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“Fully secure systems don’t exist today and they won’t exist in the future.”
—Adi Shamir



Abstract

A solution like Green Transportation Choices with IoT and Smart Nudging
(SN) is aiming to resolve urban challenges (e.g., increased traffic, congestion,
air pollution, and noise pollution) by influencing people towards environment-
friendly decisions in their daily life. The essential aspect of this system is
to construct personalized suggestion and positive reinforcement for people to
achieve environmentally preferable outcomes. However, the process of tailoring
a nudge for a specific person requires a significant amount of personal data
(e.g., user’s location data, health data, activity and more) analysis.

People are willingly giving up their private data for the greater good of society
and making SN system a target for adversaries to get people’s data and misuse
them. Yet, preserving user privacy is subtly discussed and often overlooked
in the SN system. Meanwhile, the European union’s General data protection
regulation (GDPR) tightens European Unions’s (EU) already stricter privacy
policy. Thus, preserving user privacy is inevitable for a system like SN.

Privacy-preserving smart nudging (PPSN) is a new middleware that gives
privacy guarantee for both the users and the SN system and additionally offers
GDPR compliance. In the PPSN system, users have the full autonomy of their
data, and users data is well protected and inaccessible without the participation
of the data owner. In addition to that, PPSN system gives protection against
adversaries that control all the server but one, observe network traffics and
control malicious users. PPSN system’s primary insight is to encrypt as much
as observable variables if not all and hide the remainder by adding noise. A
prototype implementation of the PPSN system achieves a throughput of 105
messages per second with 24 seconds end-to-end latency for 125k users on a
quadcore machine and scales linearly with the number of users.
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Glossary

anonymized The process of altering individual data in such a way that it is
no longer be related or identifiable for that specific individual.

cyphertext The other term of encrypted information or encoded information is
"Cyphertext’. It holds the original information in a way that is unreadable
either by a human or a machine without the proper cypher algorithm to
decrypt it. Cyphertext is also referred to as ’Gibberish’ text. Cypher texts
can be classified as weak cyphertext and strong cyphertext based on the
two properties. One is a repeated pattern in the shifts, and the other one
is a uniform frequency distribution in an encrypted message. [1]

data custodian An entity (e.g., organizations, hospital, or laboratory) that
collects data about individuals and is responsible for protecting the data.

data subject An entity (e.g., individual person) to which the data refer.

proxy server A proxy server is a server/node in a computer network which
acts as a mediator in a server-client communication. Proxy servers take
requests from clients and seek resources from servers on behalf of the
client—hiding the true identity of the request to the resource server. [2]

sandbox Sandboxing is a technique to address malware threats by containing
their malicious behavior within a safe domain inside a system. [3]

threat model In a secure software system, a "Threat model" is a process
of identifying, quantifying and analyzing probable security threats in
computer-based systems. When a threat model is referred to a secure
and private system, it means that the specific system can be resilient
under potential attacks described in the specified threat model [4] [5].
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Introduction

Privacy has been an issue since the inception of the data-science and computing.
Whether it is a single person or a large group of people (e.g., citizens of a
country, citizens of a continent), many of them prefer not to give up their
personal data even if it is for the greater good. Besides in some places data
regulations are inherently tighter, for example, in Europe data regulations for
user’s personal data became stricter after the introduction of General Data
Protection Regulation (GDPR) on 25 May 2018 [6]. On the other side, for the
greater good and the big picture, we also need a massive amount of user data to
process and provide services accordingly to the users by which they—the people,
the country, the whole world—can be benefited. Green Transportation Choices
with IoT and Smart Nudging (SN) is one of the services which aims to resolve
urban challenges like increased traffic, congestion, air, and noise pollution by
influencing people towards environment-friendly decisions in their daily life
[7]. In order to make the nudge successful, this kind of system depends on
a hefty amount of personal user data (e.g., location data, age, gender, health
data and many more) and environmental sensor data (traffic data, weather
data, bus schedule data and many more) for personalization. Even with this
dichotomy between personalization and privacy, most people are happy to
give up personal information as long as their perceived advantage of the
services surpasses the perceived cost of giving up the required information [7].
Everything usually works out in the basis of trust for the service provider and the
user until the appearance of sneaky adversaries who unlawfully compromises
the service providers and users to intervene in their system and steal the
data thereby [8]. Privacy-preserving Smart Nudging (PPSN) system aims to
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address these challenges and nudges users most effectively while maintaining
their privacy in the face of a strong adversary. That is, an adversary should
not be able to tell which user is in which scenario even after interfering with
the system. For example, whether the user is in location A or the user is
in location B. We are focusing on privacy in smart nudging for SN system.
However, this system can be used for any type of nudge services which requires
personalization, mining of sensitive user data and aggregating environmental
sensor data as long as our core system architecture is compatible with the
targetted services. Following sections outline the motivation for the Privacy-
preserving Smart Nudging (PPSN) system, PPSN system overview, its research
problem, contributions and thesis outline.

1.1 Motivation

In this decade of machine learning and Al, data is the primary fuel to run
these SN systems with desired precision. Without substantial data sets, person-
alization systems are unthinkable. Just like all other personalization systems,
SN system also needs a lot of personal user data and sensor data to tailor a
successful nudge and improve the whole nudging system by following up user
activity [9]. It is accepted that it is hard to nudge people successfully without
the presence of personalization—no wonder, the task of user profiling requires
a substantial amount of user data. These user data are harnessed either ex-
plicitly, through direct user participation or implicitly by monitoring users [7].
To make the nudge effective, we also need environmental and ambience data,
which are collected from different types of IoT sensors and servers [9]. Even if
the data collected from external servers are encrypted, it is difficult to hide the
metadata about when a user is receiving data and from where. It is sufficient
enough to create a story just by using metadata. Officials at NSA have even
affirmed that "if you have enough metadata you don’t really need the content"
and that "we kill people based on metadata" [10].

The issue with user privacy does not end there after getting the consent of
collecting user data and begin the process of personalization. The real challenge
is to protect the user data from the external adversaries when the system gets
compromised or tempered. Privacy-preserving smart nudging is not only vital
to protect the user from this type of data catastrophes, but also essential to
increase the user base of such kind of systems. For both the sake of user’s
privacy and as system provider to avoid hefty fines from lawmakers [6]. The
reason why it’s so hard to achieve privacy under our threat model (§4.2) can
be illustrated with an example. Let’s assume Alice is going to be nudged about
her daily office commute. Collecting local bus schedule, local weather forecast,
and traffic data is enough to reveal her home and office location. By looking
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up locations, it is possible to identify Alice. Then the adversary can learn about
Alice’s behaviour and target her for ads/scams. It is even worse as some of the
public APIs for public transport data and weather data are not encrypted at
all, making correlation easier for an adversary. We are aiming to resolve the
privacy concerns of the user in the face of strong adversaries who can temper
with the network and take over the servers but one. There has been a lot of
work done to achieve privacy in IoT, messaging system, statistical data analysis
and so on but privacy in Green Transportation Choices with IoT and Smart
Nudging (SN) (§2.1.2) remained derelict.

This thesis’s security goals protect the users from not only the network ad-
versaries, but also the adversaries who compromise all the backend servers
but one. The focus of this thesis is to hide and protect the metadata when
client-side app communicates with backend servers. Client-side applications
are usually sandboxed. Meaning, they are run on individual security domain,
and privacy issues in client-side applications are beyond the scope of this thesis
[11]. The primary focus of this thesis is to protect identity information of a
user when the data leaves the client-side application and when the client-side
application receives the data.

1.2 Privacy in smart nudging

The concept of privacy-preserving smart nudging is nothing contemporary. It
has been discussed but rather broadly and partially by stating probable privacy-
preserving processing, client-side processing, obfuscation and anonymization,
and Secure Multi-party computation (SMC) [12] [7]. It tells us some of the
ways how we can achieve personalization while maintaining privacy. Encryp-
tion alone cannot hide the metadata, and it is essential to protect metadata
leakage as we have already discussed how dangerous metadata leakage can be.
Nevertheless, we lack a concrete nudging system architecture which addresses
all these mentioned privacy issues. As a result, privacy in the smart nudging
system has not been practiced yet. Thus, a more practical and efficient concrete
system architecture is needed to achieve privacy in smart nudging.

1.3 Research problem

The main objective of this thesis is to ensure user privacy while tailoring user-
specific nudge for Green Transportation Smart Nudging (SN) system using user
data which most of the time involves using private and sensitive user data (i.e.,
location, health and so on). This thesis addresses this objective by answering
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the following research questions.

Q1-

Q2 -

Q3 -

1.4

What are the privacy issues and research gaps in the current solution for a
privacy-preserving smart nudging system for Green Transportation Choices
with IoT and Smart Nudging (SN)? (Chapter 3)

This question is directed to find privacy issues, research gaps in user
privacy and identifies sensitive user-data in Green Transportation Choices
with IoT and Smart Nudging (SN). Latter also points out the user-privacy
vulnerabilities that the SN system has.

What are the technical requirements of a privacy-preserving smart nudging
system for Green Transportation Choices with IoT and Smart Nudging (SN)?
(Chapter 4)

Piling up a ton of privacy measures can easily make the system impracti-
cal since most of the measures are heavily dependent on computationally
expensive cryptography and obfuscation, which requires a lot of com-
puting power and bandwidth. This question aims to answer what are
the technical requirements to make the system private, yet keeping it
practical and usable in real-life.

How to implement and evaluate the privacy-preserving smart nudging
(PPSN) system that satisfies the identified requirements for Green Trans-
portation Choices with IoT and Smart Nudging (SN)? (Chapter 5 and
Chapter 6)

This thesis provides with PPSN system to fulfil the privacy need of the SN
system based on the identified requirements. As part of the requirement,
a concrete design and prototype implementation for the PPSN system is
also produced to answer this question. Finally, this thesis illustrates the
answer by evaluating and discussing the PPSN system.

Contribution

The contribution of this thesis is the Privacy-preserving smart nudging (PPSN)
system (§4.3) which is a middleware that improves user privacy and overall
system privacy for Smart Nudging system in the context of GDPR. The com-
munication, data storage technique and data processing technique of the SN
System are rethought to make it compatible with the proposed middleware
PPSN system producing SN backend. SN backend (§4.3.2) is typically the SN
system (§2.1.2), but with all the features that require to make it compatible
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with the PPSN system.

This thesis extensively studies GDPR and identifies the current privacy issue in
the SN system and addresses them in terms of GDPR. This thesis produces a
whole nudging system architecture that has GDPR compliance.

A working prototype of the PPSN system has been implemented using Node.js,
protocol buffers, c++ and ZeroMQ. The prototype includes the minimum
viable features to complete one round of secure end-to-end communication
that have been proposed in the PPSN system design.

Performance of the PPSN system has been evaluated quantitively in terms of
privacy, system resource utilization, and end-to-end latency. Subsequently, this
thesis reflects how it improves the privacy of the SN system (§2.1.2). Conse-
quently, this thesis produces a system that can hide user’s sensitive information,
hide end-to-end communication between users and the SN backend, and pro-
vides with safer data storage techniques in the SN backend that significantly
improves the privacy of the SN system.

1.5 Thesis outline
This section outlines the remainder of the thesis chapter by chapter.

Chapter 2 reflects the theoretical background of smart nudging, then discusses
the importance of privacy in the context of GDPR. It also presents the knowledge
base of cryptography and the methods to achieve privacy. Then the chapter out-
lines the implementation technologies that are used to develop the prototype.
Finally, the chapter concludes by discussing the related works.

Chapter 3 addresses the privacy issues in Smart Nudging system in the context
of GDPR. This chapter also criticizes the legacy Smart nudging architecture
in terms of user privacy. Lastly, it ends by discussing the dark side of smart
nudging.

Chapter 4, presents the design of the Privacy-preserving Smart Nudging (PPSN)
system—the main contribution of this thesis. It also discusses the presumed

adversary model and layouts the proposed PPSN system design.

Chapter 5 illustrates the implementation of the Privacy-preserving Smart Nudg-
ing (PPSN) system—a barebone prototype of the PPSN system.

Chapter 6, evaluates the Privacy-preserving Smart Nudging (PPSN) system
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and it’s barebone implementation. It outlines the methods of evaluation and
the experimental setup that is used throughout the tests. Then it evaluates
the PPSN system qualitatively and quantitively in term of user privacy. This
chapter then concludes by outlining the performance evaluation of the PPSN
system.

Chapter 7 contains the discussion of PPSN system performance, design choices,
prototype trade-offs, scalability and fault tolerance of the PPSN system. It also
argues the privacy achieved by the PPSN system. It also discusses the ideal
experimentation. Finally, this chapter concludes by asserting how this thesis
settles all the stated research problems.

Chapter 8 outlines the future research directions of the PPSN system.

Chapter 9 eventually concludes the thesis.



Theoretical background

This chapter illustrates the terminology, the important concepts and the theo-
retical backgrounds that has been used and have significance throughout this
thesis.

2.1 Smart nudging

We consider smart nudging as digital nudging matching the current situation of
the user. The whole point of a digital nudge is to inform and motivate the user
to choose the recommended activity or thing. The essence of digital nudging
is:

"subtle form of using design, information, and interactive elements
to guide user behaviour in digital environments, without restricting
the individual’s freedom of choice" [8].

Smart nudging and digital nudging are interchangable, where the guidance of
each user behavior is tailored to be relevant to the particular circumstances.
Through personalization and context-awareness, tailoring of smart nudges is
done where knowledge about the user and her situation is central. Before a
personalized nudge is designed, knowledge is collected from a wide range of
information, creating a user profile and analyzing information in the context
of the user. A tailored nudge is more likely to be successful than a non-tailored
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nudge as it has a higher probability of being accepted and followed by the
user [8]. Nudging people to a behavioral change is an illustration of moving
target. According to a nudging goal, the intention is to nudge people to behave
better. To tailor nudges, the user’s normal behavior and the behavior that
may change over time must be monitored to determine the difference in the
behavior. Nudging should adjust to target the next level of desired behavior
as the behavior changes. When nudging does not affect user behavior, it is
detected through monitoring, and the nudges need to be adapted. For instance,
changes in timing, aimed behavior, information supporting the nudge and/or
the presentation of the nudge are revised.

2.1.1 Data collection to provide nudge

In a complex environment, the recommendations are provided by combining
data from a wide range of sources, restoring the user profile to reflect the
user’s responses to nudging in a uniform manner, and tuning the nudges to
improve the likelihood of a positive user response. Back-end processing tasks are
known to perform simple data integration and analysis or more complex data
mining or machine learning based analysis. While some back-end processing
tasks have outcomes that are ready to be used to inform and nudge the user
directly, others create a pre-processed result that needs further processing at
the edge (for example at the user’s mobile device). Normally, it is evident that
the final processing of a nudge normally happens at the edge. It is because
the pre-processed data are combined with local, fresh, and possibly sensitive
and private data on the user’s smartphone, which include the user’s calendar,
current location, user profile, and recent preferences.

2.1.2 Green Transportation Choices with loT and Smart
Nudging (SN) [9]

Green Transportation with Choices with IoT and Smart Nudging (SN) is a
brilliant idea to solve urban traffic challenges by available traffic resource
utilization which helps to avoid expensive infrastructure and unpopular traffic
regulations and lesser usage of fossil fuel. The core of Green Transportation
Choices with IoT and Smart Nudging (SN) is dependent on nudging people
towards environment-friendly decisions. "Nudging" is used to reach a long-term
goal for the greater good of our society and the environment in a more subtle
way. Here the greater good is when we aim to solve a problem on a global scale
(e.g., climate changes, global warming, health problem) by addressing and
patching local problems (e.g., increased traffic, congestion, air and noise pollu-
tion) [13]. Extrapolating environment friendliness is a challenging task; to give
an idea about vehicle vs environment-friendliness, we can plot environment-
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Figure 2.1: Visualizing environment friendliness (EF) vs. different vehicle types[9].

friendliness on the y-axis and vehicle types on the x-axis—gives us a rough
visualization of EF by vehicle types listed on figure: 2.1 [14].

One could presume, when people are convinced and free to make their own
decisions, only the greater good is achievable for society. Employing coercion
and force will, on the contrary, only create chaos and disharmony. Hence, the
term nudging comes to dominate the core of SN to push people toward socially
desirable outcomes. The EF hierarchy of vehicle or the preferred transportation
choices is from walking, biking, taking public transportation, carpool or ride-
sharing, to our last choice in the hierarchy, which is the car. Thus, the goal of
SN is to find convincing and compelling nudges to persuade people to take the
transportations from the top of the EF hierarchy.

Constituting compelling and successful nudges is a difficult task. Nevertheless, it
is possible if we have enough data points by which we can tailor and personalize
nudges for a specific group of people or an individual. We are gathering the
data points primarily from information about transportation choices made
by users, current situation of traffic, weather, road conditions and more. The
recent expansion of IoT has been seen as an essential building block to facilitate
smart nudging for green transportation choices. [9]

In SN, smart nudging is presenting people with relevant transportation infor-
mation to their decision making (e.g., public transport routes and schedule,
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real-time traffic and air pollution condition). The point of presenting them
with concise contextual information is to make them choose more environ-
mentally friendly transportation ways. Smart nudging is not possible without
extensive knowledge of the user. In other words, smart nudging is a type of
nudge that has to match with the current situation of the user. Therefore, the
more nitty-gritty we know about the user, the more precisely we can nudge
them which most likely to be successful and encouraging them. The knowledge
base of the users is a continuous process which involves a wide range of data
collected from diverse sources (e.g., user’s device activity, weather info, the
current condition of biking trails, and more), then analysing the context of
the user and personalising the nudge. This thesis will take a close look at the
user knowledge base and data acquisition in SN architecture in term of user
privacy.

Smart nudging is a superset of the term "nudging" that has been first coined in
[15] defined as:

"... any aspect of the choice architecture that alters people’s be-
haviour in a predictable way without forbidding any options or
significantly changing their economic incentives"

Here, the choice of architecture is an environment in which individuals make
decisions. Besides, according to the author:

"...to count as a mere nudge, the intervention must be easy and
cheap to avoid. Nudges are not mandates. Putting the fruit at eye
level counts as a nudge. Banning junk food does not"

Nudges are not only beneficial for society but also beneficial for an individual’s
long term goals [15]. For SN it is encouraging people towards more environmen-
tally friendlier transportation decision. Smart nudging has all these properties
of a nudge and added contextual parameters in the system which most likely
makes it more successful. Both the smart nudging and digital nudging are
interchangeable, and it is referred to:

"... the use of user-interface design elements to guide people’s
behaviour in digital choice environments" [16]

The eminence of smart nudging is irrefutable when we take into account the
fact that the decisions people make are not only influenced by the mere fact
of the number of choices, but also how it is presented. Thus, the right set of
information for a given context comes to play in digital nudging. Collecting
user information and making a continuous knowledge base for a specific user
is collecting all the usage data of a digital entity that the user is using and
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interacting with (e.g., smartphones, wearables and more) [9]. Among many
other tools, four types of nudging tools have been identified (i.e., 1. Simpli-
fication and framing of information 2. Changes to the physical environment
3. Changes to the default policy, 4. Use of social norms), which is also rele-
vant for smart nudging and in the context of SN system [17]. Collecting too
much information and information overloading will not be helpful for decision
making arguments. Smart nudging will most likely be successful if we have
clear, concise and relevant information, which is directly related to the nudging
tools "Simplification and framing of information". Also, the smart nudging can
have a significant role in implementing the other tools of nudging "changes to
the default policy" and "use of social norms". This thesis does not provide any
further explanations on nudging tools. However, the idea was to give an insight
into how the smart nudging is futile without personalization and situational
awareness.

Personalization

Personalization is one of the essential building blocks of smart nudging. Pre-
sentation with tailored content and services to a specific individual based on
knowledge about their preferences and behaviour, is known as "personaliza-
tion" [18]. In SN, personalization plays a vital role in influencing people’s
transportation choices. This personalization or tailoring is extrapolated from
various sources of data including user behavioural data, user preference data,
traffic, public transportation, road conditions, environmental conditions, and
also information about transportation pattern of each user. The process of
personalization is also closely related to the user’s current transportation need.
As we know smart nudging is to convince people towards a greater good for
society, a generalisation of data and information overload will not be helpful
to convince an individual because different people have a different way of
thinking and different preference. Personalization also assists people to make
up their mind easily with less effort—has become a valuable tool in searching,
filtering, and selecting information of interest.

Situational awareness

Knowing the current ambience and act on it accordingly for a specific user, is
"situational awareness". It is the second important building blocks of smart
nudging. Situational awareness is the knowledge of the ambience where the
user is and will be. Situational awareness plays an important role to make a
nudge more likely to be successful. Situational awareness comes from a wide
range of data points from the context of the user. Most of this information
is publicly available and loosely related to a specific user. Meaning, most of
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Dimension Description

Gender, age, nationality and preferred lan-
Personal data & y P

guage
Cognitive style The way in which the user process information

. . May be used to personalise presentation of in-

Device information .

formation

The physical environment where the user pro-

Context . .
cesses information
History The user’s past interactions
Behaviour The user’s behaviour pattern
Interests Topics the user is interested in
Intention/ Goal Intention, goals or purposes of the user
. . The user’s knowledge on interacting with the
Interaction experience
system
Domain knowledge The user’s knowledge of a particular topic

Table 2.1: User profile dimensions in Smart Nudging[9]

this data is accounted for a substantial group of people. Information that is
related to situational awareness can only be harnessed by sensing, analysing,
monitoring, aggregating and predicting from the context of the user.

This kind of data is more available than ever before and easier to monitor,
aggregate and predict, regardless of their format. According to SN, among
many other data points of situational awareness, we can also monitor, predict
and aggregate:

* car traffic in cities and on highways, relevant to services offering traffic-
routing advice,

* the flow of vehicular traffic, including average speed and numbers of
cars,

* levels of air pollution including carbon monoxide, nitrogen oxides, par-
ticulate,

* matter and hydrocarbons,

* used capacity of public transportation,

* the status of footpaths and bicycle paths, and

» weather information that influences transportation choices.

2.1.3 SN architecture

In this section, the legacy SN system architecture will be outlined.
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Data Examples

Historical sensor data (weather / pollution); congestion
Historical history and traffic flow; successful and unsuccessful user
travel experiences; past events

Current sensor data (e.g. weather / pollution); road, foot-
Current path and ski-track conditions; current pollution levels; cur-
rent traffic conditions; current location of expected bus
User’s calendar events; bus and train schedules; planned
Plans infrastructure maintenance; holidays / recreation days;
festivals / events influencing transportation infrastructure
The weather the rest of the day; predicted pollution levels
Predictions | during the day; the deviation from the schedule of a bus
leaving a nearby bus stop

Table 2.2: Examples of historical data, current data, plans and predictions[9]

SN proposes a somewhat flexible system architecture with a handful of options.
However, SN outlined some fundamental building blocks of the SN architecture.
According to SN, IoT based smart nudging architecture has three major com-
ponents: Sense, Analyse, and Inform and Nudge (Figure: 2.2). Finally, these
three components will be responsible for the below services:

1. data collection using sensors, crowdsensing, third-party data sources,
and crowdsourcing,

2. an analysis that transforms raw data into information, and

3. outreach to the public/user through information and nudging services.

[9]

In [9], the SN architecture is outlined and reviewed based on a set of require-
ments for IoT architecture discussed in [19]. In [20], an architectural approach
suggested taking advantage of both the static and dynamic data and support
for the actuator interface. The combination of historical data (static data),
current data (dynamic data), plans (static data), and predictions (dynamic
data) are analysed and used to encourage to change user behaviour through
an actuator interface.

SN system also outlines how fog-computing can resolve latency, network band-
width and access to sensitive private data issues. However, due to weak global
knowledge, weak edge nodes and unpredictability of mobile and dynamic en-
vironments, fog-computing cannot be the only solution [21]. SN addressed this
issue by proposing distributed publish-subscribe, which can be regarded as
unifying cloud and fog-computing which supports partial or a hybrid approach
of edge and back-end processing. Data collection and global knowledge build
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Analyze

Inform
and Nudge

Figure 2.2: Smart Nudging publish-subscribe architecture with the modules Sense,
Analyse, and Inform and Nudge[9].

up happens in both back-end and on the edge.

To combine different services from different end-points, [oT based smart nudg-
ing architecture uses a publish-subscribe server-client architecture. Thus, the
data collection service in the "sense" components can be subscribed to and
used by multiple services in the "Analyse component". Similarly, Inform and
Nudge component will be able to subscribe and use multiple services provided
by Analyse component’s filtering services. Depending on the situation, two
or more Inform and Nudge component can combine and process raw data
differently with the help of different data analysis tools. All types of real-time
data, data from user’s smartphones, data from external services (e.g., weather
data, public transport API), and other types of data from heterogeneous IoT
sources are considered in sense component.

Inform and nudge basically sends the nudge directly to the user’s smartphones.
Inform and nudge can also be sent to a public display to nudge a group of
people in a bigger area [9].
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2.2 Defining privacy and security

This section outlines the definition of privacy and security for different data
stakeholders (i.e., users, applications ) and methods to achieve privacy and
security in a digital application. This section also elaborates on the relationship
between privacy concerns and an individual’s decision to release or not to
release personal information, and illustrates the GDPR and how it shapes
today’s information privacy.

2.2.1 Importance of privacy and security

Privacy is a broad concept, and there is a lack of consensus about the definition
of privacy. Fundamentally, it refers to an individual or a group’s ability to
seclude themselves or information about themselves and express themselves
selectively. Security is the concept of the appropriate use of data and the
protection of information from being misused. Thus, the domain of privacy
partially overlaps with security [22, 23].

For personal benefit, a person may want to provide information voluntarily by
trusting the data custodian—expecting that there will not be any harm and
misuse of the provided data. Despite the good intentions of the data custodian,
data might get stolen or misused, leading to identity theft. "Nothing to hide
argument” does not hold up quite well when the data gets into the wrong
hands and being misused thereby [24].

In a nutshell, privacy is the freedom from unauthorized intrusion and protection
from the use of someone’s information, which can negatively impact someone’s
life. Most people are happy to give up their data for the greater good for
themselves and society. It is not considered as privacy violation as long as the
data is not misused. However, once information is released, it may be impossible
to prevent misuse without proper measures [25]. Repeated information leaks
may cause distrust among information systems users, and they will highly
unlikely to provide information since data security is vulnerable. Therefore, it
is clear that privacy is essential for several reasons [22].

This thesis focuses on the technical aspects of user information privacy and
ways to disguise the data and metadata from adversaries and protect the
user information thereby. In essence, this thesis will discuss the techniques
of protecting user’s metadata and content while using the data for the Green
Transportation Smart Nudging (SN) System.
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Personal Data
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Figure 2.3: GDPR defines personal data is any information that is related to an identi-
fied or identifiable natural person.

2.2.2 General Data Protection Regulation (GDPR) [6, 26]

GDPR is an important part of the legal framework for the protection of per-
sonal data. Article 1 (2) points out that GDPR protects fundamental rights
and freedoms of natural persons and in particular their right to the protection
of personal data. Furthermore, the preamble recital 1 highlights that the pro-
tection of natural persons in relation to the processing of personal data is a
fundamental right. Article 8 (1) of the charter of fundamental rights of the
European Union (the “Charter”) and article 16 (1) of the treaty on the func-
tioning of the European Union (“TFEU”) provide that everyone has the right
to the protection of personal data concerning him or her. Unlike the Charter
and TFEU, which are general in form, GDPR lays down specific rights for EU
citizens in relation to the processing of personal data and also implements
enforceable obligations for data custodians.

In order to run operations on EU resident’s data, data custodians must comply
with GDPR. GDPR shook the data custodians both locally and internationally
since this data protection law covers all the EU citizens. Failure to comply can
result in significant amount of penalties up to €20 million or 4% of annual
global turnover, which ever is greater [6]. The advent of this law enabled EU
citizens to have more control over how their information is being collected
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and processed. GDPR harmonizes the personal data protection in EU, which
means that data custodians who are operating in several countries within the
EU, only have to comply with one regulation. GDPR tells us what needs to be
protected and how to protect it. It does not cover the technicality of how to
achieve the level of privacy for the data custodian.

Data that considered as personal under GDPR

The material scope of GDPR is laid down in article 2 (1)-(4), cf. article 4 (1).
According to article 2 (1), GDPR applies to "the processing of personal data
wholly or partly by automated means and to the processing other than by
automated means of personal data which form part of a filing system or are
intended to form part of a filing system". In other words, GDPR applies to both
automated and manual data processing.

It is also vital to know which information are considered "personal data".
According to article 4 (1), "personal data" means "any information relating to
an identified or identifiable natural person [...] in particular by reference to an
identifier such as a name, an identification number, location data, an online
identifier or to one or more factors specific to the physical, physiological, genetic,
mental, economic, cultural or social identity of that natural person". Figure 2.3
depicts some of the type of data that are considered as personal under GDPR.
Proper identification of personal data not only makes the process of preserving
privacy relatively easier, but also makes it easy to identify appropriate technical
methods to achieve privacy.

GDPR's six data processing principles

Article 5 (1) lays down six general principles related to the processing of per-
sonal data. Data processors perform all the data processing on behalf of data
controllers, determining the purpose and means of the data processing. Accord-
ing to article 5 (2), the controller is responsible for demonstrating compliance
with these six data processing principles. Personal data must be:

Processed legally, fairly, and transparently.
Collected for explicit and legitimate purposes.
Relevant, and limited to what is necessary.
Accurate and up to date where necessary.
Retained as long as it is necessary.

Processed appropriately to maintain security.

XA A R i
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The six lawful grounds for processing the information

According to article 6 (1), there are six lawful grounds for processing personal
information. Personal data can only be processed if at least one of the following
applies:

If the necessary consent from the data subject is received.
If it is necessary to meet contractual obligations.

To comply with the legal requirements.

To protect the data subject’s interests.

For tasks in the public interest.

For the legitimate interests of the data custodian.

QU kW

Consent is arguably the weakest lawful ground for data processing since it can
be withdrawn at any time. The consent can be withdrawn via any medium.
Upon the withdrawal of the approval, the individual’s data must be erased from
the data custodian’s system, unless there is a lawful ground to retain it. Legiti-
mate interest is the most flexible of the six lawful grounds of processing data.
It could theoretically apply to any processing carried out for any reasonable
purpose, sustaining data subject’s rights and freedoms. An data custodian must
record the processing activity regardless of the lawful ground for processing
the data. It is also necessary to give the data subject privacy notices as part
of their right to be notified when their personal data is acquired actively or
passively.

Data subjects rights

Along with the right to be informed, data subjects have other rights that the
data controller needs to facilitate. Data subject’s rights:

* The right to be informed (article 13 and 14)

* The right of access (article 15)

* The right to rectification (article 16)

* The right of erasure (article 17)

* The right to restrict processing (article 18)

* The right to data portability (article 20)

* The right to object (article 21)

* The right in relation to automated decision making and profiling (article
22)
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Technical and organisational measures to protect personal data

As already mentioned in §2.2.2, article 5 (1) (f) demands that data is processed
in a manner that ensures appropriate security of the personal data, including
protection against unauthorised or unlawful processing and against acciden-
tal loss, destruction or damage, using appropriate technical or organisational
measures.

According to article 33 (1), data processors must report all breaches and leakage
of personal data to the data controllers. Data controllers are required to
report to the Information Commissioner’s Office within 72 hours after their
discovery.

Any potential risk that can hamper data subject’s rights and freedoms, should
be informed directly to the data subject without undue delay, according to
article 33 (2). However, as outlined in article 34 (3) (a), if the data is anonymized
or encrypted to the degree that it is no longer possible to identify the data
subject, communication to the data subject is not required.

SN (§2.1.2) is a data-driven system for positively pushing people’s behavior for
the greater good of the environment in a non-coercive fashion; compliance
with GDPR is thus a prerequisite. This thesis will not detail GDPR any further;
rather, this thesis has discussed the relevant laws and regulations of GDPR for
SN that needs to be complied with and will in the continuation focus on the
technical methods to achieve that compliance.

2.3 Cryptography and methods to achieve
privacy

This section is all about cryptography and the methods to achieve information
privacy. These methods are useful for hiding content, concealing metadata,
data masking, and data mining without revealing specific data to third parties
called adversaries.

2.3.1 Cryptography

Cryptography involves the practice and study of secure communication tech-
niques (e.g., encryption, decryption) in the presence of adversaries [27]. In
other words, cryptography is the construction and analysis of protocols and
rules that prevent third parties or the public from reading sensitive information.
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Modern cryptography focuses on the numerous aspects of information security,
such as data confidentiality, data integrity, authentication, and non-repudiation.
The junction of mathematics, computer science, electrical engineering, com-
munication science, and physics forms the state-of-the-art cryptography. In
today’s cyber world, cryptography applications are everywhere. Some of the
applications are e-commerce, chip-based payment cards, digital currencies,
computer passwords, and military communications, or anywhere the privacy
is crucial.

Unlike modern cryptography, previously, the term encryption and cryptography
were interchangeable, making information obscure and hard to read for the
unintended recipients. It is necessary to share a decoding technique with the
intended recipients, to make them read the original message/information. The
use of cryptography ramped up with the advent of rotor cipher machines in
World War I, and it got unarguably complex when it met computers in World
War II. With the increase of computing power, cryptographic applications have
become more ubiquitous, and its techniques become significantly complicated.
Today it is unthinkable to have an application in production that does not use
any cryptography. Mathematical theory and computer science are the bases of
state-of-the-art cryptography. Cryptographic algorithms are outlined around
computational hardness assumptions, making such algorithms hard to break in
any adversary practice. Theoretically, it is possible to break such a system, but
it infeasible to crack by any known practical means. Therefore, in cryptography;,
"secure" means it is "computationally secure", meaning these schemes provably
cannot break with current computing technology. However, some schemes and
algorithms are difficult to be broken even with quantum computing power but
these schemes and algorithms are mostly impractical to use in practice due to
their complexity and computational cost (e.g., one-time-pad [28]).

How cryptography works

First of all, it starts with secrets. Secrets are an essential part of practical cryp-
tography. Cryptography without a secret is pointless or overkill of computing
power. In ancient cryptography, they used secret methods, which means know-
ing how to go from cipher text to plain text and vice versa. For this scheme,
we need to know the method that is the secret part. Cipher text (i.e., the text
with maximum entropy which makes no sense to adversaries) back to the plain
text, which is the secret. Entropy is a lack of predictability or a gradual decline
into disorder where real-world data has a predictable pattern. Removing pat-
tern and achieving maximum entropy is the primary goal of a cryptographic
scheme.

Secrets in modern cryptography are done in the form of keys. Cryptographic
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algorithms require those keys to convert cypher-text (i.e., apparent nonsense
information with higher entropy) into plain text (i.e., readable information).
Whoever has the key or a set of keys with the specific algorithm’s exposure can
read the original information. Not to mention, generating and exchanging keys
is tricky business and vulnerable. In modern cryptography, the most challenging
part is the key-exchange between intended parties. One of the popular and
widely used key-exchange techniques is the Diffi-Hellman key exchange.

Potential attacks and work around

Cryptography is impenetrable when it obscures data so that it is hard and
computationally expensive to duplicate or reverse. Entropy and computation
together are the key concepts to achieve theoretically good (i.e., requires mas-
sive computing power to break within a reasonable time) cryptography.

Two common ways to break the encryption is Pattern analysis and Brute-force
technique. Crypt analysis is the term taking some information about the raw
subject, which is useful for reducing the time of brute-force attacks. If we can
determine patterns, then it is just plain old hit and tries. In a bruit-force attack
for a known pattern, an attacker first learns the pattern and generates a set
of all possible values. Then keep trying to decrypt by key in the values in
the algorithm until it succeeds or runs out of possible values. For this simple
attack cipher-text, the pattern of the key, and the cryptographic scheme is
known.

Iterations and adding salts are very useful for encrypting and hiding the same
data over the system, which is commonly used in password hashing. For exam-
ple, the MDs hashing algorithm is widely used to store sensitive information,
which takes a string of any length and encodes it into a 128-bit fingerprint
[20]. It is a one-way transaction meaning it is almost impossible to reverse
engineer to its original value. However, encoding the same string using the
MDs algorithm will always result in the same 128-bit hash output. The 128-bit
hash output of the string ”12345” is "827ccbOeea8a706c¢4c34a1689184e7b”.
If an adversary gains access in a password database, he will be able to identify
the common passwords using known hashes. Moreover, an adversary can also
tell which passwords in the systems are similar.

To work around this vulnerability, we can use a random number of iterations
to hash over hashing output repeatedly or adding a random string (i.e., salt) to
the original string and then hash it to achieve entropy throughout the system.
A simple algorithm that adds salts and random iteration while hashing the
original string makes it hard for an adversary to steal passwords that are
hashed with the MDs5 hashing algorithm, as all the hashing output will be
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unique. Similar hashes can occur, yet it will not be as useful as before, as the
hash string points to different original strings.

Based on Mor’s law [30], the hammer is getting stronger with computing
power and parallel algorithms. With distributed computing, it is getting easier
to perform brute-force attacks than ever before. GPUs are very good at math to
crack encryptions as well. There is another term called quantum secure which
makes encryption safe in terms of current quantum computing.

There are ways to fight a substantial power. Algorithm complexity plays a vital
role here. Cryptography and encryption is a continuously evolving process,
and keeping up to date with new crypto techniques are vital. For example, ten
years ago, Triple DES was safe. Now it is entirely terrible, and AES is the new
standard. Large public/private keys are also beneficial. Specifically large prime
numbers for asymmetric encryption.

2.3.2 Encryption

Encryption is a process of converting original representation of the information
into an alternative form known as ciphertext [31]. This encrypted information
is only readable for authorized users with the specific key or method that
used to encrypt the original data [31]. Although encryption cannot prevent
inference, it makes the content incomprehensible to an adversary. Generally, an
algorithm generates a secret in the form of a pseudo-random! encryption key
for an encryption scheme to encrypt and decrypt. Theoretically, it is possible
to decrypt the data without the key. However, for a well-designed scheme
and a reasonable length key, the required time to decrypt without the key is
impractical as it may take hundreds of years to decrypt with current computing
power. Modern state-of-the-art encryption schemes utilize the concept of public-
key encryption and symmetric-key encryption [32]. These encryption methods
ensure security as the computing power is insufficient to crack the encryption
within a reasonable amount of time.

1. For specific given information, a pseudo-random process produces predictable outcomes,
which is typically difficult to acquire without that piece of information.
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Symmetric encryption

Symmetric-key algorithms? are encryptions algorithms that use the same key
for encryption (i.e., generating ciphertext) and decryption (i.e., converting
ciphertext to plaintext) [33]. Here the key is the identical secret that is shared
between the authorized parties. With the presence of adversaries in an insecure
channel of communication, it is quite challenging to exchange keys between the
authorized parties in comparison to public-key encryption [34]. However, with
the help of a key-exchanging algorithm (i.e., Diffie-Hellman key exchange),
it is possible to exchange keys securely and take advantage of symmetric-key
algorithms’ faster operation comparative to public-key encryption [35].

Asymmetric encryption

It is no surprise that asymmetric cryptography is the opposite of symmetric-key
cryptography. In this scheme, the keys come with a pair; public-key and private-
key. Public-keys can be disseminated widely, and private-key is kept secret for
owners only to decipher the encrypted information. A one-way mathematical
function (i.e., multiplication of even prime factors) is constructed that is not
straightforward to solve without knowing a part of the solution. This scheme
is only effective when the private-key for a specific entity is reserved, meaning
keeping the private-key private; the public-key, on the other hand, can be
distributed without compromising the security. Any person who has the re-
ceiver’s public-key can encrypt information with the receiver’s public-key. That
encrypted message can only be decrypted using that specific receiver’s private-
key. Asymmetric encryption performance is almost similar to the symmetric-key
schemes, except it takes longer to decrypt the encrypted information for the
public-key scheme than a symmetric-key scheme. [35]

2.3.3 The RSA algorithm [36]

RSA is one of the widely used public-key cryptography scheme named after
the authors’ Rivest-Shamir-Adleman’ of the paper "A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems" [36]. This asymmetric-key
cryptography uses a pair of a key to complete the whole process of information
encryption and decryption. The key which is used to encrypt (i.e., public-
key) will not be able to decrypt that information; instead, it is related to the

2. Symmetric-key encryption algorithms are also known as secret-key, single-key, shared-key,
one-key, and private-key encryption algorithms. Likewise, asymmetric-key cryptography
(i.e., public-key cryptography) uses the term secret-key and private-key, which can cause
ambiguity between the two different encryption schemes, symmetric-key encryption, and
asymmetric-key encryption algorithms.
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Figure 2.4: Encryption and Decryption process in an RSA algorithm.

decryption key (i.e., private-key) mathematically. Figure:2.4 shows a generic
encryption and decryption process flow of an RSA algorithm. The key which is
used to encrypt the data is publicly available, and anyone will be able to access
it, hence the word "Public-key"—publicly available key. In this cryptographic
algorithm, it is essential to keep private-key private to retain the integrity of
the system. The RSA algorithm and all other public-key cryptosystem treat
information like numbers and perform mathematical operations on them. [35]
Figure:2.5 shows a superficial overview of how different type of data gets
encrypted with this scheme. (e.g., encrypting a text "GOAL" will first convert
into corresponding ASCII codes and then numbers. After the conversion, we
plug the number in a one-way function which produces another vague number
that converts into byte code and then lastly into ASCII). [35]

A modulus and a public exponent formes a public-key in RSA where the same
modulus is also used with a private exponent to generate a private key—makes
both the public and private key mathematically intertwined. The modulus
is formed by the resultant multiplication of two considerably large prime
numbers. In the cryptographic terminology, these numbers are often given
romantic names n, e and d where n is the modulus, e is the public exponent
and d is the private exponent. The prime numbers that formes the modulus, n
is often denoted by p and q. [35]

Generating RSA key pair (i.e., private key and public key) requires a program
to decide on a public exponent, e which then can be used to determine the
two compatible large prime numbers, p and g for that public exponent, e.
Subsequently, from compatible prime numbers p and q we can derive the
modulus, n. Later, from that same p, q and public exponent, e, we can compute
the private exponent d. Then the onetime function is achieved by destroying



2.3 / cryptography and methods to achieve privacy 25

Four letters -> Goal

}
&>

ASCIl -> 0x47 0x6F 0x61 0x6C

|

+[=
X |+

A number->1,198,481,772

The RSA algorithm

|

+]-
X

A number ->2,652,352,547

!
>

Four bytes -> 0X9E 0x17 0xBO 0x23

|

ASCll -> RT[)#

Figure 2.5: Overview of the RSA algorithm shows that the RSA algorithm is an algo-
rithm which takes numbers and returns numbers (i.e, All data is treated
as some kind of number representation of that specific data in order to
work with the RSA algorithm)[35].
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the compatible prime numbers p and q. [37, 35]

Fundamentally the critical components of the RSA algorithm are large prime
numbers (i.e., p and q) and an onetime function (i.e., n = p X q). As easy as it
sounds, yet it is too complicated that the oneway function is a multiplication.
Multiplication is itself not an oneway function unless we do not know what
to divide it by. The intricacy comes from when an attacker is given solely
with a result to trace back the original two numbers that participated in
that multiplication—known as factoring problem. Mathematically, factoring
problem is found to be difficult depending upon how enormous is the resultant
of a multiplication. In other words, the difficulty of factoring problem increases
with the length of the multiplication product (e.g., factoring 35 = 7 X 5 is
way easier than factoring 893 = 19 X 47, assuming that we do not know the
multiplicand and the multiplier, and the factoring difficulty continues with the
increase of the length of the product). [35]

Breaking the RSA encryption

From figure 2.6, we see that Eve needs to derive Bob’s private key in order
to get the key, Dy for decrypting the gibberish data D’ into some meaningful
information, D. If Eve wants to derive Bob’s private key, By, to get the
symmetric key Dy to decypher the ciphertext D’ then all she needs to derive is
n and d. Since, the public key is public and she has access to it, she technically
knows n as it is the part of the public key Bp,;,. To break the security, all she
needs to do is to derive the private exponent, d. Mathematically, d is the inverse
of e mod ¢(n). Considering, Eve already knows the public exponent, e; now
the problem is narrowed down to finding ¢(n) and perform a modular inverse
function which made easier by "extended euclidean algorithm" [38]. Since,
n is a product of two prime numbers, Euler’s phi-function can be written as,
¢(n) = (p—1)(qg—1). As a result, the problem of deriving d is narrowed down
to finding p and q. As n = p X g, factoring n will lead Eve to derive the d.
However, factoring itself a hard problem which is the foundation of the RSA
algorithm. Generally, the length of RSA key is 1024bit or 2048bit long. Which
means our p and q is respectively 512bit or 1024bit long. As of 2020 no one
able to broke 1024bit or 2048bit RSA key within a reasonable time. Breaking
1024bit RSA key is bruit-forcing on values of 512bit since n = p X q. Since p and
q both are prime numbers which make p and q odd numbers. Therefore, the
least significant bit is set. The most significant bit is also set since the number
is 512 bit long. However, knowing 2 bits and bruit-forcing on 510bits is not any

good. [35, 39]
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2.3.4 Advanced Encryption Standard (AES) [40]

Advanced Encryption Standard (AES) is a symmetric encryption scheme that
is selected and established in 2001 by the U.S. National Institute of Standards
and Technology (NIST). AES encryption scheme is derived from Rijndael block
cypher and submitted initially to NIST for AES selection process by Vincent
Rijmen and Joan Daemen. The proposal contained a different size of blocks
and keys later 128-bit block size and three different key sizes (i.e., 128, 192
and 256 bits) were standardized. AES now used worldwide as a standard of
symmetric encryption scheme which supersedes the Data Encryption Standard
(DES).

Advanced Encryption Standard (AES) is a symmetric encryption scheme that
is selected and established in 2001 by the U.S. National Institute of Standards
and Technology (NIST). AES encryption scheme is derived from Rijndael block
cypher and submitted initially to NIST for AES selection process by Vincent
Rijmen and Joan Daemen. The proposal contained a different size of blocks
and keys later 128-bit block size and three different key sizes (i.e., 128, 192
and 256 bits) were standardized. AES now used worldwide as a standard of
symmetric encryption scheme which supersedes the Data Encryption Standard
(DES).

A design principle substitution—permutation network is the basis of AES which
efficient for both software and hardware. AES uses a block size of 128-bits
represented in a two-dimensional array, and calculations are performed in a
particular finite field. The number of transformation rounds (e.g., 14 rounds
for 256-bit keys) is determined by the key size that is used to convert the input,
plaintext into the output, ciphertext.

Each round has certain processing steps to complete the encryption, and a set
of reverse steps are performed to convert the cypher text back into the original
meaningful text. The whole process of AES-256bit is as follows:

KeyExpansion

Round key addition
Rounds

Final round or 14th round

W

KeyExpansion. AES key scheduler derives a round key from the cypher key.
As stated earlier, AES uses a 128-bit round key block to perform each round of
operations.
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Round key addition. Bitwise XOR is used to combine the state with a byte
of the round key.

Rounds (e.g., 13 rounds for 256-bit AES). For each round, it goes through
four steps, and it is as follows: SubBytes—replaces each byte with another
according to a lookup table. ShiftRows—performs the transposition step to
shift the last three rows cyclically with a certain number of steps. Mixcolumns—
mixes four bytes in each column. Finally, it goes to the previous step, round
key addition until the final round.

Final round (e.g., 14" round for 256-bit AES). Likewise, the final round
goes through all the steps stated in the process rounds, but it does not mix the
column

Breaking the AES encryption

AES is prone to several attacks like brute-force attack, XSL attack, side-channel
attacks, key-recovery attacks and many more. However, at the time of writing
this thesis, if implemented correctly, there are no practical attacks against
AES without the knowledge of the key to reading the data encrypted by AES.
For example, depending on the computing power, a conventional computer
would need about 2,117.8 trillion years to break the AES encryption without the
knowledge of the key—making it one of the most secure encryption algorithms
yet practical and feasible.

2.3.5 Digital envelope

Digital envelopes are a hybrid version of both the public key encryption and the
private key encryption. The concept of encrypting large dataset (i.e., Megabytes
of content) with symmetric key encryption and encrypting that symmetric key
with a public-key algorithm to transfer the data through an insecure channel is
known as Digital Enveloping. Fig:2.6 shows how digital envelope works. Let us
consider a scenario where Alice wants to send some data D (e.g., ~5 Megabytes)
to Bob securely and Eve is trying to eavesdrop them. First, Alice will encrypt
the data D (the content) with a symmetric-key Dy and produce cyphertext D’.
Then, Alice will acquire Bob’s public-key B,,;, from Bob and encrypt the key
Dy with B, and produce cyphertext D,’C. Now, Alice is technically ready to
transfer the data through an unsafe channel to Bob. As Eve aims to read the
content, cyphertext D’ does not make any sense to Eve. In order to read the
content as D, she needs to get the original key Dy to decrypt D’. Unfortunately
for Eve the symmetric-key D is encrypted as D; with By, which is the public
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Insecure Channel

Figure 2.6: Secure data transmission through insecure channel by using digital enve-
lope.

key of Bob. Now, Eve needs Bob’s private key B,;, or Break the public-key
encryption by guessing the other prime multiple. For a reasonable length key
(i.e., RSA-2048bit key) it would take ~300 trillion years to get Dy for a classical
computer [39]. Which technically gives the content D ~3o0o0 trillion years of
security since the length of the symmetric Dy is 128 bit. For a Bruitforce attack
on 128bit key, it would take 146 trillion years to try only 1% of the keyspace
[35]. On average it takes 50% key trial to break a 128bits symmetric encryption
which requires even more time to crack, ~800o0 trillion years [35].

The digital envelope does not increase the level of security; instead, it is
capped towards security level of public encryption. However, with the digital
envelope, the goal is not to achieve a higher level of security but performance.
The time complexity of encryption and decryption for public-key encryption
algorithms increases drastically with the size of data. For example, RC4, one
of the fastest symmetric algorithms, will encrypt data 700 times faster than
the rate of RSA-1024bit (the most commonly used RSA). Depending on the
platform, the throughput of the symmetric algorithms can reach the speeds of
10 Megabyte, 20 Megabyte, 50 Megabyte per second [35]. On the other hand,
the public-key algorithms can reach up to the speed of only 20 kilobytes to
200 kilobytes per seconds depending on the platform [35]. Therefore, if we
encrypt the ~5Megabytes of content data with 128 bit symmetric-key and then



30 chapter 2 / theoretical background

Probability
= =
o o
T T

Q
~
T

o
N
T

Message-box access

Figure 2.7: Probability distribution of message-box access after adding noise shows
us that adversary is having a hard time predicting a situation (equation
2.2) (This plot uses Laplace’s double exponential probability distribution
(equation 2.1).

encrypt 128bit key with RSA-1024, the approximate total time would be ~100
milliseconds. In contrast, if we use RSA-1024 for ~5Megabytes of content data
encryption then we would have ended up with the approximate total time ~25
seconds.

2.3.6 Differential privacy [41]

Differential privacy is a method of achieving privacy in publicly shared data—
describing patterns within the group while hiding individual dataset. In other
words, it is an algorithm which is used to publish aggregate information about
statistical information that limits the disclosure of private individual data.
Differential algorithms are widely used in government agencies to publish
demographic data and keeping private information private. Since cryptogra-
pher also developed this technique of achieving privacy, it is no surprise that it
borrows much of its language from cryptography. [42, 43]

A concept of e-differential privacy —a mathematical definition for a privacy loss
from a statistical database—was inaugurated by the 2006 Dwork, McSherry,
Nissim and Smith article. In that article, the main inspiration was to achieve a
level of privacy for data contributors (i.e., individual user) as such the statistical
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result remains unchanged even if their data is removed [44]. In other words,
the statical function should not be overly reliant on specific individual data. To
achieve such level of privacy noise—fake data— is added to the original data
in such a way that if an individual is removed, it will not affect the aggregated
result. The amount of noise needed to hide a number of variables is depends
on how much an individual contributes to a result of the data set concerning
how much people’s data are involved in that result of the data set. The fewer
the number of contributors makes up the query, the more noise is needed to
achieve the same level of privacy. Therefore, the amount of noise is inversely
proportional to a number of contributors in a query. The term "noise" in the
differential privacy is based on the Laplace noise (Laplace distribution equation
2.1) [45].

1 —
f(X|,U,b)=ﬂexp(—|xbu|) (2.1)
Here, the location parameter is p and the diversity parameter is b where
b>0

In this thesis, a weaker form of differential privacy will be used—which does
not involve any noise calibration that we have discussed earlier. Metadata that
reveals who is communicating to a system (e.g., who is receiving nudges from
SN and when) can be hidden by making the probability of an entity receives a
message, and it does not receive a message roughly equal.

Let, i be a random observation and € be a positive real number then the
differential privacy can be formulated as follows:

Pr[i| Alice received a nudge] < e X Pr|[i| Alice did not receive a nudge]
Pr[i| Alice received a nudge] ~ Pr|[i | Alice did not receive a nudge]

(2.2)

Where,0 < e <1

In this epsilon-delta differential privacy when the € = 1 the system has, its
maximum differential security level. Likewise, the privacy degrades when €
reaches towards 0.

As stated above, according to differential privacy, probability of having made
this observation i, given that Alice did receive a nudge through smart nudging
system, should be roughly equal to the probability of having made the same
observation given Alice did not receive the nudge from smart nudging system.
In other words, the adversary can see this observation, and it should not be
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Figure 2.8: Probability distribution of message-box access before adding noise—makes
it easy for an adversary to tell which situation a user/variable is currently
in.

able to tell which world a user is currently in—whether Alice getting the nudge
or not.

In figure 2.8, the probability distribution shows how the data is easily distin-
guishable without any noise. In the figure 2.7, the probability distribution shows
how negligible is the probability distribution shift—providing better privacy
by adding noise. Therefore, an adversary finds it more hard to predict what
happened throughout the system.

2.3.7 Mix-net

The concept of "Mix network" (mix-net) first appeared in an article published in
1981 by David Chaum? [47]. The core idea of a mix-net is to make an end-to-end
communication that is hard to trace. It uses a chain of "proxy servers" to mix
and obfuscate the source and destination. Senders send messages to the mix
(i.e., collection of proxy servers) then the mix shuffles the messages and sends
back out in random order to another mix node until the message reaches the
final destination. This mixing creates anonymity between the actual source
and destination by breaking the link between the sender and the receiver. Thus,
adversaries and eavesdroppers find it hard to trace end-to-end communications.

3. David Lee Chaum (born 1955)—an American computer scientist and cryptographer [46]
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Figure 2.9: An overview of a mix network where the links between senders and
addressees are broken.

Moreover, one of the core design principles of a mix-net is that it knows only
about the previous node (i.e., from where it received the message from) and
the immediate destination (i.e., the destination to send the shuffled messages
to), which makes it immune to malicious mix nodes. Hence, limiting the overall
knowledge for each node which is a crucial aspect of mix-net to preserve privacy.

[48, 49]

Message encryption and decryption in mix-net are based on public-key cryptog-
raphy discussed in §2.3.2. The final encrypted message in a mix-net is like an
onion with the message in the innermost layer. Each node in the mix-net strips
off its own layer of encryption and expose the next destination, and the journey
of that message continues through the mix-net until it reaches its destination.
Even if all the nodes are compromised, but one; can still provide untraceabil-
ity of the message’s original source and destination against weak adversaries.
There are several applications based on this concept, including onion routing,
garlic routing, and key-based routing (e.g., Tor, I2P, and Freenet) [5o0, 51, 52].
This thesis will take advantage of mix-net’s streamlined architecture to achieve
privacy preserved end-to-end communication in smart nudging system. The
later sections will outline the schematics, message format and vulnerabilities
of mix-net.

Mix-net schematics

Figure 2.9, depicts a simple overview of mix-net, where N number of senders
send messages to M number of addressees via mix-network. Here, the mix
network mediates and forward the messages until it reaches the originated
destination—breaking the link between Senders and Addressees. Thus, the
source and destination have no idea about who was the message originator.
In the mix-net, message orders are usually shuffled and sometimes delayed
(e.g., to lessen time attacks). Figure 2.10, outlines a simple decryption process
of messages which are encrypted using the sequence of public-keys of the mix.
The sequence of encryption and decryption is closely related to the message
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Figure 2.10: Simple decryption process in mix-net. Clients encrypt the messages with
the sequence of public-keys. Each node in a mix-net removes a layer of
encryption with its own private-key and shuffles the message order and
passes the results to the next destination.

travel path through the chain of proxy servers in the mix-net, as the private-keys
which are required to decrypt messages live in specific servers privately.

In figure 2.10, Alice, Bob and Jon prepares messages for original destination
ml, m0 and m2, and encrypt it with each servers public-key, random salt
and next destination then finally sends it to that server who can strip off
the outer layer of the encryption and carry on the message transmission.
Black, grey and white colours denote the corresponding keys and encryption
layers. Message movements through the server have also been shown with
directional grey arrows. Finally, the last server strips off the innermost layer
of encryption and aware of the final destination m0, m1, m2 and sends the
messages respectively.

Lets us assume a participant A wants to send a message to a participant
B. Participant A prepares a message by appending random value R then
encrypting with addresses public-key K, Kj, (message, R). After that participant
A appends the B’s address and encrypt the message with the mix’s public-key
K, Kin(R1, Ky (message, R), B) and sends the constructed message to the mix,
M. M decrypts the message with M’s private-key and strips off R1 which
exposes B’s address. Then, M sends the message Kj (message, R) to B. Lastly, B
decrypts the message and strips away R and gets the original message. When
B get the message, it is evident that B does not seem to aware of the message
originator.
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Message format

The standard message format for the mix-net is listed below.
K. (R1, Kp (RO, message), B) — (K} (RO, message), B) (2.3)

To build this message format, the sender appends a random string (R1) and
encrypts the nested envelope containing the message with the mix’s public-key
(K;»,). The nested envelope# contains a random string (R0) and the original
message which is encrypted with the recipients public key (K3). When mix-net
receives the encrypted message, it decrypts the most outer layer of the envelope
by using the mix’s private key, which then reveals the address of B. The random
string (R1) is also discarded in this stage.

It is presumed that the adversary is active and can monitor all the messages
which are passing through the insecure channel. The salt (e.g., random string
RO, R1) plays an important role here to prevent attackers from guessing the
messages. Let us assume that the salt was not used and K (message) was sent
to B. A good guess can lead the attacker to conclude that message’ was sent to
B and he only needs to test if K;(message’) = Kj(message) holds. However,
adding salt (i.e., random string) changes the situation by raising the intricacy
of guessing the actual message because learning message’ = message is true
does not reveal the original message since the attacker does not know RO. Thus
learning, the message’ = message does not help the attacker as he is left with
the confusion that the message he derived might not be right.

Untraceable response

In mix-net, it is possible to make an anonymous response to the source (e.g.,
B responds to A while A’s identity is secret). This possible because a source
provides a onetime public key for encrypting the response and source’s address
encrypted with mix-net’s public key. If we take the example that has been
discussed earlier, A needs to form an untraceable return address for B. It is
done by encrypting A’s address with mix-net’s public key K}, and salt S1 is
added to prevent the address from guessing. A public key is also provided by
A, which will be used by B to encrypt the response. Thus, the response will
only be able to be decrypted by A. The return address provided by A will be
encrypted by K,,, mix-net’s public key as Kj,,(S1, A), K. K, is the public key
which will be used by B to encrypt the response to A and S1 is a random salt.
A can send the message anonymously along with the return address that has
been discussed in §2.3.7.

4. Layered mix-net’s enveloping does not include symmetric encryption; thus, it should not
be confused with the digital data enveloping discussed in the §2.3.5
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When the message from A reaches to B, B transmits the message as K;,,(S1, A),
K, (SO, response) to the mix-net, M. M transforms the message into

A, S1(K, (SO, response)). Since both the public key, K, and random salt, S1
has been created by A; the mix cannot see the response created by B. The
following indicates the untraceable request and response between the node A
and B over a mix-net M.

The message from A — B:
K. (R1, Ky (RO, message, K,,,(S1, A), Ky), B) — K3 (RO, message, K, (S1, A), Ky)

Reply message from B — A:
K (S1, A), K (SO, response) — A, S1(K, (SO, response))

Where: K, = B’s public key, K;,, = the mix’s public key. Therefore, in mix-net,
an addressee can reply to a sender anonymously and holds the anonymity
between the sender and receiver.

Threat model

Although mix-network provides anonymity between source and receiver, even
when an adversary is able to observe the entire path, it is not absolutely perfect
in the face of strong attacks (e.g., long term correlation attacks—tracing sender
and receiver packets) [53]. Given that fact, the later paragraphs will outline
the threat model and some probable attacks of mix-net. The "threat model" of
a mix-net is as follows. An adversary can:

* Monitor both the incoming and outgoing network traffic.
* Analyze time between multiple packets.

Observe all the links of the network.

* Demystify the strategies and infrastructure of the mix-net.

Given that threat model, correlation of a packet on an input link and output
link is not possible by what time the packet arrives, the size of the packet or the
content of the packet. Packet timing-based correlation attacks are prevented
by batching the requests and responses. In addition to that, encryption and
packet padding prevents the correlation attack based on packet size and packet
content.

Possible attacks against mix-net

Among many types of attacks, time analysis attacks, packet gap attacks, packet
burst attacks, and sleeper attack are common for mix-net. Most of these attacks
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are subjected to temper the packets and then observe how the mix-net behaves.
Another way of observing mix-net behaviour is to force re-transmission of
Transmission Control Protocol (TCP) packets which can be done by corrupting
packets. [54, 55]

2.4 Implementation technologies

The prototype implementation of the PPSN system requires several imple-
mentation technologies. This section layout the choice of implementation
technologies and frameworks needed for implementing the prototype of the
PPSN system.

2.4.1 Programming languages and frameworks

Several programming languages and frameworks have been used to implement,
test and evaluate the PPSN system’s prototype implementation, and some of
them are as follows:

Javascript and Nodejs. Nodejs is a runtime environment for running
the javascript—a high-level interpreted programming language with object-
oriented capabilities—codes on the server-side that uses Chrome’s V8 JavaScript
engine—one of the fastest javascript engine available as of writing this thesis. It
is platform-independent—runs on Windows, Linux, Unix, Mac OS X and more.
Together with javascript and Nodejs, it gives an advantage of asynchronous
and non-blocking programming. Threading is possible in Nodejs by spawning
child processes. Clustering in Nodejs also made it easy for load balancing and
share sockets between processes.[56][57]

C++. C++ is a statically typed, compiled, general-purpose, case-sensitive,
free-form programming language. C+ + supports procedural, object-oriented,
and generic programming. It is considered as a middle-level language since it
has a combination of both high-level and low-level language features. [58]

Sockets. Sockets enable communication between two different processes
on both the homogeneous and heterogeneous computing environment. It uses
the concept of standard Unix file descriptors as a method of communication.
Every 1/0 operation in Unix is done by writing and reading a file descriptor—
and integer associated with an open file. The file descriptor can be a network
connection, a text file, a terminal, and more. There are mainly two types of
sockets, namely TCP and UDP. Transmission Control Protocol, TCP is reliable
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Figure 2.11: Protobuf serialization and deserialization flow diagram.

communication sends back a delivery report, and data transfer happens in a
stream and maintains a sequence. On the other hand, User Datagram Protocol,
UDP, is unreliable and does not have any order. Their implementation made
UDP faster and more efficient than TCP with some cost of reliability. [59]

ZeroMQ. ZeroMQ (also known as @®MQ, oMQ or ZMQ) is a high-performance
asynchronous messaging library. It intended at use in distributed and concurrent
applications. ZeroMQ system can run without a dedicated message broker
even though it provides a message queue. It supports common messaging
patterns, namely pub/sub, request/reply, client/server and many more. In
addition to that, it also supports a variety of transports, namely TCP, in-process,
inter-process, multicast, WebSocket and many more—making inter-process
messaging simple as inter-thread messaging. Besides, It is relatively easy to
scale and has support for a wide variety of languages. [60][61]

2.4.2 Protocol buffer

Protocol buffers are mechanisms for serializing structured data (i.e., Extensible
Markup Language (XML), JavaScript Object Notation (JSON)) that significantly
reduces the overall payload for data communication through wire compared
to any other human-readable structured data scheme (i.e., XML, JSON) in an
uncompressed environment as of now (July, 2020). This Google’s method of
serializing structured data is language independent. [62]

In order to work with protocol buffers having a schema (Listing 2.1 shows a
protobuf schema, equivalent of JSON data in listing:2.2) is mandatory, which
follows a set of rules defined by proto-language. "Protoc" command is respon-
sible for compiling the schema file (i.e., .proto) to corresponding language
source (e.g., python, java, C++ and many other languages). What protocol
buffer compiler does is to produce a language-specific unique source code to
read and write structured data from a variety of data streams using a vari-
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01010100010111010101010100010101010101001010010100001010
010101010100101010101010000101111010101010101010100101...

Figure 2.12: Sample serialized Protobuf file.

ety of languages. Figure 2.11 shows a general control flow of protocol buffers
serialization and deserialization. [62]

Listing 2.1: Sample Protobuf schema

syntax = "proto3";

message PersonalData {
required string Name = 0
required string Age =1
required string Location = 2

repeated string Activities = 3
¥
Listing 2.2: Sample JSON Data
{
"PersonalData": {
"Name": "Craig_Federighi",
"Age": "59",
"Location": "California",
"Activities": ["Running",
"Walking",
"Cycling",
"Skiing"]
¥
¥

There are several reasons why we are interested in using protocol buffers in our
proposed solution, privacy-preserving nudging system (PPSN). First, it reduces
the request and response data size almost in half in comparison to JSON data
(e.g., 106 bytes of JSON encoded data into 47 bytes of Protobuf encoded data).
Encryption and decryption time significantly decreases if we can reduce the
data size of the actual content.

Protocol buffers turn contents into serialized binary data (Figure: 2.12 depicts a
serialized protobuf data file) which is suitable for transferring it through wires
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Figure 2.13: Encoded data sizes of different data serialization techniques.

among servers. Since we are also aiming for a differentially private system,
hence reducing payload means reducing overall bandwidth cost.

Protocol buffers also guarantee type safety. It not only prevents schema vio-
lations, but also provides fast serialization and deserialization. Since we are
required to use a schema; it gives us another layer of protection as the at-
tacker has to know the schema to read the content. In other words, protocol
buffers native format are not human-readable and human-editable (Figure:
2.12); without a specific schema, it does not make any sense of a protocol
buffer.

Protocol buffers vs. popular data serialization choices

XML (Listing: 2.3) and JSON (Listing: 2.2) are the popular language-neutral data
serialization methods that are widely adopted throughout many programming
languages. XML is suitable for a heterogeneous environment [63]. However,
the redundant use of tags and larger XML encoded file size made it inefficient.
To overcome this disadvantages of XML, JSON emerged with relatively lower
data size than an equivalent encoding in XML. JSON’s straight forward data
representation and better performance than XML is making JSON a popular
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choice of data representation [64]. Both the XML and JSON does not require
any predefined schema, meaning they do not enforce any particular schema.
Moreover, they are not suitable for transferring over the wire. To overcome these
problems, binary-data-representations have appeared, and protocol buffers
are one of them. Figure 2.13 shows the data size comparison of XML, JSON,
protocol buffers and some other data-representation schemes. In protol buffers,
data serialization and deserialization happens under 0.1 ms for ~200 bytes of
equivalent JSON data [65]. From figure 2.13, we can clearly see that protocol
buffer’s data size is significantly smaller than XML and JSON>¢. Hence, using
protocol buffer data serialization should give us some performance edge in
terms of encryption and decryption time.

Listing 2.3: Sample XML Data

<?xml version="1.0" encoding="UTF-8"?>
<root>
<PersonalData>
<Activities >
<Activity >Running</Activity >
<Activity >Walking</Activity >
<Activity >Cycling </Activity >
<Activity >Skiing </Activity >
</Activities >
<Age>51</Age>
<Location>California </Location>
<Name>Craig Federighi </Name>
</PersonalData>
</root>

There are some other comparable binary data serialization methods and tech-
niques (e.g., Thrift, Flat Buffers, Avro). Some of them slightly outperform the
protocol buffers in some scenarios, but they are mostly similar in performance.
However, the more relaxed and less risky integration of protocol buffers out-
weighs the competitions.

5. A unique number is given to every field in the message definition which use to identify
the fields in the message binary format, and should not be changed while message type
is in use. Field numbers (including the field number and the field’s type) in the range
1 through 15 take one byte to encode. Field numbers in the range 16 through 2047 take
two bytes. For better performance, field numbers 1 through 15 should be used for very
frequently occurring message elements [66]

6. Field numbers 19000 through 19999 (FieldDescriptor::kFirstReservedNumber through
FieldDescriptor::kLastReservedNumber) are reserved for the protocol buffers implementa-
tion hence unusable [66]




42 chapter 2 / theoretical background

2.5 Related work

Privacy in the smart nudging system is relatively new, especially when it comes
to the context of GDPR. Hence, there is a lack of a complete privacy preserved
nudging system which is practical to use. However, the privacy in smart nudging
is addressed in "Privacy Preserving Personalization in Complex Ecosystems"
[8], which addresses some of the privacy issues in smart nudging and provides
a possible solution. Nevertheless, it does not argue the privacy of the SN system
in terms of GDPR (§2.2.2). Neither it provides any concrete end-to-end privacy
preserved system design, nor a proof of concept that preserves privacy for the
SN System.

Privacy is addressed heavily in private messaging systems, secure client-server
communications, untraceable end-to-end communication and more. Systems
like Dissent [67], Riposte [68], Vuvuzela [69] and Stadium [70] provides
privacy for a private messaging system. Tor [71] and mix-net (82.3.7) also
provide untraceable end-to-end communication. Needless to say, none of them
is for smart nudging. However, some of the concepts—message-box, mix-net,
communication in rounds, shuffling requests, and adding noises— are borrowed
from Stadium [70], Vuvuzela [69] and Tor [71].

Time-lapse cryptography [72] for encrypting data for the future and secure
multiparty computation (SMC) [12] for secure data aggregation has also been
studied. However, these methods to achieve privacy have not been used in this
thesis to avoid intricacy and performance bottlenecking.



Privacy in smart nudging

It is no surprise that the nudging can pose serious threats to citizens’ privacy
[73]. Therefore, as a nudging system SN (§2.1.2) needs to be addressed in
terms of both the user privacy and system privacy. This chapter outlines the
privacy issues of the SN (§2.1.2) by addressing them in terms of GDPR (§2.2.2)
guideline and user biased privacy policy. Later in this chapter, there will be a
discussion about the essential requirements for the Privacy-preserving smart
nudging (PPSN) system—a contribution of this thesis, Privacy-preserving Smart
Nudging system (PPSN)—and discuss how to make it GDPR compliant and
resistant to traffic analysis.

3.1 Privacy issues in personalization

Personalization requires composing user profiles which can then be used to
identify interests, behaviour and other characteristics of a specific user. In SN,
the probable user profile and its dimension is listed in table 2.1. From Table 2.1,
we can see we are interested in a whole range of private data including personal
data, cognitive data, device information, context, history of past interaction, The
user’s behaviour data, users interests, intention/goal, interaction experience,
domain knowledge. All these data points are subjected to identify a physical
person—considered as personal data according to GDPR (§2.2.2). Some of these
data points can directly identify an individual (e.g., gender, age, nationality;,
location), and some of the data (e.g., domain knowledge, interaction/goal) can
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require some processing to identify a user. Some of the sensitive user data
cooperating with additional knowledgebase can cause stigma, and accidentally
exposing them can cause serious privacy breach. As discussed, according to
GDPR, SN is entirely responsible for processing and protecting such type of
personal data (82.2.2). No matter how SN gather user information, if the data
is enough to identify an individual, it counts as personal data, and SN is
obliged to protect that data 2.2.2. As personalization is inevitable to construct
smart nudge, providing privacy for users also become inevitable according to
GDPR—discussed in §2.2.2 [9].

3.2 Situational awareness and its privacy
concerns

As we can see, these data are targetted to a situation, location and a specific
moment. They are related to a large group of people, and without any further
information, it hard to identify a single individual. These kinds of data are
not classified as personal data. Thus, we do not need to take tighter privacy
measure to protect it. After all, this kind of data is publicly available. Here the
primary goal of PPSN is to isolate or disjoint any relations with the user data
which can complete a story and identify a user. In table 2.2, we have discussed
some of the historical data, current data, plans and prediction. From table 2.2,
we can see some privacy vulnerability for some of the data which are revealing
user-specific information. In plans, users calendar events, in historical data,
user interactions information needs to be protected as they reveal critical user
information which can be used to identify a specific user.

3.3 Privacy concerns in SN architecture

This section addresses the privacy vulnerabilities of the SN system (§2.1.3) in
user perspective and GDPR (§2.2.2) compliance.

As outlined in §2.1.3, the primary components of SN system are sense, analyse,
and inform and nudge (Figure: 2.2). All these components are somewhat
sacrificing user privacy.

These three components are basically working data collection using sensors,
crowdsensing, third-party data sources, and crowdsourcing, data collection
using sensors, crowdsensing, third-party data sources, and crowdsourcing, an
analysis that transforms raw data into information, and outreach to the public
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or user through information and nudging services. Later paragraphs will outline
their probable privacy vulnerability.

From §2.1.3, among all other functions, SN services more or less related to
mobile phone sensing [74]. Mobile phone sensing is, in a sense, tracking
and monitoring an identifiable user. These type of data are closely related
to individuals, and upon running some set of data operation, it is possible to
identify a specific user. According to GDPR guidance discussed in §2.2.2, any
data that can identify an individual is counted as personal data which needs
to be protected.

In [9], the SN architecture is outlined and reviewed based on a set of require-
ments for [oT architecture discussed in [19]. In [20], an architectural approach
suggested taking advantage of both the static and dynamic data and support for
the actuator interface. Meaning, the combination of historical data (static data),
current data (dynamic data), plans (static data), and predictions (dynamic
data) are analysed and used to encourage to change user behaviour through an
actuator interface. This architecture indicates a mixture of public and private
data which opens up vulnerabilities for individual private users.

Even though SN intends to enable fog computing instead of back-end compu-
tation due to latency, network bandwidth and access to sensitive private data,
ultimately SN is unable to go solely on fog computing [21]. One of the main
reason due to its bleak prospect of global knowledge, weak edge nodes and
unpredictability of mobile and dynamic environments. SN addressed this issue
by proposing distributed publish-subscribe which can be regarded as unifying
cloud and fog computing which supports partial or a hybrid approach of edge
and backend processing. As a result, some data leaves the edge nodes to the
designated backends for further information treatment, then again, it begs the
question of user data privacy and metadata leakage thereby.

Sense component of SN system—discused in §2.1.3—blends all types of real-
time data, data from user’s smartphones, data from external services (e.g.,
weather data, public transport API), and other types of data from heteroge-
neous IoT sources. Thus, all the operations and acquisition of data is happening
in the sense component, regardless of the privacy severity of the information.
Therefore, the SN system architecture’s "sense" component needs to be ad-
dressed in terms of privacy vulnerability.

The SN architecture component "inform and nudge" usually targets individual
user’s smartphones, hence leaks metadata. Adversaries can add bits and pieces
to complete the whole story and analysing the type of nudge an individual
is receiving can reveal a lot about their activity and identity. However, public
displays and public information broadcast in "inform and nudge" contains
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nudging for a group of people or a location which does not reveal individual
user data [75].

SN system architecture is somewhat event-driven by nature of the publish-
subscriber model—the arrival of new data can trigger data analysis and inform
and nudging. These type of event-driven systems are easier to attack as an
adversary can listen for changes for particular events and predict the story
thereby. IoT based sensing devices which produce data periodically are less-
vulnerable due to their intermittent behaviour. However, IoT sensing devices
which are closely related to a specific individual (e.g., wearables, health bands,
smartwatch, power meter) needs to be protected.

3.4 The dark side of nudging

Just like how the strength of nudging can be used as influencing people towards
the greater good for the society; similarly, it can also be used to manipulate
a demographic once the power of nudging reaches the wrong hand. Unfair
nudging can push people towards some particular situation (e.g., to buy specific
consumer products, influencing to support a political party and many more)
which can be exploited by an unfair-meaning party [76] [77]. Thus, fair nudging
systems are prone to be compromised and manipulating people, thereby. A
potential danger of manipulating people and criticism of nudging is outlined in
[78]. Providing transparency about making aware of the people who are being
nudged could potentially solve this issue [77]. However, an unfair-meaning
party will not reveal their transparency or the true motive of nudging. People
consciously trust well-meaning parties to get nudges to do greater good for
society. Thus, leaving the nudging system of well-meaning parties (e.g., Smart
Nudging for Green Transportation) in a critical situation of being targetted by
adversaries [9]. Hence achieving privacy in fair nudging systems is inevitable
to protect the users from being exploited by unfair nudges—one of the primary
goals of this thesis.



Design

In the earlier chapter (Chapter 3), it has been discussed why SN system ar-
chitecture (discussed in §2.1.3) needs to be addressed in the context of user
privacy (discussed in §2.2.1) and GDPR (discussed in §2.2.2). §3.3 pointed out
some of the critical vulnerabilities in SN system architecture with respect to
user privacy and GDPR. This chapter outlines the design of PPSN—one of the
contributions of this thesis— and it’s approach to mitigate all, if not some of
these critical privacy challenges to gain GDPR compliance.

PPSN aims toward a user biased privacy policy—meaning PPSN will try to
give users as much as autonomy as possible throughout PPSN system design.
Thus, users have more control over their data, and they will more likely be
sharing their information for the greater good for the society. Moreover, the
PPSN system design not only provide strong privacy but also decent scalability.
This novel system design offers a decoupled middleware for SN, which can be
implemented with legacy systems given that the legacy program runtimes are
sandboxed or partially virtualized and no direct communication is happening
between users and SN system back-end. PPSN is a middleware for handling
communications that are happening on SN and it also provides data security. It
is possible to use PPSN middleware without modifying an existing SN system.
However, for full compatibility with PPSN middleware, some of the components
of SN from the outer core needs to be modified—discused in §4.3.8. Thus,
background processors, daemons and all other communication with public
APIs can still be on the operation with the help of PPSN middleware. PPSN
will isolate only those communications which are vulnerable to user privacy
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which has been discussed in §3.3. Therefore, public-APIs and data belong to
larger groups will not be passed through PPSN middleware for PPSN system
optimization point of view.

The primary objective of PPSN system is to mitigate three major vulnerabilities
as follows, metadata leakage, content theft and end-to-end user tracing under
pervasive network monitoring in the face of strong adversaries, given that
at least one server is honest. PPSN’s key insight is to reduce the number of
observable variables concerning user privacy. Later sections will outline the
proposed system design of the PPSN system—a privacy preserved super-set of
the legacy SN system.

4.1 Design goals

Designing of the PPSN system started with some essential design goals in
mind, which could potentially make the system robust and hard to crack under
imminent privacy threat or attacks. These design goals are derived from a
thorough study of GDPR (outlined in §2.2.2), privacy (discussed in §2.2.1) and
meta-data leakage while transferring data through insecure channel in the
context of SN—dicussed in §2.1.2. This section will outline the design goals
below, and it will explain how these design goals are related and essential for
the proposed PPSN system to make the legacy SN system private and provide
GDPR compliance.

Proposed PPSN system design should be able to:

1. Hide user’s sensitive information.

Hide end-to-end communication tracing under pervasive network moni-
toring.

Anonymize requests and responses between servers and clients.

Protect users from their meta-data leakage.

Dismantle user’s data in an occasion of a severe data breach.

Opt-out users from PPSN services even when the users are offline.

g

ok ow

These design goals are targeted to give users the maximum advantages and
enable user autonomy thereby. The benefit of these design goals will potentially
impact SN system positively since more and more users will likely to participate
in strengthening the nudging system as their privacy has been preserved. Finally,
these design goals will make the SN system (§2.1.2 GDPR compliant and will
protect the user data thereby.
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4.2 Adversary model

This section outlines the adversary assumption for PPSN system. It is assumed
that the imaginary adversary controls all but one server in the PPSN server array.
The imaginary adversary also controls an arbitrary number of clients and can
monitor, block, delay, or inject traffic on any network link. At any given time, we
are assuming that we have honest clients behaving bug-free and honestly and
honest servers behaving honestly and bug-free. In addition to that, the PPSN
servers are assumed to be free from data leakage through side channels. For
honest clients who are using smart nudging and the communication between
smart nudging servers and the honest clients is protected by PPSN system. The
level of protection is outlined in Chapter 4. Communication happens through
multiple rounds, and it is assumed that an adversary can temper and interfere
with the PPSN system in multiple rounds.

It is also assumed that the cryptographic operations, key-exchange mechanisms
and hashing are happening as intended. In any circumstances, private-keys
will remain private for each entity (i.e., server, client). Public-keys among users
and smart nudging server is known to have the communication. Users (i.e.,
clients) and PPSN system (i.e., servers) know each other public key prior to
communication. Clients are basically mobile phones apps on a smartphone
which are shipped with default endpoints and server public-keys. A separate
mechanism is also present to handle the public-key discovery?!. It is also as-
sumed that all server handles request properly and do not bypass any request.
Even though bypassing request will be protected by mix-net. Though, any server
can employ a denial-of-service attack on PPSN as per the previous assumptions
made in this section. However, one server will always remain honest to have
the integrity of PPSN system. Any strong adversary beyond this description
can cause serious attacks—running a modified version of PPSN server and
stop encryption using clients public key when all servers are compromised will
reveal the actual data. However, the data is safe as long as one server is honest
and faithfully do what it meant to be doing. Smart nudging backend server can
be compromised and will not impact the privacy of the system as long as the
code base doing what it was intended to do (i.e., using message-box to process
the data and encrypting the data accordingly). Finally, another assumption is
the decryption only happens in-memory and decrypted data stream discarded
as soon as the process finished or discarded the event of the process crash. It
is worth mentioning that only encrypted data is stored in non-volatile storage
forms. It is not hidden from the adversaries that the users are connected to the

1. Public-key discovery is a vital part of the PPSN system and needs an extensive study to
address potential pitfalls of public-key discovery. In this thesis, it is assumed that the
application will be shipped with the necessary keys, and they will be updated in a timely
manner with a valid signature
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Figure 4.1: High-level overview of the Privacy-preserving Smart Nudging system
(PPSN).

PPSN system. However, instead of intermittent connection (i.e., connection on
demand), PPSN system uses a persistent connection between the users and the
system. As a result, adversaries can not guess the whole story by speculating
connection pattern. Nevertheless, it is assumed that the adversaries can see
the initial connection request and the final termination of the connection, but
nothing in between.

4.3 Proposed system architecture

In chapter 3, the privacy issues of SN architecture has been discussed, and
it is found that there are two major information categories. One of them is
public, which related to a broader audience and does not expose any particular
user. The other one is private information which can expose a particular user.
Contextual information such as IoT sensing for the environment, public APIs
for transportation are considered as public information, and they are not mean
to be protected by the PPSN system. On the other hand, user tracking data,
user backend processing, and inform and nudge schematics are counted as
private information and need to be protected. In figure 4.1, it is observed that
the source of environmental context and public API is disjointed.
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PPSN has a "Thick client" [79] and "Thin server" [79] architecture. Meaning
sense, analyse, inform and nudge will be prioratised and sandboxed on the
client for processing [3]. Whatever information is not processable on the client
side will be handled and processed on smart nudging server with the help of
PPSN system. Any process-heavy task and processing and constructing user
profiling from substantial data will also be done in our PPSN servers since our
clients are basically smartphones and have finite battery power. With that in
mind, PPSN system consists of a single chain of servers. Clients (i.e., users) are
connected to the first server on the chain. Then the first server is connected to
the second server, the second server connected to the third server and (N —1)th
server connected to N server. All clients will use the same chain, and they
will also know the server’s public keys. Similarly, servers will know each other’s
public keys and the client’s public keys beforehand. In PPSN, response and
requests are performed in rounds, and message lengths and size are identical
to reduce variable exposures for adversaries (§4.2). All the protocols of PPSN
communicate through message-box—where clients deposits messages and
pick up messages—smart nudging server also acts like a client and deposits
message and pickup messages from a message-box. Data processors and data
providers (i.e., SN system) leave messages in virtual locations. Data processors
and data providers will be able to participate in data communication rounds
since finishing data processing within a small round time will be difficult for
process-heavy jobs. Data process will be happened in sessions and destroyed
after the result is encrypted and enveloped with the client’s public key in SN
servers.

In PPSN, there are four critical zones depicted in figure 4.1. They are client
zone, SN backend zone, context zone, and obscure zone. All the user lives in
the client zone and SN backend zone in a sense, a big static client who is
responsible for data processing and data providing—sSN system. Context zone
handles the public APIs and heterogenous IoT sensing and merging them into
a general format and prepare the data for data processors and data providers
in SN backend. Context zone is directly connected to the outside world of IoT
sensing and Public API, and one of the main tasks of context zone is to prepare
the data to be dispatched on demand—in a pub-sub fashion.

4.3.1 Protocol schematics

PPSN’s two main protocol to complete sense, analyse, inform and nudge be-
tween the users and Smart Nudging (SN) backend is the "communication
protocol” and "commencing protocol". Both of the protocols communicate
through message-box. Message-boxes are virtual locations on PPSN server
array—located on the last server in the chain. SN backend and client agree on
a message-box to communicate in a round and SN backend deposits messages
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in message-boxes and clients (i.e., users) picks the messages up. It can also
happen in the other way around where client deposits messages and SN back-
end picks up messages from message-box. However, the total accesses counts
of the message-box for both the client and SN backend will be identical each
time to reduce one more variable. For example, in one round of data exchange
between the clients and SN backend, first the client and SN backend agree on a
randomly chosen message-box through commencing protocol. After that, in a
communication protocol, two endpoints—SN backend and users—can deposit
and retrieve data from message-box. These message-boxes are 128-bit IDs,
and honest client should never collide on the same message-box. In our PPSN
system, each user is identified by their public-key. As part of the commencing
protocol, each user is assigned to new message-box in every round to hold
communication with SN backend. All the message-boxes get destroyed as the
round comes to an end. Each users and SN backends periodically polls data
and leaves data in the message box.

Cover traffics are added to obscure the message-box access pattern. In addi-
tion to that, all message-box are ephemeral meaning they are persisting only
within a particular round. When a new round begins, new message-boxes
are also created. So for each round of communication PPSN get new set of
message-boxes to communicate through. The first server on the chain on PPSN
server array is responsible for commencing a round. It waits for a certain time
(i.e., 10s round time) to get requests and response for a certain message-box.
Within that time frame, the server collects all the request from the clients and
deposit messages in message-boxes and retrieve messages from message-boxes
through the chain of servers. It is not possible to access that same message-box
after the round is over. As a result, if a client goes offline, then eventually
it losses the ability to send receive messages for that specific round. These
issues are handled by retransmission of the messages in the next rounds. This
round-based communication in PPSN makes it difficult for adversaries to relate
message-box access over time as the communication protocol chooses different
message-boxes in different rounds. Following sections will outline the two
major protocols of PPSN system.

Commencing protocol

Commencing protocol is responsible for initiating the communication. In other
words, before any communication between users and SN backend, they need
to go through this protocol. Commencing protocol basically exchange the
message box’s pseudo-random string id between users and SN backend. Every
round of communication first goes through this commencing in order to have
the message-box id.
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As discussed in §2.3.7—user uses PPSN system’s mix-net public key and put
user’s public key inside, indicating that this user is commencing for communica-
tion. This message travels through the PPSN system and ends up in a message
box with the user’s public key and encrypted response address. This encrypted
message is a layer of encryption where every server in the PPSN array removes
each layer of encryption.

While each user ends up in a message-box, SN backend’s random connection—
which is acting as a client—picks up messages from message-box. Two im-
portant things happen here. One, the virtual endpoint of SN backend gets
the message-box id and user’s public key. Two, response for the user is con-
structed with the message box id. After that, each user in each message box
gets their message-box id. This message box id is ephemeral—meaning it is
round specific. Message boxes are destroyed after each round and commencing
protocol repeats the process. Therefore, commencing protocol is used in the
PPSN system to let the user and SN backend to know their communication
point for each round.

Communication protocol

The communication protocol is responsible for all the communications that
are happening between users and SN backend. After going through the com-
mencing protocol, user and SN backend endpoint agree on a message-box.
For a limited time(e.g., 10 seconds) all the communication between users
and SN backend happens through that specific message-box given that the
integrity of the other measures—shuffling requests and responses and encryp-
tions of messages—holds. All communication is identified using the user’s
public keys.

4.3.2 SN backend endpoints

Counter-intuitively, in PPSN system, SN backend? acts as a client for PPSN
server array—performing requests and responses for each round. To handle all
the request and responses from users SN backend needs have larger bandwidth.
For a single connection between SN backend and PPSN reveals meta-data about
SN backend—because of it is increased size of request and response to handle
all the users. Adversaries will be clearly able to see the difference between
message sizes and the frequency of request-response between users and SN

2. SN backend should not be confused with legacy SN system. SN backend is a superset and
modified version of the legacy SN system, which makes the legacy SN system compatible
with PPSN system and preserves user privacy thereby.
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Figure 4.2: A High-level overview of SN backend’s virtual endpoints to obfuscate
and maintain constant message size of requests and response from SN
Backend.

backend. To hide this variable SN backend implements virtual endpoints and
identical message sizes and identical request-response frequencies. Virtual
endpoints are achieved User Datagram Protocol (UDP) sockets which forwards
the request and response to SN internal endpoint. There is a limit of the number
of UDP sockets in a system (i.e., 65535). Since each socket is serving each user
in a single round of communication, the maximum number of sockets can be
easily reached when the number of users in the PPSN system surpasses 65535.
As per our assumption, the number of users for the PPSN system and nudging
can reach millions. SN backend addresses this problem using virtualization to
produce more endpoints of SN backend, and they will stream back the requests
and responses to SN internal primary endpoint. Figure 4.2 depicts how SN
backend manages endpoints and behave like any other user entity in PPSN
system.

4.3.3 Key-exchange

Key-exchange in PPSN system is a critical phase of the whole proposed system.
In this phase, user’s clients and SN backend comprehend the PPSN system’s
mix-net and exchange necessary keys to take part in commencing protocol and
conversation protocol—discussed in §4.3.1.

There are several ways to manage the public and private keys in PPSN system.
One way is to generate and propagate varified keys manually or through
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application update. Another option could be a local copy of a public database
of keys (e.g., PGP key server) [80]. However, updating keys with application
update could risk the PPSN system and make the PPSN system’s security
dependent on external servers (e.g., google play store server[81], app store
server[82])

4.3.4 One round of communication

Each round provides users and SN backend to communicate with each other.
They communicate through message-box—user leaves messages for SN back-
end, and SN backend picks up messages for those users from a particular
message-box. Then, the user picks up messages from the specific message-
box.

In order to complete a successful round of conversation, first, key-exchange
happens. Key exchange happens only once for many rounds. Key-exchange
is basically for letting the users and SN backend to know about the mix-net
encryption and enveloping system. Once, key exchange is done, users and SN
backend do not need to repeat it for every round.

Users initiate commencing protocol every round to bind the message box with
their client and SN backend endpoints. Each user binds with each endpoint of
SN backend—§4.3.2 outlines the endpoints of SN backend. In other words, users
leave their public key and encrypted return address in the newly created empty
message-boxes. SN backend endpoints randomly pick up these messages from
message-box and leave encrypted return address and its public key without any
order. Users and SN backend endpoints they both receive necessary parameters
for starting communication protocol.

The actual communication and data exchange between users and SN backend
happens here in the communication protocol. Communication protocol gets a
limited time to perform several message exchange. In communication protocol,
SN backend can leave request or response in the form of message in a message
box. Users then pick them up periodically within the round. Users can also
perform request and response just like SN backend. Request response happens
asynchronously—a message can contain both the request and response. What
is visible through the network is those encrypted messages that travel between
the SN backend and users through PPSN server array and message-box.

Both the commencing protocol and communication protocol has a time out
and specific round time (e.g., 10 seconds in our case). The first server in PPSN
array—which connects directly to the users and SN backend—responsible for
collecting messages for 10 seconds then forwards it to the next server in the
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chain. Next server shuffles the messages, remove its encryption layer and adds
necessary noises and forwards the messages to the next server in the chain.
This process repeats until it reaches to the last server where message-boxes
lives. The last server routes the message by evaluating the message-box id. So
the complete round of communication is as follows for a user, U and the last
server in the PPSN server array, L:

Commencing protocol,

The message from U — L:

Kn(R1, K, (RO, Ksn(R3, message), K,,,(S1,U),Ky),L) —

K. (RO, Ksn(R3, message), K, (S1,U), Ky (4.1)

A random SN backend end-point picks up the message (i.e., message-box id
and users public-key) and leaves another message in the same message-box
(i.e., encrypted SN backend end-point source information and SN backend’s
public-key)

Reply message from . — U:
Kn(S1,U), K (S0, response) — U, S1(K, (S0, response)) (4.2)
Where: K,, = U’s public key, K,, = the PPSN server arrays’s public key.

Communication protocol,

Communication protocol is almost the same as commencing protocol that has
been discussed earlier. However, it contains a enveloped data part, E’ which
PPSN server array does not touch and does not know anything about. Here,
PPSN server array only acts like a message forwarder for E’.

4.3.5 Content hiding

One of the goals of PPSN system is to encrypt as much data as possible and
whatever cannot be encrypted—metadata—will be hidden by adding noise
discussed in §4.3.7. Data enveloping—discussed in §2.3.5—has been used
throughout the PPSN system as a means of content/data hiding. Data en-
veloping is used to maximize the performance for encryption and exchanging
data through an insecure channel by combining symmetric and asymmetric
encryption scheme—discussed in §2.3.2, §2.3.2. Two major algorithms RSA
(discussed in §2.3.3) as asymmetric encryption and AES (discussed in §2.3.4) as
symmetric encryption has been used in PPSN system’s data enveloping. When
data envelop travels through the PPSN system’s mixnet server array, only the
symmetric key has layered encryption as encrypting large data with RSA is
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expensive—discussed in §2.3.3. Actual data is decrypted inside SN backend
in-memory, and before finishing up the process, the data is encrypted back with
a one-time random symmetric key. Then that symmetric key is encrypted with
the corresponding user’s public key. Finally, SN backend forgets the symmetric
key and store the data in the database, which makes the data completely un-
readable even for the SN backend system. Each time SN backend wants to read
that data, it needs to go through the commencing and communication protocol
to get back the decrypted symmetric key from the owner as the symmetric key
was decrypted using owner’s public key.

4.3.6 Untraceable end-to-end communication

Any observable communication between clients and servers leaks metadata.
Tracing end to end communication is easy and reveals a story about the situation
of the client and the server over time—discussed in §2.2. PPSN system addresses
this issue by using mixnet—discussed in §2.3.7, which is an array of a handful
of servers creating encryption layers and shuffling request and responses. As a
result, PPSN system breaks the link between senders and receivers—making
the communications between SN backend and Users untraceable. In addition
to that, each server in PPSN system’s array only knows about the message it
receives from and the destination—discussed in §2.3.7.

4.3.7 Hiding meta-data

84.3.5, 84.3.6 outlines how PPSN system hides the content by encryption and
make end-to-end communication untraceable by using mixnet—makes PPSN
system already secure against weaker adversaries. However, at any given time,
when an adversary looks into the communication traffic, he knows that these
are the real users. Since strong adversaries can take users offline, and online
long term attacks could be possible by observing the behaviour of malicious
users or servers. Even that adversary cannot read the data; it will reveal a lot
about the behaviour of the servers and clients. To take the privacy of PPSN
system even further for strong adversaries, the idea of noise comes to play.
The noise is fake requests and response messages for commencing protocol
and communication protocol to hide the real users among fake ones. Each
server in PPSN system’s server array gathers requests for a specified round
time—discussed in §4.3.1—then adds a predetermined amount of noise(i.e.,
random fake messages). Then the server shuffles all the requests, including the
noises. Therefore, adversaries probability of being certain about any messages—
belongs to a real user or SN backend—reduces. This technique of adding noises
to the system makes PPSN system differentially private—discussed in §2.3.6.
In addition to that, adding noise also protects users from being identified when
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there are too many malicious users in the PPSN system. Moreover, noises are
also beneficial when there are fewer users using the PPSN system. Depending
on the number of noise, the more user who is using the PPSN system, the
more it increases the probability of being a real user. For keeping things less
complicated, PPSN system used a static number of noise (i.e., 300,000 of fake
messages for both the commencing and communication protocol).

4.3.8 PPSN system as middleware

PPSN system was designed with loose coupling in mind. Therefore, PPSN
system is decoupled from SN backend, which makes PPSN system flexible
enough to be used as middleware for providing untraceable communication
and privacy for any service like SN system. To make PPSN system compatible
with third party systems and clients, they need to follow the API specification
of PPSN system—protocol schematics—to interact with PPSN system through
key-exchange, commencing protocol and communication protocol—discussed
in §4.3.1. This ability of decoupling gives PPSN system a great advantage to
use with a legacy system like SN system with little changes.

4.3.9 Data storage and processing techniques

Data storage and processing techniques are vital for preventing content theft
and making an almost trust-less system design from the core of the PPSN system.
As outlined in §4.3.8, PPSN system behaves like middleware between the users
and SN backend. Therefore, PPSN system does not store or cache any data or
messages. In addition to that, PPSN system forgets almost everything about
what happened previously, but the necessary keys for cryptographic operations.
In other words, each round of communication resets the server state in terms
of messages.

Data storage takes place inside the user’s client and SN backend. However, no
plain data is allowed to be stored directly in the database, rather the encrypted
form of that data. Users client maintain its own database and store the data
in an encrypted form. Each user has only the data related to that specific user.
Therefore, user’s clients can use conventional data storage technique inside
their smartphone or other devices that the user uses.

However, in SN backend, a different approach of storing data into a database
is needed for long term purposes. Two of the aspects are addressed; one, users
should be able to opt-out from smart nudging without talking to SN backend;
two, in case of content theft, and data breach SN backend should be able to
provide privacy for users data. Hence, SN backend encrypts the user data in-
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memory and encrypt the symmetric key with users specific public-key and finally
forgets the symmetric key. Finally, the encrypted cypher text is sored into the
database. Therefore, this technique leaves SN backend without any clue about
the data. In order to use the data, SN backend must communicate with the
user to get the actual key to decrypt the data. Also in SN backend, encryption
and decryption happen in-memory. After each process inside SN backend, the
encrypted result is stored in a database. This method of encryption follows
data enveloping technique discussed in §2.3.5. However, here the envelop never
leaves SN backend, but the encrypted symmetric key with a particular user’s
public key which is used to create the envelope. If data, D’ is received, and SN
backend performs M algorithm on that data, then the data storage takes place
as follows:

SN backend receives the encrypted data, D’ from a user, U and decrypts it.

D'+ SNy — D
M(D) — D,

D7 + S0+ SNy, — Dj
SN + Upyp —> SN

(4.3)

Where SNy = Random onetime symmetric key produced by SN backend, M =
Random data processing algorithm, N, = Private key of SN backend, Uy, =
Public key of the user, U, and SO = Random salt produced by SN backend.

SNj is destroyed as soon as SN; is produced. In the meantime, D] along with
SN¢{ is ready to store in SN backend database. Its worth pointing out that SN
will not be able to decrypt the cypher text, D] as SN is destroyed.

Decryption of D] involves reconstructing of the destroyed key, SN;. This de-
cryption process also happens in-memory for running sets of algorithms on that
specific data and follows the same principles that have been discussed above.
In addition to that, it requires further communication with that specific User,
U through PPSN Sytem’s protocol to have SN decrypted (i.e., SN;)3. After
performing the operations, when the process is finished, it repeats the same
process of storing data into SN backend database—encrypts the new derived
data and stores it in the database.

3. All the messages and data that have been received by SN backend is encrypted with SNpup
by the original sender to avoid content theft.






Implementation

This chapter outlines the barebone prototype implementation of the PPSN
system!. This proof of concept implementation of the PPSN system design
(discussed in §4.3) was developed in Nodejs (§2.4.1)—consists of around 1003
lines of code. Several shell scripts have also been written to run the simula-
tion instantly for a handful of users and servers in server array of the PPSN
system.

Asymmetric encryption algorithm, RSA (§2.3.3) and symmetric encryption al-
gorithm, AES (§2.3.4) are one of the fundamental tools that have been used to
implement the data-enveloping (§2.3.5), which is the basis of content-hiding
in the PPSN system (84.3.5). Likewise, both the encryption algorithm RSA and
AES have also been used for layering the messages to implement untraceable
end-to-end communication (§4.3.6) in the PPSN system. The crypto module
of Nodejs vi4 has been used to implement all the cryptographic functionality—
OpenSSL’s hash, Hash-based Message Authentication Code (HMAC), cipher, de-
cipher, sign, and verify functions—throughout the implementation of the PPSN
system. Specifically, AES-256-CTR as symmetric encryption and RSA PKCS1
as asymmetric encryption have been used to implement data enveloping and
layering of the messages in the PPSN system. RSA key pairs are generated using
OpenSSL/ssh-keygen, and key-exchange is done manually before starting the

1. The source code of the barebone implementation of the PPSN system is publicly avail-
able at "https://github. com/mhusme/ppsn" under GNU LESSER GENERAL PUBLIC
LICENSE (LGPL)
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PPSN system.

TCP/IP Stream Sockets (§2.4.1) have been used to build up the connection
between the applications (i.e., clients and servers). ZeroMQ (§2.4.1) has been
used to implement and simulate the publish-subscriber model between SN
backend and the context (i.e., public APIs).

Protocol buffers (82.4.2) have been used as the standard data format between
the servers among PPSN server array and also between the users and the PPSN
system—providing an extra layer of security by nature as the schema has to be
known beforehand to read the binary data stream. Constant noise generation
has been implemented programmatically by randomizing the message and
then convert it back to protocol buffers and finally adding all the generated
noise into the real requests. Then shuffling of the requests takes place and
finally, the server forwards all the requests randomly.

This prototype is a proof of concept of the PPSN system. It implements the
minimum viable applications to demonstrate one round of end-to-end commu-
nication between users and SN backend through PPSN system. This implemen-
tation followed the design principles of the PPSN system discussed in chapter
4 (e.g., the first server of the PPSN server array takes all the requests, then
shuffles it and forward to the right adjacent server. Then the message lives in
a message-box in the last server to be picked up by SN backend. Subsequently,
SN backend leaves a message in the message box, and the user picks up the
message.).

Even though this implementation followed the PPSN design—discussed in
84.3—the prototype implementation and the design has some differences.
The two protocols, commencing protocol and communication protocol has
implemented as one protocol as they are very similar, but only their message
size is different. The complete data storage solution with a database has not
been implemented. However, sufficient implementation has been done to prove
the data storage technique (i.e., encrypting data with a random symmetric
key, then encrypt the symmetric key with users public key and finally forget
that symmetric key). Conclusively, this implementation does only one round of
communication. Therefore, to run the application in multiple rounds, it needs
to be executed manually for each round of communication.

Virtualization of SN backend was discussed in §4.3.2 to prevent the running out
of TCP connection which is not implemented in this barebone implementation
of the PPSN system. Hence, a handful of SN Backend instances has been
implemented to handle all the user requests.

Needless to say, this implementation only serves the purpose of proof of con-
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cept and benchmarking of the PPSN system, users, and SN backend—this
implementation is by no means intended to use in a real-world production
environment. In addition to that, this implementation focuses on the proof of
concept of untraceable communication and content hiding for SN— it does not
implement the whole nudging system by any means (e.g., processing user data,
data processing in SN backend, key-exchange mechanism). More precisely,
users and SN-backend application exchange dummy nudging messages among
them through the PPSN system by following its design schematics. More work
is needed to deploy this barebone implementation of the PPSN system for
real-world uses.






Evaluation

This chapter qualitatively evaluates the PPSN system’s privacy and quantitively
evaluates the proof of concept implementation of the PPSN system. It also
outlines the experimental setup and the method of evaluation. In addition to
that, this evaluation answers the following question quantitively:

Q1 — Does the PPSN system provide privacy and improve the SN (§2.1.2) system?
(§6.3)

Q2 — Is the PPSN system feasible and acceptable in terms of performance? (§6.4)

6.1 Method of evaluation
This section outlines and discusses the methods of evaluation that has been

used to evaluate the privacy and the performance of the barebone PPSN
system.

6.1.1 System latency
End-to-end latency is one of the crucial performance metrics that have been
used to evaluate the performance of the PPSN system. The latency of a system

is given by the time between dispatching a request and receiving a response.
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Therefore, the latency of a system is the inverse of the throughput—the number
of processed request/response per unit time—of a system. Furthermore, latency
is referred to the waiting time of a client in a client-server architecture to do a
unit work.

Latency is usually measured in seconds. Hence, the common way of measuring
latency is to record the starting time of a process and record the time after
the process is finished. The time difference between the finishing time and the
starting time gives us the latency in a unit of time.

Since the PPSN system involves a lot of independent processes and servers, a
different approach has been made to measure the latency of the PPSN system.
In the PPSN system, end-to-end latency has been measured by subtracting
receive time and request time. The sender creates a message with its current
system timestamp inside before starting any operation. The receiver receives
the message through the PPSN system. When the receiver receives the request,
it has the request timestamp and also the current system timestamp as receiv-
ing timestamp. The difference between receiving timestamp and requesting
timestamp gives the end-to-end latency of the PPSN system.

Let Transmitting message, Ty, receiving message, R, and time function ¢t. Then
the latency L is as follows:

L =1t(Ry) —t(Ty) where, t(Ry) > t(Ty)and L >0 (6.1)

More precisely, in the PPSN system a user builds a message with the current
system timestamp before starting the actual process (i.e., encryption of the
message and layering of the message) and sends it to the SN backend through
PPSN system server array.

Then, arithmetic mean is used to increase the measurement precision of the
overall end-to-end latency of the PPSN system. The total amount of latency has
been calculated for a number of requests in that round, then the arithmetic
mean is derived from dividing the total number latency by the total number of
processed requests.

For n number of requests, the average mean latency, L of the PPSN system is

as follows:
-1
L=2 Z L; (6.2)

As measuring latency involves measuring system time, end-to-end latency
subjects to clock synchronization among the servers and clients, which is one
of the challenges to overcome to measure the end-to-end latency precisely.
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However, the barebone implementation of the PPSN system has been tested
locally for performance measuring, and the time synchronization issue did not
arise.

6.1.2 System load average

System load is a measure of how much computational work needs to be done
in a given time [83]. Thus, the load average is the average system load over
a timeframe. In UNIX computing, system load comes in the form of three
numbers. If we read the numbers from left to right, then it tells us the system’s
overall average load for all the cores and threads during the last one-, five-, and
fifteen-minute periods. All UNIX like system generates dimensionless metric
of three "load average" numbers in the kernel. It can be easily read from shell
commands (i.e., uptime, top) or the file /proc/loadavg [83]. An idle system
has load number 0, excluding the idle process, and each process, waiting or
using the CPU increments the load number by one. On the other hand, a
terminating process decrements the load number by one. Only the processes
in the running or runnable states are counted in most of the UNIX or UNIX
like systems. However, blocked processes due to a busy or stalled I/0 system
are also counted, which can lead to a different result if there are too many
processes in uninterruptible sleep states [83].

Listing 6.1: Current system load average from a Unix shell by running the uptime
command

$ uptime
22:14:08 up 10:07,1 user, load average: 1.73, 0.60, 7.98

If we want to interpret the UNIX system load average in a single CPU system
then, the numbers "1.73 0.60 7.98" of listing: 6.1 can be interpreted as:

* The system was overloaded by 73% on average during the last minutes.
In other words, on average 0.73 processes had to wait for being processed
by a single CPU system.

* For the last five minutes, the number 0.60 means the system was idling
40% of the time on average.

* Similarly, during the last 15 minutes, the system was overloaded by 698%—
meaning 6.98 processes had to wait for their turn to be processed out of

7.98 processes in a single CPU system.

These days most of the system has two or more CPUs. To calculate the system
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load avg per CPU, we need to divide the load avg by the number of processors
that are available on the system.

CPU load vs CPU utilization

The study of different load indices by Ferrari et al. [84] showed that CPU load
information based on process queue length is much better to have an idea
about the system’s overall load. On the other hand, CPU utilization only tells us
the CPU consumption. We have no idea how the system is overloaded once the
CPU reaches its maximum utilization [84]. System load information is more
useful for load balancing and measures how the overall system will behave
under a particular setup (e.g., in our case system running PPSN).

Listing 6.2: SystemInfo.h for calculating CPU Load

#ifndef SYSTEMINFO H
#define SYSTEMINFO H

#include <string>
#include <fstream>
#include <iostream>
#include <vector>

using namespace std;

class SystemlInfo

{
public:
SystemlInfo ();
string get _cpulLoad ();
private:
float cpuload;
void fetch cpulLoad from system ();
size t get logical cores ();
float calculate cpu_usage percentage
(float raw cpu usage);
const vector<string> explode
(const string& s, const char& c);
¥

#endif
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PPSN system load average

To calculate our PPSN system load average, we have made a C++ application
to measure system load average, including the OS and streamlined required
processes. For easy integration, we have made a custom header "SystemInfo.h"
(Listing 6.2) which provides us with necessary methods to get the CPU Load
in percentage. "SystemInfo.cpp" implements all the methods that we have in
"SystemlInfo.h". To get the CPU load, first, we read the kernel scheduling entity
file "/proc/loadavg" to read UNIX load average numbers. After that, we read
the total number of available system cores, which will be our divisor for getting
the per core system load average. To get the number of total logical cores, we
are reading the file "/proc/cpuinfo" and extract the number of siblings of the
system. Then, we will calculate the percentage and return it from the public
function get cpuLoad().

Listing 6.3: Calculate CPU usage method logic

float SystemlInfo::
calculate cpu_usage percentage (float raw_cpu usage){

float calculated cpu usage = 100 * (raw_cpu_usage
/ static_cast<float>(get logical cores ()));

return calculated cpu usage;

}

Listing 6.3 shows the logic and calculation process of the
"calculate_cpu_usage percentage" function body which sets the cpuLoad prop-
erty. Finally, we return the cpuLoad property from "get cpuLoad" public
method.

6.1.3 Noise performance

Noise performance in the PPSN system is defined by the uncertainty of obser-
vation, whether it is correct or not. The more uncertain an observation gets,
the system achieves the more noise performance. Noise performance is given
by a probability function of the number of total active users and the amount
of noise in the PPSN system. In PPSN system’s noise performance context, if
an adversary wants to observe a message and wants to know if that message is
from either a real user or fake noise. Then the probability of that message from
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a real user is the factor of the real active users and the inverse of total active
users, including noise (given that all the active users and generated noises
participate in that traffic with a single message). Therefore, the metrics of the
noise performance of the PPSN system—probability of an observation o being
a real user’s message is:

"Ry '
Prlo|Ru] = (2?21’][1%) l+ . if Prlo|Rul e R:0 < Pr[o|Ru] <1
(6.3)

Where, real user’s message is Ru, total number of active real users in the PPSN
system is n, and total number of noise in the PPSN system is 5

6.2 Experimental setup

Series of experiments have been done to evaluate the performance of the
PPSN system. A single machine is used to perform all the experiments and
run the barebone implementation of the PPSN system (discussed in chapter
5). The specification of that experimental machine is as follows: Processor:
8th Generation Intel® Core™ iy Processor @ 1.80GHz (4.60GHz Turbo, four
cores and eight threads) [85], Memory: 16.0GB of DDR4-2400 RAM (Max
memory bandwidth 37.5 GB/s), and Graphics: Mesa Intel® UHD Graphics
620 (WHL GT2) @ 300-1200 MHz. The machine runs 64bit Linux operating
system (Ubuntu v20.04.1 LTS, kernel version 5.4.0-48-generic), gcc v9.3.0,
nodejs v10.19.0, ZeroMQ v3.

A single application runs to emulate user traffic, using multithreading and
process forking. SN backend consists of a single application which emulates
SN backend endpoints with multithreading and process forking. A handful
of TCP/IP socket connections have been used to emulate user traffics and
SN backend traffic to avoid running out of source TCP/IP sockets—meaning
one single application emulates all the user traffic and multiple application
emulates the SN backend endpoints. Three independent applications have been
used to emulate The PPSN server array throughout the experiments where
the number of users varies. The PPSN system performance with respect to the
number of servers in the PPSN server array uses fifty thousand constant users.
RSA key length 2048bit and AES key length 256bit have been used throughout
all the experiments. The final message size around 5KB each. On average, for
any given time, 10% of users communicated through the PPSN system. All the
servers in the PPSN server array add noise, n = 10,000 each (higher amount
of noise—Noise, n = 500, 000—stalls the machine).

Experiments have been done for one round of end-to-end communication—
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Figure 6.1: An adversary can only see the incoming and outgoing encrypted messages
if the first server (1% server in the PPSN server array figure 4.1, from top
to bottom) in the PPSN server array gets compromised. If at least one
server in the PPSN server array is honest, an adversary should not be able
to tell about the content of the messages and original destination of the
messages.

message from a user to SN backend. A user puts the time in the message
before starting the encryption process and sends the message through the
PPSN server array. SN backend receives the message and derives the time
difference—Ilatency—after decrypting the message. Since every application
is running on the same machine, time synchronization does not affect the
precision of the latency. Each experiment runs for 1, 5 and 15 minutes. For each
run, the total amount of latency and the total number of processed request has
been calculated and then finally, average latency has been calculated. System
load average for 1, 5, and 15 minutes have also been calculated using a C++
application. Lastly, each test has been performed five times and averaged to
reduce the margin of error.

6.3 Privacy evaluation of the PPSN system

Evaluation of the privacy of a system is as difficult as formalizing the privacy of
a system as the power of adversary is always unknown. Besides, over time tech-
nology improves and situation changes. Today’s best privacy-practise might not
be ideal tomorrow. With that said, this section qualitatively and quantitively
evaluates the privacy achieved by the PPSN system with respect to the PPSN
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Figure 6.2: Identifiability of a real user in the PPSN system for a different amount of
constant noise when varying the number of active users in the system.

system’s design goals (§4.1) for the presumed adversary model (§4.2). Fur-
thermore, this section also analyses whether the proposed system architecture
(84.3) can satisfy all the design goals (§4.1) or not.

The PPSN system architecture, depicted in figure 4.1 has two servers with
blackhat on them to denote the compromised server. According to the threat
model (§4.2) of the PPSN system, at least one server in the server array needs
to be honest in order to have the integrity of the PPSN system.

Since the entry server is presumed to be compromised, an adversary can see
all the requests and responses—illustrated in figure 6.1. However, an adversary
neither know the final destination of the messages nor the content of the
messages; it only knows the next hop for the message (i.e., the next server
in the PPSN server array). Since there are several users, and SN backend
endpoints are connected, it gets more challenging for the adversary to know
who is communicating with whom. In addition to that, the presence of noise
makes it even more challenging for an adversary even though most of the users
are malicious or controlled by that adversary. An adversary on the entry server
can identify the SN backend endpoints if SN backend uses the same host over
and over again but it does not help as the message size for both the SN backend
and users are the same. Therefore, users metadata is preserved and fulfilling
the 4™ design goal (§4.1) of the PPSN system. Moreover, the message content
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Figure 6.3: An adversary can only see the message-box access counts if the last (3™
server from figure 4.1, from top to bottom) server in the PPSN server
array gets compromised. If at least one server in the PPSN server array
is honest, an adversary should not be able to tell about the order of the
messages, a correlation between accessing the message-box, the origin of
the messages and the content of the messages.

is encrypted, and user data is also hidden, satisfying the 1°* design goal (§4.1)
of the PPSN system.

Sensitive user data is also hidden inside of the SN backend by encrypting the
data with a random symmetric key and then encrypt that symmetric key with
user’s public-key and finally forgetting the symmetric key. If SN backend gets
compromised and if the adversary has no access to the code, then an adversary
will not be able to see the user or the data which satisfies the 1st, 5th and 6™ of
PPSN system’s design goals. Since users are identified by their public keys, and
every operation in SN backend needs user validation, it becomes RSA and AES
encryption breaking problem. In the PPSN system’s case, that would take 300
trillion years for breaking the 2048bit RSA key, and it would take 2,117.8 trillion
years to break the AES encryption §2.3.4. I addition to that, if an adversary has
full control of the SN backend, it will still not be able to trace the user because
of the PPSN system’s server array. Because each server only knows the adjacent
servers, adds noise, shuffles all the message, including noise before passing it
on to the next server, which provides untraceable communication satisfying
the 2nd and 3rd design goals.

Finally, in figure 4.1, it shows that the 34 server is also compromised (a blackhat
is on the third server in the PPSN system’s server array). Figure 6.3, illustrates
what an adversary can tell after compromising the last server on the PPSN



74 chapter 6 / evaluation

server array. It gets the messages with all the layer removed and the destination
message-box id. However, by the design principles of the PPSN system, the
message is still encrypted and can only be decrypted by a valid addressee. In
addition to that, the requests are shuffled, and number noises are added from
the previous server. As long as the server in the middle is honest and does not
reveal it is a shuffle, then the adversary in the 3™ server will not be able to
read the content or correlate the message.

Noise is essential for anonymizing users metadata. It serves the purpose of
making an adversary confused about a message whether if its from a real user
or not. Noise performance is evaluated by the evaluation method discussed in
6.1. Figure 6.2 shows the confidence level of an adversary about an observation
being a message from a real user. To illustrate it, if an adversary makes an
observation o, then the probability of o being a real user is higher for a lesser
amount of noise—meaningless privacy. A higher amount of noise gives a lower
probability of o being real user which means higher privacy. Honest users can
also be used as noise for a set of messages that an adversary tries to observe.
However, for the simplicity of the calculation, it was not included in the noise
performance function.

PPSN system also thought about dynamic random noise addition by each server
for tighter privacy and metadata hiding. However, the asymptotic performance
of the dynamic noise addition is impractical as it increases the time complexity
for a substantial user base. For n users, and m servers in the PPSN server array,
the asymptotic performance of the system in terms of noise, T'(n, m) is:

T(n,m) € O(nx2™1) as(n,m) — o (6.4)

Where each user requires its own SN backend endpoint and the entry server
in the PPSN server array does not add any noise.

6.4 Performance of the PPSN system

In order to evaluate the PPSN system, several experimentations on the barebone
implementation of the PPSN system (chapter 5) have been done to observe
how the system behaves under different parameters (i.e., number of online
users, number of servers in the PPSN server array). All the experimentation
has been done using the experimental setup discussed in §6.2. The PPSN
system is heavily dependent on asymmetric encryption which is CPU bound.
Although adding noise increases the I/0 operations between the servers, it is
insignificant compared to the CPU cost. However, to keep the Pr(Ru) function
below 0.5, the PPSN system adds constant noise with respect to users. Therefore,
bandwidth increases significantly for noise addition. Nevertheless, the barebone
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Figure 6.4: Performance of the PPSN system’s end-to-end communication while vary-
ing the number of users with three servers in the PPSN server array and
10Kk noise.

implementation of the PPSN system uses a lower constant amount of noise for
simplicity and some privacy edge.

End-to-end latency and system load average are the key performance metrics
that have been used to evaluate the performance of the barebone implementa-
tion of the PPSN system. The latency of the PPSN system has been measured
both for a variable number of users and a variable number of servers in the
PPSN server array. Likewise, the system load average of the PPSN system has
been measured both for a variable number of users and a variable number
of servers in the PPSN server array. Method of evaluation discussed in §6.1.1,
86.1.2 has been used to measure the latency and system load average.

6.4.1 End-to-end latency of the PPSN system

The end-to-end latency of the PPSN system gives an idea about the practicality
and feasibility of the system in the context of users and the number of servers
in the PPSN server array. PPSN barebone implementation (Chapter 5) has been
run on the experimental setup discussed in §6.2 to measure the latency of the
system by using the method of evaluation discussed in §6.1.1. PPSN system’s
end-to-end latency is measured for one round of communication. That includes
the symmetric encryption of the message, layered asymmetric encryption for
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Figure 6.5: Performance of the PPSN system’s end-to-end communication when vary-
ing the number of servers in the PPSN server array with 5ok users and 10k
noise.

preparing the message for the PPSN server array in client-side, and layered
decryption of the message, adding noise and shuffling in the PPSN server array.
In other words, latency is measured for a complete journey of a message from
a user to the SN backend in the PPSN system.

In the PPSN system, the latency largely depends on the number of active
users and the number of servers in the PPSN server array. Latency also largely
depends on the amount of noise each server produce. However, the barebone
implementation adds very little noise (i.e., n = 10k), and therefore the impact
on server latency is negligible. Figure 6.4 plots the latency of the PPSN system
in seconds with respect to the number of active users in the PPSN system.
Likewise, PPSN system latency! has also been shown in figure 6.5 with respect
to the number of servers in the PPSN server array. The following two paragraphs
outline the results analysis of the test for the PPSN system latency in terms of
users and the number of servers in the server array.

1. The method of measuring the PPSN server latency is discussed in §6.1.1
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Result and analysis

Figure 6.4 shows that the end-to-end latency of the PPSN system scaled linearly
with the increase of the number of active users in the PPSN system where 10%
of the users actively participated in the communication and three servers in
the PPSN server arrray. Likewise, the end-to-end latency of the PPSN system
also rises linearly with the increase of the number of servers used in the PPSN
server array depicted in figure 6.5 where 10% of the users actively participated
out of 50k active users.

For every 25k of user increase, the end-to-end latency of the PPSN system
increased about 2 seconds, then it picks up more quickly (>4s) for 100K users
and beyond (figure 6.4). On the other, the series addition of each server in the
PPSN system’s server array increases the end-to-end latency by a second then
it picks up more quickly (>2s) for four servers or more in the PPSN system’s
server array. Lastly, both of them has an overhead of communication round—the
waiting time of a server to collect requests for a round specific time (10s in this
case). Figure 6.4 and figure 6.5 also shows that the 1-minute system latency is
higher than 5 minutes and 15 minutes system latency. Longer executions (e.g.,
for 15 minutes) have low end-to-end latency, and shorter runs have a higher
end-to-end latency—this phenomenon caused by the peak bursts of process
forking and threads in the system. However, with the passage of time, the peak
evens out and provides lower end-to-end latency for longer runs like 5 minutes
and 15 minutes.

6.4.2 System load of the PPSN system

The system load of the PPSN system gives an idea about the computational
power required to run the PPSN system in the context of the number of users
and the number of servers in the PPSN server array. The method of evaluation
discussed in §6.1.1, and the experimental setup discussed in §6.2 are used to
test the system load for the prototype implementation (Chapter 5) by varying
the number of users while keeping the number of servers in the PPSN system
constant at three.It measures the load of end-to-end message transmission
between the users and the SN backend endpoints for a given time. Therefore
system load measurement includes the symmetric encryption of the message,
layered asymmetric encryption for preparing the message for the PPSN server
array in client-side, and layered decryption of the message, adding noise and
shuffling in the PPSN server array.

In the PPSN system, end-to-end server latency is proportional to system load as
both behave the nearly identical with the increase of the users or the addition
of the new servers in the PPSN server array. System load also largely depends
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Figure 6.6: PPSN system’s overall system load average when varying the number of
users with three servers in the PPSN server array and 10k noise.

on the number of noise. For ease of the testing Noise, n = 10k is used for both
of them. System load with respect to the number of active users in the PPSN
system is shown in figure 6.6. Likewise, figure 6.7 shows the PPSN system’s
load average? with respect to the number of servers in the PPSN server array.
Results and analysis of the system load average for the PPSN system is as
follows:

Result and analysis

System load average in percentage for end-to-end message communication
has been shown in figure 6.6 for a variable number of active users and three
servers in PPSN server array for 1 minute, 5 minutes and 15 minutes. System
load increases as the number of active users in the system increase—where
10% users participated in the actual message transmission (figure 6.6). System
load average for 1 minute fluctuates a bit more than the system load average for
5 minutes and 15 minutes (figure 6.6). In contrast to the system load average
for 1 minute, the system load average for 15 minutes increases steadily with
the number of users (figure 6.6). In addition to that, the system load average
for 5 minutes behaved almost the same as 15 minutes system load average with
a higher system load average until 100k active users (figure 6.6).

2. The method of measuring the PPSN server load average is discussed in §6.1.2
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Figure 6.7: PPSN system’s overall system load average when varying the number of
servers in the PPSN server array with 5ok users and 10k noise.

Likewise, figure 6.7 shows the system load average in percentage for end-to-end
message communication for a variable number of servers in the PPSN server
array for 5ok active users (around 10% of the users participated in the message
transmission) for 1 minute, 5 minutes and 15 minutes. Furthermore, figure 6.7
depicts how system load increases with an increased number of servers in the
PPSN server array. The slope of the system load average remains roughly the
same until the PPSN server has two servers in its server array (figure 6.7).
However, for three or more servers in the PPSN server array results in higher
slopes—meaning higher system load average for 5 minutes and 15 minutes
system load average (figure 6.7). Surprisingly, figure 6.7 shows that the peak
load average—i1-minute system load average—does not fluctuate significantly
compared to 5-minute and 15-minute system load for variable servers in the
PPSN server array.

Lastly, from figure 6.6 and figure 6.7, the 1-minute system load is higher than
5 minutes and 15 minutes system load. In other words, longer runs have lesser
system load, and shorter runs have a higher system load. This is happening
because of the peak load of the testing (i.e., the bursts of process forking and
threads in the system), and over time the peak spreads out and provides lower
system load for longer runs.






Discussion

This section outlines the discussion of the privacy arguments of the PPSN
system, its design choices, implementation and evaluation. Conclusively, this
section also frames the discussion about the objective of this thesis.

Privacy argument. The PPSN system does not provide a factual list of
which data are private, but rather gives an idea of what kind of data is possibly
private and public, and a concept of data segregation. However, the PPSN
system does encrypt all the user data. Needless to say, PPSN does not need
to know which data from a user should be encrypted or not, since any data
that is not protected, reveals metadata. The PPSN system followed a naive
data segregation approach—any data from users are considered as private,
and any data from public APIs are considered as public data. Consequently,
all the private data is protected, and the public data stream directly connects
to the SN backend since it does not require data hiding. In some exceptional
cases, public APIs may need protection, but the PPSN system does not support
this feature.

System performance. End-to-end system performance of the PPSN system
has been measured and evaluated in terms of end-to-end system latency and
end-to-end system load in §6.4. The PPSN server latency and system load
behave as expected—higher latency for a higher number of users in the system
and higher system load for higher servers in the PPSN server array. However,
the end-to-end system latency and system load for more servers in the PPSN
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server array has a smaller change in latency and system load compared to
increasing users. This phenomenon occurs because users are more computation
heavy than the servers in the PPSN server array, as the users need to perform
the message enveloping and layered encryption. However, the RSA algorithm
encryption process is slightly faster than the decryption process. On the other
hand, servers in the PPSN server array only takes off one layer of encryption
and adds noise. This scenario would have been changed if the users emulated
from a different machine and PPSN server array in another machine as each
server in the PPSN server array needs to process (n + 1) requests.

Design choices. Data enveloping is one of the core design choices in the
PPSN system, which reduces the encryption time significantly by combining
the asymmetric encryption and the symmetric encryption. RSA is used as
asymmetric encryption, and AES is chosen for symmetric encryption. However,
there are other alternatives for asymmetric and symmetric encryption like DH
[86], algorithm RCs [87], DES [88] and more. Nevertheless, the performance
of those algorithms do not vary that much. In this thesis, the current standards
of encryption methods are chosen. Protocol buffer has been used instead of
JSON to shrink the message size and to provide data security to some extent,
as it needs a schema to decode the binaries.

Prototype trade-offs. The barebone implementation of the PPSN system
does not implement the whole proposed system, but instead implements the
minimum viable product to demonstrate and experiment with it. Therefore
the implementation serves as a proof of concept. It implements a round of
end-to-end communication between users and SN backend. Moreover, it does
not implement the commencing protocol, but it implements the communication
protocol. SN backend is a dummy server application which implements only
the interface of the PPSN system. However, any legacy SN system can be used
as an SN backend in the PPSN system with the PPSN interface implemented
in it.

Scalability. The PPSN system design does not allow adding servers for
scaling purpose. Adding more servers in the PPSN server array, would increase
privacy as it adds another layer of encryption and more noise addition. Not to
mention one more extra server for an adversary to compromise. However, this
cost of extra encryption and noise adds up—meaning scaling it down by adding
more servers instead of getting higher throughput and lower latency. There
could be a workaround where one can think each server in the PPSN server
array as a block of servers. These blocks are connected in series and servers
inside the block are connected in parallel. Therefore, scaling is possible in this
setup by adding more servers in a block. However, this will create a bottleneck
because other blocks have not been expanded. Therefore, every block in the
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PPSN server array needs to have the same amount of server expansion to
achieve scalability. It is not a cost-effective solution, and scaling up the PPSN
system is expensive.

Fault-tolerance. Unfortunately, the PPSN system has no fault tolerance
in the PPSN server array, as all the servers have to participate in making the
communication untraceable. If one server in the PPSN server array fails, then
the entire system goes offline. Fault-tolerance could be achieved by the same
block of server concept discussed in the earlier paragraph Scalability. However,
SN backend has some degree of fault tolerance by nature of its virtual endpoint
design, where each SN backend endpoint is assigned to serve a user. In case
of one SN backend endpoint failure, users can request for another round with
different SN backend endpoint.

An Ideal experimentation. In this thesis, all the tests have been per-
formed inside a single machine. The experimental setup should have run on a
different server in the different data centre to simulate the real-world scenario.
However, one of the subjects in this thesis is the proof of concept of the PPSN
system design, and it does that. Nevertheless, user bottlenecking has been tried
to reduce by throttling down the user requests as the experiments run on a
single machine. Network bandwidth performance has not been explored since
the PPSN system is CPU bound and ran on a single machine.

Settling the research problem. This thesis began with a research prob-
lem (81.3) of ensuring user privacy in SN system (§2.1.2) and sought to answer
the research questionaries throughout the thesis. It answers the question about
privacy issues in the SN system (§2.1.2) in chapter 3. Subsequently, it answers
the question of technical requirement to make the SN system private yet practi-
cal and feasible in chapter 4. Finally, it answers how to implement (Chapter 5)
and evaluate (Chapter 6) the privacy-preserving smart nudging (PPSN) system
that satisfies the identified privacy requirements for SN system. Indeed, this
thesis answers all the three research questions that it aimed to answer.






Future work

This thesis only implements a barebone prototype of the PPSN system, which
lacks features. Hence, a complete implementation of the PPSN system is essen-
tial to evaluate it in a real-world setup (e.g., distributed server in a distributed
data centre and with real users) is left for future work.

Clients (i.e., users) are found to be computational heavy from the results of
experimentation. The enveloping and layered encryption could be done in a
better way, which requires further study.

The experimentation in this thesis uses only a single machine to experiment
with the PPSN system. Ideally, for more precise performance evaluation, the
experimentation should take place on a different physical server, and it is left
for the future.

Finally, this thesis only theoretically explains how the PPSN system achieves
privacy. No attacks have been performed practically to test how secure the
PPSN system is. Performing various kind of practical attacks on the PPSN
system could reveal some security holes in real-life, which are left for future
work.
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Conclusion

The contribution of this thesis, privacy-preserving smart nudging system (PPSN)
is the first of its kind in smart nudging for green transportation system that
achieves GDPR compliance and provides strong privacy by hiding both the
content and the metadata. Furthermore, PPSN system protects users and their
data from traffic analysis and data breach from strong adversaries.

This thesis achieves it by thoroughly studying the SN system, GDPR, various
cryptographic schemes, secure communications, and various private messaging
systems. Then delivers a comprehensive design and a proof of concept—the
PPSN system that satisfies the design goals and solves the privacy issues of
legacy SN system.

It accomplishes this level of privacy by identifying unprotected variables it
needs to hide then encrypting as much data as possible and then adding noise
in them whatever is not encryptable. Finally, the PPSN system tries to minimize
the difference between the states of the system over time by employing round
conversations and data padding. Altogether these techniques help the PPSN
system to accomplish adequate privacy and security for both the users and
the SN system in terms of GDPR, yet making the system practical and feasible
enough for real-world usage.
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