | App Authent. 1;11’1 R
ine
Layer Monitor
| 1
Monitor | |
4 |
T Data
' App
App Store
Service Service
Data Source
Provider Provider

(a) Source-based Monitoring

(b) Delegated Monitoring

(c) Inline Monitoring

Figure 3: An overview of the different architecture designs. The direction of each arrow indicates which principal instigates
communication between two components of the system. SGX enclaves are shown in gray; wide gray arrows indicate that a
program has authenticated using an SGX report (local attestation) or quote (remote attestation).

Authent. Layer

Author. Layer

Taint Store
aid — p

A
|

hd

Data Store
X p

Figure 4: Detailed design for a data source that implements
source-based monitoring,.

3.2 Implementation of Source-based
Monitoring

We implemented a data source that instantiates source-based moni-
toring on an existing mobile health platform called Ohmage [35, 39].
Ohmage is an open-source system designed to facilitate distributed
data collection and analysis for health studies and applications—an
ideal candidate for use-based privacy. It has been used for dozens
of real-world studies and also serves as the backend for several pro-
duction applications. Ohmage is designed with a classic three-tiered
architecture comprising a back-end database, a server component
implemented in the Spring Boot framework [38], and a family of
front-end mobile applications. Our data source is implemented in
7634 lines of Java on top of the existing Ohmage server.

Data Store. The backend of Ohmage is a secure, Open mHealth-
compliant data store that can be accessed through an APIL The data
store operates on datapoints, each comprised of header information
(id, schema, time, source) and a JSON-encoded body; datapoints
are classified by schema. The API allows operations for storing and

159

retrieving datapoints: GET datapoints/{id}, GET datapoints,
POST datapoints, and GET datapoints/scope. We extend the
Ohmage data store to store tagged values and enforce policy tags by
storing values as datapoints in Ohmage and storing tagged policies
in a local MySQL database.

Policy Association. Our implementation supports both discre-
tionary (data-subject defined) policies and mandatory (admin de-
fined) policies through a new POST policy API call, which allows
data subjects to modify the policy for their own datapoints and al-
lows admins to modify the mandatory policies applied to all stored
datapoints. The API has operations to modify the policy for a single
specified datapoint or update the set of preference rules—policies
that apply to all future incoming datapoints that match the specified
schema. Requests to store datapoints can also specify an existing
policy using the optional HTTP header AvPolicy.

Policy Granularity. Avenance policies could be associated with
atomic values (e.g., integers) or with structured values (e.g., health
records) under control of a single principal; policies could also be as-
sociated with aggregate objects containing information about many
different users. Our data source enforces policies at the granularity
of individual datapoints—in which case a request for multiple data-
points returns only the authorized datapoints—or at the granularity
of datasets—in which a request for multiple datapoints is authorized
only if all requested datapoints are authorized. The granularity can
be configured at runtime.

Policy Enforcement. To ensure privacy compliance, our data source
only accepts requests received over a TLS connection and accom-
panied by request credentials. Credentials might include an OAuth
token, a purpose label, and/or an SGX quote. OAuth credentials
are authenticated by the Ohmage authentication service and then
used to lookup the service provider identity spid—a unique iden-
tifier associated with an OAuth client secret. Purpose labels are
not authenticated; they are instead interpreted as credentials of
the form “U says P” for the user U defined by the OAuth token
and some purpose type P. SGX quotes are authenticated with the
Intel Attestation Service and then cached; the quote is also used to
define the application id aid. Finally, the data source determines

Session 5: Privacy Goals and Stategies

60000 T
50000 ‘\
40000

30000

Dalapo‘inl Granulari‘ty —_——
Dataset Granularity — &=

Latency (milliseconds)

20000 N

\\

S -
a0
X

1400

10000

>

= > =

400 600

800
Throughput (kbps)

1000 1200 1600

Figure 5: Latency and throughput of a data source with
source-based monitoring as a function of the number of
concurrent requests, ranging from 1 to 50 concurrent re-
quests. The solid black line shows performance when the
data source enforces datapoint-granularity policies and the
dashed blue line shows performance for dataset granularity.

the executable type: if configured for prevention-based enforce-
ment it compares the quote to a whitelist of trusted enclaves, if
configured for detection-based enforcement it accepts the claimed
enclave type after logging the request. The enforcement mode is
configured at runtime; if the mapping between credentials and use
types is not known in advance for all users and all applications, the
monitor should be configured for detection-based monitoring. The
data source then performs monitoring as described in Section 3.1.

3.3 Evaluating Source-based Monitoring

We deployed our data source with source-based monitoring on
Amazon EC2 T2.small instance with an Intel Xeon E5-2676 2.4 GHz
CPU and 2GB of memory running Ubuntu 14.04 LTS (kernel version
3.13.0).

To evaluate performance, we measured latency and through-
put of the data source responding to a GET datapoints/scope
request for 500 datapoints. We tested the performance as the data
source handled between 1 and 50 concurrent requests. As shown
in Figure 5, implementation choices—for example, whether poli-
cies were associated with values at the granularity of individual
datapoints or for the full dataset—did impact the performance. But
all implementations overloaded at a relatively low load (less than
50 simultaneous requests), after which throughput collapsed and
latency drastically increased.

We also measured the performance of source-based monitoring
for a common use case [5]: user preferences, privacy regulations,
and/or corporate privacy policies restrict uses for raw data but
allow derived values (e.g., anonymized values, encrypted values,
or aggregated values) to be used more liberally. One such policy is
depicted in Figure 1. A privacy-compliant service provider might
first request the raw data, generate the derived values, and then
use the derived values.

160

WPES’18, October 15, 2018, Toronto, ON, Canada

2 B Enforcement (DP)
Detection (DP)

® Enforcement (DS)

W Detection(DS)

Baseline

Figure 6: Performance of the PMSys averaging function with
source-based monitoring,.

Service Provider

Enclave App
O (GET p, ca)

@ (GET P Cas ce)

Data Source

App

[©OX

@ POST Avg(v)

© 201 CREATED

® GET avg
© Avg(v)

Figure 7: Protocol for the PMSys averaging function in a
source-based monitoring architecture.

To evaluate performance for this use case, we ported one such
application, called PMSys [32, 33], to run on the source-based mon-
itoring architecture. PMSys is a mobile and web-based application
developed jointly at Simula Research Laboratory and UIT The Arc-
tic University of Norway that performs physiological evaluation
and training-load personalization for soccer players. PMSys collects
data about player mood, sleep patterns, physical fitness, and injuries
and displays aggregate statistics (including average) to authorized
coaches. These data are subject to a contractually-defined privacy
policy negotiated with the players (who all are members of elite
clubs and national teams in Norway, Sweden, and Denmark) and
to relevant national and EU privacy laws that restrict data use and
data sharing.

We measured the end-to-end latency of the PMSys averaging
function on synthetic data matching the PMSys data collected for
one month.? To eliminate network bottlenecks, we ran our data
source on a dedicated Amazon EC2 R4.large instance with an Intel
Xeon dual-core E5-2686 2.3 GHz CPU and 15GB of memory running
Ubuntu 14.04 LTS (kernel version 3.13.0). We deployed the applica-
tion on an OptiPlex 5040 with an SGX-enabled Intel Core i5-6500
3.20 GHz CPU and 16GB of memory running Ubuntu 14.04 LTS
(kernel version 4.4.0). As shown in Figure 6, this averaging function

3Using actual data from the production system would have been incompatible with
the existing terms of service and Norwegian data protection laws.

Session 5: Privacy Goals and Stategies

experiences 35-62% overhead compared to a baseline averaging
function with no policy enforcement. However, poor performance
is unsurprising given the number of round-trips required; as shown
in Figure 7, this averaging function requires three round trips to
the server in order to enable the source-based monitor to mediate
access to the derived (average) value. Note that for the experiments
with datapoint (DP) granularity, the overhead due to logging causes
detection-mode to be more expensive than enforcement mode—so
that design choice would be reasonable only in cases where pre-
determining the use type of some apps is infeasible. Dataset (DS)
granularity generates shorter log entries, reducing the overhead
for enclave exit and log writing and thereby rendering the perfor-
mance difference between detection-mode and enforcement-mode
negligible.

4 ENFORCEMENT BY DELEGATED
MONITORING

To mitigate the throughput bottleneck imposed by the monitor in
a source-based monitoring architecture, we turn to an alternative
design. In a delegated monitoring architecture, service providers
run the monitors in dedicated SGX enclaves, which enables each
monitor to authenticate itself to the data source. We assume that
there will only be a small number of implementations of delegated
monitors, so a data source can whitelist the credentials for dele-
gated monitors to ensure that tagged values are shared only with
valid instances of a delegated monitor. SGX is used here also to
locally determine which applications run by the service provider
are authorized to use values, and it is used to provide confidentiality
and integrity for tagged values handled by a delegated monitor. As
before, we assume that sensitive values can only be processed by
a standard set of data analytics functions, so a delegated monitor
can distinguish between authorized and unauthorized applications
and, therefore, can enforce use-based privacy in the presence of
malicious service providers.

A delegated monitoring architecture requires each service pro-
vider to run a monitor. Because each monitor is responsible for
mediating the requests from just one service provider, the delegated
monitoring architecture eliminates the performance bottleneck in-
curred by a source-based monitor. This architecture also offers
an opportunity to mitigate the second performance drawback of
source-based monitoring: the number of round-trips required for a
typical application. In the source-based architecture, it is necessary
to send all derived values to the data source, because the monitor
(run by the data source) needs to mediate all requests, including re-
quests for derived values. Because a delegated monitor is run locally
by a service provider, those round trips are no longer necessary.
Instead policies pertaining to derived values can be determined by
the local monitor, and derived tagged values can be cached locally
using SGX sealing. This design improves performance at the cost
of introducing a burden on application developers, who must now
handle tagged values and must modify any legacy applications.

4.1 Designing a Delegated Monitor

Delegated monitors run by a service provider act as a proxy for
untrusted applications: they issue requests to a data source and

161

WPES’18, October 15, 2018, Toronto, ON, Canada

Service Provider

O(r, x, ca)
&(r, x, cm)
S (v, p)
@ Auth(v, p;cq)
®(m, cq, eid)
© ce.

@ Auth(m;cqa, ce)

@ Auth(m’; cg)

Figure 8: Example interactions with a delegated monitor.

they mediate messages to and from enclave applications. This ar-
chitecture is depicted in Figure 3b, and an example sequence of
interactions is depicted in Figure 8. The design of the delegated
monitor is the same as the source-based monitor design depicted
in Figure 4.

Delegated monitors accept requests (r, x, ¢4) from untrusted ap-
plications, where r is the type of request (e.g., GET values), x is
a reference to the requested data (required for requests that re-
trieve values), c, is a set of invoker credentials (e.g., message @
in Figure 8). A monitor then replaces the credentials ¢, with a set
of monitor credentials ¢, and issues the modified request @ to a
data source in the form (r, x, ¢;;,). Upon receiving the request, the
data source authentication layer checks the monitor credentials and
then issues a response @. After a monitor receives a response from
a data source, it mediates the response to enforce policy compliance.
If the response contains no tagged values (e.g., an acknowledgment),
then it forwards the response to the untrusted application. If the
response contains tagged values (v, p), then the monitor invokes an
authorization layer, which compares the use type of the untrusted
application (I, P, null)*—determined by the internal authentication
layer from the application credentials c¢,—to the use-based privacy
policy defined by the policy tags and constructs a policy-compliant
response @ Auth(v, p;cq). The details of how this response is con-
structed depend on the granularity of the policy tags returned by
the data source, but the monitor forwards authorized values to the
untrusted application in plaintext and encrypts all other values
using an SGX sealing key.’

Delegated monitors also mediate messages between untrusted ap-
plications and trusted applications. Communication is always initi-
ated by an untrusted application, which sends a message (m, cq, eid)
where m is either a set of tagged values or sealed tagged values, ¢,

“Note that the use type cannot define an executable type because untrusted applications
do not run inside SGX enclaves and therefore cannot produce the necessary credential—
a quote—for an executable type E.

5This design eliminates unnecessary round-trips to the data source by caching en-
crypted copies of tagged values with any application that is not authorized to use
those values. This caching might violate a use-based privacy policy unless we interpret
policies as allowing encrypted copies of tagged values to be used by any principal in
any way. We consider such an interpretation consistent with existing user preferences
and legal requirements.

Session 5: Privacy Goals and Stategies

is a set of invoker credentials, and eid is an enclave application (e.g.,
message @ in Figure 8). The monitor authenticates the invoker
credentials to determine the invoker type | and purpose P, and then
authenticates the enclave application eid ® and determines the
executable type E. It then invokes the authorization layer, which
compares the use type (I, P, E) to the use-based privacy policy de-
fined by the (decrypted, if necessary) policy tags, constructs a policy
compliant message @ Auth(m;cq, ce) (using SGX sealing, if nec-
essary), and forwards the resulting message to enclave eid. It also
updates the taint store entry for eid to include the policies for any
tagged values sent to eid in plaintext. When the monitor receives a
response—a set of values @ m’—it looks up the policy p associated
with eid in the taint store, invokes the transition triggered by the
executable type E to produce a derived policy p’, and constructs
a new set of tagged values from m’ and p’. Finally, it invokes the
decision engine to determine whether p’ authorizes the untrusted
application (I, P, null), constructs a policy compliant response 9
Auth(m’; cq) (using SGX sealing, if necessary), and forwards that
response to the untrusted application.

4.2 Implementation of Delegated Monitoring

Data Source. We modified our data source to work in concert
with delegated monitoring. It retains the same data store and policy
association API as in the source-based monitoring architecture,
and it, too, can be configured to construct tagged values at either
datapoint granularity or dataset granularity.

Instead of mediating requests to enforce privacy compliance, the
modified data source uses an authentication layer to only accept
requests over TLS from delegated monitors. The data source au-
thentication layer authenticates credentials (s1, g,) as describe in
Section 2.3 and determines the use type E using the same authenti-
cation mechanism—either prevention-based or detection-based—as
the source-based monitor in Section 3. If the requester successfully
authenticates as a delegated monitor—denoted by the executable
type E = policyrm—the data source returns the requested tagged
values.

Delegated Monitor. We implemented a delegated monitor in 1149
lines of C/C++ that runs as a dedicated SGX enclave. On initial-
ization, the monitor establishes its credentials (s1, g, e) for use in
remote program authentication, as described in Section 2.3: it re-
trieves an application secret (s1, s2) from the data source, generates
a quote g with message sy, and defines E = policyrm. All subse-
quent requests to the data source are sent over TLS using a version
of the mbedtls client ported to run inside an SGX enclave [42];
these request include the monitor credentials as a message header.

Policy Granularity. Like the source-based monitoring implemen-
tation, our implementation of delegated monitoring supports pol-
icy tags at two different granularities: individual datapoints and
datasets.

Policy Enforcement. For efficiency, our delegated monitor exclu-
sively implements prevention-based monitoring; it determines use
types (I, P, E) by comparing invoker and enclave credentials to a
whitelist of known types.

162

WPES’18, October 15, 2018, Toronto, ON, Canada

60000

Datapo‘im Granulan‘ty —_——
Dataset Granularity =— &=

50000

40000

30000

Latency (milliseconds)

20000

10000

&
- e — %+ =+ — e —e

0 i
0 200 400 600 800 1000 1200 1400
Throughput (Kbps)

1600

Figure 9: Latency and throughput of a data source with
client-side monitoring (delegated monitoring or inline mon-
itoring).

2 M Enforcement (DP)
1.75 Detection (DP)

M Enforcement (DS)
1.5
M Detection(DS)

125 Baseline

Time (s)

0.75

0.25

Figure 10: Performance of the PMSys averaging function
with delegated monitoring.

4.3 Evaluating Delegated Monitoring

We deployed our data source with delegated monitoring on the
same Amazon EC2 instances and the same local client that we used
to evaluate source-based monitoring.

We evaluated the performance of the data source in the delegated
monitoring architecture by reproducing the latency and through-
put experiment we ran for the source-based monitoring architec-
ture. The simplified authentication layer run by the data source
eliminates the throughput bottleneck incurred by a source-based
monitor; this improved performance is evident for both datapoint
granularity and dataset granularity (Figure 9). Observe that imple-
menting policy association at the granularity of datasets results in
a moderate increase in throughput and a significant decrease in
latency, as compared to the datapoint-granularity implementation.

To evaluate the performance of the delegated monitor for the
common aggregate-then-use case, we ported the PMSys application—
which requests values, computes the average in an SGX enclave,
and then uses the average in an untrusted application—to run in
the delegated monitoring architecture. The reduced number of

Session 5: Privacy Goals and Stategies

Enforcement:
raw, AE

Destroy
Enclaves

reate-report

Compute

average

AE Entry
Enforcement:
Initialization avg, untrusted

SSL setup

(a) Datapoint granularity

WPES’18, October 15, 2018, Toronto, ON, Canada

Enforcement:
raw, AE

Destroy
Enclaves

Create-report

Compute

average

AEEntry Enforcement:
Initialization avg, untrusted

SSLsetup

(b) Dataset granualarity

Figure 11: Breakdown of the latency of the PMSys averaging function with delegated monitoring.

round trips significantly improves the performance of the averaging
function, as compared to the source-based monitoring architecture
(Figure 10); there is a 3% overhead for dataset-granularity and the
overhead is cut in half for datapoint-granularity enforcement. Sig-
nificant components of the remaining overhead are due to the cost
of sealing cached values (Figure 11). The majority of the latency is
due to enclave initialization, SSL negotiation, and fetching the raw
data; these costs are fixed. The majority of the remaining latency
can be attributed to the cost of enforcing policy compliance when
caching raw data with the untrusted application (which requires
sealing the data) and when transferring cached, raw data to the
averaging enclave (which requires unsealing the data). This cost is
likely to increase for applications that handle more data (much of
the difference in latency between datapoint and dataset mode is due
to the increase space required to store policies at the granularity of
individual datapoints).

5 INLINE MONITORING

To eliminate the latency overhead imposed by sealing cached tagged
values, we propose yet a third design. In an inline monitoring ar-
chitecture, the service provider performs monitoring inline with a
monitored application. The inline monitor provides an API of moni-
tor calls, and each service provider augments their application code
with appropriate calls to that APL The inline architecture enables
applications to process tagged values within a single enclave, elimi-
nating the need to seal cached values, but it introduces a significant
burden on application developers, who must now instrument their
code with monitor calls.

To ensure policy compliance, a data source must send tagged
values only to correctly-inlined applications running inside SGX en-
claves. With many correctly-inlined applications, a data source can-
not be expected to maintain a database identifying all. Prevention-
based monitoring—in which the data source authentication layer
maintains a whitelist of authorized enclaves—is therefore infea-
sible.® Instead, we focus on detection-based monitoring, and we
The preceding architectures do not have this constraint. In either a source-based

monitoring architecture or a delegated monitoring architecture, all service providers
might use a common set of data analysis enclave applications to manipulate tagged

163

design and implement an inline monitor that will ensure privacy
compliance by accountable service providers. Note that this design
effectively places trust in application developers; incorrect annota-
tions due to developer errors might result in policy violations that
will only be detected after the fact.

5.1 Designing an Inline Monitor

An inline monitor should handle policies for tagged values, and
it should provide an API with calls for storing polices, enforcing
policies, and generating policies for derived values. We therefore
designed an inline monitoring library that enables service providers
to add policy monitoring code to existing enclave applications.

On initialization, the monitor creates a policy store, which stores
tagged values; tagged values can subsequently be added to or
deleted from the policy store. The monitor automatically computes
policies for derived values based on program annotations, which
label the executable type E of the function that generates the de-
rived value, and adds derived tagged values to the policy store.
Observe that there is no authentication of the executable type E;
however, an application is only considered to be correctly-inlined if
all derivation functions are annotated with the correct executable
type E.

The inline monitor provides monitor calls that should be used to
label sections of code that implement particular executable types
and annotations that should be invoked when tagged values are
used. When a tagged value is used, the inline monitor enforces
the associated policy; the details are implementation-specific, but
might use either prevention-based or detection-based enforcement.
Again, there is no assurance that these labels are correct, but an
application is only considered to be correctly-inlined if all uses are
correctly labeled.

To use the inline monitor, a service provider adds monitor calls
to their application code. Correctly-monitored code must initialize
the monitor, must add all tagged values to the policy store, must

values; in a delegated monitoring architecture, the data source must also authenticate
the delegated monitor, but each service provider runs an instance of the same (or one
of a small number of) monitor enclave, so prevention-based enforcement is a feasible
option.

Session 5: Privacy Goals and Stategies

WPES’18, October 15, 2018, Toronto, ON, Canada

polstore * init_polstore(int m, char *I)

Initialize a polstore with enforcement mode m and logfile name
L

int store_policy(polstore *s, void *v, char *p)

Create a polstore entry in s for the value at location v and
associate it with policy serialized as p.

pol * retrieve_policy(polstore *s, void *v)

Return the policy from s associated with the value at location
v.

int delete_policy(polstore *s, void *v)

Delete the entry associated with v from polstore s.

int check_policy(polstore *s, void *v, char *i, char *p, char *e)

Return a boolean indicating whether the use (i, p, €) is currently
permitted by the policy associated with v.

void change_use(polstore *s, char *i, char *p, char *e, int b)

Add (if b = 1) or remove (if b = 0) use type (i, p, e) from the set
of current uses for polstore s.

void *use(polstore *s, void *v)

Use the value v for the current use(s) defined in polstore s.

int trans(polstore *s, char *i, char *p, char *t, int n, void *ins[],
void *0)

Use the n values ins[] for use (i, p, t), where t is a transitions
type, and associated the derived policy with the output stored
in o.

Figure 12: Monitoring API for our inline monitor implementation.

correctly label all sections of code according to their use type, and
must label all uses of tagged values. To receive values from a data
source, an application must perform remote program authentication
and must provide credentials that authenticate the service provider.
The data source authentication layer is identical to that used in the
delegated monitoring architecture when configured for detection-
based monitoring: it authenticates the credentials, creates a new
log entry, and then returns the requested tagged values.

5.2 An Implementation of Inline Monitoring

We implemented an inline monitor as a C library in 2701 lines of
code; it can be compiled to run inside SGX enclaves. The full API
supported by our implementation is given in Figure 12.

Inline Monitor. The inline monitor implements the policy store
as an in-memory list; it uses the memory address as an identifier
for a value and maps addresses to policies. Tagged values can be
added or removed from the policy store using API calls store_policy
and remove_policy. Derived values should be added to the policy
store using the transition call trans, which automatically defines
the derived policy based on the declared inputs and synthesis event
and which associates the derived policy with the derived value in
the policy store.

When a tagged value is used, that use should be accompanied
with a monitor call use that will enforce privacy compliance. This
enforcement can be prevention-based or detection-based; details
are discussed below. Authorization decisions are determined by
the current set of use types. Uses are labeled using change_use to
mark the beginning and end of code segments that implement a
particular use and use use to indicate when particular tagged values
are used.

The inline monitor also includes a check_policy call; a policy-
compliant application that uses the inline monitor in prevention
mode should call check_policy immediately prior to any call to use
and only proceed if the use is authorized.

To write a new log entry, the monitor encrypts the log entry
using SGX sealing and then exits the application enclave to write
the encrypted entry to the logfile.

Policy Granularity. Our inline monitor can be deployed to en-
force privacy compliance at any level of granularity. The application
developer may choose what granularity to add tagged values to the
policy store.

Policy Enforcement. An inline monitor can either prevent unau-
thorized uses—using the program annotations as use types—or
simply log all interactions with the monitor; our implementation
supports both and can be configured using a compiler flag. Since
the data source implements detection-based monitoring, this is an
implementation choice that can be configured for performance op-
timization or to minimize programmer burden; it has no effect on
the privacy guarantees provided.

When the monitor is configured with logging, it generates a
secure audit log that contains a record for each invocation of a
monitor call that affects the state of the monitor—store_policy,
delete_policy, trans, and change_use—and each time enforcement
occurs—each invocation of use. A record contains the monitor call,
the arguments to the monitor call, and a record id (a counter that
is increased with each record). Each entry is encrypted using SGX
sealing and then written to a logfile stored in the local file system.
Log records cannot be modified because SGX sealing ensures in-
tegrity, and the counter ensures that log records cannot be deleted.
Note that an auditor uses the application to retrieve (and unseal) the
audit log—the correctness of this function is ensured because the
data source logs the application quote—and the retrieval function
includes the current counter value, so truncations of the audit log
can also be detected.

5.3 Evaluating Inline Monitoring

The inlined applications are compatible with the data source imple-
mented for delegated monitoring, so the data source exhibits the
same performance shown in Figure 9.

To evaluate the performance of the inline monitor, we ran a series
of microbenchmarks that evaluate the costs of various library calls.
These results are shown in Figure 13. We find that the detection-
based implementation has higher latency due to the additional cost
of encrypting log entries with SGX sealing, exiting the enclave,

164

Session 5: Privacy Goals and Stategies

300000

250000
200000
o
0
0 150000 =
g
o
100000
50000 -
- - | _
0 ﬁ = E= ==
.)
& 0 5 A &
9 9 \ < <
o 5% N 7 & &7
& béz, @ & e x® <O
3 E S

Figure 13: Performance of inline monitoring library calls.
Results with logging are in dark gray; results with
prevention-based enforcement are in light gray.

2 B Enforcement (DP)
Detection (DP)
MWEnforcement (DS)

M Detection(DS)

Baseline

Figure 14: Performance of the PMSys averaging function
with inline monitoring.

and writing the log entries to the logfile. Note that the delegated
monitor and the inline monitor use the same implementation of
common functions—e.g., computing policies for derived values—to
facilitate comparison.

To evaluate the performance of the inline monitor for the com-
mon aggregate-then-use case, we ported the PMSys application—
which requests values, computes the average in an SGX enclave,
and then uses the average in an untrusted application—to run in the
inline monitoring architecture in prevention mode. As shown in
Figure 14, inline monitoring is within the error margin of the base-
line system for dataset-granularity enforcement—small differences
are due to various uncontrollable sources of variance introduced
by Amazon EC2 instances—and it offers significantly improved per-
formance (14% overhead) with datapoint granularity. However, this
performance comes at the cost of increase the burden on application
developers and attenuated privacy guarantees.

6 RELATED WORK

Use-based Privacy. Use-based privacy was first introduced by
Cate [7] as a solution to the shortcomings of “notice and consent”
and the underlying guidelines—the Fair Information Practice Princi-
ples [9]—which defined acceptable standards for handling sensitive

165

WPES’18, October 15, 2018, Toronto, ON, Canada

data. Observing that users rarely make use of either opt-ins or opt-
outs and typically don’t make informed decisions about access to
their data, Cate proposed a new approach. His work explored the
legal and philosophical implications of use-based privacy; the feasi-
bility of a technical regime for expressing or enforcing use-based
privacy was not addressed.

The Avenance policy language [5] expresses use-based privacy
as summarized in Section 2.2. Previous implementations of the
Avenance language [3, 4] provide detection-based enforcement, but
those privacy guarantees depend on trusting service providers to
deploy the enforcement mechanism.

Alternate Privacy Regimes. Many systems have been developed
with the goal of expressing and enforcing privacy. However, none
were intended to enforce use-based privacy. Alternate approaches
either focus exclusively on private information transmission rather
than controlling usage as information flows through a networked
information system (e.g., [14, 27, 29, 31]) or fail to exhibit all key
attributes required for use-based privacy (e.g., [15, 37]).

Contextual Integrity [27] is a philosophical approach to privacy
that has been formalized as a logic for reasoning about privacy [1].
Because contextual integrity defines privacy relative to socially-
determined informational norms, contextual integrity can be in-
terpreted as a special case of use-based privacy that focuses on
data collection and data sharing. Transmissions are authorized
when they occur in an appropriate context, as determined by social
norms. The emphasis on a societal determination of acceptable or
non-harmful uses (rather than informed consent or data minimiza-
tion) is closely aligned with the philosophy of use-based privacy.
However, the exclusive focus on data transmission, and the lack of
restrictions on derived values, render existing enforcement mecha-
nisms inapplicable for use-based privacy.

Differential privacy [14] classifies a response to a database query
as a privacy violation unless the algorithm used to generate the
response satisfies a specific statistical property (viz., e-differential
privacy). This definition has been formalized and implemented as
an extensible platform for privacy-preserving data analysis [24].
However, differential privacy, like contextual integrity, focuses ex-
clusively on defining authorized transmissions. This approach does
not support general policy synthesis for derived values, and it does
not include environmental events, sticky policies, or obligations.
So like contextual integrity, mechanisms for enforcing differential
privacy cannot be used to enforce use-based privacy.

Datta et al. [12] propose an alternative approach termed use
privacy, which restricts the use of protected information types and
their proxies—correlated and causally related data types. Although
there is no support for reactive policies, the restrictions on proxy
use fulfill a similar role in limiting how information (not just values)
can be uses. Their work develops an algorithm for detecting proxy
use in data-driven systems (e.g., machine learning systems) and for
eliminating “inappropriate” proxy uses. Although general use-based
privacy policies are beyond the scope of this work, their approach
effectively restricts information use by a single centralized system.

Note that it is tricky to compare the performance of mechanisms
that are intended to achieve different goals. Therefore, we have not
undertaken comparisons of our architectures with implementations
of these alternate privacy regimes.

Session 5: Privacy Goals and Stategies

Use-based Authorization Regimes. Several existing projects define
languages for expressing restrictions on how data are used, and can
therefore be viewed as partially implementing the requirements of
use-based privacy. However, none of these regimes fully support
use-based privacy, and none implement policy enforcement in a
distributed system with adversarial service providers.

Usage Control (UCON) [29, 30] is an extension of traditional
access control models (e.g., discretionary access control, mandatory
access control, role-based access control) that enables continuity of
access decisions. Here access control decisions are re-evaluated after
the context (e.g., subject roles, time, number of previous accesses)
changes. UCON was a reaction to increased networking and data
sharing within a diverse ecosystem of devices, and it can be viewed
as the first technical approach to use-based authorizations. Initial
UCON systems enforced policies on a single system; later versions
introduced distributed usage control [6, 16, 34], but assumed that
all systems were run by trusted principals.

An alternative approach was outlined by Petkovi¢ et al. [31],
who consider a restricted form of use-based privacy, which they
call purpose control. Their work creates an audit log of service
provider actions and then detects policy violations by checking
whether the audit trail is a valid execution of the organizational
process—modeled as a formula in the Calculus of Orchestration of
Web Services (COWS)—for a permitted purpose. This work does
not consider prevention-based enforcement or enforcement in the
presence of adversarial service providers.

Legalease [37] is a privacy policy language that implicitly sup-
ports policies encoded as domain-specific attributes. For example,
a Legalease policy might say, “DENY DataType IP Address, UseFor-

Purpose Advertising EXCEPT ALLOW DataType IPAddress:Truncated”,

which asserts that the full IP address may not be used for adver-
tising. Many use-based policies can be encoded in Legalease by
defining appropriate attributes. Legalese is deployed in Grok, a pol-
icy compliance system for Bing that automatically maps code-level
elements to attributes and enforces policies using compile-time
information flow analysis. However, Grok assumes that the entire
system is under the control of a single, trusted principal.

The Thoth policy language [15] specifies data use policies com-
prising confidentiality, integrity, and declassification policies, each
defining principals that are authorized and under what conditions.
Although policies are designed to be expressed at a lower level than
under our approach, Thoth’s conditions are sufficiently flexible to
capture policies that depend on who, what, or why as well as tem-
poral, discretionary, autocratic, and jurisdictional policies. Thoth
is implemented as a kernel-level compliance layer for enforcing
data use policies in data retrieval systems, but it assumes that the
enforcement layer is deployed by a trusted principal.

Lonet [18] is a system for expressing and enforcing security
policies for shared data using isolated containers. Lonet policies—
which are associated with data files and defined as metadata—are
expressed as automata; states specify the set of authorized users
and declare event-driven obligatory meta-code, and state transi-
tions specify how to derive policies for derived values depending on
the type of program that produces the derived value. Lonet imple-
ments a reference monitor that enforces these policies, but security
depends on trusting service providers to deploy the enforcement
mechanism.

166

WPES’18, October 15, 2018, Toronto, ON, Canada

Policy Enforcement with SGX. SGX offers a new basis for plac-
ing trust in a monitor or other program, so it is a natural tool for
enabling policy enforcement in distributed systems where service
providers are operated by untrusted principals. Several previous
projects have explored related ideas, but, to the best of our knowl-
edge, there are no prior systems that use SGX to guarantee privacy.

Haven [2] uses SGX to create a shielded execution environment,
allowing unmodified Windows application binaries to be hosted
inside SGX enabled enclaves. Applications then interface with a
library version of the Windows operating system running entirely
inside the enclave, reducing the dependencies on the underlying
system. Moreover, Haven implements a shielding module for in-
terfacing with components outside of the enclave, which provides
access to, among other things, an encrypted and integrity protected
file system. While the design of Haven places the entire OS inside
an enclave—allowing for applications to be securely monitored by
existing enforcement mechanisms—our approach yields a smaller
trusted computing base. Our work also supports privacy enforce-
ment in distributed systems.

VC3 [36] is a system for trustworthy data analytics in the cloud;
it is a MapReduce framework that uses SGX to protect sensitive
data. VC3 enforces confidentiality and integrity for code and data,
and it enforces verifiability of code execution; it does not support
enforcement for high-level policies or for use-based privacy.

Ryoan [17] is a distributed sandbox for performing computations
on sensitive data. Ryoan uses SGX enclaves to protect data confi-
dentiality and integrity from malicious service providers; it does
not support enforcement for high-level policies or for use-based
privacy.

Glamdring [21] is a framework for enforcing data confidential-
ity by automatically partitioning applications into untrusted and
enclave apps and adding runtime monitoring. Although the pol-
icy language is limited—data is either secret or public—Glamdring
requires only a small number of manual annotations (sensitive la-
bels on data), thereby minimizing developer burden and facilitating
deployment.

7 CONCLUSION

Use-based privacy offers an appealing approach to enhancing pri-
vacy in distributed systems that require data sharing. But successful
enforcement depends on a trustworthy monitor and having a basis
for trust in applications. In this work, we investigate the feasibility
of using Intel SGX as a root of trust to enforce such policies in the
presence of an active adversary. The natural, source-based moni-
toring architecture enables privacy enforcement against malicious
adversaries with minimal effort for application developers, but it
brings significant performance overhead. So we explore two alter-
native architectures—delegated monitoring and inline monitoring—
that offer improved performance and that demonstrate a trade-off
between deployability, performance, and privacy. We find that a
delegated monitoring architecture provides the best performance
for enforcing privacy against malicious adversaries, but that an in-
line monitoring architecture provides performance improvements—
particularly for applications that handle more data or require finer-
grained policies—with attenuated privacy guarantees. Given the

Session 5: Privacy Goals and Stategies

WPES’18, October 15, 2018, Toronto, ON, Canada

Architecture Privacy Guarantees Performance Deployability
Source-based | malicious adversaries (v') poor (-) no programmer burden (v')
Delegated malicious adversaries (v') | moderate (~) | some policy handling (~)

Inline accountable adversaries (~) good (V') significant annotations (-)

Figure 15: Tradeoffs between different monitoring architectures. v'indicates goals that are fully met , ~ indicates goals that
are partially met, — indicates the architecture failed goals.

trade-offs between deployability, performance, and privacy (sum-
marized in Figure 15), we believe that the appropriate architecture
will depend on the type of application. However, we view our re-
sults as positive evidence of the feasibility of enforcing use-based
privacy policies in a decentralized, adversarial ecosystem.

REFERENCES

(1]

[2

=
&

=
A=A

[13]

[14

[15]

[16]

[17]

[18

[19]

[20

Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. Privacy
and contextual integrity: Framework and applications. In IEEE Symposium on
Security and Privacy, pages 184-198, 2006.

Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications
from an untrusted cloud with haven. In Proceedings of the 11th USENIX confer-
ence on Operating Systems Design and Implementation, pages 267-283. USENIX
Association, 2014.

Eleanor Birrell. Avenance middleware. https://bitbucket.org/cornell-ebirrell/
av-middleware, 2018.

Eleanor Birrell. Avenance package.
pol-server, 2018.

Eleanor Birrell and Fred B. Schneider. A reactive approach to use-based privacy.
Technical Report 54843, Cornell University, Computing and Information Science,
November 2017.

Laurent Bussard, Gregory Neven, and F.-S. Preiss. Downstream usage control.
In IEEE Internation Symposium on Policies for Distributed Systems and Networks
(POLICY), pages 22-29, 2010.

Fred Cate. Principles for protecting privacy. Cato Journal, 22:33-57, 2002.

Fred Cate, Peter Cullen, and Viktor Mayer-Schonberger. Data protection princi-
ples for the 21st century. Oxford Internet Institute, 2013.

Federal Trade Commission et al. Fair information practice principles. last modified
June, 25, 2007.

Intel Corp. Intel software guard extensions (Intel SGX). https://software.intel.
com/sites/default/files/332680-002.pdf, June 2015.

Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall,
and Joseph Reagle. The platform for privacy preferences 1.0 (P3P 1. 0) specifica-
tion. W3C recommendation, 16, 2002.

Anupam Datta, Matthew Fredrikson, Gihyuk Ko, Piotr Mardziel, and Shayak
Sen. Use privacy in data-driven systems: Theory and experiments with machine
learnt programs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1193-1210. ACM, 2017.

Dorothy E. Denning. A lattice model of secure information flow. Communications
of the ACM, 19(5):236-243, 1976.

Cynthia Dwork. Differential privacy. In 33rd International Colloquium on Au-
tomata, Languages and Programming, part Il (ICALP), volume 4052, pages 1-12,
Venice, Italy, July 2006. Springer Verlag.

Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and
Peter Druschel. Thoth: Comprehensive policy compliance in data retrieval
systems. In USENIX Security Symposium, pages 637654, 2016.

M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A policy language
for distributed usage control. In Joachim Biskup and Javier Lopez, editors, 12th
European Symposium On Research In Computer Security (ESORICS), volume 4734
of Lecture Notes in Computer Science, pages 531-546, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel.
Ryoan: A distributed sandbox for untrusted computation on secret data. In OSDI,
pages 533-549, 2016.

Hévard D Johansen, Eleanor Birrell, Robbert Van Renesse, Fred B. Schneider,
Magnus Stenhaug, and Dag Johansen. Enforcing privacy policies with meta-code.
In Proceedings of the 6th Asia-Pacific Workshop on Systems, 2015.

Elisavet Kozyri, Owen Arden, Andrew C. Myers, and Fred B. Schneider. JRIF:
Reactive information flow control for Java. Technical Report 41194, Cornell
University, Computing and Information Science, February 2016.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. Inferring fine-grained control flow inside SGX enclaves with branch
shadowing. In 26th USENIX Security Symposium (USENIX Security 17), pages

https://bitbucket.org/cornell-ebirrell/

[21

[22

[23

[24]

[25

[26

[27]

[28

[29

[30

)
=

(32

(33]
[34

(35]

&
2

[37

[38

[39

=
=

[41]

[42

167

557-574, Vancouver, BC, 2017. USENIX Association.

Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Ridiger
Kapitza, Christof Fetzer, and Peter Pietzuch. Glamdring: Automatic application
partitioning for intel SGX. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 285-298, Santa Clara, CA, 2017. USENIX Association.

Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and Sumit Shah.
First experiences using XACML for access control in distributed systems. In
Proceedings of the 2003 ACM workshop on XML security, pages 25-37. ACM, 2003.
Petros Maniatis, Devdatta Akhawe, Kevin Fall, Elaine Shi, Stephen McCamant,
and Dawn Song. Do you know where your data are? Secure data capsules for
deployable data protection. In Proceedings of the 13th USENIX Conference on Hot
Topics in Operating Systems, 2011.

Frank McSherry. Privacy integrated queries: An extensible platform for privacy-
preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pages 19-30. ACM, 2009.

Marco Casassa Mont, Siani Pearson, and Pete Bramhall. Towards accountable
management of identity and privacy: Sticky policies and enforceable tracing
services. In Proceedings of the 14th IEEE International Workshop on Database and
Expert Systems Applications, pages 377-382, 2003.

Craig Mundie. Privacy pragmatism: Focus on data use, not data collection. Foreign
Aff, 93:28, 2014.

Helen Nissenbaum. Privacy in Context: Technology, Policy, and the Integrity of
Social Life. Stanford University Press, 2009.

Helen Nissenbaum. A contextual approach to privacy online. Daedalus, 140(4):32—
48, 2011.

Jaehong Park and Ravi Sandhu. Towards usage control models: Beyond traditional
access control. In Proceedings of the Seventh ACM Symposium on Access Control
Models and Technologies, SACMAT ’02, pages 57-64, 2002.

Jaehong Park and Ravi Sandhu. The UCONABC usage control model. ACM
Trans. Inf. Syst. Secur., 7(1):128-174, February 2004.

Milan Petkovic, Davide Prandi, and Nicola Zannone. Purpose control: Did you
process the data for the intended purpose? Secure Data Management, 6933:145—
168, 2011.

Svein A. Pettersen, HAévard D. Johansen, Ivan A. M. Baptista, PAél Halvorsen,
and Dag Johansen. Quantified soccer using positional data: A case study. Frontiers
in Physiology, 9:866, 2018.

PMSys. http://forzasys.com/pmsys.html.

Alexander Pretschner, Manuel Hilty, and David Basin. Distributed usage control.
Communications of the ACM, 49(9):39-44, 2006.

N. Ramanathan, F. Alquaddoomi, H. Falaki, D. George, C. K. Hsieh, J. Jenkins,
C. Ketcham, B. Longstaff, J. Ooms, J. Selsky, H. Tangmunarunkit, and D. Estrin.
Ohmage: An open mobile system for activity and experience sampling. In 2012
6th International Conference on Pervasive Computing Technologies for Healthcare
(PervasiveHealth) and Workshops, pages 203-204, May 2012.

Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data ana-
lytics in the cloud using SGX. In Security and Privacy (SP), 2015 IEEE Symposium
on, pages 38-54. IEEE, 2015.

Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Tsai, and
Jeannette M. Wing. Bootstrapping privacy compliance in big data systems. In
Proceedings of the 35th IEEE Symposium on Security and Privacy (Oakland), 2014.
Spring. Spring boot framework. https://projects.spring.io/spring-boot/, Decem-
ber 2017.

Hongsuda Tangmunarunkit, Cheng-Kang Hsieh, Brent Longstaff, S Nolen, John
Jenkins, Cameron Ketcham, Joshua Selsky, Faisal Alquaddoomi, Dony George,
Jinha Kang, et al. Ohmage: A general and extensible end-to-end participatory
sensing platform. ACM Transactions on Intelligent Systems and Technology (TIST),
6(3):38, 2015.

Jennifer Widom. Trio: A system for integrated management of data, accuracy,
and lineage. Technical report, Stanford InfoLab, 2004.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In Security and
Privacy (SP), 2015 IEEE Symposium on, pages 640-656. IEEE, 2015.

Fan Zhang. mbedtls-SGX. https://github.com/bl4ck5un/mbedtls-SGX.

https://bitbucket.org/cornell-ebirrell/av-middleware
https://bitbucket.org/cornell-ebirrell/av-middleware
https://bitbucket.org/cornell-ebirrell/pol-server
https://bitbucket.org/cornell-ebirrell/pol-server
https://software.intel.com/sites/default/ files/332680-002.pdf
https://software.intel.com/sites/default/ files/332680-002.pdf
http://forzasys.com/pmsys.html
https://projects.spring.io/spring-boot/
https://github.com/bl4ck5un/mbedtls-SGX

PaperV

	Abstract
	Acknowledgements
	List of Figures
	Acronyms
	1 Introduction
	1.1 Trusted Execution Environments
	1.2 Thesis Statement
	1.3 Scope and Limitations
	1.4 Methodology
	1.5 Research Context
	1.6 Impact
	1.7 Summary of Contributions
	1.7.1 Publication I
	1.7.2 Publication II and III
	1.7.3 Publication IV
	1.7.4 Publication V
	1.7.5 Novel Concepts

	1.8 Outline

	2 Serverless Computing
	2.1 Advantages of Serverless Computing
	2.2 The Cloud Function Abstraction
	2.3 Pricing Model
	2.4 Architecture
	2.5 Challenges
	2.6 Comparable Concepts
	2.7 Proprietary Implementations
	2.7.1 aws Lambda
	2.7.2 Azure Functions
	2.7.3 Google Cloud Functions

	2.8 Open Source Implementations
	2.9 faas in Research Literature
	2.10 Summary

	3 Trusted Execution Environments
	3.1 Intel Software Guard Extensions
	3.1.1 Security Model
	3.1.2 Known Vulnerabilities
	3.1.3 Enclave Lifecycle
	3.1.4 Memory Model
	3.1.5 Attestation
	3.1.6 Context Switches
	3.1.7 Side-Channel Attacks and Mitigation

	3.2 ARM TrustZone
	3.3 Additional Trusted Hardware Systems
	3.4 Summary

	4 Design
	4.1 SGX Benchmark
	4.1.1 Enclave Creation
	4.1.2 Memory Management
	4.1.3 Context Switches
	4.1.4 Multithreading

	4.2 Performance principles
	4.3 Trusted Serverless Runtime
	4.4 Design
	4.4.1 Diggi Persistent and Accountable Cloud Functions
	4.4.2 An Asynchronous Trusted Runtime
	4.4.3 Deployment and authentication

	4.5 Summary

	5 Cloud Function API
	5.1 Lifecycle management
	5.2 Asynchronous Programming
	5.3 Programming Language
	5.4 Legacy
	5.5 Deployment
	5.6 Summary

	6 Runtime
	6.1 Task Scheduler
	6.1.1 Physical Threads
	6.1.2 Virtual Threads
	6.1.3 Oversubscription of Physical Threads

	6.2 Messaging
	6.2.1 Concurrent queuing
	6.2.2 Message structure
	6.2.3 Message Flows

	6.3 Ephemeral Storage
	6.4 Accountability
	6.5 Untrusted Runtime
	6.6 The Diggi Trusted Root
	6.7 Summary

	7 Evaluation
	7.1 Experimental Setup
	7.2 Cohosting Cloud Functions
	7.2.1 Cold-start

	7.3 Communication Overhead
	7.4 Trusted Runtime System Call Translation
	7.4.1 Supporting Legacy Libraries in Diggi Cloud functions

	7.5 Accountable Cloud Functions
	7.6 Use Case: A neural network image classification pipeline
	7.7 Summary

	8 Discussion
	8.1 Mitigating and improving sgx-based systems
	8.2 Formal Methods, Verifiable Execution and Policy Enforcement
	8.3 Secure Analytics and Storage systems
	8.4 Trusted runtimes in TEEs
	8.5 Distributed Systems and Coordination
	8.6 Summary

	9 Concluding Remarks
	9.1 Conclusion
	9.2 Future Work

