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Abstract 
Real-time viscosity and density measurements give insight into the status of many chemical and 
biochemical processes and allow for automated controls. In many applications, sensors that enable the 
real-time measurements of fluid properties use resonant elements. Such sensors measure induced 
changes in the element’s resonance frequency and damping that can be related to the fluid properties. 
These sensors have been widely researched, though they are not yet commonly used in industrial 
processes.  

This study investigates two resonant elements to measure the viscosity and density of Newtonian fluids. 
The first is a probe-style viscosity-density sensor, and the second is a non-intrusive tubular viscosity 
sensor. These two sensors were investigated using analytical, numerical, and experimental methods. In 
the analytical method, the sensors’ resonance frequencies and bandwidths were predicted based on 
reduced-order models for both structure and fluid. In the numerical method, the interaction of the 
resonant element with the fluid was investigated by means of computational fluid dynamics (CFD). 
Experiments were conducted for validation, to evaluate the sensors’ capabilities, and understand cross-
sensitivity effects between viscosity and density. 

The reduced-order (analytical) method was used to model the resonant elements of the sensors as mass-
spring systems, describing their interaction with the fluid. For the probe style viscosity-density sensor, 
the resonant element was comprised of a two-mass and three-spring system. The tubular viscosity sensor 
was analyzed by means of a modal analysis by reducing it to a single mass-spring system, where only 
the first torsional mode was considered. The main advantage of the reduced-order model was that it 
provided insight into the working principle of the sensors without using complicated and 
computationally expensive numerical models.  

CFD was used to understand the fluid behavior around the resonant element of the probe-style viscosity 
density sensor. The flow field was solved using CFD because the probe style viscosity-density sensor 
has a complex geometry, i.e., cylindrical tip with four radial fins where the flow phenomenon is too 
complex to be described analytically. The solution was validated for independence of discretization, i.e., 
mesh and numerical methods (finite element method via COMSOL® and finite volume method via 
ANSYS® CFX). Different boundary conditions, such as by a moving wall and changing the frame of 
reference, were used to generate similar effects. The resulting fluid forces from the CFD solution were 
coupled with the reduced-order (analytical) structural model to compute the change in resonance 
frequency and bandwidth.  

A series of experiments were conducted under a range of well-defined conditions to validate the output 
of the models and test both sensors, namely the probe-style viscosity-density sensor and tubular 
viscosity sensor. For each condition, the experimentally measured bandwidth and resonance frequency 
were compared to the predictions of the models. Results from the experiments and models were found 
to be in good agreement. This led to successfully accounting for cross-sensitivities between viscosity, 
density, and temperature.  

This work successfully modeled and validated the two different torsional resonant element sensors, 
namely the probe-style viscosity-density sensor and the tubular viscosity sensor against experiments. 
There are two key output parameters, i.e., resonance frequency and bandwidth. Using these parameters, 
it is possible to predict fluid viscosity and density. Overall, this work demonstrates the potential of 
numerical modeling for the development of torsional resonance sensors. These findings directly affect 
the development of the future generation of fluid viscosity and density sensors.  
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Nomenclature  

Symbols 
 

𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟 Angular deflection amplitude 
𝑐𝑐 𝑁𝑁𝑁𝑁/𝑟𝑟𝑟𝑟𝑟𝑟 Torsional spring constant 
𝑪𝑪 𝑁𝑁𝑁𝑁/𝑟𝑟𝑟𝑟𝑟𝑟 Torsional spring matrix 
𝑐𝑐𝑖𝑖 − Constants, where 𝑖𝑖 is an integer 
𝑑𝑑 𝑁𝑁𝑁𝑁/𝑠𝑠 Damping factor 
𝑑𝑑0 𝑁𝑁𝑁𝑁/𝑠𝑠 Damping factor, intrinsic damping 
𝑑𝑑𝑓𝑓 𝑁𝑁𝑁𝑁/𝑠𝑠 Damping factor, fluid damping 
𝑫𝑫 𝑁𝑁𝑁𝑁/𝑠𝑠 Damping factor matrix 
𝑒𝑒𝑖𝑖 − Unity vector of torsional axis 
𝑓𝑓0 𝐻𝐻𝐻𝐻 Resonance frequency 
𝑓𝑓0,𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻 Resonance frequency in air 
𝐹𝐹 𝑁𝑁𝑁𝑁 Forcing term 
𝐹𝐹� 𝑁𝑁𝑁𝑁 Forcing term amplitude 
𝐹𝐹𝑁𝑁 1/𝑠𝑠2  Normalized force term 
𝐺𝐺 𝑃𝑃𝑃𝑃 Shear modulus 
𝐼𝐼𝑝𝑝 𝑚𝑚4 2nd moment of area 
𝑖𝑖+ − Parameter to describe the fluid density  
𝐽𝐽 𝑘𝑘𝑘𝑘𝑚𝑚2 2nd inertial mass 
𝑱𝑱 𝑘𝑘𝑘𝑘𝑚𝑚2 2nd inertial mass matrix 
𝐽𝐽𝑓𝑓 𝑘𝑘𝑘𝑘𝑚𝑚2 2nd moment of inertia of fluid 
𝐽𝐽0 𝑘𝑘𝑘𝑘𝑚𝑚2 2nd moment of inertia of the resonator 
𝑘𝑘 − Wave number 
𝐿𝐿 𝑚𝑚 Length 
𝑀𝑀𝑣𝑣,𝑡𝑡 𝑁𝑁𝑁𝑁 Viscosity-induced torque  
𝑀𝑀𝑝𝑝,𝑡𝑡 𝑁𝑁𝑁𝑁 Pressure-induced torque  
𝑀𝑀𝑣𝑣 𝑁𝑁𝑁𝑁 Viscosity-induced torque amplitude 
𝑀𝑀𝑝𝑝 𝑁𝑁𝑁𝑁 Pressure -induced torque amplitude 
𝑝𝑝 𝑃𝑃𝑃𝑃 Pressure 
𝑟𝑟 𝑚𝑚 Radial coordinate 
𝑟𝑟 𝑚𝑚 Distance vector from torsional axis (𝑒𝑒𝑖𝑖) 
𝑅𝑅 𝑚𝑚 Radius 
𝑡𝑡 𝑠𝑠 Time 
𝑢𝑢𝑥𝑥 𝑚𝑚/𝑠𝑠 Velocity in x-direction 
𝑢𝑢𝛼𝛼 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 Azimuthal velocity  
𝑢𝑢�⃗  𝑚𝑚/𝑠𝑠 Velocity field 
𝑥𝑥  𝑚𝑚 x-location 
𝑋𝑋 − Transfer function 
𝑧𝑧  𝑚𝑚 z-coordinate 
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Greek symbols 
 
𝔍𝔍 − Operator for the imaginary part of a complex number 
ℜ − Operator for the real part of a complex number 
𝛤𝛤 𝐻𝐻𝐻𝐻 Bandwidth 
𝛤𝛤+ 𝑘𝑘𝑘𝑘/𝑚𝑚3 Parameter to describe the viscosity-density product   
𝜆𝜆 − Eigenvalue 
𝜏𝜏𝑑𝑑 s Logarithmic decrement  
𝛿𝛿 𝑚𝑚 Boundary-layer thickness 
𝜑𝜑 𝑟𝑟𝑟𝑟𝑟𝑟 Angular deflection 
𝜑𝜑� 𝑟𝑟𝑎𝑎𝑑𝑑 Angular deflection amplitude 
𝜑𝜑0 𝑟𝑟𝑟𝑟𝑟𝑟 Angular deflection at time 𝑡𝑡 = 0 𝑠𝑠 
𝜑𝜑𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟 Angular deflection, quasi-steady-state solution 
𝜑𝜑�⃗�𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟 Angular deflection vector  
𝛹𝛹 𝑟𝑟𝑟𝑟𝑟𝑟 Angular deflection as a function of time and space 
𝛹𝛹�  𝑟𝑟𝑟𝑟𝑟𝑟 Modal function 
𝜌𝜌 𝑘𝑘𝑘𝑘/𝑚𝑚3 Fluid density 
𝜌𝜌𝑠𝑠 𝑘𝑘𝑘𝑘/𝑚𝑚3 Density of the resonator 
𝜂𝜂 𝑃𝑃𝑃𝑃𝑃𝑃 Dynamic viscosity 
𝜔𝜔 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 Angular frequency 
𝜔𝜔0 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 Angular resonance frequency 
𝜔𝜔0,𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 Angular resonance frequency 
𝑑𝑑𝛺𝛺𝑟𝑟 𝑚𝑚2 Boundary of the resonator 
𝛺𝛺�⃗  𝑟𝑟𝑟𝑟𝑟𝑟 Rotation vector of the domain 
 

Abbreviations 
 

CFD Computational Fluid Dynamics 
ICP Institute of Computational Physics 
ZHAW Zurich University of Applied Sciences 
RQ Research question 
NIST National Institute of Standards and Technology 
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1 Introduction 
In most chemical and biochemical processes, it is important to measure fluid properties, such as viscosity 
and density, because these properties can be used as indicators of the fluid’s composition. Therefore, 
real-time monitoring of a fluid’s viscosity and density enables better quality control of various processes. 
Traditional rheological laboratory instruments are large and delicate, and they measure by sampling. In 
comparison, resonant sensors are more compact, robust, and capable of being integrated into process 
lines. The working principle of a resonant sensor is that a resonating element is brought into contact 
with a fluid. The fluid changes the resonant element’s resonance frequency and damps its oscillation. 
Both the shift in the resonance frequency and damping can be measured and related to the fluid’s 
properties.  

Most studies on resonator-based viscosity sensors focus on microelectromechanical systems. Jakoby et 
al. [1] reviewed literature on these miniaturized sensors and discussed their performances, benefits, and 
shortcomings. They identified many types of miniaturized sensors such as thickness–shear resonators, 
electromagnetic–acoustic resonators, vibrating bridge devices, double membrane devices, and 
micromachined plate devices.  

Resonant sensors are applied in numerous areas ranging from monitoring the oil quality of engines [2] 
to measuring microsamples [3,4] and fluid properties in process lines [5]. Potential resonators in large 
robust industrial sensors include tuning forks [6,7], cylindrical torsional resonators [8–12], spiral springs 
[13], paddles [8], u-shaped wires [14], and tubular resonators [5,15–17]. Despite the wide variations in 
geometry, all sensors interact with the surrounding fluid, which alters the resonance frequency and the 
damping of the resonator. To measure fluid density, the oscillation of the resonator must produce a 
normal velocity component on its surface, causing mass displacement of the fluid. Transversely 
vibrating structures, such as tuning forks, reeds, and wires, were traditionally used to measure the fluid’s 
density.  

This thesis focuses on torsional resonators. Traditionally, torsional resonators are purely cylindrical; 
therefore, they do not create mass displacements that are required to measure density. Cylindrical 
resonant elements emit only shear waves, which predominantly create viscous damping. This damping 
affects both the resonance frequency and bandwidth of the resonator. Brack et al. [9,18,19] and Valtorta 
[20] analyzed both quantities, which enabled the measurement of effects such as viscoelasticity. It is 
also possible to measure the fluid density using torsional resonators if the oscillation has a normal 
velocity component on its surface. Torsional resonators are attractive because they are less prone to wall 
effects than transversely vibrating devices. Examples of torsional resonators include the symmetrical 
torsional resonator presented by Goodbread et al. [21,22] and the resonating paddle devised by Heinisch 
et al. [8].  

Fuchs et al. [5] presented a process-integrated torsional resonance sensor,; they described a straight-tube 
coriolis sensor, in which an eccentric mass was attached to a transversely vibrating tube through which 
a fluid was flowing. The sensor was capable of measuring the fluid’s viscosity, density and mass 
flowrate. Other flow-through sensors based on torsional resonators focused only on measuring the 
fluid’s viscosity. Clara et al. [15] presented a torsional tubular resonator with flow-through capabilities; 
however, their sensor created a large obstruction to the flow because the inlets and outlets were 
perpendicular to the tube axis. This problem was overcome by Häusler et al. [16,17] and Fuchs et al. 
[5]. Häusler et al. [16,17] presented a tubular sensor to measure the viscosity of blood (see Figure 1). 
The sensor consisted of a small tube with an inner diameter of 2 mm in which the excited torsional mode 
was spatially restricted by two decoupling masses. With this system, they were able to measure the 
blood viscosity at different hematocrits.  
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Figure 1: Tubular viscosity sensor [16] 
 

To develop, calibrate, and gain insights into the working principle of these sensors, analytical and 
numerical models are required. In most cases, the sensors can be modeled based on a simplified, single-
degree-of-freedom analytical model, such as a mass–spring system. This approach was generically 
described by Heinisch et al. [23], who applied a reduced-order model based on lumped elements to 
describe a resonator’s behavior. The behavior of various resonant elements, such as cylindrical torsional 
resonators [8], tuning forks [13], torsional paddles [24], cantilevers [25], and microchannels [26], can 
be modeled using similar mass–spring models. In these models, the fluid interactions are typically 
described using separate damping and mass-loading terms. The mass-loading term increases the mass 
of the resonator, whereas the damping term damps the oscillation. The magnitude of the damping and 
mass-loading terms can be derived from the interaction of the resonant element with the fluid. 

To date, most analytical work on fluid models for resonant elements has been done on either flat in-
plane oscillating plates or cylindrical geometries. In-plane oscillating planes are most relevant for 
thickness–shear resonators. Sensors of this type comprise a quartz disk that is excited by means of the 
piezoelectric effect; the quartz disk emits only shear waves similar to cylindrical torsional resonators. 
Johannsmann [27] reviewed the fundamentals of quartz disks, which included several fluid models for 
in-plane oscillating plates (e.g., Newtonian, viscoelastic, and non-Newtonian fluids); the interactions of 
a shear wave with a thin film and the deposits and fluids stratified in layers were also considered. For 
non-flat geometries, such as torsional resonators, the mathematical models reviewed by Johannsmann 
[27] can be used if the radius of the cylinder is much larger than the length scale of the fluid (i.e., the 
boundary-layer thickness). In case the boundary thickness increases, the curvature of the cylinder or 
tube must be considered [28], [10,19], [12], [5].  

For more complex geometries, analytical models become insufficient to describe either the viscous 
damping or the mass loading caused by the fluid. In such cases, the fluid–structure interactions can be 
solved numerically. Most numerical models are two dimensional because of the high computational 
requirements associated with full three-dimensional simulations. Mahmoodi [29] studied a torsional 
paddle using a two-dimensional fluid–structure interaction model. Reichel [30] presented a two-
dimensional simulation to study different parameter sets of an oscillating rectangle and obtain the 
scaling properties for large sensors.  

By coupling these analytical and numerical models, we can obtain valuable insights into resonator 
behaviors, which will help develop a new generation of sensors and reduce experimental work.  
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1.1 Research motivation 
Mechanical resonators are compact robust sensors that have the potential to measure fluid properties in 
real time; these resonators have several advantages over the traditional rheological laboratory 
instruments. However, they are not yet commonly used in industrial processes for monitoring fluid 
properties, such as viscosity and density. Accurate numerical models have the potential to accelerate the 
development of industrial-grade sensors by reducing development time, and they can reduce the number 
of experiments required to characterize new sensors. In addition, it is possible to obtain a deeper 
understanding of the interactions between fluids and resonators from accurate numerical models than 
from experimental methods. Accurate numerical models can be used to disentangle the cross 
sensitivities of different fluid properties, such as viscosity and density, with respect to their effects on a 
sensor’s behavior. Furthermore, numerical simulations enable model-based design optimization during 
the development of new generations of sensors.  

1.2 Problem statement 
This thesis was conducted in collaboration with the UiT the Arctic University of Norway, the ZHAW 
University of Applied Sciences in Winterthur, Switzerland and Rheonics GmbH, a spinoff company of 
the department of mechanical systems of the ETH Zurich. Rheonics GmbH specializes in building 
viscosity–density sensors based on torsional resonance, and their sensors are mainly used to measure 
fluid properties in industrial processes. This thesis aims to deepen the understanding of the working 
principle of their sensors and develop a new generation of non-intrusive sensors for the in-line 
monitoring of fluid viscosity. Two kinds of sensors are investigated in this research: the viscosity–
density sensor and non-intrusive viscosity sensor. 

To obtain a deeper understanding of these torsional resonators, we need models that fully describe the 
interactions between the fluid properties and the measured properties of the sensor. Such models have 
the potential to reduce the development time of new generations of sensors and enhance the calibration 
schemes. Therefore, a viscosity–density sensor based on torsional resonance is proposed; this sensor 
will be investigated experimentally and numerically. The sensor is shown in Figure 2.  

 

Figure 2: Viscosity–density sensor, type SRD, Rheonics GmbH 
 

Most existing sensors for the real-time monitoring of viscosity are probe style. However, it is helpful to 
have a non-intrusive sensor that does not obstruct the fluid flow. Flow obstructions can cause problems 
in various processes, and they pose the challenges of cleaning-in-place procedures. Thus, this study also 
aims to develop, build, and test a new non-intrusive viscosity sensor. The sensor development will be 
based on the models that allow an optimized design for the application of viscosity measurements. This 
sensor builds upon the design discussed by Häusler et al. [16,17], wherein a tube is used as the resonator 
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body (see Figure 1). The new sensor extends the applicability and can measure a wide range of fluid 
properties when a fluid passes through a sensor.  

 

1.3 Research questions 
The research goal of this thesis is to obtain a deeper understanding of the fluid–structure interactions of 
torsional resonators with emphasis on the application of the viscosity and density measurements. The 
research problem can be summarized in the following research questions (RQs): 

I. What is the underlying physics of torsional resonators in the context of viscosity and density 
measurement applications? 
 
 

II. Are reduced-order models suitable for coupling the flow simulations with resonator models? 
 
 

III. How can computational fluid dynamics (CFD) be used to compute the flow field around a 
torsional oscillating structure? 
 
 

IV. How can we compensate for the cross sensitivities among fluid viscosity, density, and 
temperature? 

 
 
 

1.4 Research objectives 
The above RQs lead to the following research objectives: 

I. To understand the working principle of existing viscosity–density sensors. 
 
 

II. To identify a suitable coupling method to connect the reduced-order models with both analytical 
and numerical flow field solutions. 
 
 

III. To investigate the different methods for obtaining the solution using CFD to compute the 
vibration-induced flow around a structure. 
 
 

IV. To investigate the effect of the fluid viscosity and density on the resonator sensor for developing 
enhanced viscosity and density prediction models. 
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2 Research Methodology  
The basic working principle of any resonance sensor is that the resonator’s properties, specifically its 
resonance frequency and bandwidth, change as the resonator interacts with the surrounding fluid. The 
change in bandwidth and resonance frequency can related to the fluid’s viscosity and density. This 
relation can be described through models, which are discussed in general terms in this Section. When 
necessary, illustrative example are given using the two sensors studied here.  

The model of either sensor consists of two components: the first is a structural model that describes the 
behavior of the resonator, whereas the second describes the fluid interaction. Section 2.1 describes a 
series of structural models which can be used to predict the resonance frequency and bandwidth of 
torsional resonators. Within this structural model, the fluid interaction is represented by coefficients. 
These coefficients depend on the flow around the resonator and are discussed in Section 2.2. The models 
are validated experimentally, as discussed in Section 2.3.  

The tubular probe-style viscosity-sensor and viscosity-density sensor are described by different 
structural and fluid models. The tubular viscosity-sensor is described by a single-degree-of-freedom 
model (Section 2.1.1), which describes the behavior of the considered torsional mode (Section 2.1.3). 
The fluid interaction of this resonator is discussed in Section 2.2.1 and 2.2.3. The probe-style viscosity-
density sensor is described by a 2-mass, 3-spring system. This approach is discussed in general terms, 
i.e. a multi-degree-of-freedom system, in Section 2.1.2. The coupling between fluid and structural model 
is discussed in section 2.2.1. The flow field around cylindrical part of the probe-style viscosity-density 
sensor is discussed in Section 2.2.2, whereas the numerical flow model based on CFD is discussed in 
Section 2.2.4. In this section, the probe-style viscosity-density sensor’s cylindrical tip with 4 radial fins 
is provided as an example. The experimental methods are similar for both sensors.  

2.1 Analytical structural models  
In most cases, the resonator can be considered as a linear continuous system like to a tube or a beam. In 
most applications, the sensors are designed to operate in one mode. To describe the behavior of this 
mode with respect to its resonance frequency and bandwidth, a single-degree-of-freedom model can be 
used (see Section 2.1.1). For structures in which either multiple modes are relevant or the modes are 
changed by fluid interactions, we need models with multiple-degrees-of-freedom (see Section 2.1.2). 
Continuous systems with infinite degrees-of-freedom are discussed in Section 2.1.3, wherein each mode 
(i.e., degree-of-freedom) can be described by a single-degree-of-freedom system.  

2.1.1 Single-degree-of-freedom system 
A single-degree-of-freedom system is a damped mass–spring system that has only one resonance 
frequency. This single-degree-of-freedom system describes most resonators in which only one 
resonance frequency is considered: 

𝐽𝐽
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑡𝑡2

+ 𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑐𝑐𝑐𝑐 = 𝐹𝐹(𝑡𝑡) (2.1) 

where 𝜑𝜑 is the angular deflection in time 𝑡𝑡; 𝐽𝐽 is an inertial mass; 𝑐𝑐  is the spring constant; 𝑑𝑑  is the 
damping term; and 𝐹𝐹(𝑡𝑡) is the transient excitation force.  

Note that the damping term 𝑑𝑑 and inertial mass  𝐽𝐽 depend on the fluid properties and the resonator. These 
parameters are discussed at length in Section 2.2. 
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In more general terms, the resonator can be described as follows: 

𝐽𝐽
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑡𝑡2

+ 2𝐷𝐷𝜔𝜔0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜔𝜔0
2𝜑𝜑 = 𝐹𝐹𝑁𝑁(𝑡𝑡) (2.2) 

where 𝐷𝐷 𝑖𝑖𝑖𝑖 the normalized damping term; 𝜔𝜔0  is the angular resonance frequency; 𝐹𝐹𝑁𝑁(𝑡𝑡)  is the 
normalized forcing term, and 𝑓𝑓0 is the resonance frequency, Eqs. (2.3) to (2.5).  

𝐷𝐷 =
𝑑𝑑

2�𝑐𝑐𝑐𝑐
  (2.3) 

𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0 = �
𝑐𝑐
𝐽𝐽
 (2.4) 

𝐹𝐹𝑁𝑁(𝑡𝑡)  =
𝐹𝐹(𝑡𝑡) 
𝐽𝐽

 (2.5) 

The resonator’s damping is typically expressed by a quality factor 𝑄𝑄 = (2𝐷𝐷)−1  or a bandwidth 
𝛤𝛤 = 𝑓𝑓0/𝑄𝑄. The resonator system is under-damped if the normalized damping term 𝐷𝐷 is less than 1. This 
is a necessary criterion when a resonator is used to measure the viscosity of a fluid. When the normalized 
damping factor 𝐷𝐷 =  1, means critical damping. When the damping factor 𝐷𝐷 is greater than one, the 
system does not oscillate but decays into its equilibrium state without overshooting, that is, oscillating.  

If we assume that the force term 𝐹𝐹(𝑡𝑡) = 0, then the fundamental solution is an exponentially decaying 
oscillation with a logarithmic decrement of 𝜏𝜏𝑑𝑑 = (𝐷𝐷𝜔𝜔0)−1. Then, we have the following equality: 

𝜑𝜑 = 𝜑𝜑0𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 (2.6) 

where 𝜔𝜔0 is the angular resonance frequency; 𝑖𝑖 = √−1; and 𝜑𝜑0 is the angular deflection at 𝑡𝑡 = 0 𝑠𝑠. The 
complex part of the angular resonance frequency 𝜔𝜔0  describes the exponential decay, that is, the 
logarithmic decrement 𝜏𝜏𝑑𝑑 = 1/𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜔𝜔0). 

In case the force term is a harmonic, we have 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (2.7) 

where 𝐹𝐹� is the amplitude of the force function 𝐹𝐹(𝑡𝑡), and 𝜔𝜔 is the angular frequency. Then, after the 
transient effects caused by the initial condition have phased out, the system eventually yields the quasi–
steady-state solution 𝜑𝜑𝑠𝑠(𝑡𝑡) as follows:  

𝜑𝜑𝑠𝑠(𝑡𝑡) =
𝐹𝐹�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝐽𝐽(𝜔𝜔02 + 2𝑖𝑖𝑖𝑖𝜔𝜔0𝜔𝜔 − 𝜔𝜔2)
 (2.8) 

By convention, the transfer function 𝑋𝑋 is the ratio between the quasi–steady-state angular deflection and 
the harmonic force term. By convention, this transfer function is formulated as follows:  

𝑋𝑋 =
𝜑𝜑𝑠𝑠(𝑡𝑡)
𝐹𝐹�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

=
1

𝐽𝐽(𝜔𝜔02 + 2𝑖𝑖𝑖𝑖𝜔𝜔0𝜔𝜔 − 𝜔𝜔2)
 (2.9) 
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This transfer function 𝑋𝑋 describes the amplification of the angular deflection and the phase shift with 
respect to the excitation. The amplification is defined by the Euclidean norm of 𝑋𝑋 as 

|𝑋𝑋| =
𝜑𝜑�𝑠𝑠
𝐹𝐹�

=
1
𝐽𝐽 �

1
(𝜔𝜔02 − 𝜔𝜔2)2 + (2𝐷𝐷𝜔𝜔0𝜔𝜔)2

 (2.10) 

where 𝜑𝜑�𝑠𝑠 is the amplitude of the term 𝜑𝜑𝑠𝑠(𝑡𝑡). 

The phase shift 𝛥𝛥𝜑𝜑𝑠𝑠 between the force term 𝐹𝐹(𝑡𝑡) and the steady-state solution of the angular defection 
𝜑𝜑𝑠𝑠(𝑡𝑡) is defined by the angle of 𝑋𝑋 as follows: 

𝛥𝛥𝜑𝜑𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
2𝐷𝐷𝜔𝜔0𝜔𝜔
𝜔𝜔02 − 𝜔𝜔2� (2.11) 

Figure 3 shows the amplification and phase shift for the different normalized damping values 𝐷𝐷. With 
increasing normalized damping values, the amplification decreases, and the phase shift increasingly 
spreads over a wide frequency range. 

   
(a) 

  
(b) 

 
Figure 3: Amplitude (a) and phase (b) of a damped resonator at different normalized damping terms D = [0.01 
0.05 0.1]; 𝜔𝜔 is the angular frequency; 𝜔𝜔0 is the angular resonance frequency; 𝑋𝑋 is the transfer function; and 

𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋) is the phase shift between the excitation term and angular deflection of the resonator 
 
To experimentally characterize a single-degree-of-freedom system, the bandwidth 𝛤𝛤  and resonance 
frequency 𝑓𝑓0  needs to be determined. The bandwidth of the system can be computed using three 
methods; all these methods result in the same bandwidth value. The definitions of the three methods are 
given below: 
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1. In the first method, the bandwidth is the frequency difference between the phase shift curves 
when they cross −𝜋𝜋/4 and −3𝜋𝜋/4,𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓:  
 
 

𝛤𝛤 =
𝜔𝜔(𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋(𝜔𝜔))  =  −𝜋𝜋/4) −𝜔𝜔(𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋(𝜔𝜔))  =  −3/4𝜋𝜋)

2𝜋𝜋
 (2.12) 

  
2. In the second method, the bandwidth is the frequency difference when the amplification |𝑋𝑋| is 

−3𝑑𝑑𝑑𝑑  of its maximum value. The −3𝑑𝑑𝑑𝑑  point is corresponding to  
−3𝑑𝑑𝑑𝑑 = 20 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙10(1/√2) . Thus, the definition is given as follows: 
 
 

𝛤𝛤 =
𝜔𝜔 � |𝑋𝑋(𝜔𝜔)|

𝑚𝑚𝑚𝑚𝑚𝑚(|𝑋𝑋(𝜔𝜔)|) = −3𝑑𝑑𝑑𝑑�
𝜔𝜔>𝜔𝜔0

− 𝜔𝜔 � |𝑋𝑋(𝜔𝜔)|
𝑚𝑚𝑚𝑚𝑚𝑚(|𝑋𝑋(𝜔𝜔)|) = −3 𝑑𝑑𝑑𝑑�

𝜔𝜔 < 𝜔𝜔0

2𝜋𝜋
 

 

(2.13) 

3. In the third method, when the excitation is turned off, the bandwidth is defined by the rate of 
exponential decay, as follows: 
 
 

𝛤𝛤 =
1
𝜏𝜏𝑑𝑑𝜋𝜋

 (2.14) 

Here, 𝜏𝜏𝑑𝑑 is the logarithmic decrement. The angular resonance frequency is defined by the phase shift 
𝛥𝛥𝜑𝜑𝑠𝑠 between the forcing function and angular deflection at exactly −𝜋𝜋/2:  

𝜔𝜔0 =  𝜔𝜔(𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋) = −𝜋𝜋/2) (2.15) 
 

For more complex systems, a single-degree-of-freedom system will not capture all the effects. To 
account for either multiple frequencies or modal distortions, a model having multiple-degrees-of-
freedom is needed. 

2.1.2 System with multiple-degrees-of-freedom 
When the resonator is too complex to be simplified to a single-degree-of-freedom model, it is possible 
to use models with multiple-degrees-of-freedom. The likely scenarios include cases in which either 
multiple frequencies are of interest or the resonator itself is based on multiple masses and springs.  

A model with multiple-degrees-of-freedom is a linear combination of several single-degree-of-freedom 
systems. Such systems have been discussed in detail by Irretier [31]. The dynamics of the system is 
given by the following system of differential equations: 

𝑱𝑱
𝜕𝜕2𝜑𝜑�⃗
𝜕𝜕𝑡𝑡2

+ 𝑫𝑫
𝜕𝜕𝜑𝜑�⃗
𝜕𝜕𝜕𝜕

+ 𝑪𝑪𝜑𝜑�⃗ = 𝐹⃗𝐹 (2.16) 

where the angular deflection of the torsional resonator 𝜑𝜑�⃗  is described by a vector and the inertial mass 
matrix 𝑱𝑱, the damping matrix 𝑫𝑫, the stiffness matrix 𝑪𝑪, and the force term 𝐹⃗𝐹.  

The angular deflection vector 𝜑𝜑�⃗  has 𝑛𝑛 elements, where each element represents one differential equation 
in the system. Note that 𝜑𝜑�⃗  is used here as a vector quantity, whereas 𝜑𝜑 in Section 2.1.1. was a scalar 
quantity.  
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For an angular displacement vector 𝜑𝜑�⃗  with 𝑛𝑛 elements, matrices 𝑱𝑱, 𝑫𝑫, and 𝑪𝑪 will be of size 𝑛𝑛 × 𝑛𝑛. The 
force term 𝐹⃗𝐹 has the same number of elements as 𝜑𝜑�⃗ . In case the system of differential equations is 
homogeneous, that is, if 𝐹⃗𝐹 = 0�⃗ , there will be 𝑛𝑛 fundamental solutions of the kind shown in the following 
equation:  

𝜑𝜑�⃗ 𝑚𝑚 = 𝜑𝜑�⃗�𝑚𝑚 ⋅ 𝑒𝑒𝑖𝑖𝜔𝜔0,𝑚𝑚𝑡𝑡 (2.17) 

where 𝜔𝜔0,𝑚𝑚 is the angular resonance frequency of the angular deflection amplitude vector 𝜑𝜑�⃗�𝑚𝑚 (mode 
shape), 𝑖𝑖 = √−1, and 𝑡𝑡 is the time.  

The angular resonance frequencies and their corresponding mode shapes for the undamped system can 
be determined by solving the following eigenvalue problem: 

(𝑱𝑱𝜆𝜆2 + 𝑪𝑪)𝜑𝜑�⃗ = 0�⃗  (2.18) 

where 𝜆𝜆 = 𝑖𝑖𝜔𝜔0,𝑚𝑚 represents a solution of an eigenvalue, and 𝜑𝜑�⃗�𝑚𝑚  is its eigenvector. Therefore, each 
eigenvector and its corresponding eigenvalue builds the fundamental solution shown in Eq. (2.17). 

To solve the eigenvalue problem, the following condition must be satisfied:  

𝑑𝑑𝑑𝑑𝑑𝑑 (𝜆𝜆𝑱𝑱+ 𝑪𝑪) = 0 (2.19) 

When damping is included, the eigenvalue problem becomes more complex, Eq. (2.20). 

(𝑱𝑱𝜆𝜆2 + 𝑫𝑫𝜆𝜆 + 𝑪𝑪)𝜑𝜑�⃗ = 0�⃗  (2.20) 

The eigenvalues 𝜆𝜆 of Eq. (2.20) are complex; the real part is the angular resonance frequency, and the 
complex part is the inverse of the logarithmic decrement. Thus, a multiple-degrees-of-freedom system, 
which consists of inertial masses and springs, can predict the angular resonance frequency and system 
bandwidth.  

However, such multiple-degrees-of-freedom systems require the inertial mass is localized at points. For 
continuous resonators the inertial mass is distributed, thus such resonators are described by continuous 
systems, see Section 2.1.3.  
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2.1.3 Continuous resonator 
The mode structure of a tube-style resonator can be derived based on a linear mechanical system with 
infinite modes. The shape and resonance frequency of the modes is obtained by a modal analysis of the 
following differential equation:  

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐺𝐺𝐼𝐼𝑝𝑝 ⋅
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝜌𝜌𝑠𝑠𝐼𝐼𝑝𝑝

𝜕𝜕2

𝜕𝜕𝑡𝑡2
𝛹𝛹 (2.21) 

where the angular deflection 𝛹𝛹 is a function of the position 𝑥𝑥 and time 𝑡𝑡; 𝐺𝐺 is the shear modulus, 𝜌𝜌𝑠𝑠 is 
the denisty of the resonator, and 𝐼𝐼𝑝𝑝 is the second moment of the area. Note that 𝛹𝛹 is used for continuous 
systems in the space domain, whereas 𝜑𝜑 and 𝜑𝜑�⃗  were used for discrete systems in Section 2.1.1 and 
Section 2.1.2.  

In case of a straight, homogeneous tube, neither the shear modulus nor the second moment of inertia 
depend on the axial position 𝑥𝑥 ; therefore, Eq. (2.21) is reduced to the following traditional wave 
equation:  

𝐺𝐺𝐼𝐼𝑝𝑝
𝜕𝜕2𝛹𝛹
𝜕𝜕𝑥𝑥2

= 𝜌𝜌𝑠𝑠𝐼𝐼𝑝𝑝
𝜕𝜕2

𝜕𝜕𝑡𝑡2
𝛹𝛹 (2.22) 

The solution to Eq. (2.22) with two nodal points as boundary conditions, Eqs. (2.23) and (2.24), 

𝛹𝛹(𝑥𝑥 = 0) = 0 (2.23) 

𝛹𝛹(𝑥𝑥 = 𝐿𝐿) = 0 (2.24) 

is given as Eq. (2.25). 

𝛹𝛹 = 𝐴𝐴 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑘𝑘𝑘𝑘
𝑥𝑥
𝐿𝐿
� ⋅ 𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 (2.25) 

Here, 𝐴𝐴 is the complex wave amplitude; 𝑘𝑘 is the wave number; 𝜔𝜔0 is the angular resonance frequency; 
and 𝐿𝐿 is the distance between the nodal points (𝑥𝑥 = 0) and (𝑥𝑥 = 𝐿𝐿).  

The angular frequency depends on the wave number 𝑘𝑘 and is associated with its corresponding mode as 
follows:  

𝐺𝐺
𝜌𝜌𝑠𝑠
�
𝑘𝑘𝑘𝑘
𝐿𝐿
�
2

= 𝜔𝜔0
2 (2.26) 

To obtain the angular resonance frequency and the mode shape for a non-constant tube radius, Eq. (2.21) 
is solved directly. The obtained solution can then be written as follows: 

𝛹𝛹 = 𝛹𝛹�𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡 (2.27) 

where 𝛹𝛹�  is the amplitude of the mode at the position x.  

A method to obtain a solution is by solving Eq. (2.21) numerically under quasi–steady-state conditions, 
for example by using MATLAB®. Figure 4 shows an example of a solution of Eq. (2.21) for a tube 
having a thick central section with the boundary conditions given by Eqs. (2.23) and (2.24). It is possible 
to obtain different solutions for the mode shapes and their corresponding resonance frequency by 
choosing different initial conditions for the numerical solver. Figure 6 shows the mode shapes at the 
three lowest angular resonance frequencies, that is, Modes 1–3.  
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Figure 4: Normalized shapes of the three first modes of a torsional resonating tube with a thick central section; 
𝑥𝑥 is the axial position; 𝐿𝐿 is the distance between the nodal points; and 𝛹𝛹�  is the angular deflection amplitude 

 
Each mode can be described by a single-degree-of-freedom system for which the corresponding inertial 
mass 𝐽𝐽, the spring constant 𝑐𝑐, and the damping term 𝑑𝑑 must be determined. The inertial mass 𝐽𝐽 and 
damping term 𝑑𝑑  depend on the fluid; the damping term 𝑑𝑑  depends on the fluid properties and the 
intrinsic damping of the resonator, and 𝐽𝐽 is a combination of the inertial mass of the fluid 𝐽𝐽𝑓𝑓 and the 
inertial mass of the structure 𝐽𝐽0. Modal analysis gives the values of the inertial mass of the structure 𝐽𝐽0 
and the spring constant 𝑐𝑐. The parameters 𝑑𝑑 and 𝐽𝐽𝑓𝑓 are discussed in Section 2.2. 

The inertial mass of the structure 𝐽𝐽0 for each mode is calculated by integrating the second moment of 
the area over the modal function: 

𝐽𝐽0 = � 𝛹𝛹�(𝑥𝑥) ⋅ 𝐼𝐼𝑝𝑝(𝑥𝑥)𝜌𝜌𝑠𝑠 𝑑𝑑𝑑𝑑

−𝑙𝑙2

−𝑙𝑙2

 (2.28) 

where the solution is normalized such that 𝑚𝑚𝑚𝑚𝑚𝑚(|𝛹𝛹(𝑥𝑥)|) = 1. 

The spring constant 𝑐𝑐 of the corresponding single-degree-of-freedom system is obtained as follows: 

𝑐𝑐 = 𝐽𝐽0 ⋅ 𝜔𝜔0
2 (2.29) 

where 𝜔𝜔0 is the angular resonance frequency of the corresponding mode.   

In Section 2.1, the structural part of the resonator was discussed. To predict the resonance frequency 
and bandwidth based on the fluid properties, the fluid-dependent terms 𝐽𝐽 and 𝑑𝑑 need to be determined 
(see Section 2.2). 
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2.2 Analytical and numerical fluid models 
To integrate the fluid interactions into the structural model with either a single-degree-of-freedom or 
multiple-degrees-of-freedom (see Sections 2.1.1 to 2.1.3), the damping and inertial mass caused by the 
fluid needs to be determined. The damping and inertial mass terms were derived based on the flow and 
pressure fields, see Section 2.2.1.  

Different computations were made for the flow field based on each sensor component’s geometry. 
Section 2.2.2 describes the simplest fluid model based on an oscillating flat plate. Section 2.2.3 describes 
a torsional oscillating cylinder, which increases the model’s complexity due to a curved surface. If no 
analytical solution can be found, CFD provides the means to compute the flow and pressure fields 
numerically (see Section 2.2.4). 

2.2.1 Fluid forces on a resonating body 
When resonators are described structurally as mass-spring systems, the fluid’s impact on the dynamics 
of the resonator must be accounted for in the inertial mass and damping terms (𝐽𝐽 and 𝑑𝑑, respectively). 
In single- or multiple-degree-of-freedom systems, solving for 𝐽𝐽 and 𝑑𝑑 through fluid models enables the 
coupling of the fluid domain with the structural domain. The spring constant 𝑐𝑐 and the matrix 𝑪𝑪 of a 
system with a single-degree-of-freedom or multiple-degrees-of-freedom, respectively, is given using 
resonator geometry. The total inertial mass 𝐽𝐽 and the damping term 𝑑𝑑 for a system with a single-degree-
of-freedom and the matrices 𝑱𝑱 and 𝑫𝑫 for a system with multiple-degrees-of-freedom depend on the fluid 
interaction. Each position in the matrices 𝑱𝑱 and 𝑫𝑫 can be determined in the same manner as the inertial 
mass 𝐽𝐽 and the damping term 𝑑𝑑 for a system with a single-degree-of-freedom. Therefore, hereinafter, 
we focus only on the terms 𝐽𝐽 and 𝑑𝑑. 

The inertial mass 𝐽𝐽 is the sum of the inertial mass of the structure 𝐽𝐽0 and the inertial mass of the fluid 𝐽𝐽𝑓𝑓. 
This total is given by the following equation:  

𝐽𝐽 = 𝐽𝐽0 + 𝐽𝐽𝑓𝑓 (2.30) 

Similarly, the damping term is the sum of the intrinsic damping of the resonator 𝑑𝑑0  and the fluid 
damping 𝑑𝑑𝑓𝑓.  

𝑑𝑑 = 𝑑𝑑0 + 𝑑𝑑𝑓𝑓 (2.31) 

Note that the intrinsic damping 𝑑𝑑0 is independent of the fluid interaction and is a superimposed damping 
effect that is experimentally determined see Section 2.3.3.  

The two parameters 𝑑𝑑𝑓𝑓  and 𝐽𝐽𝑓𝑓  are real, positive values that depend on the fluid properties, sensor 
geometry, frequency of the resonator. Both parameters are derived based on the pressure and velocity 
fields surrounding the resonator. Therefore, the pressure-induced torque 𝑀𝑀𝑝𝑝,𝑡𝑡  and the shear stress–
induced torque 𝑀𝑀𝑣𝑣,𝑡𝑡 acting on the fluid–structure boundary 𝑑𝑑𝛺𝛺𝑟𝑟 are computed as follows: 

𝑀𝑀𝑣𝑣,𝑡𝑡(𝑡𝑡, 𝜂𝜂, 𝜌𝜌,𝜔𝜔,𝜑𝜑�) = 𝜂𝜂𝑒𝑒𝑖𝑖 ⋅ ��𝑟𝑟 × (𝑛𝑛�⃗ ⋅ 𝛻𝛻𝑢𝑢�⃗ )�𝑑𝑑𝑑𝑑
 

𝑑𝑑𝛺𝛺𝑟𝑟

 (2.32) 

𝑀𝑀𝑝𝑝,𝑡𝑡(𝑡𝑡, 𝜂𝜂,𝜌𝜌,𝜔𝜔,𝜑𝜑�) = 𝑒𝑒𝑖𝑖 ⋅ �(𝑝𝑝𝑛𝑛�⃗ × 𝑟𝑟)𝑑𝑑𝑑𝑑
 

𝑑𝑑𝛺𝛺𝑟𝑟

 (2.33) 

where 𝜂𝜂  is the dynamic viscosity of the fluid; 𝜌𝜌  is the fluid density; 𝜑𝜑�  is the angular deflection 
amplitude; 𝜔𝜔 is the angular frequency; 𝑛𝑛�⃗  is the surface normal of the boundary; 𝑟𝑟 is the distance from 
the axis; 𝑝𝑝 is the pressure field; 𝑢𝑢�⃗  is the velocity field; and 𝑒𝑒𝑖𝑖 is the unity vector of the torsional axis.  
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Due to the harmonic oscillation of the system, the pressure and viscous amplitude are periodic if the 
system behaves linearly. Note that for non-periodic solutions, strong fluid–structure coupling may have 
to be considered; therefore, the method described in this section may not be suitable. 

The amplitudes of the pressure and shear stress–induced torque are obtained by Fourier analysis. Due 
to the linearity of the system, the amplitude is zero for any frequency other than the frequency of the 
excitation. Therefore, only the amplitude at the angular frequency 𝜔𝜔 of the excitation is determined, see 
Eqs. (2.34) and (2.35):  

𝑀𝑀�𝑣𝑣(𝜔𝜔, 𝜂𝜂,𝜌𝜌,𝜑𝜑�) = ℱ �𝑀𝑀𝑣𝑣,𝑡𝑡(𝑡𝑡, 𝜂𝜂,𝜌𝜌,𝜔𝜔,𝜑𝜑�)� (2.34) 

𝑀𝑀�𝑝𝑝(𝜔𝜔, 𝜂𝜂,𝜌𝜌,𝜑𝜑�) = ℱ �𝑀𝑀𝑝𝑝,𝑡𝑡(𝑡𝑡, 𝜂𝜂,𝜌𝜌,𝜔𝜔,𝜑𝜑�)� (2.35) 

where 𝑀𝑀�𝑣𝑣  is the amplitude of the complex shear stress torque; 𝑀𝑀�𝑝𝑝 is the amplitude of the complex 
pressure torque; and ℱ() is the operator of the Fourier analysis.  

The inertial mass of the fluid 𝐽𝐽𝑓𝑓 and the fluid damping term 𝑑𝑑𝑓𝑓 are obtained from the real and imaginary 
parts of the sum of the amplitudes of the pressure and shear stress torque, Eqs. (2.36) and (2.37). 

𝐽𝐽𝑓𝑓 = ℜ�
𝑀𝑀�𝑝𝑝(𝜔𝜔, 𝜂𝜂,𝜌𝜌,𝜑𝜑�)  + 𝑀𝑀�𝑣𝑣(𝜔𝜔, 𝜂𝜂,𝜌𝜌,𝜑𝜑�) 

𝜔𝜔2𝜑𝜑� � (2.36) 

𝑑𝑑𝑓𝑓 = 𝔍𝔍�
𝑀𝑀�𝑝𝑝(𝜔𝜔, 𝜂𝜂,𝜌𝜌,𝜑𝜑�)  +𝑀𝑀�𝑣𝑣(𝜔𝜔, 𝜂𝜂,𝜌𝜌,𝜑𝜑�)

𝜔𝜔𝜑𝜑� � (2.37) 

Thus, the damping term 𝑑𝑑 and inertial mass 𝐽𝐽 can be computed by using Eqs. (2.30) and (2.31) based on 
the properties of the fluid and resonator, which allows the prediction of the resonance frequency and 
bandwidth through the previously described structural models, see Section 2.1.  

However, to compute the terms 𝑀𝑀�𝑝𝑝(𝜔𝜔, 𝜂𝜂,𝜌𝜌,𝜑𝜑�) and 𝑀𝑀�𝑣𝑣(𝜔𝜔, 𝜂𝜂,𝜌𝜌,𝜑𝜑�), the solution of the velocity and 
pressure fields needs to be known. The solution method also depends on the geometry, as discussed in 
Sections 2.2.2–2.2.4. 
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2.2.2 In-plane oscillating plate 
The in-plane oscillating plate is a fluid model that is commonly used; it is especially suitable for shear 
wave–emitting piezoelectric sensors, such as thickness–shear resonators or cylindrical torsional 
resonators. Johannsmann [27] investigated many different fluid and solid constellations of an in-plane 
oscillating plate, ranging from single to multiple fluid/solid layers with either Newtonian or viscoelastic 
properties. In this section, only Newtonian fluids in a semi-infinite domain are considered.  

In this approach, the flow 𝑢𝑢𝑥𝑥  over the surface is modeled under the assumption that the flow is 
unidirectional (especially in the x-direction), and the flow changes only in the z-direction, normal to the 
flow direction 𝑢𝑢𝑥𝑥. Therefore, we have 

𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝜕𝜕

=
𝜂𝜂
𝜌𝜌
𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧2

 (2.38) 

where 𝑡𝑡 is the time; 𝜂𝜂 is the dynamic viscosity; 𝜌𝜌 is the fluid density; and 𝑧𝑧 is the distance from the 
surface.  

Eq. (2.38) can be solved under the assumption of a periodic solution as follows: 

𝑢𝑢𝑥𝑥𝑖𝑖𝑖𝑖 =
𝜂𝜂
𝜌𝜌
𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧2

 (2.39) 

where 𝜔𝜔 is the angular velocity, and 𝑖𝑖 = √−1. 

The boundary conditions are imposed on the surface of the plate and at an infinite distance to obtain 
Eqs. (2.40) and (2.41), 

𝑢𝑢𝑥𝑥(𝑧𝑧 = 0) = 𝜔𝜔𝛹𝛹�𝜑𝜑�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (2.40) 

𝑢𝑢𝑥𝑥 �𝑙𝑙𝑙𝑙𝑙𝑙𝑧𝑧→∞
𝑧𝑧� = 0 (2.41) 

where 𝜑𝜑� is the amplitude of the oscillation, and 𝛹𝛹�  is the value of the modal function.  

The solution to Eq. (2.39) is given as follows: 

𝑢𝑢𝑥𝑥(𝑧𝑧, 𝑡𝑡) = −𝜔𝜔𝛹𝛹�𝜑𝜑�𝑒𝑒
𝑧𝑧

𝛿𝛿(1+𝑖𝑖)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (2.42) 

where 𝛿𝛿 is the thickness of the boundary layer and represents the length scale of the flow; this thickness 
is the distance from the wall where the velocity amplitude is 𝑒𝑒−1 times its original velocity amplitude 
as follows: 

 𝛿𝛿 = �2
𝜂𝜂
𝜌𝜌𝜌𝜌

 (2.43) 

 

The boundary-layer thickness 𝛿𝛿 is independent of the wall velocity and depends only on the dynamic 
viscosity 𝜂𝜂, fluid density 𝜌𝜌, and the angular velocity 𝜔𝜔. 

The in-plane oscillating plate model can be used when the length scale of the flow 𝛿𝛿 is much smaller 
than the scale of geometrical features of the resonating structure (e.g., cylinder), and the radius is much 
larger than the flow structure. If the boundary-layer thickness is in the same order of magnitude than the 
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radius, then the curvature of the tube or cylinder would influence the flow field. This case has been 
discussed in Section 2.2.3. 

2.2.3 Torsional oscillating tube 
The model described in Section 2.2.2 neglects the curvature of the structure’s surface (e.g., the tube of 
the tubular viscosity-sensor). This approach is reasonably accurate when the radius of the tube is much 
larger than the boundary-layer thickness. As the boundary-layer thickness increases, the curvature must 
be included in the fluid model. For this, the equations of fluid mechanics are solved using cylindrical 
coordinates under the assumption that there is no axial flow, no azimuthal change, and no radial flow, 
as shown in the following equations: 

𝜕𝜕𝑢𝑢𝛼𝛼
𝜕𝜕𝜕𝜕

=
𝜂𝜂
𝜌𝜌 �

1
𝑟𝑟
𝜕𝜕𝑢𝑢𝛼𝛼
𝜕𝜕𝜕𝜕

+
𝜕𝜕2𝑢𝑢𝛼𝛼
𝜕𝜕𝑟𝑟2

+
𝑢𝑢𝛼𝛼
𝑟𝑟2�

 (2.44) 

𝑢𝑢𝛼𝛼2

𝑟𝑟
= 𝜌𝜌

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (2.45) 

where 𝑢𝑢𝛼𝛼  is the azimuthal velocity; 𝑟𝑟  is the radial coordinate; 𝜌𝜌  is the fluid density; 𝜂𝜂  is dynamic 
viscosity; and 𝑝𝑝 is the pressure.  

Assuming temporal periodicity, we have the following equations from Eq. (2.45): 

𝑖𝑖𝑖𝑖𝑢𝑢𝛼𝛼 =
𝜂𝜂
𝜌𝜌 �

1
𝑟𝑟
𝜕𝜕𝑢𝑢𝛼𝛼
𝜕𝜕𝜕𝜕

+
𝜕𝜕2𝑢𝑢𝛼𝛼
𝜕𝜕𝑟𝑟2

−
𝑢𝑢𝛼𝛼
𝑟𝑟2

 � (2.46) 

where 𝜔𝜔 is the angular frequency, and 𝑖𝑖 = √−1. 

The solution for Eq. (2.46) is given as follows:  

𝑢𝑢𝛼𝛼(𝑟𝑟) = 𝑐𝑐1𝐽𝐽1 �(−1)
3
4𝑟𝑟�

𝜔𝜔𝜔𝜔
𝜌𝜌
�+ 𝑐𝑐2𝑌𝑌1 �−(−1)

3
4𝑟𝑟�

𝜔𝜔𝜔𝜔
𝜌𝜌
� (2.47) 

where 𝐽𝐽1 is the Bessel function of the first kind and first order; 𝑌𝑌1 is the Bessel function of the second 
kind and first order; and 𝑐𝑐1 & 𝑐𝑐2 are constants that are determined by the following boundary conditions: 

𝑢𝑢𝛼𝛼(𝑟𝑟 = 0) = 0 (2.48) 

𝑢𝑢𝛼𝛼(𝑟𝑟 = 𝑅𝑅) = 𝜔𝜔𝜑𝜑�𝛹𝛹�𝑅𝑅 (2.49) 

where 𝑅𝑅 is the inner radius of the tube, 𝜑𝜑� is the angular deflection amplitude and 𝛹𝛹�  is the value of the 
modal function.  

Note that for computing the damping term 𝑑𝑑𝑓𝑓  and the inertial mass 𝐽𝐽𝑓𝑓  in Eqs. (2.30) and (2.31), 
respectively, the mode shape described by the modal function 𝛹𝛹�  needs to be considered. The mode 
shape 𝛹𝛹�  for a tube has been discussed in Section 2.1.3.  

A solution of Eq. (2.46) is shown in Figure 5 for four fluids with different viscosities at a fluid density 
of 1000 kg/m3. When the viscosity increases, the velocity field 𝑢𝑢𝛼𝛼(𝑟𝑟) penetrates further into the tube.  
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Figure 5: Flow field in a tube for viscosities 𝜂𝜂 of four fluids at a fluid density of 1000 kg/m³. Here, 𝑢𝑢𝛼𝛼/(𝜔𝜔𝜑𝜑�𝛹𝛹�𝑅𝑅) 
is the normalized azimuthal velocity; r is the radial position; and R is the inner radius of the tube.  

 
Analytical solutions have been presented for either flat or circular geometries. However, there is no 
guarantee that analytical solutions can be found for more complex geometries. Section 2.2.4 introduces 
a numerical approach to compute the flow field. This approach is suitable for arbitrary geometries.  
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2.2.4 Computational fluid dynamics 
A more general approach to obtain the velocity and pressure fields around a resonating structure is by 
numerically solving the fluid mechanics equations. In this study, the flow was assumed to be 
incompressible, thermally uniform, homogeneous, and Newtonian, as given below: 

𝛻𝛻 ⋅ 𝑢𝑢�⃗ = 0 (2.50) 

𝜌𝜌 �
𝜕𝜕𝑢𝑢�⃗
𝜕𝜕𝜕𝜕

+ (𝑢𝑢�⃗ ⋅ 𝛻𝛻)𝑢𝑢�⃗ � = −𝛻𝛻𝛻𝛻 + 𝜂𝜂𝜂𝜂𝑢𝑢�⃗ + 𝐹⃗𝐹 (2.51) 

Here, 𝜌𝜌 is the fluid density; 𝑢𝑢�⃗  is the velocity field; 𝑝𝑝 is the pressure field; 𝐹⃗𝐹 is a force term; 𝜂𝜂 is the 
dynamic viscosity; and 𝑡𝑡 is the time.  

The amplitude of the torsional vibration was very small compared to the size of the structure. Therefore, 
the convective term of the fluid mechanics equations (𝑢𝑢�⃗ ⋅ 𝛻𝛻)𝑢𝑢�⃗  is negligible, as shown in Eq. (2.52). 
Neglecting the convective term reduces the computational effort. However, the validity of this 
assumption is case specific; therefore, it needs to be treated as such.  

𝜌𝜌 �
𝜕𝜕𝑢𝑢�⃗
𝜕𝜕𝜕𝜕�

= −𝛻𝛻𝛻𝛻 + 𝜂𝜂𝜂𝜂𝑢𝑢�⃗ + 𝐹⃗𝐹 (2.52) 

In Sections 2.2.2 and 2.2.3, the flow field is analytically computed by assuming temporal periodicity 
and a simple geometry. To compute the flow around a sensor tip (as shown in Figure 2), it is not possible 
to simplify the fluid mechanics equations and the boundary conditions to a degree for which analytical 
solution can be found. Thus, to obtain a solution of the velocity and pressure fields, Eqs. (2.50) and 
(2.51) or Eqs. (2.50) and (2.52) are solved numerically.  

There are two main approaches for numerically solving the fluid mechanics equations: the finite volume 
method [32] and the finite element method [33]. 

The difference between the finite volume and finite element methods lies in how the equations are 
discretized. In the simplest terms, the finite volume method solves for the fluxes between the cells. The 
main advantage of this method is that the mass flux is inherently conserved, that is, the mass flux that 
is transferred from one cell to another cell has the same value. Therefore, even if the flux has a numerical 
error from the solver, the mass is neither created nor lost.  

The finite element method is different; it uses the shape functions for the derivatives. The advantage of 
using shape functions is that higher-order discretization schemes can be used unlike the finite volume 
method. However, the numerical method does not inherently conserve mass flux. Thus, there might be 
some discrepancy in the flux from one cell to another. However, for many numerical applications, this 
error is negligible.  

In this research, the fluid mechanics application was solved using two commercial software solutions: 
COMSOL Multiphysics® and ANSYS CFX®. COMSOL Multiphysics® is a finite element code, 
whereas ANSYS CFX® follows the finite volume method. To ensure that the solution is independent 
of the numerical method, both methods must yield the same solution. Then, we can safely conclude that 
the obtained solution is independent of the numerical method. 
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Reduced-order modeling 
The fluid mechanics application used in this research focuses on the viscosity–density sensors. In 
particular, the flow and pressure fields around the torsional oscillating sensor tip (see Figure 2) are 
solved to determine the inertial mass and viscous damping term (Eqs. (2.30) and (2.31)) of the fluid. 
However, there is a large difference in the orders of magnitudes between the fluid length scale and 
geometrical length scale; therefore, a full resolution of the flow field in a three-dimensional domain 
around the sensor tip exceeds current computational resources. 

An estimate of the fluid length scale can be obtained by assuming that the flow behaves similar to the 
flow over an in-plane oscillating plate, as discussed in Section 2.2.2. Then, the fluid length scale of the 
flow is the boundary layer thickness 𝛿𝛿 (see Eq. (2.38)). For a fluid with the properties of water, this 
boundary layer thickness (i.e., the fluid length scale) is approximately 6.5 𝜇𝜇𝜇𝜇. This thickness is much 
smaller than the diameter of the shaft (5 mm) or the elapsing diameter of the tip (12 mm). The difference 
in the length scales poses a considerable challenge because the cells need to be sufficiently small for 
resolving the flow near the boundary, but the computational domain is comparatively very large. 
Therefore, to accurately compute the flow, a very large number of cells is necessary. 

One way to overcome this challenge is by reducing the computational domain to a cross section, which 
lowers the number of cells by two to three orders of magnitude. However, this simplification causes any 
edge effects on the tip to be neglected, which results in a systematic error in the computed inertial mass 
and viscous damping term (Eqs. (2.30) and (2.31)). If said error is small, the qualitative trends can still 
be captured and applied in practice, even when a two-dimensional cross section of the structure is used. 

To accurately compute the flow within the cross section, the mesh resolution must be sufficiently high, 
that is, refining the mesh further should not change the solution of the flow. Figure 6 shows the mesh of 
the cross section of the tip of one resonator studied in this thesis, which is sufficiently resolved. 
Therefore, the flow solution is independent of further mesh refinement and can be considered mesh 
independent. 

 
Figure 6: Two-dimensional mesh of the computational domain in COMSOL Multiphysics® with 26558 

elements  
 
Hereafter, the independence of the numerical method and mesh independence are assumed. There are 
several methods to describe the structural vibration and thereby compute the flow around the given 
vibrating structure.  
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The solutions of the flow and the pressure fields must also be invariant under different methods for 
applying the torsional oscillation. The torsional oscillation of the structure was modeled using two 
methods: moving wall and frame of reference. 

• Moving wall approach  
In the moving wall approach, the torsional vibration is modeled by the boundary condition of 
the oscillating structure. The torsional oscillation is around the axis 𝑒𝑒𝑖𝑖, which is normal to the 
computational domain (i.e., the cross section). The velocity at the boundary of the resonator 
𝑑𝑑𝛺𝛺𝑟𝑟 is defined by Eq. (2.53) as  

𝑢𝑢�⃗ (𝑑𝑑𝛺𝛺𝑟𝑟) = 𝜔𝜔𝛹𝛹�𝜑𝜑� ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔) (𝑟𝑟 × 𝑒𝑒𝑖𝑖) (2.53) 

where 𝑢𝑢�⃗  is the velocity field; 𝜔𝜔 is the angular frequency; 𝑟𝑟 is the distance from the axis 𝑒𝑒𝑖𝑖 to 
the boundary; 𝜑𝜑� is the oscillation amplitude; and 𝛹𝛹�  is the value of the modal function. 
 

• Frame of reference 
Instead of inducing the torsional vibration on the wall, the frame of reference approach 
induces the motion in the domain. Thereby, the force term 𝐹⃗𝐹 is replaced by the centrifugal 
acceleration 𝛺𝛺�⃗ × (𝛺𝛺�⃗ × 𝑟𝑟), Coriolis acceleration 2𝛺𝛺�⃗ × 𝑢𝑢�⃗ , and Euler acceleration 
(𝜕𝜕𝛺𝛺�⃗ )/(𝜕𝜕𝜕𝜕 × 𝑟𝑟), as follows: 

𝜌𝜌 �
𝜕𝜕𝑢𝑢�⃗
𝜕𝜕𝜕𝜕

+ 𝑢𝑢�⃗ ⋅ 𝛻𝛻𝑢𝑢�⃗ + 2𝛺𝛺�⃗ × 𝑢𝑢�⃗ + 𝛺𝛺�⃗ × �𝛺𝛺�⃗ × 𝑟𝑟� +
𝜕𝜕𝛺𝛺�⃗
𝜕𝜕𝜕𝜕

× 𝑟𝑟� = −𝛻𝛻𝛻𝛻 + 𝜂𝜂𝜂𝜂𝑢𝑢�⃗  (2.54) 

where 𝛺𝛺�⃗  is the rotation vector of the domain. The motion of the domain is described by 𝛺𝛺�⃗  as, 

𝛺𝛺�⃗ = 𝑒𝑒𝚤𝚤���⃗ 𝛹𝛹�𝜑𝜑� ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔) (2.55) 

where 𝜔𝜔 is the angular frequency; 𝑒𝑒𝚤𝚤���⃗  is the unity vector of the torsional axis; 𝜑𝜑� is the 
oscillation amplitude; and 𝛹𝛹�  is the value of the modal function. 

Note that the modal function 𝛹𝛹�  is constant for a cross section. However, when computing the damping 
term 𝑑𝑑𝑓𝑓 and the inertial mass 𝐽𝐽𝑓𝑓, the shear stress–induced and pressure-induced torques are integrated 
over the axis of the resonator, where 𝛹𝛹�  is not constant.  

Sections 2.2.2 through 2.2.4 describe a numerically robust method for obtaining a solution for the flow 
and pressure fields. This solution can be coupled with the analytical structural model (discussed in 
Section 2.1) to numerically determine the bandwidth and resonance frequency a sensor. Before these 
numerical predictions can be incorporated into the sensor design process, they must be experimentally 
validated, as discussed in Section 2.3.  
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2.3 Experiments 
Resonance-based viscosity–density sensors can be considered as devices that measure the resonance 
frequency, bandwidth, and temperature. Based on these measured properties, the fluid viscosity and 
density are predicted. To avoid complex multi-dimensional prediction models that require many 
experiments for calibration, we need parameters that describe the viscosity and density without 
reciprocal effects. Section 2.3.1 discusses a parameter that can be used to describe the density, and 
Section 2.3.2 discusses a parameter for the product of fluid viscosity and density.  

Section 2.3.3 presents the experimental protocols that verify that there are no cross sensitivities for either 
the viscosity prediction or the density prediction. 

2.3.1  Density measurement 
To determine the fluid density based on the measured bandwidth and resonance frequency, a parameter 
that depends only on the fluid density is required. This parameter can be derived based on a single-
degree-of-freedom resonator. Therefore, the resonance frequency of the resonator is defined as follows: 

𝑓𝑓0 =
1

2𝜋𝜋�
𝑐𝑐
𝐽𝐽

  (2.56) 

where 𝑐𝑐 is the spring constant, and 𝐽𝐽 is the inertial mass (see Section 2.1.1).  

The inertial mass 𝐽𝐽  can be decomposed into two parts: the inertial mass of the fluid 𝐽𝐽𝑓𝑓  and the 
representative inertial mass of the structure 𝐽𝐽0 (see Eq. (2.30)). The inertial mass caused by the fluid 𝐽𝐽𝑓𝑓 
is proportional mainly to the fluid density; however, it is also affected by the viscous effects.  

The resonance frequency is affected by the fluid viscosity and temperature. These effects were 
compensated as follows: 

• Effects of viscosity:  
The flow field is described by the model presented in Section 2.2.2. In this model, the flow 
equally contributes to the inertial and damping terms. This additional inertial mass creates a 
viscosity dependence. For compensation, half the bandwidth was added to the resonance 
frequency. 

• Effects of temperature: 
Temperature affects the shear modulus of the resonator, which affects its undamped frequency 
and the parameter 𝑐𝑐 in Eq. (2.56). This temperature dependence was compensated by taking 
the difference between resonance frequency and the undamped resonance frequency in air 
(𝑓𝑓0,𝑎𝑎𝑎𝑎𝑎𝑎), at which the parameter c is the same.  

Thus, the fluid density can be described by the parameter Δ𝑓𝑓0: 

Δ𝑓𝑓0 = 𝑓𝑓0,𝑎𝑎𝑎𝑎𝑎𝑎 − �𝑓𝑓0 +
Γ
2
� (2.57) 

where 𝑓𝑓0 is the resonance frequency; 𝛤𝛤 is the bandwidth; and 𝑓𝑓0,𝑎𝑎𝑎𝑎𝑎𝑎 is the resonance frequency of the 
sensor in air. To describe the fluid viscosity, we discuss an additional parameter in Section 2.3.2. 

2.3.2 Viscosity measurement 
For many resonance sensors, the bandwidth divided by the resonance frequency, i.e. normalized 
bandwidth 𝛤𝛤/𝑓𝑓0, can be correlated directly to the viscosity-density product of the fluid. In a single-
degree-of-freedom resonator, the normalized damping is equal to the ratio of the stored energy and 
energy dissipation per cycle. This ratio can be approximated by the ratio between the fluid damping and 
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the inertial mass 𝐽𝐽. If we assume that 𝐽𝐽 is constant, then 𝛤𝛤/𝑓𝑓0 is proportional to the square root of the 
product of fluid viscosity and density (applying the model described in Section 2.2.2). In case the fluid 
adds inertial mass or changes the modal function, the inertial mass 𝐽𝐽 of the single-degree-of-freedom 
system is changed. This creates a fluid density dependence on the normalized bandwidth because of 
changes in the inertial mass of the single-degree-of-freedom resonator. To compensate for this density 
dependence, the expression 𝛤𝛤/𝑓𝑓0 is multiplied by the inertial mass 𝐽𝐽, which produces an indicator for 
the damping term of the single-degree-of-freedom system.  

The inertial mass of the corresponding single-degree-of-freedom system cannot be measured directly. 
However, it can be determined mathematically by dividing the resonance frequency by its derivative 
with respect to the inertial mass: 

−2𝐽𝐽 =
𝑓𝑓0
𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

 (2.58) 

where 𝑓𝑓0 is the resonance frequency.  

Also, the derivative (𝜕𝜕𝑓𝑓0)/𝜕𝜕𝜕𝜕 cannot be measured directly. In a good approximation, the first-order 
derivative has the following proportionality: 

𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

~ ∝
𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

 (2.59) 

where 𝜌𝜌 is the fluid density. By substituting Eq. (2.57) in Eq. (2.59) and assuming a low fluid viscosity 
(i.e., a small bandwidth 𝛤𝛤 ≈ 0 𝐻𝐻𝑧𝑧), we obtain Eq. (2.60). 

𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

=
𝜕𝜕(Δ𝑓𝑓0)
𝜕𝜕𝜕𝜕

 (2.60) 

This assumption implies that the inertial mass can be described as: 

𝐽𝐽 = 𝐽𝐽0 + 𝑐𝑐3 ⋅ 𝜌𝜌 (2.61) 

Here, the inertial mass is assumed to be a linear function of the density 𝐽𝐽0 + 𝑐𝑐3𝜌𝜌, where 𝑐𝑐3 is a constant. 
Then, the proportionality of (𝜕𝜕𝑓𝑓0)/𝜕𝜕𝜕𝜕 and (𝜕𝜕𝑓𝑓0)/𝜕𝜕𝜕𝜕 can be shown by using the following chain rule:  

𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

−𝐽𝐽0
𝑐𝑐3

∝
𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

 (2.62) 

Therefore, based on the presented derivation, the parameter 𝛤𝛤+ should be only be dependent on the 
product of viscosity and denisty of the fluid. We have Eq. (2.63). 

𝛤𝛤+ =
𝛤𝛤
𝑓𝑓0
⋅
𝑓𝑓0
𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

=  
𝛤𝛤

𝜕𝜕(Δ𝑓𝑓0)
𝜕𝜕𝜕𝜕

 (2.63) 

To determine whether the parameters 𝛤𝛤+ and Δ𝑓𝑓0 exhibit any reciprocal effects of viscosity and density, 
experimental protocols needed to be designed to detect the exact parameters, as discussed in Section 
2.3.3. 

2.3.3 Identifying cross sensitivities 
Experiments need to be conducted to experimentally determine the bandwidth and resonance 
frequencies at given temperatures, viscosities and densities. Therefore, the resonance frequency 𝑓𝑓0,𝑎𝑎𝑎𝑎𝑎𝑎 
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and bandwidth 𝛤𝛤𝑎𝑎𝑎𝑎𝑎𝑎  of the resonator were first measured in air, where there is minimal interaction 
between resonator and the surrounding environment. The measured bandwidth in air 𝛤𝛤𝑎𝑎𝑎𝑎𝑎𝑎 is a measure 
of the intrinsic damping of the resonator 𝑑𝑑0, see section 2.2.1. Once the resonator is in contract with a 
liquid, the bandwidth and resonance frequency changes. The change in bandwidth due to the interaction 
of the resonator with the fluid is obtained by subtracting the bandwidth in air 𝛤𝛤𝑎𝑎𝑎𝑎𝑎𝑎 from the measured 
bandwidth 𝛤𝛤𝑚𝑚, i.e. 𝛤𝛤 = 𝛤𝛤𝑚𝑚 − 𝛤𝛤𝑎𝑎𝑎𝑎𝑎𝑎. Therefore, 𝛤𝛤 is a measure of the change in bandwidth due to the fluid 
interaction, i.e. it relates to 𝑑𝑑𝑓𝑓.  

The fluids used in this study were Newtonian with the precise values of the viscosity and density known 
at a given temperature. The typical fluids that satisfied the above criterions included NIST traceable 
viscosity reference fluids that are available for different viscosity ranges (N2, S600, N100, S200) and 
pure substances such as chloroform (CHCl3), acetone, and n-dodecane. Figure 7 shows the viscosity (a) 
and the density (b) of the fluids used in this study depending on their temperature. 

To ensure that the sensor predicts the same viscosity or density regardless of the fluid temperature, 
density, and viscosity, the potential cross sensitivities were identified. Fluids were selected such that 
their densities and viscosities overlapped over segments of the desired range of temperature 
measurements. This allowed cross measuring (e.g., measuring viscosities at different temperatures and 
densities) and subsequent identification of potential cross sensitivities among the fluid properties.  

 

 
(a) 

 

 
(b) 

Figure 7: Viscosities (a) and fluid densities (ab) versus temperature 
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3 Results and Discussions  
This Section discusses the results of the papers with regard to the RQs I–IV. In Paper I, a new viscosity–
density sensor is presented (see Section 3.1). The same sensor is then numerically investigated in Papers 
II and III. Paper II presents a new mathematical model that combines a mass–spring system with CFD 
(see Section 3.2). The numerical flow simulation is investigated in Paper III (see Section 3.3). In Paper 
IV, a new non-intrusive sensor is presented, which can measure the product of the fluid’s viscosity and 
density (see Section 3.4). In section 3.5, the results are summarized and discussed in conjuncture with 
the RQs. 

3.1 Paper I 
Viscosity–Density Sensor Based on Torsional Vibrations 
J. Goodbread3, D. Brunner1,2, K. Häusler³, S. Kumar³, H. Khawaja² 
Manuscript ready  
1. ZHAW, Zurich University of Applied Sciences, Switzerland 
2. UIT, The Arctic University of Norway 
3. Rheoncis GmbH, Switzerland 
 
This study discusses a new sensor for measuring the viscosity and density of Newtonian fluids. The 
sensor’s design is based on the symmetric torsional resonator first described by Goodbread et al. [32] 
(see Figure 8). The resonator consists of two ends that are connected to a central disk. One end, which 
contains a permanent magnet, is used for exciting and sensing the resonator’s motions. The other end 
has four radial fins and is immersed into the fluid. Each end is connected to the central disk by an elastic 
tube, and the ends are connected with each other by a coaxially located torsional spring (not shown in 
Figure 8). The torsional spring couples the vibrations of the two ends, making them oscillate at the same 
frequency.  

 

 

Figure 8: Schematic of the resonator (left) and sensor (right) 
 

 

The properties measured by the sensor are the resonator’s bandwidth, resonance frequency, and 
temperature. To predict the viscosity and density based on these three measured quantities, parameters 
were required to describe the viscosity and density with minimal reciprocal effects. In this research, the 
two derived parameters were mainly dependent on either the viscosity or the density. The parameters 
were derived based on the underlying principles of a resonance sensor, that is, a single-degree-of-
freedom system (see Section 2.1). The two parameters 𝛤𝛤+(Eq. (2.63)) and Δ𝑓𝑓0 (Eq. (2.57)) describe the 
fluid’s viscosity–density product and density, respectively. The derivation of these parameters has been 
discussed in Section 2.3.  
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The Δ𝑓𝑓0value was measured for different fluids over a range of temperatures, viscosities, and densities, 
as shown in Figure 9. All the points tended to converge to one curve, which implied that the parameter 
Δ𝑓𝑓0 was a function only of the fluid density. Therefore, there is no need for complex multi-dimensional 
correlation functions, and the fluid density can be directly determined based on the Δ𝑓𝑓0value.  

To model the correlation between Δ𝑓𝑓0 and 𝜌𝜌, a purely empirical model (e.g., a polynomial) is unsuitable 
because the measurements are clustered rather than uniformly distributed; the interpolation between the 
clusters is unreliable. A more robust interpolation method is to use a basis function that reflects the basic 
properties of the sensor. This basis function results from the model presented in Paper II and is 
multiplied by another function to fit the experimental data shown in Figure 9 as a black line. This 
multiplier function only accounts for small deviation between basis function and experiments, which 
minimizes the empirical correction. The resulting fitting function (black line) would be straight for a 
single-degree-of-freedom model. However, the model predictions and the experimental results 
confirmed a non-linear relationship between the Δ𝑓𝑓0 value and fluid density. At high densities, the slope 
of the curve decreases with respect to the fluid density. This change is caused by the distortion of the 
modal function, which decreases the absolute sensitivity to high densities. 

 

Figure 9: The Δ𝑓𝑓0 values for experiments and the fitting function for different fluid properties and 
temperatures. 
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Fluid damping is typically correlated to the viscosity–density product of the fluid. To measure the fluid 
viscosity, the fluid density is first determined, then the viscosity value is computed. Figure 10 shows the 
measured 𝛤𝛤+ values of the fluids at different temperatures, viscosities, and densities. By plotting the 
viscosity–density product versus 𝛤𝛤+  (see Eq. (63)), all the points collapse onto one curve, which 
indicates that the parameter 𝛤𝛤+ is only a function of the viscosity–density product (see black line in 
Figure 10, fitting function). Thus, thus 𝛤𝛤+ is independent of fluid temperature and density.  

Figure 10: Viscosity–density product vs. normalized and density-corrected bandwidths for different fluids and 
temperatures 

 
Experiments demonstrated that the sensor can measure fluid viscosities from less than 1 mPas up to 
4000 mPas and densities from 600 kg/m³ to 1500 kg/m³ at temperatures between 0 °C and 120 °C. Both 
viscosity and density could be directly correlated to the two parameters 𝛤𝛤+and Δ𝑓𝑓0with minimal cross-
sensitivity. 

To gain a deeper understanding of the resonator that goes beyond empirical and single-degree-of-
freedom models, predictive models are required that fully describe the sensor. Based on such models, 
the bandwidth and resonance frequency of the sensor can be predicted before it is manufactured. Such 
a model is presented in Paper II.   
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3.2 Paper 2 
Modelling a Viscosity–Density Sensor Based on Small Amplitude Torsional Vibrations 
D. Brunner¹,², J. Goodbread³, K. Häusler³, S. Kumar³, G. Boiger¹, H. Khawaja² 
Manuscript ready  
1. ZHAW, Zurich University of Applied Sciences, Switzerland 
2. UIT, The Arctic University of Norway 
3. Rheoncis GmbH, Switzerland 
 

The mathematical model proposed in this study describes the fluid–structure interactions of the 
viscosity–density sensor presented in Paper I. The resonant element of the sensor is comprised of a two-
mass, three-spring system. The model of the resonator describes the angular deflections of the two 
inertial masses 𝐽𝐽1 and 𝐽𝐽2, which are connected to the fixed point via the springs 𝑐𝑐1 and are directly 
connected with the inner rod 𝑐𝑐2. This modelling approach was discussed in general terms as a multi-
degree-of-freedom system in section 2.1.2 and is applied on the viscosity-density sensor as a two-
degrees-of-freedom system. 

The schematic of the resonator and its modal function are shown in Figure 11; the blue lines show the 
angular deflection of the springs 𝑐𝑐1, and the pink line shows the angular deflection of the inner rod 𝑐𝑐2.  

 
Figure 11: Schematic of the sensor (above) and modal function (below), where the red line shows the angular 

deflection amplitude of the tip 𝜑𝜑�𝑖𝑖,1 and the back 𝜑𝜑�𝑖𝑖,2. The blue line shows the deflection amplitude of the 
springs 𝑐𝑐1, and the pink line shows the angular deflection amplitude of the inner rod 𝑐𝑐2. 

 

The fluid–structure interaction is modeled by the damping term 𝑑𝑑𝑓𝑓 and inertial mass 𝐽𝐽𝑓𝑓. These two terms 
were imposed on the tip. The viscous damping 𝑑𝑑𝑓𝑓 and inertial mass  𝐽𝐽𝑓𝑓 have been discussed in Section 
2.2.1 and were derived based on two solutions of the fluid mechanics equations. The flow field around 
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the tip with the four radial fins was modeled using CFD (see Section 2.2.4), and the cylindrical section 
was modeled using a flat plate approach (see Section 2.2.2).  

Based on the flow simulations, the values for the damping 𝑑𝑑𝑓𝑓 and inertial mass of the fluid 𝐽𝐽𝑓𝑓 were 
computed for various angular frequencies, viscosities and densities. Figure 12 shows  𝐽𝐽𝑓𝑓 (a) and 𝑑𝑑𝑓𝑓 (b) 
as functions of the boundary layer thickness 𝛿𝛿 (see Eq. (2.43)). The inertial mass 𝐽𝐽𝑓𝑓 was normalized by 
the fluid density 𝜌𝜌, and the fluid damping 𝑑𝑑𝑓𝑓 was normalized by �𝜂𝜂𝜂𝜂𝜂𝜂. The normalization made all the 
points collapse onto one line, which was modeled through a polynomial fit, that is, an empirical model.  

 

 
(a) 

 

 
 (b) 

 
 

Figure 12: Normalized inertial mass of the fluid 𝐽𝐽𝑓𝑓 as a function of the boundary-layer thickness 𝛿𝛿 (a) and the 
normalized damping term 𝑑𝑑𝑓𝑓 as a function of the boundary-layer thickness 𝛿𝛿 (b) 

 
To validate the model’s predictions, the numerical results were compared with the experimental results 
presented in Paper I. This comparison was performed in two steps. First, the predicted and measured 
resonance frequencies were compared. Then the inertial masses of the model were refined to minimize 
the difference between measured and predicted resonance frequency by means of the least square 
method. The relative deviations between these fitted inertial masses and the inertial masses estimated 
from the dimensions of the sensor were less than 5 %. This low deviation confirmed the plausibility of 
the fitted inertial masses. The predicted and measured resonance frequencies at different temperatures, 
fluid densities and viscosities are shown in Figure 13. 
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Figure 13: Comparison of the predicted and computed resonance frequencies 𝑓𝑓0 at different fluid densities, 

viscosities, and temperatures  
 

In the second step, this refined model was further validated based on the predicted normalized bandwidth 
𝛤𝛤/𝑓𝑓0 (bandwidth divided by the resonance frequency). Figure 14 shows 𝛤𝛤/𝑓𝑓0  versus the viscosity–
density products of the fluids for both the experimental results and numerical predictions. Most of the 
fluids had fluid densities between 650 kg/m³ and 900 kg/m³, as shown by the color bar. The fluid density 
of CHCl3 (not shown in the color bar in Figure 14) was approximately 1480 kg/m³ (temperature 
dependent). The normalized bandwidth of CHCl3 was approximately 40 % lower than that for fluids 
with densities between 650 kg/m³ and 900 kg/m³. This effect did not originate from a low damping 
coefficient 𝑑𝑑𝑓𝑓 but from a change in the amplitude ratio between tip and back, because of the high fluid 
density. The high fluid density increased the inertial mass of the tip; therefore, the angular deflection 
amplitude of the back increased. This changed the balance between the inertial and damping forces of 
the system; therefore, the normalized bandwidth was reduced.  

 

Figure 14: Comparison between the predicted and measure normalized bandwidths 𝛤𝛤/𝑓𝑓0 for different 
viscosity–density products. 𝛤𝛤 is the bandwidth; 𝑓𝑓0 is the resonance frequency; 𝜌𝜌 is the fluid density; and 𝜂𝜂 is 

the dynamic viscosity. 
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Figure 15 shows the relative deviation from the predicted and measured normalized bandwidths. For 
viscosities less than 100 mPas (at the reference density of 1000 kg/m³), there was constant offset 
between the model and predictions. For viscosities higher than 100 mPas, the numerical model 
systematically deviated and predicted higher bandwidths than those observed experimentally. A 
potential source of the deviations an the edge effects at the tip, which were neglected by reducing the 
computational domain into a cross section. Including these edge effects in a three-dimensional domain 
can be investigated in future studies.  

 

Figure 15: Relative deviations between the predicted and measured normalized bandwidths 𝛤𝛤/𝑓𝑓0 for 
different viscosity–density products. Here, 𝛤𝛤 is the bandwidth; 𝑓𝑓0 is the resonance frequency; 𝜌𝜌 is the fluid 

density; and 𝜂𝜂 is the dynamic viscosity. 
 

 
 

The proposed model has proven to efficiently and accurately predict the behavior of the viscosity–
density sensor. Thus, the model allows for computationally supported geometrical optimization, and it 
has the potential to significantly decrease the development time of a new generation of sensors.  

However, the model has only been validated for integrated quantities, such as the normalized bandwidth 
and resonance frequencies. To further validate the numerical part of the model and increase the 
credibility of the obtained solutions, a comparison of the local quantities (pressures and shear rates at 
the boundary of the structure) is required (see Paper III). 
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3.3 Paper 3 
CFD Modeling of Pressure and Shear Rate in Torsionally Vibrating Structures using ANSYS 
CFX and COMSOL Multiphysics 
D. Brunner1,2, H. Khawaja2, M. Moatamedi2, G. Boiger1 
The International Journal of Multiphysics, Vol. 12, no. 4, pp. 349–358, 2018. 
1. ZHAW, Zurich University of Applied Sciences, Switzerland 
2. UIT, The Arctic University of Norway 
 
In the paper II, a model was presented to predict the bandwidth and resonance frequency of a torsional 
resonator. The damping term 𝑑𝑑𝑓𝑓  and inertial mass of the fluid 𝐽𝐽𝑓𝑓  were determined using CFD. The 
results were validated only on integrated quantities, i.e. bandwidth and resonance frequency. Therefore, 
a more in-depth investigation of the numerical flow simulation is required to ensure the validity of the 
numerical flow solution.  

To increase confidence in the solution of the velocity and pressure fields, it needs to be shown that the 
solution is independent of the numerical method and the method in which the oscillation is applied. This 
was achieved by comparing the solutions of the velocity and pressure fields in two commercial software:  

• COMSOL Multiphysics® (based on the finite element method) 
• ANSYS CFX® (based on the finite volume method) 

The two methods, finite element and finite volume, have been discussed in Section 2.2.4. 

Motion is induced differently in the two programs; therefore, a comparison would reflect the correctness 
of the models and their suitability for the solution. COMSOL Multiphysics® uses a moving wall 
approach, whereas ANSYS CFX® induces motion in the domain by using a frame of reference 
approach.  

The following cases were compared: 
 

• Moving wall approach, COMSOL Multiphysics® 
The moving wall applied the torsional oscillation motion via a boundary velocity (see Eq. 
(2.52) in Section 2.2.4).  
The equations of fluid mechanics have been solved (see Eqs. (2.50) and (2.51)).  
 

• Linearized moving wall approach, COMSOL Multiphysics® 
The moving wall applied the torsional oscillation motion via a boundary velocity (see Eq. 
(2.53) in Section 2.2.4).  
The equations of fluid mechanics have been solved in their linearized form, that is, the 
convection was neglected (see Eqs. (2.50) and (2.52)). 
 

• Frame of reference approach, ANSYS CFX® 
Instead of creating the motion at the structure, a frame of reference was applied in the flow 
field. Thereby, additional terms were added to Eq. (2.51), namely, centrifugal acceleration, 
Coriolis acceleration, and Euler acceleration (see Eq. (2.54)). 
 

The solutions of the shear rates and pressures on the boundaries were compared. These quantities were 
chosen because they were needed to determine integrated torques (Eqs. (2.32) and (2.33)) to compute 
the inertial mass of the fluid 𝐽𝐽𝑓𝑓 and the damping term 𝑑𝑑𝑓𝑓. 
This paper investigates the geometry of the tip of the viscosity–density sensor presented in Paper I. The 
tip was divided into three sections: radial, fin, and tip (see Figure 16). 
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Figure 16: Geometry of the sensor tip of a viscosity–density sensor 
 

The shear rates and pressure values computed by the different methods were compared at these three 
geometrical sections. After reaching the quasi-steady-state, the shear rate and pressure were harmonic 
due to of the harmonic oscillation of the structure. Thus, the shear rate and pressure were compared in 
terms of their amplitude and phase. Figure 17 shows the shear rate amplitude for two fluid viscosities 
and three numerical methods. The solutions for all the methods were found to be in good agreement.  

 

Figure 17: Comparison of shear rate amplitudes over the fin between COMSOL Multiphysics® (full and 
linearized version of fluid mechanics equations) and ANSYS CFX® 

 
Figure 18 shows the pressure amplitude, and Figure 19 shows the phase of the pressure for the radial 
section. The pressure and phase were only plotted for a dynamic viscosity of 2 mPas since the solutions 
were almost identical to those at 20 mPas. For all the methods, the pressure amplitude was reduced 
strongly in the center of the radial section. At the same location, the pressure phase switched from 
slightly above 0° to almost 180°, which indicated that the pressure field was asymmetric. For both the 
phase and amplitude, all the three methods were in good agreement.  
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Figure 18: Comparison of the pressure amplitude over the radial section between COMSOL Multiphysics (full 
and linearized version of the Navier–Stokes equation) and ANSYS CFX 

 

 
 

Figure 19: Comparison of the phase of the pressure over the radial section between COMSOL Multiphysics 
(full and linearized version of the Navier–Stokes equation) and ANSYS CFX 

 
All the numerical models yielded the same solution; therefore, the solution was independent of the 
numerical method and how the motion was applied. This underlines the potential of CFD for 
investigating the fluid mechanism around a torsional resonator (i.e., the viscosity–density sensor).  

In Papers I–III, a probe-style viscosity–density sensor was investigated. Probe-style sensors have limited 
applications for the real-time measurement of viscosity in industrial processes because they create an 
obstruction in the piping systems. Such obstructions can be problematic in biochemical processes and 
cleaning-in-place procedures. Therefore, a non-intrusive viscosity sensor is presented in Paper IV. 
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3.4 Paper 4  
Analysis of a Tubular Torsionally Resonating Viscosity-Density Sensor  
D. Brunner1,2, J. Goodbread3, K. Häusler3, S. Kumar3, G. Boiger1, H. Khawaja2,  
MDPI Sensors, 2020, 20 (11), 3036. https://doi.org/10.3390/s20113036. 
1. ZHAW, Zurich University of Applied Sciences, Switzerland 
2. UIT, The Arctic University of Norway 
3. Rheoncis GmbH, Switzerland 
 

In this research, we propose a new tubular sensor that can measure the product of the fluid viscosity and 
density under conditions of internal flow. The sensor comprises of a straight, thin walled, stainless-steel 
tubular body; the flow passes through the sensor body without any interruption. This allows the tubular 
sensor to be directly integrated into a process line. 

The working principle of the tubular sensor is based on torsional resonance. The first torsional mode of 
the resonator was excited at a frequency close to its natural frequency. The excited resonance created 
motion in the fluid. The shear stresses caused by the fluid motion induced a torque on the sensor, which 
dampened the resonator’s oscillation. The damping of the oscillation can be measured by a bandwidth 
and related to the viscosity–density product of the fluid. 

Figure 20 shows the schematic of the tubular sensor. The resonator consists of a tube and two large 
decoupling disks mounted onto the outer diameter. The first torsional mode was excited between the 
two masses via two permanent magnets that were mounted onto the tube. These magnets were driven 
by electromagnets, which produced an oscillating torque near the natural frequency of the first torsional 
mode. This driving torque was turned off after sufficient energy had been provided to the resonator. 
Then, the decay in the torsional oscillation was measured using electromagnets. Based on the measured 
signal, the bandwidth 𝛤𝛤 and resonance frequency 𝑓𝑓0 were computed.  

 

 

Figure 20: Experimental setup of the tubular sensor 
 

Appropriate models are required to numerically predict the bandwidth and resonance frequency. The 
sensor was modeled based on a continuous resonator; only the first torsional mode was considered. The 
modal analysis of a continuous tubular sensor has been discussed in Section 2.1.3. Based on this modal 
analysis, the first torsional mode could be described by a single-degree-of-freedom system (see Section 
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2.1.1). Therefore, the representative inertial mass and spring constant of the single-degree-of-freedom 
system were determined (see Eqs. (2.28) and (2.29)). The fluid damping was computed based on an 
analytical solution of the flow on cylindrical structures, as discussed in Section 2.2.3.  

Experiments were performed to validate the predictions of the numerical models and test the capabilities 
of the sensors. These experiments were conducted in two steps: 

• First, the sensor was tested under well-defined conditions without any internal flow, that is, the 
temperature, viscosity, and density were known and controlled. NIST traceable viscosity 
reference fluids (N2, S6, S20, S60, N100, S200, and S600) were used.  

• Second, the sensor was placed in a flow loop at room temperature to investigate the sensitivity 
of the measurement of the viscosity–density product on the internal flow at Reynolds numbers 
ranging from 500 to 50,000. 

Figure 21 shows the product of fluid viscosity and density (𝜌𝜌𝜌𝜌) versus the normalized bandwidth 𝛤𝛤/𝑓𝑓0. 
The colormap shows the temperatures at which the 𝜌𝜌𝜌𝜌-values were measured. Overall, the normalized 
bandwidth was proportional to the square root of the 𝜌𝜌𝜌𝜌-value. This proportionality is typical for 
resonance sensors and was also observed for the viscosity–density sensor discussed in Papers I–III. 
Also, no significant trends were found in the measured normalized bandwidth with respect to 
temperature; therefore, the measured normalized bandwidth was independent of the temperature.  

 

 

Figure 21: Comparison between the numerical prediction and experimental results for different fluids and 
temperatures 

 

The model predicts the 𝜌𝜌𝜌𝜌-value for a given normalized bandwidth, as shown in Figure 21 (black line). 
The predictions had the same order of magnitude and showed the same trend as the experiments. This 
indicates that the model captured the primary effects of the resonator. However, the experimental results 
deviated from the model at high viscosities. This deviation is more evident in Figure 22, where the 
relative deviation between the numerical prediction and experiment measurement is shown. Despite the 
good agreement among the overall trends, the predictions systematically differed for high 𝜌𝜌𝜌𝜌-values. At 
low 𝜌𝜌𝜌𝜌-values, there was constant offset between the numerical predictions and experimental results, 
which could be explained by the manufacturing tolerances. However, at high 𝜌𝜌𝜌𝜌-value (i.e., high 
damping), systematic deviations were observed in the trend. This systematic deviation was statistically 
significant and could be caused by an effect that was not incorporated into the model. The potential 
sources of deviation included a bias on the bandwidth measurement or a distortion of the modal function. 
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Figure 22: Relative deviations in the viscosity–density product predictions from the numerical model when 
compared with the actual model for different fluids. 

 
To predict the 𝜌𝜌𝜌𝜌-value based on the measured bandwidth without the systematic error, the prediction 
must be corrected. This was achieved by multiplying the prediction by an empirical correction function. 
This correction function accounts for the systematic deviations and was based on the experiments shown 
in Figure 22. The validity of this corrected prediction model was tested using two additional fluids, 
which were not used to create the correction function. The relative deviation between the predicted and 
measured 𝜌𝜌𝜂𝜂-value is shown in Figure 23. The deviation of the measured 𝜌𝜌𝜌𝜌-value from the predicted 
value was within the 95 % confidence level of the measurement. Therefore, the prediction was verified.  

 

 

Figure 23 Relative deviation in the product  of fluid viscosity and density prediction from the corrected 
numerical model to the actual product  of fluid viscosity and density for S20 and S200, including the double 

standard-deviation (2) confidence interval. 
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To determine the impact of a superimposed flow, the measurements at different Reynolds numbers were 
compared with the static conditions. This enabled the investigation of the interactions between the 
vibration-induced flow and the flow passing through the tube. Figure 24 shows the relative deviations 
of the predicted viscosity between the static conditions and internal flows at different Reynolds numbers. 
Most deviations were below ±1 %. This value is below the confidence interval for repeatability, and the 
data was randomly spread; therefore, the internal flow does not significantly affect the viscosity 
measurements for Reynolds numbers below 50,000.  

 
 

Figure 24: Relative deviations of viscosity predictions at different Reynolds numbers and static measurements 
 
Overall, the tubular sensor showed good potential for applications in industrial processes. The sensor 
could accurately measure the 𝜌𝜌𝜌𝜌-value of a fluid under static conditions and internal flow conditions. 
However, further studies are required to clarify the deviations of the prediction from the real sensor 
behaviors at high viscosities. This could be achieved by using strong fluid–structure interaction to 
consider the potential effects of the modal distortions caused by high fluid viscosities.  
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3.5 Summary 
In Sections 3.1 to 3.4, the results of the research papers were discussed. Section 3.5 aims to answer the 
RQs in conjunction with the research papers. Furthermore, the relationship between the RQs and 
research papers are summarized in Table 1. The details given in Table 1 are visually illustrated in Figure 
25. 

RQ I:  What is the underlying physics of torsional resonators in the context of viscosity and 
density measurement applications? 

RQ I was mainly addressed in three papers: I, II, and IV. Paper I investigated a fluid viscosity–density 
sensor using experiments. In Paper II, a comprehensive numerical model was presented that could be 
used to predict the bandwidth and resonance frequency of the sensor based on the fluid properties. The 
predictions were compared against the experimental results presented in Paper I. In Paper IV, a new 
continuous resonator was presented. This study combined both intense modeling and extensive 
experimental investigations.  

RQ II:  Are reduced-order models suitable for coupling the flow simulations with resonator 
models? 

Reduced-order modeling has proven to be a viable tool to model torsional resonators. Papers I, II, and 
IV used reduced-order modeling in different variations. Therefore, it has been demonstrated that 
reduced-order models are suitable for describing the interactions between fluids and resonators.  

RQ III:  How can CFD be used to compute the flow field around a torsional oscillating 
structure? 

CFD was used to compute the flow around a torsionally oscillating structure in Paper II and Paper III. 
Paper II discussed a method to efficiently couple the flow simulation solution with the model of the 
resonator. In Paper III, an in-depth investigation on the method of the solution was presented, wherein 
it was demonstrated that the solution is independent of the numerical method and boundary conditions. 
Thus, CFD was successfully used to compute the flow field around the torsionally oscillating structures 
to determine the inertial mass and damping caused by the fluid.  

RQ IV:  How can we compensate for the cross sensitivities among the fluid viscosity, density, 
and temperature? 

Reducing cross sensitivities is essential to accurately predict the viscosity or the density. In Paper I, the 
approach of using two parameters that were mainly functions of either the viscosity or the density was 
discussed. Therefore, it was shown that the parameters can be used to compensate the reciprocal effects 
between the viscosity and density. These parameters were based on a simple mass–spring system. 
However, the assumptions were motivated by the comprehensive model presented in Paper II. 
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Table 1: Research papers and correlation to the RQs 

Research questions (RQs) Paper I Paper II Paper III Paper IV 

RQ I: What is the underlying physics of torsional 
resonators in the context of viscosity and density 
measurement applications? 

+++ +++ ++ +++ 

RQ II: Are reduced-order models suitable for coupling 
the flow simulations with resonator models? 

++ +++ + +++ 

RQ III: How can CFD be used to compute the flow 
field around a torsional oscillating structure? 

+ +++ +++ + 

RQ IV: How can we compensate for cross sensitivities 
among the fluid viscosity, density, and temperature? 

+++ ++ + ++ 

Note. The + sign denotes a weak connection; ++ specifies a medium connection, and +++ specifies a 
strong connection. 

 

 

 

Figure 25: Correlations among the papers and research questions.  
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4 Research Contributions and Future Work 

4.1 Research contributions 
The study makes the following scientific contributions: 

• Different mathematical approaches were investigated to compute the boundary force on the 
vibrating structures using CFD. It was demonstrated that vibrations can be induced by different 
methods without affecting the solution. 
 
 

• The solution obtained by a CFD-simulation was successfully coupled with a structural model 
of the resonator. This was achieved by computing damping and inertial mass terms through 
CFD, which were then used in the structural model to account for the fluid interaction. This 
allows the prediction of the resonator’s bandwidth and resonance frequency when the fluid’s 
viscosity and density are known.  
 

• A new approach was presented for compensating the cross sensitivities between the viscosity 
and density. This was a generic method to compensate the effects caused by a change in the 
model function of the resonator. 
 

• A new viscosity sensor based on a tube was presented. The sensor has the potential to be used 
for measuring the viscosity in-line without disturbing the flow. Also, it was demonstrated that 
the flow rate did not significantly impact the viscosity measurement in either the laminar or 
turbulent flow conditions. This implies that the flow field produced by micro-vibrations was not 
affected by the superimposed flow.  
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4.2 Suggestions for future work 
In the future, research is possible in the following areas: 

• CFD simulations have proven to accurately compute the flow field near a resonator element 
and thereby provide insights into the working principle of the resonator’s interactions with the 
fluid. In the future, CFD can be used to study various resonator shapes, and the geometry can 
be optimized to increase the sensor accuracy. Further, to obtain a better agreement between the 
simulation and experiments, three-dimensional CFD simulations can be performed to account 
for the edge effects. 
 

• Weak fluid–structure interaction is limited to geometries in which the fluid does not 
significantly distort the mode shape. Models having strongly coupled fluid–structure 
interactions enable the simulation of geometries wherein the fluid significantly changes the 
structure of the mode. Therefore, research is required with strongly coupled fluid structures 
interactions.  
 

• A future study could include non-Newtonian and viscoelastic fluids. The challenge with both 
fluids is that the measured viscosity is not directly comparable with the measurements 
performed by using traditional laboratory devices. Therefore, it is important to understand the 
relationship between the viscosities measured by a resonant sensor and a traditional laboratory 
equipment.   
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Abstract 

This study discusses a new sensor for measuring the viscosity and density of fluids. The sensor is 
based on a torsional resonator having a cylindrical tip with radial fins. The interaction of the 
resonator with the fluid changes the its damping and resonance frequency. The change in resonance 
frequency and damping can be related to the fluid properties. The sensor was tested experimentally, 
using fluids with well-known properties. It was shown that the sensor can be used to measure fluid 
viscosity and density over a wide range with very high accuracy. The prediction is based on models 
that account for and minimize reciprocal effects between viscosity and density.  

 

1. INTRODUCTION 

The physical properties of fluids used in chemical and biochemical processes can be used as an 
indicator of their composition. Sensors capable of providing a real-time measurement of viscosity 
and density are generally based on resonant elements immersed in the fluid. In comparison to the 
large and delicate instruments used in laboratory rheological measurements, resonant sensors are 
generally compact, robust, and capable of being introduced directly into process systems. Jakoby et 
al.1  reviewed a range of miniaturized sensors that measure fluid viscosity and density. These sensors 
make use of a variety of resonators, such as thickness shear piezoelectric elements, electromagnetic-
acoustic resonators, vibrating bridge devices, double membrane devices and micromachined plate 
devices.  

Resonant elements in these sensors are immersed in the fluid to be measured. The resonator 
interacts with the fluid so as to change its resonance frequency and damps its oscillation. Both 
resonance frequency and oscillation damping are dependent on the fluid viscosity and density. 
Heinisch 2 presented a reduced order model based on lumped elements, describing the correlation 
between damping and frequency of a mechanical resonator with respect to fluid properties.  

Typical resonant elements in larger, more robust industrial sensors include tuning forks3,4, cylindrical 
torsional resonators5, spiral springs6, and u-shaped wires7. In order to measure viscosity, it is 
necessary to shear the fluid. Resonators such as cylinders and spheres that oscillate around a central 
axis produce primarily shearing motions in the fluid, and therefore are limited to viscosity 
measurement. These types sensors have been used to measure the viscosity-density product of 

mailto:joe.goodbread@rheonics.com
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Newtonian fluids as well as to  investigate non-Newtonian fluids8–11. To measure density, an 
immersed resonator must displace through its motion. This requires that the motion of the 
resonator have a velocity component normal to its surface. This normal velocity component 
displaces fluid, loading the resonator with additional mass, which changes both its resonance 
frequency and its damping. For this reason, transversely vibrating resonators such as tuning forks, 
reeds, and wires have traditionally been used for density measurement.  

It is also possible to measure fluid density with torsional resonators provided that a portion of the 
resonator vibrates normal to its own surface. Torsional resonators are attractive because they are 
less prone to wall effects than are transversely vibrating devices, making them easier to integrate 
into industrial systems. Fuchs et al.12 described a straight-tube Coriolis sensor, in which an eccentric 
mass a was attached to a transversely vibrating tube through which a fluid was flowing. The 
eccentric mass converted the lateral vibration into a torsional mode superimposed on the transverse 
vibration, enabling simultaneous measurement of fluid viscosity, density and mass flow rate. A 
different approach to a torsional viscosity-density sensor was presented by Heinisch et al.5, who 
used a resonating paddle for his measurements.  

This paper presents a novel torsional resonator with a non-cylindrical tip that can measure a fluid’s 
viscosity and density. The sensor’s design is based on the symmetric torsional resonator described 
by Goodbread et.al.13. In the present study, it was demonstrated that the sensor can be used to 
measure fluids viscosities from less than 1 mPaS up to 4000 mPaS, and densities from 0.6  to 1.5g/cc 
at temperatures between 0°C and 120°C, with minimal reciprocal effects between viscosity and 
density. Viscosity and density measurements were shown to be nearly independent of one another.  

2. WORKING PRINCIPLE AND SENSOR DESIGN 

The sensor presented in this study is a symmetrical torsional resonator with a non-cylindrical tip 
(Figure 1). One end, containing a permanent magnet, is used for excitation and sensing of the 
resonator’s motions; it is completely enclosed in the body of the sensor. The second end, which is 
immersed in the fluid, is provided with four radial fins. Each end is connected to a central nodal disk 
by means of a thin-walled elastic tube and directly connected with each other by a coaxially situated 
torsional spring which is not visible in the figure. This torsional spring vibrationally couples the two 
end masses resulting in minimal torsional reaction force on the nodal disk.  

In the primary resonant mode, the nodal point is located at the central disk, which is the only 
connection to the resonator’s housing. Having the nodal point at the mounting location means no 
forces are exerted by the resonator on the external structure, so that the resonator is largely 
isolated from its environment.  
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Figure 1: Rendering of the resonator (left), and the complete sensor (right)13 

The operation of the sensor is based on torsional resonance. The out-of-phase torsional mode of the 
resonator is excited by a transducer located in the body of the sensor, producing motion in the 
surrounding fluid. The shear stresses caused by the fluid motion induce a torque on the sensor, 
which damps oscillation. The damping, resonance frequency, and temperature of the resonator tip 
are measured by associated electronic instruments, permitting changes in the resonator behavior to 
be related to the viscosity and density of the fluid.  

The excitation and measurement of the torsional vibration are achieved using a gate phase locked 
loop system described by Goodbread and Dual 14. A current is passed through coils in proximity to 
the magnet in the resonator end, inducing an alternating magnetic field that exerts an oscillating 
torque on the magnet. The motion of the resonator magnet is sensed by means of the induced 
current in the coils. The phase relationship between the current driving the magnetic field and the 
sense signal is fed back to control the frequency and amplitude of the excitation current, creating a 
phase locked loop. By changing the phase relationship between the excitation and sense signals, the 
relation between phase and frequency can be determined, from which the resonance frequency and 
damping of the resonant system can be determined.   

 

3. METHODS 

The purpose of this study is to investigate the changes of the resonator’s characteristic using 
parameters that are used that are only sensitive towards either viscosity or density. The 
experimental procedure is described in Section 3.1. To predict the viscosity and density based on the 
measured properties, it is helpful to derive parameters which can be used to separate the effects of 
viscosity or density. The derivation of these parameters is discussed in Sections 3.2 and 3.3 for 
density and viscosity, respectively.  
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3.1 Experimental Procedure  

Experiments were conducted at temperatures between 0 and 120°C. To determine the properties of 
the resonator without any fluid interaction, the bandwidth Γair and resonance frequency f0,air were 
measured in air. The measured bandwidth in air Γair is the intrinsic damping of the resonator. Once 
the resonator is in contact with the fluid, the bandwidth changes. The damping due to the fluid is 
obtained by subtracting the intrinsic damping from the measured bandwidth Γm to yield the net 
damping Γ caused by the fluid. The bandwidth used hereafter is defined as the change of bandwidth 
caused by the fluid Γ = Γm − Γair.  

In this study, Newtonian Fluids with well-known viscosity and density were used to measure the 
response of the sensor under well-defined conditions. The fluids used were either calibration oils 
from Cannon Instrument Company or pure chemical substances such as chloroform, acetone and n-
dodecane. The fluid properties’ viscosity (left) and density (right) with respect to temperature are 
shown in Figure 2.  

The fluids cover a wide range of viscosities (0.2 – 3600 mPa.s) and densities (0.6 - 1.5 g/cc).  Fluids 
were selected to so that their densities and viscosities overlapped over segments of the range of 
measurement temperatures. This allows measuring of, for example viscosity at different 
temperatures and densities, which enables determining cross-sensitivities between fluid properties.  

  

Figure 2: Viscosity and density of fluids with respect to temperature 

To evaluate the repeatability of a measurement, the bandwidth and resonance frequency were 
measured at nine different temperatures between 20 and 120 °C. Each measurement cycle was 
repeated ten times. Between measurement cycles the sensor was cleaned and the measurement 
chamber refilled with fresh fluid. This resulted in a set of ten independent measurements for each of 
the nine different temperatures. The standard deviation of the bandwidth was 0.05 Hz for 
bandwidths ranging from 14 Hz up to 223Hz.  This means that the sensor can detect a change in fluid 
viscosity of ±1% with a 95% confidence level for fluid viscosities greater than 2.8 mPaS and ±0.1% 
for viscosities greater than 450 mPaS. The standard deviation of the resonance frequency was 0.04 
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Hz for resonance frequencies from 7392-7491Hz. This enables the sensor to detect changes in fluid 
density of ±1 x 10−4 g/cc with a 95% confidence level at a fluid density of 0.84 g/cc.  

3.2 Density Measurement 

To determine the fluid density based on measured bandwidth and resonance frequency, a 
parameter is needed that depends only on the density. This parameter can be derived, based on a 
single degree of freedom resonator, i.e. a mass-spring system. The resonance frequency of such a 
system is defined by 

f0 = 1
2𝜋𝜋�

𝑐𝑐
𝐽𝐽
 (1) 

where 𝑐𝑐 is a spring constant and 𝐽𝐽 is a moment of inertia. The fluid creates an additional inertial load 
on the resonator, changing the inertia 𝐽𝐽 and thus the resonance frequency. This shift in resonance 
frequency is described by 𝛥𝛥𝑓𝑓0, which can be related to the fluid density, see Eq. (2), 

Δ𝑓𝑓0 = 𝑓𝑓0,𝑎𝑎𝑎𝑎𝑎𝑎 − �𝑓𝑓0 + Γ
2
�  (2) 

where 𝑓𝑓0 is the measured resonance frequency, Γ is the bandwidth, and 𝑓𝑓0,𝑎𝑎𝑎𝑎𝑎𝑎 is the resonance 
frequency in air at the same temperature 𝑓𝑓0 was measured.  

The parameter 𝛥𝛥𝑓𝑓0 is used to compensate for temperature and viscosity effects.  

• Viscosity effects are compensated for by adding half the bandwidth to the resonance 
frequency, which compensates for inertia added by the viscous boundary layer15.  

• Temperature affects the shear modulus of the resonator, which affects its undamped 
frequency. This temperature effect is removed by taking the difference to the resonance 
frequency in air at the same temperature.    

Thus, the parameter 𝛥𝛥𝑓𝑓0 should be a function only of the fluid density 𝜌𝜌 and independent of fluid 
viscosity and temperature.  

3.3 Viscosity Measurement 

For many sensors, the bandwidth divided by the resonance frequency Γ/f0  can be directly 
correlated to the viscosity-density product of the fluid. In a single degree-of-freedom resonator, 
parameter Γ/f0  is equal to the ratio of moment of inertia J and the fluid-induced damping. Please 
note that the moment of inertia J  is not the inertia of the structure. The inertia of the structure 
would be computed by Eq. (3), 

Js = ∫ |𝑟𝑟|2𝜌𝜌𝑠𝑠𝑑𝑑𝑑𝑑
 
𝑉𝑉  (3) 

where V is the volume of the resonator, ρs is the density of resonator, and 𝑟𝑟 is the distance from the 
rotational axis. 

The inertia J depends on the shape of the mode of the resonator since different parts of the 
structure have a different contribution due to different oscillation amplitudes. The inertia J also 
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accounts for the inertia added by the fluid. Assuming the inertia J is constant, then the term Γ/f0  
would be proportional to √ρη for low viscosities.  

The present sensor was modelled by Brunner et al.16 by a two-mass, three-spring system. Their 
results indicate that the measured damping is also affected by the fluid density in a manner that is 
beyond its contribution to the viscosity-density product, which in the simple case is the only 
contribution to fluid-induced damping. The cause of this density-dependency is the change of the 
moment of inertia J of the corresponding single degree of freedom system due to the added inertia 
by the fluid. This effect is amplified by a change of the modal function. To remove this density-
related effect, the fluid induced damping must directly be determined. A method of doing this is 
multiplying the normalized bandwidth Γ/f0  with the inertia J. For a single degree of freedom 
system, this removes all effects of the inertia and gives a direct measure of the fluid forces, i.e. 
viscous damping.  

The inertia of the corresponding single degree of freedom system cannot be directly measured. 
Mathematically, it can be obtained by dividing the resonance frequency by its derivative with 
respect to the moment of inertia, Eq. (4).  

−2J = f0
𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

 (4) 

Whereas the resonance frequency can be directly measured, its derivative (𝜕𝜕𝑓𝑓0)/𝜕𝜕𝜕𝜕 cannot. A good 
assumption is that (𝜕𝜕𝑓𝑓0)/𝜕𝜕𝜕𝜕 is in first order proportional to (𝜕𝜕𝑓𝑓0)/𝜕𝜕𝜕𝜕, Eq. (5). 

 𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

≈∝ 𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

  (5) 

The derivative (𝜕𝜕𝑓𝑓0)/𝜕𝜕𝜕𝜕 can be expressed by the parameter Δ𝑓𝑓0, which is used for measuring 
densities. We do this under the assumption that the fluid viscosity is relatively small, thus the term 
Γ/2 in Eq. (2) can be neglected, see Eq. (6). 

 𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

= 𝜕𝜕( Δ𝑓𝑓0)
𝜕𝜕𝜕𝜕

  (6) 

This assumption implies that the inertia can be described by Eq. (7), 

 𝐽𝐽 = 𝐽𝐽0 + 𝑎𝑎 ⋅ 𝜌𝜌 (7) 

where 𝐽𝐽0 and 𝑎𝑎 are coefficients of the linear function for the inertia 𝐽𝐽.  

Then, we can show the proportionality of (𝜕𝜕𝑓𝑓0)/𝜕𝜕𝜕𝜕 and (𝜕𝜕𝑓𝑓0)/𝜕𝜕𝜕𝜕,using the chain rule, Eq. (8).  

𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

−𝐽𝐽0
𝑎𝑎
∝ 𝜕𝜕𝑓𝑓0

𝜕𝜕𝜕𝜕
 (8) 

To compensate for density effects, the normalized damping Γ/f0  is multiplied by f0/((𝜕𝜕𝑓𝑓0)/𝜕𝜕𝜕𝜕), 
resulting in the corrected normalized damping parameter Γ+, Eq. (9). 

Γ+ = Γ
f0
⋅ f0
𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

=  Γ
𝜕𝜕( Δ𝑓𝑓0)
𝜕𝜕𝜕𝜕

  (9)  
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This parameter should only be sensitive to viscous damping, i.e. only depend on the viscosity-density 
product of the fluid.   

 
4. DISCUSSION AND RESULTS  
This section discusses how the parameters derived in section 3 correlate with the fluid’s viscosity 
and density. Section 4.1 discusses the effects on the density measurement, whereas Section 4.2 
discusses the viscosity measurement.  

4.1 Density Measurement 

The Δ𝑓𝑓0value was measured for different fluids over a range of temperatures, viscosities and 
densities, as shown in Figure 3. All points tend to converge to one curve, implying that the 
parameter Δ𝑓𝑓0is a function only of the fluid density. Therefore, there is no need for complex multi-
dimensional correlation functions, and the fluid density can directly be determined based on the Δ𝑓𝑓0 
value.  

To model the correlation between Δ𝑓𝑓0 and ρ, a purely empirical model such as a polynomial is 
unsuited because the measurements are clustered rather than uniformly distributed; interpolating 
between the clusters is unreliable. Furthermore, the derivative (𝜕𝜕(Δ𝑓𝑓0)/𝜕𝜕𝜕𝜕 is needed for 
determining the parameter 𝛤𝛤+, which would require a high-order polynomial for an accurate fit.  

A more robust interpolation method is to use a base function, which reflects the basic properties of 
the sensor, and correct it to fit the experimental data. Brunner et al. 16 described a numerical model 
based on a two-mass, three-spring system for the presented sensor. This model predicts the Δ𝑓𝑓0 
value for a given fluid density for the presented sensor. To account for deviations between the 
numerical model and experimental data, the numerical prediction Δ𝑓𝑓0,𝑠𝑠𝑠𝑠𝑠𝑠(𝜌𝜌) is multiplied by an 
empirical correction function 𝑐𝑐(𝑐𝑐1, 𝑐𝑐2); see Eqs. (10) and (11), 

Δ𝑓𝑓0,𝑚𝑚(𝑐𝑐1, 𝑐𝑐2,𝜌𝜌) = Δ𝑓𝑓0,𝑠𝑠𝑠𝑠𝑠𝑠(𝜌𝜌) ⋅ 𝑐𝑐(𝑎𝑎, 𝑏𝑏) (10) 

𝑐𝑐(𝑐𝑐1, 𝑐𝑐2) = 𝑐𝑐1 + 𝑐𝑐2 ⋅ 𝜌𝜌 (11) 

where Δ𝑓𝑓0,𝑚𝑚 is the fitting function and 𝑐𝑐1, 𝑐𝑐2 are coefficients fitted to the experimental data, using 
the least square method and; see Eq. (12).  

𝑐𝑐1, 𝑐𝑐2: min (∑(Δ𝑓𝑓0(𝜌𝜌, 𝜂𝜂) −  Δ𝑓𝑓0,𝑚𝑚(𝜌𝜌, 𝑐𝑐1, 𝑐𝑐2)) (12) 

The fitting function Δ𝑓𝑓0,𝑚𝑚 is shown as a black line in Figure 3. For a single degree of freedom model, 
the fitting function would be almost a straight line. The model predicts, and the experimental results 
confirm, a non-linear relation between the Δ𝑓𝑓0 value and fluid density. The slope of the curve 
decreases with respect to fluid density at higher densities. This behavior is caused by change of the 
modal function, which in turn changes the inertia of the resonator and decreases the absolute 
sensitivity to density at high densities.  
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Figure 3: Fluid density 𝜌𝜌 vs. the parameter Δ𝑓𝑓0 for different fluids with different fluid densities, 
viscosities at temperatures between 0°C and 120°C 

 

 
4.2 Viscosity Measurement 

Fluid damping is typically correlated to the viscosity-density product. To measure the fluid viscosity, 
the fluid density is first determined, then the viscosity value is computed. Figure 4 shows the values 
of Γ+ for different fluids at different temperatures, viscosities and densities. By plotting the 
viscosity-density product against the parameter Γ+, all points collapse onto one curve. There is no 
systematic influence of fluid density or temperature on the measurement, indicating that the 
parameter Γ+ is only a function of the viscosity-density product.  

The black line shows the empirical model based on a polynomial function which can be used to 
predict the viscosity-density product based on the measured bandwidth and resonance frequency, 
Eq. (13), 

   ln(Γ+ ) ≈ ∑  an𝑙𝑙𝑙𝑙� �ρη�
𝑛𝑛

𝑛𝑛  (13) 

where η is the dynamic viscosity and  an the coefficients of the empirical model. 

The coefficients  an are determined by using the least square method. For low viscosities, parameter 
Γ+  is proportional to the square root of the viscosity-density product. This behavior is typical for 
viscosity sensors based on vibrating structures. However, with higher viscosities the behavior 
deviates from this typically observed trend. According to Brunner et al.16, it is likely that such a 
deviation originates from three dimensional flow effects at the tip which become more dominant as 
the boundary layer thickness increases with viscosity.   
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Figure 4: Product of viscosity 𝜂𝜂 and density 𝜌𝜌 vs. the parameter 𝛤𝛤+ for different fluids with different 
fluid densities, viscosities at temperatures between 0°C and 120°C 

 
 
5. CONCLUSION 

In this study, a new viscosity-density sensor was presented. The sensor is based on an 
electromagnetically driven torsional resonator having a non-cylindrical tip which is immersed in the 
fluid. The fluid changes the resonance frequency and bandwidth of the resonator. These changes in 
resonator properties are then related to the fluid’s viscosity and density.  

Experiments were conducted under thermally uniform conditions at temperatures between 0 and 
120°C, using different Newtonian fluids with well-known viscosities and densities. The measured 
bandwidth and resonance frequency were correlated to the fluid properties, using parameters that 
depend only on either density or the viscosity-density product. Thus, viscosity and density can be 
predicted without cross-sensitivity between temperature, density and viscosity.   

The sensor has proven to give accurate measurements over a wide range of fluid properties. The 
measurements show a good repeatability, allowing the sensor to be able to detect changes in 
viscosity of 1% for viscosities greater 2.8 mPaS and 0.1% for viscosities greater 450 mPaS with a 95% 
confidence level. Changes of fluid density of ±1 x 10−4 g/cc are detectable with a 95% confidence 
level at a fluid density of 0.84 g/cc. 

Further studies are planned to include the investigation of non-Newtonian fluids, where the 
interaction of the fluid properties and the sensor is highly fluid-dependent.   
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Abstract 

The flow field around a cylindrical torsional resonator can be modelled analytically, but more 
complex shapes require more rigorous approaches. This study proposes a numerical model of a non-
cylindrical torsional resonator for a viscosity–density measurement application. The proposed model 
couples an analytical mechanical model of the resonator with an empirical, simulation-based fluid 
model. The model was validated using experimental data over a wide range of fluid viscosities and 
densities. The predictions are in good agreement with the numerical model. The model could 
capture all viscosity- and density-related effects. Therefore, it will, enable computationally 
supported geometrical optimization of future viscosity-density sensors generations. 

Keywords: computational fluid dynamics, viscosity sensor, density sensor, fluid–structure interaction 

1. INTRODUCTION 

In many chemical and biochemical processes, viscosity and density can be used as indicators of the 
composition of a fluid at any point during those processes. Real-time, inline measurements of fluid 
viscosity and density provide important information about the progress of such processes and 
enable automated control. Resonance sensors are capable of simultaneously measuring both 
viscosity and density, either through sampling or inline measurements. To develop and calibrate 
resonance sensors, models are required to describe the fluid–structure interaction. 

Typically, resonators are modeled using simplified, single-degree-of-freedom (SDOF) models in 
which the resonance frequency and damping of the resonator are related to the fluid’s viscosity and 
density. Heinisch [1] presented such an SDOF model based on lumped elements. In his model, the 
resonator was interpreted as a mass–spring system, where the fluid created an inertial load and 
damped the oscillation. The viscous-induced damping was computed based on an analytical one-
dimensional fluid model, which described the flow over an in-plane oscillating plate. The resulting 
shear stress was used to determine the fluid damping. This approach of using an analytical fluid 
model in combination with an SDOF fluid model has also been used, in different configurations by 
other researchers [2–9]. Another geometry for which the fluid domain can be analytically modeled is 
that of cylindrical structures, though the curvature of the surface adds complexity to modeling the 
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in-plane oscillating plate. This approach was used by Dual [10], Heinisch [3, 4], Fuchs [11], and Clara 
[12]. 

Several different geometries can be calculated using such analytical models. However, as complexity 
increases, the one-dimensional shear wave approximation may no longer be applicable, 
necessitating the use of numerical methods. Fluid–structure interaction models are an option for 
numerically solving the flow field and predicting damping and changes of resonance frequency. 
Using this method, Mahmoodi and Anthony [13] studied a torsional paddle with a two-dimensional 
(2-D) fluid–structure interaction model. Reichel et al. [14] presented a 2-D simulation to study the 
characteristics of an oscillating rectangle and obtain scaling properties for larger sensors. They also 
showed that to simulate a resonator, a complete three-dimensional (3-D) fluid–structure interaction 
model requires an impracticable amount of computational resources. Therefore, reduced-order 
models are preferable for efficiently studying different geometries numerically. 

The goal of this study was to develop a mathematical model describing the sensor presented by 
Goodbread et al. [15]. This paper describes a weak fluid–structure interaction model based on a 
mass–spring system coupled with an empirical fluid model. Its novelty is that the empirical fluid 
model is based on a parameter study conducted using computational fluid dynamics (CFD). The 
proposed model was validated against experimental data [15]. 

2. NUMERICAL MODEL 
The sensor investigated in this study is a probe-style torsional resonator, first reported and then 
experimentally investigated by Goodbread et al [15,16]. The proposed model aims to describe the 
change in resonance frequency and damping induced by fluids of different viscosities and densities. 

Section 2.1 discusses the structural part of the resonator model. In this model, the fluid interaction is 
approximated by source terms, as described in detail in Section 2.2, with the cylindrical and tip 
sections described using different models in Sections 2.2.1 and 2.2.2, respectively. 

2.1 Resonator Model 

The torsional resonator was modeled as a mass–spring system, which is a symmetric, cylindrical 
probe-style resonator comprised of two main masses which act as the inertial masses  𝐽𝐽1 and 𝐽𝐽2 for 
torsional vibration (see Figure 1). Each of these inertial masses is connected to a fixed point through 
a thin-walled tube 𝑐𝑐1 which acts as a torsional spring. Additionally, the inertial masses  𝐽𝐽1 and 𝐽𝐽2 are 
directly connected to each other by a coaxially situated inner rod 𝑐𝑐2. This spring vibrationally couples 
the two inertial masses. There are two primary modes of vibration: one in which both inertial masses 
oscillate in-phase, and another in which they oscillate out-of-phase. The out-of-phase mode was 
used for measurement purposes because its minimal net torsional reaction force at the fixed point 
largely isolates the resonator from its environment. The tip has four radial fins attached to it. These 
fins create a velocity component perpendicular to their own plane surface that causes fluid 
displacement, i.e., inertial mass loading on one end. This effect changes 𝐽𝐽2, which affects the 
amplitude ratio between tip and back. Figure 1 shows a schematic of the sensor (above) and the 
mode shape (below), where the tip and back amplitudes are different. The pink line shows the 
angular deflection amplitude of the inner rod 𝑐𝑐2, and the blue line shows that for the springs 𝑐𝑐1. The 
amplitude of the immersed end (the tip) of the resonator is described by 𝜑𝜑�𝑖𝑖,2, and the other end (the 
back) is described by 𝜑𝜑�𝑖𝑖,1, where the index 𝑖𝑖 represents the mode-number. 
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Figure 1: Schematic of the sensor (above) and modal function (below). The red line shows the 
angular deflection amplitude of the tip 𝜑𝜑�𝑖𝑖,2 and back 𝜑𝜑�𝑖𝑖,1, the blue line shows the deflection 
amplitude of the springs 𝑐𝑐1, and the pink line shows the angular deflection amplitude of the inner 
rod 𝑐𝑐2. 
 

The model describes the angular deflection of the two inertial masses 𝐽𝐽1 and 𝐽𝐽2 (see Eqns. (1) and 
(2)) by a linear system with multiple degrees of freedom, 

𝑱𝑱 𝜕𝜕
2𝜑𝜑��⃗
𝜕𝜕𝑡𝑡2

+ 𝑫𝑫𝜕𝜕𝜑𝜑��⃗
𝜕𝜕𝜕𝜕

+ 𝑪𝑪𝜑𝜑�⃗ = 0      (1) 

where is the 𝑱𝑱 mass-matrix, 𝑫𝑫 is the damping matrix, 𝑪𝑪 is the spring matrix and 𝜑𝜑�⃗  is the angular 
deflection vector consisting of the angular deflection of the tip amplitude 𝜑𝜑1 and back 𝜑𝜑2, see Eqn 
(2). 

𝜑𝜑�⃗ = �
𝜑𝜑1
𝜑𝜑2�      (2)  

To solve Eqn (1), it is transformed from the time domain into the frequency domain (seen Eqn (3)), 

−𝜔𝜔2𝑱𝑱𝜑𝜑��⃗ + 𝑖𝑖𝑖𝑖𝑫𝑫𝜑𝜑��⃗ + 𝑪𝑪𝜑𝜑��⃗ = 0     (3) 

where 𝜑𝜑��⃗  is the angular deflection amplitude, 𝜔𝜔 is the angular frequency and 𝑖𝑖 = √−1. 
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Then, Eqn (3) can be solved as an eigenvalue-problem, Eqn (4), 

(𝑱𝑱𝜆𝜆2 +𝑫𝑫𝜆𝜆 + 𝑪𝑪)𝜑𝜑��⃗ 𝑖𝑖 = 0�⃗       (4) 

where 𝜆𝜆 = 𝑖𝑖𝑖𝑖 is the eigenvalue and 𝜑𝜑��⃗ 𝑖𝑖 is the eigenvector. Hence, the solution of Eqn (1) has the 

following form: 𝜑𝜑�⃗ = 𝜑𝜑��⃗ 𝑖𝑖 ⋅ eiλit, where λi is the eigenvalue and 𝜑𝜑��⃗ 𝑖𝑖  its corresponding eigenvector. 

Based on the eigenvalue, the resonance frequency 𝑓𝑓0 and bandwidth Γ can be determined (Eqns. (5) 
and (6)).  

𝑓𝑓0 = ℜ� 𝜆𝜆
2𝜋𝜋
�      (5) 

Γ = 𝔍𝔍�𝜆𝜆
𝜋𝜋
�      (6) 

The entries of the inertial mass matrix 𝑱𝑱 and damping matrix 𝑫𝑫 are dependent on both the 
eigenvector and eigenvalue of the mode of interest (when 𝜑𝜑�𝑖𝑖,1 and 𝜑𝜑�𝑖𝑖,2 are of approx. opposite 
phase). Due to this non-linear dependency, the Eqn (4) is solved iteratively, until the resonance 
frequency 𝑓𝑓0 has converged below 0.01 Hz. 

To solve the eigenvalue problem (Eqn. (4)), the matrices 𝑱𝑱, 𝑪𝑪 and 𝑫𝑫 must be determined. Matrix 𝑱𝑱 
and 𝑫𝑫 are dependent on the solution, i.e. on the resonance frequency and the eigen-vector.  The 
inertial mass matrix 𝑱𝑱, see Eqn (7), 

𝑱𝑱 = �
𝐽𝐽1 + |𝜑𝜑�𝑖𝑖,1|

2�|𝜑𝜑�𝑖𝑖,1|+|𝜑𝜑�𝑖𝑖,2|�
𝐽𝐽𝑟𝑟 0

0 𝐽𝐽2 + |𝜑𝜑�𝑖𝑖,2|
2�|𝜑𝜑�𝑖𝑖,1|+|𝜑𝜑�𝑖𝑖,2|�

𝐽𝐽𝑟𝑟 + 𝐽𝐽𝑓𝑓
�    (7) 

consist of the end masses 𝐽𝐽2 and 𝐽𝐽1, additionally, the inertial mass of the inner rod 𝐽𝐽𝑟𝑟 and the inertial 
mass of the fluid 𝐽𝐽𝑓𝑓. The inertial mass of the inner rod 𝐽𝐽𝑟𝑟 is split between tip and back depending on 

the amplitude ratio. This amplitude ratio is calculated based on the eigenvector 𝜑𝜑��⃗ 𝑖𝑖  of the 
asymmetric solution, when 𝜑𝜑�𝑖𝑖,1 and 𝜑𝜑�𝑖𝑖,2 are of approximately opposite phase. The inertial mass 
caused by the fluid-interaction only appears at the tip of the resonator and is based on the flow 
simulation as will be discussed in section 2.2.  

The viscous damping caused by the fluid-interaction is imposed on the tip and described by the 
damping matrix 𝑫𝑫, Eqn (8). The damping coefficient 𝑑𝑑𝑓𝑓 within the damping matrix 𝑫𝑫 is discussed in 
detail in chapter 2.2. 

𝑫𝑫 = �
0 0
0 𝑑𝑑𝑓𝑓�

       (8) 

The spring matrix 𝑪𝑪 is derived based on the structure of the resonator and thus given by: 

 

𝑪𝑪 = �
𝑐𝑐1 + 𝑐𝑐2 −𝑐𝑐2
−𝑐𝑐2 𝑐𝑐1 + 𝑐𝑐2

�      (9) 

where 𝑐𝑐1 and 𝑐𝑐2 are the springs in the system.  
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2.2 Fluid Interaction 

The fluid interacts with the oscillating system on the immersed part of the sensor. This interaction 
can be accounted for by parameters 𝐽𝐽𝑓𝑓 and 𝑑𝑑𝑓𝑓. The two parts of the sensor that interact with the 
fluid, i.e., spring 𝑐𝑐1 and the tip, were modeled through different approaches. The spring 𝑐𝑐1 is a 
cylindrical structure for which the flow can be described analytically. The tip is a cylinder with four 
radial fins attached, for which the flow was computed using CFD. 

2.2.1 Cylindrical section 

The velocity amplitude of an oscillating structure that is immersed in the fluid typically decays 
exponentially with increasing distance from the moving boundary. The distance at which the flow 
velocity amplitude is 1/𝑒𝑒 of the boundary-wall velocity amplitude is called the boundary-layer 
thickness 𝛿𝛿. For a flat oscillating plate, 𝛿𝛿 is defined by Eqn. (10): 

𝛿𝛿 = �2 𝜂𝜂
𝜌𝜌𝜌𝜌

      (10) 

where 𝜂𝜂 is the dynamic viscosity, 𝜌𝜌 is the fluid density, and 𝜔𝜔 is the angular frequency. 

For our sensor, the boundary-layer thickness for water was approximately 6.5 μm. In comparison, 
the radius of the cylindrical section was 2.5 mm. Thus, the flow length scale 𝛿𝛿 was several orders of 
magnitude smaller than the radius R of spring 𝑐𝑐1 (𝛿𝛿 ≪ 𝑅𝑅); therefore, it could be ignored. This 
approach has been proven for torsional resonators by Brack et al. [17], Dual [10], and Clara et al. [12] 
under these conditions. 

In this approach, the azimuthal flow 𝑢𝑢𝛼𝛼  over the surface is modeled under the assumption that the 
flow is unidirectional and is thus only subject to shear stresses and inertial forces; see Eqn. (11). 

𝑢𝑢𝛼𝛼
𝜕𝜕𝜕𝜕

= 𝜂𝜂
𝜌𝜌
𝜕𝜕2𝑢𝑢𝛼𝛼
𝜕𝜕𝑟𝑟2

      (11) 

where 𝑟𝑟 is the radial location and 𝑡𝑡 is the time. 

Equation 11 can be solved under the assumption of a periodic solution and the following boundary 
conditions (Eqns. (12)–(15)): 

𝑢𝑢𝛼𝛼 = 𝑖𝑖
𝜔𝜔
𝜂𝜂
𝜌𝜌
𝜕𝜕2𝑢𝑢𝛼𝛼
𝜕𝜕𝑟𝑟2

      (12) 

𝑢𝑢𝛼𝛼(r = R) = 𝑣𝑣0 ⋅ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖     (13) 

𝑢𝑢𝛼𝛼(r = ∞) = 0      (14) 

𝑢𝑢𝛼𝛼(𝑟𝑟, 𝑡𝑡) = −𝑣𝑣0𝑒𝑒
𝑟𝑟−𝑅𝑅
𝛿𝛿(1+𝑖𝑖)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖    (15) 

where r is the distance from the center, R is the radius of the structure, and 𝑣𝑣0 is the velocity 
amplitude of the oscillating surface. 
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The velocity amplitude 𝑣𝑣0 is not constant over the length of the structure. The boundary velocity will 
be zero where the spring is attached to the central disk (nodal point) and 𝑅𝑅𝑅𝑅𝜑𝜑�𝑖𝑖,1 where the spring is 
attached to the tip. Between these points, the boundary velocity increases linearly. 

2.2.2 Computational Fluid Dynamics 

The tip of the sensor is a cylinder with four radial fins attached. The flow was modeled using CFD. 
There are different ways of modeling the motion of the tip, such as constructing a frame of 
reference or applying the motion as a boundary velocity. These methods have been compared in a 
previous study [18]. It was found that modeling the motion as a boundary velocity in COMSOL 
Multiphysics is an efficient method for computing the flow around the tip. 

The fluid mechanics equations for an incompressible, homogeneous Newtonian fluid are solved 
using Eqns. (16)–(17). 

∇ ⋅ u�⃗ = 0      (16) 

𝜕𝜕u��⃗
𝜕𝜕𝜕𝜕

+ u�⃗ ⋅ ∇u�⃗ =  −∇𝑝𝑝
𝜌𝜌

  + 𝜂𝜂
𝜌𝜌
Δu�⃗       (17) 

where u�⃗  is the velocity, ρ is the density, 𝜂𝜂 is the dynamic viscosity, and 𝑝𝑝 is the pressure. 

The torsional oscillation of the tip was modeled by a boundary velocity (see Eqn. (18)): 

 𝑢𝑢�⃗ 0 = 𝜑𝜑�𝑖𝑖,1 sin(𝜔𝜔𝜔𝜔) (r⃗ × e�⃗ 𝑧𝑧)     (18) 

where 𝜑𝜑�𝑖𝑖,1 is the angular deflection amplitude of the torsional oscillation, 𝜔𝜔 is the angular 
frequency, r⃗ is the distance from the rotational axis, e�⃗ 𝑧𝑧 is the unity vector of the rotational axis, and 
𝑡𝑡 is the time. 

The fluid mechanics equations were solved in a 2-D domain because of the high computational effort 
required to solve them three-dimensionally. Therefore, edge effects and other 3-D effects were 
ignored. The errors introduced by using a 2-D instead of a 3-D domain were assumed to be small for 
low-viscosity fluids because the structural length scale was much larger than the fluid boundary layer 
𝛿𝛿. 

The mesh of the domain was created in COMSOL Multiphysics and checked for mesh sensitivity (see 
Figure 2). The external boundary of the mesh was set to “open”, where the shear stress across the 
boundary was zero. The distance from the external boundary to the structure was large enough so 
that it did not affect the solution. The boundary of the oscillating structure was resolved using 18 
boundary layers, with a growth rate of 1.2 for a minimal boundary-layer thickness of 1 µm. This 
minimal boundary-layer thickness was sufficient for accurately resolving the flow near the boundary. 
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Figure 2: 2-D mesh of the computational domain in COMSOL Multiphysics with 26,558 elements. 
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3. METHODS 

The resonance frequency and bandwidth of the resonator were computed using the solution of Eqn. 
(4). The parameters 𝐽𝐽𝑓𝑓 and 𝑑𝑑𝑓𝑓 accounted for the viscosity- and density-related effects on the 
resonator. Section 3.1 aims to describe parameters 𝐽𝐽𝑓𝑓 and 𝑑𝑑𝑓𝑓 through an empirical model that is 
derived based on the flow simulations in Section 2. This empirical model efficiently couples the flow 
simulation and the resonator model in a weak manner. A strong coupling, where both are solved 
simultaneously, would require significantly more computational resources. 

3.1 Viscous Damping and Mass Loading 

The damping and the inertial mass loading caused by the fluid were computed using the solution of 
the flow field once a quasi-steady state was reached. Thereby, the fluid forces were integrated over 
the structure of the tip (𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡) and the cylindrical section. These forces originated from shear stresses 
and pressure on the wall of the resonator. The forces created a torque that was purely harmonic at 
the excitation frequency at quasi-steady-state conditions. This torque was computed for both shear 
stress 𝑀𝑀�𝑣𝑣 and pressure 𝑀𝑀�𝑝𝑝 independently and described by the complex amplitude at the excitation 
frequency obtained by Fourier analysis; see Eqns. (19) and (20). 

𝑀𝑀�𝑣𝑣 = 𝜂𝜂 �ℱ �𝑒𝑒𝑧𝑧 ⋅ ∬ �𝑟𝑟 × (𝑛𝑛�⃗ ⋅ ∇𝑢𝑢�⃗ )�𝑑𝑑𝑑𝑑 
𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡

� + ℱ �∬ �𝑅𝑅 ⋅ 𝜕𝜕𝑢𝑢𝛼𝛼(𝑅𝑅,𝑡𝑡)
𝜕𝜕𝜕𝜕

 �𝑑𝑑𝑑𝑑 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ��  (19) 

𝑀𝑀�𝑝𝑝 = ℱ�𝑒𝑒𝑧𝑧 ⋅ ∬ (𝑝𝑝𝑛𝑛�⃗ × 𝑟𝑟)𝑑𝑑𝑑𝑑 
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 �    (20) 

where ℱ() is the Fourier analysis operator, 𝑒𝑒𝑧𝑧 is the unity vector of the torsional axis, 𝑟𝑟 is the 
distance from the torsional axis 𝑒𝑒𝑧𝑧, and 𝑛𝑛�⃗  is the surface normal of the boundary. 

To integrate the torques into the model, they were decomposed into two physical phenomena: 
inertial mass of the fluid 𝐽𝐽𝑓𝑓 and viscous damping 𝑑𝑑𝑓𝑓 (see Eqns. (21) and (22)). 

𝐽𝐽𝑓𝑓 = ℜ�𝑀𝑀
�𝑝𝑝+𝑀𝑀�𝑣𝑣
𝜑𝜑�𝑖𝑖,1𝜔𝜔2 �      (21) 

𝑑𝑑𝑓𝑓 = 𝔍𝔍�𝑀𝑀
�𝑝𝑝+𝑀𝑀�𝑣𝑣
𝜑𝜑�𝑖𝑖,1𝜔𝜔

�      (22) 

These two parameters depend on the fluid properties and the frequency and amplitude of the 
resonator. To integrate 𝑑𝑑𝑓𝑓 and 𝐽𝐽𝑓𝑓 into the equations of the matrixes (Eqns. (7) and (8)), an empirical 
model was used, which described the two parameters as a function of all degrees of freedom: 
angular deflection amplitude 𝜑𝜑�𝑖𝑖,1, angular frequency 𝜔𝜔, dynamic viscosities 𝜂𝜂, and fluid density 𝜌𝜌. 

Figure 3 shows 𝑑𝑑𝑓𝑓 and 𝐽𝐽𝑓𝑓 as functions of the boundary-layer thickness 𝛿𝛿. The inertial mass 𝐽𝐽𝑓𝑓 is 

normalized by the fluid density 𝜌𝜌, whereas the fluid damping 𝑑𝑑𝑓𝑓 is normalized by �𝜂𝜂𝜂𝜂𝜂𝜂. The 
normalization makes all points collapse onto one line, which can be modeled by a polynomial fit, i.e., 
an empirical model. 
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Figure 3: Normalized inertial mass of the fluid as a function of the boundary layer thickness (left) and 
normalized damping amplitude as a function of the boundary layer thickness (right). 
 

4. DISCUSSION AND RESULTS 

The proposed model is capable of predicting the bandwidth and resonance frequency of the 
torsional resonator based on fluid properties. The predictions were compared in two steps with 
experiment results obtained by Goodbread et al. [15]. First, the inertial masses of the structure  𝐽𝐽0,1 
and 𝐽𝐽0,2 were fitted to the experimental data for different fluid densities (see Section 4.1). Then, the 
bandwidth was predicted for different fluid properties and compared with experiment results (see 
Section 4.2). 

4.1 Effect of Mass Loading 

To predict the resonance frequency of the sensor, Eqn. (4) was solved. The predicted resonance 
frequencies were then compared with the experimental data obtained by Goodbread et al. [15] for 
different fluid densities. Because of variations in dimensions due to manufacturing tolerance, the 
exact values of the inertial masses 𝐽𝐽0,1 and 𝐽𝐽0,2 were unknown. To account for potential variations, 
the inertial masses the structure of the tip 𝐽𝐽0,1 and back 𝐽𝐽0,2 were fitted to the resonance frequency 
of the experimental data using the least squares method. This method was applied to the 
differences between the predicted and experimentally determined resonance frequencies at a given 
set of viscosities, temperatures, and densities using Eqn. (22). 

[𝐽𝐽1, 𝐽𝐽2] → min�∑ �𝑓𝑓0,𝑒𝑒𝑒𝑒𝑒𝑒(𝜂𝜂𝑖𝑖,𝜌𝜌𝑖𝑖 ,𝑇𝑇𝑖𝑖) − 𝑓𝑓0��𝐽𝐽0,1, 𝐽𝐽0,2�,𝜂𝜂𝑖𝑖,𝜌𝜌𝑖𝑖 ,𝑇𝑇𝑖𝑖��
2

𝑖𝑖 �    (22) 

The values calculated for 𝐽𝐽0,1 and 𝐽𝐽0,2 deviated by less than 5% from the values estimated from the 
dimensions of the sensor; hence, the results are plausible. 

Figure 4 shows the measured and predicted resonance frequencies for different fluid temperatures 
and viscosities. The resonance frequency was affected by fluid density, viscosity, and temperature. 
With increasing viscosity, temperature, and fluid density, the resonance frequency decreased. The 
numerical model and experiment results are in good agreement. 
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Figure 4: Comparison between predicted resonance frequency 𝑓𝑓0 and measured resonance 
frequency for different fluid densities, temperatures, and viscosities. 

 

4.2 Viscous Damping of the Resonator 

The viscous damping of the resonator was measured at normalized bandwidth Γ/𝑓𝑓0, for which the 
bandwidth Γ was divided by the resonance frequency 𝑓𝑓0. Figure 5 shows the normalized bandwidth 
Γ/𝑓𝑓0 with respect to the viscosity–density product of the fluid for both the experiments and 
numerical predictions. Most of the fluids had a fluid density between 650 and 900 kg/m³, as shown 
by the color bar. The fluid density of chloroform (CHCl3) is approximately 1480 kg/m³ (temperature 
dependent) and is not shown in the color bar. The normalized bandwidth of CHCl3 is approximately 
40% lower than for the fluids with densities between 650 and 900 kg/m³. This effect does not 
originate from the relatively lower damping coefficient df, but from a change in the amplitude ratio 
between tip and back 𝜑𝜑�𝑖𝑖,2/𝜑𝜑�𝑖𝑖,1  due to the higher fluid density. The higher fluid density increased 
the inertia load at the tip 𝐽𝐽2; thus, the deflection amplitude of the back increased. This resulted in a 
change in the balance between the inertial and damping forces of the system; thus, the normalized 
bandwidth was lower. 
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Figure 5: Comparison between predicted and measured [15] normalized bandwidths Γ/𝑓𝑓0 for 
different viscosity–density products; Γ is the bandwidth, f0 is the resonance frequency, ρ is the fluid 
density, and η is the dynamic viscosity. 
 
 
Figure 6 shows the relative deviation from the predicted and measured normalized bandwidths. For 
viscosities lower than 100 mPa·s (at a density of 1000 kg/m³), there is a constant offset between the 
measurement and prediction. At higher viscosities, the numerical model systematically deviates and 
predicts higher damping than is experimentally observed. Potential sources of this deviation are 
edge effects at the tip, which were neglected by reducing the computational domain into a cross 
section. An investigation including these edge effects in a 3-D domain will be part of future studies.  

 
Figure 6: Relative deviation between predicted and measured [15] normalized bandwidths Γ/𝑓𝑓0 for 
different viscosity–density products, where Γ is the bandwidth, f0 is the resonance frequency, ρ is 
the fluid density, and η is the dynamic viscosity. 
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5. CONCLUSION 

In this paper, a mathematical model is presented that combines a mass–spring system with 
computational fluid dynamics. This model was used to predict the resonance frequency and 
bandwidth of a viscosity–density sensor first presented by Goodbread et al. [16]. The sensor was a 
torsional resonator with a non-cylindrical tip that was immersed in the fluid. 

Predictions were compared with experiments conducted by Goodbread et al. [15]. For the first step, 
the inertial masses of the mass–spring system were fitted to the predicted and measured resonance 
frequencies. The outcome was that the experimentally derived inertial masses deviated by less than 
5% from those derived from the geometry; thus, the model was in good agreement with the 
calculations. In the second step, the predicted and measured normalized bandwidths were 
compared. They were also largely in good qualitative and quantitative agreement. The relative 
deviation between the experiment and model prediction for the normalized bandwidth was 
approximately 10% for viscosities lower than 100 mPa·s. However, at higher viscosities, the 
numerical model systematically overpredicted the normalized bandwidth. Edge effects are a 
potential source of the deviation; they were neglected because a 2-D, rather than a 3-D, domain was 
used for the fluid simulation. 

The proposed model proves to be an efficient estimator of the behavior of the viscosity–density 
sensor, facilitating computationally supported geometrical optimization, and it has the potential to 
significantly decrease the development time of next-generation sensors. 
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ABSTRACT 
This paper discusses numerical methodologies to simulate micro vibrations 

on a nontrivial torsionally oscillating structure. The torsional structure is the 

tip of a viscosity-density sensor using micro vibrations to measure the fluid 

properties. A 2D transient simulation of the fluid domain surrounding the tip 

of the sensor has been conducted in ANSYS CFX and COMSOL Multiphysics 

software. ANSYS CFX uses a frame of reference to induce the micro 

vibration whereas a moving wall approach is used in COMSOL Multiphysics 

for the full Navier-Stokes equation as well as their linearized form. The shear 

rate and pressure amplitude have been compared between the different 

numerical approaches. The obtained results show good agreement for both 

pressure and shear rate amplitudes in all models. 

 

 
1. INTRODUCTION  
Traditionally, the viscosity of a fluid is measured by analysing a sample with common 
laboratory instruments. Typical laboratory instruments include rotating cylinders or cones. 
These methods are time consuming, expensive and difficult to automate. Mechanical 
resonators, however, are a promising alternative to conventional laboratory equipment. These 
sensors are very robust, have no moving parts and are therefore suited for online 
measurements. Possible applications involve studying viscoelastic behaviour of polymers, 
determining a fluid’s density and viscosity [1]–[9], characterising mechanical properties of 
polymer membranes and thin films [10]–[15], or detecting biomolecules and nanoparticle 
masses [16]–[21]. 

The working principle of these resonators is based on the change of natural frequency and 
damping due to the contact with a fluid. To measure damping and frequency shift, the 
resonator is excited close to a natural frequency while immersed in the fluid. The fluid 
interaction with the sensor creates an additional damping as well as a shift of resonance 
frequency in comparison to the resonator in a vacuum. The additional damping is due to the 
viscous shear stresses of the fluid whereas the frequency shift is due to the displacement of 
fluid mass.  

For simple geometries such as cylinders, analytical solutions can be found. However, for 
nontrivial geometries numerical simulations are required to investigate the induced forces by 
shear stresses and pressure. These forces are crucial to make predictions about the 
characteristics of the sensor in future studies.  
  
___________________________________ 
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In this paper, the shear stresses and pressure forces are computed over a non-trivial 

torsional oscillating structure. To assure that the numerical predictions as well as the 
underlying CFD equations are appropriate for solution, two different approaches, namely a 
finite element method in COMSOL Multiphysics and a finite volume method in ANSYS CFX, 
are compared. The goal is to investigate whether the numerical method (e.g., finite element 
vs. finite volume), has any impact on the solution. Motion is induced differently in the two 
programs; hence the comparison would reflect not only on the correctness of the models but 
also their suitability for the solution. COMSOL Multiphysics uses a moving wall approach, 
whereas ANSYS CFX induces motion in the domain by a frame of reference.  

The subject of this study is part of a torsional resonator which can be used for viscosity-
density measurement. Figure 1 shows the cross-section of the oscillating structure which is in 
contact with the fluid as well as the mesh used in COMSOL. The interest lies in modelling the 
flow around the structure (see figure 1) where the torsional motion is around the z-axis 
(through the centre of the cylinder). To reduce the computational effort only a cross section 
of the sensor tip is used. This simplification can be made because there is no change of fluid 
motion in axial direction. 

The simulations are conducted at a representative excitation amplitude and frequency. A 
typical value of the excitation frequency is 8000 Hz with an amplitude of 0.001 rad. This 
amplitude is much smaller than any geometrical length scale.   
 

 

 
Figure 1: Geometry and mesh of the sensor tip of a viscosity and density sensor.  
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2. METHODOLOGY 
The underlying physics of the micro vibrations can be described by the incompressible Navier-
Stokes equation. The micro vibration can be induced by either a moving wall or a frame of 
reference, where additional source terms are required to be added in the Navier-Stokes 
equations. 
 
2.1 Moving Wall Approach 
In the moving wall approach, the motion is induced at the boundary. The torsional oscillation 
is around the axis 𝑒𝑒𝑧𝑧���⃗  which is normal to the computational domain and in the center of the 
cylindrical structure. The time depended wall velocity 𝑢𝑢�⃗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  of the boundary is defined by 
Equation 1, where 𝑟𝑟 is the distance from the axis the boundary, X the oscillation amplitude 
and 𝜔𝜔 the angular frequency.  
 

𝑢𝑢�⃗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋 sin(𝜔𝜔𝜔𝜔) (𝑟𝑟 × 𝑒𝑒𝑧𝑧���⃗ )                                            (1) 
 

Within the domain, the incompressible Navier-Stokes equation and continuity equation 
can be solved, as in equations 2 & 3,  
 

∇ ⋅ 𝑢𝑢�⃗ = 0                                                            (2) 
 

𝜕𝜕𝑢𝑢��⃗
𝜕𝜕𝜕𝜕

+ 𝑢𝑢�⃗ ⋅ ∇𝑢𝑢�⃗  =  −∇𝑝𝑝
𝜌𝜌

 + 𝜈𝜈Δ𝑢𝑢�⃗                                                (3) 

 
where 𝜈𝜈 is the kinematic fluid viscosity, 𝜌𝜌 the fluid density, p the pressure and 𝑢𝑢�⃗  the velocity.  
 
2.2 Linearized Moving Wall Approach 
The amplitude of the induced torsional oscillation is very small. Due to these small amplitudes, 
the convective nonlinear part of the Navier-Stokes equation is negligible. Thus, the convective 
part of the momentum equation can be neglected, equation 4. The continuity equation as well 
as the moving boundary remains unchanged, equations 1 & 2.  

 
𝜕𝜕𝑢𝑢��⃗
𝜕𝜕𝜕𝜕

= −∇𝑝𝑝
𝜌𝜌

+ 𝜈𝜈Δ𝑢𝑢�⃗                                                        (4) 

 
2.3 Frame of Reference 
Instead of inducing the torsional vibration on the wall, the frame of reference approach induces 
the motion in the domain. Thereby, the centrifugal acceleration Ω��⃗ × Ω��⃗ × 𝑟𝑟, Coriolis 

acceleration 2Ω��⃗ × 𝑢𝑢�⃗  and Euler acceleration 𝜕𝜕Ω
��⃗

𝜕𝜕𝜕𝜕
× 𝑟𝑟 are added, see equation 6. The continuity 

remains unchanged, equation 7. The motion of the domain is described by  Ω��⃗ , equation 5.  
 

Ω��⃗ = X 𝑒𝑒𝑧𝑧���⃗ ⋅ sin (𝜔𝜔𝜔𝜔)                                                    (5) 
 

∂𝑢𝑢��⃗
𝜕𝜕𝜕𝜕

+ 𝑢𝑢�⃗ ⋅ ∇𝑢𝑢�⃗ + 2Ω��⃗ × 𝑢𝑢�⃗ + Ω��⃗ × Ω��⃗ × 𝑟𝑟 + 𝜕𝜕Ω��⃗

𝜕𝜕𝜕𝜕
× 𝑟𝑟 = −∇𝑝𝑝

𝜌𝜌
+ 𝜈𝜈∆𝑢𝑢�⃗                         (6) 
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∇ ⋅ 𝑢𝑢�⃗ = 0                                                           (7) 
 
Because the motion is induced in the domain, the boundary of the oscillating structure is 

not moving. Thus, a nonslip boundary condition is needed for the sensor tip. 
 

2.4 Mesh 
The meshes have been created within each software individually using tetrahedral elements 
and checked for sensitivity. The boundary layer at the wall has been resolved using 18 mesh 
layers with a growth rate of 1.2 for a minimal boundary layer thickness of 1 µm. This thickness 
was found to be sufficient to resolve the flow in the vicinity of the boundary. The mesh used 
in COMSOL is shown in figure 1. The mesh created in ANSYS has the same properties. 
 
3. DISCUSSION AND RESULTS 
To compare the solution of the different methods described in chapter 2, the forces at the 
boundary were compared. These forces are important to eventually determine the impact of 
the fluid on the sensing structure. The local forces can be decomposed into two different 
categories: Shear stresses and pressure forces. The shear stresses are described by shear rate 
𝛾𝛾, which is the norm of the velocity derivative with respect to the surface normal 𝑛𝑛�⃗ . Both 
pressure p and shear rate are purely harmonic and can be describe by an amplitude and their 
respective phase (𝜙𝜙𝑣𝑣 for 𝛾𝛾 and 𝜙𝜙𝑝𝑝 for p), equation 8 & 9, once quasi-steady state conditions 
are achieved. 
 

�𝑢𝑢��⃗ (𝑥𝑥,𝑦𝑦,𝑡𝑡)
𝜕𝜕𝑛𝑛�⃗

� = 𝛾𝛾(𝑥𝑥,𝑦𝑦) ⋅ sin (𝜔𝜔𝜔𝜔 + 𝜙𝜙𝑣𝑣(𝑥𝑥 ,𝑦𝑦))                                      (8) 
 

p(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = p(𝑥𝑥,𝑦𝑦) ⋅ sin �𝜔𝜔𝜔𝜔 + 𝜙𝜙𝑝𝑝(𝑥𝑥 ,𝑦𝑦)�                                     (9) 
 

The structure shown in figure 1 had 3 different geometrical features: tip, fin and radial 
section. The amplitude of the shear stress and pressure computed by the different models were 
compared on the three different geometrical features and discussed in the following sections. 
 
3.1. Comparison of the Shear Stresses between Different Models  
The shear stress amplitude predicted by three different models: 
 
• moving wall approach (shown as COMSOL laminar) 
• linearized moving wall approach (shown as COMSOL lin) 
• frame of reference (shown as ANSYS CFX) 

 
Shear rates for each of the model are shown in figure 2 for the tip, figure 3 for the fin and 

figure 4 for the radial section. Even though the models are based on different equations and 
numerical methods, they show an overall good agreement for both computed viscosities 2 and 
20 mPas with a constant density of 1000kg/m³.  

The shear stresses are highest over the tip section due to the increased boundary velocity 
caused by the larger distance from the rotational center. The shear rate shows minute 
oscillations as the tip approaches the fin. These oscillations are caused by interpolation 
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between the boundary points due to the curvature of the geometry. Thus, the oscillations are 
a numerical artifact and have a minimal contribution to the overall torque on the structure 
(below 0.5%).  

The shear rate amplitude over the fin shows a good agreement between all three models. 
All models show a minimum in shear rate at the location 1.35 mm as shown in Figure 3, where 
0 mm is at the radial position and 3 mm is at the edge. The shear rate increases dramatically 
with increasing distance from the rotational center and reaches a maximum of 3 mm at the 
edge of the tip. On the other end of the fin touching radial section, the shear rate drops 
significantly.  

 
Figure 2: Comparison of shear rates amplitudes over the tip between COMSOL 
Multiphysics (full and linearized version of the Navier-Stokes equation) and ANSYS 
CFX. 

 

 
Figure 3: Comparison of shear rates amplitudes over the fin between COMSOL 
Multiphysics (full and linearized version of the Navier-Stokes equation) and ANSYS 
CFX. 
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The radial section shows lower shear rates in comparison to the other sections. The smaller 
shear rates are caused by the smaller distance to the rotational center as well as the effects of 
the fins. The fins constrain the flow at the edges of the radial section and increase the flow 
near the edges. The shear rates decrease in the middle region of the radial section. In absolute 
terms, there is a minor discrepancy between the results computed by ANSYS CFX and 
COMSOL. Even though the relative differences are high, the absolute difference is about 2 
orders of magnitude lower than on the tip. Thus, it has a negligible effect on the overall forces.  
 

 
Figure 4: Comparison of shear rates amplitudes over the radial section between 
COMSOL Multiphysics (full and linearized version of the Navier-Stokes equation) 
and ANSYS CFX. 
 
3.2. Comparison of the Pressure Amplitude between the Different Models  
The pressure amplitudes are shown over the same structural elements as the shear rates in 
Figure 5 for the tip, figure 6 for the fin and figure 7 for the radial section. The viscosity of the 
fluid has a very small impact on the pressure amplitude, therefore the figures show the results 
for ɳ = 2mPas only. 

The pressure amplitudes over the tip and radial section approaches zero in the center of the 
section. This drop in the pressure amplitudes are caused by the symmetry of the structure. The 
location of the drop is also the position of a structural symmetry line. Considering the 
symmetry line through the center of the fin, one side of the fin is pushing the fluid away and 
the other side is pulling towards it. Thus, the pressure is positive on the pushing side and 
negative on the pulling side. This effect can be visualized by the phase value of the pressure. 
In the radial section, the phase of the pressure amplitude changes from 0 to 180° at the central 
point, which indicates that the pressure switches from negative to positive, hence must be zero 
in the center in order to be observe the continuum, see figure 8. Due to the symmetry, the tip 
section shows the same phenomena, see figure 5. The simulations conducted in COMSOL 
Multiphysics captured this phenomenon sharper than ANSYS CFX. The ANSYS CFX 
simulation shows a slightly wider transition area for negative to plus in comparison to 
COMSOL Multiphysics.  
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The pressure distribution over the fin does not exhibit a sudden drop due to symmetry. 
The pressure amplitude constantly increasing with the length (from radial section) up to the 
location 1.3 mm, after which the shear rate drops again. Past this local maximum of the 
pressure amplitude, it decreases with steadily increasing slope towards the tip.  

 

 
Figure 5: Comparison of the pressure amplitudes over the tip between COMSOL 
Multiphysics (full and linearized version of the Navier-Stokes equation) and ANSYS 
CFX. 

 

 
Figure 6: Comparison of the pressure amplitudes over the fin between COMSOL 
Multiphysics (full and linearized version of the Navier-Stokes equation) and ANSYS 
CFX. 
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Figure 7: Comparison of the pressure amplitude over the radial section between 
COMSOL Multiphysics (full and linearized version of the Navier-Stokes equation) 
and ANSYS CFX. 
 
 

 
Figure 8: Comparison of the phase of the pressure over the radial section between 
COMSOL Multiphysics (full and linearized version of the Navier-Stokes equation) 
and ANSYS CFX. 
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4. CONCLUSION 
The flow field around a torsional oscillating structure was computed with COMSOL 
Multiphysics and ANSYS CFX. Three different methodologies were adopted. In ANSYS 
CFX, a change in the frame of reference induced motion within the bulk of the fluid whereas 
in COMSOL Multiphysics, a moving wall approach was used to induce the motion. In 
COSMOL Multiphysics, both the full Navier-Stokes equation as well as the linearized form 
were solved. Pressure and shear stresses at the boundary are purely harmonic oscillations once 
a quasi-steady state has been reached. The pressures and shear rate amplitudes at the different 
geometrical sections of the structure were compared between the different numerical 
approaches and found to be in good agreement. 

In COMSOL Multiphysics, the linearized version of the Navier Stokes equations was 
compared to the full equation. At low viscosities (2mPas), there were small differences 
between the linearized and nonlinear solution in COMSOL. These differences diminished as 
the viscosity increased towards 20mPas. Overall, the agreement between the models were 
sufficient. 

The good agreement between the different numerical methods and different models shows 
a potential for predicting the forces on micro vibrating structures immersed in fluid. Based on 
these results, more complex models can be developed to study the effects of fluid-structure 
interactions.   
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density  ሺρηሻ  of a passing fluid. In this study, experiments and numerical modelling were performed 
to develop a deeper understanding of the tubular sensor. Experimental results were compared with 
an analytical model of the torsional resonator. Good agreement was found at low viscosities, although 
the numerical model deviated slightly at higher viscosities. The sensor was used to measure viscosities 
in the range of 0.3–1000 mPa∙s at a density of 1000 kg/m3. Above 50 mPa∙s, numerical models predicted 
viscosity within  ±5%  of  actual measurement. However,  for  lower  viscosities,  there was  a  higher 
deviation between model and experimental results up to a maximum of ±21% deviation at 0.3 mPa∙s. 
The sensor was  tested  in a  flow  loop  to determine  the  impact of both  laminar and  turbulent  flow 
conditions. No significant deviations from the static case were found in either of the flow regimes. The 
numerical model developed for the tubular torsional sensor was shown to predict the sensor behavior 
over a wide range, enabling model‐based design scaling. 

Keywords:  viscometer;  viscosity–density  sensor;  viscosity  measurement;  torsional  resonator;   
fluid–structure interaction 
 

1. Introduction 

Traditionally, viscosity is measured by sampling and analyzing fluids with common laboratory 
viscometers  or  rheometers.  These  instruments  are  time  consuming,  error  prone,  expensive,  and 
prohibit a fast and automated system response. Sensors based on mechanical resonance, however, 
are a promising alternative to conventional laboratory equipment. These sensors are robust, have no 
moving  parts,  and  are,  therefore,  suited  to  real‐time  measurements.  Using  sensors  based  on 
resonance,  various  materials  can  be  investigated  for  different  purposes,  such  as  studying  the 
viscoelastic behavior of polymers, determining fluid density and viscosity [1–8], characterizing the 
mechanical properties of polymer membranes and thin films [9–14], and detecting biomolecule or 
nanoparticle  masses  [15–20].  Sensors  using  torsional  vibration  are  a  subgroup  of  mechanical 
resonators. If purely cylindrical, these sensors create pure shear stresses and do not increase mass 
displacement, such as tuning forks or cantilevers. This makes them more robust, and measurement 
less sensitive towards, e.g., wall effects.   

Sensors based on torsional vibration have been investigated to measure viscous and viscoelastic 
effects [21–24]. Probe‐style sensors are already commercially available (e.g., Rheonics, Hydramotion, 
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Sofraser, Brookfield, and Emerson). Experimental and numerical studies have been conducted on how 
to measure viscosity [25–29]. Furthermore, they have been used to characterize viscoelastic fluids [21].   

It  is  advantageous  to  have  a  nonintrusive  viscosity  sensor  to monitor  industrial  processes. 
Thereby, the sensor should neither create an obstruction in the piping system nor influence the flow 
field inside the tube.   

Häusler and Reinhart et al.  [26,30] designed a  tubular sensor on  the basis of a small  tube  to 
measure blood viscosity. The sensor consisted of a small tube with an inner diameter of 2 mm that 
was excited  in a torsional mode. The damping of the mode was measured and correlated to fluid 
viscosity within the tube. This system was used to measure blood viscosity at different hematocrits. 

Fuchs and Drahm et al. [31] built a tubular sensor to measure the mass flow rate, fluid density 
and viscosity. The sensor was based on a straight tube with an attached eccentric mass. The system 
oscillated in a superposition of torsional and transverse modes, which allowed the Coriolis effect to 
be measured. In addition, due to fluid displacement, the resonance frequency of the excited mode 
could be correlated with fluid density. The novelty in this design was that the sensor could measure 
the damping of the mode. Damping is caused by the shear stresses within the fluid due to torsional 
vibration. Thus, the sensor was capable of measuring the mass flow rate, viscosity, and density. 

This study presents a tubular sensor that could measure the viscosity (at a known density) under 
the conditions of internal flow. The design is based on the tubular sensor introduced by Häusler [26,30]. 
It was adapted  to measure a wide  range of viscosities. Additionally,  the  sensor was designed as a   
flow‐through device, which can be integrated into piping systems and does not obstruct the flow. The 
resonator of the sensor oscillates in a purely torsional mode; thus, it cannot measure flow rate or fluid 
density like the tubular sensor designed by Fuchs and Drahm [31]. However, because no eccentric mass 
is needed, the overall inertia of the resonator is smaller than that with eccentric mass. Thus, the ratio 
between  fluid‐induced damping  and  inertia  is  higher,  and  the  sensor  is more  sensitive  towards 
damping. This enables greater accuracy, especially for low viscosities. Therefore, the benefit of the 
new tubular sensor is higher accuracy at low viscosities in comparison to the tubular sensor presented 
by Fuchs and Drahm [31]. 

To gain deeper  insight  into  the working principle of  the  sensor,  the  sensor was numerically 
modelled  using  a  weak  fluid–structure  interaction.  This  model  will  provide  the  means  for 
dimensional  scaling  of  the  sensor  while  meeting  sensor’s  measuring  range  and  accuracy 
specifications. For validation, the predicted damping values were verified by comparing them with 
measurements under static conditions, meaning no internal flow and thermally uniform conditions. 
However, the sensor eventually operated under conditions where internal flow is present. Thus, it 
was crucial to investigate the sensitivity of measurement to internal flow to reliably and accurately 
conduct measurements to reflect actual industrial use case. Therefore, the sensor was inserted into a 
flow loop, and tested with different fluids and in the laminar and turbulent flow regime.   

2. Sensor Design and Experiments 

The tubular sensor uses a thin‐walled, straight, stainless‐steel tube as the sensor body. The fluid 
flows  through  the  tubular  sensor without  any  interruption. This  allows  the  tubular  sensor  to be 
directly integrated into a process line. 

The working principle of the tubular sensor  is based on torsional resonance. The first torsional 
mode of the tubular resonator  is excited at a frequency similar to  its natural frequency. The excited 
resonance creates motion in the fluid. The shear stresses caused by the fluid motion induce a torque on 
the sensor, which damps oscillation. Oscillation damping is measured and related to fluid properties.   

2.1. Tubular Sensor Design 

The  schematic of  the  tubular  sensor  is  shown  in Figure  1. The  resonator was  comprised of  a   
thin‐walled, stainless‐steel (316 L) tube with an inner diameter of 5.25 mm and with two large disks 
mounted onto the outer diameter. The two disks are spaced 100 mm apart. The section between these 
disks  is  the measurement  section, where  the  first  torsional mode was  excited  via  two  permanent 
magnets  that  are mounted  onto  the  tube.  These magnets were  driven  by  electromagnets, which 
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produced an oscillating  torque near  the natural  frequency of  the  first  torsional mode. This driving 
torque was turned off after sufficient energy has been provided to the resonator. Then, the decay in 
torsional oscillation was measured using electromagnets. On the basis of the measured signal, the 
logarithmic decrement and the resonance frequency  f଴  of the resonator were computed. Damping 
was expressed as bandwidth   Γ, which was computed on  the basis of  the  logarithmic decrement. 
Additionally, temperature was measured by a PT1000 RTD (Honeywell, Berkshire, UK) mounted on 
the tube. 

 

Figure 1. Experimental setup of tubular sensor. 

2.2. Static Experiment Procedure 

Experiments were  conducted under  static  conditions  (tube  filled with  fluid with no  internal 
flow)  to determine damping at different well‐defined viscosities and densities of  the  fluid. These 
experiments were used to determine whether the numerical model described in Section 2.4 agrees 
with  the  measurement  as  well  as  to  check  consistency  for  different  fluids.  To  conduct  the 
experimental measurements, the tube was filled with different NIST (National Institute of Standards 
and Technology) traceable viscosity reference fluids (N2, S6, S20, S60, N100, S200, and S600, from 
Cannon  Instrument Company  (State College, PA  16803, USA)). These  fluids have  a well‐known 
viscosity  and density  as  a  function  of  temperature;  thus,  they  are well  suited  for  calibration  and 
validation purposes. During calibration, the temperature varied between 20 and 100 °C. Once a target 
temperature was reached, it was held constant for long enough so that the sensor and fluid were under 
thermally uniform conditions. 

The damping caused by the fluid is related to the product of viscosity and density, later denoted 
as ρη value, where ρ  is  the  fluid density and  η  the dynamic viscosity. Each  fluid covers a certain 
range of  ρη  values. However, all fluids are of similar density, and therefore, the driving change in 
damping  is  related  to  the  fluid’s viscosity. These  ranges overlap;  thus,  two  fluids are  capable of 
producing the same damping (ρη  value) at different temperatures.   

This investigation was conducted in two different steps. In the first step, four fluids were used to 
create a baseline for the sensor. These first sets of fluids are marked in Figure 2 with full lines. They 
covered the entire operating range of the sensor and had some overlap of their temperature‐dependent 
ρη  value. In the second step, baseline validity was tested with additional fluids S20 and S200, marked 
with dashed lines in Figure 2.   

During measurement, sensor damping and resonance frequency were determined. The measured 
damping of the sensor was the superposition of intrinsic material damping and fluid‐induced damping. 
To determine fluid‐induced damping, intrinsic damping was subtracted from the measured damping 
value. The intrinsic damping of the sensor was temperature dependent and measured prior to fluid 
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measurements. Therefore, the clean sensor with no fluid inside the tube was measured with the same 
protocol as the filled sensor in the climate chamber. 

 
Figure 2. Product of viscosity and density  ሺρηሻ  of fluids as a function of temperature. Solid lines are 
fluids used to create a baseline, and dashed lines are fluids used for validation. 

For all measurements, sensor bandwidth was measured in intervals of approximately 1 s. One 
hundred measurements were used to calculate an averaged value of bandwidth, temperature, and 
resonance frequency. To estimate measurement uncertainty, error estimation was performed. There 
were two main contributions to the error: (1) intrinsic damping and (2) measuring damping value. 

(1)  An absolute error in the measured damping was caused by the intrinsic damping of the sensor. 
This error was independent of the damping value.   
(2)  Measurement of the damping value was more accurate at low damping due to higher signal‐to‐noise 
ratio. The relative error was 0.3% in air and increased to 30% for viscosities of 1000 mPas at a density of 
1000 kg/m³. This error could be reduced by averaging multiple measurements. Thus, by averaging 100 
measurements, its contribution was reduced by ten‐fold. 

To determine  the absolute viscosity  (at a given density),  the exact  fluid properties at a given 
temperature during measurements were required. Temperature measurement was subject to its own 
error, creating uncertainty around the fluid properties during measurements. For the fluids used in 
this study, this error was approximately 3%. 

2.3. Flow Loop Experiment 

The tubular sensor was integrated into a flow loop to investigate the sensor sensitivity towards 
internal flow under realistic industrial conditions (as shown in Figure 3). Flow rate could be varied in 
the flow loop, allowing variation in the averaged flow velocity through the sensor from 2.3 to 10 m/s. 
A membrane pump (ZIP‐80, Wagner (Altstätten, Switzerland)) was used to circulate the fluid, creating 
a pulsating flow. The flow rate was measured after the tubular sensor. Experiments were conducted at 
room temperature (27–32 °C) with a water–glycerol solution at 10 different concentrations (83%–8.3% 
W‐G).  Viscosities  varied  between  1  and  45  mPas  at  a  density  of  approx.  1000  kg/m3.  At  each 
concentration, five measurements at different flow rates were taken. These five measurements were 
compared to the static measurements (flow rate = 0). 
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Figure 3. Flow loop schematic used for internal flow experiments (Reynolds number range of 500–50,000). 

2.4. Resonator Modeling 

The sensor could be modeled as a classic harmonic resonator, where temporal and structural 
parts are independently considered. To compute the shape of the torsional mode, the equation for 
torsional waves  in nonhomogeneous cylindrical structures  is  solved, with  the contribution of  the 
attached magnets considered in a simplified manner. The inertial mass of the magnets was modelled 
by a larger cylindrical section. This larger cylindrical section increases the internal mass to account 
for the additional inertial mass of the attached magnets and stiffens the section of the larger cylinder. 
This  larger cylindrical section  is shown  in Figure 4  (top) by  the “magnet mass”. The equation  for 
torsional waves is shown as Equation (1),   

𝜕
𝜕𝑥

൫𝐺𝐼௣൯ ⋅
𝜕Ψ
𝜕𝑥

െ 2π𝑅ଶ𝜏 ൅ 𝐹 ൌ 𝐼௣
𝜕ଶ

𝜕𝑡ଶ Ψ (1)

where 𝛹, angular deflection;  𝐼௣, second moment area;  𝑥, axial direction;  𝐺, shear modulus;  𝑅, inner 
tube radius;  𝐹, excitation force;  𝜏; viscous shear stress on the structure; and  𝑡, time. 

We assumed that the solution of Equation (1) could be written by a space‐ and time‐dependent 
function (see Equation (2)). Therefore, the temporal and structural parts could be solved independently. 

Ψሺx, tሻ ൌ φሺtሻ ⋅ ϕ෡ሺxሻ (2)

To compute the shape of the structural mode, excitation and fluid forces were neglected. This 
weakly coupled fluid–structure interaction approach holds true for fluids with a low viscosity, where 
fluid‐induced  forces are much  smaller  than  structural  forces. At higher viscosities,  the  fluid may 
influence the shape of the structural mode. To compute the shape of the mode, we assumed that the 
angular deflection at the masses was zero because the moment of inertia was much higher than that 
of  the  tube. This defined  the boundary conditions at  the end of  the measuring section  (േl/2); see 
Equation (4). 

𝐺
𝜕

𝜕𝑥
ቆ𝐼௣ ⋅

𝜕ϕ෡

𝜕𝑥
ቇ ൌ െωଶ𝐼௣ρϕ෡ (3)

ϕ෡ ൬െ
l
2

൰ ൌ 0,    ϕ෡ ൬൅
l
2

൰ ൌ 0,       max൫𝜙෠൯ ൌ 1 (4)
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Figure 4. (top) Schematic cross‐section of the tubular sensor,  including the tube and magnet mass; 
(bottom) normalized solution of the excited torsional mode over measurement length േl/2. 

Equation (3) is a boundary value problem that could be solved numerically in MATLAB by using 
the  bvp4c  (fourth‐order method  for  boundary  value  problems)  function  [32].  Thereby,  only  the 
solution  of  the  first  torsional mode was  computed with  its  corresponding  natural  frequency,  as 
shown in Figure 4. Due to the inertial  load caused by the magnets (blue, Figure 4), the mode was 
distorted in the central section. This created large local bending of the modal function at the edge 
where magnets are attached to the tube and results in a slight straightening of the rest of the tube. 
The time‐dependent component of the oscillation is represented by an ordinary differential equation. 
The  representative viscous  torque,  the moment of  inertia, and  spring  constant were obtained by 
integration over the length  l,  see Equations (6) and (7).   

The excitation term  F was neglected because  it was not present when the measurement took 
place. Thus,  the  resonator could be modeled by an ordinary differential  (Equation  (5)) under  the 
assumption of a time‐harmonic solution of  ሺ𝑡ሻ ൌ ℜሺ𝑋෠𝑒௜ఠ௧ሻ: 

𝜕ଶ𝜑
𝜕𝑡ଶ 𝐽଴ ൅ 𝜑 ⋅ 𝑐 ൅ 𝑀෡௩𝑋෠𝑒௜ఠ௧ ൌ 0 (5)

𝐽଴ ൌ න ሾ𝜌|𝜙෠ሺ𝑥ሻ| ⋅ 𝐼௣ሺ𝑥ሻሿ𝑑𝑥

௟/ଶ

ି௟/ଶ

 (6)

𝑀෡௩ ൌ න
𝜏̂ሺ𝑥ሻ2𝜋𝑅ଶ

𝑋෠
𝑑𝑥

௟/ଶ

ି௟/ଶ

 (7)

where  𝜙෠ ,  angular  deflection;  𝑐 , mode  spring  constant;  𝑋෠ ,  amplitude;  𝑖 ൌ √െ1 ;  𝜔 ,  the  angular 
frequency; and 𝑀෡௩, fluid‐induced torque. Using the time‐harmonic assumption, we get Equation (8): 

െ𝜔ଶ𝐽଴ ൅ 𝑐 ൅ 𝑀෡௩ ൌ 0 (8)

Equation (8) can be solved as an eigenvalue problem, where the eigenvalue  𝜆 ൌ 𝑖𝜔. On the basis 
of the solution, the bandwidth  𝛤  of the resonator can be determined from the logarithmic decrement 
of  the  oscillation, which  is  the  real  part  of  the  eigenvalue  𝜆 .  Similarly,  the  angular  resonance 
frequency 𝜔଴ is the imaginary part of  𝜆. 

Γ ൌ ℜሺ𝜆ሻ (9)
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Fluid Forces 

The torsional oscillation of the tube created fluid motion, and thus shear stresses at the inner wall 
of the tube where the fluid is in contact with the solid. These shear stresses τ created a torque, which 
damped the oscillation. To compute the shear stresses, a simplified set of the linearized Navier–Stokes 
equation was solved. Flow within the tube was approximated under the assumption of no axial flow, 
no azimuthal change, and no radial flow. On the basis of these assumptions, a simplified version of the 
Navier–Stokes equation could be written  in cylindrical coordinates, where  𝑢, azimuthal velocity;  𝜂, 
dynamic  viscosity;  𝜌 ,  fluid density;  𝑟 ,  radius;  and  𝑝 , pressure—see Equations  (10)  and  (11). This 
approach was already used by Fuchs and Drahm [31] for cylindrical geometries. 

𝜕𝑢
𝜕𝑡

 ൌ  
𝜂
𝜌

ቆ
1
𝑟

𝜕𝑢
𝜕𝑟

൅
𝜕ଶ𝑢
𝜕𝑟ଶ ൅

𝑢
𝑟

ቇ (10)

𝑢ଶ

𝑟
ൌ

𝜕𝑝
𝜕𝑟

 (11)

Then, we assumed a time‐harmonic solution (Equation (12)). 

𝑢ො𝑖𝜔 ൌ
𝜂
𝜌

ቆ
1
𝑟

𝜕𝑢ො
𝜕𝑟

൅
𝜕ଶ𝑢ො
𝜕𝑟ଶ ൅

𝑢ො
𝑟

ቇ (12)

A solution to Equation (12) could be found (see Equation (14)), where  Jଵ was the Bessel function 
of the first kind,Yଵ  the Bessel function of the second kind and  𝑐ଵ, 𝑐ଶ  coefficients.   

𝑢ොሺ𝑟ሻ ൌ 𝑐ଵ ⋅ Jଵ ቌሺെ1ሻ
ଷ
ସ𝑟ඨ

𝜔𝜌
𝜂

ቍ ൅ 𝑐ଶ ⋅ Yଵ ቌെሺെ1ሻଷ/ସ𝑟ඨ
𝜔𝜌
𝜂

ቍ (13)

Boundary conditions were  𝑢ොሺ𝑟 ൌ 0ሻ ൌ 0  and  𝑢ොሺ𝑟 ൌ 𝑅ሻ ൌ 𝑣ො଴, where  𝑅  is the tube inner radius 
and  𝑣ො଴  the wall velocity. The wall velocity depended on  the axial  location, as well as  the  rate of 
angular deflection; see Equation (14).   

𝑣ො଴ ൌ 𝑋෠𝑟𝜔|𝜙෠ሺ𝑥ሻ| (14)

The flow field can then be described by Equation (15). 

𝑢ොሺ𝑟ሻ ൌ 𝑣ො଴ ⋅
Jଵ ൬ሺെ1ሻ

ଷ
ସ𝑟ට

𝜔𝜌
𝜂 ൰

Jଵ ൬ሺെ1ሻ
ଷ
ସ𝑅ට

𝜔𝜌
𝜂 ൰

 (15)

Figure 5 shows the real part of the azimuthal velocity u for three different viscosities at a constant 
density of 1000 kg/m3. For all solutions, flow velocity was near zero within the first 30% of the radius; 
thus, any flow effects occur in the vicinity of the wall. 

On  the  basis  of  Equation  (15),  shear  rates  and  thus  the  viscous‐induced  damping  could  be 
determined. Viscous‐induced torque 𝑀෡௩  was computed by integrating shear stress  𝜏̂  over the wall of 
the tube; see Equation (7). Shear stress was defined by Equation (16) at the radius of the inner wall 𝑅. 

𝜏̂ሺ𝑥ሻ ൌ 𝜂 ቆ
𝜕𝑢ො൫𝑣ො଴ሺ𝑥ሻ൯

𝜕𝑟
െ

𝑢ො൫𝑣ො଴ሺ𝑥ሻ൯
𝑟

ቇ (16)

  



Sensors 2020, 20, 3036  8  of  13 

 

 

Figure 5. Velocity profile for different fluids in a tubular sensor with a frequency of 10,800 Hz and 
density of 1000 kg/m3. 

3. Discussion 

The  sensor  was  tested  in  two  different  stages.  In  the  first  stage,  static  experiments  were 
conducted  under  well‐defined  conditions  where  the  fluid  properties  were  well  known.  These 
experiments were used  to create a baseline  for  the sensor and validate  the numerical model. The 
numerical model was  then  fitted  to  the experiments  to account  for any systematic deviation. The 
fitting was  carried out by multiplying  the prediction with  an  empirical  correction  function. This 
corrected prediction was then used to predict the fluid’s viscosity based on the measured properties. 
In  the  second  stage,  sensor  sensitivity  towards  internal  flow was  evaluated  by  comparing  the 
measured damping for the same fluids with and without internal flow. 

3.1. Static Flow Conditions 

Experiments were  conducted  under  static,  thermally  uniform  conditions  using  fluids with  a   
well‐known property. The measured fluid‐induced damping versus the product of fluid denisty and 
viscosity (ρη) is shown in Figure 6. The colormap shows the temperature at which the measurement 
was conducted. To mitigate any  temperature effects,  the measured bandwidth was divided by  the 
resonance frequency. This was carried out because the shear modulus of the resonator was temperature 
dependent.  The  resonance  frequency  and  bandwidth  of  the  sensor  decreases  with  increasing 
temperature. By dividing the bandwidth by the resonance frequency, the temperature dependence of 
the damping could be compensated, and the measurements collapsed to a single line. Thus, the sensor 
measures the same  Γ/𝑓଴  value independent of fluid temperature, as can be seen in Figure 6.   

 

Figure  6.  Numerical  prediction  and  experimental  measurements  of  the  ρη   value  at  different 
temperatures, where  ρ  is the density and  η  the viscosity. 
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The model described in Section 2.4 enables the prediction of the  ρη  value, where  ρ  is the fluid 
density and  η  the dynamic viscosity. This prediction of the  ρη  value for a given damping is shown 
as a black line in Figure 6 (black line). The predictions were within the same order of magnitude and 
show the same trend as the experimental measurements. This indicates that the model captured the 
primary effects of the resonator. For small viscosities, the model predicted that damping increases 
proportionally  to  the square root of  ρη, which  is a  typical property of sensors based on  torsional 
resonators. This is the case, as long as the penetration depth  δ ൌ ඥ2η/ሺρሻ  is much smaller than the 
inner radius from the tube (2.625 mm). The penetration depth  δ  ranges from 0.054 mm at a dynamic 
viscosity of 1 mPas up  to 0.171 mm  for a viscosity of 1000 mPas. Thus, at higher viscosities,  the 
curvature of the tube becomes relevant and the predicted damping relatively decreases. This effect is 
present in both simulation and experiment, but more predominant in the experiments.   

The deviation between measurement and model is more evident in Figure 7. Despite the overall 
trend being  in good agreement, predictions systematically differed for high  ρη  values. At  low  ρη 
values, there was a constant offset between numerical predictions and experiments, which could be 
explained by manufacturing tolerances. However, at high  ρη  values, i.e., high damping, there was 
systematic deviation in the trend. This systematic deviation was statistically significant and could be 
caused by an effect that was neglected in the model. Potential sources of the deviation include 

(1)  Bias in the damping measurement: At high damping, the signal‐to‐noise ratio (SNR) decreased 
due to the smaller amplitude of the resonator. The algorithm used to determine the damping 
was sensitive to the noise in the signal. As the SNR decreased, the error in the evaluation of the 
damping value increased. The error is not normally distributed but had a bias towards smaller 
damping  values.  Hence,  the  evaluated  averaged  value  of  the  damping  tended  to  be 
underpredicted  as  the  SNR  decreased.  This  behavior  could  be  qualitatively  simulated  and 
showed a similar trend, as was experimentally observed. 

(2)  Distortion of modal function: Another potential source of the systematic deviation is the fluid–
structure interactions. At high  ρη  values, the fluid exerts forces on the tube that are much higher 
than  those  exerted  at  low  ρη   values;  thus,  the  balance  between  structural  and  fluid  forces 
changes.  In  the model,  the modal  shape was computed under  the assumption  that  the  fluid 
forces did not impact the shape of the mode. Hence, this assumption may no longer be valid for 
fluids with high  ρη  values. To account for and verify this effect, the fluid–structure interaction 
(strong coupling) will be incorporated into the numerical model in future studies. This would 
allow  specific  investigation of  the  impact of  fluid properties on  the  structural mode  and  its 
implications at  ρη  values. 

 

Figure 7. Relative deviation of the predicted and actual  𝜌𝜂 value, where  𝜌 is the density and  𝜂  the 
dynamic viscosity. 

To  account  for  those  effects which were  not  accounted  for  in  the  numerical  prediction,  an 
empirical polynomial model was used to correct the deviation between the predicted and measured 
values; see Equation (17). This polynomial was multiplied by the numerical prediction to correct the 
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small deviations between the numerical prediction and experimental data. The multiplier function 
was a polynomial based on the log of the  𝜌𝜂  value. Coefficients were determined by the least squares 
method on the relative deviation from prediction to measurement (Equation (18)).   

Γ
𝑓଴

ൎ
Γ௡௨௠ሺ𝜌𝜂ሻ

𝑓଴,௡௨௠
⋅ ෍ 𝑎௜ logሺ𝜌𝜂ሻ௜

ସ

௜ୀ଴

 (17)

𝑎௜ ≔ min

⎝

⎜
⎛

∑ ൦

𝛤௡௨௠ሺ𝜌𝜂ሻ
𝑓଴,௡௨௠

⋅ ∑ 𝑎௜ 𝑙𝑜𝑔ሺ𝜌𝜂ሻ௜ସ
௜ୀ଴ െ

𝛤
𝑓଴

𝛤௡௨௠ሺ𝜌𝜂ሻ
𝑓଴,௡௨௠

⋅ ∑ 𝑎௜ 𝑙𝑜𝑔ሺ𝜌𝜂ሻ௜ସ
௜ୀ଴

൪

ଶ

⎠

⎟
⎞
  (18)

To validate  the baseline model, we  tested  it against  two other viscosity reference fluids from 
Cannon, S20 and S200, which were not used  to create a baseline  for  the sensor,  i.e.,  to determine 
coefficient  𝑎௜ . Therefore,  the measured damping was used  to determine  the  ρη  value of  the  fluid 
(using Equation (17)). This predicted  ρη  value was then compared to the actual  ρη  value of the fluid 
used in the measurement. Figure 8 shows the relative deviation between the predicted (Equation (17)) 
and actual  ρη  value of the fluid. Deviation from the predicted to the actual  ρη  value was within the 
confidence  interval. The  black  line  indicates  the  95%  confidence  interval  in  terms  of  repeatability, 
whereas the red line shows the respective 95% confidence level for predicting the absolute  ρη  value. 
The  uncertainty  of  predicting  the  absolute  ρη   value was  higher  because  it  also  contained  the 
uncertainty of the basic calibration conducted in this study. 

Overall, confidence intervals become smaller at higher  ρη  values and reach a minimum of ±4% 
for repeatability.   

 

Figure 8. Relative deviation of the predicted and actual  ρη  value for the fluids S20 and S200, where 
ρ  is the density and  η  is the dynamic viscosity. The full and dashed lines show the 95% confidence 
interval (2σ) for repeatability and absolute value, respectively. 

3.2. Flow Loop 

The sensor was tested  in a flow  loop to account for flow effects such as turbulent or  laminar 
flow. This experiment was necessary to investigate the interaction between internal flow and flow 
induced by torsional vibration. This is important under turbulent conditions, where turbulences may 
interact and disturb  the  flow caused by  the  torsional vibration of  the sensor and  thus  impact  the 
measurement. This would create a flow or Reynolds dependence on the measurement. Experiments 
were conducted over a wide range of Reynolds numbers from 500 (laminar flow) up to fully turbulent 
conditions at 50,000. The variation in the Reynolds number was achieved by varying both flow rate 
and the fluid’s viscosity (by changing the glycerol concentration in water).   

Figure 9 shows the relative deviation of the predicted  ρη  value between static flow measurement 
and measurements with the internal flow. All deviations were below ±1%. This deviation was below 
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the  confidence  interval of  repeatability, and data were  randomly  spread. Hence,  flow  conditions 
shown in Figure 9 exhibited no significant influence on measurements of Reynolds numbers up to 
50,000. Any variations were within the uncertainty of repeatability.   

 

Figure  9. Relative deviation  between  static  and  flow measurements  in  a  flow  loop  for different 
water–glycerol (W‐G) concentrations. 

4. Conclusions 

We  presented  an  experimentally  validated  numerical  model  for  a  nonintrusive,  real‐time, 
tubular  sensor  and  tested  for different  viscosities  and densities. The  sensor was  comprised  of  a 
straight tube and could be directly integrated into a piping system. The numerical model describing 
the sensor was derived on the basis of the torsional vibration of the tube and the interaction with the 
fluid inside the tube. The fluid interaction with the resonator was computed using an analytical fluid 
model. The modelled predictions were compared with four different fluids at temperatures between 
20 and 100 °C and were found to be in good agreement at low viscosities. However, at high viscosities, 
there was systematic deviation between numerical prediction and experimental data. This deviation 
was likely caused by fluid‐induced modal distortion or bias in the measurement error. 

In  order  to  account  for  the  systematic  deviation  between  prediction  and measurement,  the 
numerical prediction was multiplied with an empirical model. After this correction, the model was 
tested against two additional fluids. Measurements were in good agreement with the prediction and 
within the confidence interval.   

Additionally,  the  tubular  sensor  was  tested  in  a  flow  loop  with  different  water–glycerol 
solutions, simulating  industrial conditions, in a Reynolds number range of 500–50,000. The sensor 
did not exhibit any Reynolds dependence. Overall,  the  tubular sensor showed good potential  for 
application in industrial processes. However, further studies are needed to elucidate the departure 
of the model prediction from real sensor behavior at high viscosities. 
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