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Abstract

The aim of this thesis was to investigate the effects of transcranial direct current stimulation
(tDCS) as a memory enhancer in Alzheimer’s disease patients and healthy individuals. In
addition, we wanted to study how verbal memory functions are related to hippocampus

subfield volumes.

This thesis consists of three reports, in which two of the reports (I and I1) aimed to study the
effects of tDCS, and the other report (111) focused on verbal memory and subfields of the
hippocampus. In all three reports, the California Verbal Learning Test Il (CVLT-I1I) was used
to assess verbal memory functions. The CVLT-II is normed for age and sex and is a widely

used memory test, in both experimental and clinical settings.

In reports I and 11, the effect of a stimulation method called “transcranial direct current
stimulation (tDCS)” was investigated. This is a noninvasive method in which two or more
electrodes are placed on the scalp. The electrode positioning depends on the area intended to
be stimulated. A weak direct current is delivered through the scalp and aims to increase
cortical excitability (i.e., aims to make the neurons more capable of responding to stimuli).
The stimulation electrode (the anode) was placed over the temporal cortex, whereas the

reference electrode (the cathode) was placed over the right frontal cortex.

In report I, we used a randomized controlled trial design in which 26 patients with
Alzheimer’s disease underwent six 30-minute sessions of tDCS stimulation during a two-
week period. Half of them received active tDCS stimulation, while the other half received
placebo tDCS. We found no significant differences between active and placebo tDCS, neither

in the primary outcome nor in the secondary outcome measures.

In report 11, 40 healthy participants underwent six tDCS sessions for two consecutive days.

Half of the participants received active tDCS, and the other half received placebo tDCS. No



significant differences were found in verbal memory outcomes. However, in the young
participants there was a significant difference between active and placebo tDCS in executive

functions measured by the Trail Making Test, part B (TMT B).

In report 11, we investigated the relation between verbal memory and hippocampal subfield
volumes in 47 right-handed healthy adults. T1-weighted MRI results were obtained using a
1,5 Tesla scanner. The results showed a significant correlation between left hippocampal
subfields volumes and verbal memory. However, no significant correlations were found

between right hippocampal volumes and verbal memory.

The overall conclusions are as follows: 1) In patients with Alzheimer’s disease, six 30-minute
sessions of active tDCS over a period of two weeks did not offer any significant
improvements in memory functions, compared to the placebo tDCS results. However, the
generalizability is limited due to the small sample size. 2) In healthy participants, six 30-
minute sessions of active tDCS for two consecutive days did not offer significantly better
memory outcomes, compared to the placebo tDCS results. 3) In healthy adults, there was a
significant correlation between verbal memory performance and left hippocampal subfield

volume.



Sammendrag

Hensikten med denne avhandlingen var a undersgke om transcranial Direct Current
Stimulation (tDCS) kan bedre verbale hukommelsesfunksjoner hos pasienter med Alzheimers
sykdom og friske deltakere, samt & undersgke sammenhengen mellom verbal hukommelse og

volum av hippocampus og sub-strukturer av hippocampus.

Avhandingen bestar at tre artikler, der to av artiklene (I og II) undersgkte effektene av tDCS,
mens den siste artikkelen (111) studerte verbal hukommelse og hippocampus volum. 1 alle tre
artiklene ble California Verbal Learning Test Il (CVLT-II) brukt som mal pa verbal
hukommelsesfunksjon. CVLT-II er en nevropsykologisk test som er normert for bade alder og

kjgnn og er mye brukt i forskning og klinikk.

| artikkel I og Il ble effekten av tDCS undersgkt. Dette er en ikke-invasiv metode der to eller
flere elektroder plasseres i hodebunnen, over det omradet man gnsker a stimulere. En svak
likestram gar gjennom hodeskallen og har til hensikt & pavirke kortikal eksitabilitet (dvs. at
nevronene reagerer lettere pa stimuli). Stimuleringselektroden (anoden) ble plassert over
venstre temporal korteks, mens referanse elektroden (katoden) ble plassert over hgyre frontal

korteks.

| artikkel I brukte vi et randomisert kontrollert design der 26 pasienter med Alzheimers
sykdom fikk seks behandlingssesjoner med tDCS i lgpet av to uker. Varigheten pa hver sesjon
var 30 minutter. Halvparten av pasientene fikk aktiv tDCS, mens den andre halvparten fikk
placebo tDCS. Vi fant ingen signifikant forskjell mellom aktiv og placebo tDCS, hverken pa

primzre eller sekundaere utfallsmal.

| artikkel I1 fikk 40 friske deltakere seks sesjoner med tDCS, fordelt pa to pafelgende dager.

Halvparten av dem fikk aktiv tDCS, men den andre halvparten fikk placebo tDCS. Det ble



ikke funnet noen signifikant forskjell i verbal hukommelsesfunksjon, men det var en
signifikant forskjell mellom aktiv og placebo tDCS i eksekutiv funksjon hos de yngre

deltakerne, malt med Trail Making Test B (TMT-B).

| artikkel Il undersgkte vi sammenhengen mellom verbal hukommelsesfunksjon og
hippocampus volum hos 47 hgyrehendte voksne deltakere. En MR scanner med 1,5 tesla ble
benyttet. Resultatene viste en signifikant korrelasjon mellom venstre hippocampus volum og
verbal hukommelse, mens det derimot ikke var noen signifikant korrelasjon mellom hgyre

hippocampus volum og verbal hukommelse.

Konklusjonene fra de tre rapportene var falgende: 1) Hos pasienter med Alzheimers sykdom
gir ikke seks 30 minutters seksjoner med aktiv tDCS i lgpet av to uker noen signifikant
forbedring i hukommelsesfunksjon, sammenliknet med placebo tDCS. Det var imidlertid fa
deltakere, noe om begrenser generaliserbarheten 2) Hos friske deltakere ga ikke seks sesjoner
med 30 minutter aktiv tDCS over to pafalgende dager noen signifikant forbedring i
hukommelsen, sammenliknet med placebo tDCS 3) Hos friske deltakerne var det en

signifikant korrelasjon mellom verbal hukommelse og venstre hippocampus volum.



Transcranial direct current stimulation as a memory enhancer in healthy participants

and patients with Alzheimer’s disease

Introduction

The idea that electrical currents may affect our brain has persisted for two thousand years.
Roman physician Scribonius Largus claimed that placing an electrical torpedo fish over the
scalp could reduce headaches (Sarmiento, San-Juan, & Prasath, 2016). One of the first trials
with electrical current treatment methods for melancholia was conducted in the middle of the
18™ century (Sarmiento et al., 2016). However, during the 19" century, there was an increasing
interest in investigating the possible electrical current treatment methods for mental disorders.

A method that gained ground during the last 20 years is transcranial direct current
stimulation, abbreviated “tDCS”. The application of tDCS is noninvasive, associated with few
adverse effects, simple to use and inexpensive (Nitsche & Paulus, 2011). The current is a low
direct current, usually as low as 1-2 mA, delivered through electrodes placed on the scalp
(Nitsche & Paulus, 2011).

tDCS must never be confused with “electroconvulsive therapy” (ECT). The latter
involves anesthesia, and the current used is far stronger and leads to seizures (Higgins &
George, 2009). While ECT is primarily used in psychiatric hospitals as a treatment method for
severe depression, tDCS has a broader area of application. The applications of tDCS range from
the treatment of chronic pain (Fagerlund, Hansen, & Aslaksen, 2015) to enhancing cognitive
functions in healthy individuals (Chi, Fregni, & Snyder, 2010). Patients can even administer
tDCS treatment themselves with preprogrammed devices optimized for this purpose. This broad
application, combined with few adverse effects (mainly redness, itching and tingling), may have
led to an increased use of and interest in tDCS (Brunoni et al., 2011).

tDCS also differs from transcranial magnetic stimulation (TMS). TMS delivers a brief
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electrical current through a coil that leads to a magnetic field. This magnetic field is delivered
across the skull and alters neuronal activity (Priori, Hallett, & Rothwell, 2009). While tDCS
relies on a weak direct current, TMS relies on a magnetic field (Priori et al., 2009). Both TMS
and tDCS aim to change cortical excitability (i.e., make the neurons more capable of responding
to stimuli) (Fregni & Pascual-Leone, 2007). tDCS is better suited for double blind studies than
TMS. This suitability is as such because tDCS leads to minimal scalp sensations, while TMS
may lead to strong scalp sensations, and it is challenging to induce such scalp sensations for
placebo TMS (Priori et al., 2009).

Most tDCS studies use either “anodal” stimulation or ‘“cathodal” stimulation. The
difference between these two stimulation methods is the polarity. Anodal stimulation induces
excitatory effects, while cathodal stimulation decreases excitatory effects (DaSilva, Volz,
Bikson, & Fregni, 2011). Usually, the anode is referred to as the “stimulation electrode”,
whereas the cathode is referred to as the “reference electrode”. The reports in this thesis used
anodal stimulation, i.e., the anodal electrode was placed above the brain area to be stimulated.

It is estimated that approximately 50% of the current enters the cortex through the skull,
in both humans and monkeys (Nitsche, Kuo, Paulus, & Antal, 2015). Undeniably, some of the
current will not reach the cortex because of the skull, cerebrospinal fluid, blood, etc. One study
(Underwood, 2016) claimed that only 10 % of the current reached the tissue. However, this
result was obtained in a cadaver with dead brain tissue, making a comparison to living tissue
difficult.

Electrode positioning can be important for the efficacy of tDCS stimulation. Both
computational modeling studies and studies monitoring physiological changes from tDCS
stimulation suggest that positioning can affect stimulation efficacy (Woods et al., 2016). In
general, the stimulation electrode should be placed on the scalp above the cortical area to be

stimulated (DaSilva et al., 2011; Woods et al., 2016). For instance, placing the anodal electrode
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above the frontal lobe may be most appropriate for depression due to the assumption that
depression is associated with hypoactivation of the frontal lobes (Palm, Hasan, Strube, &
Padberg, 2016).

Most studies use a current strength of 1-2 mA (Bikson, Datta, & Elwassif, 2009). Some
studies have investigated the effect of 4 mA (Chhatbar et al., 2017). However, for safety
reasons, it is recommended to not exceed 2 mA (lyer et al., 2005). Reports (I and Il) in this

thesis applied a current strength of 2 mA.

Neuroplasticity and the mechanisms of tDCS

The brain has a remarkable ability for adaptability and changing itself (Doidge, 2007). The
prefix neuro refers to the “neuron” (the nerve cells in our brain), while the suffix plasticity
means changeable, malleable and modifiable (Doidge, 2007). Learning and memory rely on
neuroplasticity (Petrovic et al., 2017).

Neuroplasticity can be observed throughout the life span. For instance, Envig and
colleagues (Engvig et al., 2010) investigated the effect of memory systems (mnemonics) in
healthy elderly individuals. They found that specific memory systems/strategies may improve
memory functions. Even more interestingly, they used magnetic resonance imaging and found
that eight weeks of such memory training increased cortical thickness.

Such neuroplasticity was also found in a study by Maguire and colleagues (Maguire,
Woollett, & Spiers, 2006). They investigated London taxi drivers by using neuroimaging.
They revealed that these taxi drivers had greater posterior hippocampal volume compared to
that of controls. It is reasonable to believe that such hippocampal volume was a result of their
need to navigate and remember a huge number of routes. Furthermore, physical activity may
enhance neuroplasticity (Hillman, Erickson, & Kramer, 2008). This enhancement was also
demonstrated in a study in which elderly individuals began aerobic exercise (Erickson et al.,

2011). Compared to the stretching group, the exercise group displayed both improved
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memory and neuroplasticity. At the one-year follow-up, it was found that participants in the
aerobic exercise group had increased hippocampal volume by two percent, whereas
hippocampal volume declined in the stretching group.

The potential for neuroplasticity seems to decrease with aging (Barnes, 2003; Rossini,
Ferilli, Rossini, & Ferreri, 2013). Such a decrease in neuroplasticity may explain why older
individuals experience more memory deficits than younger individuals do (Barnes, 2003).
Furthermore, Alzheimer’s disease leads to inhibited neuroplasticity (Kumar et al., 2017). To
improve memory functions in healthy individuals and patients with brain disorders, it is
reasonable to assume that enhancing neuroplasticity could be useful.

Long-term potentiation (LTP) is crucial for neuroplasticity. LTP is a long-term
increase in the excitability of neurons with respect to particular synaptic inputs caused by the
repeated high frequency of that input (Carlson, 2013). LTP involves a long-term increase in
synaptic strength (Bliss & Collingridge, 1993). This increase builds on the principle of “fire
together, wire together” and was demonstrated experimentally by Lemo several decades ago
(Carlson, 2013). A large number of studies have revealed that LTP involves an increase in the
number of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the
postsynaptic membrane (Carlson, 2013). Having more AMPA receptors leads to more
glutamate being bound, thus causing a larger excitatory postsynaptic potential (Henley &
Wilkinson, 2016). It is also assumed that LTP can be elicited by the activation of N-methyl-
D-aspartate (NMDA) glutamate receptors (Luscher & Malenka, 2012). We now know that
LTP forms the basis for neuroplasticity and for learning and memory (Petrovic et al., 2017).

The opposite of LTP is long-term depression (LTD). LTD is a long-term decrease in
the excitability of a neuron with respect to a particular synaptic input caused by terminal
bouton stimulation, while the postsynaptic membrane is hyperpolarized or only slightly

depolarized (Carlson, 2013). Thus, LTD involves a decrease in synaptic strength and a
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reduction in AMPA receptors (Henley & Wilkinson, 2016).

In the field of neuroplasticity, brain-derived neurotrophic factor (BDNF) has gained
ground (Tapia-Arancibia, Aliaga, Silhol, & Arancibia, 2008). BDNF is a neurotrophic factor
and helps support the growth and survival of neurons (Cunha, Brambilla, & Thomas, 2010).
BDNF promotes LTP (Cunha et al., 2010). Both aging and Alzheimer’s disease are associated
with lower levels of BDNF (Tapia-Arancibia et al., 2008).

The main mechanism of tDCS is to trigger neurons to stimulate or form new
connections (Giordano et al., 2017). tDCS aims to alter the resting state potential of neurons
and thereby induce neuroplasticity (Stagg & Nitsche, 2011). More specifically, tDCS
facilitates neural function by modulating cortical excitability (Stagg & Nitsche, 2011). It is
important to emphasize that tDCS does not directly cause neuronal firing but triggers
conditions that make neuronal firing more likely (Reinhart, Cosman, Fukuda, & Woodman,
2017).

Studies using functional magnetic resonance imaging (fMRI), electroencephalography
(EEG) and pharmacological approaches suggest that tDCS leads to neurophysiological
changes in the cortex (Venkatakrishnan & Sandrini, 2012). For instance, Keeser applied EEG
(Keeser, Padberg, et al., 2011) and fMRI (Keeser, Meindl, et al., 2011) and revealed that
tDCS stimulation can increase excitability and strengthen connectivity within different resting
state networks. Additionally, neuroimaging studies have found that during tDCS stimulation,
regional cerebral blood flow increases by 17% (Zheng, Alsop, & Schlaug, 2011).

Madeiros and colleagues (Medeiros et al., 2012) suggested that tDCS alters the levels
of neurotransmitters underneath the electrode. It has been found that a single tDCS session
increases the levels of glutamate, which is the primary excitatory neurotransmitter (Hone-
Blanchet, Edden, & Fecteau, 2016). Glutamate plays an important role in LTP (Granger, Shi,

Lu, Cerpas, & Nicoll, 2013). Furthermore, tDCS can lower the levels of gamma-aminobutyric
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acid (GABA), a neurotransmitter with inhibitory effects (Bachtiar, Near, Johansen-Berg, &
Stagg, 2015; Stagg et al., 2009). In addition, citalopram (a selective serotonin reuptake
inhibitor) can prolong the effects of tDCS stimulation of the motor cortex (Nitsche et al.,
2009). Furthermore, tDCS also increases the concentrations of calcium (CA2? and BDNF,
which play important roles in neuroplasticity (Das, Holland, Frens, & Donchin, 2016).

The excitatory effects of tDCS stimulation persist after the stimulation ends (Nitsche
& Paulus, 2001; Podda et al., 2016). Stimulation for nine minutes may elicit excitatory effects
after 30 minutes, whereas 13-minute stimulations lead to alterations that last for up to 90
minutes (Thair, Holloway, Newport, & Smith, 2017). It could be reasonable to assume that
longer stimulations will increase the duration of the after-effects compared to the duration
induced by shorter stimulations. However, Monte-Silva and colleagues (Monte-Silva et al.,
2013) revealed that tDCS sessions for longer than 26 minutes may lead to inhibitory effects
rather than excitatory effects. This outcome may result from a calcium overflow that impairs
neuroplasticity (Monte-Silva et al., 2013). In sum, the optimal duration of tDCS stimulation is
still uncertain.

Despite the fact that tDCS has been studied extensively, relatively few studies have
investigated the exact physiological mechanisms behind tDCS. Thus, the underlying
mechanisms of tDCS are not fully understood (Bennabi et al., 2014; Mohammadi, 2016).
Moreover, most mechanistic studies on the physiological effects of tDCS have focused on the
motor cortex. This focus is highly relevant for stroke patients if the stroke is located in the
motor complex but less relevant for other functions, e.g., memory functions (Medeiros et al.,

2012).

tDCS is a cognitive enhancer in healthy participants

As a cognitive enhancer, tDCS has gained interest. Improving cognitive abilities has

attracted attention. Psychologist Corneliu Giurgea even said, “man is not going to wait
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passively for millions of years before evolution offers him a better brain.” (Farah, 2015).

There is evidence that tDCS may improve cognitive functions in healthy people, i.e.,
verbal fluency, working memory, verbal episodic memory, visual memory, attention and
language processing speed (Tremblay et al., 2014). For instance, Ross and colleagues found
that tDCS could enhance name recall in both younger and elderly participants (Ross, McCoy,
Coslett, Olson & Wolk, 2011). Likewise, another study found that tDCS could improve verbal
memory in older and younger participants (Manenti, Brambilla, Petesi, Ferrari, & Cotelli,
2013).

A recent meta-analysis investigated 24 tDCS studies, with a total of 566 participants
above 60 years of age. They concluded that tDCS may ameliorate episodic memory in both
healthy and cognitively impaired older adults (Huo et al., 2019). Despite the evidence that
tDCS can improve cognitive functions, it should be emphasized that the results are mixed
(Tremblay et al., 2014). Over the past two decades, over 3000 articles have investigated the
effect of tDCS on different brain functions. Nevertheless, the studies investigating the effect
of tDCS on cognition rely on different tDCS protocols, and the results are inconsistent.

In addition, most studies rely on a single session of stimulation (Horvath, Forte, &
Carter, 2015). Consequently, this approach may limit the physiological effects. Since the
after-effects of a single tDCS session are relatively short lived (60-90 minutes), it is important
to rely on multiple sessions (Nitsche et al., 2015). To enhance cognitive function in daily life,
the effect must last longer than the experimental session. Horvath and colleagues (Horvath et
al., 2015) conducted a review and concluded that single tDCS sessions had minimal cognitive
effects in healthy participants. They also concluded that multiple sessions may generate better
effects.

Extending the duration of the tDCS sessions (longer than 30 minutes) does not seem to

produce better results (Nitsche et al., 2015; Woods et al., 2016). Hence, the use of multiple
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stimulations and a small interval between each stimulation is recommended (Nitsche et al.,
2015; Woods et al., 2016). Repeating the tDCS stimulation within a time window of 30
minutes may lead to more cumulative effects (Nitsche et al., 2015). Nitsche and colleagues
(Nitsche et al., 2015) suggest “simply prolonging stimulation duration seems not to be the
optimal strategy. The alternative might be the repetition of stimulation sessions” (p. 102).
Based on this recommendation, in report 11, we used a novel stimulation protocol with short
intervals between each tDCS session. There is clearly a need for better standardization among
tDCS protocols in healthy participants (Tremblay et al., 2014). In addition, the optimal tDCS
protocol for healthy participants needs to be further investigated. We still do not know
whether short intervals (as we investigated in report 11) are better than long intervals between
tDCS sessions.

Normal aging is associated with a steady decline in cognitive function, especially
memory functions (Ward, Berry, & Shanks, 2013). As the older population continues to grow,
methods to reduce age-associated cognitive decline have gained increasing interest (Hsu, Ku,
Zanto, & Gazzaley, 2015). Thus, in report Il in this thesis, tDCS was investigated as a

memory enhancer in both young and elderly participants.

tDCS is a cognitive enhancer in Alzheimer’s disease

Alzheimer’s disease is a degenerative disease and the most common type of dementia,
accounting for 60% of all cases of dementia (Blennow, de Leon, & Zetterberg, 2006). Due to
increased life expectancy, it is estimated that the prevalence of Alzheimer’s disease will
double during the next 30 years (Alzheimer's Association, 2019). The prevalence of
Alzheimer’s disease is less than one percent in people under 65 years of age, but for people
over 85 years, the prevalence is between 24 and 33% (Blennow et al. 2006).

Alzheimer’s disease leads to a progressive decline in cognitive domains. This decline

manifests as a steady decline in memory functions, orientation capabilities, executive
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functions, visuospatial abilities and verbal abilities (Alzheimer's Association, 2019; Mayeux,
2010). Memory impairment is a core symptom of Alzheimer’s disease. One meta-analysis
found memory decline to be the most pronounced symptom of Alzheimer’s disease
(Backman, Jones, Berger, Laukka, & Small, 2005), especially in the “mild stage”.

The progressive decline in Alzheimer’s disease can broadly be defined by three stages:
“mild Alzheimer’s disease”, “moderate Alzheimer’s disease” and “severe Alzheimer’s
disease” (Henderson & Jorm, 2000). In the mild stage, or “early stage”, individuals
experience difficulties acquiring new information and memory loss for recent events (for
instance, an inability to remember what happened yesterday). In the moderate stage, memory
loss may be more serious, and new information is immediately lost, but previous knowledge
can be retained (for instance, remembering children’s names). In this stage, the declarative
memory is profoundly affected, while the procedural memory is more intact. In the severe
stage, the memory loss is monumental, and only fragments of the memory are left (for
instance, remembering some events from childhood). In this stage, verbal function is usually
very impaired. This impairment means that both the ability to understand and to produce
words or sentences are severely affected. The life expectancy after diagnosis is estimated to
be seven-ten years in many studies (Zanetti, Solerte, & Cantoni, 2009).

The exact cause and pathological mechanisms behind Alzheimer’s disease are
uncertain. A common hypothesis is that Alzheimer’s disease leads to a massive loss of
neurons as a consequence of excessive levels of plaques (beta-amyloid) and tangles (tau-
proteins) in the brain (Alzheimer's Association, 2019; Mayeux, 2010). In the early stages of
Alzheimer’s disease, these pathological changes are especially prominent in the medial
temporal lobe, including the hippocampus and entorhinal cortex (Jack et al., 1997). Previous
studies also suggest that Alzheimer’s disease is associated with decreased acetylcholine and

neuroplasticity (Blennow et al. 2006). Furthermore, Alzheimer’s disease is associated with
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neuroinflammation in the hippocampus (Valero et al., 2017). Hence, it seems likely that
inflammatory processes are related to the pathology of Alzheimer’s disease (Frozza,
Lourenco, & De Felice, 2018).

Since Alzheimer’s disease is highly complex, it remains extremely difficult to find a
cure (Cummings, Morstorf, & Zhong, 2014). For instance, Cummings and colleagues
(Cummings et al., 2014) reviewed clinical trials from 2002—-2012 and found that the failure
rate for drug development in Alzheimer’s disease is 99,6 %. There are few treatment options
for patients with Alzheimer’s disease (Alzheimer’s Association, 2017). Pharmacologic
(medications) and nonpharmacologic (cognitive stimulation, physical exercise) therapeutic
approaches cannot cure the disease or slow the patient’s decline, but may provide a slight
improvement in symptoms (Alzheimer’s Association, 2017).

A groundbreaking cure for Alzheimer’s disease may be decades ahead. Thus, in the
near future, it will be important to investigate the effect of symptom-modifying treatments.
This aim was also recommended in a report from the Alzheimer’s Association in 2012, which
specifically emphasized the importance of investigating symptom-modifying approaches
(Alzheimers Association, 2012).

There are several suggestions regarding why tDCS may have beneficial effects in
Alzheimer’s disease (Hansen, 2012; Yu, Park & Sim, 2014). First, as previously noted,
Alzheimer’s disease is associated with impaired neuroplasticity (Koch et al., 2012). Thus,
impaired neuroplasticity may be a potential target for intervention (Kumar et al., 2017; Rajji,
2019). Increased neuroplasticity through tDCS may lead to improved memory functions (Hill,
Kolanowski, & Gill, 2011). Second, in Alzheimer’s disease, there is generally reduced
excitability within and atrophy of the temporal cortex (Tapia-Arancibia et al., 2008). tDCS
stimulation aims to improve such reduced excitability. Third, tDCS may increase levels of

acetylcholine (Seong Hun Yu, Seong Doo Park, & Ki Chel Sim, 2014), a neurotransmitter
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important for learning and memory. Alzheimer’s disease is linked to a reduction in
acetylcholine, and increasing levels of acetylcholine may be beneficial in Alzheimer’s disease
(Naik et al., 2009). Cholinesterase inhibitors (e.g., rivastigmine) are widely used in
Alzheimer’s disease to enhance the levels of acetylcholine (Naik et al., 2009). Fourth,
Alzheimer’s disease is also associated with low levels of glutamate (Li & Tsien, 2009). tDCS
may facilitate the glutamatergic process (Hone-Blanchet et al. 2016). Fifth, since Alzheimer’s
disease leads to a reduction in BDNF (Lee et al., 2005), tDCS may improve neuroplasticity by
increasing BDNF (Fritsch et al., 2010).

If these mechanisms of tDCS can be beneficial for patients with Alzheimer’s disease,
it may slow the progression of the disease. However, it would be more realistic to expect that
tDCS may be a symptom-modifying treatment. tDCS in Alzheimer’s disease may serve as a
symptom-modifying treatment by slowing cognitive decline and/or improving cognitive
functions for a short period of time.

It is of utmost importance to test whether tDCS can be a symptom-modifying
treatment in Alzheimer’s disease. To date, nine published studies have investigated the
efficacy of tDCS as a cognitive enhancer in patients with Alzheimer’s disease. There is still
limited evidence of tDCS as a symptom-modifying treatment in patients with Alzheimer’s
disease.

In the following studies, tDCS in Alzheimer’s disease was investigated. Ferrucci and
colleagues (Ferrucci et al., 2008) investigated the effect of three 15-minute sessions of tDCS
stimulation for patients with Alzheimer’s disease; temporoparietal areas were stimulated.
They found that scores on a word recognition test significantly improved, by 17% for anodal
stimulation compared to the results for placebo and cathodal tDCS stimulation.

Similarly, Boggio and colleagues (Boggio et al., 2009) delivered three 30-minute

tDCS sessions. These sessions included tDCS stimulation of the temporal cortex, tDCS
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stimulation of the frontal cortex and placebo stimulation in random order. The results revealed
that stimulation of the temporal cortex led to significantly better scores on a visual recognition
task.

Furthermore, Boggio and colleagues (Boggio et al., 2012) employed tDCS stimulation
of the temporal cortex. Each session lasted 30 minutes and was delivered for five consecutive
days. The results revealed that active tDCS stimulation improved visual recognition by nine
percent compared to a two-and-a-half percent improvement for placebo tDCS. The
improvement from the active tDCS stimulation persisted for a month after the last stimulation
session.

Another study by Khedr and colleagues (Khedr et al., 2014) reported that ten sessions
of 25 minutes of tDCS stimulation of the prefrontal cortex led to a significantly increased
score on Mini Mental Status Examination (MMSE) compared to the scores achieved after
placebo tDCS. The MMSE score improved by two points immediately after active tDCS
stimulation. This improvement increased by two more points at the two-month follow-up. In
comparison, placebo tDCS stimulation improved the MMSE scores by 0.4 points at the two-
month follow-up.

Cotelli and colleagues (Cotelli et al., 2014) used frontal cortex stimulation with ten
tDCS sessions in combination with computerized memory training. They investigated how
this intervention could improve face-name associations. There was no significant difference
between placebo and active tDCS stimulation in name-face associations.

Additionally, Suemoto and colleagues (Suemoto et al., 2014) applied tDCS over the
frontal cortex for six sessions during a period of two weeks. The aim of the stimulation was to
reduce apathy due to Alzheimer’s disease. No significant differences were found between
active and placebo tDCS.

More recently, Khedr and colleagues (Khedr et al., 2019) randomized patients into two
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groups, a placebo group and an active group. Each patient underwent 10 sessions of tDCS
stimulation for a total of 40 minutes. The stimulation sites were both the left and right
temporoparietal cortices for 20 minutes on each side. They found that active tDCS led to
significant improvements on cognitive test results (the MMSE, clock drawing test, and
Montreal Cognitive Assessment), whereas no such results were found in the placebo group.

Furthermore, Im and colleagues (Im et al., 2019) randomized patients into either active
or placebo tDCS groups that would undergo daily 30-minute stimulation sessions at home for
six months. Compared to the placebo group, active tDCS led to significant changes on
cognitive test results (MMSE, Boston Naming Test). However, no such effect was observed
for delayed recall. The regional cerebral metabolic rate for glucose (rCMRglc) in the
temporal/inferior gyrus was preserved in the active group but was reduced in the placebo
group.

The results from some of these Alzheimer’s studies are promising. However, there are
central methodological limitations, and tDCS cannot be seen as an adjuvant intervention in
Alzheimer’s disease (Buss, Fried, & Pascual-Leone, 2019; Kim, 2016). First, an important
limitation is that most tDCS studies focus on immediate effects (James Giordano et al., 2017;
Hsu et al., 2015). The application of tDCS as a therapeutic for Alzheimer’s disease seems
unlikely without more evidence of its long-term effects. There is clearly a need to study the
long-term effects of tDCS in Alzheimer’s disease (Cruz Gonzalez et al., 2018).

In their study, Im and colleagues (Im et al., 2019) applied a long-term intervention (for
six months). However, we do not know whether the effect of the six-month tDCS intervention
persisted after the last stimulation session. In general, very few studies have investigated the
long-term effects of tDCS, so the long-term effect is unknown (Cruz Gonzalez et al., 2018;
Vestito, Rosellini, Mantero, & Bandini, 2014).

Second, most studies are small-scale clinical trials with fewer than 30 patients (Kim,
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2016). Such small-powered studies limit generalizability. Thus, the results from the above
studies must be interpreted with caution.

Third, previous studies have relied on less advanced cognitive outcome measures.
Most studies relied on gross cognitive screening tools rather than neuropsychological tests
with better accuracy for testing specific cognitive functions. Two previous reviews
recommended that future studies on tDCS and Alzheimer’s disease rely on more sophisticated
cognitive outcome measures (Freitas, Mondragén-Llorca, & Pascual-Leone, 2011; Nardone et
al., 2011).

In this thesis, report | sought to overcome some of these methodological shortcomings.
We applied a randomized, placebo-controlled (RCT) design and applied more comprehensive
cognitive outcome measures. This application was in accordance with the recommendations

from previous reviews (Freitas et al., 2011; Nardone et al., 2011).

Memory functions

All reports (report I, report I, and report I11) in this thesis involve memory functions.
In report | and report 11, memory functions were the primary outcome measures, whereas in
report 11 cognitive and neurobiological aspects of memory were investigated.

Memory can be defined as the capacity of the brain to acquire and retain usable skills
and new information (Baddeley, 1999). For both humans and animals, memory functions are
core cognitive domains. Human memory can be divided into explicit and implicit memory
(Schacter, 1992). Explicit memory relies on conscious effort, while implicit memory is more
automatic/unconscious (Purves et al., 2008). Recalling information during an exam is an
example of explicit memory, whereas riding a bike is an example of implicit memory.

Encoding, storing and recall are the core processes of explicit memory function.
Encoding refers to processing the information so it can be stored, while storage is the

retention of the information and recall is the process of retrieving the acquired information
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(Gazzaniga & Heatherton, 2015). Hermann Ebbinghaus was the first psychologist who
studied our ability to recall information (Gazzaniga & Heatherton, 2015). He created
nonsense syllables and tried to remember a list of such syllables. He discovered, using himself
as the only research participant, that the ability to recall the information occurred rapidly
during the first hours and days, and later, there was a more steady, gradual decline (Pashler,
Rohrer, Cepeda, & Carpenter, 2007). This theory is often termed “the forgetting curve” or
“Ebbinghaus curve”. In addition, he also found that overlearning and repetition decreased
forgetting and could improve recall (Pashler et al., 2007).

Memory and learning are closely related concepts. However, there are some
differences. Learning is the process of acquiring memory, while memory is a behavioral
change caused by an experience (Gazzaniga & Heatherton, 2015). For instance, the ability to
acquire new words is learning, whereas the ability to recall the words is memory (Okano,
Hirano, & Balaban, 2000). tDCS aims to improve both learning and memory.

Explicit memory can be divided into episodic and semantic memory (Baddeley, 1999).
Semantic memory relies on facts, knowledge and concepts, whereas episodic memory builds
on events and experiences (Tulving, 2001). Contrary to semantic memory, episodic memory
relies on the recollection of past experiences (Tulving, 1985). For instance, to know that a
bike has two pedals is semantic memory and memories of riding a bike in the past are
examples of episodic memory. The ability to recall a list of words is an example of episodic
memory, more specifically verbal episodic memory.

Episodic memory can be divided into three parts: immediate recall, delayed recall and
recognition (Delis, Kramer, Kaplan, & Ober, 2004). Immediate recall are memories we can
recall without delay, for instance, repeating a history instantly. Delayed recall is our ability to
remember knowledge, information or past experiences after either short (ten minutes) or long

(months) intervals. Delayed recall requires a process referred to as consolidation. Squire and
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colleagues (Squire, Genzel, Wixted, & Morris, 2015) define consolidation as follows:
“Consolidation refers to the process by which a temporary, labile memory is transformed into
a more stable, long-lasting form”. Consolidation is our ability to transfer memory material
from immediate memory to long-term memory (Carlson, 2013) and also describes a newly
formed memory going through a transformation process in which the memory becomes
stronger and more resilient (Alberini, 2005).

Weston and colleagues revealed that delayed recall after seven days is a predictor for
developing Alzheimer’s disease (Weston et al., 2018). Delayed recall is also found to be a
stronger predictor for Alzheimer’s disease than both structural imaging and cerebrospinal
fluid biomarkers (Gomar, Bobes-Bascaran, Conejero-Goldberg, Davies, & Goldberg, 2011).
To distinguish age-related memory decline from Alzheimer’s disease, delayed recall (of a
word-list) has a sensitivity and specificity of 89% (Weissberger et al., 2017). One study
(Chandler et al., 2004) found that only three percent of healthy elderly adults had difficulties
with delayed recall of three words. For patients with Alzheimer’s disease, 87 % recalled no
words or one word.

Unlike recall, recognition involves a cue. Recognition is the ability to recognize
previous knowledge, for instance, to recognize family members and places. Both depression,
cerebrovascular disease (vascular dementia) and Lewy body dementia are associated with
delayed recall, whereas recognition is intact (Shankle et al., 2005).

A useful framework for understanding the relation between immediate recall and
delayed recall is the Atkinson-Shiffrin model of memory (Atkinson & Shiffrin, 1968). In this
model, short-term memory is responsible for short-term storage and is able to hold
information for 20-30 seconds. Short-term memory has a rapid rate of forgetting. Immediate
recall requires short-term memory. The information from short-term memory can be stored

more persistently in long-term memory through consolidation. In the Atkinson-Shiffrin
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model, short-term memory is similar to a bottleneck since the information must pass from
short-term memory to be stored in long-term memory. Long-term memory has a large storing
capacity, but quite the opposite is true for short-term memory (Higbee, 2001). Short-term
memory can be compared to an in-basket on an office desk, whereas the long-term memory
would be like the file cabinet in an office (Higbee, 2001).

The Atkinson-Shiffrin model is widely used, despite its simplicity. Studies of brain
lesions provide evidence for this model (Gazzaniga & Heatherton, 2015; Squire, 2009).
People with severe hippocampal lesions can have intact short-term memory and are able to
recall information immediately, even if their consolidation process is severely affected
(Squire, 2009). The Atkinson-Shiffrin model is criticized for being too simple and does not
emphasize the importance of working memory (the active processing of information for
current use) (Baddeley, 1994).

There may be a difference between verbal and visual memory when people recall
information (Lezak, Howieson, Bigler, & Tranel, 2012). Verbal memory is our ability to
remember verbal information, e.g., an instruction or a postal address. Visual memory refers to
our ability to remember visual information/knowledge, e.g., a picture or an illustration. Thus,
there are different neuropsychological tests for the assessment of either visual or verbal
memory (Lezak et al., 2012). The present thesis focuses on verbal memory.

Memory functions can be assessed with standardized neuropsychological batteries
(Lezak et al., 2012). A typical memory test for assessing verbal memory is a list-learning task
in which the patients/participants are presented with a list of words. Then, they are instructed
to recall the list immediately, after a delay and to recognize which words were presented
(Delis et al., 2004). Assessing the ability to recall words from a list is one of the most
common ways to investigate memory functions, both experimentally and clinically (Gavett et

al., 2016).
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Memory functions decline with increasing age. However, to state that all memory
functions decline with aging is an oversimplification. Compared to episodic memory,
semantic memory and implicit memory are much more resistant to aging (Schaie & Willis,
2010). In addition, there is large individual variability within the elderly population. For
instance, it is found that subsamples of people aged 70 years and older outperformed people
in middle age on memory tests (Habib, Nyberg, & Nilsson, 2007). Furthermore, the study
design may also affect how age-related memory declines are detected. Cross-sectional designs
seem to present earlier declines in age-related memory compared to that of longitudinal

designs (Schaie & Willis, 2010).

Hippocampus

The hippocampus is located in the temporal lobe and is a key brain structure for consolidation
(Ramirez et al., 2013). Patient H. M had both of his hippocampi removed after epilepsy
surgery. Due to the surgical procedure, H. M lost his ability to consolidate new information
(Scoville & Milner, 2000). His delayed recall was severely impaired. He could remember past
events prior to the surgery but was unable to remember any new information after the surgery.
His condition led neuroscientists to understand the importance of the hippocampus for the
formation of new episodic and semantic memories.

The hippocampus tends to atrophy with aging. From the age of 60 years, the volume
of the hippocampus has an annual reduction of one—two percent (Raz et al., 2005). A form of
hippocampus atrophy is a part of normal cognitive aging and may be responsible for the
reduction in episodic memory that most people experience in old age (Bartsch & Wulff,
2015). It is assumed that age-related memory decline is caused by a reduced ability to
consolidate new information (Kukolja, Goreci, Onur, Riedl, & Fink, 2016).In Alzheimer’s
disease, the hippocampus is seriously affected, even in the early stage (Querfurth & LaFerla,

2010). One assumption is that plaque formation in Alzheimer’s disease begins in the
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hippocampus and then spreads throughout the brain (Khan et al., 2014). Early deterioration of
the entorhinal cortex and hippocampus (Criscuolo et al., 2017) could explain why delayed
recall is such a sensitive measure of Alzheimer’s disease (Gomar et al., 2011).

Memory functions seem to correlate with the relative volume of the hippocampus. The
volume of the hippocampus (when adjusted for intracranial volume and age) is associated
with the ability to acquire and remember new words (list-learning) (Pohlack et al., 2014;
Ystad et al., 2009). In general, verbal memory is more dependent on the left hippocampus
than on the right hippocampus (Ezzati et al., 2016; Ystad et al., 2009). Furthermore, long-term
stress and depression can lead to memory impairment as a consequence of hippocampal
atrophy (Kim, Pellman, & Kim, 2015). Both long-term stress and depression are associated
with the accumulation of cortisol. Such accumulation may be neurotoxic and can lead to
atrophy of the hippocampus (Kim et al., 2015; Sapolsky, 1996). It has also been revealed that
experimentally increased cortisol levels are associated with reduced delayed recall
(Newcomer et al., 1999).

The hippocampus is composed of different segments or “subfields”. The hippocampus
can be divided into 13 different subfields (Iglesias et al., 2015). The differentiation of such
subfields requires brain imaging with very high resolution (Iglesias et al., 2015). Among these
subfields are four well-known subfields, called “cornu ammonis” (Andersen, Morris, Amaral,
O'Keefe, & Bliss, 2007). These subfields range from CA1 to CA4 and seem to have
specialized functions. In case-control studies using the California Verbal Learning Test 1l
(CVLT-II), it was found that the volume of the CA1 correlated better with delayed recall,
whereas CA2-3 and CA4 were more related to immediate recall (Mueller, Chao, Berman, &
Weiner, 2011; Mueller et al., 2012). These studies also found that focal lesions in CAL can
aggravate autobiographical memory and mental time travel (Thorsten Bartsch, D6hring, Rohr,

Jansen, & Deuschl, 2011). In report 111, we aimed to investigate how verbal memory was
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related to hippocampus volume and these subfields.

The medial temporal lobe consists of the hippocampus, entorhinal cortex, perirhinal
cortex and parahippocampus (Carlson, 2013). It is difficult to separate these areas in detail
with regard to distinct functions (Lipton & Eichenbaum, 2008). However, it seems that the
hippocampus and parahippocampus contribute to consolidation, while the entorhinal and
perirhinal cortex contributes more to recognition (Eichenbaum, Yonelinas, & Ranganath,
2007). One fMRI study found that the parahippocampus was significantly more activated
when people viewed spatial information (e.g., rooms, landscapes) compared to faces or
objects (Epstein & Kanwisher, 1998).

The medial temporal lobe is vital for declarative memory (Purves et al., 2008; Squire
& Zola-Morgan, 1991). Medial temporal lobe injuries can lead to difficulties with memory
function (Squire & Zola-Morgan, 1991). For the detection of dementia, medial temporal
atrophy can be a sensitive measure (Burton et al., 2008). The sensitivity for distinguishing
patients with Alzheimer’s disease and healthy controls is 83-84% (Wei et al., 2019; Westman
etal., 2011).

Bikson and colleagues found that tDCS stimulation could stimulate the hippocampus
in rats (Bikson et al., 2004). One mechanism governing this response is that tDCS increases
brain-derived neurotrophic factor (BDNF) in rats, which may affect the hippocampus (Yu,
Wu, Chien, & Hsu, 2019). In humans, we do not know whether tDCS can affect the
hippocampus. However, it is possible to stimulate the temporal lobe where the hippocampus
is located. Therefore, the aim for reports | and Il in this thesis was to stimulate the temporal

lobe.

General research questions

The major research questions in this thesis were how tDCS can improve verbal memory

functions and how performance on the California Verbal Learning Test Il (CVLT-II) is
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associated with hippocampus volume. Studies in this thesis aimed to supplement the existing

literature.
The research questions in this thesis are as follows:

1) Can active anodal tDCS lead to significantly better verbal memory function compared
to that observed after placebo tDCS in patients with Alzheimer’s disease?

2) Can active anodal tDCS lead to significantly better verbal memory function compared
to that after placebo tDCS in healthy elderly and heathy younger participants?

3) Are higher scores on CVLT-II associated with a larger volume of the subfields (CA1-
CAA4) of the hippocampus? We expect to find this association, in line with previous

studies.

Methods
Overview of study design
n (males) Participants Design Memory assessment

Report | 25 (14) Patients Randomized California Verbal
with placebo- Learning Test-II
Alzheimer’s controlled (CVLT-II)
disease clinical trial

(RCT)

Report 11 40 (11) Healthy Experimental California Verbal
elderlyand  placebo- Learning Test-II
young controlled (CVLT-II)
participants  study

Report 111 47 (16) Healthy Cross- California Verbal
adults sectional Learning Test-II

MRIstudy  (CVLT-I)

Participants

In report I, a total of 26 patients with Alzheimer’s disease were enrolled in the study.

One patient decided to withdraw due to a lack of motivation. We applied the revised
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«NINCDS-ARDRA> criteria for Alzheimer’s disease (McKhann et al., 2011). We followed
section 4.2 in these criteria: “probable Alzheimer’s disease with increased level of certainty.”
This determination of eligibility requires documentation of a progressive cognitive decline
based on information from informants (relatives) and a cognitive and/or neuropsychological
evaluation. There were 13 patients in the placebo group and 12 patients in the active group.
Patients were not eligible if they had serious somatic disorders (cancer, chronic obstructive
pulmonary disease, heart failure) or neuropsychiatric disorders (psychosis or severe
depression) that could influence cognitive function.

In report 11, a total of 40 participants were included in the study. There were two
groups of participants: one group of young participants (age 20-30 years) and another group
of participants in later adulthood (age 60-69 years). Participants were required to be healthy,
i.e., could not suffer from any serious diseases (cancer, heart failure, stroke) or
diseases/injuries in the central nervous system. In addition, participants were not eligible if
they had any mental disorders (e.g., depression, anxiety, etc.). No participants decided to
withdraw from the study.

In report 111, a total of 47 right-handed participants (31 females, age 20-71 years) were
included in the study and tested with the California Verbal Learning Test I (CVLT II) and
two subtests of the Wechsler Abbreviated Scale of Intelligence (WASI). All participants were
required to be healthy. They could not suffer from any serious somatic diseases or mental
disorders. Since the study involved brain imaging with magnetic resonance imaging (MRI),

pregnancy or body implants were exclusion criteria.

Recruitment methods/randomization

In report I, patients with Alzheimer’s disease were recruited by advertisement in the
local newspaper. In addition, a secretary at the Geriatric Department, University Hospital of

North Norway sent an invitation letter to patients recently diagnosed with Alzheimer’s
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disease. In reports 11 and 11, participants were recruited by both advertisements in the
newspaper and at the university and by sending out an invitation letter to the Tromsg senior
university (an organization where retired individuals meet and discuss science/politics).

In reports | and 11, patients/participants were randomized to either active or placebo
tDCS. Patients/participants were assigned to a list with codes provided by the tDCS
manufacturer. Each patient/participant received his/her own unique code. The code decided

whether the tDCS stimulator should deliver placebo or active stimulation. We used

random.org (www.random.org) to randomize the order of the codes. It was not possible to
identify the codes during the study. After the experiments in reports | and Il were completed,
the list was decoded. Neither the participant/patient nor the experimenter could identify if the

stimulation was active or placebo, since they only had the code.

Memory assessment with the California Verbal Learning Test 11 (CVLT-II)

In all three reports (reports I, Il and I11), we used the California Verbal Learning Test-
I1 (CVLT-II) to assess verbal memory functions. CVLT-II is a widely used memory test,
normed by age and sex (Delis et al., 2004). CVLT-II assesses immediate recall, delayed recall
and recognition (Delis et al., 2004). More specifically, CVLT-Il measures verbal auditory
episodic memory. Additionally, CVLT-1I measures serial position effects (primacy and
recency), cued recall, intrusions and interference (Delis et al., 2004).

In reports | and 11, CVLT-1l was our primary outcome measure, while the study
conducted for report 111 investigated how CVLT-I1I correlated with hippocampal subfields.
When using CVLT-II, the participant/patient was presented with a 16-word list. This
presentation was performed five times. The patient/participant was instructed to recall the list
immediately after each presentation. Recalling this list immediately assesses immediate
memory. After a delay of 20 minutes, the patient/participant was asked to recall all the words

from the word list. This task requires delayed recall. Then, the patient was presented with a
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word-list containing 32 words and was instructed to say “yes”/*no” if the word was
recognized (i.e., was presented on the 16 words list). Such “yes”/*no” responses requires
recognition.

CVLT-II can be used both experimentally for healthy participants and to assess
memory functions before and after a treatment, surgical procedure or disease (Delis et al.,
2004). In general, test-retest practice effects can be prominent for memory tests (Benedict,
2005). However, using parallel versions of memory tests minimizes the test-retest practice
effect (Benedict & Zgaljardic, 1998). Thus, CVLT-II consists of two parallel versions:
“standard” and “alternate” versions. These two versions have different and independent word
lists to reduce test-retest practice effects.

CVLT-I1 is widely used in both research and clinical practice to assess patients with
Alzheimer’s disease (Delis et al., 2005). A patient with Alzheimer’s disease will typically find
the CVLT-II delayed recall task very difficult (Rabin et al., 2009). The delayed recall task
requires consolidation of verbal information, and in Alzheimer’s disease, such consolidation
is impaired (Mayeux, 2010). Younger participants scored significantly better than healthy
elderly on immediate and delayed recall tasks, whereas patients with Alzheimer’s disease
scores significantly lower than healthy elderly on immediate recall, delayed recall and
recognition tasks (Delis et al., 2004).

In a Norwegian study by Bosnes (Bosnes, 2007), a significant correlation was found
between CVLT-II and Wechsler Memory Scale Revised (WMS-R) scores for delayed recall (r
= 0,58, p < 0,001). Other studies have assessed patients using the CVLT-II, e.g., patients with
depression (Hammar, Isaksen, Schmid, Ardal, & Strand, 2011), chronic pain (Landrg et al.,
2013), bipolar disorders and schizophrenia (Simonsen et al., 2009). There are no Norwegian
norm data for the CVLT-II (Siqveland, Sundseth, Dalsbg, Harboe, & Leiknes, 2014), and all

norm data used in Norwegian studies are from the USA (Delis et al., 2004).
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The age norms for the CVLT-II data are based on cohorts (i.e., cohorts were aged 60-
69 years, 70-79 years, etc.) (Delis et al., 2004). The CVLT-II has good test-retest reliability.
For immediate recall, the test-test reliability is 0,82, whereas for delayed recall, the test-
retestreliability is 0,88 (Delis et al., 2004). For recognition, the test-retest reliability is 0,79
(Delis et al., 2004).

There is a short format of the CVLT-II, consisting of nine words. This short format is
very suitable for patients with Alzheimer’s disease and other forms of dementia (Delis et al.,
2004). However, this format does not have any parallel versions and may increase the

probability of test-retest practice effects.

Transcranial direct current stimulation (tDCS)

In reports | and 11, we used a transcranial direct current stimulation (tDCS) device from
NeuroConn, llmenau, Germany. In both studies (reports I and 1), the stimulation duration for
each session was 30 minutes, and the current intensity was 2 mA. This outcome was in line
with previous recommendations (Brunoni et al., 2012; Monte-Silva et al., 2013; Thair et al.,
2017). We used a pair of 35-cm? rubber electrodes covered with sponges to deliver the
current. These electrodes were placed at the skull. The stimulation electrode (“the anode™)
was placed over the temporal cortex at the T3 position, according to the 10-20 system (a
system used for electroencephalographic electrode positioning). This positioning was similar
to that used by Boggio and colleagues (Boggio et al., 2012), and targeting the temporal lobe is
recommended for memory improvement in Alzheimer’s disease (Zhao et al., 2017). We
aimed to enhance verbal memory function. The left temporal cortex plays a major role in
verbal memory (Frisk & Milner, 1990; Johnson, Saykin, Flashman, McAllister, & Sparling,
2001), so we wanted to target this area. The reference electrode (“the cathode) was placed on

the right frontal lobe (at the Fp2 position, according to the 10-20 system). The session
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duration and electrode positioning were identical in both the placebo and active tDCS groups.

Figure 1 and Figure 2 show the procedure of tDCS stimulation in reports | and I1.

Figure 1: The tDCS procedure in report I.
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Figure 2: The tDCS procedure in report I1.
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tDCS and adverse effects

The small number of reported adverse effects may contribute to the increased interest in tDCS
(Brunoni et al., 2011). In the literature, it is emphasized that tDCS is associated with very few
and minor adverse effects. This outcome was also the conclusion from a systematic review
conducted by Brunoni and colleagues (Brunoni et al., 2011). They identified the adverse
effects of tDCS in 117 studies with human participants. Adverse effects were usually minor.
In most cases, the adverse effects were itching, tingling, headache, a burning sensation and
discomfort. However, one study reported that tDCS stimulation led to mania (Kalu, Sexton,
Loo, & Ebmeier, 2012).

Despite the fact that tDCS is associated with very minor adverse effects, it is difficult
to know exactly where the safety limit is in regard to current strength and duration. However,
a previous safety review concluded that a duration below 40 minutes and a current strength of
less than 4 mA did not produce any serious adverse effects or injuries (Bikson et al., 2016).
These recommendations were based on a review of 33200 sessions and 1000 participants with
repeated sessions.

A registration questionnaire is available that queries participants about adverse effects.
This questionnaire was developed by Brunoni and was translated to Norwegian by Fagerlund
(Fagerlund et al., 2015). When using this questionnaire, the experimenter is instructed to ask
for adverse effects (adverse effects, i.e., itching, headache, nausea, and redness). In report II,
we included this questionnaire. We found it especially important to be aware of possible
adverse effects since we used a novel tDCS stimulation protocol (with short intervals between
each session, also referred to as “accelerated tDCS”). In report I, we decided to reject the

questionnaire about adverse effects. We found it difficult for patients with Alzheimer’s
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disease to report adverse effects based on a questionnaire since the questionnaire requires
retrospective memory. Thus, we asked all patients and their caregivers (who accompanied
them to the lab) to observe and report possible adverse effects.

In both report | and report 11, no adverse effects were reported or observed. We cannot
generalize these findings to other studies. However, we can assume that tDCS is associated
with few adverse effects in healthy participants and patients with Alzheimer’s disease. The
tDCS protocols applied in report | and report 11 (six 30-minute sessions over a two-week
period and three 30-minute sessions for two consecutive days, respectively) seem to be very

well tolerated.

Ethical considerations

The procedures and methods in report I, report 11 and report 111 were approved by the
Regional Committee for Research Ethics in Medicine and Health Sciences (2012/1890) and
were conducted in accordance with the Declaration of Helsinki.

In report I, patients with Alzheimer’s disease had to sign an informed consent form.
To provide this consent, they had to understand the consequences of their participation. All
patients and their caregivers received verbal and written information about the study. Prior to
participation, we had a meeting with each patient and his/her caregiver during which we
discussed different aspects of the informed consent and consequences of participation. During
the meeting, we ensured that the patients understood the information. The potential benefit of
participation (improved memory function) outweighed the risks (minor adverse effects).
Additionally, we ensured that the patients relative (e.g., wife or son) understood the purpose

of the study and that all information was stored and published anonymously.
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Summary of reports I-111

Report I: Bystad, M., Grgnli, O., Rasmussen, I.D. Gundersen, N., Nordvang, L., Wang-

Iversen, H. & Aslaksen P.M. (2016). Transcranial direct current stimulation as a memory

enhancer in patients with Alzheimer's disease: A randomized placebo controlled

trial. Alzheimer's Research & Therapy, 8, 1-7.

The aim of this randomized placebo-controlled trial was to investigate tDCS as a memory
enhancer in patients with Alzheimer’s disease. We aimed to improve verbal memory
functions since impaired verbal memory is a core symptom of Alzheimer’s disease (Mayeux,
2010). Hence, the stimulation electrode (anodal) was placed above the left temporal lobe. As a
background for further research, we relied on the results of Boggio and colleagues (Boggio et
al., 2012), who found that tDCS stimulation of the temporal lobe improved recognition
memory for a month after the last stimulation session.

We used a double-blinded, randomized placebo-controlled trial (RCT) to compare the
effects of active tDCS with that of placebo tDCS. Patients with Alzheimer’s disease were
randomized into two groups: an active group and a placebo group. Both groups underwent the
same procedure, except that the placebo group did not receive active current during the
stimulation. Patients in the active group received 2 mA stimulation, lasting for 30 minutes.
Six stimulation sessions were delivered over a period of two weeks.

The primary outcome measure was verbal memory, assessed with the California
Verbal Learning Test Il (CVLT-II). This is a neuropsychological test, normed by age and sex.
To reduce test-retest practice effects, we used two parallel versions of the CVLT-I1I (standard
and alternative versions). These versions have different lists of words to remember.
Secondary outcome measures included the Mini Mental Status Examination (MMSE), the
clock-drawing test and Trail Making Test A and B.

We used the nonparametric Mann-Whitney U test to investigate differences between
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active and placebo tDCS. A nonparametric Mann-Whitney U test was used due to the
violation of normally distributed data. This analysis failed to reveal any significant differences
between active and placebo tDCS on both primary and secondary outcomes.

For the primary outcome measure (verbal memory function), we did not find any
significant differences between active tDCS and placebo tDCS for either CVLT-Il immediate
recall, delayed recall or recognition. For secondary outcome measures (Trail Making Test A,
the Mini Mental Status Examination and the clock-drawing test), no significant differences
between active and placebo tDCS results were found. None of the patients had any adverse

effects.

Report 11: Bystad, M., Storg, B., Gundersen, N., Wiik, I.L., Nordvang, L., Grgnli, O., Daae-

Rasmussen, Aslaksen, P.M. Can accelerated transcranial Direct Current Stimulation improve

memory functions? An experimental, placebo-controlled study. Submitted to Heliyon).

The aim of this experimental study was to assess the effect of tDCS on memory functions in
healthy participants. We relied on previous recommendations (Nitsche et al., 2015) where
short intervals between each tDCS session could improve the effects. We wanted to
investigate how tDCS with short intervals could affect memory functions. Such short intervals
involve giving tDCS for 30 minutes and then repeating the tDCS session within a 30-minute
timeframe. This type of protocol is novel and is referred to as “accelerated tDCS”.

We used a double-blind placebo-controlled design. Half of the participants received
active tDCS, while the rest received placebo tDCS. This study was randomized. Neither the
participant nor the research assistant knew if the tDCS device delivered placebo or active
stimulation.

Each participant received a total of six tDCS sessions. These six sessions were
conducted for two consecutive days. Three 30-minute sessions of tDCS were conducted each

day. The interval between each session was less than 30 minutes. The current intensity was 2
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mA. The stimulation electrode (anodal) was placed above the left temporal lobe.

The primary outcome measure was verbal memory. This measure was assessed with
the California Verbal Learning Test Il (CVLT-II) before the first session and after the sixth
session. We used two parallel versions of the CVLT-II (standard and alternative) to limit the
test-retest practice effects. Secondary outcome measures were digit span from the Wechsler
Memory Scale (WMS) and Trail Making Test A and B. We also used the vocabulary and
matrix reasoning aspects from Wechsler’s Abbreviated Scale of Intelligence (WASI) initially
to control for general intellectual abilities.

We conducted independent t-tests to investigate the differences in the mean score
change between placebo and active tDCS groups. MANOVA was conducted to investigate
group differences between placebo and active tDCS groups adjusted for age. We did not find
a significant difference between placebo and active tDCS groups for verbal memory
functions, neither for the young nor for the elderly participants. For all the participants (N =
40), our analysis showed no significant differences in CVLT-II score changes for the active
and the placebo tDCS groups (baseline — post 2). No significant differences were found
between the active and placebo tDCS groups for CVLT-Il immediate recall, CVLT-II delayed
recall, or CVLT-II recognition scores. For TMT B, active tDCS led to significantly better
scores than placebo tDCS. For WMS digit span scores, there was no significant difference
between the active and placebo groups.

For the group of elderly participants (N = 20), we found no differences in the CVLT-II
scores between the active and placebo tDCS groups. We found no significant differences
between active and placebo tDCS groups for CVLT-Il immediate recall, CVLT-II delayed
recall and CVLT-II recognition scores. There was no significant difference between the active
and placebo groups for TMT A and TMT B and digit span scores. In the group of younger

participants (N = 20), we found no difference in CVLT-I11 scores between active and placebo
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tDCS groups. No significant differences were found between the active and placebo tDCS for
CVLT-Il immediate recall, CVLT-I1I delayed recall and CVLT-II recognition. There were no
significant differences between the active and placebo groups for TMT-A and digit span
scores. For the young participants, the active tDCS group performed significantly better than

the placebo tDCS group on TMT-B.

Report 111: Aslaksen, P.M., Bystad, M.K., @rbo, M.C. & Vangberg, T.R. The relation of

hippocampal subfield volumes to verbal episodic memory measured by California VVerbal

Learning Test Il in healthy adults. Behavioral Brain Research, 351, 131-137.

The aim of the study was to investigate the association between separate hippocampal
subfields and verbal memory performance in healthy participants. The hippocampus can be
divided into 13 segments. In our study, we aimed to investigate four subfields: CA1-CA4.
These four subfields may have specialized functions, and the volume of the hippocampal
subfields seems to be positively correlated with memory function. However, few studies have
investigated the relationship between hippocampal subfields and cognitive functions. Verbal
memory seems to be associated with the left hippocampus rather than the right hippocampus
(Ezzati et al., 2016).

A total of 47 healthy adults participated in the study. Of these participants, there were
31 females, and the age range was 20-71 years. The mean education level was 13,78 years
(SD = 2,02). All participants were right handed.

To assess general cognitive functions, we applied two subtests of Wechsler’s
Abbreviated Scale of Intelligence (WASI) (Pearson, 1999). These two subtests were matrix
reasoning and vocabulary. Matrix reasoning is a nonverbal subtest that assesses visuospatial
problem solving, while the vocabulary subtest requires the participant to explain words with

increasing levels of difficulty. Scores on these two subtests are converted to standardized
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scores using age norms. To assess verbal memory, we applied a Norwegian version of the
California Verbal Learning Test Il (CVLT-I1).

Participants were scanned with a 1,5 T Phillips Intera MR scanner using an 8-channel
head coil. Within a month after the cognitive testing, MRI scanning was performed for all
participants. Hippocampal subfield segments were analyzed using FreeSurfer 6.0.
(https://surfer.nmr.mgh.harvard.edu/).

The data were normally distributed. Thus, independent samples t-tests were used to
investigate group differences in unadjusted volumes, whereas paired samples t-tests were
applied to investigate differences between the right and left formations. Correlations between
CVLT-II subtests and hippocampal volumes were evaluated with Pearson correlations. To
reduce the probability of type | errors and to adjust p-values for multiple testing, p-values
were adjusted with the false discovery rate (FDR) procedure. There were no significant
correlations between the CVLT-II delayed recall scores and the right hippocampal subfields.
However, significant correlations were found between CVLT-II immediate recall scores and
volumes of the left CA 1-4 subfields. For the left CAl subfield, the correlation for immediate
recall was r = 0,30, while the correlation for delayed recall was r = 0,43. For the left CA2-3
subfields, the correlation for immediate recall was r = 0,43, while the correlation for delayed
recall was r = 0,41. For the left CA4 subfield, the correlation for immediate recall was r =
0,42, while the correlation for delayed recall was r = 0,47.

Our results support the assumption that verbal memory is related to the left
hippocampus volume. It also suggests that the left hippocampus volume reflects the CVLT-II

score. This relation strengthens the utility of the CVLT-II as a measure of verbal memory.
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Discussion

The aim of the experimental tDCS studies (reports | and I1) was to investigate the efficacy of
tDCS as a memory enhancer in both healthy participants and patients with Alzheimer’s
disease. In addition, we wanted to investigate the relationship between verbal memory
performance and volume of the subfields of the hippocampus.

In both reports | and I, we expected to find that active tDCS led to significantly
improved memory compared to that assessed after placebo tDCS. In report 111, we expected to
reveal a significant correlation between hippocampal subfield volumes and verbal memory
performance.

Both report I and report 11 failed to reveal a significant difference between active and
placebo tDCS groups for memory improvement. In both studies, we used the CVLT-II to
assess verbal memory functions. As report 111 shows, when corrected for age and sex, there
was a significant positive correlation between CVLT-II scores and the volume of the left
subfields (CA1-CAA4) of the hippocampus. This correlation is in line with previous studies
(Pohlack et al., 2014) and confirms our hypothesis.

The results from report | and report Il did not agree with our hypothesis. Thus, our
results are not in line with results from some of the previous Alzheimer’s disease studies
(Boggio et al., 2012; Boggio et al., 2009; Ferrucci et al., 2008; Khedr et al., 2014) or healthy
participants (Manenti et al., 2013; Ross et al., 2011). However, it should be noted that tDCS
seems to have mixed results in both Alzheimer’s disease (Kim, 2016) and healthy participants
(Horvath et al., 2015; Tremblay et al., 2014). This outcome makes it difficult to draw precise
conclusions about the efficacy of tDCS.

The lack of significant differences between placebo and active tDCS groups for

memory enhancement in our studies (report | and report I1) can likely be attributed to several
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different causes. The tDCS protocols in our studies may not be as efficient as we expected. In
report I, we delivered six tDCS sessions over two weeks. It is possible that having only six
stimulation sessions over a period of two weeks may be insufficient for increasing
excitability. In addition, Alzheimer’s disease is often associated with cerebrovascular lesions
in the cortex (Attems & Jellinger, 2014). Such lesions may affect the distribution of the
current to the tissue and current direction, reducing neuroplasticity and regional blood flow
(Datta, Baker, Bikson, & Fridriksson, 2011; Hong et al., 2017; Pavlova, Semenov, & Guekht,
2019). Furthermore, in Alzheimer’s disease, a reduction in neuroplasticity may be especially
pronounced in the temporal cortex (Tapia-Arancibia et al., 2008) and impair the effect of
tDCS. It is reasonable to assume that these factors can inhibit the effect of tDCS stimulation.

Since CVLT-II scores seem to reflect left hippocampus size (as revealed in report IlI),
it could be assumed that the CVLT-II scores in report | and report Il would have improved if
tDCS stimulation had affected the hippocampus. Thus, our nonsignificant results in report |
and report Il could indicate that the current failed to reach the hippocampus. Without any
neurophysiological measures, such an explanation should be interpreted with caution.

A dose-response relationship is suggested between the number of tDCS sessions and
efficacy (Brunoni et al., 2012). Two case studies have found that a high number of tDCS
sessions led to improved memory functions in Alzheimer’s disease (Bystad, Rasmussen,
Abeler, & Aslaksen, 2016; Bystad, Rasmussen, Granli, & Aslaksen, 2017). However, the
optimal tDCS protocol for Alzheimer’s disease has not yet been determined.

In report 11, we applied a stimulation protocol with short intervals between each tDCS
session (“Accelerated tDCS”). To our knowledge, our study is the first to investigate
accelerated tDCS as a memory enhancer. The lack of a significant difference between active
and placebo tDCS groups could be due to our novel tDCS protocol. Such short intervals

between sessions may be less effective than we assumed. A previous meta-analysis
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(Dedoncker, Brunoni, Baeken, & Vanderhasselt, 2016) of 188 tDCS trials investigated how
the interval between sessions could influence the effects of tDCS on cognitive outcome
measures. Intervals between sessions ranged from less than 1 hour to up to 2 weeks. It was
found that the interval between sessions had no influence on cognitive outcome measures,
neither in healthy participants nor neuropsychiatric patients. The optimal time period between
sessions and number of sessions remain to be determined in future studies (Cappon,
Jahanshahi, & Bisiacchi, 2016).

However, in report I, we found a significant difference between active and placebo
tDCS groups for executive functions in the younger participants. A test-retest practice effect
is a possible explanation since TMT B is prone to test-retest practice effects. For instance, one
study found that TMT B scores improved by nearly 10 seconds after two weeks (first retest
session) and by 20 seconds after three months (fourth session) (Bartels, Wegrzyn, Wiedl,
Ackermann, & Ehrenreich, 2010).

Another possible explanation is that cortical areas other than the temporal cortex may
have been affected (e.g., frontal cortex) in our study, since tDCS may lead to widespread
alterations of functional connectivity (Keeser, Meindl, et al., 2011). It has been suggested that
tDCS may enhance alerting attention (Coffman, Trumbo, & Clark, 2012). For instance, it has
been demonstrated that tDCS stimulates vigilance for up to six hours (Mcintire, McKinley,

Goodyear, & Nelson, 2014), which could lead to better TMT B scores.

General limitations with tDCS

A limitation with tDCS is that there is large individual variability in tDCS responses.
To illustrate the large variability, Tremblay and colleagues (Tremblay, Beaulé, Lepage, &
Théoret, 2013) can serve as an example. They reported that one participant experienced a

251% increase in motor evoked potentials, whereas another participant had a 41% decrease. It
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can be difficult to identify potential reasons for such variability. However, it is reasonable to
assume that individual factors can account for at least some of this variability. Differences in
anatomy (e.g., skull size/thickness) and neurophysiology are important individual differences
(Woods et al., 2016). Such differences may affect the distribution of current flow to the
cortex. Hence, a “one size fits all” approach is probably not useful for tDCS.

A further limitation is that electrode placement is still an area of uncertainty (Zhao et
al., 2017). We aimed to stimulate the temporal cortex. We decided to stimulate this area due
to promising results found in the study by Boggio and colleagues (Boggio et al., 2012). For
memory enhancement, it was found that the left temporal cortex was a better target for tDCS
stimulation than the frontal cortex (Zhao et al., 2017). However, for conventional tDCS, the
precision (spatial resolution) is considered to be low because the target of the stimulation
usually relies on a cortical area (Datta et al., 2009). Conventional tDCS is associated with
diffuse electrical fields, which are affected by individual brain anatomy and head shape
(Mikkonen, Laakso, Tanaka, & Hirata, 2020).

Another limitation with tDCS is that interference may affect the tDCS results. It has
been suggested that cognitive or motor activity during tDCS stimulation can enhance or
inhibit the effect of tDCS (Horvath, Carter, & Forte, 2014). For instance, in their meta-
analysis, Hsu and colleagues (Hsu et al., 2015) suggested that tDCS treatment in elderly
individuals and patients with Alzheimer’s disease may be more effective if a cognitive task is
given during tDCS stimulation. However, one study revealed that imaginary tDCS stimulation
reduced the effect of anodal tDCS stimulation, whereas it increased the effect of cathodal
stimulation. The imaginary task was to visualize a motor movement (Antal, Terney, Poreisz,
& Paulus, 2007). Further, another study applied the motor evoked potential (MEP) measure.
This application indicates that motor evoked potentials are recorded from muscles due to

tDCS stimulation of the motor cortex. They found that cognitive tasks (asking the participant
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about language, mathematics and history) during tDCS stimulation could interfere with the
effects (Miyaguchi et al., 2013). They found that such cognitive input reduced the effect of
both anodal and cathodal tDCS stimulation. Thus, interference may be a limitation with tDCS
that is difficult to control in experimental studies.

Walsh previously summarized the major limitations with tDCS; he emphasized that a
lack of standardization regarding electrode placement, uncertainty about ecological validity
(how results from tDCS studies may manifest outside the research lab) and mixed results are

some of the major shortcomings of tDCS (Walsh, 2013).

Limitations with our studies

All our studies (reports I, Il and 111) have some central methodological limitations that
need to be addressed. For report I, a central limitation is our small sample size. There is
clearly a need to conduct larger clinical trials to assess the effect of tDCS in Alzheimer’s
disease. A small sample size is also a limitation of report Il and report I11. A large number of
tDCS studies rely on small sample sizes. For instance, in a meta-analysis by Hsu and
colleagues, only two out of 12 studies had a sample size slightly above 30 participants (Hsu et
al., 2015). A small sample size may increase the risk for a “type II error”. This error can occur
when a false null hypothesis is retained, i.e., a “false negative”. There may also be a risk for a
“type I error”, where the false null hypothesis is rejected, i.e., a “false positive”.

Recruitment difficulties were the main reason for our small sample sizes in report |
and report Il. Recruiting healthy participants was difficult due to skepticism about the current
stimulation, i.e., the word “current” can have negative associations. Some participants even
confused tDCS with electroconvulsive therapy (ECT). We lack data about this confusion.
However, such considerations should be noted. Failure to recruit the planned number of
patients within the expected timeframe is a common problem in Alzheimer’s trials (Grill &

Karlawish, 2010). Low motivation, comorbidity, high age and the lack of a caregiver who can
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accompany patients to the research lab are typical barriers for studies involving patients with
Alzheimer’s disease (Grill & Karlawish, 2010).

Another limitation is that it can be very difficult to compare our results with results
from previous tDCS studies since we relied on more advanced memory assessments. While
the use of a more sophisticated memory assessment is a strength, it also makes comparisons
with previous studies more difficult. For report I and report I, we do not know if our results
would have been different if we had relied on the same type of tests that previous studies
relied on (for instance, the “visual recognition task” or that used by Boggio and colleagues
(Boggio et al., 2012)).

A further methodological limitation with reports I and 11 is that we relied solely on
neuropsychological/cognitive outcomes. We did not includeneurobiological
/neurophysiological outcome measures (e.g., neuroimaging). Consequently, it is uncertain
whether our stimulation protocol in reports | and 11 caused any neurophysiological changes.

Another limitation is that we lack information about the educational level of the
participants in report | and report 11, so we could not control for this variable. Educational
level seems to influence episodic memory in both healthy individuals (Angel, Fay,
Bouazzaoui, Baudouin, & Isingrini, 2010; Ronnlund, Nyberg, Backman, & Nilsson, 2005)
and among patients with Alzheimer’s disease (Scarmeas, Albert, Manly, & Stern, 2006).

In report 111, we relied on a relatively small sample size, and the participant’s age span
was large. These shortcomings limit the generalizability of the results. In addition, we used an
MRI scanner with a 1,5 Tesla magnetic-field strength. Compared to the 1,5 Tesla magnetic
field strength, the 3 Tesla magnetic field strength has a higher resolution and is more sensitive

for the detection of subfields (Winterburn et al., 2013).

Limitations with memory assessment

In all three reports, we relied on memory assessment with the CVLT-II. There are some
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limitations with this memory assessment that should be taken into account. We used the
Norwegian version of CVLT-II. However, this Norwegian version is based on American
norms. While there are similarities with Norwegian and American culture, we do not know
how representative these norms are in terms of education and health.

Another limitation with the CVLT-Il and memory assessment in general is ecological
validity (Dubreuil, Adam, Bier, & Gagnon, 2007). It is difficult to know exactly how scores
from the CVTL-II in an experimental setting may manifest in real life situations. In other
words, it is unknown to what degree CVLT-II scores can be related to everyday memory, for
instance, remembering errands, appointments, new names or details from conversations. The
ecological validity may be further investigated (Dubreuil et al., 2007). Furthermore, there may
be a gap between self-reported memory and delayed recall performance (Sohel, Tuokko,
Griffith, & Raina, 2016). One explanation for this gap could be that memory assessment
partly fails to detect everyday memory and implicit memory (Dubreuil et al., 2007).

A third limitation is that memory assessment can be demanding. Learning a long list
of words can be overwhelming for patients with memory impairments (e.g., those with
Alzheimer’s disease). Standard forms of the CVLT-II consist of 16 words, which may be
excessive. For patients with memory impairments, a short form of CVLT-II exists with only
nine words (Delis et al., 2004). However, this short form of CVLT-II does not have a parallel

version and may be prone to test-retest practice effects.

Strengths with our studies

Our studies have several methodological strengths that should be emphasized. A
strength for report I and report 1 is that we applied a double-blind placebo-controlled design.
Therefore, both the experimenter and the participant were unaware of which condition the
patient/participant was allocated to (placebo or active tDCS).

Another methodological strength is that we used standardized neuropsychological
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testing (CVLT-II) to assess verbal memory functions. As previously noted in this thesis,
CVLT-II is normed for both sex and age, and it is a widely used neuropsychological tool
(Delis et al., 2005; Delis et al., 2004). The advantage of relying on a standardized memory test
is that the results are more likely to have high internal validity and test-retest reliability
compared to a nonstandardized test.

Thus, we relied on a more sophisticated memory assessment than that used in previous
studies. Two previous reviews suggested that further tDCS studies in Alzheimer’s disease
should rely on more sophisticated cognitive outcome measures (Freitas et al., 2011; Nardone
et al., 2011). The application of CVLT-II was in line with that recommendation.
Neuropsychological testing is the most reliable method for assessing cognitive functions in
both Alzheimer’s disease and healthy individuals (Lezak et al., 2012).

For report 111, a strength is that we combined verbal memory assessment (CVLT-II)
with brain imaging (MRI). MRI is an advanced method that provides the opportunity to
explore neural aspects of verbal memory functions. In report I11, we both have cognitive

(memory assessment) and neurobiological correlates.

Implications

Our studies may have implications for further research and clinical applications. For report I,
we demonstrated the need for further larger-powered studies, and we also found that our
protocol (with six tDCS sessions for two weeks) may not be the optimal protocol. In addition,
our results also indicate that tDCS as a therapeutic in Alzheimer’s disease still needs more
evidence to be considered as an evidence-based intervention.

For report 11, we applied a novel tDCS protocol, with short intervals between sessions
(“accelerated tDCS”). We failed to demonstrate that this protocol was efficient for enhancing
memory. Our results contradict previous recommendations (Nitsche et al., 2015). However,

no adverse effects were observed/reported, which may indicate that tDCS is generally a well-
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tolerated method.
In report 111, we demonstrated the association between episodic verbal memory
functions assessed with CVLT-II and the left hippocampus subfield. This finding may support

CVLT-II as a valuable and reliable tool for assessing verbal memory functions.

Further research

There is clearly a need to conduct larger-scale studies to investigate tDCS as a memory
enhancer. Overcoming recruitment barriers will make it possible to conduct larger studies.
Further studies will likely benefit from an increasing number of trial sites. A multicenter
approach may be ideal for obtaining a larger number of healthy participants or patients with
Alzheimer’s disease (Grill & Karlawish, 2010).

Further studies should also apply psychophysiological methods, such as MRI or
(electroencephalography) EEG, to investigate how tDCS may affect cortical activity and
neuroplasticity. MRI and/or EEG can be used in combination with memory assessments as
outcome measures. As Medeiros and colleagues suggest (Medeiros et al., 2012), investigating
neurobiological effects may be important to optimize tDCS protocols.

In addition, further studies should also compare the effects of tDCS with active control
groups. Currently, most tDCS studies compare the effect of tDCS with placebo tDCS. It could
be important to determine how tDCS results compare to those of common interventions. For
instance, comparing active tDCS with anticholinergic drugs in Alzheimer’s disease may be
one approach. Another possible approach is to compare active tDCS with memory strategies
(e.g., mnemonics) in healthy participants. For the utility of tDCS, it can be important to
determine whether tDCS is more or less effective than “treatment as usual” or memory
strategies. A prime example of a study where tDCS was compared to “treatment as usual” is a
study by Brunoni and colleagues (Brunoni et al., 2017). In a randomized controlled trial, they

compared the effectiveness of tDCS to that of escitalopram (a common antidepressive
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medication) in patients with depression.

As previously noted, individual differences may affect the current distribution of
current flow to the cortex (Woods et al., 2016). Further studies should use individual
calibration to overcome the limitations of individual differences. This approach is possible
through the use of a computer simulation and functional magnetic resonance imaging (Datta
et al., 2011). Such an approach makes visualization of the spatial distribution possible.
Furthermore, magnetic resonance imaging can also be helpful for finding the optimal
electrode placement (Jog et al., 2016). In addition, it makes it possible to determine whether a
specific tDCS dose and/or duration could alter activation in the targeted area (Bikson,
Rahman, & Datta, 2012). Such information could permit individual calibration of the tDCS
protocol.

Furthermore, high-definition tDCS (HD-tDCS) should be explored in future studies.
This approach employs a more focal stimulation by using multiple electrodes (Hampstead,
Sathian, Bikson, & Stringer, 2017). Typically, the anode is placed in the center, while the
cathodes are placed around the anode, forming a “ring”. The most common montage is the 4 x
1 ring montage with a center active electrode surrounded by four return electrodes that is used
to focus transcranial current within a cortical area of interest circumscribed by the ring
(Edwards et al., 2013). It was found that such stimulation could be more focal and lead to
better excitatory effects than the tDCS placement used in this thesis (Kuo et al., 2013). HD-
tDCS is in its infancy but should be investigated in future studies.

We should not overlook the fact that Alzheimer’s disease is very complex, and the
neuropathological mechanisms behind the disease are not fully understood (Querfurth &
LaFerla, 2010). Less than one percent of all clinical trials have revealed significant results
(Cummings et al., 2014). Accordingly, our results may reflect the fact that Alzheimer’s

disease is highly complex and that treatment effects are difficult to obtain (Honig et al., 2018).
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Overall conclusions

The main findings in the present thesis merge into three conclusions. These three conclusions

can be summarized as follows:

1)

2)

3)

Six sessions of active tDCS for 30 minutes delivered over the temporal cortex for two
weeks did not lead to significantly improved verbal memory functions in Alzheimer’s
disease patients compared to the results obtained by placebo tDCS. However, a small
sample size makes it difficult to draw precise conclusions and limits the

generalizability of the results. No adverse effects were found in this study.

Six sessions of active tDCS for 30 minutes over two consecutive days (“accelerated
tDCS”) delivered over the temporal cortex did not lead to significantly better verbal
memory functions than placebo accelerated tDCS. No adverse effects were found in

this study, and tDCS seems to be very well tolerated.

Using MRI, it was found that verbal memory functions, assessed with the CVLT-II,

were significantly associated with the volume of the left hippocampus subfields in

healthy adults. Thus, CVLT-II scores may reflect the volume of the left hippocampus.
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Abstract

Background: The purpose of this study was to assess the efficacy of transcranial direct current stimulation (tDCS)
on verbal memory function in patients with Alzheimer’s disease.

Methods: We conducted a randomized, placebo-controlled clinical trial in which tDCS was applied in six 30-minute
sessions for 10 days. tDCS was delivered to the left temporal cortex with 2-mA intensity. A total of 25 patients with
Alzheimer's disease were enrolled in the study. All of the patients were diagnosed according to National Institute of
Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and Related Disorders Association
criteria. Twelve patients received active stimulation, and thirteen patients received placebo stimulation. The primary
outcome measure was the change in two parallel versions of the California Verbal Learning Test-Second Edition,

a standardized neuropsychological memory test normalized by age and gender. The secondary outcome measures
were the Mini Mental State Examination, clock-drawing test, and Trail Making Test A and B.

Results: Changes in the California Verbal Learning Test-Second Edition scores were not significantly different
between the active and placebo stimulation groups for immediate recall (p =0.270), delayed recall (p =0.052), or
recognition (p = 0.089). There were nonsignificant differences in score changes on the Mini Mental State Examination
(p=10.799), clock-drawing test (p =0.378), and Trail Making Test A (p=0.288) and B (p =0.093). Adverse effects
were not observed.

Conclusions: Compared with placebo stimulation, active tDCS stimulation in this clinical trial did not significantly
improve verbal memory function in Alzheimer’s disease. This study differs from previous studies in terms of the
stimulation protocol, trial design, and application of standardized neuropsychological memory assessment.

Trial registration: ClinicalTrials.gov identifier NCT02518412. Registered on 10 August 2015.
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Background

Neuroimaging studies have suggested that Alzheimer’s
disease is associated with pathological and structural
changes in the brain, especially in the temporal cortex
[1]. Several studies have demonstrated that stimulation
of the temporal cortex with transcranial direct current
stimulation (tDCS) can enhance name recall in healthy
elderly persons [2] and improve recognition memory in
patients with Alzheimer’s disease [3-5]. tDCS is non-
invasive and works by inducing a low direct current in
the cortical area of interest [6]. Small electrodes are
placed on the scalp above the brain area that is targeted
by tDCS. This stimulation facilitates cortical excitability
and thereby neuroplasticity [6].

The results of previous studies are promising [3-5].
However, there is still insufficient evidence that supports
tDCS as an intervention for Alzheimer’s disease. Random-
ized, placebo-controlled trials are warranted to assess the
efficacy of temporal cortex tDCS in patients with Alzhei-
mer’s disease. Trials should include more comprehensive
outcome measures to explore the effect of tDCS on mem-
ory function. The aim of the present study was to investi-
gate the effect of tDCS on verbal memory functions in
patients diagnosed with Alzheimer’s disease.

Methods

Study design and participants

A randomized, placebo-controlled trial with a parallel
group design was performed. Two groups were included
in the intervention: an active tDCS group and a placebo
tDCS group. The allocation ratio was 1:1.

Patients diagnosed with Alzheimer’s disease were invited
to participate in the study via a letter from the Department
of Geriatric Medicine at the University Hospital of North
Norway, and healthy participants were recruited through a
newspaper advertisement. The eligibility criteria were living
at home and fulfillment of the research criteria for the
likelihood of having Alzheimer’s disease according to the
revised criteria of the National Institute of Neurological
and Communicative Disorders and Stroke and Alzheimer’s
Disease and Related Disorders Association criteria [7]. We
followed section 4.2 in these criteria: “Probable Alzheimer’s
disease with increased level of certainty.” This determin-
ation of eligibility for the study requires evidence of a
progressive cognitive decline based on information from
informants (relatives) and a cognitive and/or neuro-
psychological evaluation [7].

We excluded patients who scored <18 on the Mini
Mental State Examination (MMSE) [8]. Other exclusion
criteria included serious somatic disorders (cancer, chronic
obstructive pulmonary disease, and heart failure) or neuro-
psychiatric disorders (e.g., severe depression and psychosis)
that might reduce cognitive abilities. The patients with
comorbid cerebral conditions, such as cerebrovascular
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injuries and/or stroke, brain tumor, or Parkinson’s disease,
were not eligible to participate in the study. Patients using
cholinesterase inhibitors had to have been using them for
at least 3 months before enrolling in the study. A total of
25 patients with Alzheimer’s disease were included in the
study.

A total of 22 healthy elderly volunteers, aged 59-83
years, served as controls for the neuropsychological test
performance at baseline. None of them had cognitive
impairment or other serious diseases. These healthy
volunteers were recruited through an advertisement. The
control group did not receive any tDCS stimulation. They
completed the Hospital Anxiety and Depression Scale [9],
a questionnaire used to screen for depression and anxiety.

The neuropsychological test battery used for healthy
volunteers and patients with Alzheimer’s disease was
identical. The study was executed in a research laboratory
at the University of Tromsg Institute of Psychology. The
study was ethically approved by the regional committee
for medical and health research ethics (2012/1890) and
was registered in the ClinicalTrials.gov database with the
identifier NCT02518412. All of the patients and healthy
control subjects signed a written informed consent form
in line with the Declaration of Helsinki before participating
in the study. Each patient received a gift card worth 600
NOK (67 EUR, 75 USD) for their participation. Figure 1
contains a flow diagram of the trial.

Outcome measures

The primary outcome measure was verbal memory function.
We used a validated and standardized Norwegian version of
the California Verbal Learning Test—Second Edition (CVLT-
II) to assess three aspects of verbal memory function: imme-
diate recall, delayed recall, and recognition [10]. CVLT-II is
normed by age and gender and is widely used to assess
patients with Alzheimer’s disease [10]. To reduce test-retest
effects, the CVLT-II consists of two parallel versions: the
CVLI-II standard and alternate forms, which contain two
different and independent word lists. We used the standard
form at baseline and the alternative form in the posttest.

The secondary outcome measures included the MMSE,
clock-drawing test, and Trail Making Test parts A and B
(TMT A and B). The MMSE is a screening tool used for
assessing cognitive impairment (e.g., orientation, recall,
arithmetic, language, and ability to follow simple instruc-
tions) [8]. The clock-drawing test is another screening tool
used for detecting cognitive impairment and is also used
to assess visuoconstructive ability [11]. The TMT consists
of part A and part B. TMT A measures sustained atten-
tion, whereas TMT B assesses executive function [12].

To control for general cognitive abilities, we used the
Wechsler Abbreviated Scale of Intelligence with the
matrix reasoning and vocabulary subtests [13]. To screen
for depressive symptoms, we used the Cornell Scale for
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Depression in Dementia [14], which is a questionnaire
completed by an informant (i.e., a relative). A score
above 13 indicates depression, which was an exclusion
criterion in the present study. We documented progres-
sive decline using the Informant Questionnaire on Cog-
nitive Decline in the Elderly (IQCODE) [15], which was
also completed by an informant. To assess for potential
confusion during neuropsychological testing, the Confu-
sion Assessment Method [16] was applied by a research
assistant. This questionnaire is based on the observation
of core symptoms of confusion (e.g., inattention, disor-
ganized thinking, and altered level of consciousness).

Intervention

The intervention was treatment with tDCS using a direct
current stimulator (neuroConn, Ilmenau, Germany), which
is battery-driven and delivers a direct current. The current
intensity was 2 mA, and the stimulation duration was
30 minutes. A pair of 35-cm” rubber electrodes transferred
the direct current. These electrodes were inserted into
sponge pads soaked with 10 ml of sterile water. To stimu-
late the left temporal lobe, the anode (positive electrode)
was placed at the T3 position in the 10-20 system for elec-
troencephalographic electrode positioning. The cathode

(negative electrode) was placed on the right frontal lobe at
the Fp2 position. For the placebo tDCS, the electrode
placement and session duration were identical to those for
active tDCS. However, in the placebo tDCS, the current
was delivered for 30 seconds at the beginning of the stimu-
lation, then the current was turned off automatically.

Randomization and blinding

The patients were assigned to a list with five-digit codes
provided by the manufacturer of the tDCS stimulator.
Each patient had his or her own code. The codes
instructed the stimulator to deliver either placebo or ac-
tive stimulation. The order of the codes was randomized
using the Random.org website (https://www.random.org/).
To ensure double-blinding, the list of code assignments
was not disclosed during the entire tDCS intervention.
The list was decoded when the study was completed to
identify the patients in the active and placebo groups. The
tDCS stimulator did not display information that could be
used to identify the placebo or active stimulation.

Procedure
After their inclusion in the study, the patients and their rel-
atives visited the research laboratory and received
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Fig. 2 Overview of the procedure

Neuropsychological
assessment

information regarding the project. During this meeting, the
patient completed an informed consent form. Subse-
quently, the patient underwent neuropsychological testing
(baseline). The neuropsychological assessment lasted for
approximately 60 minutes, including several short breaks.
After the neuropsychological assessment was completed,
the first tDCS stimulation commenced. Each patient under-
went six sessions of tDCS or placebo tDCS stimulation for
10 days. Each tDCS stimulation session lasted 30 minutes.
An experienced research assistant administered the tDCS
stimulation. When the last tDCS stimulation was com-
pleted, the patient performed the neuropsychological post-
testing and received a gift certificate. Figure 2 gives an
overview of the procedure.

Power and statistical analyses
In previous studies in which tDCS was used to stimulate
memory functions in patients with Alzheimer’s disease,

Table 1 Baseline characteristics

researchers reported significant results (p <0.05) with a
total of <15 patients [3-5] in a within-group design.
Thus, we aimed to include a larger sample than those
described in previous studies [3—5] to ensure accurate
analysis of the effects of the intervention.

We used IBM SPSS version 22 software (IBM, Armonk,
NY, USA) to perform the statistical analysis. Because of a
violation of the assumption of a normal distribution, a
nonparametric Mann-Whitney U test was conducted to
compare the placebo tDCS and active tDCS groups at
baseline. A nonparametric Kruskal-Wallis test was used to
assess the baseline characteristics for all three groups (pla-
cebo tDCS, active tDCS, and healthy control subjects at
baseline).

For the primary analyses, the data had a normal distri-
bution. However, because of a small sample size and a
large variance, we decided to use a nonparametric Mann-
Whitney U test for the analysis. With the Mann-Whitney

Active tDCS (n=12) Placebo tDCS (n=13) p Value Controls (n=22) p Value
Age, years 70.0 (8.0)70.5 (21.0) 75.0 (8.7)75.0 (30.0) 0.12 68.8 (6.8)69.0 (24.0) 0.062
Males 7 (58 %) 7 (53 %) 0.85 4 (18 %)
DM 12 (100 %) 12 (92 %) 0.76
CVLT-II IR 25 (7.9)22.0 (25.0) 23 (6.8)23.0 (22.0) 1.00 52.7 (10.0)54.0 (33.0) 0.01°
CVLT-Il DR -27(05)-25 (2.0) -23(08)-25 (2.5) 04 —04 (0.9)-05 (3.5) 0.01°
CVLT-II RG 0.6 (0.9)0.7 (3.0) 1.0 (0.5)1.1 (1.8) 0.24 1.5(1.0)24 (3.3) 0.01°
TMT A 91.0 (45.0)81.0 (138.0) 143.0 (65.0)131.0 (191.0) 0.059 485 (18.6)46.5 (87.0) 0.01°
T™MT B 266.0 (123.0)215.0 (266.0) 347.0 (225.01259.0 (693.0) 067 93.0 (34.8)90.5 (149.0) 0-01°
Clock 333 (14)3.5 (5.0) 1.5(1.6)1.0 (4.0) 0.024° 4.86 (0.86)5.0 (2.0) 0.01°
MMSE 20.0 (2.8)21.0 (8.0) 21.2(39)23.0 (13.0) 071 29.5 (1.09)30.0 (5.0) 0.01°
WASI Ma 43.0 (9.2)44.5 (27.0) 425 (6.9)42.0 (26.0) 081 5805 (9.0)61.5 (34.0) 0.01°
WASI Vo 41.7 (9.3)39.0 (31.0) 41.6 (14.3)44.0 (48.0) 0.76 57.0 (9.9)57.0 (40.0) 0.01°
Cornell Scale for Depression in Dementia 5.7 (4.3)6.0 (12.0) 4.8 (34)5.0 (12.0) 0.65
CAM 0.0 00 1.0
IQCODE 39(03)4.1(1.2) 4.1(0.3)4.2 (1.1) 1-0

DM dementia medications, CVLT-Il IR California Verbal Learning Test-Second Edition Immediate Recall, CVLT-Il DR California Verbal Learning Test-Second Edition
Delayed Recall, CVLT-Il RG California Verbal Learning Test-Second Edition Recognition, WASI Wechsler Abbreviated Scale of Intelligence, IQCODE Informant
Questionnaire of Cognitive Decline in the Elderly, CAM Confusion Assessment Method, MMSE Mini Mental State Examination, TMT Trail Making Test, tDCS

transcranial direct current stimulation

Data are the mean (SD) or n (%). Median and range are displayed in italic type. The first p value column shows the differences between the placebo and active
groups at baseline. The second p value column displays the differences between the active, placebo, and control groups at baseline. For CVLT-Il, delayed recall is
displayed as age- and gender-adjusted z-scores (normalized mean 0, SD 1). For immediate recall the score is displayed as a T-score (normalized mean 50, SD 10),
and for recognition the score is an adjusted d' score (relationship between total hits and false-positive results). For TMT A and B, results are displayed in seconds.
Maximum score on the MMSE is 30. Scores <24 indicate cognitive impairment [8]. Scores on the WASI are displayed as T-scores (normalized mean 50, SD 10). The
cutoff score on the IQCODE for Alzheimer’s disease is >3.5 [15]. For the Cornell Scale for Depression in Dementia, a cutoff >12 indicates depression [14]. CAM
ranges from 0 to 4, where 0 indicates no symptoms of confusion. The clock-drawing test scores range from 0 to 5, where 5 indicates no errors.

p < 0.05 denotes statistically significant values
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Table 2 Outcome measures
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Active tDCS (n=12) Placebo tDCS (n=13) Difference p Value

Primary outcomes

CVLT-lIl immediate recall 5.0 (25.0) 0.0 (31.0) 50 0.270

CVLT-Il delayed recall 0.0 (1.5) 0.0 (2.5 0.0 0.052

CVLT-II recognition 0.3 (4.0) —0.08 (1.6) 047 0.089
Secondary outcomes

MMSE 1.0 (9.0) 1.0 (10.0) 00 0.799

Clock-drawing test 0.0 (4.0) 0.0 (5.0) 0.0 0378

TMT A 35 (262.0) —-7.0 (219.0) 105 0.288

TMT B 22.0 (204.0) —96.0 (443.0) 1180 0.093

CVLT-II California Verbal Learning Test-Second Edition, MMSE Mini Mental State Examination, TMT Trail Making Test, tDCS transcranial direct current stimulation
Data are the median (range) values. The median values are the estimated change from baseline to posttesting. The positive values indicate positive changes. For
the CVLT-Il immediate recall, the median value is displayed as a T-score. For the CVLT-Il delayed recall, the median value is displayed as a scaled z-score. For CVLT
recognition, the median value is an adjusted d' score. The differences between the placebo and active tDCS were calculated using a nonparametric Mann-Whitney

U test

U test, we examined the change from baseline to posttest.
The raw scores for the neuropsychological tests (CVLT-II
and WASI) were scaled according to standardized norm
tables [13, 17]. The significance level was set at p < 0.05.

Results

A total of 82 patients diagnosed with Alzheimer’s disease
were assessed for eligibility. Of these patients, 45 were ex-
cluded because of comorbid and serious somatic diseases,
MMSE score <17, and psychiatric diseases. A total of 11
patients declined to participate in the study. One patient
decided to withdraw from the study. Twenty-five patients
were enrolled in the study and completed the intervention
between June 2013 and June 2015. Table 1 shows the pa-
tients” baseline characteristics.

In our analysis, we found significant differences between
healthy control subjects and patients with Alzheimer’s
disease at baseline. Except for the clock-drawing test, there
were no significant differences in the baseline characteris-
tics between the placebo and active groups (Table 1).

For the primary outcome measures, scores between the
active and the placebo group did not differ significantly
on the CVLT-II immediate recall (95 % confidence inter-
val [CI] -9.00 to 2.00; U=99.00, z-score=1.14, p =
0.270, r=0.22), CVLT-II delayed recall (95 % CI -1.0
to 0.0; U=113.50, z-score = 2.132, p =0.052, r=0.42), or

Table 3 Frequency table
Active tDCS (n=12)

Placebo tDCS (n=13)

CVLT-Il immediate recall 9 6
CVLT-Il delayed recall 4 1
CVLT-II recognition 7 4

CVLT-II California Verbal Learning Test-Second Edition, tDCS transcranial direct
current stimulation

The data represent the number of patients showing improvement on primary
outcome measures. Improvement was displayed as positive changes from
baseline to posttest

CVLT-II recognition (95 % CI -1.25 to 0.18; U=
96.00, z-score=1.38, p=0.089, r=0.27). The scores
on the secondary outcome measures (MMSE, clock-
drawing test, and TMT A and B) did not differ
significantly between the active and placebo tDCS
groups (Table 2). Table 3 display the number of pa-
tients showing improvement on primary outcome
measures.

Safety and tolerability

Both patients and their relatives were told to report likely
adverse effects (e.g., headache, itching, skin irritation).
However, no adverse effects were reported, which
indicates that the tDCS intervention was both safe and
well-tolerated.

Discussion

The aim of the present randomized, placebo-controlled
study was to assess the effect of tDCS stimulation on
verbal memory function in patients with Alzheimer’s
disease. We were unable to reveal significant differences
between the placebo and active tDCS groups in both
primary and secondary efficacy outcomes. We found a
tendency for improved delayed recall in the active tDCS
group, albeit not significant.

Boggio and colleagues stimulated [4] the temporal
cortex in patients with Alzheimer’s disease using a 30-
minute tDCS stimulation for 5 consecutive days. This
stimulation increased visual recognition memory scores
by 8.9 %, and the improvement persisted for 1 month
after the last simulation session.

Our results are not in agreement with the results of
previous studies [3—5], which can be attributed to sev-
eral likely explanations. First, we used a fixed stimulation
protocol for all patients. Several recent studies suggested
that anatomical differences (e.g., skull thickness) can
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affect current distributions to the cortex [18]. Future
tDCS studies will likely take advantage of computational
models to ensure individual calibration of the stimula-
tion procedure.

Second, the patients in our study may have been less
receptive to tDCS because of the severity of their
disease. tDCS stimulation seems to be less effective in
the advance stages of Alzheimer’s disease [19, 20].
According to our baseline measures of memory function,
a majority of our patients had severe memory impair-
ment (see CVLT-II characteristics in Table 1). Alzhei-
mer’s disease is associated with reduced neuroplasticity
(i.e., a considerable reduction in long-term potentiation)
[21]. This condition is especially pronounced in the tem-
poral cortex [22] and may inhibit the effect of temporal
cortex stimulation when memory impairment is severe.

Third, our study differs from previous studies [3—5] by
its limited sample size and in terms of the stimulation
procedure, study design, and outcome measures. Ac-
cording to Elder and Taylor [23], different stimulation
paradigms should be investigated in Alzheimer’s disease.
The optimal stimulation procedure for Alzheimer’s is
still uncertain. Thus, the present study is in line with
these recommendations and applied a new stimulation
paradigm. Clinical application of tDCS is still in its in-
fancy [24]. It is important to find the most effective
tDCS paradigm for patients with Alzheimer’s disease.

A major difference between the present study and pre-
vious studies [3-5] is our application of standardized
memory assessment. This accords with recommenda-
tions derived from previous reviews [19, 20]. Neuro-
psychological testing is considered to be the most
reliable method for assessing cognitive function in
Alzheimer’s disease [25]. Furthermore, in the present
study, we applied a randomized, placebo-controlled
design. To the best of our knowledge, this is the first
randomized, placebo-controlled study of tDCS stimula-
tion of the temporal cortex in Alzheimer’s disease.
Additionally, none of our patients experienced any ad-
verse effects due to the intervention, which indicates
that tDCS is safe and well-tolerated.

We recommend future studies with outcome measures
that include neuropsychiatric symptoms, neuropsycho-
logical assessment, and activities of daily living. The
Neuropsychiatric Inventory [26] and the Amsterdam In-
strumental Activities of Daily Living Questionnaire [27]
are recommended in that regard.

Large-scale randomized controlled studies are war-
ranted. Recruitment is a main barrier. Recruitment pre-
sents a challenge for clinical studies of tDCS [18] and
trials in Alzheimer’s disease [28]. One way to facilitate
the recruitment process is to increase the number of
trial sites [28]. In addition, increasing the repetition rate
(e.g., stimulation twice per day) could be more feasible
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and might require fewer separate days of visits to the
research laboratory. Such stimulation may even prolong
the aftereffects of stimulation [29, 30]. Fewer visits can
be beneficial for recruitment [28].

Conclusions

This randomized, placebo-controlled study failed to
reveal any significant results. There was a nonsignificant
improvement in delayed recall for the active tDCS
condition. This trial showed high tolerability of tDCS. In
future research, investigators should use both neuro-
psychological and neurophysiological outcome measures,
study patients in early stages of Alzheimer’s disease, and
overcome recruitment barriers to increase power.
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Abstract

The aim of this study was to investigate whether transcranial Direct Current Stimulation
(tDCS) could improve verbal memory functions in healthy elderly and younger participants.
We hypothesized that active tDCS led to significantly improved memory function, compared
to placebo tDCS. Forty healthy participants (20 elderly and 20 younger participants) were
included in the study. We applied a novel stimulation protocol, where six sessions of anodal
tDCS were administrated during two consecutive days. Each tDCS session lasted 30 minutes.
The current intensity was 2mA and the stimulation area was the left temporal lobe at T3 in the
10-20 EEG system. Immediate recall, delayed recall and recognition memory were assessed
with California VVerbal Learning Test Il (CVLT-II) and executive functions were assessed
with the Trail Making Test (TMT) before the first tDCS session and after the last tDCS
session. Half of the participants received placebo tDCS, whereas the other half received active
tDCS. We did not reveal any significant differences between active and placebo tDCS in
memory functions. However, there was a significant difference between active and placebo
tDCS in executive function measured by the Trail Making Test (TMT). This experimental
study failed to reveal significant differences between active and placebo accelerated tDCS for
verbal memory functions. However, accelerated tDCS was found to be well-tolerated in this

study.

Keywords: Memory, transcranial direct current stimulation, neuropsychology,

neuromodulation, cognitive enhancer.
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Introduction

A method that may improve memory functions in healthy individuals is called transcranial
direct current stimulation (tDCS) (Manenti, Brambilla, Petesi, Ferrari, & Cotelli, 2013). This
IS a non-invasive stimulation method aimed to enhance plasticity and learning (Prehn & Floel,
2015). tDCS treatment is performed by placing two or more electrodes on the scalp (one
stimulation electrode and one reference electrode). The position of the stimulation electrode
depends on the cortical area targeted for stimulation. Then, a weak current (2 mA or less) is
delivered through the stimulation electrode. tDCS is simple to administer and it is associated
with few adverse effects (Brunoni et al., 2012).

tDCS works by modulation of cortical excitability and neuroplasticity (Nitsche &
Paulus, 2001). Thus, tDCS aims to increase neuroplasticity through the process of long-term
potentiation (LTP) (Monte-Silva et al., 2013). This involves an increase in synaptic strength
and is crucial for neuroplasticity and memory (Lynch, 2004). tDCS does not directly cause
neuronal firing, but trigger conditions that makes neuronal firing more likely (Reinhart,
Cosman, Fukuda, & Woodman, 2017).

Previous studies suggest that tDCS may enhance memory functions (Kristin Prehn &
Fl6el, 2015). For instance, Sandrini and colleagues (Sandrini et al., 2014) found that a 15
minute active tDCS session could significantly improve recall of a wordlist after 30 days.
Furthermore, another study found that tDCS could improve verbal memory functions in both
old and young participants (Manenti et al., 2013). Prehn and colleagues found that a
combination of selective serotonin reuptake inhibitor (SSRI) and tDCS could give significant
better immediate memory in both younger and older participants (Prehn et al., 2017).
However, no such effects were found for delayed recall.

Verbal memory functions decline with age (Cargin, Maruff, Collie, Shafig-Antonacci,
& Masters, 2007). Thus, it could be assumed that aging can affect the efficacy of tDCS, when
tDCS is used as a memory enhancer. For instance, Ross and colleagues found that tDCS
stimulation of the temporal lobe could improve name recall for faces in both younger and
older participants (Ross, McCoy, Coslett, Olson, & Wolk, 2011). However, older participants
improved more compared to younger participants. One assumption is that that aging weakens
cortical connections and that tDCS may enhance neuronal firing in a higher degree than for
younger participants (Gutchess, 2014). tDCS may work better for elderly, since younger
individuals have a nearly optimal level of neuroplasticity and thus smaller potential for

improvement. However, a recent study (Leach, McCurdy, Trumbo, Matzen, & Leshikar,
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2018) found that younger participants improved more than older participants and that older
participants may be less receptive to tDCS. It is uncertain whether older participants benefits
more from tDCS than younger participants. Hence, there is a need to investigate if the effect
of tDCS differs between elderly and younger individuals.

It is also found that tDCS can improve memory functions in patients with Alzheimer’s
disease. Boggio and colleagues (2012) found that 30 minute sessions of active tDCS for five
consecutive days could lead to a nearly 10 % improvement in recognition memory. This
improvement was prolonged for one month and was significantly higher in patients who
underwent tDCS than in those who received placebo tDCS, which only led to a 2.6 %
improvement.

On the other hand, Bystad and colleagues (2016a) found no significant differences in
memory improvement between active and placebo tDCS in patients with Alzheimer’s disease.
In Alzheimer’s disease, studies using tDCS have shown inconsistent results (Kim, 2016). In
healthy individuals, tDCS is also associated with mixed results (Tremblay et al., 2014).

Before tDCS can be validated as a therapeutic tool, it is important to investigate
different stimulation protocols in healthy individuals, in order to find the optimal stimulation
protocol. In addition, since cognitive functions are relevant for our function in daily life it can
be useful to investigate if tDCS leads to cognitive improvement.

The optimal number of tDCS sessions and the interval between sessions remain
uncertain (Woods et al., 2016). For both experimental and clinical application of tDCS, the
lack of standardized protocols possesses a problem when conducting new studies or
comparing results between studies (Cappon, Jahanshahi, & Bisiacchi, 2016).

It is assumed that a high repetition rate, with short intervals between each tDCS
sessions can probably be more efficient than increasing the duration of the stimulation
(Nitsche, Kuo, Paulus, & Antal, 2015; Woods et al., 2016). Such high repetition rate may lead
to longer lasting effects, since the neurophysiological after-effects of tDCS is relatively short
lived. For instance, a recent study suggested that 13 minutes of tDCS stimulations of 2mA
leads to 90 minutes after-effect (Thair, Holloway, Newport, & Smith, 2017).

To prolong the effect of tDCS, it has been proposed to use short intervals (< 30
minutes) between sessions (Woods et al., 2016). Such short intervals between each session
can be referred to as “accelerated tDCS” (Bystad, Rasmussen, Abeler, & Aslaksen, 2016). A
previous case study found that such application of tDCS could improve memory functions in
patients with early stage Alzheimer’s disease (Bystad et al., 2016b). However, to date, this

protocol has limited evidence.
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Based on previous studies (Manenti et al., 2013; Sandrini et al., 2014), we aimed to
investigate the effect of accelerated tDCS on memory functions and executive functions in
both healthy elderly and healthy younger participants. We applied an accelerated tDCS
protocol, with short (30 minutes) intervals between each session. We hypothesized that active
tDCS would lead to a significantly improved verbal memory function (immediate recall,

delayed recall and recognition), compared to placebo tDCS.
Materials and methods

Participants

A total of 40 individuals participated in the study. There were 20 elderly (59-69 years, mean
age = 63 years, 16 females) and 20 young (19-30 years, mean age = 22 years, 13 females)
participants. The eligibility criteria were absence of any serious somatic or psychiatric
conditions or injuries to the central nervous system that could impact cognitive functions.
Such conditions included cancer, cerebrovascular diseases, chronic obstructive pulmonary
disease, heart failure, depression / anxiety and psychosis. All participants completed the
Hospital Anxiety and Depression Scale (HADS) (Mykletun, Stordal, & Dahl, 2001), a
questionnaire used to screen for depression and anxiety. Patients with scores above 15 on the
HADS were excluded because depression may affect cognitive functions (Lam, Kennedy,
Mclintyre, & Khullar, 2014).

Participants were recruited by advertisement. All participants were informed that the
experiment aimed to investigate if tDCS could improve memory functions. The study was
executed in a research laboratory at the University of Tromsg, Department of Psychology. All
participants signed a written informed consent prior to participation. They were compensated
with a gift-card, worth 500 NOK (approximately 59 USD) after the participation. The study
was approved by the Regional Ethical Committee for Research Ethics in Medicine and Health
Sciences (2012/1890).

Outcome measures

In the present study, the primary outcome measure was verbal memory functions, assessed
with the California Verbal Learning Test-Second Edition (CVLT-II) (Delis, Kramer, Kaplan,
& Ober, 2004). The CVLT-II is a standardized neuropsychological test, normalized by age
and gender. The CVLT-II assess immediate recall, delayed recall and recognition. The CVLT-
I1is widely used (Delis et al., 2004) and based on list-recall, where the participant is

instructed to recall a list with 16 words. The CVLT-II has good test-retest reliability (Delis et
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al., 2004). To reduce test-retest practice effects, we used the standard version at baseline, and
the alternative form after the last tDCS session. The standard and alternative forms have
different word-lists.

The secondary outcome measures included the Trail Making Test A and B (TMT A
and TMT B) (Tombaugh, 2004) and the Digit Span test from the Wechsler Memory Scale
(WMS) (Wechsler, 1998). TMT A measures sustained attention, speed and motor function,
whereas TMT B also assesses executive functions. WMS Digit Span measures attention /
working memory. The participant is instructed to repeat a cumulative sequence of numbers
forward and backward.

To control for general cognitive abilities, the Matrix Reasoning and VVocabulary tests
from the Wechsler Abbreviated Scale of Intelligence (WASI) (Pearson, 1999) were conducted
at baseline. To screen for cognitive impairment among the elderly participants we used the
Mini Mental Status Evaluation (MMSE-NR) (Folstein, Folstein, & McHugh, 1975).

To assess possible adverse effects, we used a questionnaire from Brunoni and
colleagues that was translated into Norwegian (Brunoni et al., 2011). This questionnaire asks
specifically about adverse effects from the tDCS procedure, specifically regarding itching,

tingling, headache and discomfort (Brunoni et al., 2011).
Transcranial Direct Current Stimulation (tDCS)

The stimulation was delivered using a direct current stimulator (neuroConn, limenau,
Germany). The stimulation duration was 30 minutes and the current intensity was 2mA. The
current was transferred to the skull through a pair of 35-cm2 rubber electrodes. The anode
(stimulation electrode) was placed at the T3 position in the 10-20 system (a system used for
electroencephalographic electrode positioning). The cathode (reference electrode) was placed
at the Fp2 position, i.e on the right frontal lobe. For both the placebo and the active tDCS, the
electrode placement and session duration were similar. In the placebo tDCS, a current was
delivered only for the first 30 seconds. After these 30 seconds, the stimulator turned the
current off automatically.

All participants were assigned their own five-digit code. This code determined if the
tDCS device should give the placebo or active stimulation. Neither the experimenter nor the
participant knew if the tDCS stimulator delivered the active or placebo stimulation. Thus, the
study was double blind. The order of the codes was randomized using the Random.org

website (https://www.random.org/).
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Procedure

Participants met individually for two consecutive days in a research laboratory at the

university. First, each participant received information about the study. Then, the participant

underwent the neuropsychological assessment. The duration of this assessment was

approximately 60 minutes. When the assessment was completed, the first tDCS session began.

Three sessions were given on both the first day and the second day. Each tDCS session lasted

for 30 minutes. The break between the sessions was about 30 minutes. After the final tDCS

session, the participant underwent neuropsychological assessment. See figure 1 for an

overview of the procedure.

Figure 1:
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Statistical and power analysis

All data were analyzed in SPSS Version 22. We calculated the change scores between

baseline and post stimulation neuropsychological assessment scores to investigate the effect

of the tDCS stimulation. We conducted independent t-tests to investigate the differences in
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the mean change of scores between placebo and active tDCS. A MANOVA was conducted to
investigate group differences between placebo and active tDCS adjusted for age. Data were
normally distributed, shown by Shapiro Wilk test.

A previous study (Sandrini et al., 2014) with healthy participants found that active
tDCS led to significant improvement in verbal memory functions, compared to placebo tDCS.
In that study, tDCS was delivered only once, with a 15-minute duration. Based on mean
scores from Sandrini et al., 2014, we used a power estimation calculator (clincalc.com) and
estimated that our study had 80 % power in order to achieve a significant effect with a least
32 participants (16 placebo and 16 active tDCS). Thus, we wanted to include a total of 40

participants. The alpha-level was 0.05.
Results

Table 1 displays the number of participants who improved on different outcome scores from
baseline to post-test. The analysis showed no significant differences in CVLT-I1I scores
between the active and the placebo tDCS (Table 2). For CVLT-Il immediate recall F = 0.067,
df = (1.0), p =0.79, CVLT-II delayed recall (F = 0.24, df = (1.0), p = 0,62) and CVLT-II
recognition (F = 0.092, df = (1.0), p = 0.76), no significant differences were found between
the active and the placebo tDCS. However, we found that the active group scored
significantly better on change scores than the placebo group on TMT-B, F = 4.54, df = (1.0), p
= 0.040.

Table 1. Frequency table

Active tDCS Placebo tDCS
(N = 20) (N =20)
CVLT-Il immediate recall 9 6
CVLT-1I delayed recall 4 4
CVLT-II recognition 5 3
TMT-A 17 13
TMT-B 18 18
Digit Span 11 17

The data represent the number of patients who showed improvements (>) on the outcome measures.
Improvement was considered as improved scores from baseline to the post-test.

Table 2. Changes in cognitive scores for all participants (N = 40)

Age Group *
Group Age Group Group

Outcome P F P = p F

CVLT immediate 0.797 0.67 0.70 0.14 0.57 0.32
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CVLT delayed 0622 024 0.092 3.00 046 0.544

CVLT recogntion 0.20 0.092 0.535 0.39 0.61 0.25

TMT-A 091 3.02 0.59 3.81 093 0.007
TMT-B 0.040 454 0.66 0.18 0.97 0.33
Digit Span 0365 0.84 0.78 0.77 081  0.055

Note: “Group” is active or placebo, “Age Group” is younger or elderly and “Age Group * Group” is
the interaction between the group and the age group.

For the group of elderly participants, we found no differences in the CVLT-1I scores between
active and placebo tDCS (see Table 3). For CVLT-II immediate recall (t(15.69) =-0.90, p =
0.37), CVLT-II delayed recall (t(14.83) = 0.18 p = 0.85) and CVLT-II recognition (t(11.19) =
0.43, p = 0.67), no significant difference were found between active and placebo tDCS. For
TMT A (t(17.94) = 2.02, p = 0.058) and TMT B (1(15.92) = 0.64 , p = 0.52), and Digit Span
(t(12.45) =- 0.98, p = 0.91), there was no significant difference between active and placebo

group.

Table 3. Change in scores for elderly participants (N = 20).

Std.

Group Mean Deviation P value Hedges g

CVLT immediate Placebo -4.90 10.98 0.37 0.38
Active -1.10 7.34

CVLT delayed Placebo -0.35 0.97 0.85 0.07
Active -0.43 1.01

CVLT recognition Placebo -0.25 0.58 0.67 0.18
Active -0.44 1.23

TMT-A Placebo -2.10 7.50 0.058 0.86
Active -9.10 7.93

TMT-B Placebo  -13.80 28.05 0.52 0.28
Active -21.25 20.66

Digit Span Placebo 10,20 1,47 0,91 0.04
Active 10,10 2,51

Note: The mean values are the estimated change from baseline to post-testing (post testing minus baseline). For the
CVLT-1l immediate recall score, the mean value is displayed as a T-score. For the CVLT-II delayed recall and
recognition scores, the mean value are displayed as Z-scores. An independent t-test was applied to calculate the
differences between the placebo and active tDCS groups. For the CVLT scores and Digit Span scores, a positive
values indicates a positive change. For TMT A and B, negative values indicate improvements. Significant values (p
=< 0.05) are marked with *.
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For the group of younger participants, we found no difference in CVLT-II scores between
active and placebo tDCS (see Table 4). For CVLT-Il immediate recall (t(18.00) =0.22,p =
0.82), CVLT-II delayed recall (t(17.69) =- 0.82, p = 0.42) and CVLT-II recognition (t(17.82)
=-0.58, p = 0.56), no significant difference were found between active and placebo tDCS.
For TMT-A (t(17.99) = 1.08, p = 0.29 and Digit Span (t(16.90) = - 0.48, p = 0.63) there were
no significant differences between the active and placebo groups. However, on TMT-B
(t(11.47) = 3.26, p = 0.007), the active group scored significantly better than the placebo

group.

Table 4. Changes in scores for younger participants (N = 20)

Std.

Outcome Group Mean Deviation P value Hedges g

CVLT immediate Placebo -4.30 9.80 0.82 0.09
Active -5.30 9.83

CVLT delayed Placebo  -1.25 1.29 0.42 0.35
Active -0.80 1.13

CVLT recognition Placebo  -0.60 0.90 0.56 0.26
Active -0.35 1.00

TMT-A Placebo  -8.00 9.92 0.29 0.46
Active -12.80 9.79

TMT-B Placebo  -10.20 6.90 0.007* 1.39
Active -30.50 18.43

Digit Span Placebo 0.50 2.06 0.63 0.20
Active 0.90 1.59

Adverse-effects
No adverse-effects were reported, neither in young participants or elderly participants, based
on a questionnaire (Brunoni et al., 2011) for adverse-effects in tDCS procedures.

Discussion

The aim of the present study was to investigate whether accelerated tDCS could improve
verbal memory functions in healthy young and healthy elderly participants. We also
investigated whether tDCS could affect executive functions in both young and elderly
participants. In addition, we wanted to study if age was a significant factor of tDCS efficacy.
We did not reveal significant differences between placebo and active tDCS in verbal

memory functions. This was not in accord with results from two previous studies (Manenti et
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al., 2013; Sandrini et al., 2014). Furthermore, we did not find any significant differences in
verbal memory between placebo and active tDCS, whilst adjusting for age.

However, we found a significant difference between placebo and active tDCS for
executive functions, as measured with TMT-B. This significant difference was only found
among the younger participants. It should be noted that none of our participants reported any
adverse-effects, despite the short intervals between each the tDCS sessions. Accelerated tDCS
seems to be both safe and well-tolerated in our study.

The reason for our non-significant effect of tDCS on verbal memory functions may be
attributed to several different causes. First, we applied a novel stimulation protocol (i.e.,
accelerated tDCS, with short intervals between each session). To our knowledge, no studies
have investigated such an intensive protocol. Accelerated tDCS is based on recommendations
from Nitsche and colleagues (2015), rather than evidence. This protocol may not be as
efficient as we expected.

Second, it also uncertain if tDCS actually leads to cognitive (Horvath, Forte, & Carter,
2015b) and neurophysiological (Horvath, Forte, & Carter, 2015a) changes in healthy
individuals. Horvath and colleagues argue that tDCS has some major shortcomings (e.g.,
electric current influences, inter-subject variability) (Horvath, Carter, & Forte, 2014). For
instance, Trembley (Tremblay et al., 2014) reported that one participant experienced a 251 %
increase in motor evoked potentials, whereas another participant experienced a 41 %
decrease. Anatomic differences (e.g skull thickness) and neurophysiology are individual
factors that may affect the distribution of current flow to the cortex (Horvath et al., 2014). The
effect of tDCS on cognitive function in healthy participants is associated with conflicting
results (Tremblay et al., 2014). Hsu and colleagues (2015) argues that tDCS may work best in
pathological states and benefit those who need it most, since there may be a ceiling effect in
healthy participants and tDCS may serve to strength weaken pathological neural circuits.
Consequently, we cannot disregard a lack of effect from our tDCS stimulation.

We revealed a significant effect on executive functions in the young participants. A
possible explanation is the limitation of the TMT-B test, which was used to measure executive
functions. TMT-B seems to have substantial test-retest practice effects, especially over a short
interval (Bartels, Wegrzyn, Wiedl, Ackermann, & Ehrenreich, 2010). For instance, a study
(Bartels et al., 2010) found that retest with TMT-B after three weeks could improve the score
with nearly 10 seconds. Since memory test usually have parallel versions, TMT-A and TMT-
B are more susceptible to test-retest practice effects. According to our results (Table 1), most

participants improved on the TMT-B test, regardless of placebo or active tDCS. We cannot
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completely rule out a test-retest practice effect.

Further, tDCS has low specificity (Csifcsak, Boayue, Puonti, Thielscher, & Mittner,
2018). Even if our aim was to stimulate temporal cortex, other cortical areas may also have
been affected (e.g frontal cortex), since tDCS may lead to a widespread alterations of
functional connectivity (Keeser et al., 2011). It is suggested that tDCS may enhance alerting
attention (Coffman, Trumbo, & Clark, 2012). This could lead to better scores on TMT-B.

Limitations

The present study has several limitations that needs to be addressed. One limitation is that we
relied solely on cognitive functions for our outcome measures. Consequently, we do not know
if the tDCS stimulation induced any neurophysiological changes. There may be a chance that
our tDCS protocol affected neuroplasticity and neural activity. However, this remains
unknown in our study.

Further, a second limitation is our “one size fits all” approach. It is reasonable to
assume that anatomical differences (e.g., skull thickness) can affect the efficacy of the tDCS
stimulation, i.e how the current is distributed to the cortex. We did not apply a computational
model to calibrate the tDCS stimulation for each participant. Our lack of individual
calibration is a limitation, since individual differences can be an important factor (Sarkar,
Dowker, & Cohen Kadosh, 2014).

A third limitation is that we did not combine tDCS with any cognitive stimulation. We
only applied tDCS. This could affect the efficacy of our tDCS protocol, since the effect of
tDCS may improve when tDCS and cognitive stimulation are used simultaneously (Hsu et al.,
2015).

Future research

Further research should take advantage of both neuropsychological assessment and
psychophysiological measures (e.g., event-related potentials or neuroimaging). A combination
of such outcome measures will provide insight into the cognitive and neurophysiological
effect of tDCS. There is clearly a need to investigate the potential effect of tDCS on
neurobiological changes in healthy individuals. For future research, it can also be useful to
calibrate the tDCS procedure for each participant. A computation model can be applied in

order to determine out how individual differences will affect the current distribution. In
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addition, it could be of potential interest to study the effect when tDCS and cognitive

stimulation are delivered simultaneously.
Conclusions

This experimental study did not reveal a significant difference between active and placebo
accelerated tDCS for verbal memory functions. However, we found that the tDCS stimulation
led to a significant improvement in executive function in younger participants, assessed with
TMT-B. Our accelerated tDCS protocol, with short intervals between each session, was well
tolerated with no side effects of the stimulation. Future research should combine

neuropsychological and neurophysiological outcome measures.
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ARTICLE INFO ABSTRACT

Total hippocampal volume has previously been shown to correlate with performance on tests for verbal episodic
memory. However, there are sparse evidence on how hippocampal subfield volumes are related to verbal epi-
sodic memory in healthy adults. The present study investigated the association between volumes of separate
hippocampal subfields and verbal episodic memory performance in healthy volunteers. Forty-seven participants
(31 females) between 20-71 years age underwent testing with the California Verbal Learning Test II (CVLT II),
and the Wechsler Abbreviated Scale of Intelligence (WASI) to obtain an estimate of cognitive functioning. T1-
weighted MR images were obtained after cognitive testing, and volumetric estimates adjusted for age and es-
timated total intracranial volume were calculated in the FreeSurfer 6.0 software suite for cerebral -and hippo-
campal structures. The sample performed within the statistical normal range on both CVLT II and WASI.
Significant correlations adjusted for multiple testing were found between CVLT II subtests of total learning, free
immediate recall and free delayed recall and volumes of the left Cornu Ammonis (CA) 1-4 subfields. There were
no significant correlations between right hippocampal subfields and CVLT II performance, and no significant
correlation between WASI results and hippocampal subfields. The present results suggest that better verbal
episodic memory measured by the CVLT II is associated with relative larger volumes of specific left CA hip-
pocampal subfields in healthy adults. Due to the small sample size and large age-span of the participants, the
present findings are preliminary and should be confirmed in larger samples.

Keywords:

Verbal memory

Hippocampal subfields
California Verbal Learning Test
FreeSurfer

Healthy volunteers

statistically related to certain categories of cognition [6]. The structural
approach is useful when assessing whether structural individual dif-

1. Introduction

Episodic memory, which is the ability to remember experiences that
occurred at a particular place and time, has been related to hippo-
campal functions in several studies [1-3]. The hippocampus is usually
subdivided into the Cornu Ammonis (CA) CA1l, CA2-3, CA4/dentate
gyrus, the presubiculum and the subiculum, which are the larger sub-
structures of the hippocampus. Previous studies have suggested that
these subfields have separate and specialized functions with regard to
memory processes, and the subfield division are therefore not merely an
anatomical classification [4,5].

Development of advanced magnet resonance imaging (MRI) tech-
niques during the last decades have provided the opportunity to study
both anatomical features and cerebral activation with high precision.
Volumetric MRI studies that combines structural assessment of the
brain with concomitant cognitive measures provides the opportunity to
study the inter-individual variability in brain structures that can be

ferences in cerebral areas are associated with normal or impaired
cognition [7].

The volume of the hippocampal subfields is assumed to be positively
correlated with episodic memory functioning [8,9], even if some stu-
dies have reported a negative association between hippocampal volume
and memory processes [10,11]. However, most previous volumetric
studies of verbal memory and hippocampal size have used data for the
hippocampus without separating the subfields and the number of stu-
dies investigating the relation between hippocampal subfields and
cognitive functions are sparse. Furthermore, the results in the existing
studies are not entirely consistent, and differences in findings may arise
from differences in characteristics of the samples, method for esti-
mating hippocampal subfields and selection of cognitive tests.

A recent study using subfield segmentation of MRI data from
healthy elderly showed that verbal memory performance measured by
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the Repeatable Battery for Assessment of Neuropsychological status
(RBANS) shows that larger volumes of the CA1 and the subiculum were
correlated with better verbal memory retrieval [12]. Another study on
healthy younger adults using high-field MRI with manual hippocampal
segmentation revealed that verbal memory performance [8] measured
by the Wechsler Memory Scale III [13] was correlated with larger vo-
lumes of the CAl, CA2-3 and CA4. Using a measure for auto-
biographical episodic memory [14] in healthy young adults, Palombo
et al. [15], found that volumes of the left CA2/3 and the bilateral
subiculum were associated with higher number of details generated
from an autobiographical interview. In case-control studies using the
California Verbal Learning Test (CVLT-II) [16] to assess verbal memory,
larger volumes of CA2-3 and CA4 were associated with better im-
mediate verbal recall, whereas CA1 volume correlated with better de-
layed verbal recall [17,18].

Early lesion studies indicated that verbal auditory memory is more
dependent on the left hippocampus compared to the right [19], which
have been supported in some more recent human volumetric studies
[15,20,21]. Furthermore, several studies in healthy adults have found
structural asymmetry with larger volumes of the right hippocampus
compared to the left [22-24]. This asymmetry has also been shown to
be associated with preserved memory functions in elderly persons,
where memory impaired subjects had no significant volume asymmetry
between the left and the right hippocampus [25]. The underlying me-
chanism for the structural asymmetry is unknown, but it may be related
to the functional specialization of the temporal lobes, where the left
side normally is more associated with verbal memory whereas the right
is associated with non-verbal memory functions [22,26]. Thus, a la-
teralization effect of verbal episodic memory on hippocampal subfield
volumes can be anticipated.

In the present study, we used the CVLT-II to assess verbal memory
functions in healthy adults of both sexes in a wide age-span to test
whether episodic verbal memory shows a lateralization effect in the
hippocampus. The CVLT II is extensively used in both clinical and sci-
entific settings [27], but there is limited data on the hippocampal
anatomical correlates of CVLT II performance in healthy volunteers.
Thus, data for structural correlates of the CVLT II is important for both
clinical and scientific purposes. Based on findings in previous studies
using similar methodology, we expected that different outcome mea-
sures of the CVLT-II had specific correlates of the hippocampal subfield
volumes. Specifically, we hypothesized that the left CA2-3 and CA4
volumes should be associated with the learning score and immediate
recall memory score, whereas the left CAl and the subiculum should be
associated with delayed recall performance.

2. Methods
2.1. Participants

Forty-seven, right-handed volunteers (31 females) in the age range
22-71 (Mean = 38.36, SD = 20.16) years were recruited on the
campus of the University of Tromsg, Norway. The mean educational
level of the sample was 13.78 (SD = 2.02) years (median = 14 years).
All participants signed an informed consent stating that they were
healthy and had no present or history of severe disease or injuries. The
study was approved by the Regional Committee for Research Ethics in
Medicine and Health Sciences (project 2012/1588) and was conducted
in accordance with the Declaration of Helsinki. The participants re-
ceived a gift card worth 300 Norwegian Kroner (approx. 37 EUR/47
USD) as compensation for their participation. Exclusion criteria were
previous concussions, traumatic brain injury, or other injuries or dis-
eases involving the central nervous system, including psychiatric con-
ditions. Patients on prescribed medications were excluded, with the
exception of oral contraceptives in women. Medical conditions, preg-
nancy, or body implants not compatible with participants’ safety in the
MR-scanner were also exclusion criteria.
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2.2. Neuropsychological tests

Verbal episodic memory was measured by the Norwegian version of
the California Verbal Learning Test II (CVLT-II), standard version [16].
The CVLT-II measures verbal auditory learning, recall- and recognition
memory, and was administrated and scored according to the standar-
dized instructions. The learning trial gives a total score from five se-
parate recalls of a 16-item word list (List A) that is read aloud to the
examinee who is to repeat the words from the list in random order after
each reading. Thereafter, a second list (List B) is introduced as a dis-
tractor before the examinee is asked to recall as many items as possible
from List A. The correct items remembered from A after the distractor
list, comprises the Immediate recall trial. Then, the examiner asks the
participant to categorize the word list into four categories (i.e., furni-
ture, vegetables, clothes, and animals) to obtain a measure of Im-
mediate cued-recall abilities. Twenty minutes after the total learning
trial, the free and cued recall of List A are repeated, and comprise the
delayed recall trial and the delayed cued recall trial, respectively. At
last a recognition trial and a forced recognition trial is performed.

The results from the cued recall trials were not included in the
present data analyses due to high correlations with the free recall data
(r > 0.70) and the small sample size restricting the number of com-
parisons to be performed.

The raw scores from the CVLT-II total learning trial, immediate and
delayed recall trials and the recognition trials were converted to stan-
dard scores using published normative data that corrects for both age
and sex. Validity studies of the Norwegian version of the CVLT-II have
shown good fit between the Norwegian translation and American norms
[28].

Visual-spatial abilities and crystallized intelligence were assessed by
two subtests (Matrix Reasoning and Vocabulary) from the Norwegian
version of the Wechsler Abbreviated Scale of Intelligence (WASI) [29].
The Vocabulary subtest demands that the examinee gives overt ex-
planations of words with an increasing level of difficulty. The Norwe-
gian version of the WASI has shown acceptable fit to American nor-
mative data [30]. The Matrix reasoning is a non-verbal subtest
measuring visual-perceptual- and problem solving ability. WASI scores
are converted to standardized scores by normative data, correcting for
age, but not sex.

2.3. MRI acquisition

Subjects were scanned in a 1.5 T Phillips Intera MR scanner using an
8-channel head coil. The T1-weighted structural scans were 3D turbo
field echo scan with TR = 1.825ms, TI = 855ms, TE = 4.0ms, flip
angle = 8°, and voxel resolution = 0.94 x 0.94 x 1.25 mm?>. The MRI
scanning was performed within a month after cognitive testing for all
participants.

2.4. Volumetric MRI analysis

Hippocampal subfields were calculated by an automated segmen-
tation process [31] implemented in Freesurfer 6.0 (https://surfer.nmr.
mgh.harvard.edu/). FreeSurfer automatically labels each voxel of the
T1 MR-images to one of 40 predefined structures by using probabilistic
brain atlases [32-34]. In the present study, the volumetric data for the
hippocampal subfields, estimated total intracranial volume and total
left and right hippocampus volumes were used. See Fig. 1 for an ex-
ample of segmentation based on Freesurfer 6.0 from the present study.
The volumes used in the correlation analyses were adjusted for age, sex
and estimated total intracranial volume (eTIV). The adjustments were
performed by linear regressions where brain volumes were dependent
variables, and age, sex and eTIV were entered as predictors. The stan-
dardized residuals from the regressions were then saved and used for
the analyses. The adjusted volumes (residuals) for the left and the right
Cornu Ammonis (CA) CAl, CA2/3, CA4/Dentate Gyrus (DG),
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Fig. 1. Example of segmentation of hippocampal subfields based on T1-weighted MRI. Voxel resolution = 0.94 x 0.94 x 1.25 mm®,

presubiculum, subiculum and the total volumes of the right and the left
hippocampus were correlated with performance on cognitive tests.

2.5. Statistical analyses

The distribution of the calculated residuals was not significantly
different from a normal distribution shown by the Shapiro-Wilk test,
and this was further confirmed by inspection of Q—Q plots of the re-
siduals. Thus, parametric statistical testing was performed. Independent
samples t-test were used to test group-differences in unadjusted vo-
lumes. Paired samples t-tests were used to compare differences between
the left and the right hippocampal formations. Correlations between
hippocampal volumes and CVLT II subtests were performed with
Pearson correlations, and in order to adjust p-values for multiple testing
and reducing the probability of type I errors, p-values were adjusted
with the False Discovery Rate (FDR) procedure with q = 0.05 [35,36].
After FDR adjustments performed with a script for SPSS (http://www-
01.ibm.com/support/docview.wss?uid =swg21476447) the level of
significance was p < .0044 for the correlational analyses between
cognitive performance and hippocampal subfields. Elsewhere, p-va-
lues < .05 were considered significant. To test whether correlations
were significantly different based on their z-score distribution, the
Fisher r-to-z transformation test was employed.

3. Results
3.1. Cognitive data

Descriptive data for CVLT II, WASI, and volumetric measures are
presented in Table 1. The sample means of the cognitive tests were
within one standard deviation from the normative means, however, the
results on the CVLT II showed that one abnormally low score (below 2
SD from the normative mean) from separate participants occurred on
all CVLT subtests. All participants performed within the statistical
normal range (T-score > 40) measured by the WASI tests, and the fre-
quency of abnormal scores was not deviant from other studies using
neuropsychological methodology [37]. There were no significant sex
differences in CVLT II adjusted scores (all t’s < 1.82), but females
performed better compared to males based on the unadjusted raw
scores on the recognition subtest (t (45) = 2.26, p = .03). No other
comparison between males and females performance on the CVLT II
reached significance.
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Table 1

Descriptive statistics. SD = Standard deviation. WASI = Wechsler Abbreviated
Scale of Intelligence, CVLT = California Verbal Learning Test IIL
eTIV = Estimated total intracranial volume. WASI and CVLT II Total learning
scores are shown in T-scores (normative mean = 50, SD = 10), other CVLT II
scores are shown in Z-scores (normative mean = 0, SD = 1). N = 47, 31 fe-
males.

Variable Mean Median SD Minimum  Maximum
Age at scanning 38.4 34 20.2 20 71
WASI Matrix reasoning 56.9 57 7.1 37 69
WASI Vocabulary 57.5 58 7.9 40 70
CVLT Total learning 53.4 53 10.3 24 69
CVLT Immediate recall .47 .50 .99 -2 2
CVLT Delayed recall 42 .50 .97 -2 1.5
CVLT Recognition -.01 0 .63 -2 1
eTIV, cm® 1572 1544 134 1370 1932
Left hippocampus, mm® 3428 3410 285 2875 4202
Right hippocampus, mm?® 3511 3483 298 2937 4226
Whole hippocampus, mm® 6939 6966 575 5812 8428
CA1, mm® 1270 1265 119 1041 1558
CA2/3, mm® 426 424 45 335 552
CA4/DG, mm* 520 526 47 438 644
Subiculum, mm? 861 844 88 711 1093
Presubiculum, mm® 612 597 67 473 781

3.2. Unadjusted volumetric data

Males had larger right hippocampus (t (45) = 2.15, p = .037) and
larger eTIV (t (45) = 5.07, p < .001), but there was no sex difference
in left hippocampal volume (t (45) = 1.17, p = .25). There were sig-
nificant differences in volumes between the left and the right hemi-
sphere on the hippocampal subfield measures shown by paired samples
t-tests (all t’s (46) < 5.01, all p’s < .001) with exception of the com-
parison left versus right subiculum (t (46) = 0.45, p = .65). The right
subfields were larger (p < .05) compared to the left subfields, with the
exception of the left presubiculum being larger than the right (t
(46) = 5.03, p < .001). All t-tests on the left versus right comparisons
of volumetric data are presented in Table 2. Univariate Pearson corre-
lations between the left hippocampus, the right hippocampus and total
hippocampal size and age and eTIV revealed that age had no significant
association with any of the volumetric data, but there was a non-sig-
nificant tendency to negative correlations between age and volumes.
eTIV was significantly associated with left hippocampal volume
(r = .49, p < .01), right hippocampal volume (r = .59, p < .001) and
total hippocampal volume (r = .55, p < .001).
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Table 2
Comparison of left and right hippocampal subfield volumes with paired samples
t-tests.

Left Right t p

Mean Mean
Hippocampus - whole mm?® 3428 3511 —5.51 <.001
CA1 mm?® 621 648 —5.44 <.001
CA2/3 mm® 201 224 —-8.20 <.001
CA4/DG mm® 252 268 —-6.77 <.001
Subiculum mm?® 431 429 45 .65
Presubiculum mm? 315 297 5.01 <.001

Table 3

Pearson correlations between CVLT-II subtests and volumes of hippocampal
subfields and hippocampus. Volumes are standardized residuals from linear
regressions in order to adjust for total intracranial volume, sex, and age.
L = Left, R = Right. * = p < .05 unadjusted, bold ** = p < .0044 FDR ad-
justed. CA = Cornu Ammonis, CVLT = California Verbal Learning Test IL
DG = Dentate gyrus. N = 47.

CVLT II CVLT II CVLT II CVLT II
Total Immediate Delayed Recognition
Learning Recall Recall
Hippocampal subfields
L hippocampus - .27 .33* .32% .08
whole
L CAl .30% .30* A43%* 17
L CA2/3 .34* 43%* A1 .27
L CA4/DG 40%* 427 475 .15
L Subiculum .05 .19 12 .01
L Presubiculum -.19 -.11 -.07 -.23
R hippocampus - .18 .27 .23 .02
whole
R CAl .24 .27 .28 17
R CA2/3 .14 .29 22 -.07
R CA4/DG 22 .32% .26 -.03
R Subiculum .01 .10 .09 —-.05
R Presubiculum —.24 -.14 —-.08 -.19
Merged (L + R) subfields
Whole .26 .31* .26 -.03
hippocampus
CAl .28 .30 .40%* .20
CA2/3 .25 .39* .33* .10
CA4/DG .33* .38* .39% .15
Subiculum .09 .14 21 11
Presubiculum -.15 —-.16 -.11 .03

3.3. Correlation analyses on data adjusted for age, sex and eTIV

The correlation analyses showed that there were no significant as-
sociations between the right hippocampal subfields residuals and the
CVLT II subtests. There were several significant correlations (p < .05)
between the CVLT II subtests and left hippocampal subfields residuals,
however when applying the FDR adjustments (p < .0044), only the
CAl, CA2/3 and the CA4 had significant associations with verbal
memory performance (Table 3 and Fig. 2). There were no significant
correlations between performance on the WASI and hippocampal
measures when adjusting p-values with the FDR procedure. The Fisher
r-to-z transformation tests showed that none of the significant correla-
tions between subfields in the left and CVLT II performance was sig-
nificantly different from the same correlations in the right subfields
when using the z-score as criterion. The z-scores of the difference
ranged from z = 1.34, p = .09 to z = 0.99, p = .16 (one-tailed). The
correlations between the merged (left + right) subfields and CVLT II
performance showed that larger volume of the CA1 was significantly
associated with better delayed recall performance. However, the whole
hippocampus, the CA2/3 and the CA4/DG had correlations with all
CVLT II measures with the exception of the recognition score, but the
significance of these correlations did not pass the FDR criterion (see
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Table 3).
4. Discussion

In accordance with our hypothesis, the present results showed sig-
nificant associations between larger volumes of the left hippocampal
subfields (CA1, CA2/3, CA4/DG) corrected for age, sex and eTIV with
verbal learning and memory performance. Specifically, volume of the
CA1 correlated with delayed recall, whereas volume of the CA2/3 was
related to immediate and delayed recall, and volume of the CA4/DG
were significantly associated with learning, immediate and delayed
recall. Volumes of the right hippocampal subfields were not sig-
nificantly related to verbal learning or recall performance. This later-
alization effect in hippocampal subfields is not previously shown for
verbal memory tests that include list learning, which is the type of test
most commonly used for measuring verbal episodic memory [27]. Two
previous studies [20,21] found a similar effect of the whole left hip-
pocampus without separating the subfileds. Moreover, a recent study by
Palombo et al. [15], found that performance on the Autobiographical
Interview [38] correlated significantly with the left CA2/3 but not the
right CA2/3.

The analyses of structural volumes showed that the right CA1, CA2/
3 and the CA4/DG were larger compared the same structures in the left
hemisphere. The presubiculum was the only subfield in the left hip-
pocampus being larger than the subfields in the right hemisphere. This
is in line with several previous studies [22-24] on healthy volunteers
showing a structural asymmetry of hippocampal volumes. In patients
with Alzheimer’s disease, episodic memory deficits are more associated
with volumes of the left subfields compared to the right subfields [39],
and the structural asymmetry of the hippocampal volumes is absent. It
has been suggested that the left compared to the right hippocampus is
more affected by atrophy caused by vascular and neurodegenerative
processes in Alzheimer’s disease [40]. Thus, the episodic verbal
memory deficits in Alzheimer’s disease could to some extent be caused
by increased left hippocampus vulnerability compared to the right
hippocampus [41]. Taken together, several studies in both healthy
volunteers and patients suggest that the left hippocampus is more in-
volved in verbal episodic memory in healthy volunteers compared to
the right hippocampus.

Previous studies have suggested that CA2/3 and CA4/DG are
structures more related to encoding and learning than recall, whereas
the CAl is an output structure mainly related to retrieval functions
[42-44]. The results from the present study support these suggestions,
except that volumes of the CA2/3 and the CA4/DG were related to
performance in the recall stage of verbal memory, and not solely as-
sociated with the learning phase. This is in line with a 7 T fMRI study
showing that the CA2/3 and CA4/DG are activated both during
learning and recall, however more in the learning phase [45]. In
comparison to Zammit et al [12], we did not find any correlation be-
tween volume of the left or right subiculum and verbal memory.
Zammit et al [12] used only data for the merged left and the right
subfields in their analyses in contrast to the present study.

The partially divergent findings on the relation between hippo-
campal morphometric data and verbal memory performance may be
due to several methodological differences between studies. Different
verbal memory tests have been employed across volumetric studies on
hippocampal subfields. The Free and Cued Selective Reminding Test
[12], The Autobiographical Interview [15] and the Wechsler Memory
Scale (WMS-IV) [8] have been used in healthy samples, whereas the
WMS-III [46], the CVLT [17,46] and the Brief Assessment of Cognition
in Schizophrenia [47] have been used in studies with mixed samples of
healthy controls and patients. Even if tests for episodic verbal memory
are highly correlated, the concordance is not perfect between tests
[48,49]. Hence, different tests designed for measuring episodic memory
might measure different aspects of the construct and may produce
variability in hippocampal correlates. In addition, Zammit et al [12]
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Fig. 2. Scatterplots for correlations between CVLT II subtests and hippocampal volumes adjusted for age, sex and estimated intracranial volume (eTIV). r = Pearson

correlation coefficient.

employed FreeSurfer for automatic volumetric segmentation in healthy
volunteers, whereas Travis et al [8] and Palombo et al [15] used a
manual segmentation procedure. Different methods for estimating vo-
lume may produce small but measurable differences in estimates of
cerebral structures [50]. Additionally, the age span in studies on
healthy volunteers differ across studies, from participants below 35
years [8,15] to elderly with a mean age at approx. 79 years [12]. The
present study recruited volunteers in the age span 20 to 71 years, but
there were no significant linear association between unadjusted hip-
pocampal volumes and age. Previous studies have suggested that the
linear effect of age is small, but still significant with negative correla-
tions between age and volume in healthy cognitively preserved elderly
[51], even if the rate of age-releated athrophy is suggested to be low (<
0.2% per year) [52]. On the other hand, age effects and brain

maturation do often show complex and non-linear patterns and other
statistical models than the linear approach might be better suited for
this purpose [53]. Furthermore, even if there were no significant as-
sociation between age and unadjusted hippocampal subfield volumes in
the present study, previous studies have found that structural changes
of the hippocampus during development may contribute to age-related
differences in episodic memory [54]. In healthy elderly, a positive re-
lationship between preserved memory functions and hippocampus vo-
lume is generally supported, even if some studies found no such asso-
ciation or a negative association, for an overview see Kaup et al. [9].
Females perform generally better on tests related to episodic
memory compared to males, and the CVLT II norms are adjusted for sex
[16]. Data from the present study did not show any sex difference on
adjusted CVLT II scores, but females performed better on the
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recognition subtest based on the unadjusted raw scores. The lack of sex
differences in the CVLT II raw score data may be attributed to the small
sample size and the educational level of the participants. Furthermore,
there are sex differences in hippocampal subfield volumes where fe-
males have larger volumes than males adjusted for intracranial volume,
but males and females display similar decrease of hippocampal volumes
with age [52]. In the present study, we adjusted for both the effects of
sex and age in the correlation analyses between CVLT performance and
volumetric data, and the results cannot inform about the impact of sex
and age on episodic memory.

The main limitations of the present study are the small sample size
and the large variability in age of the included participants. The Fisher
r-to-z transformation tests showed that the distributions based on the
correlations in the left and the right subfields did not differ sig-
nificantly, even if the FDR-adjusted p-value from the correlations were
significant. Furthermore, when using the FDR correction for controlling
familywise error rates, there is a risk of type-II errors when rejecting
correlations with p-values close to the FDR criterion. Hence, the gen-
eralizability of the findings is questionable and the results should be
regarded as preliminary findings that need conformation in larger
samples. Nonetheless, the significant results were in line with findings
from studies with related methodology [8,15,17,18]. Several associa-
tions between hippocampal subfields volumes and verbal memory were
close to significance, and a larger sample may have provided clearer
findings. The Freesurfer segmentation process implemented in earlier
versions (5.3 and earlier) of the software has received criticism for
providing inaccurate estimates that conflicts with structural findings in
anatomical studies [55]. In this study, we used Freesurfer 6.0 where the
accuracy and correspondence with anatomical studies has been im-
proved [31], and this version of Freesurfer has shown good test-retest
reproductibility estimates for hippocampal segmentation in studies
with large samples [56]. However, results based on 1 mm segmentation
of internal subfields such as the CA4 should be interpreted with caution
and further validation of the software with higher resolution should be
performed to confirm the results. Thus, improvements in software and
increased field-strength of MR-images might produce more accurate
findings in future larger studies.

5. Conclusion

In summary, the present study showed that verbal learning, im-
mediate- and delayed recall measured by the CVLT II had significant
relations with separate subfields of the left hippocampus in healthy
adults in the ages between 22-71 years. Furthermore, there were no
significant associations between the right hippocampal subfields and
verbal memory performance suggesting that auditory verbal memory is
associated with volumetric lateralization effects in the hippocampus.
The present results should be replicated in larger samples, and should
be interpreted with caution due to the small sample size and large
variability in age of the included participants.

Acknowledgements

The present study was funded by the Northern Norway Health
Authority (grant number PFP1140-13). The sponsors did not influence
any part of the study design, data collection, analysis or interpretation
of the data, writing of the article or the submission process. The authors
report no conflict of interest.

References

[1] N. Burgess, E.A. Maguire, J. O’Keefe, The human hippocampus and spatial and
episodic memory, Neuron 35 (4) (2002) 625-641.

[2] S. Leutgeb, J.K. Leutgeb, C.A. Barnes, E.I. Moser, B.L. McNaughton, M.-B. Moser,
Independent codes for spatial and episodic memory in hippocampal neuronal en-
sembles, Science 309 (5734) (2005) 619-623.

[3] E. Tulving, H.J. Markowitsch, Episodic and declarative memory: role of the

136

[4]

[5

[6

[71

[8

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

Behavioural Brain Research 351 (2018) 131-137

hippocampus, Hippocampus 8 (3) (1998) 198-204.

M.B. Moser, E.I. Moser, Functional differentiation in the hippocampus,
Hippocampus 8 (6) (1998) 608-619.

P. Zeidman, E.A. Maguire, Anterior hippocampus: the anatomy of perception,
imagination and episodic memory, Nat. Rev. Neurosci. 17 (3) (2016) 173-182.
S.T. Pohlack, P. Meyer, R. Cacciaglia, C. Liebscher, S. Ridder, H. Flor, Bigger is
better! Hippocampal volume and declarative memory performance in healthy
young men, Brain Struct. Funct. 219 (1) (2014) 255-267.

R. Kanai, G. Rees, The structural basis of inter-individual differences in human
behaviour and cognition, Nat. Rev. Neurosci. 12 (4) (2011) 231-242.

S. Travis, Y. Huang, E. Fujiwara, A. Radomski, F. Olsen, R. Carter, P. Seres,

N. Malykhin, High field structural MRI reveals specific episodic memory correlates
in the subfields of the hippocampus, Neuropsychologia 53 (2014) 233-245.

A.R. Kaup, H. Mirzakhanian, D.V. Jeste, L.T. Eyler, A review of the brain structure
correlates of successful cognitive aging, J. Neuropsychiatry Clin. Neurosci. 23 (1)
(2011) 6-15.

J.K. Foster, A. Meikle, G. Goodson, A.R. Mayes, M. Howard, S.I. Sunram,

E. Cezayirli, N. Roberts, The hippocampus and delayed recall: bigger is not ne-
cessarily better? Memory 7 (5-6) (1999) 715-733.

M. Pruessner, J.C. Pruessner, D.H. Hellhammer, G.B. Pike, S.J. Lupien, The asso-
ciations among hippocampal volume, cortisol reactivity, and memory performance
in healthy young men, Psychiatry Res.: Neuroimaging 155 (1) (2007) 1-10.

A.R. Zammit, A. Ezzati, M.E. Zimmerman, R.B. Lipton, M.L. Lipton, M.J. Katz, Roles
of hippocampal subfields in verbal and visual episodic memory, Behav. Brain Res.
317 (2017) 157-162.

D. Wechsler, WMS-III: Wechsler Memory Scale Administration and Scoring Manual,
Psychological Corporation, 1997.

B. Levine, E. Svoboda, J.F. Hay, G. Winocur, M. Moscovitch, Aging and auto-
biographical memory: dissociating episodic from semantic retrieval, Psychol. Aging
17 (4) (2002) 677.

D.J. Palombo, A. Bacopulos, R.S.C. Amaral, R.K. Olsen, R.M. Todd, A.K. Anderson,
B. Levine, Episodic autobiographical memory is associated with variation in the size
of hippocampal subregions, Hippocampus 28 (2) (2018) 69-75.

D. Delis, J. Kramer, E. Kaplan, B. Ober, Manual for the California Verbal Learning
Test, 2nd ed., The Psychological Corporation, San Antonio, TX, 2000 (CVLT-II).
S.G. Mueller, L. Chao, B. Berman, M.W. Weiner, Evidence for functional speciali-
zation of hippocampal subfields detected by MR subfield volumetry on high re-
solution images at 4T, Neuroimage 56 (3) (2011) 851-857.

S.G. Mueller, K.D. Laxer, C. Scanlon, P. Garcia, W.J. McMullen, D.W. Loring,

K.J. Meador, M.W. Weiner, Different structural correlates for verbal memory im-
pairment in temporal lobe epilepsy with and without mesial temporal lobe sclerosis,
Hum. Brain Mapp. 33 (2) (2012) 489-499.

W.B. Scoville, B. Milner, Loss of recent memory after bilateral hippocampal lesions,
journal of neurology, Neurosurg. Psychiatry 20 (1) (1957) 11-21.

A. Ezzati, M.J. Katz, A.R. Zammit, M.L. Lipton, M.E. Zimmerman, M.J. Sliwinski,
R.B. Lipton, Differential association of left and right hippocampal volumes with
verbal episodic and spatial memory in older adults, Neuropsychologia 93 (2016)
380-385.

M.A. Ystad, A.J. Lundervold, E. Wehling, T. Espeseth, H. Rootwelt, L.T. Westlye,
M. Andersson, S. Adolfsdottir, J.T. Geitung, A.M. Fjell, Hippocampal volumes are
important predictors for memory function in elderly women, BMC Med. Imaging 9
(1) (2009) 17.

P. Shah, D.S. Bassett, L.E.M. Wisse, J.A. Detre, J.M. Stein, P.A. Yushkevich,

R.T. Shinohara, J.B. Pluta, E. Valenciano, M. Daffner, D.A. Wolk, M.A. Elliott,

B. Litt, K.A. Davis, S.R. Das, Mapping the structural and functional network ar-
chitecture of the medial temporal lobe using 7T MRI, Hum. Brain Mapp. 39 (2)
(2018) 851-865.

A.A. Woolard, S. Heckers, Anatomical and functional correlates of human hippo-
campal volume asymmetry, Psychiatry Res. 201 (1) (2012) 48-53.

G. Hou, X. Yang, T.F. Yuan, Hippocampal asymmetry: differences in structures and
functions, Neurochem Res. 38 (3) (2013) 453-460.

H.S. Soininen, K. Partanen, A. Pitkanen, P. Vainio, T. Hanninen, M. Hallikainen,
K. Koivisto, P.J. Riekkinen Sr., Volumetric MRI analysis of the amygdala and the
hippocampus in subjects with age-associated memory impairment: correlation to
visual and verbal memory, Neurology 44 (9) (1994) 1660-1668.

S. Kennepohl, V. Sziklas, K.E. Garver, D.D. Wagner, M. Jones-Gotman, Memory and
the medial temporal lobe: hemispheric specialization reconsidered, Neuroimage 36
(3) (2007) 969-978.

J. Egeland, M. Lovstad, A. Norup, T. Nybo, B.A. Persson, D.F. Rivera, A.K. Schanke,
S. Sigurdardottir, J.C. Arango-Lasprilla, Following international trends while sub-
ject to past traditions: neuropsychological test use in the Nordic countries, Clin.
Neuropsychol. 30 (supl) (2016) 1479-1500.

O. Bosnes, California Verbal Learning Test-II utprovd i et klinisk utvalg i Norge,
TIDSSKRIFT-NORSK PSYKOLOGFORENING 44 (7) (2007) 887.

D. Wechsler, Wechsler Abbreviated Intelligence Scale, The Psychological
Corporation, San Antonio, 1999.

B. @rbeck, K. Sundet, WASI (Wechsler Abbreviated Scale of Intelligence) Norsk
Versjon Manualsupplement, Stockholm: Harcort Asessment Inc, 2007.

J.E. Iglesias, J.C. Augustinack, K. Nguyen, C.M. Player, A. Player, M. Wright,

N. Roy, M.P. Frosch, A.C. McKee, L.L. Wald, B. Fischl, K. Van Leemput,

A.D. Neuroimaging, A computational atlas of the hippocampal formation using ex
vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo
MRI, Neuroimage 115 (2015) 117-137.

B. Fischl, FreeSurfer, Neuroimage 62 (2) (2012) 774-781.

B. Fischl, D.H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der
Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen,


http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0005
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0005
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0010
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0010
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0010
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0015
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0015
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0020
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0020
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0025
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0025
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0030
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0030
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0030
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0035
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0035
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0040
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0040
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0040
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0045
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0045
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0045
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0050
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0050
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0050
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0055
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0055
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0055
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0060
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0060
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0060
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0065
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0065
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0070
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0070
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0070
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0075
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0075
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0075
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0080
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0080
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0085
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0085
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0085
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0090
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0090
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0090
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0090
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0095
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0095
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0100
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0100
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0100
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0100
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0105
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0105
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0105
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0105
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0110
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0110
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0110
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0110
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0110
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0115
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0115
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0120
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0120
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0125
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0125
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0125
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0125
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0130
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0130
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0130
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0135
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0135
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0135
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0135
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0140
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0140
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0145
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0145
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0150
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0150
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0155
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0155
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0155
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0155
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0155
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0160
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0165
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0165

P.M. Aslaksen et al.

[34]

[35]

[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A.M. Dale, Whole brain segmentation: automated labeling of neuroanatomical
structures in the human brain, Neuron 33 (3) (2002) 341-355.

B. Fischl, D.H. Salat, A.J. van der Kouwe, N. Makris, F. Segonne, B.T. Quinn,
A.M. Dale, Sequence-independent segmentation of magnetic resonance images,
Neuroimage 23 (Suppl. 1) (2004) S69-84.

Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and
powerful approach to multiple testing, J. R. Stat. Soc. Ser. B (Methodological)
(1995) 289-300.

D. Yekutieli, Y. Benjamini, Resampling-based false discovery rate controlling mul-
tiple test procedures for correlated test statistics, J. Stat. Plan. Inference 82 (1)
(1999) 171-196.

L.M. Binder, G.L. Iverson, B.L. Brooks, To err is human:“Abnormal” neuropsycho-
logical scores and variability are common in healthy adults, Arch. Clin.
Neuropsychol. 24 (1) (2009) 31-46.

B. Levine, E. Svoboda, J.F. Hay, G. Winocur, M. Moscovitch, Aging and auto-
biographical memory: dissociating episodic from semantic retrieval, Psychol Aging
17 (4) (2002) 677-689.

D. Hirjak, R.C. Wolf, B. Remmele, U. Seidl, A.K. Thomann, K.M. Kubera,

J. Schroder, K.H. Maier-Hein, P.A. Thomann, Hippocampal formation alterations
differently contribute to autobiographic memory deficits in mild cognitive im-
pairment and Alzheimer’s disease, Hippocampus 27 (6) (2017) 702-715.

J.Y. Thong, J. Du, N. Ratnarajah, Y. Dong, H.W. Soon, M. Saini, M.Z. Tan, A.T. Ta,
C. Chen, A. Qiu, Abnormalities of cortical thickness, subcortical shapes, and white
matter integrity in subcortical vascular cognitive impairment, Hum. Brain Mapp. 35
(5) (2014) 2320-2332.

F. Shi, B. Liu, Y. Zhou, C. Yu, T. Jiang, Hippocampal volume and asymmetry in mild
cognitive impairment and Alzheimer’s disease: meta-analyses of MRI studies,
Hippocampus 19 (11) (2009) 1055-1064.

L.L. Eldridge, S.A. Engel, M.M. Zeineh, S.Y. Bookheimer, B.J. Knowlton, A dis-
sociation of encoding and retrieval processes in the human hippocampus, J.
Neurosci. 25 (13) (2005) 3280-3286.

R.K. Nauer, A.S. Whiteman, M.F. Dunne, C.E. Stern, K. Schon, Hippocampal subfield
and medial temporal cortical persistent activity during working memory reflects
ongoing encoding, Front. Syst. Neurosci. 9 (2015) 30.

M.M. Zeineh, S.A. Engel, P.M. Thompson, S.Y. Bookheimer, Dynamics of the hip-
pocampus during encoding and retrieval of face-name pairs, Science 299 (5606)
(2003) 577-580.

N.A. Suthana, M. Donix, D.R. Wozny, A. Bazih, M. Jones, R.M. Heidemann,

R. Trampel, A.D. Ekstrom, M. Scharf, B. Knowlton, High-resolution 7T fMRI of
human hippocampal subfields during associative learning, J. Cognit. Neurosci.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Behavioural Brain Research 351 (2018) 131-137

(2015).

E.Z. Hoseth, L.T. Westlye, S. Hope, I. Dieset, P. Aukrust, I. Melle, U.K. Haukvik,

1. Agartz, T. Ueland, T. Ueland, O.A. Andreassen, Association between cytokine
levels, verbal memory and hippocampus volume in psychotic disorders and healthy
controls, Acta Psychiatr. Scand. 133 (1) (2016) 53-62.

1. Mathew, T.M. Gardin, N. Tandon, S. Eack, A.N. Francis, L.J. Seidman,

B. Clementz, G.D. Pearlson, J.A. Sweeney, C.A. Tamminga, M.S. Keshavan, Medial
temporal lobe structures and hippocampal subfields in psychotic disorders: findings
from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP)
study, JAMA Psychiatry 71 (7) (2014) 769-777.

B.D. McDowell, J.D. Bayless, D.J. Moser, J.E. Meyers, J.S. Paulsen, Concordance
between the CVLT and the WMS-III word lists test, Arch. Clin. Neuropsychol. 19 (2)
(2004) 319-324.

1. Thiruselvam, E.M. Vogt, J.B. Hoelzle, The interchangeability of CVLT-II and
WMS-IV verbal paired associates scores: a slightly different story, Arch. Clin.
Neuropsychol. 30 (3) (2015) 248-255.

O. Grimm, S. Pohlack, R. Cacciaglia, T. Winkelmann, M.M. Plichta, T. Demirakca,
H. Flor, Amygdalar and hippocampal volume: a comparison between manual seg-
mentation, freesurfer and VBM, J. Neurosci. Methods 253 (2015) 254-261.

A.N. Voineskos, J.L. Winterburn, D. Felsky, J. Pipitone, T.K. Rajji, B.H. Mulsant,
M.M. Chakravarty, Hippocampal (subfield) volume and shape in relation to cog-
nitive performance across the adult lifespan, Hum. Brain. Mapp. 36 (8) (2015)
3020-3037.

F. Kurth, N. Cherbuin, E. Luders, The impact of aging on subregions of the hippo-
campal complex in healthy adults, Neuroimage 163 (2017) 296-300.

A.M. Fjell, K.B. Walhovd, L.T. Westlye, Y. @stby, C.K. Tamnes, T.L. Jernigan,

A. Gamst, A.M. Dale, When does brain aging accelerate? Dangers of quadratic fits in
cross-sectional studies, Neuroimage 50 (4) (2010) 1376-1383.

D. DeMaster, T. Pathman, J.K. Lee, S. Ghetti, Structural development of the hip-
pocampus and episodic memory: developmental differences along the anterior/
posterior axis, Cereb. Cortex 24 (11) (2014) 3036-3045.

L.E. Wisse, G.J. Biessels, M.I. Geerlings, A critical appraisal of the hippocampal
subfield segmentation package in FreeSurfer, Front. Aging Neurosci. 6 (2014).
C.D. Whelan, D.P. Hibar, L.S. van Velzen, A.S. Zannas, T. Carrillo-Roa, K. McMahon,
G. Prasad, S. Kelly, J. Faskowitz, G. deZubiracay, J.E. Iglesias, T.G.M. van Erp,

T. Frodl, N.G. Martin, M.J. Wright, N. Jahanshad, L. Schmaal, P.G. Samann,

P.M. Thompson, 1. Alzheimer's disease neuroimaging, heritability and reliability of
automatically segmented human hippocampal formation subregions, Neuroimage
128 (2016) 125-137.


http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0165
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0165
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0170
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0170
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0170
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0175
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0175
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0175
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0180
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0180
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0180
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0185
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0185
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0185
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0190
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0190
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0190
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0195
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0195
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0195
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0195
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0200
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0200
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0200
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0200
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0205
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0205
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0205
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0210
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0210
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0210
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0215
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0215
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0215
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0220
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0220
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0220
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0225
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0225
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0225
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0225
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0230
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0230
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0230
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0230
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0235
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0235
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0235
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0235
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0235
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0240
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0240
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0240
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0245
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0245
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0245
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0250
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0250
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0250
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0255
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0255
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0255
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0255
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0260
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0260
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0265
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0265
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0265
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0270
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0270
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0270
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0275
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0275
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0280
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0280
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0280
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0280
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0280
http://refhub.elsevier.com/S0166-4328(18)30059-7/sbref0280




	Report1Bystad.pdf
	Abstract
	Background
	Methods
	Results
	Conclusions
	Trial registration

	Background
	Methods
	Study design and participants
	Outcome measures
	Intervention
	Randomization and blinding
	Procedure
	Power and statistical analyses

	Results
	Safety and tolerability

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Funding source
	Author details
	References

	Report3Bystad.pdf
	The relation of hippocampal subfield volumes to verbal episodic memory measured by the California Verbal Learning Test II in healthy adults
	Introduction
	Methods
	Participants
	Neuropsychological tests
	MRI acquisition
	Volumetric MRI analysis
	Statistical analyses

	Results
	Cognitive data
	Unadjusted volumetric data
	Correlation analyses on data adjusted for age, sex and eTIV

	Discussion
	Conclusion
	Acknowledgements
	References





