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Résumé. — Une formule de quadrature pour une mesure µ sur la droite réelle est une com-
binaison conique d’un nombre fini d’évaluations en des points, appelés nœuds, qui concorde
avec l’intégration selon µ pour tout polynôme jusqu’à un certain degré fixé. Dans cet article,
nous introduisons un polynôme bivarié dont les racines paramètrent les nœuds des formules
de quadrature minimales pour une mesure donnée. Nous donnons deux représentations déter-
minantales symétriques pour ce polynôme, ce qui ramène le problème de recherche des nœuds
à la résolution d’un problème aux valeurs propres généralisé.

1. Introduction

Given a (positive Borel) measure µ on R, a classical problem in numerical analysis
is to approximate the integral with respect to µ of a suitably well-behaved function f .
One approach is via so called quadrature rules. These approximate the integral by
a weighted sum of function values at specified points. One classical construction
for quadrature rules designed to approximate the integral of continuous functions
consists of demanding an exact evaluation of the integral for all polynomials of
degree 6 D. If the moments of µ exist and are finite, then this amounts to finding
a measure supported on finitely-many points whose moments agree with those of µ
up to degree D.
We use t as a formal variable on the real line and write R[t]6D for the vector space

of real polynomials of degree at most D. For k ∈ N0, we denote the kth moment of
µ, if it exists and is finite, by

mk =
∫

tk dµ.

Definition 1.1. — Suppose D is a positive integer and µ is a measure on R
whose moments up to degree D exist and are finite. For x ∈ R ∪ {∞}, define the
linear function

evx : R[t]6D → R
as follows. For f = ∑D

k= 0 fktk ∈ R[t]6D with f0, . . . , fD ∈ R,
evx(f) = f(x) for x ∈ R and ev∞(f) = fD.

We sometimes write evD∞ for ev∞ to emphasize its dependence onD. A quadrature rule
of degree D for µ is a finite set N ⊂ R∪ {∞} together with a function w : N → R>0
with ∫

f dµ =
∑
x∈N

w(x) evx(f) for all f ∈ R[t]6D.

We call N the nodes of the quadrature rule.

Remark 1.2. — In Definition 1.1 we allow nodes at infinity. This is not desirable
for application in numerical analysis, since one cannot generally evaluate functions
at these nodes. However, compactifying the real line by adding ∞ makes certain
arguments easier. Although our statements are phrased with this more general notion
of quadrature, our main result presented below actually provides a tool to explicitly
distinguish the cases of quadrature rules with all nodes real from the case where
one of the nodes is ∞. Furthermore, it is a classical theorem that quadrature rules
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for µ with no nodes at infinity exist for every degree D provided the moments of µ
exist and are finite up to the same degree (see e.g. [Lau09, Theorem 5.8], [Lau10,
Theorem 5.9], [Sch17, Theorem 1.24]).
We say the measure µ is non-degenerate in degree d if its moments mk are finite

up to degree k = 2d and for every nonzero, nonnegative polynomial f ∈ R[t]6 2d
we have

∫
f dµ > 0. Since in one variable any nonnegative polynomial f is sum of

squares of polynomials, this is equivalent to demanding that
∫
p2 dµ > 0, for every

0 6= p ∈ R[t]6 d. This property can be checked quite conveniently in the following way.
Definition 1.3. — Consider the quadratic form p ∈ R[t] 7→

∫
p2dµ and restrict

it to R[t]6 d. With respect to the monomial basis 1, t, . . . , td for R[t]6 d, this quadratic
form is represented by the (d+ 1)× (d+ 1) Hankel matrix with (i, j)th entry mi+j−2:

Md =



m0 m1 m2 . . . md

m1 m2 . .
.

md+1

m2 . .
.

. .
. ...

... . .
.

m2d−1
md md+1 . . . m2d−1 m2d


.

With this notation, a measure possessing finite moments up to degree 2d is non-
degenerate in degree d if and only if det(Md) 6= 0.
From the point of view of numerical analysis it is desirable to have a quadrature

rule that is exact up to a certain degree and requires the fewest number of evaluations
possible. Such a quadrature rule is called a Gaussian quadrature rule for µ.
It is known that when D = 2d+1 is odd and µ is non-degenerate in degree d, there

is a unique quadrature rule for µ with d+1 nodes, and none with fewer nodes [AK62,
Chapter I, Theorem. 3], see also [CF91, Theorem. 3.8]. The nodes can be found as
follows. Let M ′

d denote the (d+ 1)× (d+ 1) matrix representing the quadratic form
p 7→

∫
t ·p2dµ with respect to the monomial basis 1, t, . . . , td of R[t]6 d, meaning that

(M ′
d)i,j equals mi+j−1. Then the d+ 1 nodes of the unique Gaussian quadrature rule

for µ in degree 2d+1 are the d+1 roots of the univariate polynomial det(xMd−M ′
d),

see e.g. [Sze75, formule 2.2.9, p. 27]. Since Md and M ′
d are real symmetric matrices

and Md is positive definite, this writes the problem of finding these d+ 1 nodes as a
generalized eigenvalue problem.
In this paper we focus on the case when D = 2d is even. In this case, there is a

one-parameter family of quadrature rules for µ with d + 1 nodes (see e.g. [Sch17,
Theorem 9.7]). Here we reprove this fact by constructing a polynomial F ∈ R[x,y]
with degree d in each of x and y and the property that for every y ∈ R, the d roots
of F (x, y) ∈ R[x]6 d are the other d nodes (among them possibly ∞) of this unique
quadrature rule with y as a node.
Furthermore, we give symmetric determinantal representations of F , which again

translates the problem of finding nodes of a quadrature rule into finding the general-
ized eigenvalues of a real symmetric matrix, i.e. solving det(xA−B) = 0 where A,B
are real symmetric matrices and A is positive semidefinite (see e.g. [BDD+00, Chap-
ter 4] or [GMV00]). While the literature on Gaussian quadrature rules is vast, to our
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knowledge these formulas are new. A result in the same spirit was obtained in [CF91,
Proposition 3.3]. However, the procedure advertised in [CF91, Theorem 3.10(ii)] re-
quires to compute the zeros of a univariate polynomial which is more expensive than
solving a generalized eigenvalue problem [GMV00, p. 1225]. Moreover, it involves
inversion of Hankel matrices which is numerically less stable, see [Tyr94].
To construct F and its determinantal representations, we consider three quadratic

forms on R[t]6 d−1, namely those taking p ∈ R[t]6 d−1 to
∫
p2dµ,

∫
t · p2dµ, and∫

t2 · p2dµ, respectively. We call Md−1, M ′
d−1 and M ′′

d−1 the matrices representing
these quadratic forms with respect to the basis 1, t, . . . , td−1. That is, define the
d× d matrices

(1.1)
Md−1 = (mi+j−2)16 i,j 6 d,

M ′
d−1 = (mi+j−1)16 i,j 6 d,

and M ′′
d−1 = (mi+j)16 i,j 6 d.

Theorem 1.4. — Let µ be a measure on R that is non-degenerate in degree
d > 1. There is a unique (up to scaling) polynomial F ∈ R[x,y] of degree 2d
with the property that for x, y ∈ R, F (x, y) = 0 if and only if there is a Gaussian
quadrature rule for µ of degree 2d with nodes x = r1, y = r2, r3, . . . , rd+1 in R∪{∞}.
This polynomial has the following two determinantal representations:

(a) the determinant of the d× d matrix with bilinear entries in x,y,

F = det
(
xyMd−1 − (x + y)M ′

d−1 +M ′′
d−1

)
,

(b) the determinant of the (2d+ 1)× (2d+ 1) matrix with linear entries in x,y,

(x− y) · F = c · det


detMd−1

detMd
(x− y) eTd eTd
ed xMd−1 −M ′

d−1 0
ed 0 −yMd−1 +M ′

d−1


where ed = (0, . . . , 0, 1)T ∈ Rd and c = (−1)d det(Md)/ det(Md−1)2.

Moreover, for all x ∈ R, with det(xMd−1 −M ′
d−1) 6= 0, all nodes are on the real line,

i.e., the associated quadrature rule has no nodes at infinity.

We prove the two parts of this theorem in Sections 2 and 3. The implications for
finding quadrature rules as generalized eigenvalues are made explicit in Remarks 2.2
and 3.5. In Section 4, we discuss possible generalizations of this result.

Acknowledgments

This collaboration was initiated during the Oberwolfach workshop “Real alge-
braic geometry with a view toward moment problems and optimization” in March
2017. Our thanks go to the organizers of the workshop and to the Mathematisches
Forschungsinstitut Oberwolfach. We thank Petter Brändén, Christoph Hanselka,
Rainer Sinn and Victor Vinnikov for interesting discussions

ANNALES HENRI LEBESGUE



Generalized eigenvalue methods for Gaussian quadrature rules 1331

2. Bilinear Determinantal Representation

In this section, we prove Theorem 1.4(a). The proof relies heavily on under-
standing a particular symmetric bilinear form Bx,y on R[t]6 d−1. For x, y ∈ R and
p, q ∈ R[t]6 d−1, let

Bx,y(p, q) =
∫

(x− t)(y− t)pq dµ = xy
∫
pq dµ− (x+y)

∫
t ·pq dµ+

∫
t2 ·pq dµ.

Note that the symmetric matrix xyMd−1− (x+ y)M ′
d−1 +M ′′

d−1 represents Bx,y with
respect to the basis 1, t, t2, . . . , td−1. Define F ∈ R[x,y] to be the polynomial

F = det(xyMd−1 − (x + y)M ′
d−1 +M ′′

d−1).
We will show that F satisfies the requirements of Theorem 1.4.
Proof of Theorem 1.4(a). — Suppose that there exists a quadrature rule for

µ of degree 2d with nodes r1, r2, . . . , rd+1 in R ∪ {∞}, meaning that there exist
w1, . . . , wd+1 ∈ R> 0 so that

(2.1)
∫
f dµ =

d+1∑
i=1

wi evri
(f) for all f ∈ R[t]6 2d.

Note that because µ is non-degenerate in degree d, the nodes r1, . . . , rd+1 are neces-
sarily distinct, so that after reindexing we may assume that r1, . . . , rd ∈ R.
We claim that F (r1, r2) = 0. To see this, let q be the unique (up to scaling) nonzero

polynomial with deg(q) 6 d − 1 and evri
(q) = 0 for each i = 3, . . . , d + 1. If each

ri ∈ R, then we can take q to be (t− r3) . . . (t− rd+1) ∈ R[t]6 d−1. If rd+1 =∞, then
we can take q = (t− r3) . . . (t− rd). For any p ∈ R[t]6 d−1, it follows that

Br1,r2(p, q) =
∫

(r1 − t)(r2 − t)pq dµ = 0.

The last equality follows from (2.1) and the fact that deg(p) 6 d − 1. Therefore q
is an element of the right kernel of Br1,r2 . Since Br1,r2 drops rank, the determinant
F (r1, r2) of the representing matrix equals zero.
Conversely, suppose that for x, y ∈ R, F (x, y) = 0. Then the kernel of Bx,y contains

a polynomial q ∈ R[t]6 d−1. For all p ∈ R[t]6 d−1,∫
(t− x)(t− y)pq dµ = 0.

First, we argue that x, y, and the roots of q are real and pairwise distinct and that
the degree of q is d − 2 or d − 1. If not, there would exist a non-zero polynomial
p ∈ R[t]6 d−1 for which f = (t− x)(t− y)pq is nonnegative on R. Since

∫
f dµ = 0,

this contradicts the assumption that µ is non-degenerate in degree d.
Let r1 = x, r2 = y and denote the roots of q by r3, . . . , rd+1, where we take

rd+1 =∞ if deg(q) = d−2. Consider the conic hull of the d+1 points evr1 , . . . , evrd+1

in R[t]∗6 2d. This is a (d + 1)-dimensional simplicial convex cone in the (2d + 1)-
dimensional vector space R[t]∗6 2d. Therefore this cone is defined by d linear equalities
and d + 1 linear inequalities, which we will now identify by inspection. For each
i = 1, . . . , d+1, let fi be the unique (up to scaling) nonzero polynomial of degree 6 d
for which evrj

(fi) = 0 for each j 6= i. For example, fd+1 = ∏d
i=1(t−ri). Note that the

polynomials (t−r1)(t−r2)q · tk for 0 6 k 6 d−1 and f 2
i for 1 6 i 6 d+1 are linearly
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independent in R[t]6 2d. It therefore follows that the conic hull of evr1 , . . . , evrd+1 is
the set of L ∈ R[t]∗6 2d satisfying

L((t−r1)(t−r2)pq) = 0 for all p ∈ R[t]6 d−1 and L
(
f 2
i

)
> 0 for i = 1, . . . d+1.

The linear function Lµ ∈ R[t]6 2d given by Lµ(f) =
∫
f dµ belongs to this convex

cone. Hence there are nonnegative weights w1, . . . , wd+1 for which

Lµ(f) =
d+1∑
i=1

wi evri
(f).

Since µ is non-degenerate in degree d, each of these weights must be positive. �

Remark 2.1. — Let M = M(x,y) = xyMd−1 − (x + y)M ′
d−1 +M ′′

d−1. We remark
that for every x ∈ R, the matrix M(x, x) is positive definite. To see this, note that
M(x, x) represents the quadratic form on R[t]6 d−1 given by p 7→

∫
p2(t−x)2dµ with

respect to the monomial basis. Since µ is non-degenerate in degree d, this is positive
for any 0 6= p ∈ R[t]6 d−1.
Remark 2.2. — For fixed y ∈ R, this allows us to find the roots of F (x, y) ∈ R[x]

as the generalized eigenvalues of a d×d real symmetric matrix. If y is larger than all
of the roots of det(yMd−1−M ′

d−1), then yMd−1−M ′
d−1 is positive definite, meaning

that M(x, y) has the form xA − B where A is a positive definite matrix. We can
find the roots in x as the following generalized eigenvalue problem:
{x : F (x, y) = 0} =

{
x : det

(
x
(
yMd−1 −M ′

d−1

)
−
(
yM ′

d−1 −M ′′
d−1

))
= 0

}
.

If yMd−1 −M ′
d−1 is not positive definite, this formula still holds, but may not be

as numerically stable. We can instead make a change of variables x = x̃ + y, which
gives

M(x, y) = M(x̃ + y, y) = (x̃ + y)yMd−1 − (x̃ + 2y)M ′
d−1 +M ′′

d−1

= x̃
(
yMd−1 −M ′

d−1

)
+M(y, y).

In particular, this has the form x̃A+B where B is positive definite. Suppose λ is a
root of det(λB − A). Then x̃ = −1/λ is a solution to det(x̃A+B) = 0. Therefore

{x : F (x, y) = 0} =
{
y − 1/λ : det

(
λM(y, y)− yMd−1 +M ′

d−1

)
= 0

}
.

Note that this even works when λ = 0 if we take y − 1/λ to be ∞.
Corollary 2.3. — Let µ be a measure on R that is non-degenerate in degree

d > 1. For y ∈ R there is a unique quadrature rule for µ of degree 2d with d + 1
nodes, one of which is y.
Proof. — Let y ∈ R. The polynomial F (x, y) = det(M(x, y)) ∈ R[x] has degree at

most d. Since the matrix pencil {M(x, y) : x ∈ R} contains a positive definite matrix
M(y, y), the roots of F (x, y) = 0 must all be real. In particular the existence of one
real root x implies, by Theorem 1.4, the existence of a quadrature rule of degree 2d
of µ whose d + 1 nodes include y. Moreover the other d nodes x, r3, . . . , rd+1 are
necessarily the d roots of F (x, y) = 0. As in the proof of Theorem 1.4, the conic hull
of evx, evy, evr3 , . . . , evrd+1 is a simplicial cone containing Lµ, meaning that there is
a unique representation of Lµ as a nonnegative combination of them. �
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Figure 2.1. The sextic curve given by F = 0, the line y = 1, and signs of
eigenvalues of the 3× 3 matrix polynomial M from Example 2.4.

Example 2.4 (Normal Distribution, d = 3). — Let µ be the normal Gaussian
distribution on R with mean 0 and variance 1. Its moments are given by m2i+1 = 0
and m2i = (2i − 1)!! for i ∈ N0. For example, the first seven moments of this
measure are m1 = m3 = m5 = 0, m0 = m2 = 1, m4 = 3, and m6 = 15. For d = 3,
the polynomial F given by Theorem 1.4 is the determinant of the 3 × 3 matrix
polynomial

M =

 xy + 1 −(x + y) xy + 3
−(x + y) xy + 3 −3(x + y)
xy + 3 −3(x + y) 3xy + 15

 .
For fixed y ∈ R, the polynomial F (x, y) ∈ R[x] has three real roots, r1, r2, r3 ∈
R ∪ {∞}, which, together with y, form the nodes of a quadrature rule for µ of
degree 6. The matrixM(x, y) has the form xA+B for some real symmetric matrices
A and B (depending on y). The roots of F (x, y) are the roots of det(xA+B).
Moreover, by making a change of coordinates we can make A positive definite. For

example, for y = 1, we set x = 1/λ + 1 to get

λ ·M(1/λ + 1, 1) =

 2λ + 1 −2λ− 1 4λ + 1
−2λ− 1 4λ + 1 −6λ− 3
4λ + 1 −6λ− 3 18λ + 3

 ,
which has the form λA − B, where A = M(1, 1) is positive definite. Solving the
generalized eigenvalue problem det(λA−B) = 0 gives λ ≈ −0.66,−0.32, 0.60. The
solutions to F (x, 1) = 0 are then x = 1 + 1/λ ≈ −2.15,−0.52, 2.67. Thus there is a
quadrature rule for µ of degree 6 with nodes consisting of 1 and these three roots.
The curve given by F (x, y) = 0 along with the line y = 1 are shown in Figure 2.1.
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For y ∈ {0,±
√

3}, the polynomial F (x, y) ∈ R[x] becomes quadratic with two
real roots {0,±

√
3}\{y}. From this we conclude that there is a quadrature rule of

degree 6 for µ with the four nodes 0,±
√

3,∞.
For y >

√
3, the matrix coefficient of x in M(x, y) is positive definite. In this case,

M(x, y) already has the form xA−B where A is positive definite, so no change of
coordinates is required to translate this into a generalized eigenvalue problem.

3. Linear Determinantal Representation

In this section we prove Theorem 1.4(b). As in Section 2, we construct a bilinear
form depending on x, y ∈ R and construct a non-zero kernel of it for those pairs x, y
that can be extended to d+ 1 nodes of a quadrature rule for µ of degree 2d.
For x, y ∈ R, we define a bilinear form Bx,y on R⊕ R[t]6 d−1 ⊕ R[t]6 d−1 ∼= R2d+1.

Given p = (p0, p1, p2) and q = (q0, q1, q2) in R⊕ R[t]6d−1 ⊕ R[t]6 d−1, define

Bx,y(p, q) =
∫
p1q1(x− t) + p2q2(t− y)dµ

+ evd−1
∞ (q0(p1 + p2) + p0(q1 + q2)) + p0q0 det(Md−1)

det(Md)
(x− y).

Choosing the basis 1, t, . . . , td−1 for both copies of R[t]6 d−1 represents this symmet-
ric bilinear form as the (2d+ 1)× (2d+ 1) matrix given in Theorem 1.4(b). That is,
if ~f denotes the coefficients of f ∈ R[t]6 d−1 so that f = ~f · (1, t, . . . , td−1), then

Bx,y(p, q) =

p0
~p1
~p2


T 

detMd−1
detMd

(x− y) eTd eTd
ed xMd−1 −M ′

d−1 0
ed 0 −yMd−1 +M ′

d−1


q0
~q1
~q2

 ,
where Md−1 and M ′

d−1 are the d× d matrices defined in (1.1).
In order to construct a non-zero element in the kernel of Bx,y, we need to build up

some basic facts. The first concerns quadrature rules for µ whose nodes include ∞.
As this polynomial will be used heavily in the text below, denote

F∞ = det(xMd−1 −M ′
d−1).

Lemma 3.1. — The polynomial F∞ has d real roots s1, . . . , sd ∈ R and there
exist weights w1, . . . , wd ∈ R>0 for which

(3.1)
∫
f dµ = w∞ ev2d

∞(f) +
d∑
i=1

wi evsi
(f) for all f ∈ R[t]6 2d,

where w∞ = det(Md)/ det(Md−1).
Proof. — Since Md−1 is positive definite, F∞ has d real roots s1, . . . , sd ∈ R, up to

multiplicity. For any root s, the matrix sMd−1 −M ′
d−1 has rank < d, meaning that

the polynomial
F (x, s) = det(x(sMd−1 −M ′

d−1)− (sM ′
d−1 −M ′′

d−1))
has degree 6 d − 1 in x. For any r ∈ R with F (r, s) = 0, there is a quadrature
rule for µ of degree 2d with d + 1 nodes containing s, r, and ∞. Then the unique
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quadrature rule of degree 2d with d + 1 nodes containing r also contains the node
∞. This implies that F (x, r) has degree 6 d − 1 and F∞(r) = 0, meaning that
r ∈ {s1, . . . , sd}. Therefore there is a quadrature rule of degree 2d for µ with nodes
s1, . . . , sd,∞. In particular, there exist w1, . . . , wd, w∞ ∈ R>0 for which (3.1) holds.
Then w∞ is the largest λ for which the quadratic form p 7→

∫
p2dµ− λ ev∞(p2) is

nonnegative on R[t]6d. This is the largest λ for which the matrix Md − λed+1e
T
d+1 is

positive semidefinite. We find this by solving the equation det(Md−λed+1e
T
d+1) = 0,

which gives λ = w∞ = det(Md)/ det(Md−1). �

Lemma 3.2. — Let w∞, s1, . . . , sd ∈ R be as given by Lemma 3.1. If y ∈ R
with F∞(y) 6= 0, then there is a quadrature rule for µ of degree 2d with nodes
y, r1, . . . , rd ∈ R. Let

qy =
d∏
i=1

(t− si)−
d∏
j=1

(t− rj) ∈ R[t]6 d−1.

Then for all p ∈ R[t]6 d−1,∫
p · qy · (t− y) dµ = w∞ evd−1

∞ (p).

Proof. — By Corollary 2.3, there is a quadrature rule for µ of degree 2d with nodes
y, r1, . . . , rd in R ∪ {∞}. Since F∞(y) 6= 0 the univariate polynomial F (x, y) ∈ R[x]
has degree d and by the uniqueness of the quadrature rule, r1, . . . , rd are its roots.
In particular, rj ∈ R. Then for p ∈ R[t]6d−1, we have that∫
p · qy · (t− y) dµ =

∫
p ·

d∏
i=1

(t− si) · (t− y) dµ−
∫
p ·

d∏
j=1

(t− rj) · (t− y) dµ

=
∫
p ·

d∏
i=1

(t− si) · (t− y) dµ

= w∞ ev2d
∞

(
p ·

d∏
i=1

(t− si) · (t− y)
)

= w∞ evd−1
∞ (p).

The first equality comes from the fact that there is a quadrature rule for µ of degree 2d
with nodes y, r1, . . . , rd. The second follows from the equality in Lemma 3.1. �

We now make a special choice of q and use Lemma 3.2 to greatly simplify Bx,y(p, q).

Lemma 3.3. — Suppose x, y ∈ R satisfy F∞(x) 6= 0 and F∞(y) 6= 0. Take w∞ ∈ R
and qx, qy ∈ R[t]6 d−1 as given by Lemmas 3.1 and 3.2 and fix q = (w∞, qx,−qy).
Then for any p = (p0, p1, p2) ∈ R⊕ R[t]6 d−1 ⊕ R[t]6 d−1,

Bx,y(p, q) = p0 · ev∞(qx − qy) + p0 · (x− y).

Proof. — Let q = (w∞, qx,−qy) and suppose p = (p0, p1, p2) ∈ R ⊕ R[t]6 d−1 ⊕
R[t]6 d−1. By Lemma 3.1, w∞ equals det(Md)/ det(Md−1). Then, by definition,

Bx,y(p, q) =
∫
p1qx(x−t)−p2qy(t−y)dµ+ev∞(w∞(p1 +p2)+p0(qx−qy))+p0(x−y).
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Using the properties of qx, qy given in Lemma 3.2, this simplifies to
Bx,y(p, q) = −w∞ ev∞(p1)− w∞ ev∞(p2) + ev∞(w∞(p1 + p2)

+ p0(qx − qy)) + p0(x− y)
= ev∞(p0(qx − qy)) + p0(x− y),

as claimed. �

Lemma 3.4. — Let H ∈ R[x,y] be a non-zero polynomial with the property that
for every y ∈ R the polynomial H(x, y) ∈ R[x] has distinct, real zeros. Then every
polynomial vanishing on the real variety of H must be a polynomial multiple of H.

Proof. — Let H = H1 · · ·Hr where each Hi is irreducible in C[x,y]. By our
assumption on distinct zeros, the Hi are pairwise coprime. Moreover, each factor Hi

belongs to R[x,y]. If not, then since H ∈ R[x,y], both Hi and its complex conjugate
Hi appear as factors of H and have the same real roots along the line y = y for
y ∈ R, contradicting the distinctness of these roots. Thus it suffices to show that
a polynomial vanishing on the real variety of H must be a polynomial multiple of
each Hi. Since each Hi satisfies our assumption as well, we can assume without loss
of generality that H is irreducible itself.
The real variety of H contains infinitely many points so its Zariski closure in C2

is at least one dimensional. By irreducibility of H, its real variety Zariski-dense in
its complex variety. Now the claim follows from Hilbert’s Nullstellensatz. �

Now we are ready to prove Theorem 1.4(b).
Proof of Theorem 1.4(b). — Let F be the polynomial given by Theorem 1.4(a).

Then F has degree 2d in x and y, with top degree part det(Md−1)xd yd, which
is non-zero by the non-degenerateness of µ. Then (x − y)F has degree 2d + 1
with top degree part equal to det(Md−1)(x − y)xd yd. Also, for every y ∈ R, the
polynomial (x − y)F (x, y) ∈ R[x] has distinct, real roots. Lemma 3.4 then implies
that any polynomial G ∈ R[x,y] vanishing on the real variety of (x− y)F must be
a polynomial multiple of it.
We further claim that the points (x, y) in VR((x − y)F ) with F∞(x) 6= 0 and

F∞(y) 6= 0 are Zariski-dense in VR((x− y)F ). That is, any polynomial G ∈ R[x,y]
vanishing on VR((x− y)F )\VR(F∞(x)F∞(y)) also vanishes on VR((x− y)F ) and is
therefore a multiple of (x − y)F . It suffices to show that (x − y)F has no factors
in common with F∞(x)F∞(y). The factors of F∞(x)F∞(y) are given by Lemma 3.1.
Suppose for the sake of contradiction that (x − si) divides (x − y)F for some
i = 1, . . . , d. It must be that (x − si) divides F . This implies that F (si, si) equals
zero, which contradicts the observation in Remark 2.1 that the matrix M(si, si) is
positive definite and F (si, si) = det(M(si, si)) > 0.
Let G denote the determinant of the (2d+ 1)× (2d+ 1) matrix representing the

bilinear form Bx,y. We will show that (x − y)F = c · G where c = (−1)d det(Md)/
det(Md−1)2. Note that c ·G is also a polynomial of degree 2d+ 1. Inspection shows
that its top degree part is det(Md−1)(x − y)xdyd. Thus by the above argument, it
suffices to show that G(x, y) = 0 for all (x, y) ∈ VR((x−y)F ) with F∞(x)F∞(y) 6= 0.
Now take x, y ∈ R with (x − y)F (x, y) = 0 and F∞(x)F∞(y) 6= 0. Let qx, qy ∈

R[t]6 d−1 be the polynomials given by Lemma 3.2 and let q = (w∞, qx,−qy). We claim
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that q is in the kernel of Bx,y. To see this, let p = (p0, p1, p2) ∈ R⊕R[t]6 d−1⊕R[t]6 d−1.
Then

Bx,y(p, q) = p0 · ev∞(qx − qy) + p0 · (x− y),
by Lemma 3.3. If x = y, this is clearly zero. Otherwise F (x, y) = 0 and by Theo-
rem 1.4(a) there exists r3, . . . , rd+1 ∈ R ∪ {∞} and a quadrature rule of degree 2d
for µ with nodes x, y, r3, . . . , rd+1. Since F∞(x) 6= 0, each ri ∈ R. Then

qx =
d∏
i=1

(t− si)− (t− y)
d+1∏
j=3

(t− rj) and qy =
d∏
i=1

(t− si)− (t− x)
d+1∏
j=3

(t− rj).

Expanding and looking at the coefficient of td−1 reveals that

ev∞(qx) = −
d∑
i=1

si + y +
d+1∑
j=3

rj and ev∞(qy) = −
d∑
i=1

si + x+
d+1∑
j=3

rj.

In particular, ev∞(qx − qy) = y − x, giving Bx,y(p, q) = 0. Since the bilinear form
Bx,y has a non-zero kernel, the determinant, G(x, y), of its representing matrix is
zero. �

Remark 3.5. — Again this translates the problem of finding the roots of F (x, y)
for fixed y ∈ R into a generalized eigenvalue problem. Consider the (2d+1)×(2d+1)
symmetric matrix polynomial

M = M(x,y) =


detMd−1

detMd
(x− y) eTd eTd
ed xMd−1 −M ′

d−1 0
ed 0 −yMd−1 +M ′

d−1

 .
Since Md−1 is positive definite and det(Md−1)/ det(Md) is positive, the coefficient of
x inM is positive semidefinite of rank d+ 1. In particular, for fixed y ∈ R, we can
solve F (x, y) = 0 by solving 0 = det(M(x, y)) = det(xA− B), where A is positive
semidefinite.

Example 3.6 (Normal Distribution, d = 3). — Consider again d = 3 and the
normal distribution given in Example 2.4. We calculate that det(M3) = 12 and
det(M2) = 2. The degree 6 polynomial F given by Theorem 1.4 satisfies (x − y)
F = −3 det(M) where

M =



x−y
6 0 0 1 0 0 1
0 x −1 x 0 0 0
0 −1 x −3 0 0 0
1 x −3 3x 0 0 0
0 0 0 0 −y 1 −y
0 0 0 0 1 −y 3
1 0 0 0 −y 3 −3y


.

Then M(x, 1) has the form xA − B where A is a positive semidefinite matrix of
rank four. The determinant det(M(x, 1)) has four roots, x ≈ −2.15,−0.52, 1, 2.67,
which are the nodes of a quadrature rule for µ of degree 6. The curve det(M) = 0
along with the line y = 1 are shown in Figure 3.1.
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Figure 3.1. The curve given by det(M) = 0 and signs of eigenvalues of the 7×7
matrixM from Example 3.6.

Remark 3.7. — Note that the matrixM(x,−y) has the form xA+yB+C where
the matrices A,B are positive semidefinite. For any a1, a2 ∈ R>0 and b1, b2 ∈ R, the
matrix coefficient of t inM(a1t+b1,−a2t+b2) is positive definite, implying that the
polynomial F (a1t+b1,−a2t+b2) ∈ R[t] is real-rooted. One can see this in Figures 2.1
and 3.1, as any line with negative slope intersects the curve V (F ) in six real points.
It also shows the polynomial F (x,−y) is real stable [Wag11, Proposition 2.4]. The
Helton–Vinnikov theorem [HV07, Theorem 2.2] then implies that not only (x−y) · F
has a (2d+1)×(2d+1) linear determinantal representation like in the Theorem 1.4(b)
but also F itself has a determinantal representation F = det(xA+ yB + C), where
A,B,C are 2d×2d real symmetric matrices and A and −B are positive semidefinite.
However it is unclear if there exists such a representation for which the entries of
A,B,C are easily calculated from the moments mk of µ, as withM.

4. Univariate quadrature rules with more nodes
It is natural to try to generalize the above discussion to situations where more

nodes of a quadrature rule are prescribed. Finding a quadrature rule means specifying
an even number of real parameters since each node comes with a weight. We will
now consider the following minimal problem:
Problem 1. — For integers n, ` > 1, we are given n+ 2`+ 1 moments m0, . . . ,

mn+2` of a (positive Borel) measure µ on the real line that is non-degenerate in
degree n + 2` and n − 1 real numbers x1, . . . , xn−1. Does there exist a quadrature
rule for µ of degree n+ 2` with n+ ` nodes including x1, . . . , xn−1?
Specifying the quadrature rule requires 2(`+ 1) + n− 1 = n+ 2`+ 1 parameters,

as we have two parameters for each of `+ 1 unspecified nodes and one parameter for
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the weight of each of the n− 1 specified nodes. Therefore the number of parameters
that we have to choose is exactly equal to the number of moments that we need to
match.
For n = 1, the problem is solved by the well-known Gaussian quadrature. The case

n = 2 is the main focus of this paper, and it is classically known that such a measure
exists. Unfortunately, for n = 3 this can fail even if the measure is non-degenerate
in every degree. To see this, we need some preparation.
For each integer 0 6 k 6 n, consider the quadratic form p 7→

∫
tk · p2 dµ on R[t]6 `,

which, with respect to the basis 1, t, . . . , t`, is represented by the (` + 1) × (` + 1)
matrix

M
(k)
` = (mi+j+k−2)16 i,j 6 `+1.

Notice that the highest moment of µ needed to specify these matrices is mn+2`,
achieved by i = j = `+ 1 and k = n.
For k ∈ N0, we denote by ek(x1, . . . , xn) ∈ R[x1, . . . , xn] the kth elementary

symmetric polynomial in x1, . . . , xn, for which the following polynomial identity in
R[t] holds:

n∏
i=1

(t− xi) =
n∑
k=0

(−1)kek(x1, . . . ,xn)tn−k.

Proposition 4.1. — Let µ be a measure on R that is non-degenerate in degree n+
2` > 1 for some n, ` ∈ N0 and let x1, . . . , xn ∈ R be distinct. If there is a quadrature
rule for µ of degree n + 2` with nodes r1 = x1, . . . , rn = xn, rn+1, . . . , rn+` ∈
R ∪ {∞} then

det
(

n∑
k=0

(−1)kek(x1, . . . , xn)M (n−k)
`

)
= 0.

Proof. — For X = {x1, . . . , xn} ⊂ R, consider the bilinear form BX on R[t]6 `
given by

BX(p, q) =
∫ n∏

k=1
(t− xk) · p · q dµ =

n∑
k=0

(−1)kek(x1, . . . , xn) ·
∫

tn−k · p · q dµ.

With respect to the basis 1, t, . . . , t`, this is represented by the matrix

(4.1)
n∑
k=0

(−1)kek(x1, . . . , xn)M (n−k)
` .

Suppose that r1 = x1, . . . , rn = xn, rn+1, . . . , rn+` ∈ R ∪ {∞} are the nodes of a
quadrature rule of degree n+ 2` for µ. As in the proof of Theorem 1.4(a), let q be
the unique (up to scaling) nonzero polynomial in R[t]6 ` for which evri

(q) = 0 for
each i = n+ 1, . . . , n+ `. Then for every p ∈ R[t]6 `,

BX(p, q) =
∫ n∏

k=1
(t− xk) · p · q dµ = 0.

Therefore the bilinear form BX has a nonzero kernel and the determinant of its
representing matrix (4.1) is zero. �

Unfortunately, the converse of Proposition 4.1 does not hold for n > 2.
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Example 4.2. — Consider the measure given by the exponential distribution on R,
whose kth moment is mk = k! for every k ∈ N0. Let n = 3, ` = 3 so that n+ 2` = 9.
Then in Problem 1, we want to build a quadrature rule for µ of degree 9 with at
most n + ` = 6 nodes including n − 1 = 2 specified nodes x1, x2 ∈ R. However for
x1 = 1

3 and x2 = 11, the determinant of the 4× 4 matrix in Proposition 4.1 equals
(up to a positive constant)

137503x4
3 − 1695024x3

3 + 11282760x2
3 − 41197920x3 + 46998216 ∈ R[x3],

which has complex roots x3 ≈ 1.87, 5.20, 2.63 ± i 5.31, only two of which are real.
Since µ is non-degenerate in every degree, any quadrature rule for µ in degree 9 has
at > 5 nodes. However, by Proposition 4.1 there are only two possibilities for the
remaining > 3 nodes. Therefore there is no quadrature rule for µ of degree 9 with
6 6 nodes including x1 = 1

3 and x2 = 11.
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